file_path
stringlengths
7
180
content
stringlengths
0
811k
repo
stringclasses
11 values
python/tvm/relay/backend/contrib/ethosu/util.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Helper utility Enums and Functions used through out code generation. The rest of the utility functions are misc. Refer to the description inside such functions """ from inspect import signature from enum import Enum from typing import Union, Tuple, List import numpy as np # type: ignore import tvm # type: ignore from tvm import relay from tvm._ffi import register_object from tvm.runtime import Object from . import _ffi_api class QConv2DArgs(Enum): """ This is a helper enum to obtain the correct index of qnn.conv2d arguments. """ IFM = 0 WEIGHTS = 1 IFM_ZERO_POINT = 2 WEIGHTS_ZERO_POINT = 3 IFM_SCALE = 4 WEIGHTS_SCALE = 5 class QConv2DTransposeArgs(Enum): """ This is a helper enum to obtain the correct index of qnn.conv2d_transpose arguments. """ IFM = 0 WEIGHTS = 1 IFM_ZERO_POINT = 2 WEIGHTS_ZERO_POINT = 3 IFM_SCALE = 4 WEIGHTS_SCALE = 5 class RequantArgs(Enum): """ This is a helper enum to obtain the correct index of qnn.requantize arguments. """ IFM_SCALE = 1 IFM_ZERO_POINT = 2 OFM_SCALE = 3 OFM_ZERO_POINT = 4 class BiasAddArgs(Enum): """ This is a helper enums to obtain the correct index of qnn.bias_add arguments. """ BIASES = 1 class ClipArgs(Enum): """ This is a helper enums to obtain the correct index of clip arguments. """ A_MIN = 1 A_MAX = 2 class BinaryElementwiseArgs(Enum): """This is a helper enums to access the correct index of binary elementwise arguments """ IFM = 0 IFM2 = 1 IFM_SCALE = 2 IFM_ZERO_POINT = 3 IFM2_SCALE = 4 IFM2_ZERO_POINT = 5 OFM_SCALE = 6 OFM_ZERO_POINT = 7 class QuantizeArgs(Enum): """ This is a helper enums to access the correct index of quantize arguments """ IFM = 0 OFM_SCALE = 1 OFM_ZERO_POINT = 2 class DequantizeArgs(Enum): """ This is a helper enums to access the correct index of dequantize arguments """ IFM = 0 IFM_SCALE = 1 IFM_ZERO_POINT = 2 class QDenseArgs(Enum): """ This is a helper enum to access the correct index of qnn.dense arguments """ IFM = 0 WEIGHTS = 1 IFM_ZERO_POINT = 2 WEIGHTS_ZERO_POINT = 3 IFM_SCALE = 4 WEIGHTS_SCALE = 5 def is_npu_func(func: relay.Function) -> bool: """Check if the given function is an NPU function.""" return func.attrs and "Compiler" in func.attrs and func.attrs["Compiler"] == "ethos-u" def is_composite_func(func: relay.Function, name: str) -> bool: """ This method checks whether the call is to a composite function of a given name. Parameters ---------- func : relay.Function The header to be displayed along with the dump. name : str The candidate name to be checked Returns -------- a boolean """ if not hasattr(func, "attrs"): return False if "Composite" not in func.attrs.keys(): return False composite_name = func.attrs["Composite"] return composite_name == name def is_named_ethosu_op(expr: tvm.relay.Expr, name: str) -> bool: """Checks whether a relay expression matches that of the named operator. Parameters ---------- expr : tvm.relay.Expr The expression to check. name : str The name of the expected operator (without NPU prefix "contrib.ethosu"). Returns ------- bool True if expression matches name, false if not. """ prefix = "contrib.ethosu." return ( isinstance(expr, tvm.relay.expr.Call) and isinstance(expr.op, tvm.ir.op.Op) and expr.op.name == prefix + name ) def get_range_for_dtype_str(dtype: str) -> Tuple[int, int]: """ Produce the min,max for a give data type. Parameters ---------- dtype : str a type string (e.g., int8) Returns ------- type_info.min : int the minimum of the range type_info.max : int the maximum of the range """ try: type_info = np.iinfo(dtype) except ValueError: type_info = np.finfo(dtype) return type_info.min, type_info.max def round_away_zero(f: Union[float, np.double, np.single, np.float32, np.float64]) -> np.float64: """Round the number away from zero towards +inf / -inf""" offset = -0.5 if (f < 0) else 0.5 return np.trunc(f + offset) def round_up(a: int, b: int) -> int: """Round up to a multiple of b""" return ((a + b - 1) // b) * b def get_accelerator_config(): """Get the variant of the accelerator to compile for""" compiler_attrs = tvm.get_global_func("relay.ext.ethos-u.get_compiler_attrs")() return compiler_attrs.accelerator_config def is_cascader_enabled(): """Determine whether the cascader is enabled""" compiler_attrs = tvm.get_global_func("relay.ext.ethos-u.get_compiler_attrs")() return compiler_attrs.enable_cascader def is_striping_enabled(): """Determine whether the cascader is enabled""" compiler_attrs = tvm.get_global_func("relay.ext.ethos-u.get_compiler_attrs")() return compiler_attrs.enable_striping def get_arg_count(func): """Helper function to get the number of arguments in a python function""" sig = signature(func) return len(sig.parameters) def get_dim_value(layout: str, dim: int): """This is a helper function to retrieve the value of the dimension given the shape and the layout """ assert isinstance(layout, str) assert dim in list(layout) for idx, dim_char in enumerate(layout): if dim_char == dim: return idx return None def calculate_size_bytes(expr): """This is a helper function to calculate the number of bytes required to hold the tensor/relay.expr""" try: type_info = np.iinfo(expr.checked_type.dtype) except ValueError: type_info = np.finfo(expr.checked_type.dtype) element_size = type_info.bits // 8 elements = np.prod(list(expr.checked_type.shape)) return element_size * elements @register_object("relay.ext.ethos-u.BaseAddress") class BaseAddress(Object): """ This is a structure to hold base addresses for pointers provided for the driver. """ def __init__( self, name: str, primfunc_param_idx: int, region: int, size: int, is_runtime_allocation: bool = False, ): self.__init_handle_by_constructor__( _ffi_api.BaseAddress, # type: ignore # pylint: disable=no-member name, primfunc_param_idx, region, size, is_runtime_allocation, ) @register_object("relay.ext.ethos-u.CompilationArtifact") class CompilationArtifact(Object): """ This is a structure to hold binary artifacts for the microNPU. """ def __init__( self, function_name: str, command_stream: str, encoded_constants: str, base_addresses: List[BaseAddress], ): self.__init_handle_by_constructor__( _ffi_api.CompilationArtifact, # type: ignore # pylint: disable=no-member function_name, command_stream, encoded_constants, base_addresses, ) def create_npu_function_pass(opt_level: int, name: str = ""): """ A utility decorator that wraps a given class as an NPU function pass. That is, a pass that behaves like a function pass and only traverses NPU external functions. How each NPU function is mutated is defined by the `transform_npu_function(global_variable, relay_function)` function which should be created in the class that is to be decorated. See the example below. Example ------- This small example demonstrates a pass over NPU functions that performs no mutation. @create_npu_function_pass(opt_level=1) class MyPass: def transform_npu_function(self, global_var, func): return func mod = tvm.IRModule() mod = MyPass()(mod) Parameters ---------- opt_level: int Optimization level for the module pass. name: str, optional Name for the module pass. Returns ------- decorator The npu_pass decorator. """ def decorator(npu_pass_class): @tvm.ir.transform.module_pass(name=name, opt_level=opt_level) class ModulePassWrapper: """The wrapper for the NPU pass.""" def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def transform_module(self, mod: tvm.ir.IRModule, _) -> tvm.ir.IRModule: npu_functions = filter(lambda x: is_npu_func(x[1]), mod.functions.items()) for global_var, func in npu_functions: npu_pass = npu_pass_class(*self.args, **self.kwargs) func = npu_pass.transform_npu_function(global_var, func) mod.update_func(global_var, func) return mod return ModulePassWrapper return decorator
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/ethosu/vela_api.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This is an adapter module for conversions between TVM and Vela. The following conversion APIs are added : *Obtaining the best block config *Compressing weights *Packing biases """ import logging import math from typing import Tuple, Optional, List import numpy as np # type: ignore from ethosu.vela import api as vapi # type: ignore import tvm from tvm.relay.backend.contrib.ethosu import util # type: ignore from tvm.relay.backend.contrib.ethosu import tir_to_cs_translator as tirtocs # pylint: disable=invalid-name logger = logging.getLogger("Ethos-U") VELA_TO_NP_DTYPES = { vapi.NpuDataType.UINT8: np.uint8, vapi.NpuDataType.UINT16: np.uint16, vapi.NpuDataType.INT8: np.int8, vapi.NpuDataType.INT16: np.int16, vapi.NpuDataType.INT32: np.int32, } SCALE_BIAS_LENGTH = 10 def get_optimal_block_config( npu_op: vapi.NpuOperation, accel_config: vapi.NpuAccelerator ) -> vapi.NpuShape3D: """ "The NPU's unit of work is known as a block. It will fetch block(s) from Input Feature Map (IFM) and a compute block for Output Feature Map (OFM). Therefore, we need to pick an optimal block configuration considering bandwidth to bring IFM blocks and the number of OFM block computes need to happen to cover the OFM as indicated by the npu op. Parameters ---------- npu_op : ethosu.vela.api.NpuOperation The NPU operation and its params accel_config : ethosu.vela.api.NpuAccelerator The NPU accelerator config Returns ------- ethosu.vela.api.NpuShape3D : The optimal block config for the operator """ options = tvm.transform.PassContext.current().config.get("relay.ext.ethos-u.options", None) if options and options.dev_force_block_config: block_config = [int(v) for v in options.dev_force_block_config.split("x")] return vapi.NpuShape3D(height=block_config[0], width=block_config[1], depth=block_config[2]) all_valid_block_configs = vapi.npu_find_block_configs(npu_op, accel_config) return _get_optimal_block_config(all_valid_block_configs) def _get_optimal_block_config(all_valid_block_configs: List[vapi.NpuShape3D]) -> vapi.NpuShape3D: """An internal function to get block config with largest depth and then highest volume/area""" assert isinstance(all_valid_block_configs, list) for block_cfg in all_valid_block_configs: assert isinstance(block_cfg, vapi.NpuShape3D) # Getting the largest volume block for benchmarking all_valid_block_configs.sort( key=lambda _cfg: _cfg.depth * _cfg.height * _cfg.width, reverse=True ) largest_volume_block_config = all_valid_block_configs[0] largest_volume = ( largest_volume_block_config.depth * largest_volume_block_config.height * largest_volume_block_config.width ) all_valid_block_configs.sort(key=lambda _cfg: _cfg.depth, reverse=True) max_d = all_valid_block_configs[0].depth max_depth_block_configs = [_cfg for _cfg in all_valid_block_configs if _cfg.depth == max_d] max_depth_block_configs.sort(key=lambda _cfg: _cfg.height * _cfg.width, reverse=True) max_area = max_depth_block_configs[0].height * max_depth_block_configs[0].width max_area_depth_block_configs = [ _cfg for _cfg in max_depth_block_configs if _cfg.height * _cfg.width == max_area ] # This to get a deterministic anwser everytime max_area_depth_block_configs.sort(key=lambda _cfg: _cfg.height, reverse=True) assert len(max_area_depth_block_configs) > 0 current_volume = ( max_area_depth_block_configs[0].depth * max_area_depth_block_configs[0].height * max_area_depth_block_configs[0].width ) logger.info("Using block config=%s", max_area_depth_block_configs[0]) logger.info( "Quality of the block config w.r.t. max volume block config=%s", 100.0 * (current_volume / largest_volume), ) return max_area_depth_block_configs[0] def encode_weights( tir_extern_call: tvm.tir.Call, values: np.ndarray, accel_config: vapi.NpuAccelerator ): """This is an API function to compress weights by passing a tir_extern_call to NPU Convolution operation and values. Parameters ---------- tir_extern_call : tvm.tir.Call tir_extern_call to NPU Convolution operation values : numpy.ndarray The constant flattened weight data in OHWI layout accel_config : ethosu.vela.api.NpuAccelerator The NPU accelerator config Returns ------- bytearray Compressed weights """ supported_ops = { "ethosu_conv2d": tirtocs.translate_ethosu_conv2d, "ethosu_depthwise_conv2d": tirtocs.translate_ethosu_depthwise_conv2d, } op = str(tir_extern_call.args[0].value) assert op in supported_ops.keys() npu_op, weights_zero_point = supported_ops[op](tir_extern_call) is_depthwise = op == "ethosu_depthwise_conv2d" # Recover the original shape if we are dealing with a flattened tensor if len(values.shape) == 1: shape_ohwi = ( npu_op.ofm.shape.depth, npu_op.kernel.height, npu_op.kernel.width, 1 if is_depthwise else npu_op.ifm.shape.depth, ) assert values.size == np.prod(shape_ohwi) values = np.reshape(values, shape_ohwi) return compress_weights( weights=values, weights_zp=weights_zero_point, # The weight layout is assumed to be OHWI, always. weights_layout="OHWI", ifm_bitdepth=npu_op.ifm.data_type.size_in_bits(), block_depth=npu_op.block_config.depth, dilation=(npu_op.kernel.dilation_x, npu_op.kernel.dilation_y), accel_config=accel_config, is_depthwise=is_depthwise, ) def compress_weights( weights: np.ndarray, weights_zp: int, weights_layout: str, ifm_bitdepth: int, block_depth: int, dilation: Tuple[int, int], accel_config: vapi.NpuAccelerator, is_depthwise: Optional[bool] = False, ) -> bytearray: """The NPU requires the weights to be compressed to be executed. Therefore, this function calls into the Vela APIs to compress the weights. Parameters ---------- weights : numpy.ndarray The raw weights weights_zp : int The zero point of the weights weights_layout : str A string literal indicating the layout Supported values : HWIO, HWOI, OHWI ifm_bitdepth : int The bit depth of the ifm the weights are used with block_depth : int The depth of the optimal block config for the operator dilation : tuple A tuple of 2 elements indicating dilation in h and w accel_config : ethosu.vela.api.NpuAccelerator The NPU accelerator config is_depthwise : bool, Optional This indicates whether the weights are compressed for depthwise convolution Returns ------- compressed_weights : bytearray Compressed weights """ layout_transform_indices = {"HWIO": (3, 0, 1, 2), "HWOI": (2, 0, 1, 3), "OHWI": (0, 1, 2, 3)} assert weights_layout in layout_transform_indices.keys() assert isinstance(weights_zp, np.int64) weights = weights.astype(np.int16) - weights_zp # Vela needs the weights in OHWI layout weights_ohwi = np.transpose(weights, layout_transform_indices[weights_layout]) shape_ohwi = [ weights.shape[layout_transform_indices[weights_layout][0]], weights.shape[layout_transform_indices[weights_layout][1]], weights.shape[layout_transform_indices[weights_layout][2]], weights.shape[layout_transform_indices[weights_layout][3]], ] block_traversal = calculate_block_traversal_mode(is_depthwise, shape_ohwi, ifm_bitdepth) compressed_weights = vapi.npu_encode_weights( accelerator=accel_config, weights_volume=weights_ohwi, dilation_xy=dilation, ifm_bitdepth=ifm_bitdepth, ofm_block_depth=block_depth, is_depthwise=is_depthwise, block_traversal=block_traversal, ) return compressed_weights def calculate_block_traversal_mode( is_depthwise: bool, weights_shape_ohwi: List[int], ifm_bitdepth: int ) -> vapi.NpuBlockTraversal: """Calculate a block traversal mode given whether the op is depthwise convolution, shape of weights and bit-depth of the ifm. """ if is_depthwise: return vapi.NpuBlockTraversal.DEPTH_FIRST # Determine which block traversal strategy has better DPU utilization kernel_size = weights_shape_ohwi[1] * weights_shape_ohwi[2] depth_utilization = weights_shape_ohwi[3] / util.round_up( weights_shape_ohwi[3], 32 if ifm_bitdepth == 8 else 16 ) part_kernel_utilization = (weights_shape_ohwi[3] / util.round_up(weights_shape_ohwi[3], 8)) * ( kernel_size / util.round_up(kernel_size, 4 if ifm_bitdepth == 8 else 2) ) if part_kernel_utilization >= depth_utilization or weights_shape_ohwi[3] <= 8: # Part-kernel first is always better for ifm depths <= 8 return vapi.NpuBlockTraversal.PART_KERNEL_FIRST return vapi.NpuBlockTraversal.DEPTH_FIRST def pack_biases( biases: np.ndarray, ifm_scale: float, ifm_dtype: np.dtype, weight_scales: np.ndarray, ofm_scale: float, is_activation_tanh_or_sigmoid: bool = False, ) -> np.ndarray: """ The NPU requires the each bias value to be packed with output scale parameters in a 80-bit format (that is returned via npu_encode_bias API). This function will pack such values to a binary artifact that the NPU will use in the execution. Parameters ---------- biases : numpy.ndarray The values of biases ifm_scale : float The quantization scale parameter of input feature map ifm_dtype : numpy.dtype The data type of input feature map data. weight_scales : numpy.ndarray The quantization scale parameter of weight feature map This could be a tuple if per-channel quantization is present. ofm_scale : float The quantization scale parameter of output feature map. is_activation_tanh_or_sigmoid : bool Indicates whether the fused activation function is tanh or sigmoid. Returns ------- scale_bias : numpy.ndarray Packed scales/biases as the hardware requires them. """ # The BYOC infra should not partition anything else. supported_ifm_dtypes = (np.uint8, np.int8, np.int16) assert ifm_dtype in supported_ifm_dtypes if weight_scales.size == 1: weight_scales = [weight_scales] * biases.size hw_bias_scales = _calculate_hw_bias_scales( ifm_scale, weight_scales, ofm_scale, ifm_dtype, is_activation_tanh_or_sigmoid ) assert len(hw_bias_scales) == biases.size biases = biases.astype("int64") packed_biases = bytearray() for idx, scale in enumerate(hw_bias_scales): packed_biases.extend(vapi.npu_encode_bias(biases[idx], *scale)) scale_bias = np.frombuffer(packed_biases, dtype=np.uint8) scale_bias = np.reshape(scale_bias, (-1, 10)) return scale_bias def _quantize_scale(scale: float) -> Tuple[int, int]: """Quantize floating point scale into 32-bit int scale with a 6-bit shift. This is to be used with 8-bit data. """ mantissa, exponent = math.frexp(scale) mantissa_scaled = mantissa * (1 << 31) mantissa_scaled = int(util.round_away_zero(mantissa_scaled)) required_shift = 31 - exponent if required_shift < 0 or required_shift >= (1 << 6): # Shift outside of valid range, set scale to 0 return 0, 16 return mantissa_scaled, required_shift def _reduced_quantize_scale(scale: float) -> Tuple[int, int]: """A reduction of precision is required for 16 bit data.""" mantissa_scaled, required_shift = _quantize_scale(scale) # This is max a signed 16-bit number could represent max_reduced_mantissa_scaled = (1 << 15) - 1 # if the current value is larger than pre-scaled max_reduced_mantissa_scaled # we need to saturate the anwser to max_reduced_mantissa_scaled if mantissa_scaled >= max_reduced_mantissa_scaled << 16: reduced_mantissa_scaled = max_reduced_mantissa_scaled else: reduced_mantissa_scaled = (mantissa_scaled + (1 << 15)) >> 16 reduced_shift = required_shift - 16 if required_shift < 0 or required_shift >= (1 << 6): # Shift outside of valid range, set scale to 0 return 0, 16 return reduced_mantissa_scaled, reduced_shift def _calculate_hw_bias_scales( ifm_scale: float, weight_scales: List[float], ofm_scale: float, ifm_dtype: np.dtype, is_faf_tanh_sigmoid: bool = False, ) -> List[Tuple[int, int]]: """This function will produce a scale that is calculated using scales of ifm, weights and ofm. It is also important to note that if per-channel / per-value quantization required they should go into hw bias scales""" if is_faf_tanh_sigmoid: ifm_scale = ifm_scale * 0x3000 if ifm_dtype == np.uint8: bias_scales = [np.double(ifm_scale * ws) / np.double(ofm_scale) for ws in weight_scales] else: assert ifm_dtype in (np.int8, np.int16) ifm_scale_dbl = np.double(ifm_scale) ofm_scale_dbl = np.double(ofm_scale) bias_scales = [ifm_scale_dbl * np.double(ws) / ofm_scale_dbl for ws in weight_scales] if ifm_dtype == np.int16: hw_bias_scales = [_reduced_quantize_scale(bs) for bs in bias_scales] else: assert ifm_dtype in (np.uint8, np.int8) hw_bias_scales = [_quantize_scale(bs) for bs in bias_scales] return hw_bias_scales def get_accelerator_config() -> vapi.NpuAccelerator: """Get the configuration of the NPU accelerator. The configuration string provided as a compiler option is converted into an NpuAccelerator object. Valid configuration strings: - 'ethos-u55-256' - 'ethos-u55-128' - 'ethos-u55-64' - 'ethos-u55-32' """ npu_accel_str_map = { "ethos-u55-256": vapi.NpuAccelerator.Ethos_U55_256, "ethos-u55-128": vapi.NpuAccelerator.Ethos_U55_128, "ethos-u55-64": vapi.NpuAccelerator.Ethos_U55_64, "ethos-u55-32": vapi.NpuAccelerator.Ethos_U55_32, "ethos-u65-256": vapi.NpuAccelerator.Ethos_U65_256, "ethos-u65-512": vapi.NpuAccelerator.Ethos_U65_512, } compiler_attrs = tvm.get_global_func("relay.ext.ethos-u.get_compiler_attrs")() accel_config_str = compiler_attrs.accelerator_config assert accel_config_str in npu_accel_str_map.keys(), f"{accel_config_str} is not supported" return npu_accel_str_map[accel_config_str]
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/uma/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """UMA modules for Relay.""" from .backend import UMABackend from .api.utils import uma_available __all__ = ["UMABackend", "uma_available"]
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/uma/api/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """UMA: Universal Modular Accelerator Interface API""" from .codegen import UMACodegen from .lower import UMALower from .partitioner import UMAPartitioner __all__ = ["UMACodegen", "UMALower", "UMAPartitioner"]
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/uma/api/_ffi_api.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI APIs for relay transformation passes.""" import tvm._ffi # type: ignore tvm._ffi._init_api("relay.ext.uma", __name__)
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/uma/api/codegen.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Codegen base class of the Universal Modular Accelerator Interface (UMA)""" from typing import Callable, Optional import tvm class UMACodegen(object): """ Codegen base class of the Universal Modular Accelerator Interface (UMA) """ def __init__(self, target_name: str) -> None: self.target_name = target_name def _register_codegen( self, fmt: str = "c", includes: Optional[Callable[[], str]] = None, **kwargs ) -> None: """Registration codegen in UMA. Parameters ---------- fmt: str format of codegen. Currently only "c" is supported. includes : OptionalCallable[[], str]] user-defined function that adds C-#include statement to UMA C-Code. """ if fmt == "c": self._register_c_codegen(includes, **kwargs) else: raise RuntimeError(f'Unsupported codegen format "{fmt}"') def _register_c_codegen(self, includes: Optional[Callable[[], str]] = None) -> None: """Registration of UMA helper functions, e.g. includes and replace_call_extern. Parameters ---------- includes : OptionalCallable[[], str]] user-defined function that adds C-#include statement to UMA C-Code. """ if includes is not None: tvm._ffi.register_func( f"relay.ext.uma.codegen_c_includes_{self.target_name}", includes, override=True, ) def register(self) -> None: pass
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/uma/api/lower.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Lowering base class of the Universal Modular Accelerator Interface (UMA)""" from typing import List, Tuple, Callable, Optional import tvm from tvm import relay, te from tvm.relay.op.op import register_strategy from . import _ffi_api from .utils import PassPhase OperatorStrategies = List[ Tuple[ str, Callable[ [tvm.ir.Attrs, tvm.ir.Array, tvm.ir.TensorType, tvm.target.Target], tvm.relay.op.op.OpStrategy, ], Optional[int], ] ] class UMALower: """Lowering base class of the Universal Modular Accelerator Interface (UMA).""" def __init__(self, target_name: str) -> None: self.target_name = target_name self._operator_strategies: OperatorStrategies = [] self._tir_passes: List[Tuple[PassPhase, tvm.tir.transform.PrimFuncPass]] = [] def _lower_relay_to_tir(self, relay_prim_func: relay.Function) -> tvm.tir.PrimFunc: """Lower a Relay primitive function to a S-TIR primitive function. Parameters ---------- prim_func : tvm.relay.Function The Relay function to lower. Returns ------- out : tvm.tir.PrimFunc The lowered schedulable TensorIR primitive function. """ def _get_tensors(te_cached_func): return list(te_cached_func.inputs) + list(te_cached_func.outputs) lower_to_te = tvm._ffi.get_global_func("relay.backend.LowerToTE") te_cached_func = lower_to_te(relay_prim_func) x = _get_tensors(te_cached_func) tir_prim_func = te.create_prim_func(x) tir_prim_func = tir_prim_func.with_attr( "global_symbol", relay_prim_func.attrs["global_symbol"] ) compiler_attr = relay_prim_func.attrs["Compiler"] target = tvm.target.Target.current() if target.kind.name != compiler_attr: target = tvm.target.Target(compiler_attr) tir_prim_func = tir_prim_func.with_attr("target", target) tir_prim_func = tir_prim_func.with_attr("relay_attrs", relay_prim_func.attrs) return tir_prim_func def _lower_stir_to_nstir(self, prim_func: tvm.tir.PrimFunc) -> tvm.tir.PrimFunc: """Lower a S-TIR primitive function to a NS-TIR primitive function. Parameters ---------- prim_func : tvm.tir.PrimFunc The primitive function to lower. Returns ------- out : tvm.tir.PrimFunc The lowered non-schedulable TensorIR primitive function. """ curr_ctxt = tvm.transform.PassContext().current() assert "tir.add_lower_pass" not in curr_ctxt.config pass_map = { PassPhase.TIR_PHASE_0: 0, PassPhase.TIR_PHASE_1: 1, PassPhase.TIR_PHASE_2: 2, PassPhase.TIR_PHASE_3: 3, } lower_passes = [(pass_map[k], v) for k, v in self._tir_passes] with tvm.transform.PassContext( opt_level=curr_ctxt.opt_level, required_pass=curr_ctxt.required_pass, disabled_pass=curr_ctxt.disabled_pass, instruments=curr_ctxt.instruments, config={**dict(curr_ctxt.config), "tir.add_lower_pass": lower_passes}, ): mod = tvm.lower(tvm.ir.IRModule.from_expr(prim_func)) prim_func = mod[prim_func.attrs["global_symbol"]] return prim_func def relay_to_tir(self, mod: tvm.ir.IRModule) -> tvm.ir.IRModule: """ This is the hook for python-based lowering of a Relay module which lowers NPU external functions to TIR. Parameters ---------- mod : tvm.ir.IRModule This is the Relay module. Returns ------- mod : tvm.ir.IRModule The Relay module with scheduled NPU external functions. """ mod = _ffi_api.OutlineCompilerFunctions(self.target_name)(mod) for gvar, func in mod.functions.items(): if "Compiler" in func.attrs and func.attrs["Compiler"] == self.target_name: func = self._lower_relay_to_tir(func) func = self._lower_stir_to_nstir(func) mod.update_func(gvar, func) return mod def register(self) -> None: """Register all relevant relay-to-tir functions.""" tvm._ffi.register_func(f"relay.ext.uma.{self.target_name}.relay_to_tir", self.relay_to_tir) for op, strategy, plevel in self._operator_strategies: register_strategy(op, strategy, plevel)
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/uma/api/partitioner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Partitioner base class of the Universal Modular Accelerator Interface (UMA)""" from typing import Callable, Dict, List, Tuple, Optional import tvm from tvm import relay from tvm.relay.build_module import bind_params_by_name from tvm.relay.op.contrib.register import register_pattern_table from .utils import PassPhase PatternTable = List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Callable]] class UMAPartitioner: """Partitioner base class of the Universal Modular Accelerator Interface (UMA).""" def __init__(self, target_name: str, merge_compiler_regions: bool = True) -> None: self.target_name = target_name self.merge_compiler_regions = merge_compiler_regions self._relay_passes: List[Tuple[PassPhase, tvm.transform.Pass]] = [] self._patterns: PatternTable = [] def add_pattern( self, name: str, pattern: tvm.relay.dataflow_pattern.DFPattern, predicate: Optional[Callable] = None, ) -> None: """Add pattern to UMA partitioner Parameters ---------- name : str relay name of pattern pattern: tvm.relay.dataflow_pattern.DFPattern pattern description as DFPattern predicate: Optional[Callable] Optional predicate """ name = self.target_name + "." + name if predicate: self._patterns.append((name, pattern, predicate)) else: self._patterns.append((name, pattern)) def _pattern_table(self) -> PatternTable: return self._patterns def register(self) -> None: """Register all relevant relay-to-relay functions.""" register_pattern_table(self.target_name, self._pattern_table) def partition( self, mod: tvm.IRModule, params: Optional[Dict[str, tvm.runtime.NDArray]] = None ) -> tvm.IRModule: """Partition the relay graph in parts supported and unsupported by the target hardware accelerator. Parameters ---------- mod : tvm.IRModule The relay module to be partitioned. params: Optional[Dict[str, tvm.runtime.NDArray]] Returns ------- out : tvm.IRModule The partitioned relay module. """ if params: mod["main"] = bind_params_by_name(mod["main"], params) pass_sequence = [] pass_sequence.extend( [p[1] for p in self._relay_passes if p[0] == PassPhase.PRE_PARTITIONING] ) pass_sequence.append(relay.transform.MergeComposite(self._pattern_table())) pass_sequence.append(relay.transform.AnnotateTarget(self.target_name)) if self.merge_compiler_regions: pass_sequence.append(relay.transform.MergeCompilerRegions()) pass_sequence.append(relay.transform.PartitionGraph()) pass_sequence.extend( [p[1] for p in self._relay_passes if p[0] == PassPhase.POST_PARTITIONING_0] ) sequential_passes = tvm.transform.Sequential(pass_sequence) mod = sequential_passes(mod) # Defunctionalize the partitioned functions to allow lowering for gvar, func in mod.functions.items(): mod.update_func(gvar, relay.transform.Defunctionalization(func, mod)) post_partition_passes_1 = tvm.transform.Sequential( [p[1] for p in self._relay_passes if p[0] == PassPhase.POST_PARTITIONING_1] ) mod = post_partition_passes_1(mod) return mod
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/uma/api/utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Utility methods for the Universal Modular Accelerator Interface (UMA)""" from enum import Enum, auto import uuid import tvm import tvm.tir from tvm.contrib import utils, clang def uma_available() -> bool: registration_func = tvm.get_global_func( "relay.backend.contrib.uma.RegisterTarget", allow_missing=True ) return registration_func is not None class PassPhase(Enum): """ UMA pass phases: PRE_PARTITIONING: prior to UMA partitioning POST_PARTITIONING_0: after UMA partitioning, before Defunctionalization POST_PARTITIONING_1: after UMA partitioning and after Defunctionalization TIR_PHASE_0: Generates the raw IR and loop levels. TIR_PHASE_1: Flattens the array storage. TIR_PHASE_2: Transforms loops, like unroll, vectorization and thread-binding. TIR_PHASE_3: Does some cleanup work. Reference to TIR phases: src/driver/driver_api.c """ PRE_PARTITIONING = auto() POST_PARTITIONING_0 = auto() POST_PARTITIONING_1 = auto() TIR_PHASE_0 = auto() TIR_PHASE_1 = auto() TIR_PHASE_2 = auto() TIR_PHASE_3 = auto() def _c_to_llvm(c_code: str) -> str: unique_filename = str(uuid.uuid4()) temp = utils.tempdir() ll_path = temp.relpath(f"{unique_filename}.ll") ll_code = clang.create_llvm([c_code], output=ll_path) return ll_code def add_llvm_to_block( sch: tvm.tir.Schedule, block_name: str, c_code_str: str = "" ) -> tvm.tir.Schedule: block = sch.get_block(block_name) loops = sch.get_loops(block) assert len(loops) > 0 sch.annotate(loops[0], "pragma_import_llvm", _c_to_llvm(c_code_str)) return sch
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/contrib/uma/backend.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Backend base class of the Universal Modular Accelerator Interface (UMA)""" from abc import ABC, abstractmethod from typing import Union, Dict, Callable, Optional, Any import tvm from tvm.relay.backend.contrib.uma.api.codegen import UMACodegen from tvm.relay.backend.contrib.uma.api.lower import UMALower from tvm.relay.backend.contrib.uma.api.partitioner import UMAPartitioner from tvm.relay.backend.contrib.uma.api.utils import PassPhase class UMABackend(ABC): """Backend base class of the Universal Modular Accelerator Interface (UMA)""" def __init__(self, merge_compiler_regions: bool = True) -> None: self._target_attrs: Dict = {} self._target_preprocessor: Callable[[str], Dict[str, Any]] = None self._relay_to_relay = UMAPartitioner(self.target_name, merge_compiler_regions) self._relay_to_tir = UMALower(self.target_name) self._tir_to_runtime = UMACodegen(self.target_name) @property @abstractmethod def target_name(self) -> str: """Name of the hardware target. Returns ------- out : str The hardware target name. """ ... # Target configuration def _register_target_attr( self, name: str, default: Optional[Union[str, int, bool]] = "", ) -> None: """Register a target attribute name that can be used during target instantiation. Parameters ---------- name: str The name of the target attribute. default: Optional[Union[str, int, bool]] A default value for the attribute. If none is provided, the attribute will be treated as a string. Example ------- Here is an example of how two attribute options are registered. .. code-block:: python self._register_target_attr("attrA", default=0) self._register_target_attr("attrB", default=False) """ self._target_attrs[name] = default # Relay to Relay function registration def _register_relay_pass(self, phase: PassPhase, relay_pass: tvm.transform.Pass) -> None: """Registers a relay pass at the given phase in the lowering process. Parameters ---------- phase: PassPhase The phase at which the pass is registered. relay_pass: tvm.transform.Pass The relay pass to be registered. Example ------- Here is an example of how two relay passes are registered. Passes of the same phase are executed in the order they are registered. .. code-block:: python self._register_relay_pass(PassPhase.PRE_PARTITIONING, MyPassA) self._register_relay_pass(PassPhase.POST_PARTITIONING, MyPassB) Where a relay pass can look like this: .. code-block:: python @tvm.ir.transform.module_pass(opt_level=0) class MyPassA: def transform_module(self, mod, ctx): # My pass functionality... return mod """ self._relay_to_relay._relay_passes.append((phase, relay_pass)) def _register_pattern( self, name: str, pattern: tvm.relay.dataflow_pattern.DFPattern, predicate: Optional[Callable] = None, ) -> None: """Registers a dataflow pattern that is used to partition the relay graph. Parameters ---------- name: str The name of the pattern pattern: tvm.relay.dataflow_pattern.DFPattern Relay DFPattern predicate: Optional[Callable] Optional predicate for Relay DFPattern Example ------- Here is an example of how two dataflow patterns are registered. During partioning, patterns are searched in order of registration. .. code-block:: python self._register_pattern("conv1d", conv1d_pattern) self._register_pattern("conv2d", conv2d_pattern) Where a dataflow pattern can look like this: .. code-block:: python conv1d_pattern = is_op("nn.conv1d")(wildcard(), wildcard()) optional_bias = lambda x: is_op("nn.bias_add")(x, wildcard()) optional_relu = lambda x: is_op("nn.relu")(x) conv1d_pattern = conv1d_pattern.optional(optional_bias).optional(optional_relu) """ self._relay_to_relay.add_pattern(name, pattern, predicate) # Relay to TIR function registration def _register_operator_strategy( self, op: str, strategy: Callable[ [tvm.ir.Attrs, tvm.ir.Array, tvm.ir.TensorType, tvm.target.Target], tvm.relay.op.op.OpStrategy, ], plevel: Optional[int] = 11, ) -> None: """Registers an operator strategy that is used to partition the relay graph. Parameters ---------- op: str The name of the operator for which this strategy will be registered. strategy: Callable[[tvm.ir.Attrs, tvm.ir.Array, tvm.ir.TensorType, tvm.target.Target], tvm.relay.op.op.OpStrategy] The strategy function. plevel: Optional[int] = 11 The priority level of the strategy. Higher plevel equals higher priorization. The TVM default for topi strategies is 10 so by default new UMA strategies are always used. Example ------- Here is an example of how two operator strategies are registered. .. code-block:: python self._register_operator_strategy("nn.conv1d", custom_conv1d_strategy) self._register_operator_strategy("nn.conv2d", custom_conv2d_strategy) Where a strategy function can look like this: .. code-block:: python @relay.op.strategy.override_native_generic_func("custom_conv1d_strategy") def custom_conv1d_strategy(attrs, inputs, out_type, target): strategy = _op.OpStrategy() strategy.add_implementation( wrap_compute_conv1d(custom_conv1d_compute), wrap_topi_schedule(custom_conv1d_schedule), name="custom_conv1d.generic", return strategy """ self._relay_to_tir._operator_strategies.append((op, strategy, plevel)) def _register_tir_pass( self, phase: PassPhase, tir_pass: tvm.tir.transform.PrimFuncPass ) -> None: """Registers a TIR pass at the given phase in the lowering process. Parameters ---------- phase: PassPhase The phase at which the pass is registered. tir_pass: tvm.tir.transform.PrimFuncPass The TIR pass to be registered. Example ------- Here is an example of how two TIR passes are registered. Passes of the same phase are executed in the order they are registered. .. code-block:: python self._register_tir_pass(PassPhase.TIR_PHASE_0, MyPassA) self._register_tir_pass(PassPhase.TIR_PHASE_1, MyPassB) Where a TIR pass can look like this: .. code-block:: python @tvm.tir.transform.prim_func_pass(opt_level=0) class MyPassA: def transform_function(self, func, mod, ctx): # My pass functionality... return func """ self._relay_to_tir._tir_passes.append((phase, tir_pass)) # TIR to runtime function registration def _register_codegen(self, fmt: str = "c", **kwargs) -> None: """Registers a codegen which is used in place of the default C-codegen. Parameters ---------- fmt: str The codegen format. For now, only C-codegen is supported by UMA. **kwargs Keyword arguments for the chosen codegen. Example ------- Here is an example of how the custom C-codegen is registered and configured. Passes of the same phase are executed in the order they are registered. .. code-block:: python self._register_codegen( fmt="c", includes=gen_includes ) The C-codegen currently provides one hook which allows the user to insert code through the python API. - `includes` hooks into the include stream and allows insertion of custom includes. The code generation functions can look like this: .. code-block:: python def gen_includes() -> str: includes = "#include <my_custom_header.h>\n" return includes """ self._tir_to_runtime._register_codegen(fmt, **kwargs) # Backend functions def register(self) -> None: """ Registering UMABackend: registering target attributes, relay_to_relay, relay_to_tir and tir_to_runtime """ registration_func = tvm.get_global_func("relay.backend.contrib.uma.RegisterTarget") for name, attr in self._target_attrs: if attr is None: raise ValueError("Target attribute None is not supported.") if registration_func(self.target_name, self._target_attrs): self._relay_to_relay.register() self._relay_to_tir.register() self._tir_to_runtime.register() def partition( self, mod: tvm.IRModule, params: Optional[Dict[str, tvm.runtime.NDArray]] = None ) -> tvm.IRModule: return self._relay_to_relay.partition(mod, params)
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/executor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=len-as-condition,no-else-return,invalid-name """Executor configuration""" import tvm from tvm.runtime import Object from . import _backend @tvm._ffi.register_object class Executor(Object): """Executor configuration""" flag_registry_name = "executor" def __init__(self, name, options=None) -> None: if options is None: options = {} self.__init_handle_by_constructor__(_backend.CreateExecutor, name, options) self._attrs = _backend.GetExecutorAttrs(self) def __contains__(self, name): return name in self._attrs def __getitem__(self, name): return self._attrs[name] def __eq__(self, other): return str(other) == str(self) and dict(other._attrs) == dict(self._attrs) @staticmethod def list_registered(): """Returns a list of possible executors""" return list(_backend.ListExecutors()) @staticmethod def list_registered_options(executor): """Returns the dict of available option names and types""" return dict(_backend.ListExecutorOptions(str(executor)))
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/executor_factory.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Executor factory modules.""" from abc import abstractmethod import warnings from ..._ffi.base import string_types from ..._ffi.registry import get_global_func from ...runtime import ndarray class ExecutorFactoryModule: """Common interface for executor factory modules This class describes the common API of different factory modules """ @abstractmethod def get_executor_config(self): """Return the internal configuration the executor uses to execute the network""" raise NotImplementedError @abstractmethod def get_params(self): """Return the compiled parameters.""" raise NotImplementedError @abstractmethod def get_lib(self): """Return the generated library""" raise NotImplementedError def __getitem__(self, item): return self.module.__getitem__(item) def __iter__(self): warnings.warn( "legacy graph executor behavior of producing json / lib / params will be " "removed in the next release." " Please see documents of tvm.contrib.graph_executor.GraphModule for the " " new recommended usage.", DeprecationWarning, 2, ) return self def __next__(self): if self.iter_cnt > 2: raise StopIteration objs = [self.get_executor_config(), self.lib, self.params] obj = objs[self.iter_cnt] self.iter_cnt += 1 return obj class AOTExecutorFactoryModule(ExecutorFactoryModule): """AOT executor factory module. Attributes ---------- ir_mod : :py:class:`~tvm.IRModule` The IR module to build. lowered_ir_mods : dict[Target, IRModule] The IR modules lowered per Target. target : tvm.Target The Target used to build this module. executor : tvm.relay.backend.Executor Internal representation of the Executor runtime : tvm.relay.backend.Runtime Internal representation of the Runtime libmod : tvm.Module The module of the corresponding function libmod_name: str The name of module params : dict of str to NDArray The parameters of module function_metadata : Map of String to FunctionInfo This holds a map function names to their information devices : List[str] List of devices used in the module """ def __init__( self, ir_mod, lowered_ir_mods, target, executor, runtime, libmod, libmod_name, params, function_metadata, executor_codegen_metadata, devices, ): fcreate = get_global_func("tvm.aot_executor_factory.create") args = [] for k, v in params.items(): args.append(k) args.append(ndarray.array(v)) self.module = fcreate(libmod, libmod_name, *args) self.ir_mod = ir_mod self.lowered_ir_mods = lowered_ir_mods self.target = target self.executor = executor self.runtime = runtime self.lib = libmod self.libmod_name = libmod_name self.params = params self.iter_cnt = 0 self.function_metadata = function_metadata self.executor_codegen_metadata = executor_codegen_metadata self.devices = devices def get_devices(self): return self.devices def get_params(self): return self.params def get_executor_config(self): return None def get_lib(self): return self.lib def export_library(self, file_name, fcompile=None, addons=None, **kwargs): return self.module.export_library(file_name, fcompile, addons, **kwargs) class GraphExecutorFactoryModule(ExecutorFactoryModule): """Graph executor factory module. This is a module of graph executor factory Attributes ---------- ir_mod : :py:class:`~tvm.IRModule` The IR module to build. target : tvm.Target The Target used to build this module. executor : tvm.relay.backend.Executor Internal representation of the Executor graph_json_str : the json graph to be deployed in json format output by graph compiler. The graph can contain operator(tvm_op) that points to the name of PackedFunc in the libmod. libmod : tvm.Module The module of the corresponding function libmod_name: str The name of module params : dict of str to NDArray The parameters of module function_metadata : Map of String to FunctionInfo This holds a map function names to their information """ def __init__( self, ir_mod, target, executor, graph_json_str, libmod, libmod_name, params, function_metadata, ): assert isinstance(graph_json_str, string_types) fcreate = get_global_func("tvm.graph_executor_factory.create") args = [] for k, v in params.items(): args.append(k) args.append(ndarray.array(v)) self.ir_mod = ir_mod self.target = target self.executor = executor self.module = fcreate(graph_json_str, libmod, libmod_name, *args) self.graph_json = graph_json_str self.lib = libmod self.libmod_name = libmod_name self.params = params self.iter_cnt = 0 self.function_metadata = function_metadata def export_library(self, file_name, fcompile=None, addons=None, **kwargs): return self.module.export_library(file_name, fcompile, addons, **kwargs) def get_devices(self): return [] def get_params(self): return self.params def get_graph_json(self): return self.graph_json def get_executor_config(self): return self.graph_json def get_lib(self): return self.lib
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/graph_executor_codegen.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ A compiler from a Relay expression to TVM's graph executor. The compiler is built from a few pieces. First we define a compiler from a single Relay expression to the graph language. We require the expression to be a function. The function's parameters correspond to the placeholder/inputs and model parameters found in the computation graph representation. The body of the function represents the computation graph. The compiler's output is a program in the graph language, which is composed of Node, NodeRef, InputNode, OpNode. This "little language" represents programs in TVM's graph format. To connect to the graph executor, we use a printer that converts our graph format into TVM's JSON format. The resulting string can be loaded by contrib.graph_executor or any other TVM runtime compatible systems. """ from tvm.runtime.ndarray import empty from tvm.relay import _build_module from tvm.target import Target from .utils import mangle_module_name class GraphExecutorCodegen(object): """The compiler from Relay to the TVM runtime system.""" def __init__(self, mod, target): self._mod = _build_module._GraphExecutorCodegen() self._init = self._mod["init"] self._codegen = self._mod["codegen"] self._get_graph_json = self._mod["get_graph_json"] self._list_params_name = self._mod["list_params_name"] self._get_param_by_name = self._mod["get_param_by_name"] self._get_irmodule = self._mod["get_irmodule"] self._setup(mod, target) def _setup(self, mod, target): raw_targets = Target.canon_multi_target_and_host(target) self._init(mod, raw_targets) def codegen(self, ir_module, func): """Compile a single function into a graph. Parameters ---------- ir_module: tvm.ir.Module The module to compile func: tvm.relay.Expr The function to compile. Returns ------- graph_json : str The graph json that can be consumed by runtime. mod : IRModule or Dict[Target, IRModule] The lowered functions. params : Dict[str, tvm.nd.NDArray] Additional constant parameters. """ default_mod_name = mangle_module_name("default") self._codegen(ir_module, func, default_mod_name) graph_json = self._get_graph_json() lowered_func = self._get_irmodule() param_names = self._list_params_name() params = {} for key in param_names: arr = self._get_param_by_name(key) param = empty(arr.shape, dtype=arr.dtype, device=arr.device) arr.copyto(param) params[key] = param return graph_json, lowered_func, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/interpreter.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return """The Python interface to the Relay reference interpreter.""" from __future__ import absolute_import import numpy as np import tvm._ffi from tvm.runtime import container, Object from . import _backend from .. import _make, analysis from ... import nd from ..expr import Tuple, RefCreate, Call, Constant, GlobalVar, const from ..function import Function from ..scope_builder import ScopeBuilder @tvm._ffi.register_object("relay.ConstructorValue") class ConstructorValue(Object): def __init__(self, tag, fields, constructor): self.__init_handle_by_constructor__(_make.ConstructorValue, tag, fields, constructor) @tvm._ffi.register_object("relay.RefValue") class RefValue(Object): def __init__(self, value): self.__init_handle_by_constructor__(_make.RefValue, value) def _arg_to_ast(mod, arg): if isinstance(arg, nd.NDArray): return Constant(arg.copyto(nd.cpu(0))) elif isinstance(arg, container.ADT): return Tuple([_arg_to_ast(mod, field) for field in arg]) elif isinstance(arg, tuple): return Tuple([_arg_to_ast(mod, field) for field in arg]) elif isinstance(arg, RefValue): return RefCreate(_arg_to_ast(mod, arg.value)) elif isinstance(arg, ConstructorValue): return Call(mod.get_constructor(arg.tag), [_arg_to_ast(mod, field) for field in arg.fields]) elif isinstance(arg, np.ndarray): return Constant(nd.array(arg)) elif isinstance(arg, Constant): return arg else: return const(arg) class Executor(object): """An abstract interface for executing Relay programs.""" def _convert_args(self, expr, args, kwargs): """ Convert the combination of arguments and keyword arguments into a sequence of arguments that may be passed to a Relay evaluator. We first provide all positional arguments, and then attempt to fill in the remaining arguments using the keyword arguments. We map the keyword arguments to the corresponding parameters, if there is an ambiguity between positional and keyword arguments this procedure will raise an error. Parameters ---------- expr: relay.Expr The expression to evaluate args: List[tvm.nd.NDArray] The arguments to pass to the evaluator. kwargs: Dict[str, tvm.NDArrray] The keyword arguments to pass to the evaluator. Returns: args: List[tvm.nd.NDArray] The new arguments with all keyword arguments placed in the correct slot. """ assert expr is not None if not kwargs: return args if kwargs and not isinstance(expr, Function): raise Exception( "can only supply keyword parameters for a " "relay.Function, found {0}".format(expr) ) params = expr.params param_names = [p.name_hint for p in params] num_of_args = len(args) cargs = list(args)[:] for i, name in enumerate(param_names): if i < num_of_args: if kwargs.get(name): raise Exception( "duplicate argument supplied in " "both positional args (at position: {0}), " "and keyword argument (with name: {1})".format(i, name) ) else: cargs.append(kwargs[name]) if len(cargs) != len(params): raise Exception( "insufficient arguments, expected " "{0}, provided {1}".format(len(cargs), len(params)) ) return tuple(cargs) def _make_executor(self, expr=None): """ Construct a Python function that implements the evaluation of expression. Parameters ---------- expr: Optional[relay.Expr] The Relay expression to execute. Returns ------- executor: function, A Python function which implements the behavior of `expr`. """ raise NotImplementedError() def evaluate(self, expr=None, binds=None): """ Evaluate a Relay expression on the executor. Parameters ---------- expr: Optional[tvm.relay.Expr] The expression to evaluate. binds: Optional[Map[tvm.relay.Var, tvm.relay.Expr]] Additional binding of free variable. Returns ------- val : Union[function, Object] The evaluation result. """ if binds: scope_builder = ScopeBuilder() for key, value in binds.items(): scope_builder.let(key, _arg_to_ast(self.mod, value)) scope_builder.ret(expr) expr = scope_builder.get() if not expr: return self._make_executor() if isinstance(expr, Function): assert not analysis.free_vars(expr) if isinstance(expr, (Function, GlobalVar)): return self._make_executor(expr) # normal expression evaluated by running a function. # TODO(mbs): This should really be type rather than syntax driven. func = Function([], expr) return self._make_executor(func)() class Interpreter(Executor): """ Simple interpreter interface. Parameters ---------- mod : tvm.IRModule The module to support the execution. device : Device The runtime device to run the code on. target : tvm.Target The target option to build the function. Only homogeneous execution is supported. CAUTION: Despite the API the module is prepared upon each call to evaluate rather than once in create_executor. That is: .. code-block:: python executor = relay.create_executor(kind="debug", mod=module) a = executor.evaluate(expr)(args1) b = executor.evaluate(expr)(args2) will prepare all the bindings in module twice. For efficiency, try to hoist calls to evaluate as high as possible, preferably immediately after create_executor: .. code-block:: python func = relay.create_executor(kind="debug", mod=module).evaluate(expr) a = func(args1) b = func(args2) """ def __init__(self, mod, device, target): self.mod = mod self.device = device self.target = target def _make_executor(self, expr=None): if expr is None or isinstance(expr, GlobalVar): assert self.mod is not None if expr is None: # A missing expr denotes 'main' in the given module. expr = self.mod.get_global_var("main") # Evaluate expr to a packed function we can efficiently re-apply # to Relay arguments. func = _backend.EvalFunction(self.mod, expr, self.device, self.target) def _apply_args(*args, **kwargs): if isinstance(expr, GlobalVar): # When expanding args, look inside the actual global definition so kwargs # can be matched. args = self._convert_args(self.mod[expr.name_hint], args, kwargs) else: args = self._convert_args(expr, args, kwargs) # Reflect python arguments up into Relay. relay_args = [] for arg in args: relay_args.append(_arg_to_ast(self.mod, arg)) # Apply func to Relay args return func(relay_args) return _apply_args
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/name_transforms.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Name transformation functions for use in code generation """ from typing import List, Union from tvm import TVMError from . import _backend def to_c_function_style(original_name: str): """Transform a name to the C function style assuming it is appropriately constructed using the prefixing functions Parameters ---------- original_name : str Original name to transform """ return _backend.ToCFunctionStyle(original_name) def to_c_variable_style(original_name: str): """Transform a name to the C variable style assuming it is appropriately constructed using the prefixing functions Parameters ---------- original_name : str Original name to transform """ return _backend.ToCVariableStyle(original_name) def to_c_constant_style(original_name: str): """Transform a name to the C constant style assuming it is appropriately constructed using the prefixing functions Parameters ---------- original_name : str Original name to transform """ return _backend.ToCConstantStyle(original_name) def _preprocess_names(names: Union[List[str], str]): """Preprocesses name strings into format for C++ functions Parameters ---------- names : Union[List[str], str] List of names to combine to form a combined name or the name itself """ if isinstance(names, str): if names == "": raise TVMError("Name is empty") return [names] return names def prefix_name(names: Union[List[str], str]): """Apply TVM-specific prefix to a function name Parameters ---------- names : Union[List[str], str] List of names to combine to form a combined name or the name itself """ return _backend.PrefixName(_preprocess_names(names)) def prefix_generated_name(names: Union[List[str], str]): """Apply generated TVM-specific prefix to a function name Parameters ---------- names : Union[List[str], str] List of names to combine to form a combined name or the name itself """ return _backend.PrefixGeneratedName(_preprocess_names(names))
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/runtime.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=len-as-condition,no-else-return,invalid-name """Runtime configuration""" import tvm from tvm.runtime import Object from . import _backend @tvm._ffi.register_object class Runtime(Object): """Runtime configuration""" flag_registry_name = "runtime" def __init__(self, name, options=None) -> None: if options is None: options = {} self.__init_handle_by_constructor__(_backend.CreateRuntime, name, options) self._attrs = _backend.GetRuntimeAttrs(self) def __contains__(self, name): return name in self._attrs def __getitem__(self, name): self._attrs = _backend.GetRuntimeAttrs(self) return self._attrs[name] def __eq__(self, other): return str(other) == str(self) and dict(other._attrs) == dict(self._attrs) @staticmethod def list_registered(): """Returns a list of possible runtimes""" return list(_backend.ListRuntimes()) @staticmethod def list_registered_options(runtime): """Returns the dict of available option names and types""" return dict(_backend.ListRuntimeOptions(str(runtime)))
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/te_compiler.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=len-as-condition,no-else-return,invalid-name """TE compiler engine (replacing legacy compile_engine).""" from __future__ import absolute_import import logging import numpy as np import tvm from tvm import autotvm, te from tvm.auto_scheduler import is_auto_scheduler_enabled from tvm.meta_schedule import is_meta_schedule_enabled from tvm.runtime import Object from tvm.support import libinfo from tvm.target import Target from .. import function as _function from .. import ty as _ty from ..backend.utils import mangle_module_name from . import _backend logger = logging.getLogger("te_compiler") autotvm_logger = logging.getLogger("autotvm") _first_warning = True @tvm._ffi.register_object("relay.LoweredOutput") class LoweredOutput(Object): """Lowered output""" def __init__(self, outputs, implement): self.__init_handle_by_constructor__(_backend._make_LoweredOutput, outputs, implement) @tvm._ffi.register_object("relay.CCacheKey") class CCacheKey(Object): """Key in the TE Compiler. Parameters ---------- source_func : tvm.relay.Function The source function. target : tvm.Target The target we want to run the function on. """ def __init__(self, source_func, target): self.__init_handle_by_constructor__(_backend._make_CCacheKey, source_func, target) @tvm._ffi.register_object("relay.CCacheValue") class CCacheValue(Object): """Value in the TE Compiler, including usage statistics.""" def _get_cache_key(source_func, target): if isinstance(source_func, _function.Function): if isinstance(target, str): target = Target(target) if not target: raise ValueError("Need target when source_func is a Function") return CCacheKey(source_func, target) if not isinstance(source_func, CCacheKey): raise TypeError("Expect source_func to be CCacheKey") return source_func def get_valid_implementations(op, attrs, inputs, out_type, target): """Get all valid implementations from the op strategy. Note that this function doesn't support op with symbolic input shapes. Parameters ---------- op : tvm.ir.Op Relay operator. attrs : object The op attribute. inputs : List[tvm.te.Tensor] Input tensors to the op. out_type : relay.Type The output type. target : tvm.target.Target The target to compile the op. Returns ------- ret : List[relay.op.OpImplementation] The list of all valid op implementations. """ fstrategy = op.get_attr("FTVMStrategy") assert fstrategy is not None, ( "%s doesn't have an FTVMStrategy registered. You can register " "one in python with `tvm.relay.op.register_strategy`." % op.name ) with target: strategy = fstrategy(attrs, inputs, out_type, target) analyzer = tvm.arith.Analyzer() ret = [] for spec in strategy.specializations: if spec.condition: # check if all the clauses in the specialized condition are true flag = True for clause in spec.condition.clauses: clause = analyzer.canonical_simplify(clause) if isinstance(clause, tvm.tir.IntImm) and clause.value: continue flag = False break if flag: for impl in spec.implementations: ret.append(impl) else: for impl in spec.implementations: ret.append(impl) return ret def select_implementation(op, attrs, inputs, out_type, target, use_autotvm=True): """Select the best implementation from the op strategy. If use_autotvm is True, it'll first try to find the best implementation based on AutoTVM profile results. If no AutoTVM profile result is found, it'll choose the implementation with highest plevel. If use_autotvm is False, it'll directly choose the implementation with highest plevel. Note that this function doesn't support op with symbolic input shapes. Parameters ---------- op : tvm.ir.Op Relay operator. attrs : object The op attribute. inputs : List[tvm.te.Tensor] Input tensors to the op. out_type : relay.Type The output type. target : tvm.target.Target The target to compile the op. use_autotvm : bool Whether query AutoTVM to pick the best. Returns ------- ret : tuple(relay.op.OpImplementation, List[tvm.te.Tensor]) The best op implementation and the corresponding output tensors. """ all_impls = get_valid_implementations(op, attrs, inputs, out_type, target) if len(all_impls) == 0: raise RuntimeError(f"No valid {op} implementations for {target}") best_plevel_impl = max(all_impls, key=lambda x: x.plevel) # Disable autotvm if auto_scheduler is enabled. # (i.e., always return the implementation with the highest priority for auto-scheduler). if is_auto_scheduler_enabled() or is_meta_schedule_enabled(): use_autotvm = False # If not use autotvm, always return the implementation with the highest priority if not use_autotvm: logger.info( "Using %s for %s based on highest priority (%d)", best_plevel_impl.name, op.name, best_plevel_impl.plevel, ) outs = best_plevel_impl.compute(attrs, inputs, out_type) return best_plevel_impl, outs # Otherwise, try autotvm templates outputs = {} workloads = {} best_autotvm_impl = None best_cfg = None dispatch_ctx = autotvm.task.DispatchContext.current old_silent = autotvm.GLOBAL_SCOPE.silent autotvm.GLOBAL_SCOPE.silent = True for impl in all_impls: outs = impl.compute(attrs, inputs, out_type) outputs[impl] = outs workload = autotvm.task.get_workload(outs) workloads[impl] = workload if workload is None: # Not an AutoTVM tunable implementation continue cfg = dispatch_ctx.query(target, workload) if cfg.is_fallback: # Skip fallback config continue logger.info("Implementation %s for %s has cost %.2e", impl.name, op.name, cfg.cost) if best_cfg is None or best_cfg.cost > cfg.cost: best_autotvm_impl = impl best_cfg = cfg autotvm.GLOBAL_SCOPE.silent = old_silent if best_autotvm_impl: # The best autotvm implementation definitely doesn't use fallback config logger.info( "Using %s for %s based on lowest cost (%.2e)", best_autotvm_impl.name, op.name, best_cfg.cost, ) return best_autotvm_impl, outputs[best_autotvm_impl] # Use the implementation with highest plevel if workloads[best_plevel_impl] is not None: msg = ( "Cannot find tuning records for:\n target=%s\n key=%s\n" "TVM will apply a default schedule which may negatively impact performance." % (target, workloads[best_plevel_impl]) ) if ( not autotvm.env.GLOBAL_SCOPE.silent and msg not in autotvm.task.DispatchContext.warning_messages ): autotvm.task.DispatchContext.warning_messages.add(msg) global _first_warning if _first_warning: _first_warning = False info_msg = ( "One or more operators have not been tuned. Please tune your model " "for better performance. Use DEBUG logging level to see more details." ) autotvm_logger.warning(info_msg) autotvm_logger.debug(msg) logger.info( "Using %s for %s based on highest priority (%s)", best_plevel_impl.name, op.name, best_plevel_impl.plevel, ) return best_plevel_impl, outputs[best_plevel_impl] def get_shape(shape): """Convert the shape to correct dtype and vars.""" ret = [] for dim in shape: if isinstance(dim, tvm.tir.IntImm): if libinfo()["INDEX_DEFAULT_I64"] == "ON": ret.append(dim) else: val = int(dim) assert val <= np.iinfo(np.int32).max ret.append(tvm.tir.IntImm("int32", val)) elif isinstance(dim, tvm.tir.Any): ret.append(te.size_var("any_dim", "int32")) else: ret.append(dim) return ret @tvm._ffi.register_func("relay.backend.lower_call") def lower_call(call, inputs, target, otype=None): """Lower the call expression to op implementation and tensor outputs.""" assert isinstance(call.op, tvm.ir.Op) op = call.op if otype is not None: ret_type = otype else: # Prepare the call_node->checked_type(). For the call node inputs, we ensure that # the shape is Int32. Following code ensures the same for the output as well. # TODO(@icemelon9): Support recursive tuple ret_type = call.checked_type if isinstance(ret_type, _ty.TensorType): ret_type = _ty.TensorType(get_shape(ret_type.shape), ret_type.dtype) elif isinstance(ret_type, _ty.TupleType): new_fields = [] for field in ret_type.fields: if isinstance(field, _ty.TensorType): new_fields.append(_ty.TensorType(get_shape(field.shape), field.dtype)) else: new_fields.append(field) ret_type = _ty.TupleType(new_fields) is_dyn = _ty.is_dynamic(call.checked_type) for arg in call.args: is_dyn = is_dyn or _ty.is_dynamic(arg.checked_type) # check if in the AutoTVM tracing mode, and disable if op is not in wanted list env = autotvm.task.TaskExtractEnv.current reenable_tracing = False if env is not None and env.tracing: if env.wanted_relay_ops is not None and op not in env.wanted_relay_ops: env.tracing = False reenable_tracing = True if not is_dyn: best_impl, outputs = select_implementation(op, call.attrs, inputs, ret_type, target) else: # TODO(@icemelon9): Allow tvm to generate multiple kernels for dynamic shapes. best_impl, outputs = select_implementation( op, call.attrs, inputs, ret_type, target, use_autotvm=False ) # re-enable AutoTVM tracing if reenable_tracing: env.tracing = True return LoweredOutput(outputs, best_impl) @tvm._ffi.register_object("relay.TECompiler") class TECompiler(Object): """TECompiler to get lowered code.""" def __init__(self): raise RuntimeError("Cannot construct a TECompiler") def lower(self, source_func, target=None, mod_name="default"): """Lower a source_func to a CachedFunc. Parameters ---------- source_func : Union[tvm.relay.Function, CCacheKey] The source relay function. target : tvm.Target The target platform. Returns ------- cached_func: CachedFunc The result of lowering. """ # pylint: disable=broad-except, import-outside-toplevel try: mod_name = mangle_module_name(mod_name) key = _get_cache_key(source_func, target) return _backend._TECompilerLower(self, key, mod_name) except Exception: import traceback msg = traceback.format_exc() msg += "Error during compile func\n" msg += "--------------------------\n" msg += source_func.astext(show_meta_data=False) msg += "--------------------------\n" raise RuntimeError(msg) def jit(self, source_func, target=None): """JIT a source_func to a tvm.runtime.PackedFunc. Parameters ---------- source_func : Union[tvm.relay.Function, CCacheKey] The source relay function. target : tvm.Target The target platform. Returns ------- jited_func: tvm.runtime.PackedFunc The result of jited function. """ key = _get_cache_key(source_func, target) return _backend._TECompilerJIT(self, key) def clear(self): """clear the existing cached functions""" _backend._TECompilerClear(self) def items(self): """List items in the cache. Returns ------- item_list : List[Tuple[CCacheKey, CCacheValue]] The list of items. """ res = _backend._TECompilerListItems(self) assert len(res) % 2 == 0 return [(res[2 * i], res[2 * i + 1]) for i in range(len(res) // 2)] def get(): """Get the global TE Compiler. Returns ------- engine : tvm.relay.backend.TECompiler The TE Compiler. """ return _backend._TECompilerGlobal()
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Utility backend functions.""" from enum import Enum class CallType(Enum): Packed = 0 CPacked = 1 Unpacked = 2 def _is_valid_modname(mod_name): """Determine if mod_name is a valid string to use inside function names""" if mod_name: try: mod_name.encode("ascii") return True except UnicodeEncodeError: return False return True def mangle_module_name(mod_name): if not _is_valid_modname(mod_name): raise ValueError(mod_name + " contains invalid characters") if mod_name: return "tvmgen_" + mod_name return "tvmgen"
https://github.com/zk-ml/tachikoma
python/tvm/relay/backend/vm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, unidiomatic-typecheck, undefined-variable, invalid-name, redefined-builtin """ The Relay Virtual Machine. Implements a Python interface to compiling and executing on the Relay VM. """ import numpy as np import tvm.runtime.ndarray as _nd import tvm.runtime.vm as vm_rt from tvm import autotvm from tvm.relay import expr as _expr from tvm.relay.backend.interpreter import Executor from tvm.target import Target from . import _vm def compile(mod, target=None, target_host=None, params=None): """Compile the module to VM executable. A helper function for VMCompiler. Parameters ---------- mod : tvm.IRModule The Relay module to build. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. target_host : None, or any target-like object, see Target.canon_target Host compilation target, if target is device. When TVM compiles device specific program such as CUDA, we also need host(CPU) side code to interact with the driver to setup the dimensions and parameters correctly. target_host is used to specify the host side codegen target. By default, llvm is used if it is enabled, otherwise a stackvm intepreter is used. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. Returns ------- exec : tvm.runtime.vm.Executable The VM executable that contains both library code and bytecode. """ compiler = VMCompiler() if params: compiler.set_params(params) compiler.lower(mod, target, target_host) compiler.codegen() return compiler.get_exec() class VMCompiler(object): """Compiler that compiles Relay module to VM executable.""" def __init__(self): self.mod = _vm._VMCompiler() self._lower = self.mod["lower"] self._codegen = self.mod["codegen"] self._get_exec = self.mod["get_executable"] self._set_params_func = self.mod["set_params"] self._get_params_func = self.mod["get_params"] self._optimize = self.mod["optimize"] def set_params(self, params): """Set constant parameters for the model. Parameters ---------- params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. """ inputs = {} for name, param in params.items(): if isinstance(param, np.ndarray): param = _nd.array(param) inputs[name] = _expr.const(param) self._set_params_func(inputs) def get_params(self): """Return the updated weights.""" params = self._get_params_func() ret = {} for key, value in params.items(): ret[key] = value.data return ret def lower(self, mod, target=None, target_host=None): """Lower the module to VM bytecode. Parameters ---------- mod : tvm.IRModule The Relay module to build. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. target_host : any target-like object, see Target.canon_target Host compilation target, if target is device. """ raw_targets = Target.canon_multi_target_and_host(target, target_host) tophub_context = self._tophub_context(raw_targets) with tophub_context: self._lower(mod, raw_targets) def codegen(self): """Generate the kernel library.""" self._codegen() def optimize(self, mod, target=None, target_host=None, params=None): """Helper method that optimizes a Relay module via VM. Parameters ---------- mod : tvm.IRModule target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. target_host : any target-like object, see Target.canon_target Host compilation target, if target is device. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. Returns ------- mod : tvm.IRModule The optimized relay module. params : dict The parameters of the final module. """ raw_targets = Target.canon_multi_target_and_host(target, target_host) if params: self.set_params(params) return self._optimize(mod, raw_targets), self.get_params() def get_exec(self): """Get the VM executable. Returns ------- exec : tvm.runtime.vm.Executable The VM executable that contains both library code and bytecode. """ return vm_rt.Executable(self._get_exec()) def _tophub_context(self, raw_targets): """Get the autotvm context.""" # If current dispatch context is fallback context (the default root context), # then load pre-tuned parameters from TopHub if isinstance(autotvm.DispatchContext.current, autotvm.FallbackContext): tophub_context = autotvm.tophub.context(raw_targets) else: tophub_context = autotvm.utils.EmptyContext() return tophub_context class VMExecutor(Executor): """ An implementation of the executor interface for the Relay VM. Useful interface for experimentation and debugging the VM can also be used directly from the API. supported by `tvm.runtime.vm`. Parameters ---------- mod : :py:class:`~tvm.IRModule` The module to support the execution. device : :py:class:`~tvm.runtime.Device` The runtime device to run the code on. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. """ def __init__(self, mod, device, target): if mod is None: raise RuntimeError("Must provide module to get VM executor.") self.mod = mod self.device = device self.target = target self.executable = None self.vm = None def _make_executor(self, expr=None): if expr: self.mod["main"] = expr self.executable = compile(self.mod, self.target) self.vm = vm_rt.VirtualMachine(self.executable, self.device) def _vm_wrapper(*args, **kwargs): args = self._convert_args(self.mod["main"], args, kwargs) return self.vm.run(*args) return _vm_wrapper
https://github.com/zk-ml/tachikoma
python/tvm/relay/base.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, unidiomatic-typecheck, unused-import """The base node types for the Relay language.""" import os import tvm._ffi from tvm.runtime import Object from tvm.ir import SourceName, Span, Node as RelayNode __STD_PATH__ = os.path.join(os.path.dirname(os.path.realpath(__file__)), "std") @tvm._ffi.register_func("tvm.relay.std_path") def _std_path(): return __STD_PATH__ @tvm._ffi.register_object("relay.Id") class Id(Object): """Unique identifier(name) used in Var. Guaranteed to be stable across all passes. """ def __init__(self): raise RuntimeError("Cannot directly construct Id")
https://github.com/zk-ml/tachikoma
python/tvm/relay/build_module.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Construct the necessary state for the TVM graph executor from a Relay expression. """ import warnings import numpy as np from tvm.ir import IRModule from tvm.target import Target from .. import autotvm from .. import nd as _nd from .. import register_func from ..contrib import graph_executor as _graph_executor from ..contrib import utils as contrib_utils from ..runtime import load_module from ..runtime.executor import aot_executor as _aot_executor from ..target import Target from . import _build_module from . import expr as _expr from . import function as _function from . import ty as _ty from .backend import Executor, Runtime from .backend import executor_factory as _executor_factory from .backend import interpreter as _interpreter from .backend.utils import mangle_module_name from .backend.vm import VMExecutor from .transform import InferType def _convert_param_map(params): inputs = {} for name, param in params.items(): if isinstance(param, np.ndarray): param = _nd.array(param) inputs[name] = _expr.const(param) return inputs class BuildModule(object): """Build an IR module to run on TVM graph executor. This class is used to expose the `RelayBuildModule` APIs implemented in C++. """ def __init__(self): self.mod = _build_module._BuildModule() self._get_graph_json = self.mod["get_graph_json"] self._get_module = self.mod["get_module"] self._build = self.mod["build"] self._optimize = self.mod["optimize"] self._set_params_func = self.mod["set_params"] self._get_params_func = self.mod["get_params"] self._get_function_metadata = self.mod["get_function_metadata"] self._get_executor_codegen_metadata = self.mod["get_executor_codegen_metadata"] self._get_devices = self.mod["get_devices"] self._get_irmodule = self.mod["get_irmodule"] def build( self, mod, target=None, target_host=None, executor=Executor("graph"), runtime=Runtime("cpp"), workspace_memory_pools=None, constant_memory_pools=None, params=None, mod_name=None, ): """ Parameters ---------- mod : :py:class:`~tvm.IRModule` The IRModule to build. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. target_host : None, or any target-like object, see Target.canon_target Host compilation target, if target is device. When TVM compiles device specific program such as CUDA, we also need host(CPU) side code to interact with the driver to setup the dimensions and parameters correctly. target_host is used to specify the host side codegen target. By default, llvm is used if it is enabled, otherwise a stackvm interpreter is used. executor : Optional[Executor] The executor configuration with which to build the model. Defaults to "graph" if no executor specified. runtime : Optional[Runtime] Runtime configuration to use when building the model. Defaults to "cpp" if no runtime specified. workspace_memory_pools : Optional[WorkspaceMemoryPools] The object that contains an Array of WorkspacePoolInfo objects that hold properties of read-write workspace pools that could be used by the inference. constant_memory_pools : Optional[ConstantMemoryPools] The object that contains an Array of ConstantPoolInfo objects that hold properties of read-only memory pools that could be used by the inference. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. mod_name: Optional[str] The module name we will build Returns ------- graph_json : str The json string that can be accepted by graph executor. mod : tvm.Module The module containing necessary libraries. params : dict The parameters of the final graph. """ # pylint: disable=import-outside-toplevel from tvm.auto_scheduler import is_auto_scheduler_enabled from tvm.meta_schedule import is_meta_schedule_enabled # pylint: enable=import-outside-toplevel # Setup the params. if params: self._set_params(params) # Build the IR module. If auto_scheduler is not enabled, # then use the TOPI-defined schedule. # Turn off AutoTVM config not found warnings if auto_scheduler is enabled. old_autotvm_silent = autotvm.GLOBAL_SCOPE.silent autotvm.GLOBAL_SCOPE.silent = ( is_auto_scheduler_enabled() or is_meta_schedule_enabled() or old_autotvm_silent ) mod_name = mangle_module_name(mod_name) self._build( mod, target, target_host, executor, runtime, workspace_memory_pools, constant_memory_pools, mod_name, ) autotvm.GLOBAL_SCOPE.silent = old_autotvm_silent # Get artifacts mod = self.get_module() params = self.get_params() executor_config = self.get_graph_json() if executor.name == "graph" else None return executor_config, mod, params def optimize(self, mod, target=None, target_host=None, params=None): """ Parameters ---------- mod : :py:class:`~tvm.IRModule` The IR module to build. target : any multi-target like object, see Target.canon_multi_target. For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. target_host : None, or any target-like object, see Target.canon_target Host compilation target, if target is device. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. Returns ------- mod : :py:class:`~tvm.IRModule` The optimized relay module. params : dict The parameters of the final graph. """ raw_targets = Target.canon_multi_target_and_host(target, target_host) # Setup the params. if params: self._set_params(params) mod = self._optimize(mod, raw_targets) # Get artifacts params = self.get_params() return mod, params def _set_params(self, params): self._set_params_func(_convert_param_map(params)) def get_graph_json(self): """Return the json file of the built program.""" return self._get_graph_json() def get_module(self): """Return the built module.""" return self._get_module() def get_function_metadata(self): """Return the compiled function metadata. Currently, the metadata contains workspace size required by each PrimFunc""" return self._get_function_metadata() def get_executor_codegen_metadata(self): """Return the metadata produced after executor codegen """ return self._get_executor_codegen_metadata() def get_devices(self): """Returns a list of devices configured in this module""" return self._get_devices() def get_params(self): """Return the updated weights.""" params = self._get_params_func() ret = {} for key, value in params.items(): ret[key] = value.data return ret def get_irmodule(self): """Returns the TargetIRModule's post-lowering""" return self._get_irmodule() @register_func("tvm.relay.module_export_library") def _module_export(module, file_name): # fcompile, addons, kwargs? return module.export_library(file_name) @register_func("tvm.relay.build") def _build_module_no_factory_impl(mod, target, target_host, params, mod_name): return build( mod, target=target, target_host=target_host, params=params, mod_name=mod_name ).module def _build_module_no_factory(mod, target=None, target_host=None, params=None, mod_name="default"): """A wrapper around build which discards the Python GraphFactoryRuntime. This wrapper is suitable to be used from other programming languages as the runtime::Module can be freely passed between language boundaries. """ return _build_module_no_factory_impl(mod, target, target_host, params, mod_name) def build_with_bldmod( ir_mod, target=None, target_host=None, executor=Executor("graph"), runtime=Runtime("cpp"), workspace_memory_pools=None, constant_memory_pools=None, params=None, mod_name="default", ): # fmt: off # pylint: disable=line-too-long """Helper function that builds a Relay function to run on TVM graph executor. Parameters ---------- ir_mod : :py:class:`~tvm.IRModule` The IR module to build. Using relay.Function is deprecated. target : None, or any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. Defaults to the current target in the environment if None. target_host : None, or any target like object, see Target.canon_target Host compilation target, if target is device. executor : Optional[Executor] The executor configuration with which to build the model. Defaults to "graph" if no executor specified. runtime : Optional[Runtime] Runtime configuration to use when building the model. Defaults to "cpp" if no runtime specified. workspace_memory_pools : Optional[WorkspaceMemoryPools] The object that contains an Array of WorkspacePoolInfo objects that hold properties of read-write workspace pools that could be used by the inference. constant_memory_pools : Optional[ConstantMemoryPools] The object that contains an Array of ConstantPoolInfo objects that hold properties of read-only pools that could be used by the inference. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. mod_name: Optional[str] The module name we will build Returns ------- factory_module : tvm.relay.backend.executor_factory.ExecutorFactoryModule The runtime factory for the TVM graph executor. """ # pylint: enable=line-too-long # fmt: on if not isinstance(ir_mod, (IRModule, _function.Function)): raise ValueError("Type of input parameter mod must be tvm.IRModule") if isinstance(ir_mod, _function.Function): if params: ir_mod = bind_params_by_name(ir_mod, params) ir_mod = IRModule.from_expr(ir_mod) warnings.warn( "Please use input parameter mod (tvm.IRModule) " "instead of deprecated parameter mod (tvm.relay.function.Function)", DeprecationWarning, ) raw_targets = Target.canon_multi_target_and_host(Target.target_or_current(target), target_host) assert len(raw_targets) > 0 target_host = raw_targets[0].host # If current dispatch context is fallback context (the default root context), # then load pre-tuned parameters from TopHub if isinstance(autotvm.DispatchContext.current, autotvm.FallbackContext): tophub_context = autotvm.tophub.context(list(raw_targets)) else: tophub_context = autotvm.utils.EmptyContext() with tophub_context: bld_mod = BuildModule() graph_json, runtime_mod, params = bld_mod.build( mod=ir_mod, target=raw_targets, params=params, executor=executor, runtime=runtime, workspace_memory_pools=workspace_memory_pools, constant_memory_pools=constant_memory_pools, mod_name=mod_name, ) func_metadata = bld_mod.get_function_metadata() devices = bld_mod.get_devices() lowered_ir_mods = bld_mod.get_irmodule() executor_codegen_metadata = bld_mod.get_executor_codegen_metadata() if executor.name == "aot": executor_factory = _executor_factory.AOTExecutorFactoryModule( ir_mod, lowered_ir_mods, raw_targets, executor, runtime, runtime_mod, mod_name, params, func_metadata, executor_codegen_metadata, devices, ) elif executor.name == "graph": executor_factory = _executor_factory.GraphExecutorFactoryModule( ir_mod, raw_targets, executor, graph_json, runtime_mod, mod_name, params, func_metadata, ) else: assert False, "Executor " + executor + " not supported" return executor_factory, bld_mod def build( ir_mod, target=None, target_host=None, executor=Executor("graph"), runtime=Runtime("cpp"), workspace_memory_pools=None, constant_memory_pools=None, params=None, mod_name="default", ): # fmt: off # pylint: disable=line-too-long """Helper function that builds a Relay function to run on TVM graph executor. Parameters ---------- ir_mod : :py:class:`~tvm.IRModule` The IR module to build. Using relay.Function is deprecated. target : None, or any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. Defaults to the current target in the environment if None. target_host : None, or any target like object, see Target.canon_target Host compilation target, if target is device. executor : Optional[Executor] The executor configuration with which to build the model. Defaults to "graph" if no executor specified. runtime : Optional[Runtime] Runtime configuration to use when building the model. Defaults to "cpp" if no runtime specified. workspace_memory_pools : Optional[WorkspaceMemoryPools] The object that contains an Array of WorkspacePoolInfo objects that hold properties of read-write workspace pools that could be used by the inference. constant_memory_pools : Optional[ConstantMemoryPools] The object that contains an Array of ConstantPoolInfo objects that hold properties of read-only pools that could be used by the inference. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. mod_name: Optional[str] The module name we will build Returns ------- factory_module : tvm.relay.backend.executor_factory.ExecutorFactoryModule The runtime factory for the TVM graph executor. """ # pylint: enable=line-too-long # fmt: on if not isinstance(ir_mod, (IRModule, _function.Function)): raise ValueError("Type of input parameter mod must be tvm.IRModule") if isinstance(ir_mod, _function.Function): if params: ir_mod = bind_params_by_name(ir_mod, params) ir_mod = IRModule.from_expr(ir_mod) warnings.warn( "Please use input parameter mod (tvm.IRModule) " "instead of deprecated parameter mod (tvm.relay.function.Function)", DeprecationWarning, ) raw_targets = Target.canon_multi_target_and_host(Target.target_or_current(target), target_host) assert len(raw_targets) > 0 target_host = raw_targets[0].host # If current dispatch context is fallback context (the default root context), # then load pre-tuned parameters from TopHub if isinstance(autotvm.DispatchContext.current, autotvm.FallbackContext): tophub_context = autotvm.tophub.context(list(raw_targets)) else: tophub_context = autotvm.utils.EmptyContext() with tophub_context: bld_mod = BuildModule() graph_json, runtime_mod, params = bld_mod.build( mod=ir_mod, target=raw_targets, params=params, executor=executor, runtime=runtime, workspace_memory_pools=workspace_memory_pools, constant_memory_pools=constant_memory_pools, mod_name=mod_name, ) func_metadata = bld_mod.get_function_metadata() devices = bld_mod.get_devices() lowered_ir_mods = bld_mod.get_irmodule() executor_codegen_metadata = bld_mod.get_executor_codegen_metadata() if executor.name == "aot": executor_factory = _executor_factory.AOTExecutorFactoryModule( ir_mod, lowered_ir_mods, raw_targets, executor, runtime, runtime_mod, mod_name, params, func_metadata, executor_codegen_metadata, devices, ) elif executor.name == "graph": executor_factory = _executor_factory.GraphExecutorFactoryModule( ir_mod, raw_targets, executor, graph_json, runtime_mod, mod_name, params, func_metadata, ) else: assert False, "Executor " + executor + " not supported" return executor_factory def optimize(mod, target=None, params=None): """Helper function that optimizes a Relay module. Parameters ---------- mod : :py:class:`~tvm.IRModule` The module to build. Using relay.Function is deprecated. target : None, or any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. Defaults to the current target in the environment if None. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. Returns ------- mod : :py:class:`~tvm.IRModule` The optimized relay module. params : dict The parameters of the final graph. """ if not isinstance(mod, (IRModule, _function.Function)): raise ValueError("Type of input parameter mod must be tvm.IRModule") if isinstance(mod, _function.Function): if params: mod = bind_params_by_name(mod, params) mod = IRModule.from_expr(mod) warnings.warn( "Please use input parameter mod (tvm.IRModule) " "instead of deprecated parameter func (tvm.relay.function.Function)", DeprecationWarning, ) raw_targets = Target.canon_multi_target_and_host(Target.target_or_current(target)) # If current dispatch context is fallback context (the default root context), # then load pre-tuned parameters from TopHub if isinstance(autotvm.DispatchContext.current, autotvm.FallbackContext): tophub_context = autotvm.tophub.context(raw_targets) else: tophub_context = autotvm.utils.EmptyContext() with tophub_context: bld_mod = BuildModule() mod, params = bld_mod.optimize(mod, target=raw_targets, params=params) return mod, params def bind_params_by_name(func, params): """Bind params to function by name. This could be useful when assembling custom Relay optimization passes that involve constant folding. Parameters ---------- func : relay.Function The function to bind parameters to. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. Returns ------- func : relay.Function The function with parameters bound """ inputs = _convert_param_map(params) return _build_module.BindParamsByName(func, inputs) class GraphExecutor(_interpreter.Executor): """Wrapper around Executor interface. This executor is used for debug and testing purposes. Parameters ---------- mod : :py:class:`~tvm.IRModule` The module to support the execution. device : :py:class:`Device` The runtime device to run the code on. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. """ def __init__(self, mod, device, target): assert mod is not None self.mod = mod self.device = device self.target = target def _make_executor(self, expr=None): if expr: self.mod["main"] = expr self.mod = InferType()(self.mod) ret_type = self.mod["main"].checked_type.ret_type if _ty.is_dynamic(ret_type): raise ValueError( "Graph Executor only supports static graphs, got output type", ret_type ) mod = build(self.mod, target=self.target) gmodule = _graph_executor.GraphModule(mod["default"](self.device)) def _unflatten(flat_iter, cur_type): if isinstance(cur_type, _ty.TensorType): return next(flat_iter) if isinstance(cur_type, _ty.TupleType): fields = [] for field_type in cur_type.fields: field = _unflatten(flat_iter, field_type) fields.append(field) return fields raise ValueError("Return type", ret_type, "contains unsupported type", cur_type) def _graph_wrapper(*args, **kwargs): args = self._convert_args(self.mod["main"], args, kwargs) # Create map of inputs. for i, arg in enumerate(args): gmodule.set_input(i, arg) # Run the module, and fetch the output. gmodule.run() flattened = [] for i in range(gmodule.get_num_outputs()): flattened.append(gmodule.get_output(i).copyto(_nd.cpu(0))) unflattened = _unflatten(iter(flattened), ret_type) return unflattened return _graph_wrapper class AotExecutor(_interpreter.Executor): """Implements the Executor interface for AOT. Parameters ---------- mod : :py:class:`~tvm.IRModule` The module to support the execution. device : :py:class:`Device` The runtime device to run the code on. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. """ def __init__(self, mod, device, target): assert mod is not None self.mod = mod self.device = device self.target = target def _make_executor(self, expr=None): if expr: self.mod["main"] = expr self.mod = InferType()(self.mod) ret_type = self.mod["main"].checked_type.ret_type if _ty.is_dynamic(ret_type): raise ValueError("AOT Executor only supports static graphs, got output type", ret_type) mod = build(self.mod, target=self.target) # NOTE: Given AOT requires use of the "c" backend, must export/import to compile the # generated code. temp_so_dir = contrib_utils.TempDirectory() temp_so = temp_so_dir / "temp.so" mod.export_library(temp_so, cc="gcc", options=["-std=c11"]) mod = load_module(temp_so) aot_mod = mod["default"](self.device) gmodule = _aot_executor.AotModule(aot_mod) def _unflatten(flat_iter, cur_type): if isinstance(cur_type, _ty.TensorType): return next(flat_iter) if isinstance(cur_type, _ty.TupleType): fields = [] for field_type in cur_type.fields: field = _unflatten(flat_iter, field_type) fields.append(field) return fields raise ValueError("Return type", ret_type, "contains unsupported type", cur_type) def _aot_wrapper(*args, **kwargs): args = self._convert_args(self.mod["main"], args, kwargs) # Create map of inputs. for i, arg in enumerate(args): gmodule.set_input(i, arg) # Run the module, and fetch the output. gmodule.run() flattened = [] for i in range(gmodule.get_num_outputs()): flattened.append(gmodule.get_output(i).copyto(_nd.cpu(0))) unflattened = _unflatten(iter(flattened), ret_type) return unflattened return _aot_wrapper # TODO(mbs): Collapse the create_executor/evaluate phases together since a) most callers don't # reuse the executor for multiple expressions and b) any preparation necessary for the expression # evaluation needs to (currently) be done along with preparation for the module. def create_executor(kind="debug", mod=None, device=None, target="llvm", params=None): """Factory function to create an executor. Example ------- .. code-block:: python import tvm.relay import numpy as np x = tvm.relay.var("x", tvm.relay.TensorType([1], dtype="float32")) expr = tvm.relay.add(x, tvm.relay.Constant(tvm.nd.array(np.array([1], dtype="float32")))) tvm.relay.create_executor( kind="vm", mod=tvm.IRModule.from_expr(tvm.relay.Function([x], expr)) ).evaluate()(np.array([2], dtype="float32")) # returns `array([3.], dtype=float32)` Parameters ---------- kind : str The type of executor. Avaliable options are `debug` for the interpreter, `graph` for the graph executor, `aot` for the aot executor, and `vm` for the virtual machine. mod : :py:class:`~tvm.IRModule` The Relay module containing collection of functions device : :py:class:`Device` The device to execute the code. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. CAUTION: Though this API allows multiple targets, it does not allow multiple devices, so heterogenous compilation is not yet supported. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Returns ------- executor : :py:class:`~tvm.relay.backend.interpreter.Executor` """ raw_targets = Target.canon_multi_target(target) if mod is None: mod = IRModule() if device is not None: assert device.device_type == raw_targets[0].get_target_device_type() else: # Derive the default device from the first target. device = _nd.device(raw_targets[0].get_target_device_type(), 0) if params is not None: mod = IRModule.from_expr(bind_params_by_name(mod["main"], params)) assert "executor" not in raw_targets[0].attrs or raw_targets[0].attrs["executor"] == kind if kind == "debug": assert len(raw_targets) == 1, "The interpreter currently only supports a single target" return _interpreter.Interpreter(mod, device, raw_targets[0]) if kind == "graph": return GraphExecutor(mod, device, raw_targets) if kind == "vm": return VMExecutor(mod, device, raw_targets) if kind == "aot": return AotExecutor(mod, device, raw_targets) raise RuntimeError("unknown execution strategy: {0}".format(kind))
https://github.com/zk-ml/tachikoma
python/tvm/relay/collage/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """relay.collage exports""" from .collage import ( MEASURE_NUMBER, MEASURE_REPEAT, WARMUP_MIN_REPEAT_MS, CostEstimator, MockCostEstimator, )
https://github.com/zk-ml/tachikoma
python/tvm/relay/collage/_ffi_api.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI APIs for the Collage partitioner.""" import tvm._ffi tvm._ffi._init_api("relay.collage", __name__)
https://github.com/zk-ml/tachikoma
python/tvm/relay/collage/collage.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Mostly helper methods which interface the main C++ Collage implementation with Python. See relay.transform.CollagePartition for the main Collage entrypoint.""" import logging import os import math import tempfile import numpy as np import tvm from tvm._ffi.registry import register_func, register_object from tvm.runtime import Object from . import _ffi_api # Parameters to use when estimating latency (of both partitions and overall models). MEASURE_NUMBER = 20 MEASURE_REPEAT = 5 WARMUP_MIN_REPEAT_MS = 250 @register_object("relay.collage.CostEstimator") class CostEstimator(Object): """CostEstimator class""" def __init__(self): self.__init_handle_by_constructor__(_ffi_api.CostEstimator) @register_object("relay.collage.MockCostEstimator") class MockCostEstimator(Object): """MockEstimator class""" def __init__(self, target_costs, max_estimates=0): self.__init_handle_by_constructor__(_ffi_api.MockCostEstimator, target_costs, max_estimates) def arg_for(arg_type, device): """Returns a test argument of Relay arg_type on device""" assert isinstance(arg_type, tvm.ir.TensorType) return tvm.nd.array( np.random.uniform(-1.0, 1.0, size=arg_type.concrete_shape).astype(arg_type.dtype), device=device, ) def vm_estimate_seconds(device, the_vm, func_name, args): """Returns the estimated latency, in seconds, of running func_name with args on the_vm.""" # Warmup the_vm.benchmark( device, repeat=1, number=1, min_repeat_ms=WARMUP_MIN_REPEAT_MS, func_name=func_name, **args ) # One more time, with feeling return the_vm.benchmark( device, repeat=MEASURE_REPEAT, number=MEASURE_NUMBER, min_repeat_ms=0, func_name=func_name, **args, ) @register_func("tvm.relay.collage.estimate_seconds") def estimate_seconds(mod, target): """Returns the mean execution time of "main" in mod on target with params. The module may contain "Primitive" functions, possibly with "Compiler" attributes.""" device = tvm.device(target.get_target_device_type()) try: # Build the module. logging.info("Compiling module to estimate") exe = tvm.relay.vm.compile(mod, target) except RuntimeError as err: # A build failure indicates the partition is not supported. # eg trying to build an nn.batch_norm on GPU, which has no schedule since we assume it # is only ever used with a tuple projection which is rewritten away. logging.info("Assigning module infinite cost since unable to build: %s", err) return math.inf # Finalize compilation tmp_dir = tempfile.mkdtemp() code, lib = exe.save() lib_path = os.path.join(tmp_dir, "library.so") # TODO(mbs): Avoid nvcc dependency? lib.export_library(lib_path, workspace_dir=tmp_dir, cc="nvcc") lib = tvm.runtime.load_module(lib_path) exe = tvm.runtime.vm.Executable.load_exec(code, lib) # Benchmark the module. the_vm = tvm.runtime.vm.VirtualMachine(exe, device) func_name = "main" main_args = {v.name_hint: arg_for(v.checked_type, device) for v in mod[func_name].params} logging.info("Benchmarking module to estimate") profile = vm_estimate_seconds(device, the_vm, func_name, main_args) logging.info("profile: %s", profile) return profile.median # seconds def make_labelled_dfpattern_partition_rule_wrapper(compiler, pattern_tuple): """Returns a DFPatternPartitionRule representing one (label, pattern, predicate) entry from the pattern table for external codegen compiler""" if len(pattern_tuple) == 2: rule_name, dataflow_pattern = pattern_tuple return _ffi_api.MakeLabelledDFPatternPartitionRule(compiler, rule_name, dataflow_pattern) else: rule_name, dataflow_pattern, predicate = pattern_tuple return _ffi_api.MakeLabelledDFPatternPartitionRuleWithPredicate( compiler, rule_name, dataflow_pattern, predicate ) @register_func("tvm.relay.collage.make_byoc_partition_rule") def make_byoc_partition_rule(compiler): """Returns the PartitionRule for external codegen compiler""" pattern_table = tvm.relay.op.contrib.get_pattern_table(compiler) assert ( pattern_table is not None ), f"No pattern table entry was found for BYOC compiler {compiler}" logging.info( "Converting %s rules for %s for use in pattern style BYOC lowering/codegen", len(pattern_table), compiler, ) sub_rules = [ make_labelled_dfpattern_partition_rule_wrapper(compiler, pattern_tuple) for pattern_tuple in pattern_table ] return _ffi_api.MakePatternBYOCPartitionRule(compiler, sub_rules)
https://github.com/zk-ml/tachikoma
python/tvm/relay/data_dep_optimization/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, not-context-manager """Optimizations involves changing of paramters""" from . import bsr_dense from . import simplify_fc_transpose from . import bsr_conv2d
https://github.com/zk-ml/tachikoma
python/tvm/relay/data_dep_optimization/bsr_conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, not-context-manager """Automatic convert model from dense to block sparse""" from tvm import relay from tvm.relay.analysis.sparse_conv2d import process_params from .utils import _run_opt_pass def convert(func, params, blocksize, sparsity_threshold, layout="NHWC", kernel_size=1): """Convert a conv2d func and according parameters to block sparse Parameters ---------- func : relay.Expr Expr will be optimized to sparse operation params : Dict[Srting, tvm.nd.array] Parameters of the Expr blocksize : Tuple(int, int) Blocksize for BSR matrix sparsity_threshold : float Minimal sparsity requirement for converting. If weight sparsity is lower than this threshold, the dense operation will be kept. layout : str layout of network Returns ------- new_func: relay.Expr Mutated Expr with sparse operations params: Dict[Srting, tvm.nd.array] New params with BSR matrix for mutated Expr """ weight_info = process_params(func, params, blocksize, sparsity_threshold, layout, kernel_size) new_func = _run_opt_pass( func, relay.transform.Conv2dToSparse( weight_info.weight_name, weight_info.weight_shape, layout, kernel_size ), ) return new_func, params def convert2(func, params, blocksize, sparsity_threshold, layout, kernel_size): """Convert a freezed conv2d func to block sparse Parameters ---------- func : relay.Expr Expr will be optimized to sparse operation, with params freezed params : Dict[Srting, tvm.nd.array] Parameters of the Expr (not used in this pass) blocksize : Tuple(int, int) Blocksize for BSR matrix sparsity_threshold : float Minimal sparsity requirement for converting. If weight sparsity is lower than this threshold, the dense operation will be kept. layout : str layout of network kernel_size : int kernel size of the conv2d, for filtering Returns ------- new_func: relay.Expr Mutated Expr with sparse operations params: Dict[Srting, tvm.nd.array] New params with BSR matrix for mutated Expr (not modified) """ new_func = _run_opt_pass( func, relay.transform.Conv2dToSparse2(layout, kernel_size, blocksize, sparsity_threshold) ) return new_func, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/data_dep_optimization/bsr_dense.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, not-context-manager """Automatic convert model from dense to block sparse""" from tvm import relay from tvm.relay.analysis.sparse_dense import process_params from .utils import _run_opt_pass def convert(func, params, blocksize, sparsity_threshold): """Convert a dense func and according parameters to block sparse Parameters ---------- func : relay.Expr Expr will be optimized to sparse operation params : Dict[Srting, tvm.nd.array] Parameters of the Expr blocksize : Tuple(int, int) Blocksize for BSR matrix sparsity_threshold : float Minimal sparsity requirement for converting. If weight sparsity is lower than this threshold, the dense operation will be kept. Returns ------- new_func: relay.Expr Mutated Expr with sparse operations params: Dict[Srting, tvm.nd.array] New params with BSR matrix for mutated Expr """ weight_info = process_params(func, params, blocksize, sparsity_threshold) new_func = _run_opt_pass( func, relay.transform.DenseToSparse(weight_info.weight_name, weight_info.weight_shape) ) return new_func, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/data_dep_optimization/simplify_fc_transpose.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, not-context-manager """Automatic optimize fc tranpose""" import numpy as np import tvm from tvm import relay from tvm.relay.analysis import search_fc_transpose from .utils import _run_opt_pass def convert(func, params): """convert all ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)``` Parameters ---------- func : relay.Expr Expr will be optimized params : Dict[String, tvm.nd.array] Parameters of Expr Returns ------- new_func : relay.Expr Mutated Expr from ```y = nn.dense(x, transpose(w, [1, 0]))``` to ```y = nn.dense(x, wt)``` params: Dict[String, tvm.nd.array] Parameters of mutated Expr, with weights pre-transposed """ weight_info = search_fc_transpose(func) for item in weight_info: name = str(item) w_np = params[name].numpy() new_w = np.transpose(w_np, axes=[1, 0]) params[name + ".T"] = tvm.nd.array(new_w) del params[name] new_func = _run_opt_pass( func, relay.transform.SimplifyFCTranspose( weight_info, ), ) return new_func, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/data_dep_optimization/utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, not-context-manager """Utils functions for optimizations""" import tvm def _run_opt_pass(expr, opt_pass): """Helper function to run pass Parameters ---------- expr : relay.Expr Expr will be optimized opt_pass : relay.Pass Optimization pass Returns ------- ret: relay.Expr Optimized Expr by running opt_pass """ assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) mod = opt_pass(mod) return mod["main"]
https://github.com/zk-ml/tachikoma
python/tvm/relay/dataflow_pattern/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """The Relay Pattern Language and tooling.""" # pylint: disable=no-member from typing import Callable, Dict, List, Optional import tvm._ffi from tvm.relay.expr import RelayExpr as Expr from ... import _ffi as tvm_ffi from ... import ir as _ir from ...ir import make_node from ...ir.base import Node from ...runtime import Object from ..op import get from . import _ffi as ffi def register_df_node(type_key=None): """Register a Relay node type. Parameters ---------- type_key : str or cls The type key of the node. """ if not isinstance(type_key, str): return tvm._ffi.register_object("relay.dataflow_pattern." + type_key.__name__)(type_key) return tvm._ffi.register_object(type_key) class DFPattern(Node): """Base class of all Patterns.""" def __call__(self, *args): args = list(args) if len(args) == 1 and args[0] is None: args = None return CallPattern(self, args) def __or__(self, other): return AltPattern(self, other) def __add__(self, other): return is_op("add")(self, other) def __sub__(self, other): return is_op("subtract")(self, other) def __mul__(self, other): return is_op("multiply")(self, other) def __truediv__(self, other): return is_op("divide")(self, other) def has_attr(self, attrs: Dict[str, Object]): """ Add an attribute constraint to this pattern Parameters ---------- attrs: Dict[str, Object] Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting AttrPattern """ attrs = make_node("DictAttrs", **attrs) return AttrPattern(self, attrs) def has_type(self, ttype: tvm.ir.type.Type): """ Add a type constraint to this pattern Parameters ---------- ttype: tvm.ir.type.Type The type to match Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting TypePattern """ return has_type(ttype, self) def has_dtype(self, dtype: str): """ Add a type constraint to this pattern Parameters ---------- dtype: str The dtype to match Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting DataTypePattern """ return has_dtype(dtype, self) def has_shape(self, shape: List[tvm.ir.PrimExpr]): """ Add a type constraint to this pattern Parameters ---------- shape: List[tvm.ir.PrimExpr] The shape to match Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting ShapePattern """ return has_shape(shape, self) def match(self, expr: Expr) -> bool: """ Match this pattern to an expression Parameters ---------- expr : tvm.relay.Expr The expression to match. Returns ------- result: bool Whether or not the expression matches the pattern """ return match(self, expr) def partition( self, expr: Expr, attrs: Optional[Dict[str, Object]] = None, check: Callable[[Expr], bool] = lambda x: True, ) -> Expr: """ Partition the expression into functions defined by this pattern Parameters ---------- expr : tvm.relay.Expr The expression to match. attrs : Optional[Dict[str, Object]] A dictionary of Attribute name/values to add to the paritioned function check : Callable[[Expr], bool] A function to perform more complicated checks on the matched expression. Returns true if partitioning should proceed, false otherwise. Returns ------- result : tvm.relay.Expr The Expression with matched subgraphs replaced by function calls to that subgraph """ return partition(self, expr, attrs, check) def dominates(self, parent: "DFPattern", path: "DFPattern" = None): """ Create a dominator for this pattern. Parameters ---------- parent: tvm.relay.dataflow_pattern.DFPattern The parent pattern this pattern dominates. path: tvm.relay.dataflow_pattern.DFPattern The fuzzy path pattern. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting DominatorPattern. """ if path is None: path = wildcard() return DominatorPattern(parent, path, self) def optional(self, option_constructor: Callable[["DFPattern"], "DFPattern"]): """ Create a optional user of this pattern. Parameters ---------- option_constructor: function A function that takes a single Pattern parameter and returns a constructed pattern matching the option Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting Pattern """ return self | option_constructor(self) def is_var(name: str = "") -> "DFPattern": """ Syntatic sugar for creating an optionally named VarPattern. Parameters ---------- name: str The name of the input pattern to match. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting pattern. """ return VarPattern(name) def is_constant() -> "DFPattern": """ Syntatic sugar for creating a ConstantPattern. Parameters ---------- name: str The name of the input pattern to match. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting pattern. """ return ConstantPattern() def is_expr(expr: Expr) -> "DFPattern": """ Syntatic sugar for creating an ExprPattern. Parameters ---------- expr: Expr The Relay expression to match. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting pattern. """ return ExprPattern(expr) def is_op(op_name: str) -> "DFPattern": """ Syntatic sugar for creating an operator ExprPattern. Parameters ---------- op_name: String The name of the relay op Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting ExprPattern """ op = get(op_name) return ExprPattern(op) def is_tuple(fields: tvm.ir.container.Array) -> "DFPattern": """ Syntatic sugar for creating an ExprPattern. Parameters ---------- fields : Array[tvm.relay.dataflow_pattern.DFPattern] The fields in the tuple. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting pattern. """ return TuplePattern(fields) def is_tuple_get_item(tuple_value: "DFPattern", index: Optional[int] = None) -> "DFPattern": """ Syntatic sugar for creating an ExprPattern. Parameters ---------- tuple_value: tvm.relay.dataflow_pattern.DFPattern The input tuple expression. index: Optional[int] The index to match; Default (None) to match a TupleGetItem with any index. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting pattern. """ return TupleGetItemPattern(tuple_value, index) def is_if(cond, true_branch, false_branch): """ Syntatic sugar for creating an IfPattern. Parameters ---------- cond: tvm.relay.dataflow_pattern.DFPattern The pattern describing the condition of If. true_branch: tvm.relay.dataflow_pattern.DFPattern The pattern describing the true branch of If. false_branch: tvm.relay.dataflow_pattern.DFPattern The pattern describing the false branch of If. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting pattern. """ return IfPattern(cond, true_branch, false_branch) def is_let(var, value, body): """ Syntatic sugar for creating a LetPattern. Parameters ---------- var: tvm.relay.dataflow_pattern.DFPattern The pattern describing the variable of Let. value: tvm.relay.dataflow_pattern.DFPattern The pattern describing the value of Let. body: tvm.relay.dataflow_pattern.DFPattern The pattern describing the body where the binding is in effect. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting pattern. """ return LetPattern(var, value, body) def wildcard() -> "DFPattern": """ Syntatic sugar for creating a WildcardPattern. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting pattern. """ return WildcardPattern() def has_type(ttype: tvm.ir.type.Type, pattern: "DFPattern" = None) -> "DFPattern": """ Syntatic sugar for creating a TypePattern Parameters ---------- ttype: tvm.ir.type.Type The type to match pattern: tvm.relay.dataflow_pattern.DFPattern The pattern that needs type annotation Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting TypePattern """ if pattern is None: pattern = wildcard() return TypePattern(pattern, ttype) def has_dtype(dtype: str, pattern: "DFPattern" = None) -> "DFPattern": """ Syntatic sugar for creating a DataTypePattern Parameters ---------- dtype: str The dtype to match pattern: tvm.relay.dataflow_pattern.DFPattern The pattern that needs type annotation Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting DataTypePattern """ if pattern is None: pattern = wildcard() return DataTypePattern(pattern, dtype) def has_shape(shape: List[tvm.ir.PrimExpr], pattern: "DFPattern" = None) -> "DFPattern": """ Syntatic sugar for creating a ShapePattern Parameters ---------- shape: List[tvm.ir.PrimExpr] The shape to match pattern: tvm.relay.dataflow_pattern.DFPattern The pattern that needs type annotation Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting ShapePattern """ if pattern is None: pattern = wildcard() return ShapePattern(pattern, shape) def has_attr(attrs, pattern=None) -> "DFPattern": """ Syntatic sugar for creating an AttrPattern Parameters ---------- attrs: Dict[str, Object] The attributes to match pattern: Optional[tvm.relay.dataflow_pattern.DFPattern] The input pattern. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting AttrPattern """ if pattern is None: pattern = wildcard() return pattern.has_attr(attrs) def dominates(parent: "DFPattern", path: "DFPattern", child: "DFPattern") -> "DFPattern": """ Syntatic sugar for creating an Dominator pattern Parameters ---------- parent: tvm.relay.dataflow_pattern.DFPattern The parent pattern. path: tvm.relay.dataflow_pattern.DFPattern The fuzzy path pattern. child: tvm.relay.dataflow_pattern.DFPattern The child pattern. Returns ------- result: tvm.relay.dataflow_pattern.DFPattern The resulting DominatorPattern. """ return DominatorPattern(parent, path, child) def match(pattern: "DFPattern", expr: Expr) -> bool: """ Match a pattern to an expression Parameters ---------- pattern: tvm.relay.dataflow_pattern.DFPattern The input pattern. expr : tvm.relay.Expr The expression to match. """ return ffi.match(pattern, expr) @register_df_node class ExprPattern(DFPattern): """A pattern which matches a constant expression. Parameters ---------- expr : tvm.relay.Expr The expression to match. """ def __init__(self, expr: Expr): self.__init_handle_by_constructor__(ffi.ExprPattern, expr) @register_df_node class VarPattern(DFPattern): """A local variable in Relay. Local variable can be used to declare input arguments to a function, or intermediate variables. Parameters ---------- name_hint: str The name of the variable. Optional, if not provided, the pattern will match any VarNode. type_annotation: tvm.ir.type.Type, optional The type annotation on the variable. """ def __init__(self, name_hint: str = ""): self.__init_handle_by_constructor__(ffi.VarPattern, name_hint) @register_df_node class ConstantPattern(DFPattern): """A pattern matching a Relay Constant.""" def __init__(self): self.__init_handle_by_constructor__(ffi.ConstantPattern) @register_df_node class CallPattern(DFPattern): """A pattern matching a function call node in Relay. Parameters ---------- op: relay.dataflow_pattern.DFPattern The operation to be called. args: List[relay.dataflow_pattern.DFPattern] The arguments to the call or None to match any arguments. """ def __init__( self, op: "DFPattern", args: List["DFPattern"], ): self.__init_handle_by_constructor__(ffi.CallPattern, op, args) @register_df_node class FunctionPattern(DFPattern): """A pattern matching a function node in Relay. Parameters ---------- params: List[relay.dataflow_pattern.DFPattern] The parameters to the Function or None to match any parameters. body: relay.dataflow_pattern.DFPattern The body fo the Function """ def __init__( self, params: List["DFPattern"], body: "DFPattern", ): self.__init_handle_by_constructor__(ffi.FunctionPattern, params, body) @register_df_node class IfPattern(DFPattern): """A patern matching a Relay If. Parameters ---------- cond: tvm.relay.dataflow_pattern.DFPattern The pattern describing the condition of If. true_branch: tvm.relay.dataflow_pattern.DFPattern The pattern describing the true branch of If. false_branch: tvm.relay.dataflow_pattern.DFPattern The pattern describing the false branch of If. """ def __init__(self, cond: "DFPattern", true_branch: "DFPattern", false_branch: "DFPattern"): self.__init_handle_by_constructor__(ffi.IfPattern, cond, true_branch, false_branch) @register_df_node class LetPattern(DFPattern): """A patern matching a Relay Let. Parameters ---------- var: tvm.relay.dataflow_pattern.DFPattern The pattern describing the variable of Let. value: tvm.relay.dataflow_pattern.DFPattern The pattern describing the value of Let. body: tvm.relay.dataflow_pattern.DFPattern The pattern describing the body where the binding is in effect. """ def __init__(self, var: "DFPattern", value: "DFPattern", body: "DFPattern"): self.__init_handle_by_constructor__(ffi.LetPattern, var, value, body) @register_df_node class TuplePattern(DFPattern): """A patern matching a Relay Tuple. Parameters ---------- fields : Array[tvm.relay.dataflow_pattern.DFPattern] The fields in the tuple. """ def __init__(self, fields: tvm.ir.container.Array): self.__init_handle_by_constructor__(ffi.TuplePattern, fields) def __getitem__(self, index: int): if index >= len(self): raise IndexError("TuplePattern index out of range") return self.fields[index] def __len__(self): return len(self.fields) def astype(self, _): raise TypeError("astype cannot be used on TuplePattern") @register_df_node class TupleGetItemPattern(DFPattern): """Get index-th item from a TuplePattern. Parameters ---------- tuple_value: tvm.relay.dataflow_pattern.DFPattern The input tuple expression. index: Optional[int] The index to match; Default (None) to match a TupleGetItem with any index. """ def __init__(self, tuple_value: "DFPattern", index: Optional[int] = None): match_index = index if index is not None else -1 self.__init_handle_by_constructor__(ffi.TupleGetItemPattern, tuple_value, match_index) @register_df_node class AltPattern(DFPattern): """Create a Pattern that can match one of two conditions Parameters ---------- left: tvm.relay.dataflow_pattern.DFPattern One possible matching pattern. right: tvm.relay.dataflow_pattern.DFPattern One possible matching pattern. """ def __init__(self, left: "DFPattern", right: "DFPattern"): self.__init_handle_by_constructor__(ffi.AltPattern, left, right) @register_df_node class WildcardPattern(DFPattern): """A pattern which matches anything.""" def __init__(self): self.__init_handle_by_constructor__(ffi.WildcardPattern) @register_df_node class TypePattern(DFPattern): """A pattern that matches another pattern with a certain type annotation. Parameters ---------- pattern: tvm.relay.dataflow_pattern.DFPattern The input pattern that needs type annotation. ttype: tvm.ir.type.Type The type to match. """ def __init__(self, pattern: "DFPattern", ttype: tvm.ir.type.Type): self.__init_handle_by_constructor__(ffi.TypePattern, pattern, ttype) @register_df_node class DataTypePattern(DFPattern): """A pattern that matches another pattern with certain data type Parameters ---------- pattern: tvm.relay.dataflow_pattern.DFPattern The input pattern that needs type annotation. dtype: str The dtype to match. """ def __init__(self, pattern: "DFPattern", dtype: str): self.__init_handle_by_constructor__(ffi.DataTypePattern, pattern, dtype) @register_df_node class ShapePattern(DFPattern): """A pattern that matches another pattern with a certain tensor shape Parameters ---------- pattern: tvm.relay.dataflow_pattern.DFPattern The input pattern that needs type annotation. shape: List[tvm.ir.PrimExpr] The shape to match. """ def __init__(self, pattern: "DFPattern", shape: List[tvm.ir.PrimExpr]): self.__init_handle_by_constructor__(ffi.ShapePattern, pattern, shape) @register_df_node class AttrPattern(DFPattern): """Get match an expression with a certain attributes. Currently only supports Op Attributes, not call Attributes. Parameters ---------- pattern: tvm.relay.dataflow_pattern.DFPattern The input pattern. attrs: tvm.ir.attrs.Attrs The attributes to match. """ def __init__(self, pattern: "DFPattern", attrs: tvm.ir.attrs.Attrs): self.__init_handle_by_constructor__(ffi.AttrPattern, pattern, attrs) @register_df_node class DominatorPattern(DFPattern): """Match a domination graph. Parameters ---------- parent: tvm.relay.dataflow_pattern.DFPattern The parent, i.e., the single node which produces something, later aggregated by the child. path: tvm.relay.dataflow_pattern.DFPattern The fuzzy path pattern between parent and child, typically matches elementwise ops. child: tvm.relay.dataflow_pattern.DFPattern The last node in the domination which is the end user for all nodes in the path and the parent. """ def __init__(self, parent: "DFPattern", path: "DFPattern", child: "DFPattern"): self.__init_handle_by_constructor__(ffi.DominatorPattern, parent, path, child) class DFPatternCallback: """A Callback for Pattern Rewriting. When rewrite is called on this DFPatternCallback, the backend will find matches for the pattern, call the callback function, and replace the matched expression with whatever the callback returns. Users are expect to inherit from this class and provide a "self.pattern" to match Parameters ---------- require_type: bool Whether InferType is required to be run before the callback. rewrite_once: bool If True, run the callback only once. """ def __init__(self, require_type=False, rewrite_once=False): self.pattern = None self.require_type = require_type self.rewrite_once = rewrite_once def rewrite(self, expr: Expr) -> Expr: """ Rewrite expression with this callback Parameters ---------- expr : tvm.relay.Expr The expression to rewrite. Returns ------- result : tvm.relay.Expr The Expression with matched subgraphs rewritten by the callbacks. """ return rewrite(self, expr) def callback(self, pre: Expr, post: Expr, node_map: tvm.ir.container.Map) -> Expr: """ Callback function to use when we found a match to the pattern Parameters ---------- pre : tvm.relay.Expr The matching expression from the original graph. post : tvm.relay.Expr The matching expression with rewritten inputs node_map : tvm.ir.container.Map[DFPattern, List[Expr]] The map between patterns and matched expressions Returns ------- result : tvm.relay.Expr The Expression with matched subgraph rewritten by the callback """ raise "Unimplemented" class _DFPatternCallback(Object): """C++ implemenation""" def __init__(self, pattern, callback, require_type, rewrite_once): self.__init_handle_by_constructor__( ffi.DFPatternCallback, pattern, callback, require_type, rewrite_once ) def rewrite(callbacks, expr: Expr, mod: Optional[_ir.IRModule] = None) -> Expr: """ Rewrite expression with the given callbacks. Parameters ---------- callbacks: tvm.relay.dataflow_pattern.DFPatternCallback The input callback or list of callbacks. expr : tvm.relay.Expr The expression to rewrite. mod : Optional[tvm.ir.IRModule] The module that associates with the expression. Returns ------- result : tvm.relay.Expr The Expression with matched subgraphs rewritten by the callbacks. """ if mod is None: mod = _ir.IRModule() callbacks = [callbacks] if isinstance(callbacks, DFPatternCallback) else callbacks tmp = [] for callback in callbacks: assert callback.pattern is not None tmp.append( _DFPatternCallback( callback.pattern, callback.callback, callback.require_type, callback.rewrite_once ) ) return ffi.rewrite(tmp, expr, mod) def partition( pattern: "DFPattern", expr: Expr, attrs: Optional[Dict[str, Object]] = None, check: Callable[[Expr], bool] = lambda x: True, ) -> Expr: """ Parition the expression into a series of functions that match the pattern Parameters ---------- pattern: tvm.relay.dataflow_pattern.DFPattern The pattern to match expr : tvm.relay.Expr The expression to split into functions attrs : Optional[Dict[str, Object]] A dict of attributes to apply to the partitioned function check : Callable[[Expr], bool] A function to perform more complicated checks on the matched expression. Returns true if partitioning should proceed, false otherwise. Returns ------- result : tvm.relay.Expr The Expression with matched subgraphs replaced by function calls to that subgraph """ return ffi.partition(pattern, expr, attrs, check)
https://github.com/zk-ml/tachikoma
python/tvm/relay/dataflow_pattern/_ffi.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """DataFlow Pattern Language FFI bindings.""" import tvm._ffi tvm._ffi._init_api("relay.dataflow_pattern", __name__)
https://github.com/zk-ml/tachikoma
python/tvm/relay/debug.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import, redefined-builtin, invalid-name """The Relay IR namespace containing the IR definition and compiler.""" import tvm._ffi # pylint: disable=unused-argument, import-outside-toplevel def _debugger_init(expr, stack): import pdb pdb.set_trace() @tvm._ffi.register_func("relay.debug") def _debug(*args): import pdb pdb.set_trace() # pylint: disable=unused-argument @tvm._ffi.register_func("relay.debug_interp") def _debug_interp(*args): _, _, _, ist = args print("Relay Debugger") print(" You can manipulate the expression under evaluation with the name `expr`.") print(" You can manipulate the call stack with the name `stack`.") print("--------------") print("--------------") _debugger_init(ist.current_expr, ist.stack)
https://github.com/zk-ml/tachikoma
python/tvm/relay/expr.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, invalid-name, unused-import """The expression nodes of Relay.""" from __future__ import absolute_import from numbers import Number as _Number import numpy as _np import tvm._ffi from tvm._ffi import base as _base from tvm.runtime import NDArray, ndarray as _nd from tvm.ir import RelayExpr, GlobalVar, Node from .base import RelayNode from . import _ffi_api from . import ty as _ty # alias relay expr as Expr. Expr = RelayExpr # will be registered afterwards _op_make = None class ExprWithOp(RelayExpr): """Basetype of all relay expressions that defines op overloading.""" def astype(self, dtype): """Cast the content type of the current data to dtype. Parameters ---------- dtype : str The target data type. Note ---- This function only works for TensorType Exprs. Returns ------- result : tvm.relay.Expr The result expression. """ return _ffi_api.cast(self, dtype) def __neg__(self): return _op_make.negative(self) def __lt__(self, other): if isinstance(other, Expr): return _op_make.less(self, other) elif isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) else: raise TypeError("type %s not supported" % str(type(other))) def __gt__(self, other): if isinstance(other, Expr): return _op_make.greater(self, other) elif isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) else: raise TypeError("type %s not supported" % str(type(other))) def __ge__(self, other): if isinstance(other, Expr): return _op_make.greater_equal(self, other) elif isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) else: raise TypeError("type %s not supported" % str(type(other))) def __le__(self, other): if isinstance(other, Expr): return _op_make.less_equal(self, other) elif isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) else: raise TypeError("type %s not supported" % str(type(other))) def __add__(self, other): if isinstance(other, Expr): return _op_make.add(self, other) elif isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) else: raise TypeError("type %s not supported" % str(type(other))) def __radd__(self, other): return self.__add__(other) def __sub__(self, other): if isinstance(other, Expr): return _op_make.subtract(self, other) elif isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) else: raise TypeError("type %s not supported" % str(type(other))) def __rsub__(self, other): if isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) raise TypeError("type %s not supported" % str(type(other))) def __mul__(self, other): if isinstance(other, Expr): return _op_make.multiply(self, other) elif isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) else: raise TypeError("type %s not supported" % str(type(other))) def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): if isinstance(other, Expr): return _op_make.divide(self, other) elif isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) else: raise TypeError("type %s not supported" % str(type(other))) def __rdiv__(self, other): if isinstance(other, _Number): raise TypeError('convert "%s" with `const` first' % str(other)) raise TypeError("type %s not supported" % str(type(other))) def __truediv__(self, other): return self.__div__(other) def __rtruediv__(self, other): return self.__rdiv__(other) def __call__(self, *args): """Call the variable (if it represents a function). Parameters ---------- args: List[relay.Expr] The arguments to the call. Returns ------- call: Call A call taking the variable as a function. """ return Call(self, args) @tvm._ffi.register_object("relay.Constant") class Constant(ExprWithOp): """A constant expression in Relay. Parameters ---------- data : tvm.nd.NDArray The data content of the constant expression. """ def __init__(self, data): self.__init_handle_by_constructor__(_ffi_api.Constant, data) @tvm._ffi.register_object("relay.Tuple") class Tuple(ExprWithOp): """Tuple expression that groups several fields together. Parameters ---------- fields : List[tvm.relay.Expr] The fields in the tuple. span: Optional[tvm.relay.Span] Span that points to original source code """ def __init__(self, fields, span=None): self.__init_handle_by_constructor__(_ffi_api.Tuple, fields, span) def __getitem__(self, index): if index >= len(self): raise IndexError("Tuple index out of range") return self.fields[index] def __len__(self): return len(self.fields) def astype(self, _): raise TypeError("astype cannot be used on tuple") @tvm._ffi.register_object("relay.Var") class Var(ExprWithOp): """A local variable in Relay. Local variable can be used to declare input arguments to a function, or intermediate variables. Parameters ---------- name_hint: str The name of the variable. This name only acts as a hint, and is not used for equality. type_annotation: tvm.relay.Type, optional The type annotation on the variable. """ def __init__(self, name_hint, type_annotation=None): self.__init_handle_by_constructor__(_ffi_api.Var, name_hint, type_annotation) @property def name_hint(self): """Get name hint of the current var.""" name = str(self.vid.name_hint) return name @tvm._ffi.register_object("relay.Call") class Call(ExprWithOp): """Function call node in Relay. Call node corresponds the operator application node in computational graph terminology. Parameters ---------- op: tvm.ir.Op or any tvm.relay.Expr with function type. The operation to be called. args: List[tvm.relay.Expr] The arguments to the call. attrs: Optional[tvm.Attrs] Attributes to the call, can be None type_args: Optional[List[tvm.relay.Type]] The additional type arguments, this is only used in advanced usecase of template functions. span: Optional[tvm.relay.Span] Span that points to original source code """ def __init__(self, op, args, attrs=None, type_args=None, span=None): if not type_args: type_args = [] self.__init_handle_by_constructor__(_ffi_api.Call, op, args, attrs, type_args, span) @tvm._ffi.register_object("relay.Let") class Let(ExprWithOp): """Let variable binding expression. Parameters ---------- variable: tvm.relay.Var The local variable to be bound. value: tvm.relay.Expr The value to be bound. body: tvm.relay.Expr The body of the let binding. """ def __init__(self, variable, value, body): self.__init_handle_by_constructor__(_ffi_api.Let, variable, value, body) @tvm._ffi.register_object("relay.If") class If(ExprWithOp): """A conditional expression in Relay. Parameters ---------- cond: tvm.relay.Expr The condition. true_branch: tvm.relay.Expr The expression evaluated when condition is true. false_branch: tvm.relay.Expr The expression evaluated when condition is false. """ def __init__(self, cond, true_branch, false_branch): self.__init_handle_by_constructor__(_ffi_api.If, cond, true_branch, false_branch) @tvm._ffi.register_object("relay.TupleGetItem") class TupleGetItem(ExprWithOp): """Get index-th item from a tuple. Parameters ---------- tuple_value: tvm.relay.Expr The input tuple expression. index: int The index. """ def __init__(self, tuple_value, index): self.__init_handle_by_constructor__(_ffi_api.TupleGetItem, tuple_value, index) @tvm._ffi.register_object("relay.RefCreate") class RefCreate(ExprWithOp): """Create a new reference from initial value. Parameters ---------- value: tvm.relay.Expr The initial value. """ def __init__(self, value): self.__init_handle_by_constructor__(_ffi_api.RefCreate, value) @tvm._ffi.register_object("relay.RefRead") class RefRead(ExprWithOp): """Get the value inside the reference. Parameters ---------- ref: tvm.relay.Expr The reference. """ def __init__(self, ref): self.__init_handle_by_constructor__(_ffi_api.RefRead, ref) @tvm._ffi.register_object("relay.RefWrite") class RefWrite(ExprWithOp): """ Update the value inside the reference. The whole expression will evaluate to an empty tuple. Parameters ---------- ref: tvm.relay.Expr The reference. value: tvm.relay.Expr The new value. """ def __init__(self, ref, value): self.__init_handle_by_constructor__(_ffi_api.RefWrite, ref, value) class TempExpr(ExprWithOp): """Baseclass of all TempExpr. TempExprs are pass specific expression that can be useful to define intermediate result in the rewriting pass such as layout or type transformation. """ def realize(self): """Convert the expression to a normal(non-temp) Expr. Returns ------- The corresponding normal expression. """ return _ffi_api.TempExprRealize(self) class TupleWrapper(object): """TupleWrapper. This class is a Python wrapper for a Relay tuple of known size. It allows for accessing the fields of the Relay tuple as though it were a Python tuple. Parameters ---------- tuple_value: tvm.relay.Expr The input tuple size: int The size of the tuple. """ def __init__(self, tuple_value, size): self.tuple_value = tuple_value self.size = size def astuple(self): """Returns the underlying Relay tuple if this wrapper is passed as an argument to an FFI function.""" return self.tuple_value def astext(self): """Get the text format of the tuple expression. Returns ------- text : str The text format of the tuple expression. """ return self.tuple_value.astext() def __getitem__(self, index): if index >= len(self): raise IndexError("Tuple index out of range") return TupleGetItem(self.tuple_value, index) def __len__(self): return self.size def __repr__(self): return "TupleWrapper(" + self.tuple_value.__repr__() + ", " + str(self.size) + ")" def astype(self, _): raise TypeError("astype cannot be used on tuple") def var(name_hint, type_annotation=None, shape=None, dtype="float32"): """Create a new tvm.relay.Var. This is a simple wrapper function that allows specify shape and dtype directly. Parameters ---------- name_hint: str The name of the variable. This name only acts as a hint, and is not used for equality. type_annotation: Optional[tvm.relay.Type, str] The type annotation on the variable. When type_annotation is a str, we will create a scalar variable. shape: Optional[List[tvm.Expr]] The shape of the tensor type. dtype: str, optional The data type of the tensor. Examples -------- .. code-block:: python # The following 4 lines are equivalent to each other x = tvm.relay.Var("x", tvm.relay.TensorType([1, 2])) x = tvm.relay.var("x", tvm.relay.TensorType([1, 2])) x = tvm.relay.var("x", shape=[1, 2]) x = tvm.relay.var("x", shape=[1, 2], dtype="float32") # The following 2 lines are equivalent to each other. y = tvm.relay.var("x", "float32") y = tvm.relay.var("x", shape=(), dtype="float32") """ if type_annotation is not None and shape is not None: raise ValueError("Can only specify either type_annotation or shape.") if shape is not None: type_annotation = _ty.TensorType(shape, dtype) elif isinstance(type_annotation, str): type_annotation = _ty.TensorType((), type_annotation) return Var(name_hint, type_annotation) def const(value, dtype=None): """Create a constant value. Parameters ---------- value: Union[bool, int, float, numpy.ndarray, tvm.nd.NDArray] The constant value. dtype: str, optional The data type of the resulting constant. Note ---- When dtype is None, we use the following rule: - int maps to "int32" - float maps to "float32" - bool maps to "bool" - other using the same default rule as numpy. """ if isinstance(value, (_base.numeric_types, (bool, list))): value = _np.array(value, dtype=dtype) if not dtype: # when dtype is None: int maps to "int32", float maps to "float32" dtype = {_np.dtype("int64"): _np.int32, _np.dtype("float64"): _np.float32}.get( value.dtype, None ) if isinstance(value, (_np.ndarray, _np.generic)): if dtype is not None: value = value.astype(dtype) value = _nd.array(value) if not isinstance(value, _nd.NDArray): raise ValueError("value has to be scalar or NDArray") return Constant(value) def bind(expr, binds): """Bind an free variables in expr or function arguments. We can bind parameters expr if it is a function. Parameters ---------- expr : tvm.relay.Expr The input expression. binds : Map[tvm.relay.Var, tvm.relay.Expr] The specific bindings. Returns ------- result : tvm.relay.Expr The expression or function after binding. """ return _ffi_api.Bind(expr, binds) @tvm._ffi.register_object("relay.StorageInfo") class StorageInfo(Node): """StorageInfo The static storage information produced by memory planning. Contains the storage ids where expressions are stored, the type of the "virtual devices" the expressions are stored on, and the sizes of each storage element.""" def __init__(self, sids, dev_types, sizes): self.__init_handle_by_constructor__(_ffi_api.StorageInfo, sids, dev_types, sizes) @property def storage_ids(self): return _ffi_api.StorageInfoStorageIds(self) @property def device_types(self): return _ffi_api.StorageInfoDeviceTypes(self) @property def storage_sizes(self): return _ffi_api.StorageInfoStorageSizes(self) @property def virtual_devices(self): return _ffi_api.StorageInfoVirtualDevices(self) @tvm._ffi.register_object("relay.StaticMemoryPlan") class StaticMemoryPlan(Node): """StaticMemoryPlan The result of static memory planning.""" def __init__(self, expr_to_storage_info): self.__init_handle_by_constructor__(_ffi_api.StaticMemoryPlan, expr_to_storage_info)
https://github.com/zk-ml/tachikoma
python/tvm/relay/expr_functor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, unidiomatic-typecheck, invalid-name """The expression functor of Relay.""" from tvm.ir import Op from .function import Function, FunctionWithFields from .expr import Call, Let, Var, GlobalVar from .expr import If, Tuple, TupleGetItem, Constant from .expr import RefCreate, RefRead, RefWrite from .adt import Constructor, Match, Clause class ExprFunctor: """ An abstract visitor defined over Expr. Defines the default dispatch over expressions, and implements memoization. """ def __init__(self): self.memo_map = {} # pylint: disable=no-else-return def visit(self, expr): """Apply the visitor to an expression.""" if expr in self.memo_map: return self.memo_map[expr] if isinstance(expr, Function): res = self.visit_function(expr) elif isinstance(expr, Call): res = self.visit_call(expr) elif isinstance(expr, Let): res = self.visit_let(expr) elif isinstance(expr, Var): res = self.visit_var(expr) elif isinstance(expr, GlobalVar): res = self.visit_global_var(expr) elif isinstance(expr, If): res = self.visit_if(expr) elif isinstance(expr, Tuple): res = self.visit_tuple(expr) elif isinstance(expr, TupleGetItem): res = self.visit_tuple_getitem(expr) elif isinstance(expr, Constant): res = self.visit_constant(expr) elif isinstance(expr, Op): res = self.visit_op(expr) elif isinstance(expr, RefCreate): res = self.visit_ref_create(expr) elif isinstance(expr, RefRead): res = self.visit_ref_read(expr) elif isinstance(expr, RefWrite): res = self.visit_ref_write(expr) elif isinstance(expr, Constructor): res = self.visit_constructor(expr) elif isinstance(expr, Match): res = self.visit_match(expr) else: raise Exception("warning unhandled case: {0}".format(type(expr))) self.memo_map[expr] = res return res def visit_function(self, _): raise NotImplementedError() def visit_let(self, _): raise NotImplementedError() def visit_call(self, _): raise NotImplementedError() def visit_var(self, _): raise NotImplementedError() def visit_type(self, typ): return typ def visit_if(self, _): raise NotImplementedError() def visit_tuple(self, _): raise NotImplementedError() def visit_tuple_getitem(self, _): raise NotImplementedError() def visit_global_var(self, _): raise NotImplementedError() def visit_op(self, _): raise NotImplementedError() def visit_constant(self, _): raise NotImplementedError() def visit_ref_create(self, _): raise NotImplementedError() def visit_ref_write(self, _): raise NotImplementedError() def visit_ref_read(self, _): raise NotImplementedError() def visit_constructor(self, _): raise NotImplementedError() def visit_match(self, _): raise NotImplementedError() class ExprVisitor(ExprFunctor): """ A visitor over Expr. The default behavior recursively traverses the AST. """ def visit_tuple(self, tup): for x in tup.fields: self.visit(x) def visit_call(self, call): self.visit(call.op) for a in call.args: self.visit(a) def visit_var(self, var): pass def visit_let(self, let): self.visit(let.var) self.visit(let.value) self.visit(let.body) def visit_function(self, fn): for x in fn.params: self.visit(x) self.visit(fn.body) def visit_if(self, i): self.visit(i.cond) self.visit(i.true_branch) self.visit(i.false_branch) def visit_global_var(self, gv): pass def visit_constructor(self, c): pass def visit_op(self, op): pass def visit_constant(self, const): pass def visit_ref_create(self, r): self.visit(r.value) def visit_ref_read(self, r): self.visit(r.ref) def visit_ref_write(self, r): self.visit(r.ref) self.visit(r.value) def visit_tuple_getitem(self, t): self.visit(t.tuple_value) def visit_match(self, m): self.visit(m.data) for c in m.clauses: self.visit(c.rhs) class ExprMutator(ExprFunctor): """ A functional visitor over Expr. The default behavior recursively traverses the AST and reconstructs the AST. """ def visit_function(self, fn): new_params = [self.visit(x) for x in fn.params] new_body = self.visit(fn.body) return FunctionWithFields( fn, list(new_params), new_body, ) def visit_let(self, let): new_var = self.visit(let.var) new_val = self.visit(let.value) new_body = self.visit(let.body) return Let(new_var, new_val, new_body) def visit_call(self, call): new_fn = self.visit(call.op) new_args = [self.visit(arg) for arg in call.args] return Call(new_fn, new_args, call.attrs, call.type_args, call.span) def visit_var(self, var): return var def visit_global_id(self, global_var): return global_var def visit_if(self, ite): return If(self.visit(ite.cond), self.visit(ite.true_branch), self.visit(ite.false_branch)) def visit_tuple(self, tup): return Tuple([self.visit(field) for field in tup.fields], tup.span) def visit_tuple_getitem(self, op): tuple_value = self.visit(op.tuple_value) if not tuple_value.same_as(op.tuple_value): return TupleGetItem(tuple_value, op.index) return op def visit_global_var(self, gvar): return gvar def visit_op(self, op): return op def visit_constant(self, const): return const def visit_constructor(self, con): return con def visit_match(self, m): return Match( self.visit(m.data), [Clause(c.lhs, self.visit(c.rhs)) for c in m.clauses], complete=m.complete, ) def visit_ref_create(self, r): return RefCreate(self.visit(r.value)) def visit_ref_write(self, r): return RefWrite(self.visit(r.ref), self.visit(r.value)) def visit_ref_read(self, r): return RefRead(self.visit(r.ref))
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Frontends for constructing Relay programs. Contains the model importers currently defined for Relay. """ from .mxnet import from_mxnet from .mxnet_qnn_op_utils import quantize_conv_bias_mkldnn_from_var from .keras import from_keras from .oneflow import from_oneflow from .onnx import from_onnx from .tflite import from_tflite from .coreml import from_coreml from .caffe2 import from_caffe2 from .tensorflow import from_tensorflow from .darknet import from_darknet from .pytorch import from_pytorch from .caffe import from_caffe from .paddlepaddle import from_paddle from .change_datatype import ChangeDatatype
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/caffe.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, too-many-lines, import-outside-toplevel # pylint: disable=no-else-return, no-else-continue """Caffe frontend.""" import numpy as np import tvm from tvm.ir import IRModule from ... import nd as _nd from .. import analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from .common import ExprTable from .common import infer_shape as _infer_shape __all__ = ["from_caffe"] class OperatorConverter(object): """Operator Converted for converting Caffe ops to Relay ops""" def __init__(self, init_layer_dict, predict_layer, exp_tab): self.init_layer_dict = init_layer_dict self.predict_layer = predict_layer self.exp_tab = exp_tab self.new_bn = {} self.changed_layers = None self.convert_map = { "BatchNorm": self.convert_batch_norm, "Concat": self.convert_concat, "Convolution": self.convert_conv, "Crop": self.convert_crop, "Deconvolution": self.convert_deconv, "Dropout": self.convert_dropout, "Eltwise": self.convert_eltwise, "Embed": self.convert_embed, "Flatten": self.convert_flatten, "InnerProduct": self.convert_innerproduct, "Input": None, "LRN": self.convert_lrn, "Permute": self.convert_permute, "Pooling": self.convert_pooling, "Power": self.convert_power, "PReLU": self.convert_prelu, "ReLU": self.convert_relu, "Reshape": self.convert_reshape, "Scale": self.convert_scale, "Sigmoid": self.convert_sigmoid, "Slice": self.convert_slice, "Softmax": self.convert_softmax, "TanH": self.convert_tanh, "Reduction": self.convert_reduction, } def convert_flatten(self, op): """Convert Flatten layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) flatten_params = op.flatten_param.axis assert flatten_params == 1, "flatten axis should be 1" out = _op.nn.batch_flatten(in_expr) return out def convert_eltwise(self, op): """Convert Eltwise layer""" inputs = op.bottom assert len(inputs) >= 2, "input tensors length should be larger than 2" # gethering initial 2 input expressions lhs_expr = self.exp_tab.get_expr(inputs[0]) rhs_expr = self.exp_tab.get_expr(inputs[1]) lhs_shape = _infer_shape(lhs_expr) rhs_shape = _infer_shape(rhs_expr) assert lhs_shape == rhs_shape, "input tensors shape should be equal" eltwise_params = op.eltwise_param eltwise_type_dict = ["PROD", "SUM", "MAX"] eltwise_type = eltwise_params.operation coeff = list(eltwise_params.coeff) if eltwise_type_dict[eltwise_type] == "PROD": out = _op.multiply(lhs_expr, rhs_expr) # for rest inputs for i in range(len(inputs) - 2): extra_expr = self.exp_tab.get_expr(inputs[i + 2]) assert _infer_shape(out) == _infer_shape(extra_expr) out = _op.multiply(out, extra_expr) elif eltwise_type_dict[eltwise_type] == "SUM": if coeff: left_coeff_expr = self.exp_tab.new_const(np.asarray(coeff[0], np.float32)) right_coeff_expr = self.exp_tab.new_const(np.asarray(coeff[1], np.float32)) lhs_expr_scale = _op.multiply(lhs_expr, left_coeff_expr) rhs_expr_scale = _op.multiply(rhs_expr, right_coeff_expr) out = _op.add(lhs_expr_scale, rhs_expr_scale) else: out = _op.add(lhs_expr, rhs_expr) # for rest inputs for i in range(len(inputs) - 2): extra_expr = self.exp_tab.get_expr(inputs[i + 2]) assert _infer_shape(out) == _infer_shape(extra_expr) if coeff: coeff_expr = self.exp_tab.new_const(np.asarray(coeff[i + 2], np.float32)) extra_expr_scale = _op.multiply(extra_expr, coeff_expr) out = _op.add(out, extra_expr_scale) else: out = _op.add(out, extra_expr) elif eltwise_type_dict[eltwise_type] == "MAX": out = _op.maximum(lhs_expr, rhs_expr) # for rest inputs for i in range(len(inputs) - 2): extra_expr = self.exp_tab.get_expr(inputs[i + 2]) assert _infer_shape(out) == _infer_shape(extra_expr) out = _op.maximum(out, extra_expr) else: raise tvm.error.OpNotImplemented( "eltwise_type {} is not supported for frontend Caffe.".format(eltwise_type) ) return out def _parse_conv_params(self, op): """Parse the parameters of Convolution and Deconvolution layer""" nonzone = lambda val, pos, dflt: val[pos] if pos < len(val) else dflt conv_params = op.convolution_param params = dict() # parse kernel size if conv_params.kernel_h > 0 or conv_params.kernel_w > 0: params["kernel_size"] = (conv_params.kernel_h, conv_params.kernel_w) else: ksize_h = nonzone(conv_params.kernel_size, 0, 1) ksize_w = nonzone(conv_params.kernel_size, 1, ksize_h) params["kernel_size"] = (ksize_h, ksize_w) # parse padding size if conv_params.pad_h > 0 or conv_params.pad_w > 0: params["padding"] = (conv_params.pad_h, conv_params.pad_w) else: pad_h = nonzone(conv_params.pad, 0, 0) pad_w = nonzone(conv_params.pad, 1, pad_h) params["padding"] = (pad_h, pad_w) # parse stride size if conv_params.stride_h > 0 or conv_params.stride_w > 0: params["strides"] = (conv_params.stride_h, conv_params.stride_w) else: stride_h = nonzone(conv_params.stride, 0, 1) stride_w = nonzone(conv_params.stride, 1, stride_h) params["strides"] = (stride_h, stride_w) # parse dilation size if hasattr(conv_params, "dilation") and len(conv_params.dilation) > 0: dilation = " ".join(str(d) for d in conv_params.dilation) dilation = tuple(map(int, dilation.split(" "))) params["dilation"] = dilation if len(dilation) == 1: params["dilation"] = (dilation[0], dilation[0]) params["kernel_layout"] = "OIHW" params["data_layout"] = "NCHW" params["groups"] = conv_params.group params["channels"] = conv_params.num_output return params def convert_batch_norm(self, op): """Convert BatchNorm layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) n, c, h, w = _infer_shape(in_expr) if op.name in self.new_bn: mean, var, eps, gamma, beta = self.new_bn[op.name] mean_expr = self.exp_tab.new_const(mean, dtype="float32") var_expr = self.exp_tab.new_const(var, dtype="float32") gamma_expr = self.exp_tab.new_const(gamma, dtype="float32") beta_expr = self.exp_tab.new_const(beta, dtype="float32") out = _op.nn.batch_norm( in_expr, gamma_expr, beta_expr, mean_expr, var_expr, epsilon=eps, scale=True ) else: weight_bias_blobs = self.init_layer_dict[op.name].blobs mean = np.asarray(weight_bias_blobs[0].data, np.float32) var = np.asarray(weight_bias_blobs[1].data, np.float32) if len(weight_bias_blobs) == 2: mean = np.repeat(mean, h * w).reshape((c, h, w)) mean = np.expand_dims(mean, 0).repeat(n, axis=0) mean_expr = self.exp_tab.new_const(mean, dtype="float32") var = np.repeat(var, h * w).reshape((c, h, w)) var = np.expand_dims(var, 0).repeat(n, axis=0) var_expr = self.exp_tab.new_const(var, dtype="float32") tmp_out = _op.multiply(in_expr, mean_expr) out = _op.add(tmp_out, var_expr) return out else: scale = np.asarray(weight_bias_blobs[2].data, np.float32) if scale: scale = 1 / scale mean_expr = self.exp_tab.new_const(mean * scale, dtype="float32") var_expr = self.exp_tab.new_const(var * scale, dtype="float32") # caffe bn layer not support scale gamma_expr = self.exp_tab.new_const( np.ones(mean.shape, dtype=np.float32), dtype="float32" ) beta_expr = self.exp_tab.new_const( np.zeros(mean.shape, dtype=np.float32), dtype="float32" ) bn_params = op.batch_norm_param.eps out = _op.nn.batch_norm( in_expr, gamma_expr, beta_expr, mean_expr, var_expr, epsilon=bn_params, scale=False ) return out[0] def convert_scale(self, op): """Convert Scale layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) weight_bias_blobs = self.init_layer_dict[op.name].blobs params = dict() params["bias"] = op.scale_param.bias_term params["axis"] = op.scale_param.axis gamma = np.asarray(weight_bias_blobs[0].data, np.float32) gamma_expr = self.exp_tab.new_const(gamma, dtype="float32") if params["bias"]: beta = np.asarray(weight_bias_blobs[1].data, np.float32) beta_expr = self.exp_tab.new_const(beta, dtype="float32") else: beta_expr = self.exp_tab.new_const( np.zeros(gamma.shape, dtype=np.float32), dtype="float32" ) _, c, _, _ = _infer_shape(in_expr) gamma_expr = _op.reshape(gamma_expr, newshape=(1, c, 1, 1)) beta_expr = _op.reshape(beta_expr, newshape=(1, c, 1, 1)) out = _op.multiply(in_expr, gamma_expr) out = _op.add(out, beta_expr) return out def convert_concat(self, op): """Convert Concat layer""" inputs = op.bottom in_expr = (self.exp_tab.get_expr(inputs[i]) for i in range(len(inputs))) c_params = dict() c_params["axis"] = op.concat_param.axis out = _op.concatenate(in_expr, axis=c_params["axis"]) return out def convert_reshape(self, op): """Convert Reshape layer""" inputs = op.bottom input_name = inputs[0] reshape_param = op.reshape_param dims = list(reshape_param.shape.dim) in_expr = self.exp_tab.get_expr(input_name) input_shape = list(_infer_shape(in_expr)) start_axis = int(reshape_param.axis) if start_axis < 0: start_axis = len(input_shape) + start_axis + 1 num_axes = int(reshape_param.num_axes) end_axis = len(input_shape) if num_axes != -1: end_axis = start_axis + num_axes left_shape = input_shape[:start_axis] if end_axis == len(input_shape): center_shape = input_shape[start_axis:] right_shape = [] else: center_shape = input_shape[start_axis:end_axis] right_shape = input_shape[end_axis:] for idx, dim in enumerate(dims): if dim == 0: dims[idx] = center_shape[idx] tmp = np.random.rand(*center_shape) tmp = np.reshape(tmp, dims) center_shape = list(tmp.shape) newshape = left_shape + center_shape + right_shape out = _op.reshape(in_expr, newshape=newshape) return out def convert_softmax(self, op): """Convert Softmax layer""" inputs = op.bottom assert len(inputs) == 1, "input tensors length should be 1" input_name = inputs[0] in_expr = self.exp_tab.get_expr(input_name) softmax_param = op.softmax_param parmas = {"axis": softmax_param.axis} out = _op.nn.softmax(in_expr, **parmas) return out def convert_conv(self, op): """Convert Convolution layer""" params = self._parse_conv_params(op) weight_bias_blobs = self.init_layer_dict[op.name].blobs conv_params = op.convolution_param inputs = op.bottom # process weight and bias blobs weight, bias = None, None if len(weight_bias_blobs) > 1: weight = weight_bias_blobs[0] bias = weight_bias_blobs[1] else: weight = weight_bias_blobs[0] if weight: kh, kw = params["kernel_size"] weight_shape = [conv_params.num_output, -1, kh, kw] weight_value = np.asarray(weight.data, np.float32) weight_value = np.reshape(weight_value, weight_shape) else: raise Exception("No weight value of layer {} in caffemodel".format(op.name)) weight_expr = self.exp_tab.new_const(weight_value, dtype="float32") in_expr = self.exp_tab.get_expr(inputs[0]) out = _op.nn.conv2d(data=in_expr, weight=weight_expr, **params) if bias: bias_value = np.asarray(bias.data, np.float32) bias_expr = self.exp_tab.new_const(bias_value, dtype="float32") out = _op.nn.bias_add(out, bias_expr) return out def convert_pooling(self, op): """Convert Pooling layer""" inputs = op.bottom input_name = inputs[0] pool_params = op.pooling_param pool_type_dict = ["MAX", "AVE", "STOCHASTIC"] params = dict() # parse pool type: 0: MAX, 1: AVE, 2: STOCHASTIC pool_type = pool_params.pool # parse kernel size if pool_params.kernel_h > 0 or pool_params.kernel_w > 0: params["pool_size"] = (pool_params.kernel_h, pool_params.kernel_w) else: params["pool_size"] = (pool_params.kernel_size, pool_params.kernel_size) # parse padding size if pool_params.pad_h > 0 or pool_params.pad_w > 0: params["padding"] = (pool_params.pad_h, pool_params.pad_w) else: params["padding"] = (pool_params.pad, pool_params.pad) # parse stride size if pool_params.stride_h > 0 or pool_params.stride_w > 0: params["strides"] = (pool_params.stride_h, pool_params.stride_w) else: params["strides"] = (pool_params.stride, pool_params.stride) params["ceil_mode"] = True if hasattr(pool_params, "round_mode"): params["ceil_mode"] = pool_params.round_mode == "CEIL" in_expr = self.exp_tab.get_expr(input_name) if pool_type_dict[pool_type] == "MAX": if pool_params.global_pooling: out = _op.nn.global_max_pool2d(in_expr) else: if len(op.top) == 1: out = _op.nn.max_pool2d(in_expr, **params) elif len(op.top) == 2: out1 = _op.nn.max_pool2d_with_argmax(in_expr, **params) out2 = _op.vision.max_pool2d_location(in_expr, **params) return _expr.Tuple((out1, out2)) elif pool_type_dict[pool_type] == "AVE": # AVE if pool_params.global_pooling: out = _op.nn.global_avg_pool2d(in_expr) else: params["count_include_pad"] = True out = _op.nn.avg_pool2d(in_expr, **params) else: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend Caffe.".format( pool_type_dict[pool_type] + " pool" ) ) return out def convert_lrn(self, op): """Convert LRN layer""" inputs = op.bottom input_name = inputs[0] params = dict() lrn_params = op.lrn_param params["size"] = lrn_params.local_size params["bias"] = lrn_params.k params["alpha"] = lrn_params.alpha params["beta"] = lrn_params.beta in_expr = self.exp_tab.get_expr(input_name) out = _op.nn.lrn(in_expr, **params) return out def convert_innerproduct(self, op): """Convert InnerProduct layer""" inputs = op.bottom weight_bias_blobs = self.init_layer_dict[op.name].blobs dense_params = op.inner_product_param params = dict() params["num_output"] = dense_params.num_output params["bias"] = dense_params.bias_term params["axis"] = dense_params.axis if params["axis"] != 1: raise Exception("Only support 2D InnerProduct") # process weight and bias blobs weight, bias = None, None if params["bias"]: weight = weight_bias_blobs[0] bias = weight_bias_blobs[1] else: weight = weight_bias_blobs[0] if weight: weight_value = np.asarray(weight.data, np.float32) weight_value = np.reshape(weight_value, (params["num_output"], -1)) weight_shape = weight_value.shape else: raise Exception("No weight value of layer {} in caffemodel".format(op.name)) weight_expr = self.exp_tab.new_const(weight_value, dtype="float32") in_expr = self.exp_tab.get_expr(inputs[0]) in_reshape = _op.reshape(data=in_expr, newshape=(-1, weight_shape[-1])) out = _op.nn.dense(data=in_reshape, weight=weight_expr) if bias: bias_value = np.asarray(bias.data, np.float32) bias_expr = self.exp_tab.new_const(bias_value, dtype="float32") out = _op.nn.bias_add(out, bias_expr, axis=params["axis"]) return out def convert_dropout(self, op): """Convert Dropout layer""" inputs = op.bottom input_name = inputs[0] params = dict() dropout_params = op.dropout_param params["rate"] = dropout_params.dropout_ratio in_expr = self.exp_tab.get_expr(input_name) out = _op.nn.dropout(in_expr, **params) return out def convert_relu(self, op): """Convert ReLU layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) negative_slope = op.relu_param.negative_slope if negative_slope: out = _op.nn.leaky_relu(in_expr, negative_slope) return out out = _op.nn.relu(in_expr) return out def convert_prelu(self, op): """Convert PReLU layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) alpha = self.init_layer_dict[op.name].blobs[0].data alpha = np.asarray(alpha, np.float32) alpha = self.exp_tab.new_const(alpha, dtype="float32") axis = 1 out = _op.nn.prelu(in_expr, alpha, axis=axis) return out def convert_deconv(self, op): """Convert Deconvolution layer""" params = self._parse_conv_params(op) weight_bias_blobs = self.init_layer_dict[op.name].blobs conv_params = op.convolution_param inputs = op.bottom # process weight and bias blobs weight, bias = None, None if len(weight_bias_blobs) > 1: weight = weight_bias_blobs[0] bias = weight_bias_blobs[1] else: weight = weight_bias_blobs[0] if weight: kh, kw = params["kernel_size"] weight_shape = [-1, conv_params.num_output, kh, kw] if not weight.data: if conv_params.weight_filler: _filler = conv_params.weight_filler.value weight_value = np.full(weight.shape.dim, _filler, np.float32) else: raise tvm.error.OpAttributeInvalid("At least weight_filler must be given") else: weight_value = np.asarray(weight.data, np.float32) weight_value = np.reshape(weight_value, weight_shape) # weight shape is in relay's IOHW format rn, we need it to be OIHW weight_value = np.transpose(weight_value, [1, 0, 2, 3]) else: raise tvm.error.OpAttributeRequired( "No weight value of layer {} in caffemodel".format(op.name) ) weight_expr = self.exp_tab.new_const(weight_value, dtype="float32") in_expr = self.exp_tab.get_expr(inputs[0]) groups = params["groups"] channels = params["channels"] if bias: bias_value = np.asarray(bias.data, np.float32) bias_expr = self.exp_tab.new_const(bias_value, dtype="float32") if groups > channels: raise tvm.error.OpAttributeInvalid( "Groups cannot be larger than the number of input channels" ) if groups == channels: inputs_expr = _op.split(in_expr, groups, axis=1) # changing split axis to 0, according to PR #9336 weights_expr = _op.split(weight_expr, groups, axis=0) # Preventing to create Concat layer with too many tensors(> 16) q = groups >> 4 r = groups % 16 params["groups"] = 1 params["channels"] = 1 out = [] for lc in range(q): _outputs = [] _inputs = [inputs_expr[i] for i in range(lc << 4, (lc << 4) + 16)] _weights = [weights_expr[i] for i in range(lc << 4, (lc << 4) + 16)] for (i, w) in zip(_inputs, _weights): _out = _op.nn.conv2d_transpose(data=i, weight=w, **params) if bias: _out = _op.nn.bias_add(_out, bias_expr) _outputs.append(_out) out.append(_op.concatenate(_outputs, axis=1)) if r != 0: _outputs = [] _inputs = [inputs_expr[i] for i in range(groups - r, groups)] _weights = [weights_expr[i] for i in range(groups - r, groups)] for (i, w) in zip(_inputs, _weights): _out = _op.nn.conv2d_transpose(data=i, weight=w, **params) if bias: _out = _op.nn.bias_add(_out, bias_expr) _outputs.append(_out) out.append(_op.concatenate(_outputs, axis=1)) out = _op.concatenate(out, axis=1) elif groups == 1: out = _op.nn.conv2d_transpose(data=in_expr, weight=weight_expr, **params) if bias: out = _op.nn.bias_add(out, bias_expr) else: raise tvm.error.OpAttributeInvalid("Unable to handle.") return out def convert_slice(self, op): """Convert Slice layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) output_num = len(op.top) slice_params = op.slice_param axis = int(slice_params.axis) indices_or_sections = list([int(s) for s in slice_params.slice_point]) if len(indices_or_sections) == 0: indices_or_sections = output_num else: indices_or_sections = sorted(indices_or_sections) out = _op.split(in_expr, indices_or_sections=indices_or_sections, axis=axis) return out def convert_sigmoid(self, op): """Convert Sigmoid layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) out = _op.sigmoid(in_expr) return out def convert_tanh(self, op): """Convert TanH layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) out = _op.tanh(in_expr) return out def convert_reduction(self, op): """Convert Reduction layer""" reduction_dic = ["NOP", "SUM", "ASUM", "SUMSQ", "MEAN"] inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) method = op.reduction_param.operation axis = op.reduction_param.axis coeff = op.reduction_param.coeff coeff_expr = self.exp_tab.new_const(np.asarray(coeff, np.float32)) num_axes = len(_infer_shape(in_expr)) # Currently, only reduction along ALL "tail" axes is supported in Caffe; # reduction of axis M through N, where N < num_axes - 1, is unsupported. if 0 < axis < (num_axes - 1): for _axis in reversed(range(axis + 1, num_axes)): in_expr = _op.sum(in_expr, axis=_axis) in_expr = _op.squeeze(in_expr) if reduction_dic[method] == "SUM": out = _op.sum(in_expr, axis=axis) elif reduction_dic[method] == "MEAN": out = _op.mean(in_expr, axis=axis) elif reduction_dic[method] == "ASUM": in_expr = _op.abs(in_expr) out = _op.sum(in_expr, axis=axis) elif reduction_dic[method] == "SUMSQ": in_expr = _op.multiply(in_expr, in_expr) out = _op.sum(in_expr, axis=axis) else: raise tvm.error.OpAttributeInvalid( "reduction method:{} is invalid in Caffe frontend.".format(method) ) if float(coeff) != 1.0: out = _op.multiply(out, coeff_expr) return out def convert_crop(self, op): """Convert Crop layer""" inputs = op.bottom assert len(inputs) == 2, "Need two inputs of Crop layer" in_expr_a = self.exp_tab.get_expr(inputs[0]) in_expr_b = self.exp_tab.get_expr(inputs[1]) # parse crop params crop_params = op.crop_param axis = int(getattr(crop_params, "axis", 2)) offset = list(getattr(crop_params, "offset", 0)) # expand offset to (offset1, offset2, ...) in_a_shape = _infer_shape(in_expr_a) num_to_crop = len(in_a_shape) - axis if not offset: offset = [0] * num_to_crop if len(offset) == 1: offset = offset * num_to_crop elif len(offset) != num_to_crop: raise Exception("No matching the number between axis and offset!") slice_end = in_a_shape slice_start = [0] * len(in_a_shape) for i in range(num_to_crop): slice_start[i + axis] = offset[i] to_crop_axis = list(range(len(in_a_shape))) to_crop_axis = to_crop_axis[axis:] # secondly, crop in_expr_a by in_expr_b in_expr_a_stride = _op.strided_slice(in_expr_a, slice_start, slice_end) out = _op.slice_like(in_expr_a_stride, in_expr_b, axes=to_crop_axis) return out def convert_permute(self, op): """Convert Permute layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) # parse permute params permute_param = op.permute_param axes = list(getattr(permute_param, "order", 0)) out = _op.transpose(in_expr, axes) return out def convert_embed(self, op): """Convert Embed layer""" inputs = op.bottom embed_param = op.embed_param num_output = embed_param.num_output input_dim = embed_param.input_dim bias_term = embed_param.bias_term weight_bias_blobs = self.init_layer_dict[op.name].blobs weight, bias = None, None if bias_term: weight = weight_bias_blobs[0] bias = weight_bias_blobs[1] assert weight and bias else: weight = weight_bias_blobs[0] assert weight weight_value = np.asarray(weight.data, np.float32) weight_value = np.reshape(weight_value, [input_dim, num_output]) weight_expr = self.exp_tab.new_const(weight_value, dtype="float32") in_expr = self.exp_tab.get_expr(inputs[0]) input_shape = _infer_shape(in_expr) input_count = 1 for dim in input_shape: input_count *= dim index = _op.cast(in_expr, "int32") out = _op.take(weight_expr, index, axis=0) if bias_term: bias_value = np.asarray(bias.data, np.float32) bias_expr = self.exp_tab.new_const(bias_value, dtype="float32") out = _op.reshape(out, [input_count, num_output]) out = _op.add(out, bias_expr) out_shape = list(input_shape) out_shape.append(num_output) out = _op.reshape(out, out_shape) return out def convert_power(self, op): """Convert Power layer""" inputs = op.bottom in_expr = self.exp_tab.get_expr(inputs[0]) power = _expr.const(op.power_param.power) scale = _expr.const(op.power_param.scale) shift = _expr.const(op.power_param.shift) out = _op.multiply(in_expr, scale) out = _op.add(out, shift) out = _op.power(out, power) return out def check_unsupported_ops(self): """Check unsupported Caffe ops in our converter.""" unsupported_ops_set = set() include_layer = dict() for pl in self.predict_layer: if pl.type not in include_layer: include_layer[pl.type] = 1 else: include_layer[pl.type] = include_layer[pl.type] + 1 for pl in self.predict_layer: op_name = pl.type if op_name not in self.convert_map: unsupported_ops_set.add(op_name) if unsupported_ops_set: msg = "The following operators are not supported in frontend " "Caffe: {}" ops = str(list(unsupported_ops_set)).strip("[,]") raise tvm.error.OpNotImplemented(msg.format(ops)) def fuse_op(self, layers): """Fusing the BatchNorm and Scale layer""" bn, scale = layers["bn"], layers["scale"] # bn params bn_weight_bias_blobs = self.init_layer_dict[bn.name].blobs bn_scale = np.asarray(bn_weight_bias_blobs[2].data, np.float32) if bn_scale: bn_scale = 1 / bn_scale bn_mean = np.asarray(bn_weight_bias_blobs[0].data, np.float32) * bn_scale bn_var = np.asarray(bn_weight_bias_blobs[1].data, np.float32) * bn_scale bn_eps = bn.batch_norm_param.eps # scale params scale_weight_bias_blobs = self.init_layer_dict[scale.name].blobs scale_gamma = np.asarray(scale_weight_bias_blobs[0].data, np.float32) scale_bias = scale.scale_param.bias_term if scale_bias: scale_beta = np.asarray(scale_weight_bias_blobs[1].data, np.float32) else: scale_beta = np.zeros(scale_gamma.shape, dtype=np.float32) # new params self.new_bn[bn.name] = [bn_mean, bn_var, bn_eps, scale_gamma, scale_beta] return bn def op_fuse(self): """fuse bn and scale""" new_layers = [] temp_layers = {} changed_layers = {} for index, pl in enumerate(self.predict_layer): op_type = pl.type if op_type == "Input": new_layers.append(pl) continue elif op_type == "BatchNorm": if (index != len(self.predict_layer) - 1) and ( self.predict_layer[index + 1].type == "Scale" ): temp_layers["bn"] = pl continue else: new_layers.append(pl) temp_layers.clear() elif op_type == "Scale": if self.predict_layer[index - 1].type == "BatchNorm": temp_layers["scale"] = pl else: new_layers.append(pl) temp_layers.clear() else: temp_layers.clear() if len(temp_layers) == 2: layer = self.fuse_op(temp_layers) new_layers.append(layer) changed_layers[temp_layers["scale"].name] = temp_layers["bn"].name for idx, plt in enumerate(pl.bottom): if plt in changed_layers: pl.bottom[idx] = changed_layers[plt] if op_type not in ["BatchNorm", "Scale"]: new_layers.append(pl) self.predict_layer = new_layers self.changed_layers = changed_layers def convert_op_to_relay(self): """Convert Caffe ops to relay ops""" for pl in self.predict_layer: op_type = pl.type if op_type == "Input": continue output_tensors = pl.top ret = self.convert_map[op_type](pl) if len(output_tensors) == 1: self.exp_tab.set_expr(output_tensors[0], ret) else: for idx, output_tensor in enumerate(output_tensors): self.exp_tab.set_expr(output_tensor, ret[idx]) def _rebuild_layers(predict_layer): """Rebuild caffe layer. If the caffe net include in-place layers, repalce its top with its name and update the bottom of other layer that is related to it. """ # dict of input name that will be changed to new name changed_top_dict = dict() for pl in predict_layer: if pl.type == "Input": continue # if current layer has single input and output and input equals to output # it means that the layer does "in-place" if len(pl.top) == 1 and len(pl.bottom) == 1: if pl.top[0] == pl.bottom[0]: # change current layer's input firstly if pl.bottom[0] in changed_top_dict: pl.bottom[0] = changed_top_dict[pl.bottom[0]] # update "change" dict changed_top_dict[pl.top[0]] = pl.name # change current layer's output to its name pl.top[0] = pl.name else: if pl.bottom[0] in changed_top_dict: pl.bottom[0] = changed_top_dict[pl.bottom[0]] # if the layer does not else: for index, plt in enumerate(pl.bottom): if plt in changed_top_dict: pl.bottom[index] = changed_top_dict[plt] def _get_inputs_outputs(predict_layer): """Obtain Caffe model's inputs and outpus""" # model inputs / outputs model_inputs = list() model_outputs = list() # The bottoms of every layer can not be as outputs not_outputs = set() for pl in predict_layer: if pl.type == "Input": assert len(pl.top) == 1, "The number of Input layer's output is more than 1." model_inputs.append(pl.top[0]) for i in pl.bottom: not_outputs.add(i) for pl in predict_layer: if len(pl.bottom) > 0: for t in pl.top: if t not in not_outputs: model_outputs.append(t) return model_inputs, model_outputs def from_caffe(init_net, predict_net, shape_dict, dtype_dict): """Convert from caffe model into compatible relay Function. Parameters ---------- init_net : caffe_pb2.NetParameter caffemodel predict_net : caffe_pb2.NetParameter caffe prototxt shape_dict : dict of str to int list/tuple Input shapes of the model. dtype_dict : dict of str to str Input types of the model. Returns ------- mod : tvm.IRModule The relay module for compilation. params : dict of str to tvm.NDArray The parameter dict to be used by relay """ old_caffe = False if len(predict_net.input) != 0: # old caffe version old_caffe = True model_inputs = list(predict_net.input) predict_layer = predict_net.layer # replace layer's top with its name and update other layers'bottoms _rebuild_layers(predict_layer) # obtain inputs and outputs of Net if old_caffe: _, model_outputs = _get_inputs_outputs(predict_layer) else: model_inputs, model_outputs = _get_inputs_outputs(predict_layer) exp_tab = ExprTable() for in_name in model_inputs: shape = shape_dict[in_name] if in_name in shape_dict else None dtype = dtype_dict[in_name] if in_name in dtype_dict else "float32" exp_tab.set_expr(in_name, _expr.var(in_name, shape=shape, dtype=dtype)) if list(init_net.layer): init_layer = init_net.layer else: init_layer = init_net.layers init_layer_dict = {il.name: il for il in init_layer} # op code in model op_converter = OperatorConverter(init_layer_dict, predict_layer, exp_tab) op_converter.check_unsupported_ops() op_converter.op_fuse() op_converter.convert_op_to_relay() # params and outputs params = {k: _nd.array(np.array(v)) for k, v in exp_tab.params.items()} outputs = list() for n in model_outputs: if n in op_converter.changed_layers: n = op_converter.changed_layers[n] outputs.append(exp_tab.get_expr(n)) outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) func = _function.Function(analysis.free_vars(outputs), outputs) mod = IRModule.from_expr(func) return mod, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/caffe2.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, line-too-long, unused-argument """Caffe2 frontend""" import tvm from tvm.ir import IRModule from .. import analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from ... import nd as _nd from .common import AttrCvt, Renamer from .common import get_relay_op, new_var, infer_channels __all__ = ["from_caffe2"] def dimension_picker(prefix, surfix=""): def _impl(attr): kernel = attr["kernel_shape"] if len(kernel) == 2: return prefix + "2d" + surfix raise tvm.error.OpAttributeUnImplemented( "Non-2D kernels are not supported for operator {}2d".format(prefix) ) return _impl def revert_caffe2_pad(pads): """Caffe2 requires two times the normal padding.""" if len(pads) == 4: pads = pads[:2] elif len(pads) == 2: pass else: raise tvm.error.OpAttributeInvalid("Number of pads must equal 2 or 4.") return pads def dimension_constraint(): def _dim_check(args): if len(args["kernel_shape"]) == 2: return True return False return _dim_check, "Only 2d kernel supported." def _clean_up_pool_args(args): """A helper function to clean up common arguments in conv and pooling ops.""" assert isinstance(args, dict) if "stride_h" in args and "stride_w" in args: assert "stride" not in args and "strides" not in args args["strides"] = [args["stride_h"], args["stride_w"]] args.pop("stride_h") args.pop("stride_w") elif "stride" in args: args["strides"] = [args["stride"], args["stride"]] args.pop("stride") # rename 'kernel', 'kernels', to 'kernel_shape' if "kernel_h" in args and "kernel_w" in args: assert "kernel" not in args and "kernels" not in args args["kernel_shape"] = [args["kernel_h"], args["kernel_w"]] args.pop("kernel_h") args.pop("kernel_w") elif "kernel" in args: args["kernel_shape"] = [args["kernel"], args["kernel"]] args.pop("kernel") elif "kernels" in args: args["kernel_shape"] = args["kernels"] args.pop("kernels") if "pad_t" in args and "pad_l" in args and "pad_b" in args and "pad_r" in args: assert "pad" not in args and "pads" not in args args["pads"] = [args["pad_t"], args["pad_l"], args["pad_b"], args["pad_r"]] for pad in ["pad_t", "pad_l", "pad_b", "pad_r"]: args.pop(pad) elif "pad" in args: args["pads"] = [args["pad"], args["pad"]] args.pop("pad") if "dilation_h" in args and "dilation_w" in args: assert "dilation" not in args and "dilations" not in args args["dilations"] = [args["dilation_h"], args["dilation_w"]] args.pop("dilation_h") args.pop("dilation_w") elif "dilation" in args: args["dilations"] = [args["dilation"], args["dilation"]] args.pop("dilation") return args class Caffe2OpConverter(object): """A helper class for holding Caffe2 op converters.""" @classmethod def get_converter(cls): """Get converter. :return: converter, which should be `_impl`. """ if hasattr(cls, "_impl"): return getattr(cls, "_impl") raise tvm.error.OpNotImplemented( "Operator {} is not supported in frontend Caffe2.".format(cls.__name__) ) _caffe2_internal_args = [ # nnpack args "algo", "convolution_transform_strategy", "float16_compute", "shared_buffer", # training args "init_params", "cudnn_exhaustive_search", "exhaustive_search", # training args "adj", "hwgq", # args that we don't care "legacy_pad", ] class Elemwise(Caffe2OpConverter): """A helper class for elemwise op converters.""" name = "" @classmethod def _impl(cls, inputs, args, params): assert len(inputs) == 2, "Math op take 2 inputs, {} given".format(len(inputs)) op_name = cls.name conv_ops = ["conv2d", "conv2d_transpose"] if args.get("broadcast", 0) and any(x in str(inputs[0]) for x in conv_ops): # TODO(zhreshold): remove hard coded infershape axis = int(args.get("axis", 0)) inputs[1] = _op.expand_dims(inputs[1], axis=axis, num_newaxis=2) return get_relay_op(op_name)(*inputs) class Add(Elemwise): """Operator converter for Add.""" name = "add" class Mul(Elemwise): """Operator converter for Mul.""" name = "multiply" class Pool(Caffe2OpConverter): """A helper class for pool op converters.""" name = "" @classmethod def _impl(cls, inputs, args, params): _clean_up_pool_args(args) if "global_pooling" in args and args["global_pooling"] == 1: op_name = dimension_picker("global_" + cls.name) return get_relay_op(op_name(args))(*inputs) return AttrCvt( op_name=dimension_picker(cls.name), transforms={ "kernel_shape": "pool_size", "pads": ("padding", (0, 0), revert_caffe2_pad), "strides": "strides", }, ignores=["dilations", "order", "legacy_pad", "global_pooling"], extras={"ceil_mode": False}, custom_check=dimension_constraint(), )(inputs, args, params) class AveragePool(Pool): name = "avg_pool" class MaxPool(Pool): name = "max_pool" class Conv(Caffe2OpConverter): """Operator converter for Conv.""" @classmethod def _impl(cls, inputs, args, params): # get number of channels channels = infer_channels(inputs[1]) args["channels"] = channels _clean_up_pool_args(args) out = AttrCvt( op_name=dimension_picker("conv"), transforms={ "group": ("groups", 1), "kernel_shape": "kernel_size", "pads": ("padding", (0, 0), revert_caffe2_pad), "strides": "strides", "dilations": ("dilation", (1, 1)), "order": ( "data_layout", ("NCHW"), lambda x: x if isinstance(x, str) else x.decode("UTF-8"), ), }, excludes=[], ignores=_caffe2_internal_args, custom_check=dimension_constraint(), )(inputs[:2], args, params) use_bias = len(inputs) == 3 if use_bias: out = _op.nn.bias_add(out, inputs[2]) return out class ConvTranspose(Caffe2OpConverter): """Operator converter for ConvTranspose.""" @classmethod def _impl(cls, inputs, args, params): # get number of channels channels = infer_channels(inputs[1], True) args["channels"] = channels _clean_up_pool_args(args) out = AttrCvt( op_name=dimension_picker("conv", "_transpose"), transforms={ "kernel_shape": "kernel_size", "pads": ("padding", (0, 0), revert_caffe2_pad), "dilations": ("dilation", (1, 1)), "order": ( "data_layout", ("NCHW"), lambda x: x if isinstance(x, str) else x.decode("UTF-8"), ), }, excludes=[], ignores=_caffe2_internal_args, custom_check=dimension_constraint(), )(inputs[:2], args, params) use_bias = len(inputs) == 3 if use_bias: out = _op.nn.bias_add(out, inputs[2]) return out class Concat(Caffe2OpConverter): """Operator converter for Concat.""" @classmethod def _impl(cls, inputs, args, params): def _get_axis_from_order_str(order): order = order if isinstance(order, str) else order.decode("UTF-8") if order == "NCHW": return 1 if order == "NHWC": return 3 raise tvm.error.OpAttributeUnImplemented( "Order {} is not supported in operator Concat.".format(order) ) return AttrCvt( op_name="concatenate", transforms={ "order": ("axis", (1), _get_axis_from_order_str), }, excludes=["add_axis"], )((inputs,), args, params) class NormalizePlanarYUV(Caffe2OpConverter): """Operator converter for NormalizePlanarYUV. caffe2 definition: https://github.com/pytorch/pytorch/blob/master/caffe2/operators/norm_planar_yuv_op.cc """ @classmethod def _impl(cls, inputs, args, params): assert len(inputs) == 3 mean = _op.expand_dims(inputs[1], axis=2, num_newaxis=2) std = _op.expand_dims(inputs[2], axis=2, num_newaxis=2) return _op.divide(_op.subtract(inputs[0], mean), std) class ResizeNearest(Caffe2OpConverter): """Operator converter for Upsample (nearest mode).""" @classmethod def _impl(cls, inputs, args, params): width_scale = args["width_scale"] if "width_scale" in args else 1 height_scale = args["height_scale"] if "height_scale" in args else 1 assert width_scale == height_scale return _op.nn.upsampling( inputs[0], scale_h=int(width_scale), scale_w=int(width_scale), method="NEAREST_NEIGHBOR" ) class Sum(Caffe2OpConverter): """Operator converter for Sum.""" @classmethod def _impl(cls, inputs, args, params): # Sum Operator for in_index in range(len(inputs) - 1): inputs[in_index + 1] = _op.add(inputs[in_index], inputs[in_index + 1]) return inputs[len(inputs) - 1] class Softmax(Caffe2OpConverter): """Operator converter for Softmax.""" @classmethod def _impl(cls, inputs, args, params): # set default value when axis is not set in the model if "axis" not in args: args["axis"] = 1 return AttrCvt("softmax", transforms={"axis": ("axis", args["axis"])})(inputs, args, params) class FC(Caffe2OpConverter): """Operator converter for FC.""" @classmethod def _impl(cls, inputs, args, params): inputs[0] = _op.nn.batch_flatten(inputs[0]) units = infer_channels(inputs[1]) res = _op.nn.dense(inputs[0], inputs[1], units=units) use_bias = len(inputs) == 3 if use_bias: res = _op.nn.bias_add(res, inputs[2]) return res class SpatialBN(Caffe2OpConverter): """Operator converter for SpatialBN.""" @classmethod def _impl(cls, inputs, args, params): return AttrCvt( op_name="batch_norm", disables=["momentum"], ignores=["order", "spatial", "is_test", "consumed_inputs", "num_batches"], )(inputs, args, params) # compatible operators that do NOT require any conversion. _identity_list = [] # _convert_map defines maps of name to converter functor(callable) # for 1 to 1 mapping, use Renamer if nothing but name is different # use AttrCvt if attributes need to be converted # for 1 to N mapping(composed), use custom callable functions # for N to 1 mapping, currently not supported(?) # Minimal set of ops for squeezenet and resnet50 def _get_convert_map(): return { # caffe2 common operators "Add": Add.get_converter(), "Sum": Sum.get_converter(), "Mul": Mul.get_converter(), "Softmax": Softmax.get_converter(), # nn "AveragePool": AveragePool.get_converter(), "MaxPool": MaxPool.get_converter(), "Conv": Conv.get_converter(), "ConvTranspose": ConvTranspose.get_converter(), "Concat": Concat.get_converter(), "FC": FC.get_converter(), "SpatialBN": SpatialBN.get_converter(), "ResizeNearest": ResizeNearest.get_converter(), "Relu": AttrCvt("relu", {}, ignores=["order"]), "Sigmoid": Renamer("sigmoid"), "Dropout": AttrCvt("dropout", {"ratio": "rate"}, ignores=["is_test"]), # c2 image preprocessing ops "NormalizePlanarYUV": NormalizePlanarYUV.get_converter(), } class Caffe2NetDef(object): """A helper class for handling Relay expression copying from pb2.GraphProto. Definition: https://github.com/pytorch/pytorch/blob/master/caffe2/proto/caffe2.proto """ def __init__(self, shape, dtype): self._nodes = {} self._params = {} self._visited_nodes = set() self._ops = {} self._shape = shape self._dtype = dtype self._mod = IRModule({}) def from_caffe2(self, init_net, predict_net): """Construct Relay expression from caffe2 graph. Parameters ---------- init_net : protobuf object predict_net : protobuf object Returns ------- mod : tvm.IRModule The module that optimizations will be performed on. params : dict A dict of name: tvm.nd.array pairs, used as pretrained weights """ # pylint: disable=import-outside-toplevel from caffe2.python import workspace workspace.RunNetOnce(init_net) # Input input_name = predict_net.op[0].input[0] # Params self._params = {} used_blobs = set() for c2_op in predict_net.op: for i in c2_op.input: used_blobs.add(i) for blob in workspace.Blobs(): if blob in used_blobs and blob != input_name: self._params[blob] = _nd.array(workspace.FetchBlob(blob)) # Variables self._nodes = {} for blob in predict_net.external_input: if blob in self._params: self._nodes[blob] = new_var( blob, shape=self._params[blob].shape, dtype=self._params[blob].dtype ) else: shape = self._shape[blob] if blob in self._shape else () if isinstance(self._dtype, dict) and blob in self._dtype: dtype = str(self._dtype[blob]) elif isinstance(self._dtype, str): dtype = self._dtype else: dtype = "float32" self._nodes[blob] = new_var(blob, shape=shape, dtype=dtype) # Ops for c2_op in predict_net.op: for blob in c2_op.output: self._ops[blob] = c2_op for c2_op in predict_net.op: self._process_op(c2_op) # Outputs out = [] for blob in predict_net.external_output: out.append(self._nodes[blob]) if len(out) > 1: outputs = _expr.Tuple(out) else: outputs = out[0] func = _function.Function(analysis.free_vars(outputs), outputs) self._mod["main"] = func return self._mod, self._params def _get_node(self, blob): """Get the Symbol of blob and detect cyclic dependency in the graph.""" if blob in self._nodes: return self._nodes[blob] assert blob not in self._visited_nodes, "Cyclic dependency in the graph (in {})".format( blob ) self._visited_nodes.add(blob) self._process_op(self._ops[blob]) return self._nodes[blob] def _process_op(self, c2_op): op_type = c2_op.type args = self._parse_arg(c2_op.arg) inputs = [self._get_node(i) for i in c2_op.input] tvm_op = self._convert_operator(op_type, inputs, args) if not isinstance(tvm_op, _expr.TupleWrapper): self._nodes[c2_op.output[0]] = tvm_op else: for k, i in zip(list(c2_op.output), range(len(tvm_op))): self._nodes[k] = tvm_op[i] def _parse_arg(self, arg): """Convert a list of Argument to a dict, with names as keys.""" args = {} for a in arg: for f in ["f", "i", "s"]: if a.HasField(f): args[a.name] = getattr(a, f) for f in ["floats", "ints", "strings"]: if list(getattr(a, f)): assert a.name not in args, "Only one type of attr is allowed" args[a.name] = tuple(getattr(a, f)) for f in ["n"]: if a.HasField(f): raise NotImplementedError("Field {} is not supported in relay.".format(f)) for f in ["nets"]: if list(getattr(a, f)): raise NotImplementedError("Field {} is not supported in relay.".format(f)) if a.name not in args: raise ValueError("Cannot parse attribute: \n{}\n.".format(a)) return args def _convert_operator(self, op_type, inputs, args, identity_list=None, convert_map=None): """Convert from Caffe2 operator to Relay operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- op_type : str Operator name, such as Convolution, FullyConnected inputs : list of tvm.relay.function.Function List of input inputs. args : dict Dict of operator attributes identity_list : list List of operators that don't require conversion convert_map : dict Dict of name : callable, where name is the op's name that require conversion to relay, callable are functions which take args and return (new_op_type, new_args) Returns ------- func : tvm.relay.function.Function Converted relay function """ identity_list = identity_list if identity_list else _identity_list convert_map = convert_map if convert_map else _get_convert_map() if op_type in identity_list: func = get_relay_op(op_type)(*inputs, **args) elif op_type in convert_map: # Add a sanitizing step to convert all byte strings in args to strings func = convert_map[op_type](inputs, args, self._params) else: raise tvm.error.OpNotImplemented( "Operator {} is not supported in frontend Caffe2.".format(op_type) ) return func def from_caffe2(init_net, predict_net, shape=None, dtype="float32"): """Load caffe2 graph which contains init_net and predict_net into Relay Function. Parameters ---------- init_net : protobuf object Caffe2 NetDef containing the weights predict_net : protobuf object Caffe2 NetDef containing the graph shape : dict of str to tuple The input shape to the graph dtype : str or dict of str to str The input types to the graph Returns ------- mod : tvm.IRModule The module that optimizations will be performed on. params : dict of str to tvm.nd.NDArray Dict of converted parameters stored in tvm.nd.NDArray format """ caffe2 = Caffe2NetDef(shape, dtype) return caffe2.from_caffe2(init_net, predict_net)
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/change_datatype.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """Change Datatype Pass""" from ..function import Function from ..expr_functor import ExprMutator from ..transform.transform import function_pass from ..expr import var, bind @function_pass(opt_level=0) class ChangeDatatype(ExprMutator): """Mutator for changing the datatype of Relay programs. This pass should be useful for users of the Bring Your Own Datatypes framework. TODO(@gussmith23 @hypercubestart) Add link to documentation when it exists Example: .. code-block:: python from tvm.relay.testing.inception_v3 import get_workload mod, params = get_workload() def change_dtype(mod, params, src, dst): mod = ChangeDatatype(src, dst)(mod) params = dict((p, tvm.nd.array(params[p].numpy().astype(dst))) for p in params) return mod, params mod, params = change_dtype(mod, params, "float32", "custom[posites2]32") Parameters ---------- src : String The source datatype name, e.g. "float" or "posites2" (but not "float32" or "custom[posites2]32"). dst : String The destination datatype name, in the same format. Returns ------- mod : tvm.IRModule Module where all nodes of dtype `src` have been changed to have dtype `dst`. """ def __init__(self, src, dst): self.src = src self.dst = dst super().__init__() def transform_function(self, func, mod, ctx): return self.visit(func) def visit_constant(self, const): if const.data.dtype == self.src: return const.astype(self.dst) return const def visit_function(self, fn): new_params = [] binds = {} for param in fn.params: # Get the parameter's type annotation. var_type = param.type_annotation # See if we want to replace dtype. if var_type.dtype == self.src: dtype = self.dst else: dtype = var_type.dtype # Generate new variable. new_param = var(param.name_hint, shape=var_type.shape, dtype=dtype) new_params.append(new_param) binds[param] = new_param new_body = self.visit(fn.body) # Rewrite the body to use new parameters. new_body = bind(new_body, binds) # Construct the updated function and return. return Function( new_params, new_body, # You could change the return type, if you use None it will re-infer. None, type_params=fn.type_params, attrs=fn.attrs, )
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/common.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=broad-except """Common utilities""" from __future__ import absolute_import as _abs import logging import numpy as np import tvm from tvm.ir import IRModule from tvm.topi.utils import get_const_tuple from .. import expr as _expr from .. import function as _function from .. import transform as _transform from .. import op as _op from .. import ty as _ty from .. import analysis class DuplicateFilter: """A log filter that only prints the same message once.""" def __init__(self): self.msgs = set() def filter(self, record): self.msgs.add(record.msg) return record.msg not in self.msgs # pylint: disable=invalid-name logger = logging.getLogger("Frontend") logger.addFilter(DuplicateFilter()) # Uncomment below line to print all debug msgs # logger.setLevel(logging.DEBUG) class RequiredAttr(object): """Dummpy class to represent required attr""" class StrAttrsDict(object): """Helper class to parse attrs stored as Dict[str, str]. Parameters ---------- attrs : Dict[str, str] The attributes to be used. """ def __init__(self, attrs): self.attrs = attrs def has_attr(self, key): """Checks if a attribute is present in the map. Parameters ---------- key : str The attribute key Returns ------- bool : True if the key is present in the attributes else false. """ return key in self.attrs def get_float(self, key, default=RequiredAttr()): """Get float attribute Parameters ---------- key : str The attribute key default : float The default value. Returns ------- value : The result """ if key in self.attrs: return float(self.attrs[key]) if isinstance(default, RequiredAttr): raise AttributeError("Required attribute {} not found.".format(key)) return default def get_int(self, key, default=RequiredAttr()): """Get int attribute Parameters ---------- key : str The attribute key default : float The default value. Returns ------- value : The result """ if key in self.attrs: val = self.attrs[key] if val == "None": return None return int(val) if isinstance(default, RequiredAttr): raise AttributeError("Required attribute {} not found.".format(key)) return default def get_str(self, key, default=RequiredAttr()): """Get str attribute Parameters ---------- key : str The attribute key default : float The default value. Returns ------- value : The result """ if key in self.attrs: return self.attrs[key] if isinstance(default, RequiredAttr): raise AttributeError("Required attribute {} not found.".format(key)) return default def get_int_tuple(self, key, default=RequiredAttr()): """Get int tuple attribute Parameters ---------- key : str The attribute key default : float The default value. Returns ------- value : The result """ if key in self.attrs: tshape = self.attrs[key] return tuple( int(x) if x.strip("- ").isdigit() else None for x in tshape.strip("()[]").split(",") if x ) if isinstance(default, RequiredAttr): raise AttributeError("Required attribute {} not found.".format(key)) return default def get_float_tuple(self, key, default=RequiredAttr()): """Get float tuple attribute Parameters ---------- key : str The attribute key default : float The default value. Returns ------- value : The result """ if key in self.attrs: tshape = self.attrs[key] return tuple(float(x.strip()) for x in tshape.strip("()[]").split(",")) if isinstance(default, RequiredAttr): raise AttributeError("Required attribute {} not found.".format(key)) return default def get_tuple_tuple_int(self, key, default=RequiredAttr()): """Get int list attribute Parameters ---------- key : str The attribute key default : float The default value. Returns ------- value : The result """ if key in self.attrs: value = self.attrs[key] seq = [] for tup in value.strip("()").split("),"): tup = tup.strip("[]()") els = [int(x.strip("( ")) for x in tup.split(",")] seq.append(tuple(els)) return tuple(seq) if isinstance(default, RequiredAttr): raise AttributeError("Required attribute {} not found.".format(key)) return default def get_int_list(self, key, default=RequiredAttr()): """Get int list attribute Parameters ---------- key : str The attribute key default : float The default value. Returns ------- value : The result """ if key in self.attrs: tshape = self.attrs[key] return tuple(int(x.strip()) for x in tshape.strip("[]()").split(",")) if isinstance(default, RequiredAttr): raise AttributeError("Required attribute {} not found.".format(key)) return default def get_bool(self, key, default=RequiredAttr()): """Get bool tuple attribute Parameters ---------- key : str The attribute key default : float The default value. Returns ------- value : The result """ if key in self.attrs: val = self.attrs[key] return val.strip().lower() in ["true", "1", "t", "y", "yes"] if isinstance(default, RequiredAttr): raise AttributeError("Required attribute {} not found.".format(key)) return default def get_relay_op(op_name): """Get the callable function from Relay based on operator name. Parameters ---------- op_name : str The Relay operator name. """ if "." in op_name: # explicit hierarchical modules op = _op try: for opn in op_name.split("."): op = getattr(op, opn) except AttributeError: op = None else: # try search op in various modules for candidate in (_op, _op.nn, _op.image, _op.vision, _op.contrib): op = getattr(candidate, op_name, None) if op is not None: break if not op: raise tvm.error.OpNotImplemented("Unable to map op_name {} to relay".format(op_name)) return op class ExprTable(object): """Table storing Relay expressions by names.""" def __init__(self): self.exprs = {} self.params = {} self.const_ctr = 1 self.in_padding = False def new_const(self, value, shape=None, dtype="float32"): name = "_param_%d" % (self.const_ctr) if hasattr(value, "shape"): shape = value.shape self.const_ctr += 1 self.params[name] = value self.exprs[name] = _expr.var(name_hint=name, shape=shape, dtype=dtype) return self.exprs[name] def get_expr(self, name): return self.exprs[name] def set_expr(self, name, expr, force_override=False): assert isinstance(expr, _expr.Expr) # if name exists, we should override the value # otherwise, we can not get like x = func(x) work. # One example is CoreML preprocess, which will override # the same name of input. # However, according to git log, Find keras frontend depends # on this property, so we add one force_override to control it. if name not in self.exprs or force_override: self.exprs[name] = expr def has_expr(self, name): return name in self.exprs def set_padding(self, paddings): self.paddings = paddings self.in_padding = True def clear_padding(self): self.in_padding = False class AttrCvt(object): """Common attribute converter. An AttrConverter instance is a callable: ``` attr_converter = AttrConverter(op_name, transforms={'a':'b', 'c':('d', 1)}) new_op_name, new_attr = attr_converter(attrs) ``` Parameters ---------- op_name : str or callable If set as str, returned operator name is the str. If set as callable, returned operator is the str returned by calling: `op_name = func(attr)` transforms : dict of `new_name, or (new_name, default_value, transform function)` If only a new_name is provided, it's like renaming the attribute name. If default_value if provided, then the attribute is considered as optional. If transform function is provided, the original attribute value is handled by transform function. excludes : list A list of excluded attributes that should `NOT` appear. Raise NotImplementedError if occurred. disables : list A list of attributes that is disabled in relay. Log warnings. ignores : list A list of attributes that is ignored in relay. Debug level logging. extras : dict A series of additional attributes should be added anyway to the returned attribute dict. custom_check : callable A custom function takes attribute, and return True/False. Raise RuntimeError if not bool(True) returned. """ def __init__( self, op_name, transforms=None, excludes=None, disables=None, ignores=None, extras=None, custom_check=None, ): self._op_name = op_name self._transforms = transforms if transforms else {} self._excludes = excludes if excludes else [] self._disables = disables if disables else [] self._ignores = ignores if ignores else [] self._extras = extras if extras else {} self._custom_check = custom_check def __call__(self, inputs, attrs, *args): self._ignores.append("_output_shapes") self._ignores.append("_input_shapes") self._ignores.append("T") self._ignores.append("use_cudnn_on_gpu") self._ignores.append("_node_name") self._ignores.append("is_training") self._ignores.append("_target_layout") # apply custom check if self._custom_check: func, msg = self._custom_check if not func(attrs): raise RuntimeError("Check failed: {}".format(msg)) # get new op_name if isinstance(self._op_name, str): op_name = self._op_name else: assert callable(self._op_name), "op_name can either be string or callable" op_name = self._op_name(attrs) # ignore 'tvm_custom' always self._ignores.append("tvm_custom") # convert attributes new_attrs = {} for k in attrs.keys(): if k in self._excludes: raise NotImplementedError( "Attribute %s in operator %s is not" + " supported.", k, op_name ) if k in self._disables: logger.debug("Attribute %s is disabled in relay.sym.%s", k, op_name) elif k in self._ignores: if k != "tvm_custom": logger.debug("Attribute %s is ignored in relay.sym.%s", k, op_name) elif k in self._transforms: new_name, defaults, transform = self._parse_default(self._transforms[k]) if defaults is None: new_attr = self._required_attr(attrs, k) else: new_attr = attrs.get(k, None) if new_attr is None: new_attrs[new_name] = defaults else: new_attrs[new_name] = transform(new_attr) else: # copy new_attrs[k] = attrs[k] # add extras new_attrs.update(self._extras) return get_relay_op(op_name)(*inputs, **new_attrs) def _parse_default(self, target): """Helper function to parse default values.""" if not isinstance(target, (list, tuple)): k, v, t = target, None, lambda x: x elif len(target) == 1: k, v, t = target[0], None, lambda x: x elif len(target) == 2: k, v, t = target[0], target[1], lambda x: x elif len(target) > 2: k, v, t = target[0], target[1], target[2] else: k = None # should raise if not isinstance(k, str): msg = "{} is not a valid target, (name, default) expected.".format(target) raise ValueError(msg) return k, v, t def _parse_bool(self, value): """Helper function to parse default boolean values.""" if isinstance(value, str): return value.strip().lower() in ["true", "1", "t", "y", "yes"] return bool(value) def _required_attr(self, attr, key): """Wrapper for getting required attributes.""" assert isinstance(attr, dict) if key not in attr: raise AttributeError("Required attribute {} not found.".format(key)) return attr[key] def get_name(node): name = "" if hasattr(node, "name_hint"): name = node.name_hint return name def infer_type(node, mod=None): """A method to infer the type of an intermediate node in the relay graph.""" if isinstance(mod, IRModule): mod["main"] = _function.Function(tvm.relay.analysis.free_vars(node), node) mod = _transform.InferType()(mod) entry = mod["main"] ret = entry.body else: new_mod = IRModule.from_expr(node) if mod is not None: new_mod.update(mod) new_mod = _transform.InferType()(new_mod) entry = new_mod["main"] ret = entry if isinstance(node, _function.Function) else entry.body return ret def fold_constant(node, mod=None): if mod is None: mod = IRModule() return _transform.FoldConstantExpr(node, mod) def infer_channels(inputs, transpose=False): """A hack for getting 'channels' or 'units' since caffe2 does not provide these attributes. We check the shape of weights provided to get the number. """ out_type = infer_type(inputs) out_shapes = [get_const_tuple(out_type.checked_type.shape)] channels = out_shapes[0][0] if not transpose else out_shapes[0][1] return channels def infer_shape(inputs, mod=None): """A method to get the output type of an intermediate node in the graph.""" out_type = infer_type(inputs, mod=mod) checked_type = out_type.checked_type if hasattr(checked_type, "shape"): # Regular operator that outputs tensors return get_const_tuple(checked_type.shape) # The return type is not a tensor, for example List return checked_type def infer_value(input_val, params, mod=None): """A hack for getting the value of an expression by evaluating a portion of the relay graph. This is often needed for functions that whose output shape depends on the value of a tensor. """ # Check that all free variables have associated parameters. assert all( var.name_hint in params.keys() for var in analysis.free_vars(input_val) ), "All inputs to infer must be available in params." assert tvm.runtime.enabled("llvm"), "LLVM must be enabled to infer value." try: # TODO(kevinthesun): Use VM for all cases. # pylint: disable=import-outside-toplevel from tvm.contrib import graph_executor func = _function.Function(analysis.free_vars(input_val), input_val) with tvm.transform.PassContext(opt_level=0): lib = tvm.relay.build(func, target="llvm", params=params) dev = tvm.cpu(0) m = graph_executor.GraphModule(lib["default"](dev)) m.run() return m.get_output(0) except Exception: if isinstance(mod, IRModule): mod["main"] = _function.Function(analysis.free_vars(input_val), input_val) else: mod = IRModule.from_expr(input_val) inputs = [] for param in mod["main"].params: inputs.append(params[param.name_hint]) result = tvm.relay.create_executor( "debug", mod=mod, device=tvm.cpu(), target="llvm" ).evaluate()(*inputs) return result def infer_value_simulated(input_val, params): """Extension to infer_value that can be used when some input values are missing. This function creates dummy inputs with the same shape and random values then calls infer_value. This is helpful when implementing certain onnx operators where we need to evaluate the graph to determine a static shape. """ fake_params = [] # Add a fake copy of all missing params. for free_param in analysis.free_vars(input_val): if free_param.name_hint not in params: fp_dtype = free_param.type_annotation.dtype fp_shape = [s.value for s in free_param.type_annotation.shape] fake_params.append(free_param) params[free_param.name_hint] = tvm.nd.array(np.random.rand(*fp_shape).astype(fp_dtype)) # Now infer the value. output_value = infer_value(input_val, params) # Clean fake params out of param dictionary. for fake_p in fake_params: params.pop(fake_p.name_hint, None) return output_value def try_infer_value(val, on_success=None, on_failure=None, parameters=None): """Try running infer_value on the input val, and if successful, return the inferred value or pass it to on_success callback if provided. Otherwise, run on_failure callback if it is provided, or return the input val as output. In each case, the second return value indicates whether infer_value has succeeded or not. """ try: params = parameters if parameters is not None else {} ret = infer_value(val, params).numpy() if on_success: return on_success(ret), True return ret, True except Exception: if on_failure: return on_failure(), False return val, False def shape_of(x, dtype="int64", start=None, end=None): """Get shape of a tensor.""" ttype = infer_type(x).checked_type if not _ty.is_dynamic(ttype): shape = list(ttype.shape) start = start or 0 # default to first end = end or len(shape) # default to last shape_sliced = shape[start:end] return _expr.const(shape_sliced, dtype) return _op.shape_of(x, dtype) def new_var(name_hint, type_annotation=None, shape=None, dtype="float32"): return _expr.var(name_hint, type_annotation, shape, dtype) class Renamer(object): """A simply renamer for operators. Parameters ---------- new_name : str The new name for the operator """ def __init__(self, new_name): self._new_name = new_name def __call__(self, inputs, attrs, *args): if "tvm_custom" in attrs: attrs.pop("tvm_custom") return get_relay_op(self._new_name)(*inputs, **attrs) def to_int_list(np_array): """Convert a np array to a python int list. Note: This function converts np.int32 to python's int. If we don't do this conversion, numpy's automatic upcast will make the shape / parameters be converted to int64 IntImm in relay and cause problems in relay/TOPI. """ return [int(x) for x in np_array] def unbind(data, axis=0): """ Unbind was taken from Pytorch frontend. The operation removes a tensor dimension and returns a tuple of all slices along a given dimension, with specified axis removed. TODO (vvchernov): It needs such operation on relay side to reduce time consumption on squeeze operation. Parameters ---------- data : relay.Expr Input tensor axis : int Axis along which tensor is split. Returns ------- result : List[relay.Expr] The sequence of computed tensors """ shape = infer_shape(data) if axis >= len(shape): msg = "Please check input dim, it shouldn't be greater than or equal to rank." raise AttributeError(msg) selections = shape[axis] res_split = _op.split(data, selections, axis) ret = [] for i in range(selections): ret.append(_op.squeeze(res_split[i], axis=[axis])) return _expr.TupleWrapper(_expr.Tuple(ret), selections) def rnn_cell( input_seqs, hidden_state, w_inp, w_hid, b_inp=None, b_hid=None, backwards=False, act=_op.tanh ): """ Common implementation of RNN cell for all frontends of TVM Parameters ---------- input_seqs : List[relay.Expr] The sequence of input tensors Input tensor should be 2d while issue #8412 is not resolved Shape = (batch, feature_size) hidden_state : relay.Expr Hidden state. shape = (batch_size, hidden_size) w_inp, w_hid: relay.Expr weight matrices. shape = (hidden_size, feature_size), (hidden_size, feature_size) b_inp, b_hid : relay.Expr bias matrices. The same order of internal parts as for weights. shape = (1 * hidden_size) backwards : bool Flag for reverse pass of RNN act : relay.op activation function. It is tanh by default. Returns ------- result : List[relay.Expr], relay.Expr, relay.Expr The sequence of computed result, final hidden and cell state """ outputs_list = [] for x_t in input_seqs if not backwards else reversed(input_seqs): xwt = _op.nn.dense(x_t, w_inp) hwt = _op.nn.dense(hidden_state, w_hid) if b_inp is not None and b_hid is not None: xwt += b_inp hwt += b_hid hidden_state = act(xwt + hwt) outputs_list.append(hidden_state) # [seq_num, (batch, hidden_size)] return outputs_list, hidden_state def gru_cell( input_seqs, hidden_state, w_inp, w_hid, b_inp=None, b_hid=None, rz_act=_op.sigmoid, n_act=_op.tanh, backwards=False, linear_before_reset=True, ): """ Common implementation of GRU cell for all frontends of TVM TODO(vvchernov): currently it is used by pytorch and ONNX. Extend for other frontends Parameters ---------- input_seqs : List[relay.Expr] The sequence of input tensors Input tensor should be 2d while issue #8412 is not resolved Shape = (batch, feature_size) hidden_state : relay.Expr Hidden state. shape = (batch_size, hidden_size) w_inp, w_hid : relay.Expr weight matrices. wi shape = (3 * hidden_size, feature_size) wh shape = (3 * hidden_size, hidden_size) NOTE: wi = (w_ir|w_iz|w_in) for reset, update and new gates. The order is important for correct GRU calculation! b_inp, b_hid : relay.Expr bias matrices. The same order of internal parts as for weights. shape = (3 * hidden_size) r_act : relay.op activation function for reset gate. it is sigmoid by default z_act : relay.op activation function for update gate. it is sigmoid by default n_act : relay.op activation function for new gate. it is tanh by default backwards : bool Flag for reverse pass of GRU Returns ------- result : List[relay.Expr], relay.Expr, relay.Expr The sequence of computed result, final hidden and cell state """ outputs_list = [] for x_t in input_seqs if not backwards else reversed(input_seqs): xwt = _op.nn.dense(x_t, w_inp) if linear_before_reset: hwt = _op.nn.dense(hidden_state, w_hid) if b_inp is not None and b_hid is not None: xwt += b_inp hwt += b_hid i_r, i_z, i_n = _op.split(xwt, 3, axis=-1) h_r, h_z, h_n = _op.split(hwt, 3, axis=-1) r_gate = rz_act(i_r + h_r) z_gate = rz_act(i_z + h_z) n_gate = n_act(i_n + r_gate * h_n) else: i_r, i_z, i_n = _op.split(xwt, 3, axis=1) w_hr, w_hz, w_hn = _op.split(w_hid, 3, axis=0) r_gate = i_r + _op.nn.dense(hidden_state, w_hr) z_gate = i_z + _op.nn.dense(hidden_state, w_hz) if b_inp is not None and b_hid is not None: b_ir, b_iz, b_in = _op.split(b_inp, 3, axis=-1) b_hr, b_hz, b_hn = _op.split(b_hid, 3, axis=-1) r_gate += b_ir + b_hr r_gate = rz_act(r_gate) z_gate += b_iz + b_hz i_n += b_in h_n = _op.nn.dense((r_gate * hidden_state), w_hn) + b_hn else: r_gate = rz_act(r_gate) h_n = _op.nn.dense((r_gate * hidden_state), w_hn) z_gate = rz_act(z_gate) n_gate = n_act(i_n + h_n) hidden_state = (hidden_state - n_gate) * z_gate + n_gate outputs_list.append(hidden_state) # [seq_num, (batch, hidden_size)] return outputs_list, hidden_state def lstm_cell( input_seqs, hidden_state, cell_state, w_inp, w_hid, b_inp=None, b_hid=None, proj=None, p_i=None, p_f=None, p_o=None, f_act=_op.sigmoid, g_act=_op.tanh, h_act=_op.tanh, backwards=False, ): """ Common implementation of LSTM cell for all frontends of TVM TODO (vvchernov): currently it is used by onnx and pytorch. Extend for other frontends Parameters ---------- input_seqs : List[relay.Expr] The sequence of input tensors Input tensor should be 2d while issue #8412 is not resolved Shape = (batch, feature_size) hidden_state : relay.Expr Hidden state. shape = (batch, hidden_size) cell_state : relay.Expr Cell state. shape = (batch, hidden_size) w_inp, w_hid : relay.Expr weight matrices. wi shape = (4 * hidden_size, feature_size) wh shape = (4 * hidden_size, hidden_size or proj_size) NOTE: wi = (w_ii|w_if|w_ig|w_io) for input, forget, cell and output gates. The order is important for correct LSTM calculation! b_inp, b_hid : relay.Expr bias matrices. The same order of internal parts as for weights. shape = (4 * hidden_size) proj : relay.Expr projection matrix. shape = (proj_size, hidden_size) p_i, p_f, p_o : relay.Expr peephole LSTM matrices. shape = (batch, hidden_size) f_act, g_act, h_act : relay.op activation functions backwards : bool Flag for reverse pass of LSTM Returns ------- result : List[relay.Expr], relay.Expr, relay.Expr The sequence of computed result, final hidden and cell state """ outputs_list = [] for x_t in input_seqs if not backwards else reversed(input_seqs): # x_t shape = (batch, feature size), step shape = (batch, feature size + hidden_size) step = _op.concatenate([x_t, hidden_state], axis=1) cat_w = _op.concatenate([w_inp, w_hid], axis=1) # Instead of nn.dense(x_t, w_inp) + nn.dense(hidden_state, w_hid) # nn.dense(step, cat_w) is used # gates shape = (batch, 4 * hidden_size) gates = _op.nn.dense(step, cat_w) # Add biases if b_inp is not None: gates += b_inp if b_hid is not None: gates += b_hid # any gate shape = (batch, hidden_size) inp_gate, fgt_gate, cell_gate, otp_gate = _op.split(gates, 4, axis=-1) if p_i is not None and p_f is not None: inp_gate = f_act(inp_gate + p_i * cell_state) fgt_gate = f_act(fgt_gate + p_f * cell_state) else: inp_gate = f_act(inp_gate) fgt_gate = f_act(fgt_gate) cell_gate = g_act(cell_gate) cell_state = fgt_gate * cell_state + inp_gate * cell_gate if p_o is not None: otp_gate = f_act(otp_gate + p_o * cell_state) else: otp_gate = f_act(otp_gate) hidden_state = otp_gate * h_act(cell_state) if proj is not None: hidden_state = _op.nn.dense(hidden_state, proj) outputs_list.append(hidden_state) # [seq_num, (batch, hidden_size)] return outputs_list, hidden_state, cell_state def autopad( data, strides, kernel_shape, dilations=(1, 1), pad_type="constant", deconv=False, mode="SAME_UPPER", pad_value=0.0, ): """ Perform autopadding with dynamic input shapes """ # get attributes as constants strides = _op.const(np.array(strides), dtype="int64") dilated_kernel_shape = _op.const( np.array( [(kernel - 1) * dilation + 1 for kernel, dilation in zip(kernel_shape, dilations)] ), dtype="int64", ) # get input shape ndim = len(infer_shape(data)) shape = _op.strided_slice(shape_of(data, dtype="int64"), [2], [ndim]) # set up integer constants zero = _op.const(0, dtype="int64") one = _op.const(1, dtype="int64") two = _op.const(2, dtype="int64") # Calculate total padding mod = _op.mod(shape, strides) left = _op.maximum(dilated_kernel_shape - strides, zero) right = _op.maximum(dilated_kernel_shape - mod, zero) total_pad = _op.where(_op.equal(mod, zero), left, right) if deconv: total_pad = _op.const(np.array(kernel_shape), dtype="int64") - one - total_pad # split total padding into before and after pad_before = _op.floor_divide(total_pad, two) pad_after = total_pad - pad_before # combine if "LOWER" in mode: pad = _op.concatenate( [_op.reshape(pad_after, [-1, 1]), _op.reshape(pad_before, [-1, 1])], axis=1 ) else: pad = _op.concatenate( [_op.reshape(pad_before, [-1, 1]), _op.reshape(pad_after, [-1, 1])], axis=1 ) # pad N and C with zeros pad = _op.concatenate([_op.const(np.zeros([2, 2], dtype="int64"), dtype="int64"), pad], axis=0) if isinstance(pad_value, (float, int)): pad_value = _op.const(pad_value) return _op.nn.pad(data, fold_constant(pad), pad_value, pad_type) def ensure_scalar_shape(x): """ Assume that `x` is a tensor with one element (regardless of tensor rank). Return a version of that tensor with rank 0. """ x_shape = infer_shape(x) x_rank = len(x_shape) if x_rank == 0: return x num_elem = np.prod(x_shape) assert num_elem == 1, "Cannot squeeze tensor shape {} to scalar form.".format(x_shape) return _op.squeeze(x) def try_resolve_var_to_const(x, graph_params): """ Try to resolve the value of tensor `x` to a specific value. If successful, return a Const op with that value. If unsuccessful, simply return `x`. """ if isinstance(x, _expr.Var) and x.name_hint in graph_params: value = graph_params[x.name_hint].numpy() dtype = infer_type(x).checked_type.dtype return _op.const(value, dtype) return x
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/coreml.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, unused-argument, unused-variable, no-else-return # pylint: disable=inconsistent-return-statements, import-outside-toplevel """CoreML frontend.""" import math import numpy as np import tvm from tvm.ir import IRModule from .. import analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from ... import nd as _nd from ..._ffi import base as _base from .common import ExprTable from .common import infer_shape as _infer_shape __all__ = ["from_coreml"] def _NeuralNetworkImageScaler(op, inexpr, etab): # TODO: we need to support more colorspace, such as rgb. # this changes the symbol biases = np.array([op.blueBias, op.greenBias, op.redBias]).reshape([3, 1, 1]) bias = etab.new_const(biases) ret = _op.multiply(inexpr, _expr.const(op.channelScale, dtype="float32")) ret = _op.add(ret, bias) return ret def _NeuralNetworkMeanImage(op, inexpr, etab): # this changes the symbol ret = _op.subtract(inexpr, _expr.const(op.meanImage, dtype="float32")) return ret def _ConvolutionLayerParams(op, inexpr, etab): """Convolution layer params.""" if op.isDeconvolution: weights = etab.new_const( np.array(list(op.weights.floatValue)).reshape( tuple([op.kernelChannels, op.outputChannels] + list(op.kernelSize)) ) ) else: weights = etab.new_const( np.array(list(op.weights.floatValue)).reshape( tuple([op.outputChannels, op.kernelChannels] + list(op.kernelSize)) ) ) dilation = list(op.dilationFactor) if not dilation: dilation = [1, 1] N, C, H, W = _infer_shape(inexpr) params = { "channels": op.outputChannels, "kernel_size": list(op.kernelSize), "strides": list(op.stride), "dilation": dilation, "groups": op.nGroups, } if op.WhichOneof("ConvolutionPaddingType") == "valid": valid = op.valid if valid.paddingAmounts.borderAmounts: assert len(valid.paddingAmounts.borderAmounts) == 2 pad_t = valid.paddingAmounts.borderAmounts[0].startEdgeSize pad_l = valid.paddingAmounts.borderAmounts[1].startEdgeSize pad_b = valid.paddingAmounts.borderAmounts[0].endEdgeSize pad_r = valid.paddingAmounts.borderAmounts[1].endEdgeSize if not all(v == 0 for v in (pad_t, pad_l, pad_b, pad_r)): params["padding"] = (pad_t, pad_l, pad_b, pad_r) elif op.WhichOneof("ConvolutionPaddingType") == "same": assert op.same.asymmetryMode == 0, ( "Only support BOTTOM_RIGHT_HEAVY mode, " "which is used by tf/caffe and so on" ) kernel = params["kernel_size"] strides = params["strides"] pad_t, pad_b = get_pad_value(H, kernel[0], strides[0]) pad_l, pad_r = get_pad_value(W, kernel[1], strides[1]) params["padding"] = (pad_t, pad_l, pad_b, pad_r) else: raise NotImplementedError("Valid/Same convolution padding implemented") if op.isDeconvolution: ret = _op.nn.conv2d_transpose(data=inexpr, weight=weights, **params) else: ret = _op.nn.conv2d(data=inexpr, weight=weights, **params) if op.hasBias: biases = etab.new_const(list(op.bias.floatValue)) ret = _op.nn.bias_add(ret, biases) return ret def _BatchnormLayerParams(op, inexpr, etab): """Get layer of batchnorm parameter""" # this changes the symbol if op.instanceNormalization: raise tvm.error.OpNotImplemented( 'Operator "instance normalization" is not supported in frontend CoreML.' ) params = { "gamma": etab.new_const(list(op.gamma.floatValue)), "beta": etab.new_const(list(op.beta.floatValue)), "moving_mean": etab.new_const(list(op.mean.floatValue)), "moving_var": etab.new_const(list(op.variance.floatValue)), "epsilon": op.epsilon, } result, moving_mean, moving_var = _op.nn.batch_norm(data=inexpr, **params) return result def _ActivationParams(op, inexpr, etab): """Get activation parameters""" whichActivation = op.WhichOneof("NonlinearityType") par = getattr(op, whichActivation) if whichActivation == "linear": alpha = _expr.const(par.alpha, dtype="float32") beta = _expr.const(par.beta, dtype="float32") return _op.add(_op.multiply(inexpr, alpha), beta) if whichActivation == "ReLU": return _op.nn.relu(inexpr) if whichActivation == "leakyReLU": return _op.nn.leaky_relu(inexpr, alpha=par.alpha) elif whichActivation == "thresholdedReLU": alpha_tensor = _op.full_like(inexpr, fill_value=_expr.const(par.alpha, dtype="float32")) return _op.multiply(inexpr, _op.greater(inexpr, alpha_tensor).as_type("float32")) if whichActivation == "PReLU": return _op.nn.prelu(inexpr, alpha=_expr.const(par.alpha, dtype="float32")) if whichActivation == "tanh": return _op.tanh(inexpr) if whichActivation == "scaledTanh": alpha = _expr.const(par.alpha, dtype="float32") beta = _expr.const(par.beta, dtype="float32") return _op.multiply(_op.tanh(_op.multiply(inexpr, beta)), alpha) if whichActivation == "sigmoid": return _op.sigmoid(inexpr) if whichActivation == "sigmoidHard": alpha = _expr.const(par.alpha, dtype="float32") beta = _expr.const(par.beta, dtype="float32") transformX = (alpha * inexpr) + beta return _op.clip(transformX, a_min=0.0, a_max=1.0) if whichActivation == "ELU": return _op.multiply( _op.add(_op.exp(inexpr), _expr.const(-1, dtype="float32")), _expr.const(par.alpha, dtype="float32"), ) if whichActivation == "softsign": return inexpr / ( _expr.const(1, dtype="float32") + (op.nn.relu(inexpr) + _op.nn.relu(_op.negative(inexpr))) ) if whichActivation == "softplus": return _op.log(_op.add(_op.exp(inexpr), _expr.const(1, dtype="float32"))) if whichActivation == "parametricSoftplus": alpha = list(par.alpha.floatValue) beta = list(par.alpha.floatValue) if len(alpha) == 1: return _op.multiply( _op.log(_op.add(_op.exp(inexpr), _expr.const(beta[0], dtype="float32"))), _expr.const(alpha[0], dtype="float32"), ) alpha = np.array(alpha).reshape((len(alpha), 1, 1)) beta = np.array(beta).reshape((len(beta), 1, 1)) alpha_expr = etab.new_const(alpha) beta_expr = etab.new_const(beta) return _op.multiply(_op.log(_op.add(_op.exp(inexpr), beta_expr)), alpha_expr) raise tvm.error.OpNotImplemented( "Operator {} is not supported in frontend CoreML.".format(whichActivation) ) def _ScaleLayerParams(op, inexpr, etab): """Scale layer params.""" scale = etab.new_const( np.array(list(op.scale.floatValue)).reshape(tuple(list(op.shapeScale) + [1, 1])) ) ret = _op.multiply(inexpr, scale) if op.hasBias: bias = etab.new_const( np.array(list(op.bias.floatValue)).reshape(tuple(list(op.shapeBias) + [1, 1])) ) ret = _op.add(ret, bias) return ret def _PoolingLayerParams(op, inexpr, etab): """get pooling parameters""" if op.globalPooling: if op.type == 0: return _op.nn.global_max_pool2d(inexpr) if op.type == 1: return _op.nn.global_avg_pool2d(inexpr) raise tvm.error.OpNotImplemented( "Only Max and Average Pooling are supported in frontend CoreML." ) params = {"pool_size": list(op.kernelSize), "strides": list(op.stride)} if op.WhichOneof("PoolingPaddingType") == "valid": valid = op.valid if valid.paddingAmounts.borderAmounts: assert len(valid.paddingAmounts.borderAmounts) == 2 pad_t = valid.paddingAmounts.borderAmounts[0].startEdgeSize pad_l = valid.paddingAmounts.borderAmounts[1].startEdgeSize pad_b = valid.paddingAmounts.borderAmounts[0].endEdgeSize pad_r = valid.paddingAmounts.borderAmounts[1].endEdgeSize if not all(v == 0 for v in (pad_t, pad_l, pad_b, pad_r)): params["padding"] = [pad_t, pad_l, pad_b, pad_r] elif op.WhichOneof("PoolingPaddingType") == "includeLastPixel": # I don't know if this is correct valid = op.includeLastPixel padding = list(valid.paddingAmounts) params["padding"] = padding params["ceil_mode"] = True else: msg = "PoolingPaddingType {} is not supported in operator Pooling." op_name = op.WhichOneof("PoolingPaddingType") raise tvm.error.OpAttributeUnImplemented(msg.format(op_name)) if op.type == 0: return _op.nn.max_pool2d(inexpr, **params) if op.type == 1: return _op.nn.avg_pool2d(inexpr, **params) raise tvm.error.OpNotImplemented("Only Max and Average Pooling are supported in CoreML.") def _SoftmaxLayerParams(op, inexpr, etab): return _op.nn.softmax(_op.nn.batch_flatten(inexpr)) def _InnerProductLayerParams(op, inexpr, etab): weights = etab.new_const( np.array(op.weights.floatValue).reshape((op.outputChannels, op.inputChannels)) ) out = _op.nn.dense(data=inexpr, weight=weights, units=op.outputChannels) if op.hasBias: bias = etab.new_const(np.array(op.bias.floatValue)) out = _op.nn.bias_add(out, bias) return out def _AddLayerParams(op, inexpr, etab): if not isinstance(inexpr, list): inexpr = [inexpr] ret = inexpr[0] for i in range(1, len(inexpr)): ret = _op.add(ret, inexpr[i]) if op.alpha > 0: ret = _op.add(ret, _expr.const(op.alpha, dtype="float32")) return ret def _MultiplyLayerParams(op, inexpr, etab): if not isinstance(inexpr, list): inexpr = [inexpr] ret = inexpr[0] for i in range(1, len(inexpr)): ret = _op.multiply(ret, inexpr[i]) if op.alpha != 1: ret = _op.multiply(ret, _expr.const(op.alpha, dtype="float32")) return ret def _ConcatLayerParams(op, inexpr, etab): if not isinstance(inexpr, list): inexpr = [inexpr] if op.sequenceConcat: raise tvm.error.OpNotImplemented( "Operator Sequence Concat is not supported in frontend CoreML." ) ret = _op.concatenate(inexpr, axis=1) return ret def _FlattenLayerParams(op, inexpr, etab): if op.mode == 1: inexpr = _op.transpose(_op.reshape(inexpr, newshape=(0, 0, -1)), axes=(0, 2, 1)) return _op.nn.batch_flatten(inexpr) def _PaddingLayerParams(op, inexpr, etab): """Padding layer params.""" if op.WhichOneof("PaddingType") == "constant": constant = op.constant if constant.value != 0: raise tvm.error.OpAttributeUnImplemented( "{} is not supported in operator Padding.".format(constant.value) ) pad_t = op.paddingAmounts.borderAmounts[0].startEdgeSize pad_l = op.paddingAmounts.borderAmounts[1].startEdgeSize pad_b = op.paddingAmounts.borderAmounts[0].endEdgeSize pad_r = op.paddingAmounts.borderAmounts[1].endEdgeSize return _op.nn.pad(data=inexpr, pad_width=((0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) raise tvm.error.OpNotImplemented("Non-constant padding is not supported in frontend CoreML.") def _PermuteLayerParams(op, inexpr, etab): axes = tuple(op.axis) return _op.transpose(inexpr, axes=axes) def _UpsampleLayerParams(op, inexpr, etab): if op.scalingFactor[0] != op.scalingFactor[1]: raise tvm.error.OpAttributeUnimplemented("Upsample height and width must be equal.") interpolationMode = "nearest_neighbor" if op.mode == 0 else "bilinear" return _op.nn.upsampling( inexpr, scale_h=op.scalingFactor[0], scale_w=op.scalingFactor[1], method=interpolationMode ) def _L2NormalizeLayerParams(op, inexpr, etab): return _op.nn.l2_normalize(inexpr, eps=op.epsilon, axis=[1]) def _LRNLayerParams(op, inexpr, etab): par = {} par["size"] = op.localSize par["bias"] = op.k par["alpha"] = op.alpha par["beta"] = op.beta par["axis"] = 1 # default layout is nchw return _op.nn.lrn(data=inexpr, **par) def _AverageLayerParams(op, inexpr, etab): if not isinstance(inexpr, list) or len(inexpr) < 2: raise ValueError("Expect minimum 2 inputs") count = len(inexpr) _sum = inexpr[0] for i in range(1, count): _sum = _op.add(_sum, inexpr[i]) return _sum / _expr.const(count, dtype="float32") def _MaxLayerParams(op, inexpr, etab): if not isinstance(inexpr, list) or len(inexpr) < 2: raise ValueError("Expect minimum 2 inputs") _max = inexpr[0] for i in range(1, len(inexpr)): _max = _op.maximum(_max, inexpr[i]) return _max def _MinLayerParams(op, inexpr, etab): if not isinstance(inexpr, list) or len(inexpr) < 2: raise ValueError("Expect minimum 2 inputs") _min = inexpr[0] for i in range(1, len(inexpr)): _min = _op.minimum(_min, inexpr[i]) return _min def _UnaryFunctionLayerParams(op, inexpr, etab): op_type = op.type if op_type == op.SQRT: return _op.sqrt(inexpr) elif op_type == op.RSQRT: epsilon = _expr.const(op.epsilon) return _op.rsqrt(inexpr + epsilon) elif op_type == op.INVERSE: epsilon = _expr.const(op.epsilon) return _expr.const(1.0) / (inexpr + epsilon) elif op_type == op.POWER: alpha = _expr.const(op.alpha) return _op.power(inexpr, alpha) elif op_type == op.EXP: return _op.exp(inexpr) elif op_type == op.LOG: return _op.log(inexpr) elif op_type == op.ABS: return _op.abs(inexpr) elif op_type == op.THRESHOLD: alpha = _expr.const(op.alpha) return _op.maximum(inexpr, alpha) else: msg = "Unary Op type value {} is not supported in frontend CoreML." raise tvm.error.OpAttributeUnImplemented(msg.format(op_type)) def _ReduceLayerParams(op, inexpr, etab): axis = op.axis if axis == op.CHW: axis = [-3, -2, -1] elif axis == op.HW: axis = [-2, -1] elif axis == op.C: axis = -3 elif axis == op.H: axis = -2 elif axis == op.W: axis = -1 else: msg = "Reduce axis value {} is not supported in frontend CoreML." raise tvm.error.OpAttributeUnImplemented(msg.format(axis)) mode = op.mode if mode == op.SUM: return _op.sum(inexpr, axis=axis, keepdims=True) elif mode == op.AVG: return _op.mean(inexpr, axis=axis, keepdims=True) elif mode == op.PROD: return _op.prod(inexpr, axis=axis, keepdims=True) elif mode == op.MIN: return _op.min(inexpr, axis=axis, keepdims=True) elif mode == op.MAX: return _op.max(inexpr, axis=axis, keepdims=True) elif mode == op.ARGMAX: return _op.argmax(inexpr, axis=axis, keepdims=True) else: msg = "Reduce mode value {} is not supported in frontend CoreML." raise tvm.error.OpAttributeUnImplemented(msg.format(mode)) def _ReshapeLayerParams(op, inexpr, etab): return _op.reshape(inexpr, op.targetShape) def _SplitLayerParams(op, inexpr, etab): return _op.split(inexpr, op.nOutputs, axis=-3) _convert_map = { "NeuralNetworkMeanImage": _NeuralNetworkMeanImage, "NeuralNetworkImageScaler": _NeuralNetworkImageScaler, "ConvolutionLayerParams": _ConvolutionLayerParams, "BatchnormLayerParams": _BatchnormLayerParams, "ActivationParams": _ActivationParams, "ScaleLayerParams": _ScaleLayerParams, "PoolingLayerParams": _PoolingLayerParams, "SoftmaxLayerParams": _SoftmaxLayerParams, "InnerProductLayerParams": _InnerProductLayerParams, "AddLayerParams": _AddLayerParams, "MultiplyLayerParams": _MultiplyLayerParams, "FlattenLayerParams": _FlattenLayerParams, "ConcatLayerParams": _ConcatLayerParams, "PaddingLayerParams": _PaddingLayerParams, "PermuteLayerParams": _PermuteLayerParams, "UpsampleLayerParams": _UpsampleLayerParams, "L2NormalizeLayerParams": _L2NormalizeLayerParams, "LRNLayerParams": _LRNLayerParams, "AverageLayerParams": _AverageLayerParams, "MaxLayerParams": _MaxLayerParams, "MinLayerParams": _MinLayerParams, "UnaryFunctionLayerParams": _UnaryFunctionLayerParams, "ReduceLayerParams": _ReduceLayerParams, "ReshapeLayerParams": _ReshapeLayerParams, "SplitLayerParams": _SplitLayerParams, } # SAME padding: https://www.tensorflow.org/api_guides/python/nn def get_pad_value(data, kernel, stride): """Get the pad tuple of value for SAME padding Parameters ---------- data: 1D input data kernel: 1D input kernel stride: 1D input stride Returns ------- pad tuple of value """ out = int(math.ceil(float(data) / float(stride))) pad = max(0, (out - 1) * stride + kernel - data) pad_before = pad // 2 pad_after = pad - pad_before return pad_before, pad_after def coreml_op_to_relay(op, inname, outnames, etab): """Convert coreml layer to a Relay expression and update the expression table. Parameters ---------- op: a coreml protobuf bit inname : str or list of str Name of the input Relay expression. outnames : str or list of str Name of the output Relay expression. etab : relay.frontend.common.ExprTable The global expression table to be updated. """ classname = type(op).__name__ if classname not in _convert_map: raise tvm.error.OpNotImplemented( "Operator {} is not supported in frontend CoreML.".format(classname) ) if isinstance(inname, _base.string_types): insym = etab.get_expr(inname) else: insym = [etab.get_expr(i) for i in inname] outs = _convert_map[classname](op, insym, etab) if outnames: if isinstance(outnames, _base.string_types) or len(outnames) == 1: outname = outnames if isinstance(outnames, _base.string_types) else outnames[0] etab.set_expr(outname, outs, force_override=True) else: # the number of outputs from model op and tvm relay must be same assert len(outnames) == len(outs) for outname, out in zip(outnames, outs): etab.set_expr(outname, out, force_override=True) def from_coreml(model, shape=None): """Convert from coreml model into Relay Function. Parameters ---------- model: coremltools.models.MLModel of a NeuralNetworkClassifier shape : dict of str to int list/tuple, optional The input shapes Returns ------- mod : tvm.IRModule The relay module for compilation. params : dict of str to tvm.nd.NDArray The parameter dict to be used by Relay. """ try: import coremltools as cm except ImportError: raise ImportError("The coremltools package must be installed") assert isinstance(model, cm.models.MLModel) spec = model.get_spec() modeltype = spec.WhichOneof("Type") assert modeltype in ["neuralNetworkClassifier", "neuralNetwork", "neuralNetworkRegressor"] cc = getattr(spec, modeltype) etab = ExprTable() for i in spec.description.input: input_shape = list(shape[i.name]) if shape is not None and i.name in shape else None etab.set_expr(i.name, _expr.var(i.name, shape=input_shape)) for pp in cc.preprocessing: whichpp = pp.WhichOneof("preprocessor") ppmethod = getattr(pp, whichpp) if whichpp == "scaler": # Be careful we maybe only preprocess one input when we have multi inputs # which is stored in pp.featureName. See unit testing verify_image_scaler # in test_forward.py for CoreML. for i in spec.description.input: # we have multi inputs if len(spec.description.input) > 1: assert pp.featureName != "" if i.name == pp.featureName: coreml_op_to_relay(ppmethod, i.name, i.name, etab) else: assert pp.featureName == "" coreml_op_to_relay(ppmethod, i.name, i.name, etab) else: coreml_op_to_relay(ppmethod, pp.featureName, pp.featureName, etab) for l in cc.layers: layertype = l.WhichOneof("layer") layerop = getattr(l, layertype) if len(l.input) == 1: coreml_op_to_relay(layerop, l.input[0], l.output, etab) else: coreml_op_to_relay(layerop, list(l.input), l.output, etab) outexpr = [ etab.get_expr(o.name) if o.name in etab.exprs else _expr.var(o.name) for o in spec.description.output ] # check there are multiple outputs in the model and all are there in etab multi_out = all([bool(o.name in etab.exprs) for o in spec.description.output]) outexpr = _expr.Tuple(outexpr) if multi_out else outexpr[0] func = _function.Function(analysis.free_vars(outexpr), outexpr) params = {k: _nd.array(np.array(v, dtype=np.float32)) for k, v in etab.params.items()} return IRModule.from_expr(func), params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/darknet.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """ DarkNet symbol frontend for Relay. """ from enum import Enum import numpy as np import tvm from tvm.ir import IRModule from .. import analysis from .. import expr as _expr from .. import function as _function from .common import get_relay_op, new_var __all__ = ["from_darknet"] def _darknet_not_support(attr, op="relay"): """Raise error if any operation is not supported.""" err = "{} is not supported in {}.".format(attr, op) raise NotImplementedError(err) def _get_params_prefix(opname, layer_num): """Makes the params prefix name from opname and layer number.""" return str(opname).replace(".", "_") + str(layer_num) def _get_params_name(prefix, item): """Makes the params name for the k,v pair.""" return prefix + "_" + item def _get_param_var(params, prefix, item): name = _get_params_name(prefix, item) if name not in params: raise AttributeError("{} not found in params dict.".format(name)) return new_var(name, shape=params[name].shape, dtype=params[name].dtype) def _darknet_maxpooling(inputs, params, attrs, prefix): """Process the max pool 2d operation.""" new_attrs = {} kernel = attrs.get("kernel") strides = attrs.get("stride", 1) pads = attrs.get("pad", 1) new_attrs["pool_size"] = (kernel, kernel) new_attrs["strides"] = (strides, strides) new_attrs["padding"] = (pads, pads) extra_pad_size = attrs.get("extra_pad_size", 0) if extra_pad_size: pad_width = ((0, 0), (0, 0), (0, extra_pad_size), (0, extra_pad_size)) inputs = [ get_relay_op("pad")(*inputs, pad_width=pad_width, pad_value=np.finfo(np.float32).min) ] return get_relay_op("max_pool2d")(*inputs, **new_attrs) def _darknet_avgpooling(inputs, params, attrs, prefix): """Process the average pool 2d operation.""" new_attrs = {} kernel = attrs.get("kernel") strides = attrs.get("stride", 1) pads = attrs.get("pad", 0) new_attrs["pool_size"] = (kernel, kernel) new_attrs["strides"] = (strides, strides) new_attrs["padding"] = (pads, pads) return get_relay_op("avg_pool2d")(*inputs, **new_attrs) def _darknet_conv2d(inputs, params, attrs, prefix): """Process the convolution 2d operation.""" new_attrs = {} kernel = attrs.get("kernel") strides = attrs.get("stride", 1) pads = attrs.get("pad", 0) new_attrs["channels"] = attrs.get("num_filter") new_attrs["kernel_size"] = (kernel, kernel) new_attrs["strides"] = (strides, strides) new_attrs["padding"] = (pads, pads) new_attrs["dilation"] = attrs.get("dilate", (1, 1)) new_attrs["groups"] = attrs.get("num_group", 1) weight = _get_param_var(params, prefix, "weight") out = get_relay_op("conv2d")(*inputs, weight=weight, **new_attrs) use_bias = not attrs.get("use_batchNorm", False) if use_bias: new_attrs = {} new_attrs["axis"] = 1 bias = _get_param_var(params, prefix, "bias") out = get_relay_op("bias_add")(out, bias=bias, **new_attrs) else: new_attrs = {} new_attrs["epsilon"] = 0.000001 gamma = _get_param_var(params, prefix, "gamma") beta = _get_param_var(params, prefix, "beta") moving_mean = _get_param_var(params, prefix, "moving_mean") moving_var = _get_param_var(params, prefix, "moving_var") out = get_relay_op("batch_norm")(out, gamma, beta, moving_mean, moving_var, **new_attrs) if "activation" in attrs: new_attrs = {} new_attrs["activation"] = attrs["activation"] new_attrs["slope"] = 0.1 out = _darknet_activations(out, None, new_attrs) return out def _darknet_shortcut(inputs, params, attrs, prefix): """Process the shortcut operation.""" input_0 = inputs[0] input_1 = inputs[1] input_0_channel = int(attrs["out_channel"]) input_1_channel = int(attrs["add_out_channel"]) input_0_size = int(attrs["out_size"]) input_1_size = int(attrs["add_out_size"]) if input_0_size > input_1_size: scale = int(input_0_size / input_1_size) input_1 = get_relay_op("upsampling")(input_1, scale_h=scale, scale_w=scale) elif input_0_size < input_1_size: stride = int(input_1_size / input_0_size) input_1 = get_relay_op("avg_pool2d")( input_1, pool_size=(1, 1), strides=(stride, stride), padding=(0, 0) ) if input_0_channel != input_1_channel: pad_channel = input_0_channel - input_1_channel input_1 = get_relay_op("pad")( input_1, pad_width=((0, 0), (0, pad_channel), (0, 0), (0, 0)), pad_value=0.0 ) sym = input_0 + input_1 if "activation" in attrs: new_attrs = {} new_attrs["activation"] = attrs["activation"] sym = _darknet_activations(sym, None, new_attrs) return sym def _darknet_dense(inputs, params, attrs, prefix): """Process the dense operation.""" new_attrs = {} new_attrs["units"] = attrs.get("num_hidden") data = inputs[0] if attrs.get("use_flatten", False) is True: data = get_relay_op("batch_flatten")(data) weight = _get_param_var(params, prefix, "weight") data = get_relay_op("dense")(data, weight, **new_attrs) use_bias = attrs.get("use_bias", False) if use_bias: bias = _get_param_var(params, prefix, "bias") data = get_relay_op("bias_add")(data, bias, axis=1) if "use_batchNorm" in attrs: new_attrs = {} new_attrs["epsilon"] = 0.000001 gamma = _get_param_var(params, prefix, "gamma") beta = _get_param_var(params, prefix, "beta") moving_mean = _get_param_var(params, prefix, "moving_mean") moving_var = _get_param_var(params, prefix, "moving_var") data = get_relay_op("batch_norm")(data, gamma, beta, moving_mean, moving_var, **new_attrs) if "activation" in attrs: new_attrs = {} new_attrs["activation"] = attrs["activation"] data = _darknet_activations(data, None, new_attrs) return data def _darknet_dropout(inputs, params, attrs, prefix): """Process the dropout operation, its a blank operation.""" new_attrs = {} new_attrs["rate"] = attrs.get("p", 0.5) return get_relay_op("dropout")(*inputs, **new_attrs) def _darknet_reshape(inputs, params, attrs, prefix): """Process the reshape operation.""" new_attrs = {} new_attrs["shape"] = attrs.get("shape") return get_relay_op("reshape")(*inputs, **new_attrs) def _darknet_upsampling(inputs, params, attrs, prefix): """Process the upsampling operation.""" new_attrs = {} new_attrs["scale_h"] = attrs.get("scale", 1) new_attrs["scale_w"] = attrs.get("scale", 1) return get_relay_op("upsampling")(*inputs, **new_attrs) def _darknet_l2normalize(inputs, params, attrs, prefix): """Process the l2 normalization operation.""" new_attrs = {} new_attrs["eps"] = attrs.get("eps", 0.0) new_attrs["axis"] = [attrs.get("axis", 1)] return get_relay_op("l2_normalize")(*inputs, **new_attrs) def _darknet_softmax_output(inputs, params, attrs, prefix): """Process the softmax operation.""" temperature = attrs.get("temperature", 1) data = inputs[0] if temperature != 1: data = data / _expr.const(float(temperature)) if attrs.get("use_flatten", False) is True: data = get_relay_op("batch_flatten")(data) new_attrs = {} if attrs.get("multi_output", False): new_attrs["axis"] = 1 return get_relay_op("softmax")(data, **new_attrs) def _darknet_route(inputs, params, attrs, prefix): """Process the route operation, which is equivalent to concat.""" new_attrs = {"axis": attrs.get("dim", 1)} return get_relay_op("concatenate")((inputs[0], inputs[1]), **new_attrs) def _darknet_reorg(inputs, params, attrs, prefix): """Process the reorg operation.""" new_attrs = {} if "stride" in attrs: new_attrs = {"stride": attrs.get("stride", 1)} return get_relay_op("yolo_reorg")(*inputs, **new_attrs) def _darknet_region(inputs, params, attrs, prefix): """Process the region operation.""" num = attrs.get("n", 1) classes = attrs.get("classes", 1) coords = attrs.get("coords", 0) background = attrs.get("background", 0) softmax = attrs.get("softmax", True) input_shape = attrs.get("shape") split_size = classes + coords + 1 intermediate_shape = (input_shape[0], num, split_size, input_shape[2], input_shape[3]) data_block = get_relay_op("reshape")(inputs[0], newshape=intermediate_shape) split_indices = (2, 4, 5) split_res = get_relay_op("split")(data_block, indices_or_sections=split_indices, axis=2) split_res0 = get_relay_op("sigmoid")(split_res[0]) split_res2 = split_res[2] if background else get_relay_op("sigmoid")(split_res[2]) split_res3 = get_relay_op("softmax")(split_res[3], axis=2) if softmax else split_res[3] out = get_relay_op("concatenate")((split_res0, split_res[1], split_res2, split_res3), axis=2) return get_relay_op("reshape")(out, newshape=input_shape) def _darknet_yolo(inputs, params, attrs, prefix): """Process the yolo operation.""" num = attrs.get("n", 1) classes = attrs.get("classes", 1) input_shape = attrs.get("shape") split_size = classes + 5 intermediate_shape = (input_shape[0], num, split_size, input_shape[2], input_shape[3]) data_block = get_relay_op("reshape")(inputs[0], newshape=intermediate_shape) split_indices = (2, 4) split_res = get_relay_op("split")(data_block, indices_or_sections=split_indices, axis=2) split_res0 = get_relay_op("sigmoid")(split_res[0]) split_res2 = get_relay_op("sigmoid")(split_res[2]) out = get_relay_op("concatenate")((split_res0, split_res[1], split_res2), axis=2) return get_relay_op("reshape")(out, newshape=input_shape) class ACTIVATION(object): """Darknet ACTIVATION Class constant.""" LOGISTIC = 0 RELU = 1 RELIE = 2 LINEAR = 3 RAMP = 4 TANH = 5 PLSE = 6 LEAKY = 7 ELU = 8 LOGGY = 9 STAIR = 10 HARDTAN = 11 LHTAN = 12 def _darknet_activations(inputs, params, attrs): """Process the activation function.""" act = attrs.get("activation") data = inputs[0] if isinstance(inputs, _expr.TupleWrapper) else inputs def _const(val): return _expr.const(val) def _relu(data): return get_relay_op("relu")(data) def _exp(data): return get_relay_op("exp")(data) def _tanh(data): return get_relay_op("tanh")(data) def _sigmoid(data): return get_relay_op("sigmoid")(data) def _elu(data): alpha = _const(-1.0) return alpha * _relu(_const(1.0) - _exp(data)) + _relu(data) def _leaky_relu(data, slope): new_attrs = {} new_attrs["alpha"] = slope return get_relay_op("leaky_relu")(data, **new_attrs) if ACTIVATION.LOGISTIC == act: data = _sigmoid(data) elif ACTIVATION.RELU == act: data = _relu(data) elif ACTIVATION.TANH == act: data = _tanh(data) elif ACTIVATION.LINEAR == act: return data elif ACTIVATION.LEAKY == act: data = _leaky_relu(data, attrs.get("slope", 0.1)) elif ACTIVATION.ELU == act: data = _elu(data) else: _darknet_not_support("act: " + attrs) return data class LAYERTYPE(Enum): """Darknet LAYERTYPE Class constant.""" CONVOLUTIONAL = 0 DECONVOLUTIONAL = 1 CONNECTED = 2 MAXPOOL = 3 SOFTMAX = 4 DETECTION = 5 DROPOUT = 6 CROP = 7 ROUTE = 8 COST = 9 NORMALIZATION = 10 AVGPOOL = 11 LOCAL = 12 SHORTCUT = 13 ACTIVE = 14 RNN = 15 GRU = 16 LSTM = 17 CRNN = 18 BATCHNORM = 19 NETWORK = 20 XNOR = 21 REGION = 22 YOLO = 23 REORG = 24 UPSAMPLE = 25 LOGXENT = 26 L2NORM = 27 BLANK = 28 _DARKNET_CONVERT_MAP = { LAYERTYPE.CONVOLUTIONAL: _darknet_conv2d, LAYERTYPE.CONNECTED: _darknet_dense, LAYERTYPE.MAXPOOL: _darknet_maxpooling, LAYERTYPE.SOFTMAX: _darknet_softmax_output, LAYERTYPE.DROPOUT: _darknet_dropout, LAYERTYPE.AVGPOOL: _darknet_avgpooling, LAYERTYPE.ROUTE: _darknet_route, LAYERTYPE.REORG: _darknet_reorg, LAYERTYPE.REGION: _darknet_region, LAYERTYPE.SHORTCUT: _darknet_shortcut, LAYERTYPE.UPSAMPLE: _darknet_upsampling, LAYERTYPE.L2NORM: _darknet_l2normalize, LAYERTYPE.YOLO: _darknet_yolo, LAYERTYPE.DECONVOLUTIONAL: _darknet_not_support, LAYERTYPE.BATCHNORM: _darknet_not_support, LAYERTYPE.DETECTION: _darknet_not_support, LAYERTYPE.CROP: _darknet_not_support, LAYERTYPE.COST: _darknet_not_support, LAYERTYPE.NORMALIZATION: _darknet_not_support, LAYERTYPE.LOCAL: _darknet_not_support, LAYERTYPE.ACTIVE: _darknet_not_support, LAYERTYPE.RNN: _darknet_not_support, LAYERTYPE.GRU: _darknet_not_support, LAYERTYPE.LSTM: _darknet_not_support, LAYERTYPE.CRNN: _darknet_not_support, LAYERTYPE.NETWORK: _darknet_not_support, LAYERTYPE.XNOR: _darknet_not_support, LAYERTYPE.BLANK: _darknet_not_support, } def _darknet_convert_symbol(op_name, inputs, params, attrs, params_prefix): """Convert from darknet op to relay op. Parameters ---------- op_name : str Operator name, such as Convolution, Connected, etc inputs : list of relay.Function List of input symbols. attrs : dict Dict of operator attributes params_prefix: str Params name for this operation Returns ------- out_name : converted out name of operation sym : tvm.relay.Function Converted relay function """ if op_name in _DARKNET_CONVERT_MAP: sym = _DARKNET_CONVERT_MAP[op_name](inputs, params, attrs, params_prefix) else: _darknet_not_support("Operator type " + str(op_name)) return sym def _as_list(arr): """Force being a list, ignore if already is.""" if isinstance(arr, list): return arr return [arr] class GraphProto(object): """A helper class for handling relay functions from darknet model.""" def __init__(self, net, shape, dtype="float32"): self._net = net self._shape = shape self._dtype = dtype self._sym_array = {} self._tvmparams = {} self._outs = [] self._state_ctr = {} self._state_ctr["rnn"] = 0 self._state_ctr["crnn"] = 0 self._state_ctr["lstm"] = 0 self._state_ctr["cell_state"] = 0 self._state_ctr["gru"] = 0 def _read_memory_buffer(self, shape, data, dtype=None): if dtype is None: dtype = self._dtype length = 1 for x in shape: length *= x data_np = np.zeros(length, dtype=dtype) for i in range(length): data_np[i] = data[i] return data_np.reshape(shape) def _get_convolution_weights(self, layer, opname): """Get the convolution layer weights and biases.""" if layer.nweights == 0: return None if (layer.n * layer.c // layer.groups * layer.size * layer.size) != layer.nweights: raise RuntimeError("layer weights size not matching with n c h w") params = {} shape = (layer.n, layer.c // layer.groups, layer.size, layer.size) weights = self._read_memory_buffer(shape, layer.weights) biases = self._read_memory_buffer((layer.n,), layer.biases) k = _get_params_name(opname, "weight") params[k] = tvm.nd.array(weights) if layer.batch_normalize == 1 and layer.dontloadscales != 1: params.update(self._get_batchnorm_weights(layer, opname, layer.n)) k = _get_params_name(opname, "beta") params[k] = tvm.nd.array(biases) else: k = _get_params_name(opname, "bias") params[k] = tvm.nd.array(biases) return params def _get_connected_weights(self, layer, opname): """Parse the weights and biases for fully connected or dense layer.""" size = layer.outputs * layer.inputs if size == 0: return None weights = self._read_memory_buffer((layer.outputs, layer.inputs), layer.weights) biases = self._read_memory_buffer((layer.outputs,), layer.biases) params = {} k = _get_params_name(opname, "weight") params[k] = tvm.nd.array(weights) if layer.batch_normalize == 1 and layer.dontloadscales != 1: params.update(self._get_batchnorm_weights(layer, opname, layer.outputs)) k = _get_params_name(opname, "beta") params[k] = tvm.nd.array(biases) else: k = _get_params_name(opname, "bias") params[k] = tvm.nd.array(biases) return params def _get_region_weights(self, layer, opname): """Parse the biases for region layer.""" biases = self._read_memory_buffer((layer.n * 2,), layer.biases) attributes = np.array( [ layer.n, layer.out_c, layer.out_h, layer.out_w, layer.classes, layer.coords, layer.background, ], dtype=np.int32, ) params = {} k = _get_params_name(opname, "bias") params[k] = tvm.nd.array(biases) k = _get_params_name(opname, "attr") params[k] = tvm.nd.array(attributes) return params def _get_yolo_weights(self, layer, opname): """Parse the biases and mask for yolo layer.""" biases = self._read_memory_buffer((layer.total * 2,), layer.biases) mask = self._read_memory_buffer((layer.n,), layer.mask, dtype="int32") attributes = np.array( [layer.n, layer.out_c, layer.out_h, layer.out_w, layer.classes, layer.total], dtype=np.int32, ) params = {} k = _get_params_name(opname, "bias") params[k] = tvm.nd.array(biases) k = _get_params_name(opname, "mask") params[k] = tvm.nd.array(mask) k = _get_params_name(opname, "attr") params[k] = tvm.nd.array(attributes) return params def _get_batchnorm_weights(self, layer, opname, size): """Parse the weights for batchnorm, which includes, scales, moving mean and moving variances.""" scales = self._read_memory_buffer((size,), layer.scales) rolling_mean = self._read_memory_buffer((size,), layer.rolling_mean) rolling_variance = self._read_memory_buffer((size,), layer.rolling_variance) params = {} k = _get_params_name(opname, "moving_mean") params[k] = tvm.nd.array(rolling_mean) k = _get_params_name(opname, "moving_var") params[k] = tvm.nd.array(rolling_variance) k = _get_params_name(opname, "gamma") params[k] = tvm.nd.array(scales) return params def _get_darknet_attrs(self, layer, layer_num): """Parse attributes of each layer and return.""" attr = {} use_flatten = True layer_type = LAYERTYPE(layer.type) if LAYERTYPE.CONVOLUTIONAL == layer_type: attr.update({"pad": layer.pad}) attr.update({"num_group": layer.groups}) attr.update({"num_filter": layer.n}) attr.update({"stride": layer.stride}) attr.update({"kernel": layer.size}) attr.update({"activation": (layer.activation)}) if layer.nbiases == 0: attr.update({"use_bias": False}) else: attr.update({"use_bias": True}) if layer.batch_normalize == 1 and layer.dontloadscales != 1: attr.update({"use_batchNorm": True}) attr.update({"use_scales": True}) elif LAYERTYPE.CONNECTED == layer_type: attr.update({"num_hidden": layer.outputs}) attr.update({"activation": (layer.activation)}) if layer_num != 0: layer_prev = self._net.layers[layer_num - 1] if ( layer_prev.out_h == layer.h and layer_prev.out_w == layer.w and layer_prev.out_c == layer.c ): use_flatten = False attr.update({"use_flatten": use_flatten}) attr.update({"use_bias": True}) if layer.batch_normalize == 1 and layer.dontloadscales != 1: attr.update({"use_batchNorm": True}) attr.update({"use_scales": True}) attr.update({"use_bias": False}) elif LAYERTYPE.MAXPOOL == layer_type: attr.update({"pad": layer.pad}) attr.update({"stride": layer.stride}) attr.update({"kernel": layer.size}) max_output = (layer.w - layer.size + 2 * layer.pad) / float(layer.stride) + 1 if max_output < layer.out_w: extra_pad = (layer.out_w - max_output) * layer.stride attr.update({"extra_pad_size": int(extra_pad)}) elif LAYERTYPE.AVGPOOL == layer_type: attr.update({"pad": layer.pad}) if layer.stride == 0: attr.update({"stride": 1}) else: attr.update({"stride": layer.stride}) if layer.size == 0 and layer.h == layer.w: attr.update({"kernel": layer.h}) else: attr.update({"kernel": layer.size}) elif LAYERTYPE.DROPOUT == layer_type: attr.update({"p": layer.probability}) elif LAYERTYPE.SOFTMAX == layer_type: attr.update({"axis": 1}) attr.update({"use_flatten": True}) if layer.temperature: attr.update({"temperature": str(layer.temperature)}) elif LAYERTYPE.SHORTCUT == layer_type: add_layer = self._net.layers[layer.index] attr.update({"activation": layer.activation}) attr.update({"out_channel": layer.out_c}) attr.update({"out_size": layer.out_h}) attr.update({"add_out_channel": add_layer.out_c}) attr.update({"add_out_size": add_layer.out_h}) elif LAYERTYPE.ROUTE == layer_type: pass elif LAYERTYPE.COST == layer_type: pass elif LAYERTYPE.REORG == layer_type: attr.update({"stride": layer.stride}) elif LAYERTYPE.REGION == layer_type: attr.update({"n": layer.n}) attr.update({"classes": layer.classes}) attr.update({"coords": layer.coords}) attr.update({"background": layer.background}) attr.update({"softmax": layer.softmax}) attr.update({"shape": (-1, layer.c, layer.h, layer.w)}) elif LAYERTYPE.YOLO == layer_type: attr.update({"n": layer.n}) attr.update({"classes": layer.classes}) attr.update({"shape": (-1, layer.c, layer.h, layer.w)}) elif LAYERTYPE.UPSAMPLE == layer_type: attr.update({"scale": layer.stride}) elif LAYERTYPE.L2NORM == layer_type: pass else: err = "Darknet layer type {} is not supported in relay.".format(layer_type) raise NotImplementedError(err) return attr def _get_darknet_params(self, layer, opname): """To parse and get the darknet params.""" layer_type = LAYERTYPE(layer.type) params = None if LAYERTYPE.CONVOLUTIONAL == layer_type: params = self._get_convolution_weights(layer, opname) elif LAYERTYPE.CONNECTED == layer_type: params = self._get_connected_weights(layer, opname) elif LAYERTYPE.REGION == layer_type: params = self._get_region_weights(layer, opname) elif LAYERTYPE.YOLO == layer_type: params = self._get_yolo_weights(layer, opname) return params def _preproc_layer(self, layer, layer_num): """To preprocess each darknet layer, some layer doesnt need processing.""" if layer_num == 0: name = "data" sym = new_var(name, shape=self._shape, dtype=self._dtype) else: sym = self._sym_array[layer_num - 1] skip_layer = False layer_type = LAYERTYPE(layer.type) if LAYERTYPE.ROUTE == layer_type: sym = [] for j in range(layer.n): sym.append(self._sym_array[layer.input_layers[j]]) if layer.n == 1: skip_layer = True elif LAYERTYPE.COST == layer_type: skip_layer = True elif LAYERTYPE.SHORTCUT == layer_type: sym = [sym, self._sym_array[layer.index]] elif LAYERTYPE.BLANK == layer_type: skip_layer = True if skip_layer is True: self._sym_array[layer_num] = sym return skip_layer, sym def _get_opname(self, layer): """Returs the layer name.""" return LAYERTYPE(layer.type) def _new_rnn_state_var(self, state=None, name="rnn"): """Returs a symbol for state""" sym_name = name + "%d_state" % self._state_ctr[name] self._state_ctr[name] += 1 return new_var(sym_name, shape=state.shape, dtype=str(state.dtype)) def _get_rnn_state_buffer(self, layer, name): """Get the state buffer for rnn.""" buffer = np.zeros((1, layer.outputs), self._dtype) return self._new_rnn_state_var(buffer, name) def _get_darknet_rnn_attrs(self, layer, name, sym): """Get the rnn converted symbol from attributes.""" attr = self._get_darknet_attrs(layer, 0) op_name = self._get_opname(layer) prefix = _get_params_prefix(op_name, name) params = self._get_darknet_params(layer, prefix) sym = _darknet_convert_symbol(op_name, _as_list(sym), params, attr, prefix) if params: self._tvmparams.update(params) return sym def _handle_darknet_rnn_layers(self, layer_num, sym): """Parse attributes and handle the rnn layers.""" attr = {} layer = self._net.layers[layer_num] processed = False layer_type = LAYERTYPE(layer.type) if LAYERTYPE.RNN == layer_type: attr.update({"n": layer.n}) attr.update({"batch": layer.batch}) attr.update({"num_hidden": str(layer.outputs)}) state = self._get_rnn_state_buffer(layer, "rnn") for _ in range(layer.steps): input_layer = layer.input_layer prefix = "_input_" + str(layer_num) sym = self._get_darknet_rnn_attrs(input_layer, prefix, sym) self_layer = layer.self_layer prefix = "_self_" + str(layer_num) state = self._get_darknet_rnn_attrs(self_layer, prefix, state) state = sym + state self._outs.append(state) output_layer = layer.output_layer prefix = "_output_" + str(layer_num) sym = self._get_darknet_rnn_attrs(output_layer, prefix, state) self._sym_array[layer_num] = sym processed = True return processed, sym def _make_outlist(self, sym, op_name, layer, layer_num): layer_type = LAYERTYPE(layer.type) if layer_type == LAYERTYPE.REGION: # Add attributes k = _get_params_name(op_name, "attr") dshape = self._tvmparams[k].shape dtype = self._tvmparams[k].dtype self._outs.insert(0, new_var(k, shape=dshape, dtype=dtype)) # Add bias k = _get_params_name(op_name, "bias") dshape = self._tvmparams[k].shape dtype = self._tvmparams[k].dtype self._outs.insert(0, new_var(k, shape=dshape, dtype=dtype)) if layer_num != self._net.n - 1: self._outs.insert(0, sym) elif layer_type == LAYERTYPE.YOLO: # Add attributes k = _get_params_name(op_name, "attr") dshape = self._tvmparams[k].shape dtype = self._tvmparams[k].dtype self._outs.insert(0, new_var(k, shape=dshape, dtype=dtype)) # Add bias k = _get_params_name(op_name, "bias") dshape = self._tvmparams[k].shape dtype = self._tvmparams[k].dtype self._outs.insert(0, new_var(k, shape=dshape, dtype=dtype)) # Add mask k = _get_params_name(op_name, "mask") dshape = self._tvmparams[k].shape dtype = self._tvmparams[k].dtype self._outs.insert(0, new_var(k, shape=dshape, dtype=dtype)) if layer_num != self._net.n - 1: self._outs.insert(0, sym) def from_darknet(self): """To convert the darknet symbol to relay functions.""" for i in range(self._net.n): layer = self._net.layers[i] need_skip, sym = self._preproc_layer(layer, i) if need_skip: continue processed, sym = self._handle_darknet_rnn_layers(i, sym) if processed: continue attr = self._get_darknet_attrs(layer, i) op_name = self._get_opname(layer) prefix = _get_params_prefix(op_name, i) params = self._get_darknet_params(self._net.layers[i], prefix) sym = _darknet_convert_symbol(op_name, _as_list(sym), params, attr, prefix) if params: self._tvmparams.update(params) self._sym_array[i] = sym self._make_outlist(sym, prefix, layer, i) outputs = _as_list(sym) + self._outs outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) sym = _function.Function(analysis.free_vars(outputs), outputs) return IRModule.from_expr(sym), self._tvmparams def from_darknet(net, shape=None, dtype="float32"): """Convert from Darknet's model into compatible relay Function. Parameters ---------- net : Darknet net parameter Darknet net structure. shape : dict of str to tuple, optional The input shape to the graph dtype : str or dict of str to str The input types to the graph Returns ------- mod : tvm.IRModule The relay module for compilation. params : dict of str to tvm.nd.NDArray The parameter dict to be used by relay """ return GraphProto(net, shape, dtype).from_darknet()
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/keras.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, import-outside-toplevel """Keras frontend.""" import dis import sys import numpy as np import tvm from tvm.ir import IRModule, TensorType, TupleType from .. import analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from ... import nd as _nd from .common import ExprTable, new_var __all__ = ["from_keras"] def _check_data_format(keras_layer): if hasattr(keras_layer, ("data_format")): if keras_layer.data_format != "channels_last": raise ValueError("Keras frontend currently supports data_format = channels_last only.") def _get_pad_pair(input1d, kernel1d, stride1d): out1d = (input1d + stride1d - 1) // stride1d pad = np.maximum((out1d - 1) * stride1d + kernel1d - input1d, 0) pad_before = pad // 2 pad_after = pad - pad_before return [pad_before, pad_after] def _get_elu(inexpr, alpha): """A helper method for elu.""" return _op.negative(alpha) * _op.nn.relu( _expr.const(1.0, dtype="float32") - _op.exp(inexpr) ) + _op.nn.relu(inexpr) def _as_list(arr): """Force being a list, ignore if already is.""" if isinstance(arr, list): return arr return [arr] def _convert_recurrent_activation(inexpr, keras_layer): act_type = keras_layer.recurrent_activation.__name__ return _convert_activation(inexpr, act_type, None, None, None) def _convert_activation( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument if isinstance(keras_layer, str): act_type = keras_layer else: if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type == "linear": if isinstance(keras_layer, str): return inexpr alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1.0 beta = keras_layer.beta if hasattr(keras_layer, "beta") else 0.0 alpha = _expr.const(alpha, dtype="float32") beta = _expr.const(beta, dtype="float32") return _op.add(_op.multiply(inexpr, alpha), beta) if act_type == "softmax": axis = 1 if data_layout == "NCHW" else -1 return _op.nn.softmax(inexpr, axis) if act_type == "sigmoid": return _op.sigmoid(inexpr) if act_type == "tanh": return _op.tanh(inexpr) if act_type == "relu": return _op.nn.relu(inexpr) if act_type == "softplus": return _op.log(_op.add(_op.exp(inexpr), _expr.const(1.0, dtype="float32"))) if act_type == "elu": alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1.0 alpha = _expr.const(alpha, dtype="float32") return _get_elu(inexpr, alpha) if act_type == "selu": # Alpha, Gamma values obtained from https://arxiv.org/abs/1706.02515 alpha = ( keras_layer.alpha if hasattr(keras_layer, "alpha") else 1.6732632423543772848170429916717 ) gamma = ( keras_layer.gamma if hasattr(keras_layer, "gamma") else 1.0507009873554804934193349852946 ) alpha = _expr.const(alpha, dtype="float32") gamma = _expr.const(gamma, dtype="float32") return gamma * _get_elu(inexpr, alpha) if act_type == "relu6": return _op.clip(inexpr, a_min=0.0, a_max=6.0) if act_type == "softsign": return inexpr / (_expr.const(1.0, dtype="float32") + _op.abs(inexpr)) if act_type == "hard_sigmoid": x = (_expr.const(0.2, dtype="float32") * inexpr) + _expr.const(0.5, dtype="float32") return _op.clip(x, a_min=0.0, a_max=1.0) raise tvm.error.OpNotImplemented( "Operator {} is not supported in frontend Keras.".format(act_type) ) def _convert_advanced_activation(inexpr, keras_layer, etab, data_layout, input_shape=None): act_type = type(keras_layer).__name__ if input_shape is None: input_shape = keras_layer.input_shape if act_type == "Softmax": axis = keras_layer.axis dims = len(input_shape) if isinstance(axis, list): raise tvm.error.OpAttributeUnImplemented( "Softmax with axes {} is not supported.".format(axis) ) if data_layout == "NCHW": if axis == -1: axis = 1 else: axis = axis + 1 if axis < dims - 1 else 1 return _op.nn.softmax(inexpr, axis=axis) if act_type == "ReLU": threshold = _expr.const(keras_layer.threshold, dtype="float32") if keras_layer.max_value and float(keras_layer.threshold) == 0: # f(x) = max_value, for x >= max_value # f(x) = x, for threshold <= x < max_value return _op.clip(inexpr, a_min=0.0, a_max=float(keras_layer.max_value)) if keras_layer.max_value and _op.greater(threshold, inexpr).astype("float32"): # f(x) = negative_slope * (inexpr - threshold) negative_slope = _expr.const(keras_layer.negative_slope, dtype="float32") return _op.multiply(negative_slope, _op.subtract(inexpr, threshold)) return _op.nn.relu(inexpr) if act_type == "LeakyReLU": return _op.nn.leaky_relu(inexpr, alpha=float(keras_layer.alpha)) if act_type == "ELU": alpha = keras_layer.alpha if hasattr(keras_layer, "alpha") else 1.0 alpha = _expr.const(alpha, dtype="float32") return _get_elu(inexpr, alpha) if act_type == "PReLU": assert hasattr(keras_layer, "alpha"), "alpha required for PReLU." _check_data_format(keras_layer) size = len(keras_layer.alpha.shape) if data_layout == "NCHW": alpha = etab.new_const(keras_layer.get_weights()[0].transpose(np.roll(range(size), 1))) else: alpha = etab.new_const(keras_layer.get_weights()[0]) return _op.negative(alpha) * _op.nn.relu(_op.negative(inexpr)) + _op.nn.relu(inexpr) if act_type == "ThresholdedReLU": theta = keras_layer.theta if hasattr(keras_layer, "theta") else 1.0 return _op.multiply( inexpr, _op.greater(inexpr, _expr.const(theta, dtype="float32")).astype("float32") ) raise tvm.error.OpNotImplemented( "Operator {} is not supported in frontend Keras.".format(act_type) ) def _convert_merge( inexpr, keras_layer, _, input_shape=None, data_layout=None ): # pylint: disable=unused-argument merge_type = type(keras_layer).__name__ ret = inexpr[0] if merge_type == "Dot": axes = keras_layer.axes if isinstance(keras_layer.axes, int): axes = [keras_layer.axes, keras_layer.axes] if isinstance(axes, list): if len(axes) != 2: raise tvm.error.OpAttributeUnImplemented( "Dot with axes {} is not supported.".format(keras_layer.axes) ) for i, axis in enumerate(axes): if axis not in [1, 2]: raise tvm.error.OpAttributeUnImplemented( "Dot with axes {} is not supported.".format(keras_layer.axes) ) if axes[i] == 2: inexpr[i] = _op.transpose(inexpr[i], axes=[0, 2, 1]) else: raise tvm.error.OpAttributeUnImplemented( "Dot with axes {} is not supported.".format(keras_layer.axes) ) ret_dot = _op.nn.batch_matmul(inexpr[0], inexpr[1]) ret = _op.transpose(ret_dot, axes=[0, 2, 1]) elif merge_type == "Subtract": assert len(inexpr) == 2, "Subtract merge takes 2 inputs." ret = _op.subtract(ret, inexpr[1]) elif merge_type in ["Add", "Multiply", "Minimum", "Maximum"]: op_map = { "Add": _op.add, "Multiply": _op.multiply, "Minimum": _op.minimum, "Maximum": _op.maximum, } for i in range(1, len(inexpr)): ret = op_map[merge_type](ret, inexpr[i]) elif merge_type == "Average": for i in range(1, len(inexpr)): ret = _op.add(ret, inexpr[i]) ret = ret / _expr.const(len(inexpr), dtype="float32") else: raise tvm.error.OpNotImplemented( "Operator {} is not supported in frontend Keras.".format(merge_type) ) return ret def _convert_permute( inexpr, keras_layer, _, input_shape=None, data_layout=None ): # pylint: disable=unused-argument return _op.transpose(inexpr, axes=(0,) + keras_layer.dims) def _convert_embedding( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument indices = inexpr weightList = keras_layer.get_weights() weight = etab.new_const(weightList[0]) out = _op.take(weight, indices.astype("int32"), axis=0) return out def _convert_dense( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument weightList = keras_layer.get_weights() weight = etab.new_const(weightList[0].transpose([1, 0])) params = {"weight": weight, "units": weightList[0].shape[1]} if input_shape is None: input_shape = keras_layer.input_shape input_dim = len(input_shape) # In case of RNN dense, input shape will be (1, 1, n) if input_dim > 2: input_shape = tuple(dim if dim else 1 for dim in _as_list(input_shape)[0]) if input_dim != 3 or input_shape[0] != 1 or input_shape[1] != 1: raise tvm.error.OpAttributeInvalid( "Input shape {} is not valid for operator Dense.".format(input_shape) ) inexpr = _op.squeeze(inexpr, axis=[0]) out = _op.nn.dense(data=inexpr, **params) if keras_layer.use_bias: bias = etab.new_const(weightList[1]) out = _op.nn.bias_add(out, bias) # defuse activation if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type != "linear": out = _convert_activation(out, act_type, etab, data_layout) if input_dim > 2: out = _op.expand_dims(out, axis=0) return out def _convert_convolution1d(inexpr, keras_layer, etab, data_layout, input_shape=None): if input_shape is None: input_shape = keras_layer.input_shape _check_data_format(keras_layer) weightList = keras_layer.get_weights() weight = weightList[0] if data_layout == "NWC": kernel_layout = "WIO" else: kernel_layout = "OIW" msg = ( "Kernel layout with {} is not supported for operator Convolution1D " "in frontend Keras." ) raise tvm.error.OpAttributeUnImplemented(msg.format(data_layout)) is_deconv = type(keras_layer).__name__ == "Conv1DTranspose" if is_deconv: if kernel_layout == "OIW": weight = weight.transpose([2, 0, 1]) kernel_w, n_filters, _ = weight.shape else: kernel_w, _, n_filters = weight.shape dilation_rate = keras_layer.dilation_rate if isinstance(dilation_rate, (list, tuple)): dilation = [dilation_rate[0]] else: dilation = [dilation_rate] dilated_kernel_w = (kernel_w - 1) * dilation[0] + 1 stride_w = keras_layer.strides[0] params = { "weight": etab.new_const(weight), "kernel_size": [kernel_w], "strides": [stride_w], "dilation": dilation, "padding": [0], "data_layout": data_layout, "kernel_layout": kernel_layout, } params["channels"] = n_filters if keras_layer.padding == "valid": pass # calculate the padding values elif keras_layer.padding == "same": in_w = input_shape[1] pad_w = _get_pad_pair(in_w, dilated_kernel_w, stride_w) params["padding"] = [pad_w[0], pad_w[1]] else: msg = "Padding with {} is not supported for operator Convolution3D " "in frontend Keras." raise tvm.error.OpAttributeUnImplemented(msg.format(keras_layer.padding)) if is_deconv: out = _op.nn.conv1d_transpose(data=inexpr, **params) else: out = _op.nn.conv1d(data=inexpr, **params) channel_axis = -1 if data_layout == "NWC" else 1 if keras_layer.use_bias: bias = etab.new_const(weightList[1]) out = _op.nn.bias_add(out, bias, channel_axis) # defuse activation if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type != "linear": out = _convert_activation(out, act_type, etab, data_layout) return out def _convert_convolution(inexpr, keras_layer, etab, data_layout, input_shape=None): _check_data_format(keras_layer) is_deconv = type(keras_layer).__name__ == "Conv2DTranspose" is_depthconv = type(keras_layer).__name__ == "DepthwiseConv2D" weightList = keras_layer.get_weights() weight = weightList[0] if input_shape is None: input_shape = keras_layer.input_shape if data_layout == "NHWC": if is_depthconv: kernel_layout = "HWOI" else: kernel_layout = "HWIO" else: if is_deconv: kernel_layout = "IOHW" else: kernel_layout = "OIHW" if is_deconv: kernel_h, kernel_w, n_filters, in_channels = weight.shape if kernel_layout == "IOHW": weight = weight.transpose([3, 2, 0, 1]) elif is_depthconv: kernel_h, kernel_w, in_channels, depth_mult = weight.shape if kernel_layout == "OIHW": weight = weight.transpose([2, 3, 0, 1]) elif data_layout == "NCHW": kernel_h, kernel_w, in_channels, n_filters = weight.shape weight = weight.transpose([3, 2, 0, 1]) else: kernel_h, kernel_w, in_channels, n_filters = weight.shape if isinstance(keras_layer.dilation_rate, (list, tuple)): dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]] else: dilation = [keras_layer.dilation_rate, keras_layer.dilation_rate] dilated_kernel_h = (kernel_h - 1) * dilation[0] + 1 dilated_kernel_w = (kernel_w - 1) * dilation[1] + 1 stride_h, stride_w = keras_layer.strides params = { "weight": etab.new_const(weight), "kernel_size": [kernel_h, kernel_w], "strides": [stride_h, stride_w], "dilation": dilation, "padding": [0, 0], "data_layout": data_layout, "kernel_layout": kernel_layout, } if is_depthconv: params["channels"] = in_channels * depth_mult params["groups"] = in_channels else: params["channels"] = n_filters if keras_layer.padding == "valid": pass # we insert a separate pad operator elif keras_layer.padding == "same": in_h = input_shape[1] in_w = input_shape[2] pad_t, pad_b = _get_pad_pair(in_h, dilated_kernel_h, stride_h) pad_l, pad_r = _get_pad_pair(in_w, dilated_kernel_w, stride_w) params["padding"] = (pad_t, pad_l, pad_b, pad_r) else: msg = "Padding with {} is not supported for operator Convolution " "in frontend Keras." raise tvm.error.OpAttributeUnImplemented(msg.format(keras_layer.padding)) if is_deconv: out = _op.nn.conv2d_transpose(data=inexpr, **params) else: out = _op.nn.conv2d(data=inexpr, **params) if keras_layer.use_bias: bias = etab.new_const(weightList[1]) if data_layout == "NCHW": out = _op.nn.bias_add(out, bias) else: out = _op.nn.bias_add(out, bias, axis=-1) # defuse activation if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type != "linear": out = _convert_activation(out, act_type, etab, data_layout) return out def _convert_convolution3d(inexpr, keras_layer, etab, data_layout, input_shape=None): _check_data_format(keras_layer) weightList = keras_layer.get_weights() weight = weightList[0] if input_shape is None: input_shape = keras_layer.input_shape if data_layout == "NDHWC": kernel_layout = "DHWIO" else: kernel_layout = "OIDHW" msg = ( "Kernel layout with {} is not supported for operator Convolution3D " "in frontend Keras." ) raise tvm.error.OpAttributeUnImplemented(msg.format(data_layout)) is_deconv = type(keras_layer).__name__ == "Conv3DTranspose" if is_deconv: kernel_d, kernel_h, kernel_w, n_filters, _ = weight.shape if kernel_layout == "OIDHW": weight = weight.transpose([4, 3, 2, 0, 1]) else: kernel_d, kernel_h, kernel_w, _, n_filters = weight.shape dilation_rate = keras_layer.dilation_rate if isinstance(dilation_rate, (list, tuple)): dilation = [dilation_rate[0], dilation_rate[1], dilation_rate[2]] else: dilation = [dilation_rate, dilation_rate, dilation_rate] dilated_kernel_d = (kernel_d - 1) * dilation[0] + 1 dilated_kernel_h = (kernel_h - 1) * dilation[1] + 1 dilated_kernel_w = (kernel_w - 1) * dilation[2] + 1 stride_d, stride_h, stride_w = keras_layer.strides params = { "weight": etab.new_const(weight), "kernel_size": [kernel_d, kernel_h, kernel_w], "strides": [stride_d, stride_h, stride_w], "dilation": dilation, "padding": [0, 0, 0], "data_layout": data_layout, "kernel_layout": kernel_layout, } params["channels"] = n_filters if keras_layer.padding == "valid": pass # calculate the padding values elif keras_layer.padding == "same": in_d = input_shape[1] in_h = input_shape[2] in_w = input_shape[3] pad_d = _get_pad_pair(in_d, dilated_kernel_d, stride_d) pad_h = _get_pad_pair(in_h, dilated_kernel_h, stride_h) pad_w = _get_pad_pair(in_w, dilated_kernel_w, stride_w) params["padding"] = [pad_d[0], pad_h[0], pad_w[0], pad_d[1], pad_h[1], pad_w[1]] else: msg = "Padding with {} is not supported for operator Convolution3D " "in frontend Keras." raise tvm.error.OpAttributeUnImplemented(msg.format(keras_layer.padding)) if is_deconv: out = _op.nn.conv3d_transpose(data=inexpr, **params) else: out = _op.nn.conv3d(data=inexpr, **params) channel_axis = -1 if data_layout == "NDHWC" else 1 if keras_layer.use_bias: bias = etab.new_const(weightList[1]) out = _op.nn.bias_add(out, bias, channel_axis) # defuse activation if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type != "linear": out = _convert_activation(out, act_type, etab, None) return out def _convert_separable_convolution(inexpr, keras_layer, etab, data_layout, input_shape=None): _check_data_format(keras_layer) if data_layout == "NHWC": kernel_layout = "HWOI" else: kernel_layout = "OIHW" if input_shape is None: input_shape = keras_layer.input_shape weightList = keras_layer.get_weights() # depthwise conv kernel_h, kernel_w, in_channels, depth_mult = weightList[0].shape stride_h, stride_w = keras_layer.strides if kernel_layout == "OIHW": weight0 = weightList[0].transpose([2, 3, 0, 1]) else: weight0 = weightList[0] params0 = { "weight": etab.new_const(weight0), "channels": in_channels * depth_mult, "groups": in_channels, "kernel_size": [kernel_h, kernel_w], "strides": [stride_h, stride_w], "dilation": [1, 1], "padding": [0, 0], "data_layout": data_layout, "kernel_layout": kernel_layout, } if keras_layer.padding == "valid": pass # we insert a separate pad operator elif keras_layer.padding == "same": in_h = input_shape[1] in_w = input_shape[2] pad_t, pad_b = _get_pad_pair(in_h, kernel_h, stride_h) pad_l, pad_r = _get_pad_pair(in_w, kernel_w, stride_w) params0["padding"] = (pad_t, pad_l, pad_b, pad_r) else: msg = ( "Padding with {} is not supported for operator Separable " "Convolution in frontend Keras." ) raise tvm.error.OpAttributeUnImplemented(msg.format(keras_layer.padding)) depthconv = _op.nn.conv2d(data=inexpr, **params0) # pointwise conv if kernel_layout == "OIHW": weight1 = weightList[1].transpose([3, 2, 0, 1]) else: weight1 = weightList[1] kernel_layout = "HWIO" params1 = { "weight": etab.new_const(weight1), "channels": weightList[1].shape[3], "groups": 1, "kernel_size": [1, 1], "strides": [1, 1], "dilation": [1, 1], "data_layout": data_layout, "kernel_layout": kernel_layout, } out = _op.nn.conv2d(data=depthconv, **params1) if keras_layer.use_bias: bias = etab.new_const(weightList[2]) if data_layout == "NCHW": out = _op.nn.bias_add(out, bias) else: out = _op.nn.bias_add(out, bias, axis=-1) # defuse activation if sys.version_info.major < 3: act_type = keras_layer.activation.func_name else: act_type = keras_layer.activation.__name__ if act_type != "linear": out = _convert_activation(out, act_type, etab, data_layout) return out def _convert_flatten( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) # NCHW -> NHWC so that dense can be correctly converted if data_layout == "NCHW": inexpr = _op.transpose(inexpr, axes=[0, 2, 3, 1]) return _op.nn.batch_flatten(inexpr) def _convert_pooling( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) pool_type = type(keras_layer).__name__ # global pool in keras = global pool + flatten in relay global_pool_params = {"layout": data_layout} if input_shape is None: input_shape = keras_layer.input_shape if pool_type == "GlobalMaxPooling2D": return _convert_flatten( _op.nn.global_max_pool2d(inexpr, **global_pool_params), keras_layer, etab, data_layout ) if pool_type == "GlobalAveragePooling2D": global_avg_pool2d = _op.nn.global_avg_pool2d(inexpr, **global_pool_params) keep_dims = len(keras_layer.input.shape) == len(keras_layer.output.shape) if keep_dims: return global_avg_pool2d return _convert_flatten(global_avg_pool2d, keras_layer, etab, data_layout) pool_h, pool_w = keras_layer.pool_size stride_h, stride_w = keras_layer.strides params = { "pool_size": [pool_h, pool_w], "strides": [stride_h, stride_w], "padding": [0, 0], "layout": data_layout, } if keras_layer.padding == "valid": pass elif keras_layer.padding == "same": in_h = input_shape[1] in_w = input_shape[2] pad_t, pad_b = _get_pad_pair(in_h, pool_h, stride_h) pad_l, pad_r = _get_pad_pair(in_w, pool_w, stride_w) params["padding"] = [pad_t, pad_l, pad_b, pad_r] else: raise tvm.error.OpAttributeUnImplemented( "Padding with {} is not supported in operator Pooling.".format(keras_layer.padding) ) if pool_type == "MaxPooling2D": return _op.nn.max_pool2d(inexpr, **params) if pool_type == "AveragePooling2D": params["count_include_pad"] = False return _op.nn.avg_pool2d(inexpr, **params) raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend Keras.".format(keras_layer) ) def _convert_pooling3d( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) pool_type = type(keras_layer).__name__ if input_shape is None: input_shape = keras_layer.input_shape if pool_type not in ["MaxPooling3D", "AveragePooling3D"]: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend Keras.".format(keras_layer) ) pool_d1, pool_d2, pool_d3 = keras_layer.pool_size stride_d1, stride_d2, stride_d3 = keras_layer.strides params = { "pool_size": [pool_d1, pool_d2, pool_d3], "strides": [stride_d1, stride_d2, stride_d3], "padding": [0, 0, 0], "layout": data_layout, } if keras_layer.padding == "valid": pass elif keras_layer.padding == "same": in_d1 = input_shape[1] in_d2 = input_shape[2] in_d3 = input_shape[3] pad_d1 = _get_pad_pair(in_d1, pool_d1, stride_d1) pad_d2 = _get_pad_pair(in_d2, pool_d2, stride_d2) pad_d3 = _get_pad_pair(in_d3, pool_d3, stride_d3) params["padding"] = [pad_d1[0], pad_d2[0], pad_d3[0], pad_d1[1], pad_d2[1], pad_d3[1]] else: raise tvm.error.OpAttributeUnImplemented( "Padding with {} is not supported in operator Pooling3D.".format(keras_layer.padding) ) out = _op.transpose(inexpr, axes=(0, 4, 1, 2, 3)) params["layout"] = "NCDHW" if pool_type == "MaxPooling3D": out = _op.nn.max_pool3d(out, **params) elif pool_type == "AveragePooling3D": out = _op.nn.avg_pool3d(out, **params) return _op.transpose(out, axes=(0, 2, 3, 4, 1)) def _convert_global_pooling3d( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) pool_type = type(keras_layer).__name__ global_pool_params = {"layout": data_layout} if pool_type == "GlobalMaxPooling3D": out = _op.nn.global_max_pool3d(inexpr, **global_pool_params) elif pool_type == "GlobalAveragePooling3D": out = _op.nn.global_avg_pool3d(inexpr, **global_pool_params) else: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend Keras.".format(keras_layer) ) return _convert_flatten(out, keras_layer, etab, input_shape, data_layout) def _convert_upsample( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) upsample_type = type(keras_layer).__name__ params = {} if upsample_type == "UpSampling1D": h = keras_layer.size params["scale_h"] = h elif upsample_type == "UpSampling2D": h, w = keras_layer.size if h != w: raise tvm.error.OpAttributeInvalid("Height must equal width for operator Upsample.") params["scale_h"] = h params["scale_w"] = h if hasattr(keras_layer, "interpolation"): interpolation = keras_layer.interpolation if interpolation == "nearest": params["method"] = "nearest_neighbor" else: params["method"] = "bilinear" else: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend Keras.".format(upsample_type) ) params["layout"] = data_layout out = _op.nn.upsampling(inexpr, **params) return out def _convert_upsample3d( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) params = {} d, h, w = keras_layer.size params["scale_d"] = d params["scale_h"] = h params["scale_w"] = w params["layout"] = data_layout params["coordinate_transformation_mode"] = "asymmetric" out = _op.nn.upsampling3d(inexpr, **params) return out def _convert_cropping( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) crop_type = type(keras_layer).__name__ if input_shape is None: input_shape = keras_layer.input_shape if crop_type == "Cropping2D": (_, in_h, in_w, _) = input_shape ((crop_t, crop_b), (crop_l, crop_r)) = keras_layer.cropping else: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend Keras.".format(crop_type) ) int32_max = np.iinfo(np.int32).max return _op.strided_slice( inexpr, begin=[0, 0, crop_t, crop_l], end=[int32_max, int32_max, in_h - crop_b, in_w - crop_r], ) def _convert_batchnorm(inexpr, keras_layer, etab, data_layout, input_shape=None): if input_shape is None: input_shape = keras_layer.input_shape if data_layout == "NCHW" or len(input_shape) < 4: axis = 1 else: axis = 3 params = {"scale": False, "center": False, "epsilon": keras_layer.epsilon, "axis": axis} idx = 0 if keras_layer.scale: params["scale"] = True gamma = keras_layer.get_weights()[idx] params["gamma"] = etab.new_const(gamma) idx += 1 if keras_layer.center: params["center"] = True beta = keras_layer.get_weights()[idx] params["beta"] = etab.new_const(beta) idx += 1 moving_mean = keras_layer.get_weights()[idx] moving_var = keras_layer.get_weights()[idx + 1] params["moving_mean"] = etab.new_const(moving_mean) params["moving_var"] = etab.new_const(moving_var) # in case beta or gamma is not defined params["beta"] = ( etab.new_const(np.zeros(moving_mean.shape)) if "beta" not in params else params["beta"] ) params["gamma"] = ( etab.new_const(np.ones(moving_mean.shape)) if "gamma" not in params else params["gamma"] ) result, moving_mean, moving_var = _op.nn.batch_norm(inexpr, **params) return result def _convert_padding( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) padding_type = type(keras_layer).__name__ padding = keras_layer.padding top = left = bottom = right = 0 if padding_type == "ZeroPadding2D": if isinstance(padding, int): top = left = bottom = right = padding elif isinstance(padding, tuple): if isinstance(padding[0], int): top, left = padding bottom, right = padding elif isinstance(padding[0], tuple): top, bottom = padding[0] left, right = padding[1] else: msg = 'Value {} in attribute "padding" of operator Padding ' "is not valid." raise tvm.error.OpAttributeInvalid(msg.format(str(padding))) else: msg = 'Value {} in attribute "padding" of operator Padding is ' "not valid." raise tvm.error.OpAttributeInvalid(msg.format(str(padding))) else: msg = "Operator {} is not supported in frontend Keras." raise tvm.error.OpNotImplemented(msg.format(padding_type)) if data_layout == "NCHW": return _op.nn.pad(data=inexpr, pad_width=((0, 0), (0, 0), (top, bottom), (left, right))) return _op.nn.pad(data=inexpr, pad_width=((0, 0), (top, bottom), (left, right), (0, 0))) def _convert_padding3d( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) padding = keras_layer.padding d_pad = h_pad = w_pad = [0, 0] # padding can be 'int' or 'tuple of 3 ints' or 'tuple of 3 tuples of 2 ints' or 'tuple # of 3 tuples of 2 ints different values'. In all these scenarios keras will send 3 # tuples of 2 ints. if isinstance(padding, tuple) and isinstance(padding[0], tuple): d_pad = padding[0] h_pad = padding[1] w_pad = padding[2] else: msg = 'Value {} in attribute "padding" of operator ZeroPadding3D is ' "not valid." raise tvm.error.OpAttributeInvalid(msg.format(str(padding))) if data_layout == "NCDHW": out = _op.nn.pad( data=inexpr, pad_width=( (0, 0), (0, 0), (d_pad[0], d_pad[1]), (h_pad[0], h_pad[1]), (w_pad[0], w_pad[1]), ), ) else: out = _op.nn.pad( data=inexpr, pad_width=( (0, 0), (d_pad[0], d_pad[1]), (h_pad[0], h_pad[1]), (w_pad[0], w_pad[1]), (0, 0), ), ) return out def _convert_concat( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) if input_shape is None: input_shape = keras_layer.input_shape if data_layout == "NHWC" or len(input_shape[0]) < 4: axis = -1 else: axis = 1 return _op.concatenate(_as_list(inexpr), axis=axis) def _convert_reshape( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) if input_shape is None: input_shape = keras_layer.input_shape inshape = input_shape # includes batch tshape = keras_layer.target_shape # no batch shape = (-1,) + tshape if data_layout == "NCHW" and (len(inshape) > 3 or len(tshape) > 2): # Perform reshape in original NHWC format. inexpr = _op.transpose(inexpr, [0] + list(range(2, len(inshape))) + [1]) inexpr = _op.reshape(inexpr, newshape=shape) return _op.transpose(inexpr, axes=[0, -1] + list(range(1, len(shape) - 1))) return _op.reshape(inexpr, newshape=shape) def _convert_lstm( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) if input_shape is None: input_shape = keras_layer.input_shape if not isinstance(inexpr, list): buf = np.zeros((1, keras_layer.units), "float32") c_op = etab.new_const(buf) h_op = etab.new_const(buf) inexpr = [inexpr, h_op, c_op] in_data = inexpr[0] next_h = inexpr[1] next_c = inexpr[2] weightList = keras_layer.get_weights() in_shape = tuple(dim if dim else 1 for dim in _as_list(input_shape)[0]) kernel_weight = etab.new_const(weightList[0].transpose([1, 0])) recurrent_weight = etab.new_const(weightList[1].transpose([1, 0])) if keras_layer.use_bias: in_bias = etab.new_const(weightList[2]) units = list(weightList[0].shape)[1] time_steps = in_shape[1] in_data = _op.squeeze(in_data, axis=[0]) in_data = _op.split(in_data, indices_or_sections=time_steps, axis=0) # loop for the number of time_steps out_list = [] # store h outputs in case return_sequences is True for data in in_data: ixh1 = _op.nn.dense(data, kernel_weight, units=units) ixh2 = _op.nn.dense(next_h, recurrent_weight, units=units) if keras_layer.use_bias: ixh2 = _op.nn.bias_add(ixh2, bias=in_bias) gate = ixh1 + ixh2 gates = _op.split(gate, indices_or_sections=4, axis=1) in_gate = _convert_recurrent_activation(gates[0], keras_layer) in_transform = _convert_recurrent_activation(gates[1], keras_layer) next_c = in_transform * next_c + in_gate * _convert_activation( gates[2], keras_layer, etab, data_layout ) out_gate = _convert_recurrent_activation(gates[3], keras_layer) next_h = out_gate * _convert_activation(next_c, keras_layer, etab, data_layout) if keras_layer.return_sequences: out_list.append(_op.expand_dims(next_h, axis=1)) out = _op.concatenate(out_list, axis=1) if keras_layer.return_sequences else next_h out_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.output_shape)[0]) out = _op.reshape(out, newshape=out_shape) return [out, next_h, next_c] def _convert_simple_rnn( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) if not isinstance(inexpr, list): buf = np.zeros((1, keras_layer.units), "float32") prev_op = etab.new_const(buf) inexpr = [inexpr, prev_op] in_data = inexpr[0] prev_op = inexpr[1] weightList = keras_layer.get_weights() kernel_weight = etab.new_const(weightList[0].transpose([1, 0])) recurrent_weight = etab.new_const(weightList[1].transpose([1, 0])) if keras_layer.use_bias: in_bias = etab.new_const(weightList[2]) units = list(weightList[0].shape)[1] in_data = _op.nn.batch_flatten(in_data) ixh = _op.nn.dense(in_data, kernel_weight, units=units) if keras_layer.use_bias: ixh = _op.nn.bias_add(ixh, bias=in_bias) prev_op = _op.nn.batch_flatten(prev_op) ixh2 = _op.nn.dense(prev_op, recurrent_weight, units=units) output = ixh + ixh2 output = _convert_activation(output, keras_layer, etab, data_layout) out_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.output_shape)[0]) output = _op.reshape(output, newshape=out_shape) return [output, output] def _convert_gru( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument _check_data_format(keras_layer) if not isinstance(inexpr, list): buf = np.zeros((1, keras_layer.units), "float32") h_tm1 = etab.new_const(buf) inexpr = [inexpr, h_tm1] in_data = inexpr[0] h_tm1_op = inexpr[1] weightList = keras_layer.get_weights() kernel_weight = etab.new_const(weightList[0].transpose([1, 0])) recurrent_weight = etab.new_const(weightList[1].transpose([1, 0])) if keras_layer.use_bias: in_bias = etab.new_const(weightList[2]) units = list(weightList[0].shape)[1] in_data = _op.nn.batch_flatten(in_data) matrix_x = _op.nn.dense(in_data, kernel_weight, units=units) if keras_layer.use_bias: matrix_x = _op.nn.bias_add(matrix_x, in_bias) # inputs projected by all gate matrices at once split_indices = [keras_layer.units, 2 * keras_layer.units] gates = _op.split(matrix_x, indices_or_sections=split_indices, axis=1) x_z = gates[0] x_r = gates[1] x_h = gates[2] # hidden state projected separately for update/reset and new units = 2 * keras_layer.units split_indices = [units] rec_weights = _op.split(recurrent_weight, indices_or_sections=split_indices, axis=0) h_tm1_op = _op.nn.batch_flatten(h_tm1_op) matrix_inner = _op.nn.dense(h_tm1_op, rec_weights[0], units=units) split_indices = [keras_layer.units] recurrent = _op.split(matrix_inner, indices_or_sections=split_indices, axis=1) recurrent_z = recurrent[0] recurrent_r = recurrent[1] rec_act_z = _convert_recurrent_activation(x_z + recurrent_z, keras_layer) rec_act_r = _convert_recurrent_activation(x_r + recurrent_r, keras_layer) units = keras_layer.units recurrent_h = _op.nn.dense(rec_act_r * h_tm1_op, rec_weights[1], units=units) act_hh = _convert_activation(x_h + recurrent_h, keras_layer, etab, data_layout) # previous and candidate state mixed by update gate output = rec_act_z * h_tm1_op + (_expr.const(1.0, dtype="float32") - rec_act_z) * act_hh out_shape = tuple(dim if dim else 1 for dim in _as_list(keras_layer.output_shape)[0]) output = _op.reshape(output, newshape=out_shape) return [output, output] def _convert_repeat_vector( inexpr, keras_layer, etab, data_layout, input_shape=None ): # pylint: disable=unused-argument if input_shape is None: input_shape = keras_layer.input_shape input_shape = list(input_shape) repeats = keras_layer.n out_shape = [-1, repeats] + input_shape[1:] out = _op.repeat(inexpr, repeats=repeats, axis=0) out = _op.reshape(out, out_shape) return out def _convert_l2_normalize(inexpr, keras_layer, data_layout): l2_normalize_is_loaded = False param_list = [] for i in dis.get_instructions(keras_layer.function): if i.opname in ["LOAD_GLOBAL", "LOAD_DEREF"]: continue if i.opname in ["LOAD_ATTR", "LOAD_METHOD"]: if i.argval == "l2_normalize": assert not l2_normalize_is_loaded, "l2_normalize was already LOADED" l2_normalize_is_loaded = True elif i.opname in ["LOAD_CONST", "LOAD_FAST"] and l2_normalize_is_loaded: param_list.append(i.argval) elif i.opname == "BUILD_LIST": sz = i.argval assert len(param_list) >= sz new_list = param_list[-sz:] param_list = param_list[:-sz] param_list.append(new_list) elif i.opname in ["CALL_FUNCTION_KW", "CALL_METHOD"]: break axis = None is_param_list_parsed = False if l2_normalize_is_loaded and len(param_list) > 0: # last param_list item is tuple of strings means that # lambda uses named parameters when calling l2_normalize if ( isinstance(param_list[-1], tuple) and len(param_list[-1]) > 0 and isinstance(param_list[-1][0], str) ): param_names = param_list[-1] if len(param_names) == 1 and param_names[0] == "x": # lambda v: K.l2_normalize(x=v) axis = None is_param_list_parsed = True elif len(param_names) == 1 and param_names[0] == "axis" and len(param_list) == 3: # lambda x: K.l2_normalize(x, axis=(2,3)) axis = param_list[1] is_param_list_parsed = True elif len(param_names) == 2 and len(param_list) == 3: # lambda x: K.l2_normalize(x=x, axis=(2,3)) # lambda x: K.l2_normalize(axis=(2,3), x=x) axis = param_list[param_names.index("axis")] is_param_list_parsed = True else: # lambda x: K.l2_normalize(x) if len(param_list) == 1: axis = None is_param_list_parsed = True # lambda x: K.l2_normalize(x, (2,3)) elif len(param_list) == 2: axis = param_list[1] is_param_list_parsed = True def is_int_or_tuple_of_ints(v): if isinstance(v, list) and len(v) > 0: for i in v: if not isinstance(i, int): return False return True if isinstance(v, tuple) and len(v) > 0: return isinstance(v[0], int) return isinstance(v, int) assert is_param_list_parsed and ( axis is None or is_int_or_tuple_of_ints(axis) ), "Can not parse l2_normalize lambda function found in Lambda layer" if isinstance(axis, int): axis = [axis] if data_layout == "NCHW": dims = len(keras_layer.input_shape) def fix_axis_for_nchw(axis): if axis == 0: return 0 if axis in [(dims - 1), -1]: return 1 return axis + 1 axis = [fix_axis_for_nchw(x) for x in axis] return _op.nn.l2_normalize(inexpr, eps=1e-12, axis=axis) def _convert_lambda(inexpr, keras_layer, _, data_layout): fcode = keras_layer.function.__code__ # Convert l2_normalize if ( fcode.co_name == "<lambda>" and len(fcode.co_names) > 0 and fcode.co_names[-1] == "l2_normalize" ): return _convert_l2_normalize(inexpr, keras_layer, data_layout) raise tvm.error.OpNotImplemented( "Function {} used in Lambda layer is not supported in frontend Keras.".format( fcode.co_names ) ) def _convert_time_distributed(inexpr, keras_layer, etab, data_layout, input_shape=None): # TimeDistributed: split input tensor along the second dimension (assumed to be time), # apply inner layer to each split individually, # and then combine the results if input_shape is None: input_shape = keras_layer.input_shape assert len(input_shape) >= 2, "Input to TimeDistributed must have at least two dimensions" inner_layer = keras_layer.layer inner_input_shape = [d for (i, d) in enumerate(input_shape) if i != 1] # for NDHWC, inner data layout will drop the D inner_data_layout = data_layout if data_layout == "NDHWC": inner_data_layout = "NHWC" # some code duplication from keras_op_to_relay # but it's useful to avoid cluttering the etab inner_layer_op_name = type(keras_layer.layer).__name__ if inner_layer_op_name not in _convert_map: raise tvm.error.OpNotImplemented( "The inner layer for TimeDistributed {} is not supported for frontend Keras.".format( inner_layer_op_name ) ) conversion_func = lambda expr: _convert_map[inner_layer_op_name]( expr, inner_layer, etab, inner_data_layout, input_shape=inner_input_shape ) split_dim = input_shape[1] split_input = _op.split(inexpr, split_dim, 1) split_shape = list(input_shape) if split_shape[0] is None: split_shape[0] = 1 split_shape[1] = 1 split_var = new_var( "time_distributed_split", type_annotation=TupleType( [TensorType(split_shape, dtype="float32") for i in range(split_dim)] ), ) # For each split, squeeze away the second dimension, # apply the inner layer. # Afterwards, combine the transformed splits back along # the second dimension using stack splits = [ conversion_func(_op.squeeze(_expr.TupleGetItem(split_var, i), axis=[1])) for i in range(split_dim) ] return _expr.Let(split_var, split_input.astuple(), _op.stack(splits, axis=1)) def _default_skip(inexpr, keras_layer, etab, data_layout): # pylint: disable=unused-argument """Layers that can be skipped because they are train time only.""" return inexpr _convert_map = { "Dense": _convert_dense, "Activation": _convert_activation, "Softmax": _convert_advanced_activation, "ReLU": _convert_advanced_activation, "LeakyReLU": _convert_advanced_activation, "PReLU": _convert_advanced_activation, "ELU": _convert_advanced_activation, "ThresholdedReLU": _convert_advanced_activation, "AveragePooling2D": _convert_pooling, "MaxPooling2D": _convert_pooling, "GlobalAveragePooling2D": _convert_pooling, "GlobalMaxPooling2D": _convert_pooling, "Conv2D": _convert_convolution, "Conv2DTranspose": _convert_convolution, "DepthwiseConv2D": _convert_convolution, "SeparableConv2D": _convert_separable_convolution, "Flatten": _convert_flatten, "Reshape": _convert_reshape, "Concatenate": _convert_concat, "BatchNormalization": _convert_batchnorm, # Specific tf.Keras terminology for batch normalization "BatchNormalizationV1": _convert_batchnorm, "Add": _convert_merge, "Subtract": _convert_merge, "Multiply": _convert_merge, "ZeroPadding2D": _convert_padding, "UpSampling2D": _convert_upsample, "Cropping2D": _convert_cropping, # 'ZeroPadding1D' : _convert_padding, # 'AveragePooling1D' : _convert_pooling, # 'MaxPooling1D' : _convert_pooling, # 'GlobalAveragePooling1D' : _convert_pooling, # 'GlobalMaxPooling1D' : _convert_pooling, # 'Cropping1D' : _convert_cropping, # 'UpSampling1D' : _convert_upsample, "Conv1D": _convert_convolution1d, # "Conv1DTranspose": _convert_convolution1d, "Conv3D": _convert_convolution3d, "Conv3DTranspose": _convert_convolution3d, # 'SeparableConv3D' : _convert_convolution3d, "MaxPooling3D": _convert_pooling3d, "AveragePooling3D": _convert_pooling3d, "GlobalMaxPooling3D": _convert_global_pooling3d, "GlobalAveragePooling3D": _convert_global_pooling3d, "UpSampling3D": _convert_upsample3d, "ZeroPadding3D": _convert_padding3d, "SimpleRNN": _convert_simple_rnn, "LSTM": _convert_lstm, "GRU": _convert_gru, # 'Bidirectional' : _convert_bidirectional, "TimeDistributed": _convert_time_distributed, "Average": _convert_merge, "Minimum": _convert_merge, "Maximum": _convert_merge, "Dot": _convert_merge, "Permute": _convert_permute, "Embedding": _convert_embedding, "RepeatVector": _convert_repeat_vector, "Lambda": _convert_lambda, "InputLayer": _default_skip, "Dropout": _default_skip, "AlphaDropout": _default_skip, "SpatialDropout2D": _default_skip, "SpatialDropout1D": _default_skip, "GaussianDropout": _default_skip, "GaussianNoise": _default_skip, } def _check_unsupported_layers(model): missing_ops = set() for layer in model.layers: op_name = type(layer).__name__ if op_name not in _convert_map: missing_ops.add(op_name) if missing_ops: raise NotImplementedError( "The following operators are not implemented: {}".format(missing_ops) ) def keras_op_to_relay(inexpr, keras_layer, outname, etab, data_layout): """Convert a Keras layer to a Relay expression and update the expression table. Parameters ---------- inexpr : relay.expr.Expr or a list of it The input Relay expression(s). keras_layer : keras.layers The Keras layer to be converted. outname : str Name of the output Relay expression. etab : relay.frontend.common.ExprTable The global expression table to be updated. data_layout : str The input data layout """ op_name = type(keras_layer).__name__ if op_name not in _convert_map: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend Keras.".format(op_name) ) outs = _convert_map[op_name](inexpr, keras_layer, etab, data_layout) outs = _as_list(outs) for t_idx, out in enumerate(outs): name = outname + ":" + str(t_idx) etab.set_expr(name, out) return outs def from_keras(model, shape=None, layout="NCHW"): """Convert keras model to relay Function. Parameters ---------- model : keras.engine.training.Model or tensorflow.keras.models.Model The keras model to be converted. shape: dict of str to int list/tuple Input shapes of the model, optional layout: str One of 'NCHW' or 'NHWC', indicates how data should be arranged in the output model. Default layout is 'NCHW' as it in general performs better across TVM. Returns ------- mod : tvm.IRModule The relay module for compilation. params : dict of str to tvm.nd.NDArray The parameter dict to be used by Relay. """ def _check_model_is_tf_keras(): return type(model).__module__.startswith("tensorflow.python.keras") def _convert_input_layer(keras_layer): input_name = keras_layer.name input_shape = shape[input_name] if shape is not None and input_name in shape else None etab.set_expr(input_name, new_var(input_name, shape=input_shape)) def _convert_layer(keras_layer, etab, scope=""): inbound_nodes = ( keras_layer.inbound_nodes if hasattr(keras_layer, "inbound_nodes") else keras_layer._inbound_nodes if hasattr(keras_layer, "_inbound_nodes") else None ) if inbound_nodes is None: raise TypeError( "Unknown layer type or unsupported Keras version : {}".format(keras_layer) ) outs = [] for node_idx, node in enumerate(inbound_nodes): # If some nodes in imported model are not relevant to the current model, # skip such layers. # - In Keras, model._network_nodes contains keys of all nodes relevant to the # current model; # - In tf.Keras, this is already done as part of tensorflow.keras.network.get_config if not is_tf_keras: if ( hasattr(model, "_node_key") and not model._node_key(keras_layer, node_idx) in model._network_nodes ): continue inexpr = [] # Since Keras allows creating multiple layers from the same name instance, # we append node index to the expr name to make it unique. # The one exception is InputLayer. Changing input variable names after conversion # would confuse users, so we should keep them as far as possible. Fortunately, # they are named uniquely to input_1, input_2, input_3... by default. # node_indices attribute removed in tensorflow 2.3, however iterate_inbound() can # be used if hasattr(node, "node_indices"): zip_node = zip( _as_list(node.inbound_layers), _as_list(node.node_indices), _as_list(node.tensor_indices), _as_list(node.input_tensors), ) node_attributes = zip_node else: node_attributes = node.iterate_inbound() for inbound_layer, n_idx, t_idx, _ in node_attributes: if isinstance(inbound_layer, input_layer_class): expr_name = inbound_layer.name _convert_input_layer(inbound_layer) else: expr_name = scope + inbound_layer.name + ":" + str(n_idx) + ":" + str(t_idx) expr = etab.get_expr(expr_name) inexpr.append(expr) # Handle nested layers if hasattr(keras_layer, "layers"): input_index = 0 for layer in keras_layer.layers: if isinstance(layer, input_layer_class): # Replace input layer with inbound node etab.set_expr(layer.name, inexpr[input_index]) input_index += 1 else: # Convert child layer. Prepend scope with parent layer name. layer_outs = _convert_layer(layer, etab, keras_layer.name + "_" + scope) # Get output of last child layer and mark as output of parent. outname = keras_layer.name + ":" + str(node_idx) for t_idx, out in enumerate(layer_outs): name = outname + ":" + str(t_idx) etab.set_expr(name, out) outs.extend(layer_outs) else: if len(inexpr) == 1: inexpr = inexpr[0] outs.extend( keras_op_to_relay( inexpr, keras_layer, scope + keras_layer.name + ":" + str(node_idx), etab, layout, ) ) return outs is_tf_keras = _check_model_is_tf_keras() if not is_tf_keras: # Importing from Keras try: import keras except ImportError: raise ImportError("Keras must be installed") if keras.backend.backend() != "tensorflow": raise ValueError("Keras frontend currently supports tensorflow backend only.") if keras.backend.image_data_format() != "channels_last": raise ValueError("Keras frontend currently supports data_format = channels_last only.") expected_model_class = keras.engine.training.Model if hasattr(keras.engine, "InputLayer"): input_layer_class = keras.engine.InputLayer else: # TFlite >=2.6 input_layer_class = keras.engine.input_layer.InputLayer else: # Importing from Tensorflow Keras (tf.keras) try: from tensorflow import keras as tf_keras except ImportError: raise ImportError("Tensorflow must be installed") expected_model_class = tf_keras.models.Model input_layer_class = tf_keras.layers.InputLayer assert isinstance(model, expected_model_class) etab = ExprTable() # Set global data format. assert layout in [ "NWC", "NCHW", "NHWC", "NDHWC", ], "Layout must be one of 'NWC', 'NCHW', NHWC or NDHWC" for keras_layer in model.layers: if isinstance(keras_layer, input_layer_class): _convert_input_layer(keras_layer) else: _convert_layer(keras_layer, etab) # model._output_coordinates contains out_node(oc[0]), node_index(oc[1]) and tensor_index(oc[2]) # Get all output nodes in etab using the name made from above values. # The out exprs were added to etab in keras_op_to_relay using this name. outexpr = [ etab.get_expr(oc[0].name + ":" + str(oc[1]) + ":" + str(oc[2])) for oc in model._output_coordinates ] outexpr = outexpr[0] if len(outexpr) == 1 else _expr.Tuple(outexpr) func = _function.Function(analysis.free_vars(outexpr), outexpr) params = {k: _nd.array(np.array(v, dtype=np.float32)) for k, v in etab.params.items()} return IRModule.from_expr(func), params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/mxnet.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, len-as-condition, no-else-return, too-many-lines """MXNet symbol frontend.""" import json import math import numpy as np import tvm from tvm import relay from tvm.ir import IRModule from tvm.topi.utils import get_const_tuple from ... import nd as _nd from .. import analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from .. import scope_builder as _scope_builder from .common import StrAttrsDict from .common import get_name as _get_name from .common import infer_shape as _infer_shape from .common import infer_type as _infer_type from .common import infer_value as _infer_value from .mxnet_qnn_op_utils import ( dequantize_mxnet_min_max, get_conv_mkldnn_requantized_scale_outDtype, get_mkldnn_int8_scale, get_mkldnn_requantize_scale_outDtype, get_mkldnn_uint8_scale, quantize_conv_bias_mkldnn_from_var, quantize_conv_weights_bias_channel_mkldnn_from_var, quantize_mxnet_min_max, ) from .nnvm_common import ( _arg_reduce, _binop_scalar, _cast, _clip, _elemwise_sum, _init_op, _rbinop_scalar, _reduce, _rename, _reshape, _softmax_op, _transpose, _upsampling, _warn_not_used, ) __all__ = ["from_mxnet"] _activation_map = {"sigmoid": _op.sigmoid, "tanh": _op.tanh, "relu": _op.nn.relu} def _mx_fully_connected(inputs, attrs): import mxnet as mx # pylint: disable=import-outside-toplevel units = attrs.get_int("num_hidden") use_bias = not attrs.get_bool("no_bias", False) try: _ = mx.sym.FullyConnected(mx.sym.var("x"), num_hidden=1, flatten=True) has_flatten = True except mx.base.MXNetError: # no flatten attribute in old mxnet has_flatten = False use_flatten = attrs.get_bool("flatten", True) if has_flatten and use_flatten: inputs[0] = _op.nn.batch_flatten(inputs[0]) data_shape = _infer_type(inputs[0]).checked_type.shape if len(data_shape) > 2: inputs[0] = _op.reverse_reshape(inputs[0], [-1, 0]) res = _op.nn.dense(inputs[0], inputs[1], units=units) if use_bias: assert len(inputs) == 3 res = _op.nn.bias_add(res, inputs[2], axis=-1) if len(data_shape) > 2: new_shape = data_shape[:-1] new_shape.append(units) res = _op.reshape(res, new_shape) return res def _get_channel_axis(layout, op_name): if layout in ["NCHW", "NCDHW"]: return 1 if layout == "NHWC": return 3 if layout == "NDHWC": return 4 raise tvm.error.OpAttributeInvalid( 'Value {} in attribute "layout" of operator {} is not valid.'.format(layout, op_name) ) def _mx_activations(inputs, attrs): act_type = attrs.get_str("act_type") assert len(inputs) == 1 if act_type == "softrelu": def _stable_softrelu(x): # log(1 + exp(-abs(x))) + relu(x) one = _expr.const(1, dtype="float32") exp_neg_abs_x = _op.exp(_op.negative(_op.abs(x))) return _op.add(_op.log(_op.add(one, exp_neg_abs_x)), _op.nn.relu(x)) return _stable_softrelu(inputs[0]) if act_type not in _activation_map: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend MXNet.".format(act_type) ) return _activation_map[act_type](inputs[0]) def _mx_compare(new_op, wrapper): def impl(inputs, attrs): expr = _infer_type(inputs[0]) dtype = expr.checked_type.dtype return wrapper(new_op)(inputs, attrs).astype(dtype) return impl def _mx_unravel_index(inputs, attrs): assert len(inputs) == 1 shape = attrs.get_int_tuple("shape") shape_expr = _expr.const(list(shape)) return _op.unravel_index(inputs[0], shape_expr) def _mx_swap_axis(inputs, attrs): assert len(inputs) == 1 dim1 = attrs.get_int("dim1") dim2 = attrs.get_int("dim2") shape = _infer_type(inputs[0]).checked_type.shape axes = list(range(len(shape))) axes[dim1] = dim2 axes[dim2] = dim1 return _op.transpose(inputs[0], axes=axes) def _mx_zeros(inputs, attrs): assert len(inputs) == 0 shape = attrs.get_int_tuple("shape") dtype = attrs.get_str("dtype", "float32") if 0 in shape: return None return _op.zeros(shape=shape, dtype=dtype) def _mx_conv(inputs, attrs): kernel_size = attrs.get_int_tuple("kernel") if len(kernel_size) == 3: return _mx_conv3d(inputs, attrs) elif len(kernel_size) == 2: return _mx_conv2d(inputs, attrs) elif len(kernel_size) == 1: return _mx_conv1d(inputs, attrs) else: raise tvm.error.OpAttributeInvalid( "1D, 2D or 3D kernels only are supported for operator Convolution" ) def _mx_conv1d(inputs, attrs): kernel_size = attrs.get_int_tuple("kernel") if len(kernel_size) != 1: raise tvm.error.OpAttributeInvalid( "Non 1D or 2D kernels are not supported for operator Convolution" ) data_layout = attrs.get_str("layout", "NCW") # MXNet Conv1D only supports ‘NCW’ layout for now. if data_layout != "NCW": raise tvm.error.OpAttributeInvalid('Only "NCW" data layout is supported for 1D Convolution') data_layout = "NCHW" channel_axis = 1 kernel_layout = "OIHW" new_attrs = {} new_attrs["channels"] = attrs.get_int("num_filter") new_attrs["kernel_size"] = (1,) + kernel_size new_attrs["strides"] = (1,) + attrs.get_int_tuple("stride", (1,)) new_attrs["padding"] = (0,) + attrs.get_int_tuple("pad", (0,)) new_attrs["dilation"] = (1,) + attrs.get_int_tuple("dilate", (1,)) new_attrs["groups"] = attrs.get_int("num_group", 1) new_attrs["data_layout"] = data_layout new_attrs["kernel_layout"] = kernel_layout use_bias = not attrs.get_bool("no_bias", False) data = _op.expand_dims(inputs[0], axis=2) kernel = _op.expand_dims(inputs[1], axis=2) res = _op.nn.conv2d(data, kernel, **new_attrs) if use_bias: assert len(inputs) == 3 res = _op.nn.bias_add(res, inputs[2], axis=channel_axis) res = _op.squeeze(res, axis=[2]) return res def _get_mx_conv2d_attrs(attrs): kernel_size = attrs.get_int_tuple("kernel") data_layout = attrs.get_str("layout", "NCHW") if "kernel_layout" in attrs.attrs: kernel_layout = attrs.get_str("kernel_layout") else: kernel_layout = "HWIO" if data_layout == "NHWC" else "OIHW" new_attrs = {} new_attrs["channels"] = attrs.get_int("num_filter") new_attrs["kernel_size"] = kernel_size new_attrs["strides"] = attrs.get_int_tuple("stride", (1, 1)) new_attrs["padding"] = attrs.get_int_tuple("pad", (0, 0)) new_attrs["dilation"] = attrs.get_int_tuple("dilate", (1, 1)) new_attrs["groups"] = attrs.get_int("num_group", 1) new_attrs["data_layout"] = data_layout new_attrs["kernel_layout"] = kernel_layout return new_attrs def _mx_conv2d(inputs, attrs): kernel_size = attrs.get_int_tuple("kernel") data_layout = attrs.get_str("layout", "NCHW") if len(kernel_size) != 2: raise tvm.error.OpAttributeInvalid("Only 2D kernels are supported for operator Convolution") new_attrs = _get_mx_conv2d_attrs(attrs) channel_axis = _get_channel_axis(data_layout, "conv2d") use_bias = not attrs.get_bool("no_bias", False) res = _op.nn.conv2d(inputs[0], inputs[1], **new_attrs) if use_bias: assert len(inputs) == 3 res = _op.nn.bias_add(res, inputs[2], axis=channel_axis) return res def _get_mx_conv3d_attrs(attrs): kernel_size = attrs.get_int_tuple("kernel") data_layout = attrs.get_str("layout", "NCDHW") if "kernel_layout" in attrs.attrs: kernel_layout = attrs.get_str("kernel_layout") else: kernel_layout = "DHWIO" if data_layout == "NDHWC" else "OIDHW" new_attrs = {} new_attrs["channels"] = attrs.get_int("num_filter") new_attrs["kernel_size"] = kernel_size new_attrs["strides"] = attrs.get_int_tuple("stride", (1, 1, 1)) new_attrs["padding"] = attrs.get_int_tuple("pad", (0, 0, 0)) new_attrs["dilation"] = attrs.get_int_tuple("dilate", (1, 1, 1)) new_attrs["groups"] = attrs.get_int("num_group", 1) new_attrs["data_layout"] = data_layout new_attrs["kernel_layout"] = kernel_layout return new_attrs def _mx_conv3d(inputs, attrs): kernel_size = attrs.get_int_tuple("kernel") data_layout = attrs.get_str("layout", "NCDHW") if len(kernel_size) != 3: raise tvm.error.OpAttributeInvalid("Only 3D kernels are supported for operator Convolution") new_attrs = _get_mx_conv3d_attrs(attrs) channel_axis = _get_channel_axis(data_layout, "conv3d") use_bias = not attrs.get_bool("no_bias", False) res = _op.nn.conv3d(inputs[0], inputs[1], **new_attrs) if use_bias: assert len(inputs) == 3 res = _op.nn.bias_add(res, inputs[2], axis=channel_axis) return res def _mx_conv_transpose(inputs, attrs): kernel_size = attrs.get_int_tuple("kernel") if len(kernel_size) == 3: return _mx_conv3d_transpose(inputs, attrs) elif len(kernel_size) == 2: return _mx_conv2d_transpose(inputs, attrs) elif len(kernel_size) == 1: return _mx_conv1d_transpose(inputs, attrs) else: raise tvm.error.OpAttributeInvalid( "1D, 2D or 3D kernels only are supported for operator Convolution" ) def _mx_conv1d_transpose(inputs, attrs): if "target_shape" in attrs.attrs: raise tvm.error.OpAttributeUnImplemented( 'Attribute "target_shape" is not supported for operator Conv2D-transpose.' ) data_layout = attrs.get_str("layout", "NCW") if data_layout != "NCW": raise tvm.error.OpAttributeInvalid('Only "NCW" data layout is supported for 1D Convolution') channel_axis = 1 kernel_layout = "OIW" new_attrs = {} new_attrs["channels"] = attrs.get_int("num_filter") new_attrs["kernel_size"] = attrs.get_int_tuple("kernel") new_attrs["strides"] = attrs.get_int_tuple("stride", (1,)) new_attrs["output_padding"] = attrs.get_int_tuple("adj", (0,)) new_attrs["padding"] = attrs.get_int_tuple("pad", (0,)) new_attrs["dilation"] = attrs.get_int_tuple("dilate", (1,)) new_attrs["groups"] = attrs.get_int("num_group", 1) new_attrs["data_layout"] = data_layout new_attrs["kernel_layout"] = kernel_layout use_bias = not attrs.get_bool("no_bias", True) res = _op.nn.conv1d_transpose(inputs[0], inputs[1], **new_attrs) if use_bias: assert len(inputs) == 3 res = _op.nn.bias_add(res, inputs[2], axis=channel_axis) return res def _mx_conv2d_transpose(inputs, attrs): if "target_shape" in attrs.attrs: raise tvm.error.OpAttributeUnImplemented( 'Attribute "target_shape" is not supported for operator Conv2D-transpose.' ) kernel_size = attrs.get_int_tuple("kernel") if len(kernel_size) != 2: raise tvm.error.OpAttributeInvalid( "Non-2D kernels are not supported for operator Conv2D-transpose." ) data_layout = attrs.get_str("layout", "NCHW") channel_axis = _get_channel_axis(data_layout, "conv2d_transpose") if "kernel_layout" in attrs.attrs: kernel_layout = attrs.get_str("kernel_layout") else: kernel_layout = "HWIO" if data_layout == "NHWC" else "IOHW" new_attrs = {} new_attrs["channels"] = attrs.get_int("num_filter") new_attrs["kernel_size"] = kernel_size new_attrs["strides"] = attrs.get_int_tuple("stride", (1, 1)) new_attrs["output_padding"] = attrs.get_int_tuple("adj", (0, 0)) new_attrs["padding"] = attrs.get_int_tuple("pad", (0, 0)) new_attrs["dilation"] = attrs.get_int_tuple("dilate", (1, 1)) new_attrs["groups"] = attrs.get_int("num_group", 1) new_attrs["data_layout"] = data_layout new_attrs["kernel_layout"] = kernel_layout use_bias = not attrs.get_bool("no_bias", True) res = _op.nn.conv2d_transpose(inputs[0], inputs[1], **new_attrs) if use_bias: assert len(inputs) == 3 res = _op.nn.bias_add(res, inputs[2], axis=channel_axis) return res def _mx_conv3d_transpose(inputs, attrs): if "target_shape" in attrs.attrs: raise tvm.error.OpAttributeUnImplemented( 'Attribute "target_shape" is not supported for operator Conv3D-transpose.' ) kernel_size = attrs.get_int_tuple("kernel") if len(kernel_size) != 3: raise tvm.error.OpAttributeInvalid( "Non-3D kernels are not supported for operator Conv3D-transpose." ) data_layout = attrs.get_str("layout", "NCDHW") channel_axis = _get_channel_axis(data_layout, "conv3d_transpose") if "kernel_layout" in attrs.attrs: kernel_layout = attrs.get_str("kernel_layout") else: kernel_layout = "DHWIO" if data_layout == "NDHWC" else "OIDHW" new_attrs = {} new_attrs["channels"] = attrs.get_int("num_filter") new_attrs["kernel_size"] = kernel_size new_attrs["strides"] = attrs.get_int_tuple("stride", (1, 1, 1)) new_attrs["output_padding"] = attrs.get_int_tuple("adj", (0, 0, 0)) new_attrs["padding"] = attrs.get_int_tuple("pad", (0, 0, 0)) new_attrs["dilation"] = attrs.get_int_tuple("dilate", (1, 1, 1)) new_attrs["groups"] = attrs.get_int("num_group", 1) new_attrs["data_layout"] = data_layout new_attrs["kernel_layout"] = kernel_layout use_bias = not attrs.get_bool("no_bias", True) res = _op.nn.conv3d_transpose(inputs[0], inputs[1], **new_attrs) if use_bias: assert len(inputs) == 3 res = _op.nn.bias_add(res, inputs[2], axis=channel_axis) return res def _mx_pooling(inputs, attrs): global_pool = attrs.get_bool("global_pool", False) pool_type = attrs.get_str("pool_type") def _pool2d(new_op, is_avg): kernel_size = attrs.get_int_tuple("kernel") if len(kernel_size) != 2: raise tvm.error.OpAttributeInvalid("Only 2D kernels are supported for operator Pool2D.") new_attrs = {} new_attrs["pool_size"] = kernel_size new_attrs["strides"] = attrs.get_int_tuple("stride", (1, 1)) new_attrs["padding"] = attrs.get_int_tuple("pad", (0, 0)) new_attrs["ceil_mode"] = attrs.get_str("pooling_convention", "valid") == "full" if is_avg: new_attrs["count_include_pad"] = attrs.get_bool("count_include_pad", True) return new_op(inputs[0], **new_attrs) def _pool3d(new_op, is_avg): kernel_size = attrs.get_int_tuple("kernel") if len(kernel_size) != 3: raise tvm.error.OpAttributeInvalid("Only 3D kernels are supported for operator Pool3D.") new_attrs = {} new_attrs["pool_size"] = kernel_size new_attrs["strides"] = attrs.get_int_tuple("stride", (1, 1, 1)) new_attrs["padding"] = attrs.get_int_tuple("pad", (0, 0, 0)) new_attrs["ceil_mode"] = attrs.get_str("pooling_convention", "valid") == "full" if is_avg: new_attrs["count_include_pad"] = attrs.get_bool("count_include_pad", True) return new_op(inputs[0], **new_attrs) # 3D pooling if len(_infer_shape(inputs[0])) == 5: if pool_type == "max": if global_pool: return _op.nn.global_max_pool3d(inputs[0]) return _pool3d(_op.nn.max_pool3d, False) if pool_type == "avg": if global_pool: return _op.nn.global_avg_pool3d(inputs[0]) return _pool3d(_op.nn.avg_pool3d, True) raise tvm.error.OpNotImplemented( "Operator {} Pooling is not supported for frontend MXNet.".format( pool_type.capitalize() ) ) # 2D Pooling if pool_type == "max": if global_pool: return _op.nn.global_max_pool2d(inputs[0]) return _pool2d(_op.nn.max_pool2d, False) if pool_type == "avg": if global_pool: return _op.nn.global_avg_pool2d(inputs[0]) return _pool2d(_op.nn.avg_pool2d, True) raise tvm.error.OpNotImplemented( "Operator {} Pooling is not supported for frontend MXNet.".format(pool_type.capitalize()) ) def _mx_adaptive_avg_pooling(inputs, attrs): output_size = attrs.get_int_tuple("output_size", []) return _op.nn.adaptive_avg_pool2d(inputs[0], output_size) def _mx_dropout(inputs, attrs): rate = attrs.get_float("p", 0.5) return _op.nn.dropout(inputs[0], rate=rate) def _mx_BlockGrad(inputs, attrs): # pylint: disable=unused-argument return inputs def _mx_batch_norm(inputs, attrs): if attrs.get_bool("output_mean_var", False): raise tvm.error.OpAttributeUnImplemented( 'Attribute "output_mean_var" is not supported for operator Batch Norm.' ) if attrs.get_bool("use_global_stats", False): _warn_not_used("use_global_stats", "batch_norm") new_attrs = {} new_attrs["axis"] = attrs.get_int("axis", 1) new_attrs["epsilon"] = attrs.get_float("eps", 0.001) new_attrs["center"] = True new_attrs["scale"] = not attrs.get_bool("fix_gamma", True) return _op.nn.batch_norm(*inputs, **new_attrs) def _mx_instance_norm(inputs, attrs): assert len(inputs) == 3 new_attrs = {} new_attrs["axis"] = attrs.get_int("axis", 1) new_attrs["epsilon"] = attrs.get_float("eps", 1e-5) return _op.nn.instance_norm(*inputs, **new_attrs) def _mx_layer_norm(inputs, attrs): assert len(inputs) == 3 if attrs.get_bool("output_mean_var", False): raise tvm.error.OpAttributeUnimplemented( 'Attribute "output_mean_var" is not supported for operator Layer Norm.' ) new_attrs = {} new_attrs["axis"] = attrs.get_int("axis", -1) new_attrs["epsilon"] = attrs.get_float("eps", 1e-5) return _op.nn.layer_norm(*inputs, **new_attrs) def _mx_group_norm(inputs, attrs): assert len(inputs) == 3 if attrs.get_bool("output_mean_var", False): raise tvm.error.OpAttributeUnimplemented( 'Attribute "output_mean_var" is not supported for operator Group Norm.' ) new_attrs = {} new_attrs["axis"] = 1 new_attrs["num_groups"] = attrs.get_int("num_groups", 1) new_attrs["epsilon"] = attrs.get_float("eps", 1e-5) return _op.nn.group_norm(*inputs, **new_attrs) def _mx_slice(inputs, attrs): new_attrs = {} begin = list(attrs.get_int_tuple("begin", None)) end = list(attrs.get_int_tuple("end", None)) stride = attrs.get_int_tuple("step", None) input_shape = _infer_type(inputs[0]).checked_type.shape if begin is None: raise tvm.error.OpAttributeRequired('Attribute "begin" not found in operator Slice.') if end is None: raise tvm.error.OpAttributeRequired('Attribute "end" not found in operator Slice.') begin = (x if x is not None else 0 for x in begin) for i, ed in enumerate(end): if ed is None: end[i] = input_shape[i] new_attrs = {"begin": list(begin), "end": list(end)} if stride is not None: stride = (x if x is not None else 1 for x in stride) new_attrs["strides"] = list(stride) return _op.strided_slice(inputs[0], **new_attrs) def _mx_slice_like(inputs, attrs): assert len(inputs) == 2 new_attrs = {} new_attrs["axes"] = attrs.get_int_tuple("axes", None) return _op.slice_like(*inputs, **new_attrs) def _mx_slice_axis(inputs, attrs): assert len(inputs) == 1 expr = _infer_type(inputs[0]) shape = expr.checked_type.shape axis = attrs.get_int("axis") ax_beg = attrs.get_int("begin") ax_end = attrs.get_str("end") if axis < 0: axis += len(shape) assert 0 <= axis < len(shape) if ax_end == "None": ax_end = int(shape[axis]) else: ax_end = int(ax_end) if ax_beg < 0: ax_beg += int(shape[axis]) if ax_end < 0: ax_end += int(shape[axis]) assert 0 <= ax_beg < int(shape[axis]) assert ax_beg < ax_end <= int(shape[axis]) begin = [] end = [] for i, dim in enumerate(shape): if i != axis: begin.append(0) end.append(dim) else: begin.append(ax_beg) end.append(ax_end) return _op.strided_slice(inputs[0], begin, end) def _mx_crop_like(inputs, attrs): if len(inputs) < 2: raise tvm.error.OpAttributeUnimplemented( "Only support crop_like pattern for operator Crop." ) if attrs.get_bool("center_crop", False): raise tvm.error.OpAttributeUnimplemented("Center crop is not supported in operator Crop.") if attrs.get_int_tuple("h_w", (0, 0)) != (0, 0): raise tvm.error.OpAttributeUnimplemented("Doesn't support h_w in operator Crop.") offset = attrs.get_int_tuple("offset", (0, 0)) new_attrs = {} if offset == (0, 0): new_attrs["axes"] = (2, 3) return _op.slice_like(*inputs, **new_attrs) expr = _infer_type(inputs[1]) like_shape = expr.checked_type.shape new_attrs["begin"] = [0, 0, offset[0], offset[1]] new_attrs["end"] = [ like_shape[0], like_shape[1], offset[0] + like_shape[2], offset[1] + like_shape[3], ] return _op.strided_slice(inputs[0], **new_attrs) def _mx_split(inputs, attrs): axis = attrs.get_int("axis", 1) new_attrs = {} new_attrs["indices_or_sections"] = attrs.get_int("num_outputs") new_attrs["axis"] = axis res = _op.split(inputs[0], **new_attrs) if attrs.get_bool("squeeze_axis", False): return tuple([_op.squeeze(x, axis=[axis]) for x in res]) return res def _mx_softmax_activation(inputs, attrs): mode = attrs.get_str("mode", "instance") axis = 0 if mode == "instance" else 1 return _op.nn.softmax(inputs[0], axis=axis) def _mx_softmax_output(inputs, attrs): if attrs.get_bool("multi_output", False): return _op.nn.softmax(inputs[0], axis=1) return _op.nn.softmax(inputs[0]) def _mx_linear_regression_output(inputs, _): return inputs[0] def _mx_logistic_regression_output(inputs, _): return _op.sigmoid(inputs[0]) def _mx_concat(inputs, attrs): axis = attrs.get_int("dim", 1) return _op.concatenate(tuple(inputs), axis=axis) def _mx_stack(inputs, attrs): axis = attrs.get_int("axis", 0) return _op.stack(tuple(inputs), axis=axis) def _mx_expand_dims(inputs, attrs): axis = attrs.get_int("axis") return _op.expand_dims(inputs[0], axis=axis) def _mx_pad(inputs, attrs): pad_mode = attrs.get_str("mode", None) if pad_mode is None: raise tvm.error.OpAttributeRequired('Attribute "mode" not found in operator pad.') if pad_mode not in ["constant", "edge", "reflect"]: raise tvm.error.OpAttributeInvalid("Value " + mode + ' in attribute "mode" is not valid') pad_width = attrs.get_int_tuple("pad_width", None) if pad_width is None: raise tvm.error.OpAttributeRequired('Attribute "pad_width" not found in operator pad.') if None in pad_width: raise tvm.error.OpAttributeInvalid( 'Value None in attribute "pad_width" of operator Slice is not valid.' ) constant_value = attrs.get_float("constant_value", 0.0) padding = tuple(tuple((b, a)) for b, a in zip(pad_width[::2], pad_width[1::2])) return _op.nn.pad( data=inputs[0], pad_width=padding, pad_value=constant_value, pad_mode=pad_mode ) def _mx_leaky_relu(inputs, attrs): act_type = attrs.get_str("act_type", "leaky") if act_type == "leaky": return _op.nn.leaky_relu(inputs[0], alpha=attrs.get_float("slope", 0.25)) if act_type == "prelu": assert len(inputs) == 2 return _op.nn.prelu(*inputs) if act_type == "elu": # -slope * relu(1-exp(x)) + relu(x) slope = attrs.get_float("slope", 0.25) one = _expr.const(1, dtype="float32") x = inputs[0] mslope = _op.nn.relu(_op.subtract(one, _op.exp(x))) mslope = _op.multiply(mslope, _expr.const(-slope, dtype="float32")) return _op.add(mslope, _op.nn.relu(x)) if act_type == "rrelu": # NOTE this is only converted for inference. lower_bound = attrs.get_float("lower_bound") upper_bound = attrs.get_float("upper_bound") alpha = (lower_bound + upper_bound) / 2.0 return _op.nn.leaky_relu(inputs[0], alpha=alpha) if act_type == "gelu": # 0.5 * x * (1 + erf(x / sqrt(2))) sqrt2 = _expr.const(math.sqrt(2), dtype="float32") erf = _op.erf(_op.divide(inputs[0], sqrt2)) one = _expr.const(1, dtype="float32") erf_plus_one = _op.add(one, erf) half = _expr.const(0.5, dtype="float32") half_x = _op.multiply(inputs[0], half) return _op.multiply(half_x, erf_plus_one) raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend MXNet.".format(act_type) ) def _mx_make_power(power): def _impl(inputs, _): # Note: no attrs assert len(inputs) == 1 scalar = _expr.const(power, dtype=None) # Note: int maps to "int32", float maps to "float32" return _op.power(inputs[0], scalar) return _impl def _mx_make_exponent(base): # exp(b, x) = e^b * e^x def _impl(inputs, _): # Note: no attrs assert len(inputs) == 1 scalar = _op.exp(_expr.const(base, dtype="float32")) return _op.multiply(inputs[0], scalar) return _impl def _mx_make_logarithm(base): # log(b, x) = log(x) / log(b) def _impl(inputs, _): # Note: no attrs assert len(inputs) == 1 scalar = _op.log(_expr.const(base, dtype="float32")) return _op.divide(inputs[0], scalar) return _impl def _mx_expm1(): # exp_minus_1 x = exp(x) - 1 def _impl(inputs, _): # Note: no attrs assert len(inputs) == 1 one = _expr.const(1, dtype="float32") return _op.log(_op.subtract(inputs[0], one)) return _impl def _mx_log1p(): # 1_plus_log x = log(x + 1) def _impl(inputs, _): # Note: no attrs assert len(inputs) == 1 one = _expr.const(1, dtype="float32") return _op.log(_op.add(inputs[0], one)) return _impl def _mx_lrn(inputs, attrs): new_attrs = {} new_attrs["alpha"] = attrs.get_float("alpha", 0.0001) new_attrs["beta"] = attrs.get_float("beta", 0.75) new_attrs["bias"] = attrs.get_float("knorm", 2) # NCHW format and normalization along channel axis new_attrs["axis"] = 1 new_attrs["size"] = attrs.get_int("nsize") assert len(inputs) == 1 return _op.nn.lrn(inputs[0], **new_attrs) def _mx_multibox_prior(inputs, attrs): new_attrs = {} new_attrs["sizes"] = attrs.get_float_tuple("sizes", (1.0,)) new_attrs["steps"] = attrs.get_float_tuple("steps", (-1.0, -1.0)) new_attrs["offsets"] = attrs.get_float_tuple("offsets", (0.5, 0.5)) new_attrs["ratios"] = attrs.get_float_tuple("ratios", (1.0,)) new_attrs["clip"] = attrs.get_bool("clip", False) return _op.vision.multibox_prior(inputs[0], **new_attrs) def _mx_multibox_detection(inputs, attrs): new_attrs0 = {} new_attrs0["clip"] = attrs.get_bool("clip", True) new_attrs0["threshold"] = attrs.get_float("threshold", 0.01) new_attrs0["variances"] = attrs.get_float_tuple("variances", (0.1, 0.1, 0.2, 0.2)) new_attrs1 = {} new_attrs1["return_indices"] = False new_attrs1["iou_threshold"] = attrs.get_float("nms_threshold", 0.5) new_attrs1["force_suppress"] = attrs.get_bool("force_suppress", False) new_attrs1["top_k"] = attrs.get_int("nms_topk", -1) ret = _op.vision.multibox_transform_loc(inputs[0], inputs[1], inputs[2], **new_attrs0) return _op.vision.non_max_suppression(ret[0], ret[1], ret[1], **new_attrs1) def _mx_dot(inputs, attrs): assert len(inputs) == 2 a, b = inputs rank_a = len(_infer_type(a).checked_type.shape) rank_b = len(_infer_type(b).checked_type.shape) if rank_a != 2 or rank_b != 2: raise tvm.error.OpAttributeUnimplemented("Only 2-D arrays are supported.") transpose_a = attrs.get_bool("transpose_a", False) transpose_b = attrs.get_bool("transpose_b", False) if transpose_a is True: msg = 'Value {} in attribute "transpose_a" of operator dot ' "is not valid." raise tvm.error.OpAttributeInvalid(msg.format(transpose_a)) if transpose_b is False: b = _op.transpose(b, axes=[1, 0]) return _op.nn.dense(a, b) def _mx_batch_dot(inputs, attrs): assert len(inputs) == 2 a, b = inputs a_shape = _infer_type(a).checked_type.shape batch_shapes = None if len(a_shape) > 3: batch_shapes = a_shape[:-2] a = _op.reverse_reshape(a, newshape=(-1, 0, 0)) b_shape = _infer_type(b).checked_type.shape if len(b_shape) > 3: if batch_shapes is None: batch_shapes = b_shape[:-2] b = _op.reverse_reshape(b, newshape=(-1, 0, 0)) transpose_a = attrs.get_bool("transpose_a", False) transpose_b = attrs.get_bool("transpose_b", False) if transpose_a is True: msg = 'Value {} in attribute "transpose_a" of operator batch_dot ' "is not valid." raise tvm.error.OpAttributeInvalid(msg.format(transpose_a)) if transpose_b is False: b = _op.transpose(b, axes=[0, 2, 1]) out = _op.nn.batch_matmul(a, b) if batch_shapes is not None: out = _op.reverse_reshape(out, newshape=tuple(batch_shapes) + (0, 0)) return out def _mx_arange(inputs, attrs): assert len(inputs) == 0 if attrs.get_int("repeat", 1) != 1: raise tvm.error.OpAttributeUnimplemented( 'Attribute "repeat" is not supported in operator arange.' ) dtype = attrs.get_str("dtype", "float32") stop = attrs.get_str("stop", "None") if stop == "None": stop = None else: stop = _expr.const(float(stop), dtype=dtype) new_attrs = {} new_attrs["start"] = _expr.const(attrs.get_float("start", 0.0), dtype=dtype) new_attrs["stop"] = stop new_attrs["step"] = _expr.const(attrs.get_float("step", 1.0), dtype=dtype) new_attrs["dtype"] = dtype return _op.arange(**new_attrs) # pylint: disable=unused-argument def _mx_make_loss(inputs, attrs): # while doing inference make_loss does not have any effect # and it should be mapped to identity return inputs[0] def _mx_contrib_arange_like(inputs, attrs): assert len(inputs) == 1 if attrs.get_int("repeat", 1) != 1: raise tvm.error.OpAttributeUnimplemented( 'Attribute "repeat" is not supported in operator arange_like.' ) ty = _infer_type(inputs[0]).checked_type assert ty shape, dtype = get_const_tuple(ty.shape), ty.dtype axis = attrs.get_int("axis", None) if axis is None: n_elems = 1 for dim in shape: if not isinstance(dim, int): raise tvm.error.OpError("Don't support arange_like with symbolic input shape.") n_elems *= dim else: axis = axis + len(shape) if axis < 0 else axis assert 0 <= axis < len(shape) n_elems = shape[axis] if not isinstance(n_elems, int): raise tvm.error.OpError("Don't support arange_like with symbolic input shape.") shape = (n_elems,) start = attrs.get_float("start", 0.0) step = attrs.get_float("step", 1.0) stop = start + step * n_elems new_attrs = {} new_attrs["start"] = _expr.const(start, dtype=dtype) new_attrs["stop"] = _expr.const(stop, dtype=dtype) new_attrs["step"] = _expr.const(step, dtype=dtype) new_attrs["dtype"] = dtype ret = _op.arange(**new_attrs) if len(shape) > 1: ret = _op.reshape(ret, shape) return ret def _mx_repeat(inputs, attrs): assert len(inputs) == 1 new_attrs = {} new_attrs["repeats"] = attrs.get_int("repeats") new_attrs["axis"] = attrs.get_int("axis", 0) return _op.repeat(inputs[0], **new_attrs) def _mx_tile(inputs, attrs): assert len(inputs) == 1 new_attrs = {} new_attrs["reps"] = attrs.get_int_tuple("reps") return _op.tile(inputs[0], **new_attrs) def _mx_take(inputs, attrs): assert len(inputs) == 2 mode = attrs.get_str("mode", "clip") if mode == "raise": raise tvm.error.OpAttributeUnimplemented("take with raise mode is not supported yet") axis = attrs.get_int("axis", 0) return _op.take(inputs[0], inputs[1].astype("int32"), axis=axis, mode=mode) def _mx_gather_nd(inputs, attrs): assert len(inputs) == 2 assert len(_infer_shape(inputs[1])) > 1, "index tensor to have at least 2 dimensions" return _op.gather_nd(inputs[0], inputs[1]) def _mx_reverse(inputs, attrs): assert len(inputs) == 1 new_attrs = {} new_attrs["axis"] = attrs.get_int("axis") return _op.reverse(inputs[0], **new_attrs) def _mx_sequence_reverse(inputs, attrs): new_attrs = {} use_seq_lengths = attrs.get_bool("use_sequence_length") if not use_seq_lengths: assert len(inputs) == 1 new_attrs["axis"] = attrs.get_int("axis") return _op.reverse(inputs[0], **new_attrs) assert len(inputs) == 2 new_attrs["seq_axis"] = attrs.get_int("axis") # MXNet assumes batch_axis as 1. new_attrs["batch_axis"] = 1 return _op.reverse_sequence(inputs[0], inputs[1], **new_attrs) def _mx_roi_align(inputs, attrs): new_attrs = {} new_attrs["pooled_size"] = attrs.get_int_tuple("pooled_size") new_attrs["spatial_scale"] = attrs.get_float("spatial_scale") new_attrs["sample_ratio"] = attrs.get_int("sample_ratio", -1) new_attrs["layout"] = "NCHW" return _op.vision.roi_align(inputs[0], inputs[1], **new_attrs) def _mx_resize(inputs, attrs): scale_height = attrs.get_float("scale_height", None) scale_width = attrs.get_float("scale_width", None) height = attrs.get_int("height", 1) width = attrs.get_int("width", 1) expr = _infer_type(inputs[0]) shape = expr.checked_type.shape if scale_height is not None: height = (scale_height * shape[2]).astype("int32") if scale_width is not None: width = (scale_width * shape[3]).astype("int32") size = (height, width) return _op.image.resize2d(inputs[0], size, coordinate_transformation_mode="align_corners") def _mx_amp_multicast(inputs, attrs): cast_narrow = attrs.get_bool("cast_narrow", False) dtypes = [_infer_type(x).checked_type.dtype for x in inputs] supported_dtypes = ["float16", "float32"] assert all( [x in supported_dtypes for x in dtypes] ), "amp_multicast support is limited to float16 and float32 inputs only." has_float16 = any(x == "float16" for x in dtypes) has_float32 = any(x == "float32" for x in dtypes) dtype = dtypes[0] if cast_narrow and has_float16: dtype = "float16" if not cast_narrow and has_float32: dtype = "float32" return [_op.cast(x, dtype) for x in inputs] def _mx_grid_generator(inputs, attrs): transform_type = attrs.get_str("transform_type") if transform_type == "affine": target_shape = attrs.get_int_tuple("target_shape") return _op.image.affine_grid(_op.reshape(inputs[0], (0, 2, 3)), target_shape) if transform_type == "warp": checked_type = _infer_type(inputs[0]).checked_type batch, _, height, width = get_const_tuple(checked_type.shape) dtype = checked_type.dtype identity_affine = relay.const(np.array([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]], dtype=dtype)) identity_affine = _op.broadcast_to(identity_affine, (batch, 2, 3)) normalizer = (2.0 / np.array([width - 1, height - 1])).reshape(1, -1, 1, 1).astype(dtype) normalized_flow = inputs[0] * relay.const(normalizer) grid = _op.image.affine_grid(identity_affine, (height, width)) return grid + normalized_flow raise ValueError("unknown transform type" + transform_type) def _mx_bilinear_sampler(inputs, attrs): return _op.image.grid_sample(inputs[0], inputs[1], "bilinear", "NCHW") def _mx_roi_pooling(inputs, attrs): new_attrs = {} new_attrs["pooled_size"] = attrs.get_int_tuple("pooled_size") new_attrs["spatial_scale"] = attrs.get_float("spatial_scale") new_attrs["layout"] = "NCHW" return _op.vision.roi_pool(inputs[0], inputs[1], **new_attrs) def _mx_proposal(inputs, attrs): new_attrs = {} new_attrs["scales"] = attrs.get_float_tuple("scales", (4.0, 8.0, 16.0, 32.0)) new_attrs["ratios"] = attrs.get_float_tuple("ratios", (0.5, 1.0, 2.0)) new_attrs["feature_stride"] = attrs.get_int("feature_stride", 16) new_attrs["threshold"] = attrs.get_float("threshold", 0.7) new_attrs["rpn_pre_nms_top_n"] = attrs.get_int("rpn_pre_nms_top_n", 6000) new_attrs["rpn_post_nms_top_n"] = attrs.get_int("rpn_post_nms_top_n", 300) new_attrs["rpn_min_size"] = attrs.get_int("rpn_min_size", 16) new_attrs["iou_loss"] = attrs.get_bool("iou_loss", False) assert not attrs.get_bool("output_score", False), "proposal doesn't support output score" return _op.vision.proposal(inputs[0], inputs[1], inputs[2], **new_attrs) def _mx_box_nms(inputs, attrs): force_suppress = attrs.get_bool("force_suppress", False) iou_thresh = attrs.get_float("overlap_thresh", 0.5) top_k = attrs.get_int("topk", -1) valid_thresh = attrs.get_float("valid_thresh", 0) coord_start = attrs.get_int("coord_start", 2) score_index = attrs.get_int("score_index", 1) id_index = attrs.get_int("id_index", -1) in_format = attrs.get_str("in_format", "corner") out_format = attrs.get_str("out_format", "corner") if in_format != "corner": raise tvm.error.OpAttributeInvalid( 'Value of attribute "in_format" must equal "corner" for operator box_nms.' ) if out_format != "corner": raise tvm.error.OpAttributeInvalid( 'Value of attribute "out_format" must equal "corner" for operator box_nms.' ) ret = _op.vision.get_valid_counts( inputs[0], score_threshold=valid_thresh, id_index=id_index, score_index=score_index ) nms_out = _op.vision.non_max_suppression( ret[1], ret[0], ret[2], iou_threshold=iou_thresh, force_suppress=force_suppress, top_k=top_k, coord_start=coord_start, score_index=score_index, id_index=id_index, return_indices=False, invalid_to_bottom=True, ) return nms_out def _mx_box_decode(inputs, attrs): std0 = relay.const(attrs.get_float("std0", 1), "float32") std1 = relay.const(attrs.get_float("std1", 1), "float32") std2 = relay.const(attrs.get_float("std2", 1), "float32") std3 = relay.const(attrs.get_float("std3", 1), "float32") clip = attrs.get_float("clip", -1) in_format = attrs.get_str("format", "corner") anchors = inputs[1] # (1, N, 4) encoded in corner or center a = _op.split(anchors, indices_or_sections=4, axis=-1) # Convert to format "center". if in_format == "corner": a_width = a[2] - a[0] a_height = a[3] - a[1] a_x = a[0] + a_width * relay.const(0.5, "float32") a_y = a[1] + a_height * relay.const(0.5, "float32") else: a_x, a_y, a_width, a_height = a data = inputs[0] # (B, N, 4) predicted bbox offset p = _op.split(data, indices_or_sections=4, axis=-1) ox = p[0] * std0 * a_width + a_x oy = p[1] * std1 * a_height + a_y dw = p[2] * std2 dh = p[3] * std3 if clip > 0: clip = relay.const(clip, "float32") dw = _op.minimum(dw, clip) dh = _op.minimum(dh, clip) dw = _op.exp(dw) dh = _op.exp(dh) ow = dw * a_width * relay.const(0.5, "float32") oh = dh * a_height * relay.const(0.5, "float32") out = _op.concatenate([ox - ow, oy - oh, ox + ow, oy + oh], axis=-1) return out def _mx_l2_normalize(inputs, attrs): new_attrs = {} mode = attrs.get_str("mode", "instance") if mode == "channel": new_attrs["axis"] = [1] elif mode == "instance": ndim = len(_infer_type(inputs[0]).checked_type.shape) new_attrs["axis"] = list(range(1, ndim)) elif mode == "spatial": ndim = len(_infer_type(inputs[0]).checked_type.shape) new_attrs["axis"] = list(range(2, ndim)) else: raise tvm.error.OpAttributeInvalid( 'Mode "{}" is not supported for operator l2_normalize.'.format(mode) ) new_attrs["eps"] = attrs.get_float("eps", 1e-10) return _op.nn.l2_normalize(inputs[0], **new_attrs) def _mx_softsign(inputs, attrs): return inputs[0] / (_expr.const(1.0) + _op.abs(inputs[0])) def _mx_softmin(inputs, attrs): axis = attrs.get_int("axis", -1) return _op.nn.softmax(_op.negative(inputs[0]), axis) def _mx_hard_sigmoid(inputs, attrs): x = (_expr.const(0.2) * inputs[0]) + _expr.const(0.5) return _op.clip(x, a_min=0.0, a_max=1.0) def _mx_reciprocal(inputs, attrs): return _expr.const(1.0) / inputs[0] def _mx_shape_array(inputs, attrs): assert len(inputs) == 1 if attrs.get_int("lhs_begin", None) is not None: raise tvm.error.OpAttributeUnimplemented("shape_array doesn't support lhs_begin") if attrs.get_int("lhs_end", None) is not None: raise tvm.error.OpAttributeUnimplemented("shape_array doesn't support lhs_end") if attrs.get_int("rhs_begin", None) is not None: raise tvm.error.OpAttributeUnimplemented("shape_array doesn't support rhs_begin") if attrs.get_int("rhs_end", None) is not None: raise tvm.error.OpAttributeUnimplemented("shape_array doesn't support rhs_end") return _op.shape_of(inputs[0], dtype="int64") def _mx_full(inputs, attrs): assert len(inputs) == 0 val = attrs.get_float("value") shape = attrs.get_int_tuple("shape") dtype = attrs.get_str("dtype", "float32") return _op.full(_expr.const(val, dtype), shape, dtype) def _mx_squeeze(inputs, attrs): assert len(inputs) == 1 axis = attrs.get_int_tuple("axis", None) return _op.squeeze(inputs[0], axis) def _mx_broadcast_axis(inputs, attrs): assert len(inputs) == 1 axis = attrs.get_int_tuple("axis", []) size = attrs.get_int_tuple("size", []) assert len(axis) == len(size) if len(axis) == 0: return inputs[0] expr = _infer_type(inputs[0]) src_shape = expr.checked_type.shape tgt_shape = [] for i, dim in enumerate(src_shape): if i not in axis: tgt_shape.append(dim) else: assert int(dim) == 1 idx = axis.index(i) tgt_shape.append(size[idx]) return _op.broadcast_to(inputs[0], tgt_shape) def _mx_embedding(inputs, _): assert len(inputs) == 2 indices, weight = inputs return _op.take(weight, indices.astype("int32"), axis=0) def _mx_smooth_l1(inputs, attrs): scalar = attrs.get_float("scalar", 1.0) scalar_sq = scalar * scalar mask = _op.less(inputs[0], _expr.const(1.0 / scalar_sq, dtype="float32")) return _op.where( mask, _expr.const(scalar_sq / 2.0, dtype="float32") * inputs[0] * inputs[0], _op.abs(inputs[0]) - _expr.const(0.5 / scalar_sq), ) def _mx_deformable_convolution(inputs, attrs): new_attrs = {} new_attrs["kernel_size"] = attrs.get_int_tuple("kernel") new_attrs["strides"] = attrs.get_int_tuple("stride") new_attrs["padding"] = attrs.get_int_tuple("pad") new_attrs["dilation"] = attrs.get_int_tuple("dilate") new_attrs["channels"] = attrs.get_int("num_filter") new_attrs["deformable_groups"] = attrs.get_int("num_deformable_group", 1) new_attrs["groups"] = attrs.get_int("num_group", 1) assert attrs.get_str("layout", "NCHW") == "NCHW", "Deformable conv2d only supports NCHW layout" use_bias = not attrs.get_bool("no_bias", False) res = _op.nn.deformable_conv2d(inputs[0], inputs[1], inputs[2], **new_attrs) if use_bias: assert len(inputs) == 4 res = _op.nn.bias_add(res, inputs[3]) return res def _mx_argsort(inputs, attrs): assert len(inputs) == 1 new_attrs = {} new_attrs["axis"] = attrs.get_int("axis", -1) new_attrs["is_ascend"] = attrs.get_bool("is_ascend", True) new_attrs["dtype"] = attrs.get_str("dtype", "float32") return _op.argsort(inputs[0], **new_attrs) def _mx_topk(inputs, attrs): assert len(inputs) == 1 new_attrs = {} new_attrs["k"] = attrs.get_int("k", 1) new_attrs["axis"] = attrs.get_int("axis", -1) new_attrs["is_ascend"] = attrs.get_bool("is_ascend", False) ret_type = attrs.get_str("ret_typ", "indices") if ret_type == "mask": raise tvm.error.OpAttributeUnimplemented( "Attribute ret_type=mask is not supported in topk operator" ) new_attrs["ret_type"] = "values" if ret_type == "value" else ret_type new_attrs["dtype"] = attrs.get_str("dtype", "float32") return _op.topk(inputs[0], **new_attrs) def _mx_sequence_mask(inputs, attrs): assert len(inputs) == 1 or len(inputs) == 2 new_attrs = {} use_sequence_length = attrs.get_bool("use_sequence_length", False) new_attrs["mask_value"] = attrs.get_float("value", 0.0) new_attrs["axis"] = attrs.get_int("axis", 0) if use_sequence_length: return _op.sequence_mask(*inputs, **new_attrs) else: return inputs[0] def _mx_contrib_div_sqrt_dim(inputs, _): assert len(inputs) == 1 ndim = len(_infer_type(inputs[0]).checked_type.shape) dim = _op.take(_op.shape_of(inputs[0]), _expr.const(ndim - 1, dtype="int32")) dtype = _infer_type(inputs[0]).checked_type.dtype sqrt_dim = _op.sqrt(dim.astype(dtype)) out = inputs[0] / sqrt_dim return out def _mx_rnn_param_concat(inputs, _): # We don't need to concatenate RNN params because we will unravel the RNN op return [inputs] def _mx_rnn_layer(inputs, attrs): def _rnn_cell(data, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias, activation): i2h = _op.nn.bias_add(_op.nn.dense(data, i2h_weight), i2h_bias, axis=-1) h2h = _op.nn.bias_add(_op.nn.dense(states[0], h2h_weight), h2h_bias, axis=-1) out = _activation_map[activation](i2h + h2h) return out, [out] def _gru_cell(data, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias): expr = _infer_type(data) dtype = expr.checked_type.dtype i2h = _op.nn.bias_add(_op.nn.dense(data, i2h_weight), i2h_bias, axis=-1) h2h = _op.nn.bias_add(_op.nn.dense(states[0], h2h_weight), h2h_bias, axis=-1) i2h_r, i2h_z, i2h = _op.split(i2h, indices_or_sections=3, axis=1) h2h_r, h2h_z, h2h = _op.split(h2h, indices_or_sections=3, axis=1) reset_gate = _activation_map["sigmoid"](i2h_r + h2h_r) update_gate = _activation_map["sigmoid"](i2h_z + h2h_z) next_h_tmp = _activation_map["tanh"](reset_gate * h2h + i2h) next_h = (_expr.const(1, dtype) - update_gate) * next_h_tmp + update_gate * states[0] return next_h, [next_h] def _lstm_cell(data, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias): i2h = _op.nn.bias_add(_op.nn.dense(data, i2h_weight), i2h_bias, axis=-1) h2h = _op.nn.bias_add(_op.nn.dense(states[0], h2h_weight), h2h_bias, axis=-1) gates = i2h + h2h slice_gates = _op.split(gates, indices_or_sections=4, axis=1) in_gate = _activation_map["sigmoid"](slice_gates[0]) forget_gate = _activation_map["sigmoid"](slice_gates[1]) in_transform = _activation_map["tanh"](slice_gates[2]) out_gate = _activation_map["sigmoid"](slice_gates[3]) next_c = forget_gate * states[1] + in_gate * in_transform next_h = out_gate * _activation_map["tanh"](next_c) return next_h, [next_h, next_c] num_layers = attrs.get_int("num_layers", 1) mode = attrs.get_str("mode") output_states = attrs.get_bool("state_outputs", False) if mode.startswith("rnn"): mode, activation = mode.split("_") assert mode in ["rnn", "gru", "lstm"] bidirectional = attrs.get_bool("bidirectional", False) direct = 2 if bidirectional else 1 layout = attrs.get_str("layout", "TNC") if layout != "TNC": raise tvm.error.OpAttributeUnimplemented( "RNN with layout other than TNC is not supported yet" ) num_states = 2 if mode == "lstm" else 1 assert len(inputs) == num_states + 2 seq_data = inputs[0] concat_weight = inputs[1] init_states = inputs[2:] expr = _infer_type(seq_data) data_shape = expr.checked_type.shape seq_len = int(data_shape[0]) assert len(concat_weight) == num_layers * 4 * direct for idx, state in enumerate(init_states[:]): if isinstance(state, dict): node = state attrs = StrAttrsDict(node.get("attrs", {})) op_name = node["op"] # by default, RNN layer uses zeros to initialize states assert op_name == "_zeros" shape = attrs.get_int_tuple("shape") dtype = attrs.get_str("dtype", "float32") init_layout = attrs.get_str("__layout__") new_shape = list(shape) for i, dim in enumerate(shape): if dim == 0: axis = layout.find(init_layout[i]) assert axis >= 0 new_shape[i] = int(data_shape[axis]) init_states[idx] = _op.zeros(new_shape, dtype) weights = [] bias = [] states = [] back_weights = [] back_bias = [] back_states = [] for i in range(num_layers): weights.append( [concat_weight[i * 2 * direct].args[0], concat_weight[i * 2 * direct + 1].args[0]] ) bias.append( [ concat_weight[(num_layers + i) * 2 * direct].args[0], concat_weight[(num_layers + i) * 2 * direct + 1].args[0], ] ) s = [] for state in init_states: s.append(_op.take(state, _expr.const(i * direct, "int32"), axis=0)) states.append(s) if bidirectional: back_weights.append( [ concat_weight[i * 2 * direct + 2].args[0], concat_weight[i * 2 * direct + 3].args[0], ] ) back_bias.append( [ concat_weight[(num_layers + i) * 2 * direct + 2].args[0], concat_weight[(num_layers + i) * 2 * direct + 3].args[0], ] ) s = [] for state in init_states: s.append(_op.take(state, _expr.const(i * direct + 1, "int32"), axis=0)) back_states.append(s) xs = [_op.take(seq_data, _expr.const(t, "int32"), axis=0) for t in range(seq_len)] for l in range(num_layers): outputs = [] back_outputs = [] for x in xs: if mode == "rnn": out, new_states = _rnn_cell(x, states[l], *weights[l], *bias[l], activation) elif mode == "gru": out, new_states = _gru_cell(x, states[l], *weights[l], *bias[l]) else: # mode == "lstm" out, new_states = _lstm_cell(x, states[l], *weights[l], *bias[l]) states[l] = new_states outputs.append(out) if bidirectional: for x in reversed(xs): if mode == "rnn": out, new_states = _rnn_cell( x, back_states[l], *back_weights[l], *back_bias[l], activation ) elif mode == "gru": out, new_states = _gru_cell(x, back_states[l], *back_weights[l], *back_bias[l]) else: # mode == "lstm" out, new_states = _lstm_cell(x, back_states[l], *back_weights[l], *back_bias[l]) back_states[l] = new_states back_outputs.append(out) back_outputs.reverse() concat_outputs = [] for t, out in enumerate(outputs): new_out = _op.concatenate([out, back_outputs[t]], axis=-1) concat_outputs.append(new_out) outputs = concat_outputs xs = outputs ret = [_op.stack(outputs, axis=0)] if output_states: for i in range(num_states): inputs = [] for l, s in enumerate(states): inputs.append(s[i]) if bidirectional: inputs.append(back_states[l][i]) ret.append(_op.stack(inputs, axis=0)) return ret def _mx_one_hot(inputs, attrs): indices = inputs[0].astype("int32") depth = attrs.get_int("depth", 0) dtype = attrs.get_str("dtype", "int32") on_value = tvm.relay.const(attrs.get_float("on_value", 1.0), dtype) off_value = tvm.relay.const(attrs.get_float("off_value", 0.0), dtype) return _op.one_hot(indices, on_value, off_value, depth, -1, dtype) def _mx_depth_to_space(inputs, attrs): assert len(inputs) == 1 new_attrs = {} new_attrs["block_size"] = attrs.get_int("block_size") return _op.nn.depth_to_space(*inputs, **new_attrs) def _mx_space_to_depth(inputs, attrs): assert len(inputs) == 1 new_attrs = {} new_attrs["block_size"] = attrs.get_int("block_size") return _op.nn.space_to_depth(*inputs, **new_attrs) def _mx_correlation(inputs, attrs): assert len(inputs) == 2 new_attrs = {} new_attrs["kernel_size"] = attrs.get_int("kernel_size", 1) new_attrs["max_displacement"] = attrs.get_int("max_displacement", 1) new_attrs["stride1"] = attrs.get_int("stride1", 1) new_attrs["stride2"] = attrs.get_int("stride2", 1) new_attrs["padding"] = attrs.get_int("pad_size", 0) new_attrs["is_multiply"] = attrs.get_bool("is_multiply", True) new_attrs["layout"] = "NCHW" return _op.nn.correlation(*inputs, **new_attrs) def _mx_contrib_fifo_buffer(inputs, attrs): new_attrs = {} new_attrs["axis"] = attrs.get_int("axis") return _op.nn.fifo_buffer(*inputs, **new_attrs) def _mx_contrib_interleaved_matmul_selfatt_qk(inputs, attrs): """ tmp = mx.nd.reshape(queries_keys_values, shape=(0, 0, num_heads, 3, -1)) q_proj = mx.nd.transpose(tmp[:,:,:,0,:], axes=(1, 2, 0, 3)) q_proj = mx.nd.reshape(q_proj, shape=(-1, 0, 0), reverse=True) q_proj = mx.nd.contrib.div_sqrt_dim(q_proj) k_proj = mx.nd.transpose(tmp[:,:,:,1,:], axes=(1, 2, 0, 3)) k_proj = mx.nd.reshape(k_proj, shape=(-1, 0, 0), reverse=True) output = mx.nd.batch_dot(q_proj, k_proj, transpose_b=True) """ assert len(inputs) == 1 qkv = inputs[0] num_heads = attrs.get_int("heads") qkv = _op.reshape(qkv, newshape=(0, 0, num_heads, 3, -1)) q_proj = _op.take(qkv, _expr.const(0, "int32"), axis=3) q_proj = _op.transpose(q_proj, axes=[1, 2, 0, 3]) q_proj = _op.reverse_reshape(q_proj, newshape=(-1, 0, 0)) q_proj = _mx_contrib_div_sqrt_dim([q_proj], None) k_proj = _op.take(qkv, _expr.const(1, "int32"), axis=3) k_proj = _op.transpose(k_proj, axes=[1, 2, 0, 3]) k_proj = _op.reverse_reshape(k_proj, newshape=(-1, 0, 0)) ret = _op.nn.batch_matmul(q_proj, k_proj) return ret def _mx_contrib_interleaved_matmul_selfatt_valatt(inputs, attrs): """ tmp = mx.nd.reshape(queries_keys_values, shape=(0, 0, num_heads, 3, -1)) v_proj = mx.nd.transpose(tmp[:,:,:,2,:], axes=(1, 2, 0, 3)) v_proj = mx.nd.reshape(v_proj, shape=(-1, 0, 0), reverse=True) output = mx.nd.batch_dot(attention, v_proj) output = mx.nd.reshape(output, shape=(-1, num_heads, 0, 0), reverse=True) output = mx.nd.transpose(output, axes=(2, 0, 1, 3)) output = mx.nd.reshape(output, shape=(0, 0, -1)) """ assert len(inputs) == 2 qkv, att = inputs num_heads = attrs.get_int("heads") qkv = _op.reshape(qkv, newshape=(0, 0, num_heads, 3, -1)) v_proj = _op.take(qkv, _expr.const(2, "int32"), axis=3) v_proj = _op.transpose(v_proj, axes=(1, 2, 0, 3)) v_proj = _op.reverse_reshape(v_proj, newshape=(-1, 0, 0)) v_proj = _op.transpose(v_proj, axes=[0, 2, 1]) out = _op.nn.batch_matmul(att, v_proj) out = _op.reverse_reshape(out, newshape=(-1, num_heads, 0, 0)) out = _op.transpose(out, axes=(2, 0, 1, 3)) out = _op.reshape(out, newshape=(0, 0, -1)) return out def _mx_cond(inputs, attrs, subgraphs): assert len(subgraphs) == 3 cond_input_locs = json.loads(attrs.get_str("cond_input_locs")) then_input_locs = json.loads(attrs.get_str("then_input_locs")) else_input_locs = json.loads(attrs.get_str("else_input_locs")) num_outputs = attrs.get_int("num_outputs") input_args = [] for i, arg in enumerate(inputs): var = _expr.var("arg%s" % i, _infer_type(arg).checked_type) input_args.append(var) cond_args = [input_args[i] for i in cond_input_locs] then_args = [input_args[i] for i in then_input_locs] else_args = [input_args[i] for i in else_input_locs] cond_arg_shapes = [arg.type_annotation.shape for arg in cond_args] cond_arg_dtype_info = [arg.type_annotation.dtype for arg in cond_args] cond_func = _from_mxnet_impl(subgraphs[0], cond_arg_shapes, cond_arg_dtype_info) cond = _expr.Call(cond_func, cond_args).astype("bool") cond_shape = get_const_tuple(_infer_type(cond).checked_type.shape) if len(cond_shape) > 0: assert len(cond_shape) == 1 and cond_shape[0] == 1, "Condition is not scalar" cond = _op.take(cond, _expr.const(1, "int")) sb = _scope_builder.ScopeBuilder() with sb.if_scope(cond): then_arg_shapes = [arg.type_annotation.shape for arg in then_args] then_arg_dtype_info = [arg.type_annotation.dtype for arg in then_args] then_func = _from_mxnet_impl(subgraphs[1], then_arg_shapes, then_arg_dtype_info) sb.ret(_expr.Call(then_func, then_args)) with sb.else_scope(): else_arg_shapes = [arg.type_annotation.shape for arg in else_args] else_arg_dtype_info = [arg.type_annotation.dtype for arg in else_args] else_func = _from_mxnet_impl(subgraphs[2], else_arg_shapes, else_arg_dtype_info) sb.ret(_expr.Call(else_func, else_args)) func = _function.Function(input_args, sb.get()) ret = _expr.Call(func, inputs) if num_outputs > 1: ret = _expr.TupleWrapper(ret, num_outputs) return ret def _qnn_contrib_concat(inputs, attrs): axis = attrs.get_int("dim", 1) num_args = attrs.get_int("num_args", -1) assert num_args > 0 input_exprs = inputs[0:num_args] min_start_idx = num_args max_start_idx = num_args + 1 mins = list() maxs = list() for i in range(min_start_idx, len(inputs), 2): mins.append(inputs[i]) for i in range(max_start_idx, len(inputs), 2): maxs.append(inputs[i]) # Check if all the input tensors have same qnn params. if len(set(mins)) == 1 and len(set(maxs)) == 1: output_min = mins[0] output_max = maxs[0] concat = _op.concatenate(tuple(input_exprs), axis=axis) return concat, output_min, output_max else: # Get all dtypes. Find input and output scales, call concatenate. dtypes = [_infer_type(x).checked_type.dtype for x in input_exprs] assert all( [x == "uint8" for x in dtypes] ), "Current support is limited to uint8 inputs only." new_min = min(mins) new_max = max(maxs) assert new_min == 0 output_scale = get_mkldnn_uint8_scale(new_min, new_max) min_max = zip(mins, maxs) input_scales = [get_mkldnn_uint8_scale(x, y) for (x, y) in min_max] input_zeros = [0] * len(input_scales) output_zero = 0 input_scales_expr = [relay.const(x, "float32") for x in input_scales] input_zeros_expr = [relay.const(x, "int32") for x in input_zeros] output_scale_expr = relay.const(output_scale, "float32") output_zero_expr = relay.const(output_zero, "int32") res = relay.qnn.op.concatenate( input_exprs, input_scales_expr, input_zeros_expr, output_scale_expr, output_zero_expr, axis=axis, ) return res, new_min, new_max def _qnn_quantize(inputs, attrs): out_dtype = "int8" out_type = attrs.get_str("out_type") if out_type == "auto": if attrs.has_attr("min_calib_range") and attrs.has_attr("max_calib_range"): if attrs.get_float("min_calib_range") >= 0: out_dtype = "uint8" else: out_dtype = "int8" else: out_dtype = out_type if out_dtype not in {"int8", "uint8"}: raise ValueError("Unsupported out_dtype: %s" % out_dtype) min_calib_range = attrs.get_float("min_calib_range", 0.0) max_calib_range = attrs.get_float("max_calib_range", 0.0) quantized_output, _, _ = quantize_mxnet_min_max( inputs[0], min_range=min_calib_range, max_range=max_calib_range, out_dtype=out_dtype ) return quantized_output, min_calib_range, max_calib_range def _qnn_contrib_quantized_fifo_buffer(inputs, attrs, params): data = inputs[0] buffer = inputs[1] min_calib_range = inputs[2] max_calib_range = inputs[3] data_dtype = _infer_type(data).checked_type.dtype buffer_shape = _infer_shape(buffer) buffer_name = _get_name(buffer) params[buffer_name] = _nd.array(np.zeros(buffer_shape).astype(data_dtype)) new_buffer = relay.var(buffer_name, relay.TensorType(buffer_shape, data_dtype)) inputs[1] = new_buffer res = _op.nn.fifo_buffer(data=data, buffer=new_buffer, axis=attrs.get_int("axis")) return res, min_calib_range, max_calib_range def _get_subgraph_op(subgraphs, op_name): assert len(subgraphs) == 1, "Subgraph should have 1 node but has {}".format(len(subgraphs)) subgraph = subgraphs[0] nodes = subgraph["nodes"] assert nodes is not None for node in nodes: if node["op"] == op_name: return node raise ValueError("Op {} was not found in the subgraph".format(op_name)) def _qnn_conv(inputs, attrs, subgraphs, params): def _has_fused_activation(_attrs, _supported_activations): has_fused_activation = False if attrs.get_bool("with_act", False) or attrs.get_bool("with_postsum_act", False): subgraph_activation_attrs = _get_subgraph_op(subgraphs, "Activation")["attrs"] act_type = subgraph_activation_attrs["act_type"] if act_type not in _supported_activations: raise ValueError( "Fused activation {} is not supported at " "this time".format(act_type) ) has_fused_activation = True return has_fused_activation def _get_data_scale_and_zp(_data, _inputs, _data_min_idx, _data_max_idx): """Finds the Qnn params for the data expr.""" data_min = _inputs[_data_min_idx] data_max = _inputs[_data_max_idx] assert data_min <= data_max data_dtype = _infer_type(_data).checked_type.dtype assert data_dtype in {"int8", "uint8"} if data_min < 0.0: assert ( data_dtype == "int8" ), "Expect int8 when data_min < 0.0, consider quantize model with int8." _data_scale = ( get_mkldnn_uint8_scale(data_min, data_max) if data_dtype == "uint8" else get_mkldnn_int8_scale(data_min, data_max) ) _data_zero_point = 0 return _data_scale, _data_zero_point def _get_bn_alpha_coeff(_bn_gamma_idx, _bn_beta_idx, _bn_running_mean_idx, _bn_running_var_idx): """Extract the BN coeff. These will be use later for BN folding into convolution.""" # Extract relevant attrs from bn. bn_attrs = _get_subgraph_op(subgraphs, "BatchNorm")["attrs"] bn_epsilon_param = float(bn_attrs["eps"]) bn_scale_param = bn_attrs["fix_gamma"] == "False" bn_center_param = True # Extract the relevant relay expressions. bn_running_var = inputs[_bn_running_var_idx] bn_gamma = inputs[_bn_gamma_idx] bn_beta = inputs[_bn_beta_idx] bn_running_mean = inputs[_bn_running_mean_idx] # Get coefficient to multiply to weights. bn_epsilon = relay.const(bn_epsilon_param, "float32") denominator = relay.sqrt(relay.add(bn_running_var, bn_epsilon)) _bn_scale = relay.divide(relay.const(1.0, "float32"), denominator) if bn_scale_param: _bn_scale = relay.multiply(bn_gamma, _bn_scale) # Get the shift. _bn_shift = relay.negative(relay.multiply(bn_running_mean, _bn_scale)) if bn_center_param: _bn_shift = relay.add(bn_beta, _bn_shift) return _bn_scale, _bn_shift def _fold_bn(_bn_scale, _bn_shift, _has_bias, _has_bn): """Fold BN into kernel and bias. Get new kernel and bias.""" _kernel = inputs[1] if _bn_scale: assert attrs.get_bool("with_bn", False) # Weights are on OIHW, and _bn_scale is in O. exp_bn_scale = relay.expand_dims(_bn_scale, axis=1, num_newaxis=3) _kernel = relay.multiply(exp_bn_scale, _kernel) _bias = None if _has_bias: _bias = inputs[2] if _has_bn: assert _bn_shift is not None assert _bn_scale is not None _bias = relay.add(relay.multiply(_bn_scale, _bias), _bn_shift) elif _has_bn: assert _bn_shift is not None assert _bn_scale is not None _bias = _bn_shift return _kernel, _bias def _get_quantized_kernel(_kernel, _bias, _data_scale): # For quantizing, we need min/max of kernel. So, we have to pre compute this expr. np_kernel = _infer_value(_kernel, params).numpy() kernel_channel_min = np.amin(np_kernel, axis=(1, 2, 3)) kernel_channel_max = np.amax(np_kernel, axis=(1, 2, 3)) np_bias = None if _bias is not None: np_bias = _infer_value(_bias, params).numpy() return quantize_conv_weights_bias_channel_mkldnn_from_var( _kernel, np_bias, kernel_channel_min, kernel_channel_max, _data_scale ) def _get_qnn_conv2d( _data, _kernel, _data_zero_point, _kernel_zero_point, _data_scale, _kernel_vector_scale, _conv2d_attrs, ): return relay.qnn.op.conv2d( _data, _kernel, input_zero_point=relay.const(_data_zero_point, "int32"), kernel_zero_point=relay.const(_kernel_zero_point, "int32"), input_scale=relay.const(_data_scale, "float32"), kernel_scale=relay.const(_kernel_vector_scale), channels=_conv2d_attrs["channels"], groups=_conv2d_attrs["groups"], kernel_size=_conv2d_attrs["kernel_size"], strides=_conv2d_attrs["strides"], dilation=_conv2d_attrs["dilation"], padding=_conv2d_attrs["padding"], data_layout=_conv2d_attrs["data_layout"], kernel_layout=_conv2d_attrs["kernel_layout"], ) def _get_requantized_op(_res, _input_scale, _output_scale, _out_dtype): # Requantize to get the output back return relay.qnn.op.requantize( _res, input_scale=relay.const(_input_scale), input_zero_point=relay.const(0, "int32"), output_scale=relay.const(_output_scale, "float32"), output_zero_point=relay.const(0, "int32"), axis=1, out_dtype=_out_dtype, ) def _get_sum(_res, _output_scale, out_dtype): """Handles sum of the second quantized tensor.""" # This is done in following steps # 1) rhs is the add's second operand. First rhs will be requantized to output scale with # dtype int32. The int32 dtype is to keep precision high before adding. # 2) Call normal add # 3) Depending on final out_dtype, clip and cast (basically requantize). _output_scale = relay.const(_output_scale, "float32") data_sum = inputs[-5] data_sum_min = inputs[-2] data_sum_max = inputs[-1] data_sum_dtype = _infer_type(data_sum).checked_type.dtype data_sum_scale = ( get_mkldnn_uint8_scale(data_sum_min, data_sum_max) if data_sum_dtype == "uint8" else get_mkldnn_int8_scale(data_sum_min, data_sum_max) ) data_sum_scale = relay.const(data_sum_scale, "float32") zero_point = relay.const(0, "int32") # Save one requantize if the previous expr already has a requantize node. This also improves # little bit with accuracy. if isinstance(data_sum, _expr.Call) and data_sum.op.name == "qnn.requantize": prev_input, prev_scale, prev_zero_point = data_sum.args[0:3] prev_axis = data_sum.attrs.axis data_sum = relay.qnn.op.requantize( prev_input, input_scale=prev_scale, input_zero_point=prev_zero_point, output_scale=_output_scale, output_zero_point=zero_point, axis=prev_axis, out_dtype="int32", ) else: data_sum = relay.qnn.op.requantize( data_sum, input_scale=data_sum_scale, input_zero_point=zero_point, output_scale=_output_scale, output_zero_point=zero_point, out_dtype="int32", ) # 2) Add two int32 tensors. _res = relay.add(_res, data_sum) # 3) Clip/cast to change the out dtype. _res = relay.clip( _res, a_min=float(tvm.tir.op.min_value(out_dtype).value), a_max=float(tvm.tir.op.max_value(out_dtype).value), ) _res = relay.cast(_res, out_dtype) return _res def _parse(): assert len(subgraphs) == 1 subgraph_conv_attrs = StrAttrsDict(_get_subgraph_op(subgraphs, "Convolution")["attrs"]) is_quantized = attrs.get_bool("quantized", False) if is_quantized: # The MKLDNN has a quantized convolution subgraph. There are many different arguments # that are taken into account to parse the subgraph. # * no_bias # * with_sum # * with_bn # * with_postsum_relu # * with_act # # Note - Relu/clip handling is not required because output min/max take care of that. # # The parsing can be broken down into following steps # 1) Get the input data scale and zero points. # 2) Extract BN params. # 3) Fold the BN params into kernel and bias. # 4) Quantize the kernel. # 4) Call QNN conv2d op. # 5) Quantize bias and call bias_add. # 6) Handle sum of quantized tensors if needed. Or just Requantize. has_bias = not subgraph_conv_attrs.get_bool("no_bias", False) has_sum = attrs.get_bool("with_sum", False) has_bn = attrs.get_bool("with_bn", False) ############################################### # 1) Get the input data scale and zero point. ############################################### # Last 2 indexes are data min and max. If the conv has a sum, then last 2 indexes are # for the second tensor. So, the data min max indexes are last 3 and 4 data_min_idx = -2 data_max_idx = -1 if has_sum: data_min_idx = -4 data_max_idx = -3 data = inputs[0] data_scale, data_zero_point = _get_data_scale_and_zp( data, inputs, data_min_idx, data_max_idx ) ############################# # 2) Extract the BN params. ############################# # Find the indexes to look at for BN. bn_scale = bn_shift = None if has_bn: if has_bias: bn_start_idx = 3 else: bn_start_idx = 2 bn_gamma_idx = bn_start_idx bn_beta_idx = bn_start_idx + 1 bn_running_mean_idx = bn_start_idx + 2 bn_running_var_idx = bn_start_idx + 3 bn_scale, bn_shift = _get_bn_alpha_coeff( bn_gamma_idx, bn_beta_idx, bn_running_mean_idx, bn_running_var_idx ) ######################################## # 3) Fold the BN into kernel and bias. ######################################## kernel, bias = _fold_bn(bn_scale, bn_shift, has_bias, has_bn) ####################################################################### # 4) Fold BN params into kernel. Get quantized kernel and QNN params. ####################################################################### kernel, kernel_vector_scale, kernel_zero_point = _get_quantized_kernel( kernel, bias, data_scale ) ########################## # 5) Call QNN conv2d op. ########################## conv2d_attrs = _get_mx_conv2d_attrs(subgraph_conv_attrs) res = _get_qnn_conv2d( data, kernel, data_zero_point, kernel_zero_point, data_scale, kernel_vector_scale, conv2d_attrs, ) ############################################### # 6) Fold BN params into bias. Call bias_add. ############################################### if has_bias or has_bn: bias_scale = data_scale * kernel_vector_scale int32_bias = quantize_conv_bias_mkldnn_from_var(bias, bias_scale) res = _op.nn.bias_add(res, int32_bias, axis=1) ##################################################################### # 7) Handle sum of quantized tensors if needed. Or just Requantize. ##################################################################### min_output_range = attrs.get_float("min_calib_range") max_output_range = attrs.get_float("max_calib_range") output_scale, out_dtype = get_conv_mkldnn_requantized_scale_outDtype( min_output_range, max_output_range ) # QNN conv2d output scale is product of data_scale and kernel_vector_scale input_scale = data_scale * kernel_vector_scale if attrs.get_bool("with_sum", False): # There is a second tensor that has to be added to the QNN conv2d output. Therefore, # the QNN conv2d is first requantized to output scale with int32 precision. The # second tensor will also be requantized to output scale with int32 precision, # followed by an add operator. res = _get_requantized_op(res, input_scale, output_scale, "int32") res = _get_sum(res, output_scale, out_dtype) else: # Get the requantized conv output res = _get_requantized_op(res, input_scale, output_scale, out_dtype) return res, min_output_range, max_output_range else: res = _mx_conv(inputs, subgraph_conv_attrs) has_fused_relu = _has_fused_activation(attrs, ["relu"]) if has_fused_relu: res = _op.nn.relu(res) return res return _parse() def _qnn_flatten(inputs, attrs): # pylint: disable=unused-argument data = inputs[0] output_min = inputs[1] output_max = inputs[2] output = _op.nn.batch_flatten(data) return output, output_min, output_max def _qnn_dequantize(inputs, attrs): # pylint: disable=unused-argument data = inputs[0] input_min = inputs[1] input_max = inputs[2] in_dtype = _infer_type(data).checked_type.dtype result = dequantize_mxnet_min_max(data, input_min, input_max, in_dtype) return result def _qnn_activation(inputs, attrs): act_type = attrs.get_str("act_type") assert len(inputs) == 3 assert act_type == "relu", "Currently only relu is supported" data = inputs[0] range_min = inputs[1] range_max = inputs[2] res = _op.nn.relu(data) return res, range_min, range_max def _qnn_pooling(inputs, attrs): input_min = inputs[1] input_max = inputs[2] data = inputs[0] data_dtype = _infer_type(data).checked_type.dtype pool_type = attrs.get_str("pool_type") if data_dtype in ("int8", "uint8") and pool_type != "max": data = _op.cast(data, "int32") res = _mx_pooling([data, input_min, input_max], attrs) if data_dtype in ("int8", "uint8") and pool_type != "max": res = _op.cast(res, data_dtype) return res, input_min, input_max def _qnn_batch_norm(inputs, attrs): # Perform batch norm in FP32 data = inputs[0] # Dequantize the data. data_min_idx, data_max_idx = (-2, -1) data_min, data_max = inputs[data_min_idx], inputs[data_max_idx] data_dtype = _infer_type(data).checked_type.dtype data_scale = ( get_mkldnn_uint8_scale(data_min, data_max) if data_dtype == "uint8" else get_mkldnn_int8_scale(data_min, data_max) ) data_zp = 0 data = relay.qnn.op.dequantize( data, relay.const(data_scale, "float32"), relay.const(data_zp, "int32") ) # Run BN. The last 4 inputs are same as before. new_inputs = [data, *inputs[1:5]] res = _mx_batch_norm(new_inputs, attrs) # Quantize the result min_output_range = attrs.get_float("min_calib_range") max_output_range = attrs.get_float("max_calib_range") output_scale, out_dtype = get_conv_mkldnn_requantized_scale_outDtype( min_output_range, max_output_range ) res = relay.qnn.op.quantize( res[0], relay.const(output_scale, "float32"), relay.const(0, "int32"), out_dtype=out_dtype ) return res, min_output_range, max_output_range def _qnn_fully_connected(inputs, attrs, subgraphs, params): def _get_input_scale_zp(_data_dtype, _inputs, _has_bias): data_min_idx, data_max_idx = (3, 4) if _has_bias else (2, 3) data_min, data_max = _inputs[data_min_idx], _inputs[data_max_idx] _data_scale = ( get_mkldnn_uint8_scale(data_min, data_max) if _data_dtype == "uint8" else get_mkldnn_int8_scale(data_min, data_max) ) _data_zp = 0 return _data_scale, _data_zp def _get_kernel_scale_zp_tensor_quantized(_kernel, _inputs, _has_bias): kernel_dtype = _infer_type(_kernel).checked_type.dtype if kernel_dtype != "int8": raise tvm.error.OpNotImplemented( "Tensor wise quantized expects weights in int8 data type" ) if isinstance(_kernel, tvm.relay.Call) and _kernel.op.name == "qnn.quantize": _kernel_scale = _kernel.args[1].data.numpy() _kernel_zp = _kernel.args[2].data.numpy() return _kernel_scale, _kernel_zp kernel_min_idx, kernel_max_idx = (5, 6) if _has_bias else (4, 5) kernel_min_name = _get_name(_inputs[kernel_min_idx]) kernel_min = params[kernel_min_name].numpy()[0] kernel_max_name = _get_name(_inputs[kernel_max_idx]) kernel_max = params[kernel_max_name].numpy()[0] _kernel_scale = ( get_mkldnn_uint8_scale(kernel_min, kernel_max) if kernel_dtype == "uint8" else get_mkldnn_int8_scale(kernel_min, kernel_max) ) _kernel_zp = 0 return _kernel_scale, _kernel_zp def _get_kernel_scale_zp_channel_quantized(_kernel, _bias, _data_scale): kernel_dtype = _infer_type(_kernel).checked_type.dtype if kernel_dtype != "float32": raise tvm.error.OpNotImplemented( "Channel wise quantized expects weights in float32 data type" ) # Get the FP32 values, calculate min/max and then channel quantize them np_kernel = _infer_value(_kernel, params).numpy() kernel_channel_min = np.amin(np_kernel, axis=(1,)) kernel_channel_max = np.amax(np_kernel, axis=(1,)) np_bias = None if _bias is not None: np_bias = _infer_value(_bias, params).numpy() return quantize_conv_weights_bias_channel_mkldnn_from_var( _kernel, np_bias, kernel_channel_min, kernel_channel_max, _data_scale ) def _get_bias_requantize_scale(_inputs, _data_scale, _kernel_scale): _bias = _inputs[2] if isinstance(_bias, tvm.relay.Call) and _bias.op.name == "qnn.quantize": _bias_scale = _bias.args[1].data.numpy() _bias_requantize_scale = _bias_scale / (_data_scale * _kernel_scale) _bias_requantize_scale = _expr.const(_bias_requantize_scale, dtype="float32") return _bias_requantize_scale bias_min_name = _get_name(_inputs[7]) bias_min = params[bias_min_name].numpy()[0] bias_max_name = _get_name(_inputs[8]) bias_max = params[bias_max_name].numpy()[0] bias_scale = get_mkldnn_int8_scale(bias_min, bias_max) _bias_requantize_scale = bias_scale / (_data_scale * _kernel_scale) _bias_requantize_scale = _expr.const(_bias_requantize_scale, dtype="float32") return _bias_requantize_scale is_quantized = attrs.get_bool("quantized", False) with_relu = attrs.get_bool("with_relu", False) subgraph_dense_attrs = StrAttrsDict(_get_subgraph_op(subgraphs, "FullyConnected")["attrs"]) if not is_quantized: res = _mx_fully_connected(inputs, subgraph_dense_attrs) if with_relu: res = _op.nn.relu(res) return res else: has_bias = not subgraph_dense_attrs.get_bool("no_bias", False) units = subgraph_dense_attrs.get_int("num_hidden") is_flatten = subgraph_dense_attrs.get_bool("flatten", True) enable_float_output = attrs.get_bool("enable_float_output", False) is_channel_quantized = attrs.get_bool("channel_wise_quantize", False) ######################## # Get data, kernel, bias ######################## data, kernel = inputs[0], inputs[1] bias = None if has_bias: bias = inputs[2] ############################## # Handle for shape of data > 2 ############################## if is_flatten: data = _op.nn.batch_flatten(data) data_shape = _infer_type(data).checked_type.shape if len(data_shape) > 2: data = _op.reverse_reshape(data, [-1, 0]) ############################### # Get data scale and zero point ############################### data_dtype = _infer_type(data).checked_type.dtype data_scale, data_zp = _get_input_scale_zp(data_dtype, inputs, has_bias) ################################# # Get weight scale and zero point ################################# if is_channel_quantized: kernel, kernel_scale, kernel_zp = _get_kernel_scale_zp_channel_quantized( kernel, bias, data_scale ) else: kernel_scale, kernel_zp = _get_kernel_scale_zp_tensor_quantized( kernel, inputs, has_bias ) ################ # Call QNN dense ################ res = relay.qnn.op.dense( data, kernel, input_zero_point=relay.const(data_zp, "int32"), kernel_zero_point=relay.const(kernel_zp, "int32"), input_scale=relay.const(data_scale, "float32"), kernel_scale=relay.const(kernel_scale, "float32"), units=units, ) ################# # Handle bias add ################# if has_bias: if is_channel_quantized: bias_scale = data_scale * kernel_scale int32_bias = quantize_conv_bias_mkldnn_from_var(bias, bias_scale) res = _op.nn.bias_add(res, int32_bias, axis=-1) else: bias_data = inputs[2] bias_requantize_scale = _get_bias_requantize_scale(inputs, data_scale, kernel_scale) multiplied_bias = _op.multiply( _op.cast(bias_data, "float32"), bias_requantize_scale ) rounded_bias = _op.round(multiplied_bias) clipped_bias = _op.clip( rounded_bias, a_min=tvm.tir.op.min_value("int32").value, a_max=tvm.tir.op.max_value("int32").value, ) requantized_bias = _op.cast(clipped_bias, "int32") res = _op.nn.bias_add(res, requantized_bias, axis=-1) ############################################## # Dequantize if float32 output else Requantize ############################################## if enable_float_output: output_scale = np.float32(data_scale * kernel_scale) res = relay.qnn.op.dequantize( res, relay.const(output_scale), input_zero_point=relay.const(0, "int32"), axis=1 ) if with_relu: res = _op.nn.relu(res) else: if is_channel_quantized: raise tvm.error.OpNotImplemented( "Channel wise quantized dense with non float output is not supported yet" ) out_dtype = "uint8" if attrs.get_bool("with_relu", False) else "int8" input_scale = np.float32(data_scale * kernel_scale) min_output_range = attrs.get_float("min_calib_range") max_output_range = attrs.get_float("max_calib_range") output_scale = get_mkldnn_requantize_scale_outDtype( min_output_range, max_output_range, out_dtype ) res = relay.qnn.op.requantize( res, input_scale=relay.const(input_scale, "float32"), input_zero_point=relay.const(0, "int32"), output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(0, "int32"), out_dtype=out_dtype, ) if with_relu: res = _op.nn.relu(res) ############################## # Handle for shape of data > 2 ############################## if len(data_shape) > 2: new_shape = data_shape[:-1] new_shape.append(units) res = _op.reshape(res, new_shape) if enable_float_output: return res return res, min_output_range, max_output_range def _mx_broadcast_to(inputs, attrs): data = inputs[0] tgt_shape = attrs.get_int_tuple("shape", []) return _op.broadcast_to(data, tgt_shape) def _mx_broadcast_like(inputs, attrs): assert len(inputs) == 2 for axes in ["lhs_axes", "rhs_axes"]: if axes in attrs.attrs: raise tvm.error.OpAttributeUnImplemented( 'Attribute "{}" is not supported for operator broadcast_like.'.format(axes) ) return _op.broadcast_to_like(*inputs) def _mx_logical_not(inputs, input_types): data = inputs[0] dtype = _infer_type(data).checked_type.dtype data = _op.cast(data, "bool") if dtype != "bool" else data return _op.cast(_op.logical_not(data), dtype) def _mx_broadcast_logical(logical_op): def impl(inputs, input_types): lhs_type = _infer_type(inputs[0]).checked_type.dtype rhs_type = _infer_type(inputs[1]).checked_type.dtype lhs = _op.cast(inputs[0], "bool") if lhs_type != "bool" else inputs[0] rhs = _op.cast(inputs[1], "bool") if rhs_type != "bool" else inputs[1] return _op.cast(logical_op(lhs, rhs), lhs_type) return impl def _mx_npi_transpose(inputs, attrs): axes = attrs.get_int_tuple("axes", None) # translate default case axes = None if len(axes) == 0 or axes[0] is None else axes return _op.transpose(inputs[0], axes=axes) def _mx_npi_pad(inputs, attrs): pad_mode = attrs.get_str("mode", None) if pad_mode is None: raise tvm.error.OpAttributeRequired('Attribute "mode" not found in operator pad.') if pad_mode not in ["constant", "edge", "reflect"]: raise tvm.error.OpAttributeInvalid("Value " + mode + ' in attribute "mode" is not valid') if "pad_width" not in attrs.attrs: raise tvm.error.OpAttributeRequired('Attribute "pad_width" not found in operator pad.') # Begin to parse tuple of tuple, we cannot use get_int_tuple here because it's a tuple of tuple. pad_width = attrs.attrs["pad_width"] pad_width = pad_width.replace("(", "[") pad_width = pad_width.replace(")", "]") pad_width = json.loads(pad_width) constant_values = attrs.get_float("constant_values", 0.0) return _op.nn.pad( data=inputs[0], pad_width=pad_width, pad_value=constant_values, pad_mode=pad_mode ) def _mx_npi_concatenate(inputs, attrs): axis = attrs.get_str("axis", "0") if axis == "None": return _op.reshape(_op.concatenate(tuple(inputs), axis=0), (-1,)) else: return _op.concatenate(tuple(inputs), axis=int(axis)) def _mx_npi_stack(inputs, attrs): axis = attrs.get_str("axis", "0") if axis == "None": return _op.reshape(_op.stack(tuple(inputs), axis=0), (-1,)) else: return _op.stack(tuple(inputs), axis=int(axis)) def _mx_npx_reshape(inputs, attrs): shape = attrs.get_int_tuple("newshape") reverse = attrs.get_bool("reverse", False) shape_list = list(shape) old_shape = get_const_tuple(_infer_type(inputs[0]).checked_type.shape) new_shape = [] if reverse: old_shape = old_shape[::-1] shape_list = shape_list[::-1] ptr = 0 unknown_axis = None src_ptr = 0 while src_ptr < len(shape_list): ele = shape_list[src_ptr] src_ptr += 1 if ele > 0: new_shape.append(ele) ptr += 1 elif ele == -1: new_shape.append(-1) if unknown_axis is not None: raise tvm.error.OpAttributeInvalid("Can only have one -1 in the input shape.") unknown_axis = len(new_shape) ptr += 1 elif ele == -2: new_shape.append(old_shape[ptr]) ptr += 1 elif ele == -3: if old_shape[ptr] != 1: raise tvm.error.OpAttributeInvalid( "Dimension of the original shape " "that corresponds to -3 must be 1. Received" " {}".format(old_shape[ptr]) ) ptr += 1 elif ele == -4: new_shape += old_shape[ptr:] break elif ele == -5: new_shape.append(old_shape[ptr] * old_shape[ptr + 1]) ptr += 2 elif ele == -6: # Split axis lhs = shape_list[src_ptr] rhs = shape_list[src_ptr + 1] src_ptr += 2 if lhs == -1 and rhs == -1: raise tvm.error.OpAttributeInvalid("The lhs and rhs can not both be -1.") if lhs == -1: if old_shape[ptr] % rhs != 0: raise tvm.error.OpAttributeInvalid( "When splitting the axis, " "the dimension of the split axis must " "be divisible by the splitted values." ) lhs = old_shape[ptr] // rhs if rhs == -1: if old_shape[ptr] % lhs != 0: raise tvm.error.OpAttributeInvalid( "When splitting the axis, " "the dimension of the split axis must " "be divisible by the splitted values." ) rhs = old_shape[ptr] // lhs new_shape.append(lhs) new_shape.append(rhs) ptr += 1 else: raise tvm.error.OpAttributeInvalid("Shape dimension %d is not supported" % ele) if reverse: new_shape = new_shape[::-1] return _op.reshape(inputs[0], newshape=new_shape) def _mx_split_v2(inputs, attrs): axis = attrs.get_int("axis") indices = list(attrs.get_int_tuple("indices", [])) # remove the prefix '0' if len(indices) != 0 and indices[0] == 0: indices.remove(0) sections = attrs.get_int("sections", 0) indices_or_sections = list(indices) if len(indices) != 0 else sections res = _op.split(inputs[0], indices_or_sections=indices_or_sections, axis=axis) if attrs.get_bool("squeeze_axis", False): res = tuple([_op.squeeze(x, axis=[axis]) for x in res]) return res def _mx_npi_where_rscalar(inputs, attrs): cond, dat = inputs scalar = attrs.get_float("scalar") cond_shape = get_const_tuple(_infer_type(cond).checked_type.shape) dat_shape = get_const_tuple(_infer_type(dat).checked_type.shape) dtype = _infer_type(dat).checked_type.dtype # Check for broadcasting out_shape = np.broadcast(np.empty(cond_shape), np.empty(dat_shape)).shape if out_shape != cond_shape: cond = _op.broadcast_to(cond, out_shape) if out_shape != dat_shape: dat = _op.broadcast_to(dat, out_shape) scalar = _expr.const(scalar, dtype=dtype) ones = _op.ones_like(dat) scalar = _op.multiply(ones, scalar) return _op.where(cond, dat, scalar) # Note: due to attribute conversion constraint # ops in the identity set must be attribute free _identity_list = [ "abs", "log", "exp", "erf", "sqrt", "floor", "ceil", "round", "trunc", "sign", "sigmoid", "negative", "reshape_like", "zeros_like", "ones_like", "cos", "cosh", "sin", "sinh", "tan", "tanh", "where", ] _convert_map = { "_copy": _rename(_op.copy), "relu": _rename(_op.nn.relu), "broadcast_add": _rename(_op.add), "broadcast_plus": _rename(_op.add), "broadcast_sub": _rename(_op.subtract), "broadcast_minus": _rename(_op.subtract), "broadcast_mul": _rename(_op.multiply), "broadcast_div": _rename(_op.divide), "broadcast_mod": _rename(_op.mod), "broadcast_maximum": _rename(_op.maximum), "broadcast_minimum": _rename(_op.minimum), "broadcast_power": _rename(_op.power), "arccos": _rename(_op.acos), "arcsin": _rename(_op.asin), "arctan": _rename(_op.atan), "arccosh": _rename(_op.acosh), "arcsinh": _rename(_op.asinh), "arctanh": _rename(_op.atanh), "broadcast_equal": _mx_compare(_op.equal, _rename), "broadcast_not_equal": _mx_compare(_op.not_equal, _rename), "broadcast_greater": _mx_compare(_op.greater, _rename), "broadcast_greater_equal": _mx_compare(_op.greater_equal, _rename), "broadcast_lesser": _mx_compare(_op.less, _rename), "broadcast_lesser_equal": _mx_compare(_op.less_equal, _rename), "broadcast_logical_or": _mx_broadcast_logical(_op.logical_or), "broadcast_logical_and": _mx_broadcast_logical(_op.logical_and), "broadcast_logical_xor": _mx_broadcast_logical(_op.logical_xor), "broadcast_to": _mx_broadcast_to, "broadcast_like": _mx_broadcast_like, "logical_not": _mx_logical_not, "_equal": _mx_compare(_op.equal, _rename), "_not_equal": _mx_compare(_op.not_equal, _rename), "_greater": _mx_compare(_op.greater, _rename), "_greater_equal": _mx_compare(_op.greater_equal, _rename), "_lesser": _mx_compare(_op.less, _rename), "_lesser_equal": _mx_compare(_op.less_equal, _rename), "elemwise_add": _rename(_op.add), "elemwise_sub": _rename(_op.subtract), "elemwise_mul": _rename(_op.multiply), "elemwise_div": _rename(_op.divide), "_maximum": _rename(_op.maximum), "_minimum": _rename(_op.minimum), "flatten": _rename(_op.nn.batch_flatten), "Flatten": _rename(_op.nn.batch_flatten), # scalar power "square": _mx_make_power(2), "rsqrt": _mx_make_power(-1 / 2), "cbrt": _mx_make_power(1 / 3), "rcbrt": _mx_make_power(-1 / 3), "__pow_scalar__": _binop_scalar(_op.power), "_power_scalar": _binop_scalar(_op.power), "__rsub_scalar__": _rbinop_scalar(_op.subtract), "_rminus_scalar": _rbinop_scalar(_op.subtract), "__rdiv_scalar__": _rbinop_scalar(_op.divide), "_rdiv_scalar": _rbinop_scalar(_op.divide), "__rpow_scalar__": _rbinop_scalar(_op.power), # scalar op "__add_scalar__": _binop_scalar(_op.add), "_plus_scalar": _binop_scalar(_op.add), "__sub_scalar__": _binop_scalar(_op.subtract), "_minus_scalar": _binop_scalar(_op.subtract), "__mul_scalar__": _binop_scalar(_op.multiply), "_mul_scalar": _binop_scalar(_op.multiply), "__div_scalar__": _binop_scalar(_op.divide), "_div_scalar": _binop_scalar(_op.divide), "log2": _mx_make_logarithm(2), "log10": _mx_make_logarithm(10), "log1p": _mx_log1p, "expm1": _mx_expm1, "_equal_scalar": _mx_compare(_op.equal, _binop_scalar), "_not_equal_scalar": _mx_compare(_op.not_equal, _binop_scalar), "_greater_scalar": _mx_compare(_op.greater, _binop_scalar), "_greater_equal_scalar": _mx_compare(_op.greater_equal, _binop_scalar), "_lesser_scalar": _mx_compare(_op.less, _binop_scalar), "_lesser_equal_scalar": _mx_compare(_op.less_equal, _binop_scalar), "_maximum_scalar": _binop_scalar(_op.maximum), "_minimum_scalar": _binop_scalar(_op.minimum), # reduction ops "mean": _reduce(_op.mean), "max": _reduce(_op.max), "min": _reduce(_op.min), "sum": _reduce(_op.sum), "max_axis": _reduce(_op.max), "min_axis": _reduce(_op.min), "sum_axis": _reduce(_op.sum), "argmax": _arg_reduce(_op.argmax), "argmin": _arg_reduce(_op.argmin), # init ops "_ones": _init_op(_op.ones), # softmax "softmax": _softmax_op(_op.nn.softmax), "log_softmax": _softmax_op(_op.nn.log_softmax), "Softmax": _softmax_op(_op.nn.softmax), "softsign": _mx_softsign, "softmin": _mx_softmin, "hard_sigmoid": _mx_hard_sigmoid, "reciprocal": _mx_reciprocal, # per op specialization "Reshape": _reshape, "reshape": _reshape, "Cast": _cast, "amp_cast": _cast, "amp_multicast": _mx_amp_multicast, "clip": _clip, "transpose": _transpose, "UpSampling": _upsampling, "add_n": _elemwise_sum, # MXNet specific implementations "_zeros": _mx_zeros, "FullyConnected": _mx_fully_connected, "Activation": _mx_activations, "Convolution": _mx_conv, "Convolution_v1": _mx_conv2d, "Deconvolution": _mx_conv_transpose, "Pooling": _mx_pooling, "Pooling_v1": _mx_pooling, "Dropout": _mx_dropout, "BatchNorm": _mx_batch_norm, "BatchNorm_v1": _mx_batch_norm, "_contrib_SyncBatchNorm": _mx_batch_norm, "InstanceNorm": _mx_instance_norm, "LayerNorm": _mx_layer_norm, "GroupNorm": _mx_group_norm, "LRN": _mx_lrn, "L2Normalization": _mx_l2_normalize, "slice": _mx_slice, "slice_like": _mx_slice_like, "slice_axis": _mx_slice_axis, "SliceChannel": _mx_split, "split": _mx_split, "_split_v2": _mx_split_v2, "SwapAxis": _mx_swap_axis, "expand_dims": _mx_expand_dims, "Concat": _mx_concat, "concat": _mx_concat, "stack": _mx_stack, "dot": _mx_dot, "batch_dot": _mx_batch_dot, "LeakyReLU": _mx_leaky_relu, "_arange": _mx_arange, "_full": _mx_full, "repeat": _mx_repeat, "tile": _mx_tile, "pad": _mx_pad, "Pad": _mx_pad, "take": _mx_take, "gather_nd": _mx_gather_nd, "reverse": _mx_reverse, "SequenceReverse": _mx_sequence_reverse, "squeeze": _mx_squeeze, "broadcast_axis": _mx_broadcast_axis, "broadcast_axes": _mx_broadcast_axis, "BlockGrad": _mx_BlockGrad, "shape_array": _mx_shape_array, "Embedding": _mx_embedding, "argsort": _mx_argsort, "topk": _mx_topk, "_unravel_index": _mx_unravel_index, "SequenceMask": _mx_sequence_mask, "SoftmaxOutput": _mx_softmax_output, "SoftmaxActivation": _mx_softmax_activation, "LinearRegressionOutput": _mx_linear_regression_output, "LogisticRegressionOutput": _mx_logistic_regression_output, "smooth_l1": _mx_smooth_l1, "make_loss": _mx_make_loss, "_contrib_div_sqrt_dim": _mx_contrib_div_sqrt_dim, "_contrib_arange_like": _mx_contrib_arange_like, "one_hot": _mx_one_hot, "depth_to_space": _mx_depth_to_space, "space_to_depth": _mx_space_to_depth, "Correlation": _mx_correlation, # vision "_contrib_BilinearResize2D": _mx_resize, "_contrib_MultiBoxPrior": _mx_multibox_prior, "_contrib_MultiBoxDetection": _mx_multibox_detection, "_contrib_ROIAlign": _mx_roi_align, "ROIPooling": _mx_roi_pooling, "_contrib_Proposal": _mx_proposal, "_contrib_MultiProposal": _mx_proposal, "_contrib_box_nms": _mx_box_nms, "_contrib_box_decode": _mx_box_decode, "_contrib_DeformableConvolution": _mx_deformable_convolution, "_contrib_AdaptiveAvgPooling2D": _mx_adaptive_avg_pooling, "GridGenerator": _mx_grid_generator, "BilinearSampler": _mx_bilinear_sampler, # NLP "RNN": _mx_rnn_layer, "_rnn_param_concat": _mx_rnn_param_concat, "_contrib_interleaved_matmul_selfatt_qk": _mx_contrib_interleaved_matmul_selfatt_qk, "_contrib_interleaved_matmul_selfatt_valatt": _mx_contrib_interleaved_matmul_selfatt_valatt, # control flow "_cond": _mx_cond, # Depricated: "Crop": _mx_crop_like, # List of missing operators that are present in NNVMv1 # TODO(tvm-tvm): support all operators. # # "contrib_fifo_buffer": _mx_contrib_fifo_buffer, "ring_buffer": _mx_contrib_fifo_buffer, # Qnn ops "_contrib_quantize_v2": _qnn_quantize, "_contrib_quantized_concat": _qnn_contrib_concat, # "_contrib_quantized_fifo_buffer": _qnn_contrib_quantized_fifo_buffer, "_contrib_quantized_ring_buffer": _qnn_contrib_quantized_fifo_buffer, "_sg_mkldnn_conv": _qnn_conv, "_contrib_quantized_flatten": _qnn_flatten, "_contrib_dequantize": _qnn_dequantize, "_contrib_quantized_act": _qnn_activation, "_contrib_quantized_pooling": _qnn_pooling, "_contrib_quantized_batch_norm": _qnn_batch_norm, "_sg_mkldnn_fully_connected": _qnn_fully_connected, # numpy "_np_transpose": _mx_npi_transpose, "_npi_transpose": _mx_npi_transpose, "_npi_pad": _mx_npi_pad, "_npi_concatenate": _mx_npi_concatenate, "_npx_reshape": _mx_npx_reshape, "_np_copy": _rename(_op.copy), "_npi_copy": _rename(_op.copy), "_npi_power": _rename(_op.power), "_npi_power_scalar": _binop_scalar(_op.power), "_npi_multiply": _rename(_op.multiply), "_npi_multiply_scalar": _binop_scalar(_op.multiply), "_npi_add": _rename(_op.add), "_npi_add_scalar": _binop_scalar(_op.add), "_npi_subtract": _rename(_op.subtract), "_npi_subtract_scalar": _binop_scalar(_op.subtract), "_npi_where_rscalar": _mx_npi_where_rscalar, "_npi_less": _rename(_op.less), "_npi_less_equal": _mx_compare(_op.less_equal, _rename), "_npi_tanh": _rename(_op.tanh), "_npi_true_divide_scalar": _binop_scalar(_op.divide), "_npi_stack": _mx_npi_stack, } # set identity list _convert_map.update({k: _rename(k) for k in _identity_list}) _control_flow_ops = ["_cond", "_foreach", "_while_loop"] _qnn_subgraph_ops = ["_sg_mkldnn_conv", "_sg_mkldnn_fully_connected"] _subgraph_ops = _control_flow_ops + _qnn_subgraph_ops _params_ops = ["_contrib_quantized_ring_buffer"] def _get_op_params(children, attrs, op_name, node, params): op_params = [children, attrs] if op_name in _subgraph_ops: subgraphs = node["subgraphs"] op_params.append(subgraphs) if op_name in _qnn_subgraph_ops: op_params.append(params) if op_name in _params_ops: op_params.append(params) return op_params def _from_mxnet_impl(symbol, shape_dict, dtype_info, params=None, mod=None): # pylint: disable=unused-argument """Convert mxnet symbol to compatible relay Function. Reconstruct a relay Function by traversing the mxnet symbol. Parameters ---------- symbol : mxnet.sym.Symbol Incompatible symbol from mxnet. The op_name and attrs inside are not always compatible. shape_dict : dict Known parameter shapes dtype_info : dict or str. Known parameter dtypes mod : tvm.IRModule The module that contains global information. It will be used for converting ops that need global information, e.g. control-flow ops. Returns: ------- func : tvm.relay.Function Converted relay Function """ assert symbol is not None if isinstance(symbol, dict): jgraph = symbol else: jgraph = json.loads(symbol.tojson()) jnodes = jgraph["nodes"] node_map = {} shape_idx = 0 # Check if there have any unsupported ops unsupported = {} for node in jnodes: op_name = node["op"] if op_name != "null" and op_name not in _convert_map: if op_name not in unsupported: unsupported[op_name] = 0 unsupported[op_name] += 1 if unsupported: msg = "\n".join(["{}: {}".format(op_name, cnt) for op_name, cnt in unsupported.items()]) raise tvm.error.OpNotImplemented( "One or more operators are not supported in frontend MXNet:\n{}".format(msg) ) for nid, node in enumerate(jnodes): children = [node_map[e[0]][e[1]] for e in node["inputs"]] attrs = StrAttrsDict(node.get("attrs", {})) node_name = node["name"] op_name = node["op"] if op_name == "null": if isinstance(shape_dict, dict): shape = shape_dict[node_name] if node_name in shape_dict else None elif isinstance(shape_dict, (list, tuple)): shape = shape_dict[shape_idx] else: raise ValueError("Unknown type of shape_dict: %s" + type(shape_dict)) if isinstance(dtype_info, dict): dtype = dtype_info[node_name] if node_name in dtype_info else "float32" elif isinstance(dtype_info, (list, tuple)): dtype = dtype_info[shape_idx] else: dtype = dtype_info if isinstance(shape_dict, (list, tuple)): shape_idx += 1 node_map[nid] = [_expr.var(node_name, shape=shape, dtype=dtype)] else: assert op_name in _convert_map op_params = _get_op_params(children, attrs, op_name, node, params) res = _convert_map[op_name](*op_params) if res is None: # defer conversion, used in RNN state initialization res = [node] elif isinstance(res, (_expr.TupleWrapper, tuple, list)): pass elif isinstance(res, _expr.Expr): res = [res] else: raise RuntimeError("unexpected type %s" % type(res)) node_map[nid] = res outputs = [node_map[e[0]][e[1]] for e in jgraph["heads"]] outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) func = _function.Function(analysis.free_vars(outputs), outputs) return func def _update_shape_dtype(shape, dtype, params): """Update shape dtype given params information""" shape = {} if shape is None else shape if not params: return shape, dtype shape = shape.copy() shape.update({k: v.shape for k, v in params.items()}) if isinstance(dtype, str): for k, v in params.items(): if v.dtype != dtype: raise ValueError("%s: dtype not expected %s vs %s" % (k, dtype, v.dtype)) else: dtype = dtype.copy() dtype.update({k: str(v.dtype) for k, v in params.items()}) return shape, dtype def from_mxnet(symbol, shape=None, dtype="float32", arg_params=None, aux_params=None): """Convert from MXNet"s model into compatible relay Function. Parameters ---------- symbol : mxnet.Symbol or mxnet.gluon.HybridBlock MXNet symbol. shape : dict of str to tuple, optional The input shape to the graph dtype : str or dict of str to str The input types to the graph arg_params : dict of str to mx.NDArray The argument parameters in mxnet aux_params : dict of str to mx.NDArray The auxiliary parameters in mxnet Returns ------- mod : tvm.IRModule The relay module for compilation params : dict of str to tvm.nd.NDArray The parameter dict to be used by nnvm """ try: import mxnet as mx # pylint: disable=import-outside-toplevel except ImportError as e: raise ImportError("{}. MXNet is required to parse symbols.".format(e)) mod = IRModule() if isinstance(symbol, mx.sym.Symbol): params = {} arg_params = arg_params if arg_params else {} aux_params = aux_params if aux_params else {} for k, v in arg_params.items(): params[k] = _nd.array(v.asnumpy()) for k, v in aux_params.items(): params[k] = _nd.array(v.asnumpy()) shape, dtype = _update_shape_dtype(shape, dtype, params) func = _from_mxnet_impl(symbol, shape, dtype, params, mod) elif isinstance(symbol, mx.gluon.HybridBlock): if arg_params is not None or aux_params is not None: raise ValueError("arg_params and aux_params ae not used when importing HybridBlock") params = {} for k, v in symbol.collect_params().items(): params[k] = _nd.array(v.data().asnumpy()) inputs = [] for name in shape: inputs.append(mx.sym.Variable(name)) sym = symbol(*inputs) if isinstance(sym, (list, tuple)): sym = mx.sym.Group(sym) shape, dtype = _update_shape_dtype(shape, dtype, params) func = _from_mxnet_impl(sym, shape, dtype, params, mod) elif isinstance(symbol, mx.gluon.Block): raise NotImplementedError("Only Hybrid Blocks are supported now.") else: msg = "mxnet.Symbol or gluon.HybridBlock expected, got {}".format(type(symbol)) raise ValueError(msg) mod["main"] = func return mod, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/mxnet_qnn_op_utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, len-as-condition, no-else-return """MXNet qnn dialect helper methods for MXNet specific implementations of more generic qnn supported ops. """ import numpy as np from tvm import relay from tvm.relay.qnn.op.qnn import quantize, dequantize # The below values are taken from - # https://github.com/apache/incubator-mxnet/blob/master/src/operator/quantization/quantization_utils.h#L38-L39 zero_centered_uint8_quantized_range = np.float32(255.5) zero_centered_int8_quantized_range = np.float32(127.5) def _get_mkldnn_scale(data_min, data_max, quantized_range): """Computes the scale as per MKLDNN specification mentioned here - https://intel.github.io/mkl-dnn/ex_int8_simplenet.html Parameters ---------- data_min : float32 A number representing the lower end of the tensor to be quantized. data_max : float32 A number representing the upper end of the tensor to be quantized. quantized_range : float32 255 for uint8 and 127 for int8. This is the data type range. Returns ------- scale : A floating point number which acts as the scale for quantization. """ real_range = np.max([np.abs(np.float32(data_min)), np.abs(np.float32(data_max))]) scale = np.divide(quantized_range, real_range) scale_inverse = np.divide(1.0, scale) return scale_inverse def _quantize_scale_with_zero_centered(data, scale, zero_point, out_dtype): quantized_output = quantize( data, relay.const(scale, "float32"), relay.const(zero_point, "int32"), out_dtype=out_dtype ) return quantized_output, scale, zero_point def _quantize_with_zero_centered(data, data_min, data_max, quantized_range, out_dtype): """Quantizes the given data tensor by calculating the scale using the MKLDNN formula `quantized_range / max(abs(data_min, data_max))`. Where quantized_range is 255 for uint8 and 127 for int8. The `data_min` and `data_max` are the min and max to use for the `data` tensor elements. Parameters ---------- data : tvm.relay.Expr The input tensor to be quantized. Can be of type float32. data_min : float The minimum to use data elements. data_max : float The maximum to use for data elements. quantized_range : float 255 for uint8 and 127 for int8. This is the data type range. out_dtype : str The output data type. Can be int8 or uint8 Returns ------- result : tvm.relay.Expr The computed result. """ scale = _get_mkldnn_scale(data_min, data_max, quantized_range) zero_point = 0 return _quantize_scale_with_zero_centered(data, scale, zero_point, out_dtype) def _quantize_mkldnn_min_max_uint8(data, data_min, data_max): """Quantizes the given `data` in float32 and the given min and max ranges and the output data type is `uint8`. The method of quantizing is described here - https://tinyurl.com/y5k6fz5w. We use our default quantize implementation from src/relay/qnn/op/quantize.cc:72 but compute the `scale` and `zero_point` to fit our equation. Unlike in TFLite where we get the scale and zero_point from the model, MKLDNN stores the min and max from which we calculate the scale and zero_point. Parameters ---------- data : tvm.relay.Expr The input tensor to be quantized. Can be of type float32. imin_range : float The minimum to use data elements. imax_range : float The maximum to use for data elements. Returns ------- result : tvm.relay.Expr The computed result. """ return _quantize_with_zero_centered( data, data_min, data_max, zero_centered_uint8_quantized_range, "uint8" ) def _quantize_mkldnn_min_max_int8(data, data_min, data_max): """Quantizes the given `data` in float32 and the given min and max ranges and the output data type is `int8`. The method of quantizing is described here - https://tinyurl.com/y5k6fz5w. We use our default quantize implementation from src/relay/qnn/op/quantize.cc:72 but compute the `scale` and `zero_point` to fit our equation. Unlike in TFLite where we get the scale and zero_point from the model, MKLDNN stores the min and max from which we calculate the scale and zero_point. Parameters ---------- data : tvm.relay.Expr The input tensor to be quantized. Can be of type float32. data_min : float The minimum to use data elements. data_max : float The maximum to use for data elements. Returns ------- result : tvm.relay.Expr The computed result. """ return _quantize_with_zero_centered( data, data_min, data_max, zero_centered_int8_quantized_range, "int8" ) def get_mkldnn_int8_scale(range_min, range_max): """Computes the quantization scale using MKLDNN specifications with the given range. The output datatype of tensor to be quantized should be int8. Parameters ---------- range_min : float32 A number representing the lower end of the tensor to be quantized. range_max : float32 A number representing the upper end of the tensor to be quantized. Returns ------- scale : A float32 number which acts as the scale for quantization. """ scale = _get_mkldnn_scale(range_min, range_max, zero_centered_int8_quantized_range) return np.float32(scale) def get_mkldnn_uint8_scale(range_min, range_max): """Computes the quantization scale using MKLDNN specifications with the given range. The output datatype of tensor to be quantized should be uint8. Parameters ---------- range_min : float32 A number representing the lower end of the tensor to be quantized. range_max : float32 A number representing the upper end of the tensor to be quantized. Returns ------- scale : A float32 number which acts as the scale for quantization. """ scale = _get_mkldnn_scale(range_min, range_max, zero_centered_uint8_quantized_range) return np.float32(scale) def quantize_conv_weights_bias_channel_mkldnn_from_var( weights_var, bias, min_vector_range, max_vector_range, data_scale ): """Helper method to quantize the convolution kernel in prequantized model in MXNet with MKLDNN. The kernel is always quantized to int8 output datatype. The inputs are the raw weights which are floating point numbers. The min and max ranges are used from the weight itself. The name supplied is used to create a tvm.relay.var with the given name. Parameters ---------- weights_var : tvm.relay.var The float32 representation of the weights. bias : np.array The float32 np array for bias. min_vector_range : array of float32 A number representing the minimum of the weights per channel. max_vector_range : array of float32 A number representing the maximum of the weights per channel. data_scale : float The data scale value. Returns ------- result : tvm.relay.expr The quantized representation of the weights. """ quantized_range = zero_centered_int8_quantized_range real_vector_range = np.maximum(np.absolute(min_vector_range), np.absolute(max_vector_range)) # If real_vector_range is 0, then to avoid division by 0 in scaling, # make real_vector INT32_max vector_scale = np.where( real_vector_range == 0, 1.0 / float(np.iinfo(np.int32).max), np.divide(real_vector_range, quantized_range), ) # Handle bias impact on scales as done by MxNet-MKLDNN. if bias is not None: common = 2.0 * bias.astype("float32") * (1 / data_scale) vector_scale_min = np.where( bias > 0, common / float(np.iinfo(np.int32).max), common / float(np.iinfo(np.int32).min) ) vector_scale = np.maximum(vector_scale, vector_scale_min) zero_point = 0 quantized_output = quantize( weights_var, relay.const(vector_scale), relay.const(zero_point, "int32"), axis=0, out_dtype="int8", ) return quantized_output, vector_scale, zero_point def get_mkldnn_requantize_scale_outDtype(min_output_range, max_output_range, out_dtype): """Get the MKLDNN requantized scale.""" quantized_out_range = ( zero_centered_int8_quantized_range if out_dtype == "int8" else zero_centered_uint8_quantized_range ) out_range = np.max([np.abs(np.float32(min_output_range)), np.abs(np.float32(max_output_range))]) output_scale = quantized_out_range / out_range requantize_scale = np.float32(1 / output_scale) return requantize_scale def get_conv_mkldnn_requantized_scale_outDtype(min_output_range, max_output_range): out_dtype = "uint8" if min_output_range >= 0.0 else "int8" requantize_scale = get_mkldnn_requantize_scale_outDtype( min_output_range, max_output_range, out_dtype ) return requantize_scale, out_dtype def quantize_conv_bias_mkldnn_from_var(bias_var, bias_scale): """Quantized conv2d bias""" zero_point = 0 quantized_bias = quantize( data=bias_var, output_scale=relay.const(bias_scale), output_zero_point=relay.const(zero_point, "int32"), axis=0, out_dtype="int32", ) return quantized_bias def quantize_mxnet_min_max(data, min_range, max_range, out_dtype="int8"): """Quantizes the given `data` in float32 and the given min and max ranges and the output data type. Only `int8` and `uint8` is supported as output data types. The input data type is expected to be `float32`. Mxnet has two different flavors for quantization 1) Default 2)MKLDNN. To get the second one Mxnet must be built with MKLDNN during compile time. Users can choose either of the implementation for TVM runtime. The main difference between the two implementation is that MKLDNN is centered around 0 and the default implementation for uint8 is not. Parameters ---------- data : tvm.relay.Expr The input tensor to be quantized. Can be of type float32. min_range : float The minimum to use data elements. max_range : float The maximum to use for data elements. out_dtype: str, optional The output data type, can be 'int8' or 'uint8' Returns ------- result : tvm.relay.Expr The computed result. """ if out_dtype == "uint8": return _quantize_mkldnn_min_max_uint8(data, min_range, max_range) elif out_dtype == "int8": return _quantize_mkldnn_min_max_int8(data, min_range, max_range) else: raise ValueError("Expected out_dtype to be int8 or uint8 but was %s" % out_dtype) def _dequantize_zero_centered(data, data_min, data_max, quantized_range): """Dequantizes the given data tensor by calculating the scale using the MKLDNN formula `max(abs(data_min, data_max))/quantized_range`. Where quantized_range is 255 for uint8 and 127 for int8. The `data_min` and `data_max` are the min and max to use for the `data` tensor elements. Parameters ---------- data : tvm.relay.Expr The input tensor to be quantized. Can be of type {int8 or uint8}. data_min : float The minimum to use data elements. data_max : float The maximum to use for data elements. quantized_range : float 255 for uint8 and 127 for int8. This is the data type range. Returns ------- result : tvm.relay.Expr The computed result. """ real_range = np.max([np.abs(np.float32(data_min)), np.abs(np.float32(data_max))]) scale = relay.const(np.divide(real_range, quantized_range), "float32") zero_point = relay.const(0, "int32") return dequantize(data, scale, zero_point) def _dequantize_mkldnn_min_max_int8(data, imin_range, imax_range): """Dequantizes the given `data` in {int8 or uint8} and the given min and max ranges and the output data type is `float32`. The method of dequantizing is described here - https://tinyurl.com/y5k6fz5w. We use our default quantize implementation from src/relay/qnn/op/dequantize.cc:67 but compute the `scale` and `zero_point` to fit our equation. Unlike in TFLite where we get the scale and zero_point from the model, MKLDNN stores the min and max from which we calculate the scale and zero_point. Parameters ---------- data : tvm.relay.Expr The input tensor to be quantized. Can be of type float32. imin_range : float The minimum to use data elements. imax_range : float The maximum to use for data elements. Returns ------- result : tvm.relay.Expr The computed result. """ return _dequantize_zero_centered( data, data_min=imin_range, data_max=imax_range, quantized_range=zero_centered_int8_quantized_range, ) def _dequantize_mkldnn_min_max_uint8(data, imin_range, imax_range): """Dequantizes the given `data` in {int8 or uint8} and the given min and max ranges and the output data type is `float32`. The method of dequantize is described here - https://tinyurl.com/y5k6fz5w. We use our default quantize implementation from src/relay/qnn/op/dequantize.cc:67 but compute the `scale` and `zero_point` to fit our equation. Unlike in TFLite where we get the scale and zero_point from the model, MKLDNN stores the min and max from which we calculate the scale and zero_point. Parameters ---------- data : tvm.relay.Expr The input tensor to be quantized. Can be of type float32. imin_range : float The minimum to use data elements. imax_range : float The maximum to use for data elements. Returns ------- result : tvm.relay.Expr The computed result. """ return _dequantize_zero_centered( data, data_min=imin_range, data_max=imax_range, quantized_range=zero_centered_uint8_quantized_range, ) def dequantize_mxnet_min_max(data, min_range, max_range, in_dtype="int8"): """Dequantizes the given `data` in {int8 or uint8} and the given min and max ranges. The output data type is float32. Only `float32` is supported as output data types. The input data type is expected to be {int8 or uint8}. Mxnet has two different flavors for dequantization 1) Default 2)MKLDNN. To get the second one Mxnet must be built with MKLDNN during compile time. Users can choose either of the implementation for TVM runtime. The main difference between the two implementation is that MKLDNN is centered around 0 and the default implementation for uint8 is not. Parameters ---------- data : tvm.relay.Expr The input tensor to be quantized. Can be of type float32. min_range : float The minimum to use data elements for the output. max_range : float The maximum to use for data elements for the output. in_dtype: str, optional The input data type, can be 'int8' or 'uint8' Returns ------- result : tvm.relay.Expr The computed result. """ if in_dtype == "uint8": return _dequantize_mkldnn_min_max_uint8(data, min_range, max_range) elif in_dtype == "int8": return _dequantize_mkldnn_min_max_int8(data, min_range, max_range) else: raise ValueError("Expected out_dtype to be int8 or uint8 but was %s" % in_dtype)
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/nnvm_common.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, len-as-condition """Utility functions common to NNVM and MxNet conversion.""" import warnings from ... import error from ...tir.op import min_value from .. import expr as _expr from .. import op as _op from .common import get_relay_op from .common import infer_type as _infer_type from .common import infer_shape as _infer_shape def _warn_not_used(attr, op="nnvm"): err = "{} is ignored in {}.".format(attr, op) warnings.warn(err) def _rename(new_op): if isinstance(new_op, str): new_op = get_relay_op(new_op) # attrs are ignored. def impl(inputs, _, _dtype="float32"): return new_op(*inputs) return impl def _reshape(inputs, attrs): shape = attrs.get_int_tuple("shape") reverse = attrs.get_bool("reverse", False) if reverse: return _op.reverse_reshape(inputs[0], newshape=shape) return _op.reshape(inputs[0], newshape=shape) def _init_op(new_op): """Init ops like zeros/ones""" def _impl(inputs, attrs): assert len(inputs) == 0 shape = attrs.get_int_tuple("shape") dtype = attrs.get_str("dtype", "float32") return new_op(shape=shape, dtype=dtype) return _impl def _softmax_op(new_op): """softmax/log_softmax""" def _impl(inputs, attrs, _dtype="float32"): axis = attrs.get_int("axis", -1) use_length = attrs.get_bool("use_length", False) if use_length: # The second arg is valid_length. We can use sequence mask to mask the input before # computing softmax assert len(inputs) == 2 data = inputs[0] length = inputs[1] data_shape = _infer_shape(data) data_dtype = _infer_type(data).checked_type.dtype length_shape = _infer_shape(length) if axis < 0: axis = len(data_shape) + axis data_ndims = len(data_shape) length_ndims = len(length_shape) # Sequence_mask supports axis = 0 and 1 and requires data to be in specific format. if axis == data_ndims - 1 and data_ndims > 2 and length_ndims == 2: new_batch_size = 1 for dim in range(length_ndims): assert data_shape[dim] == length_shape[dim] new_batch_size *= data_shape[dim] # Reshape the data and length to satisfy sequence mask data = _op.reshape(data, newshape=(new_batch_size, -1)) length = _op.reshape(length, newshape=(new_batch_size)) # Input data is now 2D, we can set the axis = 1 axis = 1 elif data_ndims > 2: raise error.OpNotImplemented( "Operator softmax with use_length=True is supported only for axis -1" ) res = _op.sequence_mask( data=data, valid_length=length, mask_value=float(min_value(data_dtype).value), axis=axis, ) # Apply softmax res = new_op(res, axis=axis) # Reshape back to input data shape if len(data_shape) > 2: return _op.reshape(res, newshape=data_shape) return res return new_op(inputs[0], axis=axis) return _impl def _reduce(new_op): """Reduction ops like sum/min/max""" def _impl(inputs, attrs, _dtype="float32"): assert len(inputs) == 1 axis = attrs.get_int_tuple("axis", []) keepdims = attrs.get_bool("keepdims", False) exclude = attrs.get_bool("exclude", False) # use None for reduce over all axis. axis = None if len(axis) == 0 else axis return new_op(inputs[0], axis=axis, keepdims=keepdims, exclude=exclude) return _impl def _arg_reduce(new_op): """Arg Reduction ops like argmin/argmax""" def _impl(inputs, attrs): assert len(inputs) == 1 axis = attrs.get_int("axis", None) keepdims = attrs.get_bool("keepdims", False) res = new_op(inputs[0], axis=[axis], keepdims=keepdims) # cast to dtype. res = res.astype("float32") return res return _impl def _cast(inputs, attrs): """Type cast""" dtype = attrs.get_str("dtype") return inputs[0].astype(dtype=dtype) def _clip(inputs, attrs): a_min = attrs.get_float("a_min") a_max = attrs.get_float("a_max") return _op.clip(inputs[0], a_min=a_min, a_max=a_max) def _transpose(inputs, attrs): axes = attrs.get_int_tuple("axes", None) # translate default case axes = None if len(axes) == 0 else axes return _op.transpose(inputs[0], axes=axes) def _upsampling(inputs, attrs): scale = attrs.get_int("scale") return _op.nn.upsampling(inputs[0], scale_h=scale, scale_w=scale) def _elemwise_sum(inputs, _, _dtype="float32"): assert len(inputs) > 0 res = inputs[0] for x in inputs[1:]: res = _op.add(res, x) return res def _binop_scalar(new_op): def _impl(inputs, attrs, odtype=None): assert len(inputs) == 1 scalar = attrs.get_float("scalar") if odtype is None: odtype = _infer_type(inputs[0]).checked_type.dtype scalar = _expr.const(scalar, dtype=odtype) return new_op(inputs[0], scalar) return _impl def _rbinop_scalar(new_op): def _impl(inputs, attrs, odtype=None): assert len(inputs) == 1 scalar = attrs.get_float("scalar") if odtype is None: odtype = _infer_type(inputs[0]).checked_type.dtype scalar = _expr.const(scalar, dtype=odtype) return new_op(scalar, inputs[0]) return _impl def _compare(new_op): """Compare ops like greater/less""" def _impl(inputs, _, odtype="float32"): assert len(inputs) == 2 return new_op(inputs[0], inputs[1]).astype(odtype) return _impl
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/oneflow.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, len-as-condition, unused-argument, too-many-lines # pylint: disable=import-outside-toplevel """OneFlow: OneFlow is a performance-centered and open-source deep learning framework.""" import os import re import copy from collections import OrderedDict import numpy as np import tvm from tvm.ir import IRModule from tvm.topi.utils import get_const_tuple from .. import analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from .. import ty as _ty from .common import ( AttrCvt, Renamer, fold_constant, get_relay_op, infer_shape, infer_type, new_var, ) __all__ = ["from_oneflow"] FLOW_2_STR_DTYPE = { 2: "float32", 3: "float64", 6: "int64", 5: "int32", 4: "int8", 7: "uint8", 9: "float16", } def is_input_op(node): """Return true when the node is the input of the graph.""" return node.WhichOneof("op_type") == "input_conf" def is_user_op(node): """Return true when the node is the intermediate variables of graph.""" return node.WhichOneof("op_type") == "user_conf" def is_output_op(node): """Return true when the node is the output of the graph.""" return node.WhichOneof("op_type") == "output_conf" def is_param_op(node): """Return true when the node is the intermediate variables of model(saved).""" return node.WhichOneof("op_type") == "variable_conf" def get_node_info(node): """ Get basic information about nodes: shape, data_type """ # list->tuple shape = tuple(node.input_conf.blob_conf.shape.dim) # get data type dtype = node.input_conf.blob_conf.data_type if dtype in list(FLOW_2_NP_DTYPE.keys()): data_type = FLOW_2_NP_DTYPE[dtype] else: raise IndexError("Please check the data type of your node: %s" % node.name) return shape, data_type def _dtype_shape_promotion(inputs): """Promote data type and shape for list of tensors.""" dtype_order = ["bool", "int8", "int16", "int32", "int64", "float32", "float64"] ranks = [len(infer_shape(x)) for x in inputs] if set(ranks) == set([1, 0]): for i, r in enumerate(ranks): if r == 0: inputs[i] = _op.expand_dims(inputs[i], axis=0) dtypes = set(dtype_order.index(infer_type(x).checked_type.dtype) for x in inputs) if len(dtypes) == 1: return inputs max_dtype = dtype_order[max(dtypes)] for i, input_op in enumerate(inputs): if infer_type(input_op).checked_type.dtype != max_dtype: inputs[i] = input_op.astype(max_dtype) return inputs def parse_attr(attr): """Parse attribute of user op in oneflow.""" attrs = {} for a in attr: attr_str = str(attr[a]) if attr_str[0:7] == "at_list": attr_str_ = attr_str.split(" ")[0] if attr_str_ == "at_list_float": attrs[a] = tuple(attr[a].at_list_float.val) elif attr_str_ == "at_list_int32": attrs[a] = tuple(attr[a].at_list_int32.val) elif attr_str_ == "at_list_int64": attrs[a] = tuple(attr[a].at_list_int64.val) elif attr_str.split(":")[0] == "at_string": attrs[a] = attr[a].at_string elif attr_str.split(" ")[0] == "at_shape": attrs[a] = tuple(list(attr[a].at_shape.dim)) else: attr_str_ = attr_str.split(":")[0] if attr_str_ == "at_bool": attrs[a] = attr[a].at_bool elif attr_str_ == "at_double": attrs[a] = attr[a].at_double elif attr_str_ == "at_float": attrs[a] = attr[a].at_float elif attr_str_ == "at_int32": attrs[a] = attr[a].at_int32 elif attr_str_ == "at_int64": attrs[a] = attr[a].at_int64 return attrs def shape_of(x, dtype="int64"): ttype = infer_type(x).checked_type if not _ty.is_dynamic(ttype): shape = list(ttype.shape) return _expr.const(shape, dtype) return _op.shape_of(x, dtype) def dimension_constraint(): def _dim_check(attrs): if len(attrs["kernel_size"]) in [1, 2, 3]: return True return False return _dim_check, "Only 1d, 2d and 3d kernel supported." class OneFlowOpConverter(object): """A helper class for holding oneflow op converters.""" @classmethod def get_converter(cls): """ Get converter matches given opset. Parameters ---------- None Returns ------- converter, which should be `_impl_vx`. """ version = 1 if hasattr(cls, "_impl_v{}".format(version)): return getattr(cls, "_impl_v{}".format(version)) raise NotImplementedError("version {} of {} not implemented".format(version, cls.__name__)) class Pool(OneFlowOpConverter): """A helper class for pool op converters.""" name = "" @classmethod def _impl_v1(cls, inputs, attrs, params): data = inputs[0] attrs.pop("data_format") out = AttrCvt( op_name=cls.name, transforms={ "kernel_size": "pool_size", "stride": "strides", "dilations": ("dilation", 1), }, ignores=["return_indices", "divisor_override"], custom_check=dimension_constraint(), )([data], attrs, params) return out class AdaptiveAvgPool2d(OneFlowOpConverter): """Operator converter for AdaptiveAvgPool2d""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _op.nn.adaptive_avg_pool2d(inputs[0], output_size=attrs["output_size"]) class AdaptiveMaxPool2d(OneFlowOpConverter): """Operator converter for AdaptiveMaxPool2d""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _op.nn.adaptive_max_pool2d(inputs[0], output_size=attrs["output_size"]) class GlobalAveragePool(OneFlowOpConverter): """Operator converter for GlobalAveragePool""" @classmethod def _impl_v1(cls, inputs, attrs, params): rank = len(infer_shape(inputs[0])) if rank == 3: return _op.nn.global_avg_pool1d(inputs[0]) if rank == 4: return _op.nn.global_avg_pool2d(inputs[0]) if rank == 5: return _op.nn.global_avg_pool3d(inputs[0]) raise NotImplementedError( "Global average pooling is only implemented for 1D, 2D, and 3D kernels, got %dD." % (rank - 2), ) class GlobalMaxPool(OneFlowOpConverter): """Operator converter for GlobalMaxPool""" @classmethod def _impl_v1(cls, inputs, attrs, params): rank = len(infer_shape(inputs[0])) if rank == 3: return _op.nn.global_max_pool1d(inputs[0]) if rank == 4: return _op.nn.global_max_pool2d(inputs[0]) if rank == 5: return _op.nn.global_max_pool3d(inputs[0]) raise NotImplementedError( "Global max pooling is only implemented for 1D, 2D, and 3D kernels, got %dD." % (rank - 2), ) class Conv(OneFlowOpConverter): """A helper class for conv op converters.""" name = "" @classmethod def _impl_v1(cls, inputs, attrs, params): # The kernel is imported from model_dir_path, without the ".weight" logo, etc. # The data is obtained through the graph, its op contains "_input." in_names = ["_input."] kernel_names = [".weight"] for i in inputs: IN_NAMES = any(x in str(i) for x in in_names) KERNEL_NAMES = any(x in str(i) for x in kernel_names) if IN_NAMES: data = i elif KERNEL_NAMES: kernel = i else: data = i # Use shape of input to determine convolution type. kernel_type = infer_type(kernel) kernel_shapes = [get_const_tuple(kernel_type.checked_type.shape)] if "kernel_size" not in attrs: attrs["kernel_size"] = kernel_shapes[0][2:] if "dilation_rate" in attrs: attrs["dilation"] = list(attrs["dilation_rate"]) attrs.pop("dilation_rate") pad_v = attrs.get("padding_before", [0, 0]) attrs["padding"] = [pad_v[0], pad_v[1], pad_v[0], pad_v[1]] group_conv1d = False if cls.name == "conv1d" and attrs.get("groups") != 1: group_conv1d = True # Expand input from NCW to NCHW data = _op.expand_dims(data, axis=2) # Expand kernel from OIW to OIHW kernel = _op.expand_dims(kernel, axis=2) # Add new value to kernel_shape, strices, dilation, pads, if needed attrs["kernel_size"] = [1] + list(attrs["kernel_size"]) if "strides" in attrs: attrs["strides"] = [1] + list(attrs["strides"]) if "dilations" in attrs: attrs["dilation"] = [1] + list(attrs["dilations"]) out = AttrCvt( op_name=cls.name, transforms={ "group": ("groups", 1), }, ignores=["data_format", "filters", "padding_after", "padding_before"], custom_check=dimension_constraint(), )([data, kernel], attrs, params) # If this was a group_conv1d, squish output back to NCW. if group_conv1d: out = _op.squeeze(out, axis=[2]) return out class ConvTranspose(OneFlowOpConverter): """Operator converter for ConvTranspose.""" @classmethod def _impl_v1(cls, inputs, attrs, params): in_names = ["_input."] kernel_names = [".weight"] for i in inputs: IN_NAMES = any(x in str(i) for x in in_names) KERNEL_NAMES = any(x in str(i) for x in kernel_names) if IN_NAMES: data = i elif KERNEL_NAMES: kernel = i else: data = i # get number of channels attrs["channels"] = attrs.get("filters", 1) attrs["groups"] = attrs.get("group", 1) kernel_type = infer_type(kernel) kernel_shapes = [get_const_tuple(kernel_type.checked_type.shape)] if "kernel_size" not in attrs: attrs["kernel_size"] = kernel_shapes[0][2:] if "dilation_rate" in attrs: attrs["dilation"] = list(attrs["dilation_rate"]) attrs.pop("dilation_rate") pad_v = attrs.get("padding_before", [0, 0]) attrs["padding"] = [pad_v[0], pad_v[1], pad_v[0], pad_v[1]] out = AttrCvt( op_name=cls.name, transforms={ "group": ("groups", 1), }, disables=["filters", "data_format", "padding_before"], custom_check=dimension_constraint(), )([data, kernel], attrs, params) return out class Upsample(OneFlowOpConverter): """A helper class for upsample op converters""" name = "" @classmethod def _impl_v1(cls, inputs, attrs, params): data = inputs[0] input_shape = infer_shape(data) dims = len(input_shape) width_scale = attrs.get("width_scale", 1.0) height_scale = attrs.get("height_scale", 1.0) align_corners = attrs.get("align_corners", False) if "nearest" in cls.name: method = "nearest_neighbor" elif "trilinear" in cls.name: method = "trilinear" elif "bilinear" in cls.name: method = "bilinear" # in 3d case, we use the purely static op if dims == 5: if isinstance(scales, _expr.Expr): scale_h = _op.take(scales, _op.const(3)) scale_w = _op.take(scales, _op.const(4)) scale_d = _op.take(scales, _op.const(1)) else: assert len(scales) == 5 scale_h = scales[-2] scale_w = scales[-1] scale_d = scales[-3] layout = "NCDHW" out = _op.nn.upsampling3d( data, scale_d, scale_h, scale_w, layout=layout, method=method, coordinate_transformation_mode="asymmetric", ) # in 2d case, use dynamic op else: if isinstance(height_scale, _expr.Expr): height_scale = _op.take(height_scale, _op.const(3)) width_scale = _op.take(width_scale, _op.const(4)) layout = "NCHW" out = _op.nn.upsampling( inputs[0], height_scale, width_scale, layout=layout, method=method, align_corners=align_corners, ) return out class UpsampleNearest(Upsample): """Operator converter for Upsample Nearest""" name = "upsample_nearest" class UpsampleBiLinear(Upsample): """Operator converter for Upsample Bilinear""" name = "upsample_bilinear" class Conv2d(Conv): """Operator converter for Conv2d""" name = "conv2d" class ConvTranspose2d(ConvTranspose): """Operator converter for ConvTranspose2d""" name = "conv2d_transpose" class BatchNorm(OneFlowOpConverter): """Operator converter for BatchNorm""" @classmethod def _impl_v1(cls, inputs, attrs, params): # sort the inputs sorted_inputs = copy.deepcopy(inputs) for i in inputs: IN_NAMES = "_input." in str(i) if IN_NAMES: sorted_inputs[0] = i elif "weight" in str(i) and not IN_NAMES: sorted_inputs[1] = i elif "bias" in str(i) and not IN_NAMES: sorted_inputs[2] = i elif "mean" in str(i) and not IN_NAMES: sorted_inputs[3] = i elif "var" in str(i) and not IN_NAMES: sorted_inputs[4] = i if "data_format" in attrs: if attrs["data_format"] == "channel_first": attrs["axis"] = 1 out = AttrCvt(op_name="batch_norm", ignores=["training"], disables=["momentum"])( sorted_inputs, attrs, params ) return out[0] class Flatten(OneFlowOpConverter): """Operator converter for Flatten""" @classmethod def _impl_v1(cls, inputs, attrs, params): x = inputs[0] input_shape = list(infer_shape(x)) start = attrs["start_dim"] end = attrs["end_dim"] ndim = len(input_shape) if end < 0: end += ndim new_shape = [0] * start new_shape.append(-1) squeeze_axes = [] for i in range(start + 1, end + 1): new_shape.append(1) squeeze_axes.append(i) for _ in range(end + 1, ndim): new_shape.append(0) out = _op.reshape(x, new_shape) if squeeze_axes: out = _op.squeeze(out, axis=squeeze_axes) return out class MatMul(OneFlowOpConverter): """Operator converter for MatMul""" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 2, "MatMul op take 2 inputs, {} given".format(len(inputs)) dtype = infer_type(inputs[0]).checked_type.dtype # Y = alpha * A * B alpha = float(attrs.get("alpha", 1.0)) transA = bool(attrs.get("transpose_a", False)) transB = bool(attrs.get("transpose_b", False)) a_shape = infer_shape(inputs[0]) b_shape = infer_shape(inputs[1]) if ( (transA and transB and a_shape[-2] != b_shape[-1]) or (transA and not transB and a_shape[-2] != b_shape[-2]) or (transB and not transA and a_shape[-1] != b_shape[-1]) or (not transB and not transA and a_shape[-1] != b_shape[-2]) ): matmul_a = inputs[1] matmul_b = inputs[0] else: matmul_a = inputs[0] matmul_b = inputs[1] if transA: perm = list(range(len(a_shape))) perm[-2] = len(a_shape) - 1 perm[-1] = len(a_shape) - 2 matmul_a = _op.transpose(matmul_a, axes=perm) if transB: perm = list(range(len(b_shape))) perm[-2] = len(b_shape) - 1 perm[-1] = len(b_shape) - 2 matmul_b = _op.transpose(matmul_b, axes=perm) # This implemention almost keeps same with ONNX # Need to check input shape as batch matmul must be supported. a_shape = shape_of(matmul_a, dtype="int32") a_rank = infer_shape(a_shape)[0] b_shape = shape_of(matmul_b, dtype="int32") b_rank = infer_shape(b_shape)[0] # When performing a batch matmul, we need to properly handle N-dim shapes. if a_rank > 2 or b_rank > 2: def flatten_to_nd(x, x_shape, nd=3): ndims = infer_shape(x_shape)[0] if ndims == nd: return x newshape = _op.concatenate( [ _expr.const([-1], dtype=infer_type(x_shape).checked_type.dtype), _op.strided_slice(x_shape, [ndims - nd + 1], [ndims]), ], 0, ) out = _op.reshape(x, fold_constant(newshape)) return out b_type = infer_type(matmul_b) # Convert to dense if the second matrix is 2d and non-dynamic if b_rank == 2 and not _ty.is_dynamic(b_type.checked_type): a = flatten_to_nd(matmul_a, a_shape, 2) b = _op.transpose(matmul_b) output = _op.nn.dense(a, b) else: # Convert a and b into 3 dimensional tensors. a = flatten_to_nd(matmul_a, a_shape, 3) b = flatten_to_nd(matmul_b, b_shape, 3) # Transpose matrix dimensions of b. b = _op.transpose(b, [0, 2, 1]) # Perform a batch matmul. output = _op.nn.batch_matmul(a, b) # Determine the output batch dimension. if a_rank > b_rank: out_batch = _op.strided_slice(a_shape, [0], [a_rank - 2]) elif a_rank < b_rank: out_batch = _op.strided_slice(b_shape, [0], [b_rank - 2]) # If its unclear how broadcasting should be applied, the output # shape is determined by choosing the maximum value from each input. else: out_batch = _op.concatenate( [ _op.maximum( _op.strided_slice(a_shape, [i], [i + 1]), _op.strided_slice(b_shape, [i], [i + 1]), ) for i in range(a_rank - 2) ], 0, ) # Reshape output to original dimensions. final_shape = _op.concatenate( [ out_batch, _op.strided_slice( a_shape, [infer_shape(a_shape)[0] - 2], [infer_shape(a_shape)[0] - 1] ), _op.strided_slice( b_shape, [infer_shape(b_shape)[0] - 1], [infer_shape(b_shape)[0]] ), ], 0, ) out = _op.reshape(output, fold_constant(final_shape)) else: if b_rank == 1: matmul_b = _op.expand_dims(matmul_b, 1, 1) # Otherwise a simple dense op will get the job done. input_1_t = _op.transpose(matmul_b, axes=(1, 0)) out = _op.nn.dense(matmul_a, input_1_t) if b_rank == 1: out = _op.squeeze(out, axis=[-1]) if not np.isclose(alpha, 1.0): out = out * _expr.const(alpha, dtype=dtype) return out class Reduce(OneFlowOpConverter): """Operator converter for reduce ops""" name = "" @classmethod def _impl_v1(cls, inputs, attrs, params): attr = {"axis": attrs.get("axis", 0), "keepdims": attrs.get("keepdims", True)} return AttrCvt(cls.name)(inputs, attr) class ReduceMax(Reduce): """Operator converter for ReduceMax""" name = "max" class ReduceMin(Reduce): """Operator converter for ReduceMin""" name = "min" class ReduceSum(Reduce): """Operator converter for ReduceSum""" name = "sum" class ReduceMean(Reduce): """Operator converter for ReduceMean""" name = "mean" class Square(OneFlowOpConverter): """Operator converter for square""" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 1, "Square op {} take 1 inputs, {} given".format( cls.name, len(inputs) ) return _op.multiply(inputs[0], inputs[0]) class Add(OneFlowOpConverter): """Operator converter for Add""" name = "add" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 2, "Math op {} take 2 inputs, {} given".format(cls.name, len(inputs)) axis = int(attrs.get("axis", 0)) true_names = ["weight", "bias"] false_names = ["_input."] for i in inputs: T_NAMES = any(x in str(i) for x in true_names) F_NAMES = any(x in str(i) for x in false_names) if T_NAMES and not F_NAMES: add_b = i else: add_a = i # fix the shape add_shape = infer_shape(add_a) if len(add_shape) > 2: add_b = _op.expand_dims(add_b, axis=axis, num_newaxis=len(add_shape) - 2) add_b_shape = list(infer_shape(add_b)) add_b_shape.insert(0, add_shape[0]) add_b = _op.reshape(add_b, tuple(add_b_shape)) out = get_relay_op(cls.name)(add_a, add_b) return out class Expand(OneFlowOpConverter): """Operator converter for Expand""" @classmethod def _impl_v1(cls, inputs, attrs, params): data_in = inputs[0] shape = list(infer_shape(data_in)) ndims = len(shape) sizes = attrs["logical_expand_shape"] out = data_in out_dims = len(sizes) if ndims < out_dims: num_newaxis = out_dims - ndims out = _op.expand_dims(out, axis=0, num_newaxis=num_newaxis) shape = [1] * num_newaxis + shape for i in range(out_dims): if sizes[i] != -1 and shape[i] == 1: out = _op.repeat(out, sizes[i], axis=i) return out class Transpose(OneFlowOpConverter): """Operator converter for transpose.""" @classmethod def _impl_v1(cls, inputs, attrs, params): perm = attrs["perm"] return _op.transpose(inputs[0], axes=perm) class ExpandDim(OneFlowOpConverter): """Operator converter for ExpandDim""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _op.expand_dims(inputs[0], axis=attrs.get("axis", 0)) class BroadcastMath(OneFlowOpConverter): """Operator converter for broadcast math ops""" name = "" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 2, "Math op {} take 2 inputs, {} given".format(cls.name, len(inputs)) beta_names = ["weight", "bias", "mean", "var", "Constant"] for i in inputs: T_NAMES = any([x in str(i) for x in beta_names]) if T_NAMES and "_input." not in str(i): input_b = i else: input_a = i if cls.name == "divide": length = [] for i in inputs: length.append(len(str(i))) for i in inputs: if len(str(i)) == max(length): input_a = i else: input_b = i if cls.name == "subtract": length = [] for i in inputs: length.append(len(str(i))) for i in inputs: if len(str(i)) == max(length): input_b = i else: input_a = i try: return get_relay_op(cls.name)(input_a, input_b) except UnboundLocalError: return get_relay_op(cls.name)(*inputs) class BroadcastMul(BroadcastMath): """Operator converter for Mul broadcast""" name = "multiply" class BroadcastAdd(BroadcastMath): """Operator converter for Add broadcast""" name = "add" class BroadcastSub(BroadcastMath): """Operator converter for Sub broadcast""" name = "subtract" class BroadcastDiv(BroadcastMath): """Operator converter for Div broadcast""" name = "divide" class LogicalGreater(OneFlowOpConverter): """Operator converter for greater""" @classmethod def _impl_v1(cls, inputs, attrs, params): res = None if attrs.get("has_int_operand", True): value = attrs.get("int_operand", 0.0) res = _op.greater(inputs[0], _op.full_like(inputs[0], fill_value=_expr.const(value))) elif attrs.get("has_float_operand", True): value = float(attrs.get("float_operand", 0.0)) res = _op.greater( inputs[0], _op.full_like(inputs[0], fill_value=_expr.const(value)).astype("float32") ) else: raise AttributeError( "please check if has_int_operand or has_float_operand in your attrs" ) return res class Log1p(OneFlowOpConverter): """Operator converter for Log1p""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _op.log(inputs[0] + _expr.const(1.0)) class Pow(OneFlowOpConverter): """Operator converter for Power""" @classmethod def _impl_v1(cls, inputs, attrs, params): inputs = _dtype_shape_promotion(inputs) return get_relay_op(cls.name)(inputs[0], inputs[1]) class Expm1(OneFlowOpConverter): """Operator converter for Expm1""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _op.exp(inputs[0]) - _expr.const(1.0) class Unary(OneFlowOpConverter): """A helper class for unary op converters""" name = "" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 1, "Unary math op {} takes 1 input, {} given".format( cls.name, len(inputs) ) return get_relay_op(cls.name)(*inputs) class Absolute(Unary): """Operator converter for Absolute.""" name = "abs" class AddN(OneFlowOpConverter): """Operator converter for Add_n""" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) > 0, "add_n take >=1 inputs, but 0 given." res = inputs[0] for each in inputs[1:]: res = _op.add(res, each) return res class ScalarAdd(OneFlowOpConverter): """Operator convert for Add_scalar""" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 1, "add_scalar take == 1 inputs, but {} given.".format(len(inputs)) if attrs.get("has_int_operand", True): res = inputs[0] + _expr.const(attrs["int_operand"]) elif attrs.get("has_float_operand", True): res = inputs[0] + _expr.const(attrs["float_operand"]) else: raise AttributeError( "please check if has_int_operand or has_float_operand in your attrs" ) return res class ScalarMul(OneFlowOpConverter): """Operator convert for Mul_scalar""" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 1, "add_scalar take == 1 inputs, but {} given.".format(len(inputs)) if attrs.get("has_int_operand", True): res = inputs[0] * _expr.const(attrs["int_operand"], dtype="float32") elif attrs.get("has_float_operand", True): res = inputs[0] * _expr.const(attrs["float_operand"]) else: raise AttributeError( "please check if has_int_operand or has_float_operand in your attrs" ) return res class ScalarDiv(OneFlowOpConverter): """Operator convert for Div_scalar""" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 1, "div_scalar take == 1 inputs, but {} given.".format(len(inputs)) if attrs.get("has_int_operand", True): res = inputs[0] / _expr.const(attrs["int_operand"], dtype="float32") elif attrs.get("has_float_operand", True): res = inputs[0] / _expr.const(attrs["float_operand"]) else: raise AttributeError( "please check if has_int_operand or has_float_operand in your attrs" ) return res class ScalarPow(OneFlowOpConverter): """Operator convert for Pow_scalar""" @classmethod def _impl_v1(cls, inputs, attrs, params): if attrs.get("has_int_operand", True): coeff = _expr.const(attrs["int_operand"]) elif attrs.get("has_float_operand", True): coeff = _expr.const(attrs["float_operand"]) return _op.power(inputs[0], coeff) class MaxPool2d(Pool): """Operator converter for MaxPool""" name = "max_pool2d" class AveragePool2d(Pool): """Operator converter for AveragePool.""" name = "avg_pool2d" class Affine(OneFlowOpConverter): """Operator converter for Affine transformation.""" @classmethod def _impl_v1(cls, inputs, attrs, params): alpha = _expr.const(attrs.get("alpha", 1.0)) beta = _expr.const(attrs.get("beta", 0.0)) return (alpha * inputs[0]) + beta class Reshape(OneFlowOpConverter): """Operator converter for Reshape.""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _op.reshape(inputs[0], attrs["shape"]) class Softmax(OneFlowOpConverter): """Operator converter for Softmax.""" @classmethod def _impl_v1(cls, inputs, attrs, params): axis = attrs.get("axis", -1) data = inputs[0] if isinstance(axis, str): axis = int(axis) return _op.nn.softmax(data, axis=axis) class LogSoftmax(OneFlowOpConverter): """Operator converter for LogSoftmax.""" @classmethod def _impl_v1(cls, inputs, attrs, params): axis = attrs.get("axis", 1) ndim = len(infer_shape(inputs[0])) if axis < 0: axis += ndim axes = list(range(axis, ndim)) x = inputs[0] m = _op.max(x, axes, keepdims=True) e = _op.exp(x - m) s = _op.sum(e, axes, keepdims=True) return x - m - _op.log(s) class Dropout(OneFlowOpConverter): """Operator converter for Dropout.""" @classmethod def _impl_v1(cls, inputs, attrs, params): out = AttrCvt("dropout", {"ratio": "rate"}, ignores=["is_test"]) return out class ThresholdedRelu(OneFlowOpConverter): """Operator converter for ThresholdedRelu.""" @classmethod def _impl_v1(cls, inputs, attrs, params): alpha = float(attrs.get("alpha", 1.0)) alpha_tensor = _op.full_like(inputs[0], fill_value=_expr.const(alpha)) mask = _op.greater(inputs[0], alpha_tensor).astype("float32") return inputs[0] * mask class Elu(OneFlowOpConverter): """Operator converter for Elu""" @classmethod def _impl_v1(cls, inputs, attrs, params): alpha = float(attrs.get("alpha", 1.0)) return _expr.const(-alpha) * _op.nn.relu( _expr.const(1.0) - _op.exp(inputs[0]) ) + _op.nn.relu(inputs[0]) class PReLU(OneFlowOpConverter): """Operator converter for PReLU""" @classmethod def _impl_v1(cls, inputs, attrs, params): assert len(inputs) == 2, "PReLU need 2 inputs, but {} given".format(len(inputs)) for i in inputs: if "_input." in str(i): prelu_a = i else: prelu_b = i input_shape = shape_of(prelu_a) alpha = _op.broadcast_to_like(prelu_b, prelu_a) alpha = _op.reshape(alpha, [-1]) output = _op.nn.prelu(_op.reshape(prelu_a, [-1]), alpha, axis=0) out = _op.reshape(output, input_shape) return out class Selu(OneFlowOpConverter): """Operator converter for Selu""" @classmethod def _impl_v1(cls, inputs, attrs, params): alpha = float(attrs.get("alpha", 1.67326319217681884765625)) gamma = float(attrs.get("gamma", 1.05070102214813232421875)) return _expr.const(gamma) * ( _expr.const(-alpha) * _op.nn.relu(_expr.const(1.0) - _op.exp(inputs[0])) + _op.nn.relu(inputs[0]) ) class Silu(OneFlowOpConverter): """Operator converter for Silu""" @classmethod def _impl_v1(cls, inputs, attrs, params): a = inputs[0] b = _op.sigmoid(inputs[0]) return _op.multiply(a, b) class Gelu(OneFlowOpConverter): """Operator converter for Gelu""" @classmethod def _impl_v1(cls, inputs, attrs, params): data = inputs[0] return data * ( _expr.const(0.5) + _op.erf(data * _expr.const(0.5**0.5)) * _expr.const(0.5) ) class HardTanh(OneFlowOpConverter): """Operator converter for HardTanh""" @classmethod def _impl_v1(cls, inputs, attrs, params): tanh_min = attrs.get("min_val", 0.0) tanh_max = attrs.get("max_val", 0.0) return _op.tensor.clip(inputs[0], tanh_min, tanh_max) class Softplus(OneFlowOpConverter): """Operator converter for Softplus""" @classmethod def _impl_v1(cls, inputs, attrs, params): data = inputs[0] data_dtype = infer_type(data).checked_type.dtype data = _op.exp(data) + _expr.const(1, dtype=data_dtype) return _op.log(data) class Softsign(OneFlowOpConverter): """Operator converter for Softsign""" @classmethod def _impl_v1(cls, inputs, attrs, params): return inputs[0] / (_expr.const(1.0) + Absolute.get_converter()(inputs, attrs, params)) class Variance(OneFlowOpConverter): """Operator converter for Variance""" @classmethod def _impl_v1(cls, inputs, attrs, params): axis = attrs["dim"] keepdims = attrs["keepdim"] unbiased = bool(attrs["unbiased"]) return _op.reduce.variance(inputs[0], axis=axis, keepdims=keepdims, unbiased=unbiased) class Concat(OneFlowOpConverter): """Operator converter for Concat""" @classmethod def _impl_v1(cls, inputs, attrs, params): attrs.pop("max_dim_size") inputs = _dtype_shape_promotion(inputs) return _op.concatenate(inputs, axis=attrs["axis"]) class Clip(OneFlowOpConverter): """Operator converter for Clip""" @classmethod def _impl_v1(cls, inputs, attrs, params): attr = {} dtype = infer_type(inputs[0]) if "float" in str(dtype): attr["a_min"] = attrs["floating_min"] attr["a_max"] = attrs["floating_max"] elif "int" in str(dtype): attr["a_min"] = attrs["integral_min"] attr["a_max"] = attrs["integral_max"] else: attr["a_min"] = -np.inf attr["a_max"] = np.inf out = AttrCvt("clip")(inputs, attr, params) return out class Slice(OneFlowOpConverter): """Operator converter for Slice""" @classmethod def _impl_v1(cls, inputs, attrs, params): starts = list(attrs["start"]) ends = list(attrs["stop"]) steps = list(attrs["step"]) return _op.strided_slice(inputs[0], starts, ends, steps) class Split(OneFlowOpConverter): """Operator converter for Split""" @classmethod def _impl_v1(cls, inputs, attrs, params): splits = attrs.get("split", None) if splits is not None: indices = [] attrs["indices_or_sections"] = [] index = 0 for i in splits[:-1]: index += i indices.append(index) output = _op.split(inputs[0], indices, attrs.get("axis", 0)) # If the output of split is a single value, unpack if from the TupleWrapper if len(output) == 1: output = output[0] return output class Scatter(OneFlowOpConverter): """Operator converter for Scatter""" @classmethod def _impl_v1(cls, inputs, attrs, params): axis = attrs.get("axis", 0) return _op.scatter(inputs[0], inputs[1], inputs[2], axis) class Unsqueeze(OneFlowOpConverter): """Operator converter for Unsqueeze""" @classmethod def _impl_v1(cls, inputs, attrs, params): axes = sorted(attrs["axes"]) for axis in axes: inputs[0] = _op.expand_dims(inputs[0], axis=axis, num_newaxis=1) return inputs[0] class Sign(OneFlowOpConverter): """Operator converter for Sign""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _op.sign(inputs[0]) class Reciprocal(OneFlowOpConverter): """Operator converter for Reciprocal""" @classmethod def _impl_v1(cls, inputs, attrs, params): dtype = infer_type(inputs[0]).checked_type.dtype return _expr.const(1.0, dtype=dtype) / inputs[0] class Erf(OneFlowOpConverter): """Operator converter for Erf""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _op.erf(inputs[0]) class Erfc(OneFlowOpConverter): """Operator converter for Erfs""" @classmethod def _impl_v1(cls, inputs, attrs, params): return _expr.const(1.0) - _op.erf(inputs[0]) class HardSigmoid(OneFlowOpConverter): """Operator converter for HardSigmoid""" @classmethod def _impl_v1(cls, inputs, attrs, params): alpha = attrs.get("alpha", 0.2) beta = attrs.get("beta", 0.5) transformX = (inputs[0] * _expr.const(alpha)) + _expr.const(beta) attr = {"a_min": 0, "a_max": 1} return AttrCvt("clip")([transformX], attr) class OneHot(OneFlowOpConverter): """Operator converter for OneHot""" @classmethod def _impl_v1(cls, inputs, attrs, params): # Extract relay one_hot inputs. indices, depth, values = inputs ndim = len(infer_shape(indices)) # Split onnx on off values into two separate expressions. off_value, on_value = _op.take(values, _op.const(0)), _op.take(values, _op.const(1)) # Extract the datatype of the output from on_value. dtype = infer_type(on_value).checked_type.dtype ind_dtype = infer_type(indices).checked_type.dtype # Normalize the indices to a positive range indices = _op.where( indices < _op.const(0, ind_dtype), indices + _op.cast(depth, ind_dtype), indices ) # set default value when axis is not set in the model axis = attrs.get("axis", -1) if axis < 0: axis += ndim + 1 return _op.one_hot(indices, on_value, off_value, depth, axis, dtype=dtype) class Where(OneFlowOpConverter): """Operator converter for Where""" @classmethod def _impl_v1(cls, inputs, attrs, params): condition_rank = len(infer_shape(inputs[0])) x_rank = len(infer_shape(inputs[1])) y_rank = len(infer_shape(inputs[2])) ranks = [condition_rank, x_rank, y_rank] # If one rank is longer than others, then we can broadcast # to that shape. max_rank = max(ranks) max_rank_idxs = [i for i, x in enumerate(ranks) if x == max_rank] broadcast_shape = shape_of(inputs[max_rank_idxs[0]]) # If two or more inputs have the same rank, compute the broadcast # shape by taking the maximum value of each dimensions. if len(max_rank_idxs) > 1: for idx in max_rank_idxs: broadcast_shape = _op.maximum(broadcast_shape, shape_of(inputs[idx])) broadcast_shape = fold_constant(broadcast_shape) condition = _op.broadcast_to(inputs[0], broadcast_shape) x = _op.broadcast_to(inputs[1], broadcast_shape) y = _op.broadcast_to(inputs[2], broadcast_shape) return _op.where(condition, x, y) class Constant(OneFlowOpConverter): """Operator converter for Constant""" @classmethod def _impl_v1(cls, inputs, attrs, params): is_float = attrs.get("is_floating_value", True) shape = attrs.get("shape", (1,)) if is_float: dtype = "float32" value = attrs.pop("floating_value") else: dtype = "int8" value = attrs.pop("integer_value") np_array = np.zeros(shape) np_array.fill(value) value = _expr.const(np_array, dtype) return value class Range(OneFlowOpConverter): """Operator converter for Range""" @classmethod def _impl_v1(cls, inputs, attrs, params): if len(inputs) != 0: raise ValueError("Expect no inputs but get {}".format(len(inputs))) start = attrs.get("start", 0.0) limit = attrs.get("limit", 1.0) delta = attrs.get("delta", 1.0) return _op.arange( _expr.const(start, dtype="float32"), _expr.const(limit, dtype="float32"), _expr.const(delta, dtype="float32"), ) class Cast(OneFlowOpConverter): """Operator converter for Cast""" @classmethod def _impl_v1(cls, inputs, attrs, params): attrs["dtype"] = infer_type(inputs[0]).checked_type.dtype return AttrCvt(op_name="cast")(inputs, attrs) def get_convert_map(): # supported oneflow2relay op return { # defs/math "bias_add": Add.get_converter(), "scalar_add": ScalarAdd.get_converter(), "scalar_mul": ScalarMul.get_converter(), "scalar_div": ScalarDiv.get_converter(), "scalar_pow": ScalarPow.get_converter(), "reduce_sum": ReduceSum.get_converter(), "reduce_max": ReduceMax.get_converter(), "reduce_min": ReduceMin.get_converter(), "reduce_mean": ReduceMean.get_converter(), "broadcast_add": BroadcastAdd.get_converter(), "broadcast_mul": BroadcastMul.get_converter(), "broadcast_sub": BroadcastSub.get_converter(), "broadcast_div": BroadcastDiv.get_converter(), "scalar_logical_greater": LogicalGreater.get_converter(), "log": Renamer("log"), "log1p": Log1p.get_converter(), "acos": Renamer("acos"), "acosh": Renamer("acosh"), "asin": Renamer("asin"), "asinh": Renamer("asinh"), "atan": Renamer("atan"), "atanh": Renamer("atanh"), "cos": Renamer("cos"), "cosh": Renamer("cosh"), "sin": Renamer("sin"), "sinh": Renamer("sinh"), "tan": Renamer("tan"), "tanh": Renamer("tanh"), "pow": Pow.get_converter(), "exp": Renamer("exp"), "expm1": Expm1.get_converter(), "floor": Renamer("floor"), "ceil": Renamer("ceil"), "round": Renamer("round"), "add_n": AddN.get_converter(), "sqrt": Renamer("sqrt"), "rsqrt": Renamer("rsqrt"), "square": Square.get_converter(), "sign": Sign.get_converter(), "erf": Erf.get_converter(), "erfc": Erfc.get_converter(), "reciprocal": Reciprocal.get_converter(), # defs/activation "softmax": Softmax.get_converter(), "softsign": Softsign.get_converter(), "hardtanh": HardTanh.get_converter(), "relu": Renamer("relu"), "leaky_relu": Renamer("leaky_relu"), "prelu": PReLU.get_converter(), "selu": Selu.get_converter(), "silu": Silu.get_converter(), "gelu": Gelu.get_converter(), # defs/nn "conv2d": Conv2d.get_converter(), "deconv2d": ConvTranspose2d.get_converter(), "maxpool_2d": MaxPool2d.get_converter(), "avgpool_2d": AveragePool2d.get_converter(), "adaptive_avg_pool2d": AdaptiveAvgPool2d.get_converter(), "adaptive_max_pool2d": AdaptiveMaxPool2d.get_converter(), "dropout": Dropout.get_converter(), "normalization": BatchNorm.get_converter(), "upsample_nearest_2d": UpsampleNearest.get_converter(), "upsample_bilinear_2d": UpsampleBiLinear.get_converter(), # defs/tensor "matmul": MatMul.get_converter(), "batch_matmul": MatMul.get_converter(), "broadcast_matmul": MatMul.get_converter(), "concat": Concat.get_converter(), "clip_by_scalar": Clip.get_converter(), "slice": Slice.get_converter(), "expand": Expand.get_converter(), "transpose": Transpose.get_converter(), "expand_dims": ExpandDim.get_converter(), "range": Range.get_converter(), "cast": Cast.get_converter(), # defs/others "reshape": Reshape.get_converter(), "constant": Constant.get_converter(), "where": Where.get_converter(), "flatten": Flatten.get_converter(), "sigmoid": Renamer("sigmoid"), "sigmoid_v2": Renamer("sigmoid"), "hardsigmoid": HardSigmoid.get_converter(), "softplus": Softplus.get_converter(), "squeeze": AttrCvt("squeeze", {"axes": "axis"}), "unsqueeze": Unsqueeze.get_converter(), "identity": Renamer("copy"), "var": Variance.get_converter(), } class oneflow_input(object): """ Dual purpose list or dictionary access object """ def __init__(self): self.input_keys = [] self.input_dict = {} self.n = 0 def __getitem__(self, item): if isinstance(item, int): if item > (len(self.input_keys) - 1): return None return self.input_dict[self.input_keys[item]] if isinstance(item, str): if item not in self.input_keys: return None return self.input_dict[item] if isinstance(item, slice): keys = self.input_keys[item] return [self.input_dict[key] for key in keys] raise ValueError("Only integer, string, and slice accesses allowed.") def __setitem__(self, item, value): if isinstance(item, int): self.input_dict[self.input_keys[item]] = value elif isinstance(item, str): self.input_keys.append(item) self.input_dict[item] = value else: raise ValueError("Only integer and string indexed writes allowed.") def keys(self): return self.input_keys def __len__(self): return len(self.input_keys) def __iter__(self): self.n = 0 return self def __next__(self): if self.n < len(self.input_keys): output = self.input_dict[self.input_keys[self.n]] self.n += 1 return output raise StopIteration def deal_with_input_convert( node_input, node_input_shape, node_input_dtype, node_path, _nodes, _input_path_2_name ): """deal with input convert in oneflow.""" if node_input not in _nodes: if ( node_path not in _input_path_2_name or "_input." in node_input or "FreeEagerTensor" in node_input ): _nodes[node_input] = new_var( node_input, shape=node_input_shape, dtype=node_input_dtype, ) else: names = _input_path_2_name[node_path] node_replace = None for k in names: if k in _nodes: node_replace = k if node_replace is not None: op_replace = copy.deepcopy(_nodes[node_replace]) _nodes[node_input] = op_replace else: print("{} will not be in _nodes".format(node_input)) def deal_parameter_convert( node_input_paths, model_dir_path, _input_path_2_name, _model_array, _params, _nodes ): """deal with parameter(weight) convert in oneflow.""" for node_input_path in node_input_paths: node_path = os.path.join(model_dir_path, node_input_path.replace("m.", "", 1)) node_input_name = node_input_path.split("/")[0] _input_path_2_name[node_path] = node_input_name for param_name in _model_array: node_p = _model_array[param_name] if node_path == node_p["path"]: node_array = node_p["params"] _params[node_input_name] = node_array _nodes[node_input_name] = new_var( node_input_name, shape=node_array.shape, dtype=str(node_array.dtype) ) break class OneflowGraph(object): """ A helper class for handling Relay expression Parameters ---------- shape : dict of str to tuple, optional The input shape to the graph dtype : dict of str to str The input types to the graph node name: 1. param: m.layer4.1.bn1.weight / ... 2. buffer: m.layer4.1.bn1.running_mean / ... 3. node inputs: m.layer4.1.bn1_input.0 4. node outputs: m.layer4.1.bn1_output.0 """ def __init__(self, shape, dtype, nodes, model_dir_path): self._nodes = {} self._params = {} self._inputs = {} self._num_input = 0 self._num_param = 0 self._input_names = [] self._model_array = {} self._input_path_2_name = {} self._output_path_2_name = {} self._init_variable_node = [] self._shape = shape self._dtype = dtype self._identity_list = [] self._sort_inputs = {} import oneflow model = oneflow.load(model_dir_path) # model_array: keys: layer_name, values: dict('path', 'params') for layer_name in model: layer = model[layer_name] layer_node = {} layer_node["path"] = os.path.join(model_dir_path, layer_name, "out") # get path if "System-Train" in layer_name: continue node_name = "m." + layer_name shape = self._shape[node_name] dtype = self._dtype[node_name] array = layer.detach().cpu().numpy() layer_node["params"] = array.reshape(shape) self._model_array[layer_name] = layer_node for node_name in nodes: node = nodes[node_name] if is_user_op(node): for input_name in node.user_conf.input: node_input_paths = getattr(node.user_conf.input[input_name], "s") deal_parameter_convert( node_input_paths, model_dir_path, self._input_path_2_name, self._model_array, self._params, self._nodes, ) for output_name in node.user_conf.output: node_output_paths = getattr(node.user_conf.output[output_name], "s") for node_output_path in node_output_paths: node_path = os.path.join(model_dir_path, node_output_path.replace("m.", "")) node_output_name = node_output_path.split("/")[0] self._output_path_2_name[node_path] = node_output_name elif is_output_op(node): node_output_path = getattr(node.output_conf, "in") output_path = os.path.join( model_dir_path, getattr(node.output_conf, "in").replace("m.", "") ) self._output_path_2_name[output_path] = node_name elif is_param_op(node): if "FreeEagerTensor" in node.name: shape = tuple(node.variable_conf.shape.dim) dtype = FLOW_2_STR_DTYPE[node.variable_conf.data_type] self._shape[node.name] = shape self._dtype[node.name] = dtype self._init_variable_node.append(node.name) if self._init_variable_node != []: print("{} should be defined by user".format(self._init_variable_node)) def _parse_input(self, node, model_dir_path): input_user_conf_list = [] for input_name in node.user_conf.input: input_user_conf_list.append(input_name) input_user_conf_list.sort() for input_name in input_user_conf_list: node_input_paths = getattr(node.user_conf.input[input_name], "s") for i in node_input_paths: node_input = i.split("/")[0] node_input_shape = self._shape[node_input] node_input_dtype = self._dtype[node_input] node_path = os.path.join(model_dir_path, i.replace("m.", "")) deal_with_input_convert( node_input, node_input_shape, node_input_dtype, node_path, self._nodes, self._input_path_2_name, ) def _parse_output(self, op_name, outputs, cnt_init=0): """ o: m.classifier.1_output.xxx new_o: m.classifier.1-conv2d_0 "_"+new_o_xxx is in self._shape """ for o in outputs: if "_output." not in o: new_o = o.replace("-" + op_name, "_output") new_o = new_o.replace("-" + new_o.split("-")[-1], ".0") for k in self._shape.keys(): if new_o in k: self._shape[o] = self._shape[k] self._dtype[o] = self._dtype[k] break elif len(outputs) > 1: outputs.remove(o) if op_name.lower() == "dropout": if len(outputs) == 1: return outputs outputs = outputs[:-1] elif op_name.lower() == "constant": outputs = [self._init_variable_node[cnt_init]] if len(outputs) > 1: outputs = list(set(outputs)) return outputs def from_oneflow(self, nodes, model_dir_path): """ Implementation of convert the OneFlow model into an equivalent Relay Function. """ # step 1: find out if unsupported ops are used convert_map = get_convert_map() unsupported_ops = set() for node_name in nodes: node = nodes[node_name] if is_user_op(node): # op names, not the layer names op_name = node.user_conf.op_type_name if ( op_name not in convert_map and "constant" not in op_name and op_name not in self._identity_list ): unsupported_ops.add(op_name) # find out the unsupported op if unsupported_ops: msg = "The following operators are not supported for frontend OneFlow: " msg += ", ".join(unsupported_ops) raise tvm.error.OpNotImplemented(msg) # step 2: convert op for node_name in nodes: node = nodes[node_name] if is_user_op(node): # If there is a user-defined node, skip the following steps if node_name in self._inputs: continue op_name = node.user_conf.op_type_name op_attr = parse_attr(node.user_conf.attr) self._parse_input(node, model_dir_path=model_dir_path) node_inputs = oneflow_input() input_user_conf_list = [] for input_name in node.user_conf.input: input_user_conf_list.append(input_name) input_user_conf_list.sort() for input_name in input_user_conf_list: node_input_paths = getattr(node.user_conf.input[input_name], "s") for i in node_input_paths: node_input = i.split("/")[0] node_inputs[node_input] = self._nodes[node_input] node_outputs = [] for output_name in node.user_conf.output: node_output_paths = getattr(node.user_conf.output[output_name], "s") for i in node_output_paths: node_output_path = os.path.join(model_dir_path, i.replace("m.", "")) if node_output_path in self._input_path_2_name: node_outputs.append(self._input_path_2_name[node_output_path]) elif node_output_path in self._output_path_2_name: node_outputs.append(self._output_path_2_name[node_output_path]) node_outputs = self._parse_output(op_name, node_outputs) # convert op = self._convert_operator(op_name, node_inputs, op_attr) if not isinstance(op, _expr.TupleWrapper): outputs_num = 1 else: outputs_num = len(op) assert ( len(node_outputs) == outputs_num ), "Number of output mismatch {} vs {} in {}.".format( len(node_outputs), outputs_num, op_name ) if outputs_num == 1: op = fold_constant(op) else: op = _expr.TupleWrapper(fold_constant(op.astuple()), len(op)) op_temp = [] op_temp.append(op) for i, _ in enumerate(node_outputs): if isinstance(node_outputs[i], list): for k in node_outputs[i]: self._nodes[k] = op_temp[i] else: self._nodes[node_outputs[i]] = op_temp[i] # step 3: get the outputs outputs = [] for node_name, node in nodes.items(): if is_output_op(node): node_name_v2 = getattr(node.output_conf, "in").split("/")[0] if node_name in self._nodes: outputs.append(self._nodes[node_name]) elif node_name_v2 in self._nodes: outputs.append(self._nodes[node_name_v2]) outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) # step 4: get the relay IR free_vars = analysis.free_vars(outputs) nodes = {v: k for k, v in self._nodes.items()} free_vars = [nodes[var] for var in free_vars] free_vars_inputs = [] free_vars_parameters = [] for x in free_vars: if "_input.0" in x: free_vars_inputs.append(x) else: free_vars_parameters.append(x) free_vars = free_vars_inputs + free_vars_parameters # step 5: make sure the '_input.0' is the first in self._inputs for free_var in free_vars: if free_var not in self._inputs: self._inputs[free_var] = self._nodes[free_var] input_names = list(self._inputs.keys()) for input_name in input_names: if input_name in self._inputs: self._sort_inputs[input_name] = self._inputs[input_name] else: raise IndexError("{} is not in self._inputs".format(input_name)) # step 6: create a function from our output expression and all input variables. func = _function.Function([v for _, v in self._sort_inputs.items()], outputs) return IRModule.from_expr(func), self._params def _convert_operator(self, op_name, node_inputs, op_attr): """ Parameters ---------- op_name : str Operator name, such as conv2d and relu node_inputs : list of tvm.relay.function.Function List of inputs. op_attr : dict Dict of operator attributes Returns ------- sym : tvm.relay.function.Function Converted relay function """ convert_map = get_convert_map() if op_name in self._identity_list: sym = get_relay_op(op_name)(*node_inputs, **op_attr) elif op_name in convert_map: sym = convert_map[op_name](node_inputs, op_attr, self._params) else: raise NotImplementedError("Operator {} not implemented.".format(op_name)) return sym def from_oneflow(graph, model_dir_path): """Convert a OneFlow model into an equivalent Relay Function. At present, there are two ways to run models in deep learning framework Dynamic Graph and Static Graph, which are also called Eager Mode and Graph Mode in OneFlow. In general, dynamic graphs are easier to use and static graphs have better performance. OneFlow offers nn.Graph, so that users can use the eager-like programming style to build static graphs and train the models. We utilize the intermediate representation of nn.Graph to convert the OneFlow model to Reley. Parameters ---------- nodes : dict, keys: node.name, value: node contain the graph model_dir_path: str The path of weight Returns ------- mod : tvm.IRModule The returned relay module params : dict A dict of name: tvm.nd.array pairs, used as pretrained weights """ try: import oneflow as flow except ImportError: raise ImportError("please check that OneFlow is installed") # get info of nodes shape = {} dtype = {} graph_str = repr(graph) size_where = 2 if "cuda" in graph_str: size_where = 3 p_size = re.compile(r"size=\(.*?\)", re.S) p_type = re.compile(r"dtype=.*?\)", re.S) types = ["INPUT", "PARAMETER", "BUFFER", "OUTPUT"] for t in types: data = re.finditer(t + ":.*", graph_str) for i in data: attrs = i.group().split(":") size_str = re.findall(p_size, attrs[size_where]) type_str = re.findall(p_type, attrs[size_where]) assert size_str != [], "size should not be None, please check your repr(graph)" size_attr = size_str[0].replace("size=", "") if size_attr[-2] == ",": size_attr = size_attr.replace(",", "") data_size = tuple(map(int, size_attr[1:-1].split(", "))) node_name = attrs[1] shape[node_name] = data_size dtype[node_name] = "float32" if type_str != []: type_attr = type_str[0].replace("dtype=", "").replace(")", "") if type_attr[-1] == ",": type_attr = type_attr.replace(",", "") dtype[node_name] = type_attr.replace("oneflow.", "") # get graph proto, if you don't _compile the graph, the _graph_proto will be None graph_input = re.search(r"INPUT:.*", graph_str).group().split(":") shape_input = tuple( map( int, re.findall(p_size, graph_input[size_where])[0].replace("size=", "")[1:-1].split(", "), ) ) if not graph._is_compiled: graph._compile(flow.rand(shape_input)) graph_proto = graph._graph_proto # get all nodes nodes = OrderedDict() for op in graph_proto.net.op: nodes[op.name] = op g = OneflowGraph(shape, dtype, nodes, model_dir_path) # Use the graph proto as a scope so that ops can access other nodes if needed. mod, params = g.from_oneflow(nodes=nodes, model_dir_path=model_dir_path) return mod, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/onnx.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, len-as-condition, unused-argument, too-many-lines # pylint: disable=import-outside-toplevel """ONNX: Open Neural Network Exchange frontend for Relay.""" import copy import math import warnings from typing import Optional import numpy as np import tvm from tvm import relay from tvm.ir import IRModule from tvm.topi.utils import get_const_tuple from ... import nd as _nd from .. import analysis from .. import expr as _expr from .. import function as _function from .. import loops as _loops from .. import op as _op from .. import qnn as _qnn from .. import random as _random from .. import ty as _ty from .. import vision as _vision from .common import ( AttrCvt, Renamer, autopad, ensure_scalar_shape, fold_constant, get_name, get_relay_op, gru_cell, infer_channels, infer_shape, infer_type, infer_value, lstm_cell, new_var, rnn_cell, shape_of, try_resolve_var_to_const, unbind, ) __all__ = ["from_onnx"] # The default configurations of Relay ONNX frontend. ONNX_DEFAULT_CONFIGS = { # By default, TVM converts qualified onnx `matmul` to `transpose(weight) + nn.batch_matmul_NT`. # Change this flag to False to directly convert to `nn.batch_matmul`. # Note that `nn.batch_matmul` with format other than NT is in experimental, it may have some # performance issues. "use_nt_batch_matmul": True, } class onnx_input(list): """A helper extension to list that returns None for out of bound indices.""" def __getitem__(self, item): if isinstance(item, slice): if item.stop is None: stop = len(self) else: stop = item.stop indices = list(range(stop)[item]) return [self[i] for i in indices] if isinstance(item, int): return list(self)[item] if item < len(self) else None raise TypeError("list indices must be integers or slices, not %s" % type(item).__name__) def get_numpy(tensor_proto): """Grab data in TensorProto and convert to numpy array.""" try: from onnx.numpy_helper import to_array except ImportError as e: raise ImportError("Unable to import onnx which is required {}".format(e)) return to_array(tensor_proto) def get_type(elem_type): """Converts onnx integer datatype to numpy datatype""" # If a string was passed instead of a tensor type, it does not need # conversion and can be returned. if isinstance(elem_type, str): return elem_type try: from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE except ImportError as e: raise ImportError("Unable to import onnx which is required {}".format(e)) try: from onnx import TensorProto except ImportError as e: raise ImportError("Unable to import TensorProto from onnx {}".format(e)) # Onnx mapping converts bfloat16 to float16 because # numpy does not have a bfloat16 data type. However, # tvm has one, so we force the return type to be bfloat16 if elem_type == int(TensorProto.BFLOAT16): return "bfloat16" return str(TENSOR_TYPE_TO_NP_TYPE[elem_type]) def get_info(info_proto): """Extract the shape from a ValueInfoProto.""" shape = [] shape_name = [] for dim in info_proto.type.tensor_type.shape.dim: name = dim.dim_param value = dim.dim_value if value is None or value == 0: value = _ty.Any() shape_name.append(name) else: shape_name.append(value) shape.append(value) name = info_proto.name if info_proto.type.tensor_type.elem_type: dtype = get_type(info_proto.type.tensor_type.elem_type) else: dtype = None return name, shape, dtype, shape_name def dimension_picker(prefix, suffix=""): """Check that dimensions are supported.""" def _impl(attr): kernel = attr["kernel_shape"] if len(kernel) == 1: return prefix + "1d" + suffix if len(kernel) == 2: return prefix + "2d" + suffix if len(kernel) == 3: return prefix + "3d" + suffix msg = "Only 1D, 2D, and 3D kernels are supported for operator {}." op_name = prefix + "1d/2d/3d" raise tvm.error.OpAttributeInvalid(msg.format(op_name)) return _impl def revert_caffe2_pad(pads): """Caffe2 requires two times the normal padding.""" if len(pads) == 4: pads = pads[:2] elif len(pads) == 2: pass else: raise tvm.error.OpAttributeInvalid("Number of pads must be either 2 or 4.") return pads def get_pad_pair(input1d, kernel1d, stride1d, mode): """infer pad size""" if input1d % stride1d == 0: pad = max(kernel1d - stride1d, 0) else: pad = max(kernel1d - (input1d % stride1d), 0) pad_before = pad // 2 pad_after = pad - pad_before if "LOWER" in mode: return [pad_after, pad_before] return [pad_before, pad_after] def onnx_default_layout(dims, op_name): if dims == 1: return "NCW" if dims == 2: return "NCHW" if dims == 3: return "NCDHW" msg = "Only 1D, 2D and 3D layouts are currently supported for operator {}." raise tvm.error.OpAttributeInvalid(msg.format(op_name)) def onnx_storage_order2layout(storage_order, dims, op_name): """converter of onnx storage order parameter to tvm storage order format""" if storage_order not in (0, 1): raise tvm.error.OpAttributeInvalid("Mode of storage_order must be either 0 or 1") if dims == 1: return "NCW" if storage_order == 0 else "NWC" if dims == 2: return "NCHW" if storage_order == 0 else "NHWC" if dims == 3: return "NCDHW" if storage_order == 0 else "NDHWC" msg = "Only 1D, 2D and 3D layouts are currently supported for operator {}." raise tvm.error.OpAttributeInvalid(msg.format(op_name)) def dimension_constraint(): def _dim_check(attrs): if len(attrs["kernel_shape"]) in [1, 2, 3]: return True return False return _dim_check, "Only 1d, 2d and 3d kernel supported." def get_scalar(x, params, dtype="float32"): """Helper to get a scalar value for Quantized operators.""" if isinstance(x, _expr.Var) and x.name_hint in params: return _op.const(params[x.name_hint].numpy(), dtype) rank = len(infer_shape(x)) assert rank <= 1, "scale and zero_point input must be scalars" if rank == 1: x = _op.squeeze(x, [0]) return _op.cast(x, dtype) def get_scalar_or_1d_tensor(x, params, dtype="float32"): """Helper to get a scalar value or 1D tensor for Quantized operators.""" if isinstance(x, _expr.Var) and x.name_hint in params: return _op.const(params[x.name_hint].numpy(), dtype) rank = len(infer_shape(x)) assert rank <= 1, "scale and zero_point input must be scalars or 1D tensors" return _op.cast(x, dtype) def flatten_to_nd(x, x_shape, nd=3): """Flatten input tensor to nd rank""" ndims = infer_shape(x_shape)[0] if ndims == nd: return x newshape = _op.concatenate( [ _expr.const([-1], dtype=infer_type(x_shape).checked_type.dtype), _op.strided_slice(x_shape, [ndims - nd + 1], [ndims]), ], 0, ) out = _op.reshape(x, fold_constant(newshape)) return out def matmul_out_dtype(inputs, out_dtype): """Common function to handle MatMul and MatMulInteger16""" a_shape = shape_of(inputs[0]) a_rank = infer_shape(a_shape)[0] b_shape = shape_of(inputs[1]) b_rank = infer_shape(b_shape)[0] if a_rank > 2 or b_rank > 2: # Determine the output batch dimension. new_a_shape = a_shape new_b_shape = b_shape if a_rank > b_rank: rank_diff = a_rank - b_rank new_b_shape = _op.concatenate( [ _expr.const([1] * rank_diff, dtype=infer_type(b_shape).checked_type.dtype), b_shape, ], 0, ) elif a_rank < b_rank: rank_diff = b_rank - a_rank new_a_shape = _op.concatenate( [ _expr.const([1] * rank_diff, dtype=infer_type(a_shape).checked_type.dtype), a_shape, ], 0, ) else: pass out_batch = _op.concatenate( [ _op.maximum( _op.strided_slice(new_b_shape, [i], [i + 1]), _op.strided_slice(new_a_shape, [i], [i + 1]), ) for i in range(max(a_rank, b_rank) - 2) ], 0, ) b_type = infer_type(inputs[1]) # Convert to dense if the second matrix is 2d and non-dynamic if b_rank == 2 and not _ty.is_dynamic(b_type.checked_type): a = flatten_to_nd(inputs[0], a_shape, 2) b = _op.transpose(inputs[1]) output = _op.nn.dense(a, b, out_dtype=out_dtype) else: a = inputs[0] b = inputs[1] # broadcast a and b a_broadcasted_shape = fold_constant( _op.concatenate( [ out_batch, _op.strided_slice(a_shape, [a_rank - 2], [a_rank]), ], 0, ) ) b_broadcasted_shape = fold_constant( _op.concatenate( [ out_batch, _op.strided_slice(b_shape, [b_rank - 2], [b_rank]), ], 0, ) ) if not tvm.ir.structural_equal(a_shape, a_broadcasted_shape): a = _op.transform.broadcast_to(a, a_broadcasted_shape) if not tvm.ir.structural_equal(b_shape, b_broadcasted_shape): b = _op.transform.broadcast_to(b, b_broadcasted_shape) # Convert a and b into 3 dimensional tensors. a = flatten_to_nd(a, shape_of(a), 3) b = flatten_to_nd(b, shape_of(b), 3) if ONNX_DEFAULT_CONFIGS["use_nt_batch_matmul"]: # Transpose matrix dimensions of b. bt = _op.transpose(b, [0, 2, 1]) # Perform a NT batch matmul. output = _op.nn.batch_matmul(a, bt, out_dtype=out_dtype) else: # Perform a NN batch matmul. output = _op.nn.batch_matmul(a, b, out_dtype=out_dtype, transpose_b=False) # Reshape output to original dimensions. final_shape = _op.concatenate( [ out_batch, _op.strided_slice( a_shape, [infer_shape(a_shape)[0] - 2], [infer_shape(a_shape)[0] - 1] ), _op.strided_slice( b_shape, [infer_shape(b_shape)[0] - 1], [infer_shape(b_shape)[0]] ), ], 0, ) return _op.reshape(output, fold_constant(final_shape)) if a_rank == 1: return _op.squeeze(_op.nn.matmul(_op.expand_dims(inputs[0], axis=0), inputs[1]), axis=[0]) # Otherwise a simple dense op will get the job done. input_1_t = _op.transpose(inputs[1], axes=(1, 0)) return _op.nn.dense(inputs[0], input_1_t, out_dtype=out_dtype) def qmatmul( a, b, a_zp_scalar, b_zp_scalar, a_scale_scalar, b_scale_scalar, transform_num_hidden_units, matmul_result_dtype, ): """ Helper function to handle QLinearMatMul It is very close to 'matmul_out_dtype' but separated due to differences in signatures of dense, matmul, batch_matmul of nn and qnn. They requre scaling and zero point arguments """ a_shape = shape_of(a) a_rank = infer_shape(a_shape)[0] b_shape = shape_of(b) b_rank = infer_shape(b_shape)[0] if a_rank > 2 or b_rank > 2: # Determine the output batch dimension. new_a_shape = a_shape new_b_shape = b_shape if a_rank > b_rank: rank_diff = a_rank - b_rank new_b_shape = _op.concatenate( [ _expr.const([1] * rank_diff, dtype=infer_type(b_shape).checked_type.dtype), b_shape, ], 0, ) elif a_rank < b_rank: rank_diff = b_rank - a_rank new_a_shape = _op.concatenate( [ _expr.const([1] * rank_diff, dtype=infer_type(a_shape).checked_type.dtype), a_shape, ], 0, ) else: pass out_batch = _op.concatenate( [ _op.maximum( _op.strided_slice(new_b_shape, [i], [i + 1]), _op.strided_slice(new_a_shape, [i], [i + 1]), ) for i in range(max(a_rank, b_rank) - 2) ], 0, ) b_type = infer_type(b) # Convert to dense if the second matrix is 2d and non-dynamic if b_rank == 2 and not _ty.is_dynamic(b_type.checked_type): a = flatten_to_nd(a, a_shape, 2) b = _op.transpose(b) output = _qnn.op.dense( a, b, a_zp_scalar, b_zp_scalar, a_scale_scalar, b_scale_scalar, transform_num_hidden_units, matmul_result_dtype, ) else: # broadcast a and b a_broadcasted_shape = fold_constant( _op.concatenate( [ out_batch, _op.strided_slice(a_shape, [a_rank - 2], [a_rank]), ], 0, ) ) b_broadcasted_shape = fold_constant( _op.concatenate( [ out_batch, _op.strided_slice(b_shape, [b_rank - 2], [b_rank]), ], 0, ) ) if not tvm.ir.structural_equal(a_shape, a_broadcasted_shape): a = _op.transform.broadcast_to(a, a_broadcasted_shape) if not tvm.ir.structural_equal(b_shape, b_broadcasted_shape): b = _op.transform.broadcast_to(b, b_broadcasted_shape) # Convert a and b into 3 dimensional tensors. a = flatten_to_nd(a, shape_of(a), 3) b = flatten_to_nd(b, shape_of(b), 3) # Transpose matrix dimensions of b. bt = _op.transpose(b, [0, 2, 1]) # Perform a NT batch matmul. output = _qnn.op.batch_matmul( a, bt, a_zp_scalar, b_zp_scalar, a_scale_scalar, b_scale_scalar, matmul_result_dtype, ) # Reshape output to original dimensions. final_shape = _op.concatenate( [ out_batch, _op.strided_slice(a_shape, [a_rank - 2], [a_rank - 1]), _op.strided_slice(b_shape, [b_rank - 1], [b_rank]), ], 0, ) return _op.reshape(output, fold_constant(final_shape)) if a_rank == 1: # TODO(vvchernov): There should be qnn.matmul but it is not implemented # return _op.squeeze(_qnn.op.matmul(_op.expand_dims(a, axis=0), # b, # a_zp_scalar, # b_zp_scalar, # a_scale_scalar, # b_scale_scalar, # transform_num_hidden_units, # matmul_result_dtype, # ), # axis=[0] # ) return _op.squeeze( _qnn.op.dense( _op.expand_dims(a, axis=0), _op.transpose(b), a_zp_scalar, b_zp_scalar, a_scale_scalar, b_scale_scalar, transform_num_hidden_units, matmul_result_dtype, ), axis=[0], ) # Otherwise a simple dense op will get the job done. return _qnn.op.dense( a, _op.transpose(b), a_zp_scalar, b_zp_scalar, a_scale_scalar, b_scale_scalar, transform_num_hidden_units, matmul_result_dtype, ) def layer_norm(x, eps, gamma, beta): """A common function to handle layer norm. Use LayerNormalization for the actual onnx op. """ eps_dtype = infer_type(x).checked_type.dtype u, s = _op.mean_variance(x, axis=-1, keepdims=True) output = _op.divide( _op.subtract(x, u), _op.sqrt(_op.add(s, _op.const(eps, dtype=eps_dtype))), ) output = _op.multiply(output, gamma) if beta is not None: output = _op.add(output, beta) return output class OnnxOpConverter(object): """A helper class for holding onnx op converters.""" @classmethod def get_converter(cls, opset): """Get converter matches given opset. Parameters ---------- opset: int opset from model. Returns ------- converter, which should be `_impl_vx`. Number x is the biggest number smaller than or equal to opset belongs to all support versions. """ versions = [int(d.replace("_impl_v", "")) for d in dir(cls) if "_impl_v" in d] versions = sorted(versions + [opset]) version = versions[max([i for i, v in enumerate(versions) if v == opset]) - 1] if hasattr(cls, "_impl_v{}".format(version)): return getattr(cls, "_impl_v{}".format(version)) raise NotImplementedError( "opset version {} of {} not implemented".format(version, cls.__name__) ) class Unary(OnnxOpConverter): """A helper class for unary op converters.""" name = "" @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 1, "Unary math op {} takes 1 input, {} given".format( cls.name, len(inputs) ) op_name = cls.name return get_relay_op(op_name)(*inputs) class Elemwise(OnnxOpConverter): """A helper class for elemwise op converters.""" name = "" @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 2, "Math op {} take 2 inputs, {} given".format(cls.name, len(inputs)) op_name = cls.name conv_ops = ["conv2d", "conv2d_transpose"] if attr.get("broadcast", 0) and any(x in str(inputs[0]) for x in conv_ops): # TODO(zhreshold): remove hard coded infershape axis = int(attr.get("axis", 0)) inputs[1] = _op.expand_dims(inputs[1], axis=axis, num_newaxis=2) return get_relay_op(op_name)(*inputs) class Pool(OnnxOpConverter): """A helper class for pool op converters.""" name = "" @classmethod def _impl_v1(cls, inputs, attr, params): data = inputs[0] input_shape = infer_shape(data) ndim = len(input_shape) attr_cvt, data = cls._run_calculation(inputs, attr, params) out = attr_cvt([data], attr, params) if ndim - len(attr["kernel_shape"]) == 1: out = _op.squeeze(out, axis=[0]) return out @classmethod def _run_calculation(cls, inputs, attr, params): """Helper method to return the processed input data and AttrCvt object""" data = inputs[0] input_shape = infer_shape(data) input_dtype = infer_type(data).checked_type.dtype ndim = len(input_shape) if "auto_pad" in attr: attr["auto_pad"] = attr["auto_pad"].decode("utf-8") if attr["auto_pad"] in ("SAME_UPPER", "SAME_LOWER"): if cls.name == "avg_pool": pad_tuple = [] for axis in range(len(input_shape) - 2): axis_shape = input_shape[2 + axis] stride = attr.get("strides", [1] * ndim)[axis] kernel = attr["kernel_shape"][axis] pad = get_pad_pair(axis_shape, kernel, stride, attr["auto_pad"]) pad_tuple.append(pad) pad_tuple = tuple([val for pair in zip(*pad_tuple) for val in pair]) attr["pads"] = pad_tuple else: # Warning: Pool does not yet support dynamic shapes, # one will need to run dynamic_to_static on this model after import if "int" in input_dtype: pad_val = np.iinfo(np.dtype(input_dtype)).min else: pad_val = np.finfo(np.dtype(input_dtype)).min data = autopad( data, attr.get("strides", [1] * (ndim - 2)), attr["kernel_shape"], [1] * ndim, pad_value=pad_val, mode=attr["auto_pad"], ) elif attr["auto_pad"] == "VALID": attr["pads"] = tuple([0 for i in range(ndim - 2)]) elif attr["auto_pad"] == "NOTSET": pass else: msg = 'Value {} in attribute "auto_pad" of operator {} is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr["auto_pad"], cls.name)) attr.pop("auto_pad") if "storage_order" in attr: attr["layout"] = onnx_storage_order2layout( attr["storage_order"], dims=(len(input_shape) - 2), op_name=cls.name ) else: if ndim - len(attr["kernel_shape"]) == 1: data = _op.expand_dims(data, axis=0) input_shape = [1] + list(input_shape) attr["layout"] = onnx_default_layout(dims=(len(input_shape) - 2), op_name=cls.name) return ( AttrCvt( op_name=dimension_picker(cls.name), transforms={ "kernel_shape": "pool_size", "pads": ("padding", 0), "dilations": ("dilation", 1), }, ignores=["storage_order"], custom_check=dimension_constraint(), ), data, ) class Absolute(Unary): """Operator converter for Absolute.""" name = "abs" class Add(Elemwise): """Operator converter for Add.""" name = "add" class AveragePool(Pool): """Operator converter for AveragePool.""" name = "avg_pool" class QLinearAveragePool(Pool): """Operator converter for QLinearAveragePool from Microsoft onnxruntime contrib opset.""" name = "avg_pool" @classmethod def _impl_v1(cls, inputs, attr, params): x_scale = get_scalar(inputs[1], params) x_zero_point = get_scalar(inputs[2], params, dtype="int32") y_scale = fold_constant(get_scalar(inputs[3], params)) y_zero_point = get_scalar(inputs[4], params, dtype="int32") attr_cvt, data = cls._run_calculation(inputs, attr, params) input_dtype = infer_type(data).checked_type.dtype # Onnxruntime doesn't actually do this op in integer, they dequantize to fp32 # and then requantize afer (according to documentation below) # https://github.com/microsoft/onnxruntime/blob/master/docs/ContribOperators.md#com.microsoft.QLinearAveragePool float_node = _qnn.op.dequantize(data, x_scale, x_zero_point) out = attr_cvt([float_node], attr, params) return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=input_dtype) class BatchNorm(OnnxOpConverter): """Operator converter for BatchNorm.""" @classmethod def _impl_v1(cls, inputs, attr, params): # TODO(zhreshold): 'spatial' is not properly handled here. # TODO(vvchernov): 'training_mode' (onnx tag) is not correctly handled, ignore for now out = AttrCvt( op_name="batch_norm", ignores=["spatial", "is_test", "consumed_inputs", "momentum", "training_mode"], )(inputs, attr, params) # We only support test mode, so we return data, moving_mean, moving_var, # and then moving_mean and moving_var again as placeholders for # the expected "saved_mean", "saved_var". return _expr.TupleWrapper(_expr.Tuple((*out, out[1], out[2])), 5) class InstanceNorm(OnnxOpConverter): """Operator converter for BatchNorm.""" @classmethod def _impl_v1(cls, inputs, attr, params): return AttrCvt(op_name="instance_norm")(inputs, attr, params) class Conv(OnnxOpConverter): """Operator converter for Conv.""" @classmethod def _impl_v1(cls, inputs, attr, params): # Use shape of input to determine convolution type. data = inputs[0] kernel = inputs[1] input_shape = infer_shape(data) ndim = len(input_shape) kernel_type = infer_type(inputs[1]) kernel_shapes = [get_const_tuple(kernel_type.checked_type.shape)] if "kernel_shape" not in attr: attr["kernel_shape"] = kernel_shapes[0][2:] if "auto_pad" in attr: attr["auto_pad"] = attr["auto_pad"].decode("utf-8") if attr["auto_pad"] in ("SAME_UPPER", "SAME_LOWER"): # Warning: Convolution does not yet support dynamic shapes, # one will need to run dynamic_to_static on this model after import data = autopad( data, attr.get("strides", [1] * (ndim - 2)), attr["kernel_shape"], attr.get("dilations", [1] * (ndim - 2)), mode=attr["auto_pad"], ) elif attr["auto_pad"] == "VALID": attr["pads"] = [0 for i in range(ndim - 2)] elif attr["auto_pad"] == "NOTSET": pass else: msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr["auto_pad"])) attr.pop("auto_pad") attr["channels"] = kernel_shapes[0][0] out = AttrCvt( op_name=dimension_picker("conv"), transforms={ "kernel_shape": "kernel_size", "dilations": ("dilation", 1), "pads": ("padding", 0), "group": ("groups", 1), }, custom_check=dimension_constraint(), )([data, kernel], attr, params) use_bias = len(inputs) == 3 if use_bias: out = _op.nn.bias_add(out, inputs[2]) return out class ConvTranspose(OnnxOpConverter): """Operator converter for ConvTranspose.""" @classmethod def _impl_v1(cls, inputs, attr, params): # get number of channels out_type = infer_type(inputs[1]) kernel_shape = [get_const_tuple(out_type.checked_type.shape)] out_channels = kernel_shape[0][1] * attr.get("group", 1) attr["channels"] = out_channels groups = attr.get("group", 1) if "kernel_shape" not in attr: attr["kernel_shape"] = kernel_shape[0][2:] attr["groups"] = groups # infer pads for auto_pad data = inputs[0] input_shape = infer_shape(data) ndim = len(input_shape) if "auto_pad" in attr or "output_shape" in attr: if "auto_pad" in attr: attr["auto_pad"] = attr["auto_pad"].decode("utf-8") if "output_shape" in attr or attr["auto_pad"] in ("SAME_UPPER", "SAME_LOWER"): # Warning: Convolution does not yet support dynamic shapes, # one will need to run dynamic_to_static on this model after import kernel_shape = attr["kernel_shape"] kndim = len(kernel_shape) dilations = attr.get("dilations", [1] * kndim) output_padding = attr.get("output_padding", [0] * kndim) strides = attr["strides"] total_pad = [0] * kndim # https://github.com/onnx/onnx/blob/main/docs/Operators.md#ConvTranspose if "output_shape" in attr: for i in range(kndim): total_pad[i] = ( strides[i] * (input_shape[ndim - kndim + i] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - attr["output_shape"][i] ) left = [p // 2 for p in total_pad] right = [total_pad[i] - left[i] for i in range(kndim)] if "output_shape" in attr and "auto_pad" not in attr: pad = right + left elif "LOWER" in attr["auto_pad"]: pad = left + right else: pad = right + left attr["pads"] = pad else: data = autopad( data, attr.get("strides", [1] * (ndim - 2)), attr["kernel_shape"], attr.get("dilations", [1] * (ndim - 2)), deconv=True, mode=attr["auto_pad"], ) elif attr["auto_pad"] == "VALID": attr["pads"] = tuple([0 for i in range(ndim - 2)]) elif attr["auto_pad"] == "NOTSET": pass else: msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr["auto_pad"])) if "auto_pad" in attr: attr.pop("auto_pad") out = AttrCvt( op_name=dimension_picker("conv", "_transpose"), transforms={ "kernel_shape": "kernel_size", "dilations": ("dilation", 1), "pads": ("padding", 0), "group": ("groups", 1), }, disables=["output_shape"], custom_check=dimension_constraint(), )([data, inputs[1]], attr, params) use_bias = len(inputs) == 3 if use_bias: out = _op.nn.bias_add(out, inputs[2]) return out @classmethod def _impl_v11(cls, inputs, attr, params): # get number of channels out_type = infer_type(inputs[1]) kernel_shape = [get_const_tuple(out_type.checked_type.shape)] out_channels = kernel_shape[0][1] * attr.get("group", 1) attr["channels"] = out_channels groups = attr.get("group", 1) if "kernel_shape" not in attr: attr["kernel_shape"] = kernel_shape[0][2:] attr["groups"] = groups # infer pads for auto_pad data = inputs[0] input_shape = infer_shape(data) ndim = len(input_shape) if "auto_pad" in attr or "output_shape" in attr: if "auto_pad" in attr: attr["auto_pad"] = attr["auto_pad"].decode("utf-8") if "output_shape" in attr or attr["auto_pad"] in ("SAME_UPPER", "SAME_LOWER"): # Warning: Convolution does not yet support dynamic shapes, # one will need to run dynamic_to_static on this model after import kernel_shape = attr["kernel_shape"] kndim = len(kernel_shape) dilations = attr.get("dilations", [1] * kndim) output_padding = attr.get("output_padding", [0] * kndim) strides = attr["strides"] total_pad = [0] * kndim # https://github.com/onnx/onnx/blob/main/docs/Operators.md#ConvTranspose if "output_shape" in attr: for i in range(kndim): total_pad[i] = ( strides[i] * (input_shape[ndim - kndim + i] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - attr["output_shape"][i] ) else: for i in range(kndim): total_pad[i] = ( output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - strides[i] ) left = [p // 2 for p in total_pad] right = [total_pad[i] - left[i] for i in range(kndim)] if "output_shape" in attr and "auto_pad" not in attr: pad = right + left elif "LOWER" in attr["auto_pad"]: pad = left + right else: pad = right + left attr["pads"] = pad elif attr["auto_pad"] == "VALID": attr["pads"] = tuple([0 for i in range(ndim - 2)]) elif attr["auto_pad"] == "NOTSET": pass else: msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr["auto_pad"])) if "auto_pad" in attr: attr.pop("auto_pad") out = AttrCvt( op_name=dimension_picker("conv", "_transpose"), transforms={ "kernel_shape": "kernel_size", "dilations": ("dilation", 1), "pads": ("padding", 0), "group": ("groups", 1), }, disables=["output_shape"], custom_check=dimension_constraint(), )([data, inputs[1]], attr, params) use_bias = len(inputs) == 3 if use_bias: out = _op.nn.bias_add(out, inputs[2]) return out class GlobalAveragePool(OnnxOpConverter): """Operator converter for GlobalAveragePool""" @classmethod def _impl_v1(cls, inputs, attr, params): rank = len(infer_shape(inputs[0])) if rank == 3: return _op.nn.global_avg_pool1d(inputs[0]) if rank == 4: return _op.nn.global_avg_pool2d(inputs[0]) if rank == 5: return _op.nn.global_avg_pool3d(inputs[0]) raise NotImplementedError( "Global average pooling is only implemented for 1D, 2D, and 3D kernels, got %dD." % (rank - 2), ) class QLinearGlobalAveragePool(OnnxOpConverter): "Operator converter for QLinearGlobalAveragePool from Microsoft onnxruntime contrib opset." @classmethod def _impl_v1(cls, inputs, attr, params): rank = len(infer_shape(inputs[0])) x_scale = get_scalar(inputs[1], params) x_zero_point = get_scalar(inputs[2], params, dtype="int32") y_scale = fold_constant(get_scalar(inputs[3], params)) y_zero_point = get_scalar(inputs[4], params, dtype="int32") input_dtype = infer_type(inputs[0]).checked_type.dtype # Onnxruntime documentation does not mention that this global avg_pool should follow the # sequence dequantize -> float op -> quantize, but that is how QLinearAveragePool is done. # # This op also follows the same pattern since qnn op is not available right now. # TODO: Generate QNN op to perform quantized operation instead of dequant -> op -> quant x = _qnn.op.dequantize(inputs[0], x_scale, x_zero_point) if rank == 3: out = _op.nn.global_avg_pool1d(x) elif rank == 4: out = _op.nn.global_avg_pool2d(x) elif rank == 5: out = _op.nn.global_avg_pool3d(x) else: raise NotImplementedError( "Global average pooling is only implemented for 1D, 2D, and 3D kernels, got %dD." % (rank - 2), ) return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=input_dtype) class GlobalMaxPool(OnnxOpConverter): """Operator converter for GlobalMaxPool""" @classmethod def _impl_v1(cls, inputs, attr, params): rank = len(infer_shape(inputs[0])) if rank == 3: return _op.nn.global_max_pool1d(inputs[0]) if rank == 4: return _op.nn.global_max_pool2d(inputs[0]) if rank == 5: return _op.nn.global_max_pool3d(inputs[0]) raise NotImplementedError( "Global max pooling is only implemented for 1D, 2D, and 3D kernels, got %dD." % (rank - 2), ) class Div(Elemwise): """Operator converter for Divide.""" name = "divide" class Elu(OnnxOpConverter): """Operator converter for Elu.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = float(attr.get("alpha", 1.0)) return _expr.const(-alpha) * _op.nn.relu( _expr.const(1.0) - _op.exp(inputs[0]) ) + _op.nn.relu(inputs[0]) class Gelu(OnnxOpConverter): """Operator converter for Gelu from Microsoft onnxruntime contrib opset. gelu(x) = 0.5x(1 + erf(x/sqrt(2))) """ @classmethod def _impl_v1(cls, inputs, attr, params): x = inputs[0] # Declare consts const_dtype = infer_type(x).checked_type.dtype half = _expr.const(0.5, dtype=const_dtype) one = _expr.const(1.0, dtype=const_dtype) sqrt2 = _expr.const(math.sqrt(2), dtype=const_dtype) # Compute gelu term1 = _op.multiply(half, x) erf = _op.erf(_op.divide(x, sqrt2)) term2 = _op.add(one, erf) return _op.multiply(term1, term2) class FastGelu(OnnxOpConverter): """Operator converter for FastGelu from Microsoft onnxruntime contrib opset. fast_gelu(x) = 0.5x(1 + tanh(sqrt(2/pi)(x + 0.044715x^3))) = 0.5x(1 + tanh((sqrt(2/pi)x + 0.044715(sqrt(2/pi)x^3))) = 0.5x(1 + tanh(c1 * x + c2 * x^3))) , where c1 = sqrt(2/pi) c2 = 0.044715 * sqrt(2/pi) """ @classmethod def _impl_v1(cls, inputs, attr, params): x = inputs[0] if inputs[1]: bias = inputs[1] bias_shape = infer_shape(bias) assert len(bias_shape) == 1, "bias term must be a 1D tensor" x += bias # Declare consts const_dtype = infer_type(x).checked_type.dtype half = _expr.const(0.5, dtype=const_dtype) one = _expr.const(1.0, dtype=const_dtype) const1 = _expr.const(math.sqrt(2 / math.pi), dtype=const_dtype) const2 = _expr.const(0.044715 * math.sqrt(2 / math.pi), dtype=const_dtype) # Compute FastGelu term1 = _op.multiply(half, x) term2 = _op.multiply(const1, x) term3 = _op.multiply(const2, _op.power(x, _expr.const(3, const_dtype))) tanh = _op.tanh(_op.add(term2, term3)) return _op.multiply(term1, _op.add(one, tanh)) class BiasGelu(OnnxOpConverter): """Operator converter for BiasGelu from Microsoft onnxruntime contrib opset. bias_gelu(x, b) = 0.5(x + b)(1 + erf((x + b)/sqrt(2))) """ @classmethod def _impl_v1(cls, inputs, attr, params): x = inputs[0] b = inputs[1] b_shape = infer_shape(b) assert len(b_shape) == 1, "BiasGelu bias term must be a 1D tensor" inp = _op.add(x, b) return Gelu._impl_v1([inp], attr, params) class LayerNormalization(OnnxOpConverter): """Operator converter for LayerNormalization from Microsoft onnxruntime contrib opset.""" @classmethod def _impl_v17(cls, inputs, attr, params): x = inputs[0] gamma = inputs[1] beta = inputs[2] axis = attr.get("axis", -1) eps = attr.get("epsilon", 1e-5) # according to the onnx doc, given the int axis (default -1) # to compute the mean and inv_stdev which are of dim [d[0], ..., d[axis-1], 1, ..., 1] # the actual computation is over (axis, ..., rank(x) - 1) axes # see https://github.com/onnx/onnx/blob/main/docs/Changelog.md#layernormalization-17 rank = len(infer_shape(x)) axis = tuple(range(axis, rank)) if axis >= 0 else tuple(range(rank + axis, rank)) dtype = infer_type(x).checked_type.dtype mean = _op.mean(x, axis, keepdims=True) var = _op.variance(x, axis, keepdims=True, with_mean=mean) inv_stdev = _op.divide( _op.const(1, dtype=dtype), _op.sqrt(_op.add(var, _op.const(eps, dtype=dtype))) ) x_norm = _op.multiply(_op.subtract(x, mean), inv_stdev) ln = _op.multiply(x_norm, gamma) if beta is not None: ln = _op.add(ln, beta) return _expr.TupleWrapper(_expr.Tuple([ln, mean, inv_stdev]), 3) class EmbedLayerNormalization(OnnxOpConverter): """Operator converter for EmbedLayerNormalization from Microsoft onnxruntime contrib opset. This layer embeds the input tokens, sums them, and applies layer normalization. """ @classmethod def _impl_v1(cls, inputs, attr, params): input_ids = inputs[0] segment_ids = inputs[1] word_emb = inputs[2] pos_emb = inputs[3] segment_emb = inputs[4] gamma = inputs[5] beta = inputs[6] mask = inputs[7] pos_ids = inputs[8] eps = attr.get("epsilon", 1e-12) (batch_size, seq_len) = infer_shape(input_ids) if segment_ids: assert segment_emb if pos_ids is None: pos_ids = _op.const([list(range(seq_len))] * batch_size, dtype="int32") word_vec = _op.take(word_emb, input_ids, axis=0) segment_vec = _op.take(segment_emb, segment_ids, axis=0) pos_vec = _op.take(pos_emb, pos_ids, axis=0) vec_sum = _op.add(word_vec, pos_vec) if segment_ids: vec_sum = _op.add(vec_sum, segment_vec) ln = layer_norm(vec_sum, eps, gamma, beta) mask_index = _op.const(np.zeros((batch_size,), dtype="int32")) if mask: # calculate number of words per sentence mask_index = _op.sum(mask, axis=1) # TODO(@anwang2009): onnxruntime v1.10.0 requires a third output of vec_sum return _expr.TupleWrapper(_expr.Tuple([ln, mask_index]), 2) class SkipLayerNormalization(OnnxOpConverter): """Operator converter for SkipLayerNormalization from Microsoft onnxruntime contrib opset. This layer sums the two input tensors (along with optional bias), and applies layer normalization. """ @classmethod def _impl_v1(cls, inputs, attr, params): data = inputs[0] skip = inputs[1] gamma = inputs[2] beta = inputs[3] bias = inputs[4] assert ( beta is not None and bias is not None ), "SkipLayerNormalization import currently only supports required beta and bias" eps = attr.get("epsilon", 1e-12) x = _op.add(data, skip) if bias is not None: x = _op.add(x, bias) output = layer_norm(x, eps, gamma, beta) # onnxruntime doesn't compute the other outputs, despite the documentation placeholder = _op.const(0, dtype="float32") return _expr.TupleWrapper(_expr.Tuple([output, placeholder, placeholder]), 3) class Attention(OnnxOpConverter): """Operator converter for Attention from Microsoft onnxruntime contrib opset. This is the self-attention mechanism used in transformer models. """ @classmethod def _impl_v1(cls, inputs, attr, params): num_heads = attr["num_heads"] assert ( "qkv_hidden_sizes" not in attr ), "different hidden sizes for Q, K, V are not currently supported" assert "unidirectional" not in attr, "unidirectional attention not current supported" # (batch, seq, in_hidden) input_emb = inputs[0] # (in_hidden, 3 * out_hidden), where out_hidden = num_heads * head_size weight = inputs[1] # (3 * out_hidden,) bias = inputs[2] # 1. ( batch, 1, max_seq, max_seq) # 2. ( batch, past_seq + seq,) # 3. ( batch, seq, past_seq + seq,) # 4. ( batch,) # 5. (2 * batch,) # For now, we only support case 2. mask_index = inputs[3] # (2, batch, num_heads, past_seq, head_size) past = inputs[4] # (batch, num_heads, seq, seq) extra_add = inputs[5] (batch_size, seq_len, _) = infer_shape(input_emb) (out_hidden_x3,) = infer_shape(bias) assert out_hidden_x3 % 3 == 0, "bias shape should be divisible by 3" out_hidden = out_hidden_x3 // 3 assert ( out_hidden % num_heads == 0 ), "output hidden size should be divisible by number of attention heads" head_size = out_hidden // num_heads assert ( mask_index is not None ), "Attention import currently only supports required mask_index" mask_index_shape = infer_shape(mask_index) assert ( len(mask_index_shape) == 2 and mask_index_shape[0] == batch_size and mask_index_shape[1] == seq_len ), "currently only support (batch_size, sequence_length) mask index" assert past is None, "past K, V state is not currently supported" assert extra_add is None, "extra add to QxK not currently supported" # split weight and biases and do the matmuls w_Q, w_K, w_V = _op.split(weight, 3, axis=1) b_Q, b_K, b_V = _op.split(bias, 3, axis=0) # need to merge batch dimensions since TVM matmul is 2D input_emb = _op.reverse_reshape(input_emb, (-1, 0)) Q = _op.add(_op.nn.matmul(input_emb, w_Q), b_Q) K = _op.add(_op.nn.matmul(input_emb, w_K), b_K) V = _op.add(_op.nn.matmul(input_emb, w_V), b_V) # massage tensors in preparation for batched matmul def massage(tensor): tensor = _op.reshape(tensor, (batch_size, seq_len, num_heads, head_size)) # (batch_size, num_heads, seq_len, head_size) tensor = _op.transpose(tensor, axes=[0, 2, 1, 3]) # (batch_size * num_heads, seq_len, head_size) return _op.reverse_reshape(tensor, (-1, 0, 0)) Q = massage(Q) K = massage(K) V = massage(V) K_present = _op.reshape(K, (batch_size, num_heads, seq_len, head_size)) V_present = _op.reshape(V, (batch_size, num_heads, seq_len, head_size)) present = _op.stack([K_present, V_present], axis=0) att_scores = _op.nn.batch_matmul(Q, K, transpose_a=False, transpose_b=True) score_dtype = infer_type(att_scores).checked_type.dtype att_scores = _op.divide( att_scores, _op.const(np.sqrt(head_size), dtype=infer_type(att_scores).checked_type.dtype), ) att_scores = _op.reshape(att_scores, (batch_size, num_heads, seq_len, seq_len)) # build the attention mask att_mask = _op.cast(mask_index, score_dtype) att_mask = _op.expand_dims(att_mask, 1, num_newaxis=2) att_mask = _op.subtract(_op.const(1, dtype=score_dtype), att_mask) att_mask = _op.multiply(att_mask, _op.const(-10000, dtype=score_dtype)) # apply the mask att_scores = _op.add(att_scores, att_mask) att_scores = _op.reshape(att_scores, (batch_size * num_heads, seq_len, seq_len)) att_probs = _op.nn.softmax(att_scores, axis=-1) output = _op.nn.batch_matmul(att_probs, V, transpose_a=False, transpose_b=False) output = _op.reverse_reshape(output, (-1, num_heads, 0, 0)) output = _op.transpose(output, axes=[0, 2, 1, 3]) output = _op.reshape(output, (0, 0, out_hidden)) return _expr.TupleWrapper(_expr.Tuple([output, present]), 2) class Gemm(OnnxOpConverter): """Operator converter for Gemm.""" @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 3 or len(inputs) == 2, "Gemm op take 2 or 3 inputs, {} given".format( len(inputs) ) input0_state = infer_type(inputs[0]) dtype = input0_state.checked_type.dtype # Y = alpha * A * B + beta * C alpha = float(attr.get("alpha", 1.0)) beta = float(attr.get("beta", 1.0)) transA = int(attr.get("transA", 0)) transB = int(attr.get("transB", 0)) # get number of channels channels = infer_channels(inputs[1], not transB) if transA: inputs[0] = _op.transpose(inputs[0], axes=(1, 0)) if not transB: inputs[1] = _op.transpose(inputs[1], axes=(1, 0)) if len(input0_state.checked_type.shape) != 2: inputs[0] = _op.nn.batch_flatten(inputs[0]) if alpha != 1.0: inputs[0] *= _expr.const(alpha, dtype=dtype) out = _op.nn.dense(inputs[0], inputs[1], units=channels) if len(inputs) == 3: out = out + _expr.const(beta, dtype=dtype) * inputs[2] return out class MatMul(OnnxOpConverter): """Operator converter for MatMul.""" @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 2, "MatMul op take 2 inputs, {} given".format(len(inputs)) # Need to check input shape as batch matmul must be supported. return matmul_out_dtype(inputs, out_dtype=infer_type(inputs[0]).checked_type.dtype) class MatMulInteger16(OnnxOpConverter): """Operator converter for MatMulInteger16 from Microsoft onnxruntime contrib opset.""" @classmethod def _impl_v10(cls, inputs, attr, params): assert len(inputs) == 2, "MatMulInteger16 op take 2 inputs, {} given".format(len(inputs)) a_dtype = infer_type(inputs[0]).checked_type.dtype b_dtype = infer_type(inputs[1]).checked_type.dtype # Check input data types assert a_dtype in ("int16", "uint16"), "MatMulInteger16: invalid dtype for first input" assert b_dtype in ("int16", "uint16"), "MatMulInteger16: invalid dtype for second input" out_dtype = "int32" if a_dtype == "uint16" and b_dtype == "uint16": out_dtype = "uint32" return matmul_out_dtype(inputs, out_dtype) class Mod(OnnxOpConverter): """Operator converter for Mod.""" @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 2, "Mod op take 2 inputs, {} given".format(len(inputs)) # Note: attr['fmod'] determines whether the operator should behave like np.fmod or np.mod. # attr['fmod'] == 0 will behave as np.mod and attr['fmod'] == 1 will force fmod treatment. # The relay equivalent of np.fmod is relay.mod and np.mod is relay.floor_mod if attr.get("fmod", 0) == 0: op_name = "floor_mod" else: op_name = "mod" return AttrCvt(op_name)(inputs, {}, params) class MaxPool(Pool): """Operator converter for MaxPool""" name = "max_pool" class MaxUnpool(OnnxOpConverter): """Operator converter for MaxUnpool""" @classmethod def _impl_v11(cls, inputs, attr, params): # Unpack inputs and attributes data = inputs[0] data_type = infer_type(data).checked_type.dtype indices = inputs[1] output_shape = inputs[2] kernel_shape = attr.get("kernel_shape") pads = attr.get("pads", None) strides = attr.get("strides", [1] * len(kernel_shape)) # Compute the proper output shape before padding. multiplier = _op.concatenate( [_expr.const([1, 1], dtype="int64"), _expr.const(list(strides), dtype="int64")], axis=0 ) total_output_shape = multiplier * shape_of(data, dtype="int64") # Add extra dimensions from kernel size and stride mismatch total_output_shape += _op.concatenate( [_expr.const([0, 0], "int64"), _expr.const(list(kernel_shape), "int64")], axis=0 ) - _op.concatenate( [_expr.const([0, 0], "int64"), _expr.const(list(strides), "int64")], axis=0 ) # Compute padding amount if output shape is specified. if output_shape is not None: total_output_shape = output_shape elif pads is not None: # Get pads in the proper format for relay. pads = _op.concatenate( [_expr.const([0, 0, 0, 0], "int64"), _expr.const(list(pads), "int64")], axis=0 ) pads = _op.reshape(pads, [-1, 2]) # Compute the total padding per axis. total_pad = _op.sum(pads, axis=-1) # Reversing maxpool means that padding actually makes our output smaller. total_output_shape = total_output_shape - total_pad # Create a tensor of zeros then scatter our data through it. zeros_tensor = _op.zeros(total_output_shape, data_type) # We need to flatten all our tensors before scattering. flat_tensor = _op.scatter( _op.reshape(zeros_tensor, [-1]), _op.reshape(indices, [-1]), _op.reshape(data, [-1]), axis=0, ) # Now reshape back to prepadded shape. output_tensor = _op.reshape(flat_tensor, total_output_shape) return output_tensor class LpPool(OnnxOpConverter): """A helper class for lppool op converters.""" @classmethod def _impl_v1(cls, inputs, attr, params): dtype = infer_type(inputs[0]).checked_type.dtype data = inputs[0] input_shape = infer_shape(data) ndim = len(input_shape) if "auto_pad" in attr: attr["auto_pad"] = attr["auto_pad"].decode("utf-8") if attr["auto_pad"] in ("SAME_UPPER", "SAME_LOWER"): # Warning: LpPool does not yet support dynamic shapes, # one will need to run dynamic_to_static on this model after import data = autopad( data, attr["strides"], attr["kernel_shape"], [1] * ndim, mode=attr["auto_pad"], ) elif attr["auto_pad"] == "VALID": attr["pads"] = tuple([0 for i in range(ndim - 2)]) elif attr["auto_pad"] == "NOTSET": pass else: msg = 'Value {} in attribute "auto_pad" of operator {} is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr["auto_pad"], "LpPool")) attr.pop("auto_pad") if "storage_order" in attr: attr["layout"] = onnx_storage_order2layout( attr["storage_order"], dims=(len(input_shape) - 2), op_name="LpPool" ) else: attr["layout"] = onnx_default_layout(dims=(len(input_shape) - 2), op_name="LpPool") p_value = attr.get("p", 2) p = _expr.const(p_value, dtype) reci_p = _expr.const(1.0 / p_value, dtype) data = _op.power(data, p) out = AttrCvt( op_name=dimension_picker("avg_pool"), transforms={"kernel_shape": "pool_size", "pads": ("padding", 0)}, extras={"count_include_pad": True}, ignores=["p"], custom_check=dimension_constraint(), )([data], attr, params) kernels = attr["kernel_shape"] out = _op.abs(out) * _expr.const(np.prod(kernels).astype(dtype)) return _op.power(out, reci_p) class GlobalLpPool(OnnxOpConverter): """Operator converter for GlobalLpPool.""" @classmethod def _impl_v1(cls, inputs, attr, params): # TODO: GlobalLpPool does not yet support dynamic shapes in_shape = infer_shape(inputs[0]) attr["kernel_shape"] = in_shape[2:] return LpPool._impl_v1(inputs, attr, params) class Mul(Elemwise): """Operator converter for Multiply.""" name = "multiply" class Pad(OnnxOpConverter): """Operator converter for Pad.""" @classmethod def _impl_v1(cls, inputs, attr, params): pad_width = [] pads = attr.pop("paddings") dims = int(len(pads) / 2) for i in range(dims): pad_width.append((pads[i], pads[i + dims])) attr["pad_width"] = pad_width pad_mode = attr.get("mode", b"constant").decode("utf-8") if pad_mode in ["constant", "edge", "reflect"]: attr["pad_mode"] = pad_mode attr.pop("mode", None) else: raise tvm.error.OpAttributeInvalid( "Value " + pad_mode + ' in attribute "mode" is invalid for operator Pad.' ) return AttrCvt( _op.nn.pad, transforms={ "value": "pad_value", }, )(inputs, attr, params) @classmethod def _impl_v2(cls, inputs, attr, params): pad_width = [] pads = attr.pop("pads") dims = int(len(pads) / 2) for i in range(dims): pad_width.append((pads[i], pads[i + dims])) attr["pad_width"] = pad_width pad_mode = attr.get("mode", b"constant").decode("utf-8") if pad_mode in ["constant", "edge", "reflect"]: attr["pad_mode"] = pad_mode attr.pop("mode", None) else: raise tvm.error.OpAttributeInvalid( "Value " + pad_mode + ' in attribute "mode" is invalid for operator Pad.' ) return AttrCvt( "pad", transforms={ "value": "pad_value", }, )(inputs, attr, params) @classmethod def _impl_v11(cls, inputs, attr, params): pads = inputs[1] if len(inputs) == 3: value = fold_constant(_op.take(inputs[2], _op.const(0))) else: value = 0.0 pad_width_expr = fold_constant(_op.transpose(_op.reshape(pads, (2, -1)))) pad_mode = attr.get("mode", b"constant").decode("utf-8") if not pad_mode in ["constant", "edge", "reflect"]: raise tvm.error.OpAttributeInvalid( "Value " + pad_mode + ' in attribute "mode" is invalid for operator Pad.' ) return _op.nn.pad(inputs[0], pad_width_expr, value, pad_mode=pad_mode) class ParametricSoftPlus(OnnxOpConverter): """Operator converter for ParametricSoftPlus.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = _expr.const(float(attr.get("alpha", 1.0))) beta = _expr.const(float(attr.get("beta", 1.0))) return _op.log(_op.exp(beta * inputs[0]) + _expr.const(1.0)) * alpha class Pow(OnnxOpConverter): """Operator converter for Pow.""" @classmethod def _impl_v13(cls, inputs, attr, params): x = inputs[0] y = inputs[1] x_type = infer_type(x).checked_type.dtype output_type = x_type y_type = infer_type(y).checked_type.dtype if not x_type.startswith("float"): x_type = "float32" x = _op.cast(x, x_type) if x_type != y_type: y = _op.cast(y, x_type) # TODO: come up with good default integer pow() func for common backends result = _op.power(x, y) if x_type != output_type: return _op.cast(result, output_type) return result class Prelu(OnnxOpConverter): """Operator converter for Prelu.""" @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 2, "Prelu need 2 inputs, {} given".format(len(inputs)) input_shape = shape_of(inputs[0]) alpha = _op.broadcast_to_like(inputs[1], inputs[0]) alpha = _op.reshape(alpha, [-1]) output = _op.nn.prelu(_op.reshape(inputs[0], [-1]), alpha, axis=0) return _op.reshape(output, input_shape) class Reciprocal(OnnxOpConverter): """Operator converter for Reciprocal.""" @classmethod def _impl_v1(cls, inputs, attr, params): dtype = infer_type(inputs[0]).checked_type.dtype return _expr.const(1.0, dtype=dtype) / inputs[0] class Flatten(OnnxOpConverter): """Operator converter for Flatten.""" @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get("axis", 1) ishape = shape_of(inputs[0]) ndim = infer_shape(ishape)[0] if axis < 0: axis = axis + ndim if axis == 1: out = _op.nn.batch_flatten(inputs[0]) else: pre_shape = _op.prod(_op.strided_slice(ishape, [0], [axis], [1]), keepdims=True) post_shape = _op.prod(_op.strided_slice(ishape, [axis], [ndim], [1]), keepdims=True) newshape = fold_constant(_op.concatenate([pre_shape, post_shape], axis=0)) out = _op.reshape(inputs[0], newshape) return out class Reshape(OnnxOpConverter): """Operator converter for Reshape.""" @classmethod def _impl_v1(cls, inputs, attr, params): return _op.reshape(inputs[0], attr["shape"]) @classmethod def _impl_v5(cls, inputs, attr, params): allowzero = attr.get("allowzero", False) if get_name(inputs[1]) in params: shape = tuple(params[inputs[1].name_hint].numpy().astype("int32")) out = _op.reshape(inputs[0], shape, allowzero=allowzero) else: out = _op.reshape(*inputs, allowzero=allowzero) return out class DepthToSpace(OnnxOpConverter): """Operator converter for DepthToSpace.""" @classmethod def _impl_v11(cls, inputs, attr, params): block_size = int(attr["blocksize"]) mode = attr.get("mode", b"DCR").decode("utf-8") return _op.nn.depth_to_space(inputs[0], block_size, mode=mode) class SpaceToDepth(OnnxOpConverter): """Operator converter for SpaceToDepth.""" @classmethod def _impl_v1(cls, inputs, attr, params): block_size = int(attr["blocksize"]) return _op.nn.space_to_depth(inputs[0], block_size) class Concat(OnnxOpConverter): """Operator converter for Concat.""" @classmethod def _impl_v1(cls, inputs, args, params): return AttrCvt(op_name="concatenate")((inputs,), args) class Scale(OnnxOpConverter): """Operator converter for Scale.""" @classmethod def _impl_v1(cls, inputs, attr, params): scale = float(attr.get("scale", 1.0)) return inputs[0] * _expr.const(scale) class Selu(OnnxOpConverter): """Operator converter for Selu.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = float(attr.get("alpha", 1.67326319217681884765625)) gamma = float(attr.get("gamma", 1.05070102214813232421875)) return _expr.const(gamma) * ( _expr.const(-alpha) * _op.nn.relu(_expr.const(1.0) - _op.exp(inputs[0])) + _op.nn.relu(inputs[0]) ) class ScaledTanh(OnnxOpConverter): """Operator converter for ScaledTanh.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = float(attr.get("alpha", 1.0)) beta = float(attr.get("beta", 1.0)) return _op.tanh(_expr.const(beta) * inputs[0]) * _expr.const(alpha) class Shrink(OnnxOpConverter): """Operator converter for Shrink.""" @classmethod def _impl_v9(cls, inputs, attr, params): x = inputs[0] dtype = infer_type(x).checked_type.dtype lambd = _op.const(attr.get("lambd", 0.5), dtype=dtype) bias = _op.const(attr.get("bias", 0.0), dtype=dtype) zeros = _op.zeros_like(x) return _op.where(x < -lambd, x + bias, zeros) + _op.where(x > lambd, x - bias, zeros) class Softsign(OnnxOpConverter): """Operator converter for Softsign.""" @classmethod def _impl_v1(cls, inputs, attr, params): return inputs[0] / (_expr.const(1.0) + Absolute.get_converter(1)(inputs, attr, params)) class Sub(Elemwise): """Operator converter for Subtract.""" name = "subtract" class Sum(OnnxOpConverter): """Operator converter for Sum.""" @classmethod def _impl_v1(cls, inputs, attr, params): # Onnx Sum Operator for in_index in range(len(inputs) - 1): inputs[in_index + 1] = _op.add(inputs[in_index], inputs[in_index + 1]) return inputs[len(inputs) - 1] class Optional_(OnnxOpConverter): """Operator converter for Optional based on sequence construction op.""" @classmethod def _impl_v15(cls, inputs, attr, params): return SequenceConstruct._impl_v11(inputs, attr, params) class OptionalHasElement(OnnxOpConverter): """Operator converter for OptionalHasElement.""" @classmethod def _impl_v15(cls, inputs, attr, params): shape = infer_shape(inputs[0]) return _op.const(True) if shape else _op.const(False) class OptionalGetElement(OnnxOpConverter): """Operator converter for OptionalGetElement based on sequence construction op.""" @classmethod def _impl_v15(cls, inputs, attr, params): opt_as_seq = Optional_._impl_v15(inputs, attr, params) return _expr.TupleGetItem(opt_as_seq, 0) class Affine(OnnxOpConverter): """Operator converter for Affine transformation.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = _expr.const(attr.get("alpha", 1.0)) beta = _expr.const(attr.get("beta", 0.0)) return (alpha * inputs[0]) + beta class ThresholdedRelu(OnnxOpConverter): """Operator converter for ThresholdedRelu.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = float(attr.get("alpha", 1.0)) alpha_tensor = _op.full_like(inputs[0], fill_value=_expr.const(alpha)) mask = _op.greater(inputs[0], alpha_tensor).astype("float32") return inputs[0] * mask def _broadcast_constraint(): def _broadcast_check(attrs): if attrs.get("axis", None): return False return True return _broadcast_check, "Specifying broadcast axis not allowed." def _fully_connected(opset): def _impl(inputs, attr, params): # get number of channels channels = infer_channels(inputs[1], params) attr["units"] = channels return AttrCvt("dense", ignores=["axis", "axis_w"])(inputs, attr) return _impl class Upsample(OnnxOpConverter): """Operator converter for Upsample (nearest mode).""" @classmethod def _impl_v9(cls, inputs, attr, params): scales = attr.get("scales") input_shape = infer_shape(inputs[0]) dims = len(input_shape) if not scales: # Here we are going to higher OPSET version. assert len(inputs) == 2, "Upsample op takes 2 inputs, {} given".format(len(inputs)) if get_name(inputs[1]) in params: scales = params[inputs[1].name_hint].numpy() else: scales = inputs[1] if isinstance(scales, _expr.Constant): scales = list(scales.data.numpy()) if not isinstance(scales, _expr.Expr): assert scales[0] == 1.0 and scales[1] == 1.0 mode = attr.get("mode") if mode == b"nearest": method = "nearest_neighbor" elif mode == b"linear": method = "trilinear" if dims == 5 else "bilinear" else: raise tvm.error.OpAttributeInvalid( 'Value {} in attribute "mode" of operator Upsample is not valid.'.format(mode) ) # in 3d case, we use the purely static op if dims == 5: if isinstance(scales, _expr.Expr): scale_h = _op.take(scales, _op.const(3)) scale_w = _op.take(scales, _op.const(4)) scale_d = _op.take(scales, _op.const(1)) else: assert len(scales) == 5 scale_h = scales[-2] scale_w = scales[-1] scale_d = scales[-3] layout = "NCDHW" out = _op.nn.upsampling3d( inputs[0], scale_d, scale_h, scale_w, layout=layout, method=method, coordinate_transformation_mode="asymmetric", ) # in 2d case, use dynamic op else: if isinstance(scales, _expr.Expr): scale_h = _op.take(scales, _op.const(3)) scale_w = _op.take(scales, _op.const(4)) else: assert len(scales) == 4 scale_h = scales[-2] scale_w = scales[-1] layout = "NCHW" out = _op.nn.upsampling( inputs[0], scale_h, scale_w, layout=layout, method=method, align_corners=False, ) return out class Shape(OnnxOpConverter): """Operator converter for Shape.""" @classmethod def _impl_v1(cls, inputs, attr, params): return shape_of(inputs[0], "int64") @classmethod def _impl_v15(cls, inputs, attr, params): start = attr.get("start") end = attr.get("end") return shape_of(inputs[0], dtype="int64", start=start, end=end) class CumSum(OnnxOpConverter): """Operator converter for CumSum.""" @classmethod def _impl_v1(cls, inputs, attr, params): data = inputs[0] dim = inputs[1] if dim is not None: dim = int(infer_value(dim, params).numpy()) exclusive = attr.get("exclusive", 0) reverse = attr.get("reverse", 0) if reverse != 0: out = _op.reverse(data, axis=dim) out = _op.cumsum(out, axis=dim, exclusive=exclusive) return _op.reverse(out, axis=dim) return _op.cumsum(data, axis=dim, exclusive=exclusive) class Cast(OnnxOpConverter): """Operator converter for Cast.""" @classmethod def _impl_v1(cls, inputs, attr, params): return AttrCvt(op_name="cast", transforms={"to": "dtype"})(inputs, attr) @classmethod def _impl_v6(cls, inputs, attr, params): try: from onnx import TensorProto except ImportError as e: raise ImportError("Unable to import TensorProto from onnx {}".format(e)) # If onnx mapping is used, bfloat16 gets converted to float16 # which is not the desired behavior if attr["to"] == int(TensorProto.BFLOAT16): attr["to"] = "bfloat16" else: try: from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE attr["to"] = str(TENSOR_TYPE_TO_NP_TYPE[attr["to"]]) except ImportError as e: raise ImportError("Unable to import onnx.mapping which is required {}".format(e)) return AttrCvt(op_name="cast", transforms={"to": "dtype"})(inputs, attr) class CastLike(OnnxOpConverter): """Operator converter for CastLike.""" @classmethod def _impl_v15(cls, inputs, attr, params): return AttrCvt(op_name="cast_like")(inputs, attr) class Unsqueeze(OnnxOpConverter): """Operator converter for Unsqueeze.""" @classmethod def run_calculation(cls, tensor, axes): axes = sorted(axes) for axis in axes: tensor = _op.expand_dims(tensor, axis=axis, num_newaxis=1) return tensor @classmethod def _impl_v1(cls, inputs, attr, params): return cls.run_calculation(inputs[0], attr["axes"]) @classmethod def _impl_v13(cls, inputs, attr, params): if isinstance(inputs[1], _expr.Constant): constant_axes = list(inputs[1].data.numpy()) constant_axes = list(map(int, constant_axes)) return cls.run_calculation(inputs[0], constant_axes) rank_input = len(infer_type(inputs[0]).checked_type.shape) num_new_axis = int(infer_type(inputs[1]).checked_type.shape[0]) axes = relay.sort(inputs[1]) axes = relay.split(axes, num_new_axis).astuple() result = inputs[0] # TODO (AndrewZhaoLuo): investigate performance issues with consecutive # dynamic expand_dims on non-llvm targets. for i in range(num_new_axis): axis = relay.TupleGetItem(axes, i) # Unpack scalar axis = relay.reshape(axis, []) axis = relay.where( axis >= relay.const(0, "int64"), axis, axis + relay.const(rank_input, "int64") ) result = _op.expand_dims(result, axis) return result class Squeeze(OnnxOpConverter): """Operator converter for Squeeze.""" @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get("axes", None) return _op.squeeze(inputs[0], axis) @classmethod def _impl_v13(cls, inputs, attr, params): ishape = infer_shape(inputs[0]) axis = inputs[1] if axis is None: # If axes is not provided, all the single dimensions will be removed from the shape. if not ishape: # scalar return inputs[0] axis = [i for i in range(len(ishape)) if ishape[i] == 1] axis = _op.const(axis) dtype = infer_type(axis).checked_type.dtype if isinstance(axis, _expr.Constant): constant_axes = list(axis.data.numpy()) constant_axes = list(map(int, constant_axes)) return _op.squeeze(inputs[0], constant_axes) rank = _op.shape_of(_op.shape_of(inputs[0], dtype), dtype) axis = _op.where(axis < _op.const(0, dtype), axis + rank, axis) return _op.squeeze(inputs[0], fold_constant(axis)) class Split(OnnxOpConverter): """Operator converter for Split.""" @classmethod def _impl_v1(cls, inputs, attr, params): splits = attr.get("split", None) if splits is not None and len(splits) > 1: indices = [] index = 0 for i in splits[:-1]: index += i indices.append(index) # When splits isnt specified divide evenly over axis. else: indices = attr["tvm_custom"]["num_outputs"] output = _op.split(inputs[0], indices, attr.get("axis", 0)) # If the output of split is a single value, unpack if from the TupleWrapper if len(output) == 1: output = output[0] return output @classmethod def _impl_v13(cls, inputs, attr, params): splits = inputs[1] splits_rank = None if splits is not None: splits_rank = len(infer_shape(splits)) if splits is not None and splits_rank > 0: if isinstance(splits, _expr.Constant): splits = splits.data.asnumpy() indices = [] index = 0 for i in splits[:-1]: index += i indices.append(index) else: raise ValueError("Dynamic Split not yet supported") # When splits isnt specified divide evenly over axis. else: indices = attr["tvm_custom"]["num_outputs"] output = _op.split(inputs[0], indices, attr.get("axis", 0)) # If the output of split is a single value, unpack if from the TupleWrapper if len(output) == 1: output = output[0] return output class Slice(OnnxOpConverter): """Operator converter for Slice.""" @classmethod def _common(cls, starts, ends, axes): N = max(axes) + 1 new_axes = list(range(N)) new_starts = [0] * N new_ends = [np.iinfo(np.int32).max] * N for i, axis in enumerate(axes): new_starts[axis] = starts[i] new_ends[axis] = ends[i] return new_starts, new_ends, new_axes @classmethod def _impl_v1(cls, inputs, attr, params): if isinstance(attr["starts"], int): attr["starts"] = (attr["starts"],) attr["ends"] = (attr["ends"],) try: # Update the starts and ends according to axes if required. if isinstance(attr["axes"], int): attr["axes"] = (attr["axes"],) new_starts, new_ends, new_axes = cls._common(attr["starts"], attr["ends"], attr["axes"]) attr["axes"] = new_axes attr["starts"] = new_starts attr["ends"] = new_ends except KeyError: pass begin = list(attr["starts"]) end = list(attr["ends"]) return _op.strided_slice(inputs[0], begin=begin, end=end) @classmethod def _impl_v10(cls, inputs, attr, params): starts = inputs[1] ends = inputs[2] axes = inputs[3] steps = inputs[4] ishape = infer_shape(inputs[0]) data_rank = len(ishape) if axes is not None: # Normalize for negative axes axes_dtype = infer_type(axes).checked_type.dtype axes = fold_constant( _op.where( axes < _op.const(0, axes_dtype), axes + _op.const(data_rank, axes_dtype), axes ) ) def has_static_axes(): return ( isinstance(axes, _expr.Constant) and isinstance(starts, _expr.Constant) and isinstance(ends, _expr.Constant) and (steps is None or isinstance(steps, _expr.Constant)) ) if axes is not None and has_static_axes(): axes_np = axes.data.numpy().astype("int64") begin_np = starts.data.numpy().astype("int64") end_np = ends.data.numpy().astype("int64") if steps is None: strides_np = np.ones_like(begin_np).astype("int64") else: strides_np = steps.data.numpy().astype("int64") if all([isinstance(ishape[i], int) for i in axes_np]): return _op.strided_slice( inputs[0], list(begin_np), list(end_np), list(strides_np), axes=list(axes_np) ) # Update the starts and ends according to axes if required. if axes is not None: data_shape = shape_of(inputs[0], dtype=infer_type(ends).checked_type.dtype) starts = _op.scatter( _op.const([0] * data_rank, dtype=infer_type(starts).checked_type.dtype), axes, starts, axis=0, ) ends = _op.scatter(data_shape, axes, ends, axis=0) if steps is not None: steps = _op.scatter( _op.const([1] * data_rank, dtype=infer_type(steps).checked_type.dtype), axes, steps, axis=0, ) if steps is None: steps = _op.const([1] * data_rank, dtype=infer_type(starts).checked_type.dtype) return _op.strided_slice( inputs[0], fold_constant(starts), fold_constant(ends), fold_constant(steps) ) def normalize_gather_indices(data, indices, axis): """Make sure gather indices aren't negative""" ind_dtype = infer_type(indices).checked_type.dtype # Normalize the indices to a positive range s = _op.take(_op.shape_of(data, dtype=ind_dtype), _op.const(axis, dtype="int64")) cond = fold_constant(indices < _op.const(0, ind_dtype)) if isinstance(cond, _expr.Constant): val = cond.data.numpy() if val.size == 1: cond = val.item() if cond: indices = indices + s return indices indices = _op.where(cond, indices + s, indices) return indices class Gather(OnnxOpConverter): """Operator converter for Gather.""" @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get("axis", 0) data = inputs[0] indices = inputs[1] indices = normalize_gather_indices(data, indices, axis) return _op.take(data, indices, axis) class GatherElements(OnnxOpConverter): """Operator converter for GatherElements.""" @classmethod def _impl_v1(cls, inputs, attr, params): data = inputs[0] indices = inputs[1] axis = attr.get("axis", 0) indices = normalize_gather_indices(data, indices, axis) return _op.gather(data, axis, indices) class GatherND(OnnxOpConverter): """Operator converter for GatherND.""" @classmethod def _impl_common(cls, data, indices, batch_dims=0): indices_dims = len(infer_shape(indices)) indices_shape = infer_shape(indices) indices = _op.transpose(indices, axes=[-1] + list(range(indices_dims - 1))) index_rank = indices_shape[-1] return _op.gather_nd( data, indices, batch_dims=batch_dims, index_rank=index_rank, ) @classmethod def _impl_v1(cls, inputs, attr, params): return cls._impl_common(inputs[0], inputs[1]) @classmethod def _impl_v12(cls, inputs, attr, params): batch_dims = attr.get("batch_dims", 0) return cls._impl_common(inputs[0], inputs[1], batch_dims) class Compress(OnnxOpConverter): """Operator converter for compress""" @classmethod def _impl_v11(cls, inputs, attr, params): input_tensor, condition_tensor = inputs axis = attr.get("axis", None) # Change one hot tensor to indices e.g. [0, 1, 1, 0, 1] -> [1, 2, 4] condition_tensor = _op.reshape(_op.argwhere(condition_tensor), (-1,)) if axis is not None: return _op.take(input_tensor, condition_tensor, axis=axis) # if axis is None, flatten input tensor before selection input_tensor = _op.reshape(input_tensor, (-1,)) return _op.take(input_tensor, condition_tensor, axis=0) class Scatter(OnnxOpConverter): """Operator converter for Scatter.""" @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get("axis", 0) return _op.scatter(inputs[0], inputs[1], inputs[2], axis) class ScatterND(OnnxOpConverter): """Operator converter for ScatterND.""" @classmethod def _impl_v11(cls, inputs, attr, params): indices_dim = len(infer_shape(inputs[1])) axes = list(range(indices_dim)) return _op.scatter_nd( inputs[0], _op.transpose(inputs[1], axes[-1:] + axes[:-1]), inputs[2], "update" ) class EyeLike(OnnxOpConverter): """Operator converter for EyeLike.""" @classmethod def _impl_v9(cls, inputs, attr, params): dtype = attr.get("dtype", None) if dtype is None: in_checked_type = infer_type(inputs[0]).checked_type in_dtype = in_checked_type.dtype dtype = in_dtype else: dtype = get_type(dtype) in_shape = _op.shape_of(inputs[0]) zeros = _op.zeros(in_shape, dtype) dim = _op.take(in_shape, _op.const(0)) indices = _op.arange(_op.const(0), dim, dtype="int32") ones = _op.full(_op.const(1), _op.reshape(dim, (1,)), dtype=dtype) k = _op.const(attr.get("k", 0), dtype="int32") return _op.scatter_nd(zeros, _op.stack([indices, indices + k], axis=0), ones, "update") class LRN(OnnxOpConverter): """Operator converter for Local Response Normalization.""" @classmethod def _impl_v1(cls, inputs, attr, params): """LRN support only NCHW format https://github.com/onnx/onnx/blob/main/docs/Operators.md#LRN """ axis = 1 alpha = attr.get("alpha", 0.0001) beta = attr.get("beta", 0.75) bias = attr.get("bias", 1.0) nsize = attr.get("size") attr = {"size": nsize, "axis": axis, "alpha": alpha, "beta": beta, "bias": bias} return AttrCvt("lrn")(inputs, attr) class Maximum(OnnxOpConverter): """Operator converter for Maximum.""" @classmethod def _impl_v1(cls, inputs, attr, params): if len(inputs) == 1: return inputs[0] _max = inputs[0] for i in range(1, len(inputs)): _max = AttrCvt("maximum")([_max, inputs[i]], {}) return _max class Minimum(OnnxOpConverter): """Operator converter for Minimum.""" @classmethod def _impl_v1(cls, inputs, attr, params): if len(inputs) == 1: return inputs[0] _min = inputs[0] for i in range(1, len(inputs)): _min = AttrCvt("minimum")([_min, inputs[i]], {}) return _min class Mean(OnnxOpConverter): """Operator converter for Mean.""" @classmethod def _impl_v1(cls, inputs, attr, params): if len(inputs) == 1: return inputs[0] # avoid overflow concat = _op.concatenate([_op.expand_dims(x, axis=0) for x in inputs], axis=0) return _op.mean(concat, axis=0, keepdims=False) class MeanVarianceNormalization(OnnxOpConverter): """Operator converter for MeanVarianceNormalization.""" @classmethod def _impl_v13(cls, inputs, attr, params): axis = attr.get("axes", (0, 2, 3)) data_mean = _op.mean(inputs[0], axis=axis, keepdims=True) data_mean_squared = _op.power(data_mean, _expr.const(2, "float32")) data_squared = _op.power(inputs[0], _expr.const(2, "float32")) data_squared_mean = _op.mean(data_squared, axis=axis, keepdims=True) return (inputs[0] - data_mean) / _op.sqrt(data_squared_mean - data_mean_squared) class HardSigmoid(OnnxOpConverter): """Operator converter for HardSigmoid.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = attr.get("alpha", 0.2) beta = attr.get("beta", 0.5) transformX = (inputs[0] * _expr.const(alpha)) + _expr.const(beta) attr = {"a_min": 0, "a_max": 1} return AttrCvt("clip")([transformX], attr) class HardSwish(OnnxOpConverter): """Operator converter for HardSwish.""" @classmethod def _impl_v14(cls, inputs, attr, params): alpha = attr.get("alpha", 1 / 6) beta = attr.get("beta", 0.5) transformX = inputs[0] * _expr.const(alpha) + _expr.const(beta) attr = {"a_min": 0, "a_max": 1} return inputs[0] * AttrCvt("clip")([transformX], attr) class Reduce(OnnxOpConverter): """Operator converter for reduce ops.""" name = "" @classmethod def run_calculation(cls, inputs, axis, keepdims): attr = {"axis": axis, "keepdims": keepdims} return AttrCvt(cls.name)(inputs, attr) @classmethod def _impl_v1(cls, inputs, attr, params): if not infer_shape(inputs[0]): # promote scalar to 1-D tensor inputs[0] = _op.expand_dims(inputs[0], axis=0) if "axes" in attr: axis = attr.get("axes", 0) else: axis_len = len(infer_shape(inputs[0])) axis = list(range(axis_len)) return cls.run_calculation(inputs, axis, attr.get("keepdims", True)) @classmethod def _impl_v12(cls, inputs, attr, params): if not infer_shape(inputs[0]): # promote scalar to 1-D tensor inputs[0] = _op.expand_dims(inputs[0], axis=0) if len(inputs) == 2: if isinstance(inputs[1], _expr.Constant): # Get axis and unpack scalar constant_axis = int(inputs[1].data.numpy()[0]) return cls.run_calculation([inputs[0]], constant_axis, attr.get("keepdims", True)) raise ValueError("Dynamic Reduce is not supported yet!") return cls._impl_v1(inputs, attr, params) @classmethod def _impl_v13(cls, inputs, attr, params): if not infer_shape(inputs[0]): # promote scalar to 1-D tensor inputs[0] = _op.expand_dims(inputs[0], axis=0) noop_with_empty_axes = attr.get("noop_with_empty_axes", 0) num_axis = int(infer_type(inputs[1]).checked_type.shape[0]) if inputs[1] is not None else 0 if noop_with_empty_axes and num_axis == 0: return inputs[0] if len(inputs) == 2: if isinstance(inputs[1], _expr.Constant): # Get axis and unpack scalar constant_axis = int(inputs[1].data.numpy()[0]) return cls.run_calculation([inputs[0]], constant_axis, attr.get("keepdims", True)) if num_axis > 0: raise ValueError("Dynamic Reduce is not supported yet!") axis_len = len(infer_shape(inputs[0])) axis = list(range(axis_len)) return cls.run_calculation([inputs[0]], axis, attr.get("keepdims", True)) return cls._impl_v1(inputs, attr, params) class ReduceMax(Reduce): """Operator converter for ReduceMax.""" name = "max" class ReduceMin(Reduce): """Operator converter for ReduceMin.""" name = "min" class ReduceSum(Reduce): """Operator converter for ReduceSum.""" name = "sum" class ReduceMean(Reduce): """Operator converter for ReduceMean.""" name = "mean" class ReduceProd(Reduce): """Operator converter for ReduceProd.""" name = "prod" class ReduceLogSumExp(Reduce): """Operator converter for ReduceLogSumExp.""" name = "logsumexp" class ReduceSumSquare(OnnxOpConverter): """Operator converter for ReduceSumSquare.""" @classmethod def _impl_v1(cls, inputs, attr, params): if not infer_shape(inputs[0]): # promote scalar to 1-D tensor inputs[0] = _op.expand_dims(inputs[0], axis=0) if "axes" in attr: axis = attr.get("axes", 0) else: axis_len = len(infer_shape(inputs[0])) axis = list(range(axis_len)) attr = {"axis": axis, "keepdims": attr.get("keepdims", True)} inputs[0] = inputs[0] * inputs[0] return AttrCvt("sum")(inputs, attr) class ReduceL1(OnnxOpConverter): """Operator converter for ReduceL1.""" @classmethod def _impl_v1(cls, inputs, attr, params): if not infer_shape(inputs[0]): # promote scalar to 1-D tensor inputs[0] = _op.expand_dims(inputs[0], axis=0) if "axes" in attr: axis = attr.get("axes", 0) else: axis_len = len(infer_shape(inputs[0])) axis = list(range(axis_len)) attr = {"axis": axis, "keepdims": attr.get("keepdims", True)} inputs[0] = _op.abs(inputs[0]) return AttrCvt("sum")(inputs, attr) class ReduceL2(OnnxOpConverter): """Operator converter for ReduceL2.""" @classmethod def _impl_v1(cls, inputs, attr, params): if not infer_shape(inputs[0]): # promote scalar to 1-D tensor inputs[0] = _op.expand_dims(inputs[0], axis=0) if "axes" in attr: axis = attr.get("axes", 0) else: axis_len = len(infer_shape(inputs[0])) axis = list(range(axis_len)) attr = {"axis": axis, "keepdims": attr.get("keepdims", True)} inputs[0] = inputs[0] * inputs[0] out = AttrCvt("sum")(inputs, attr) return _op.sqrt(out) class ReduceLogSum(OnnxOpConverter): """Operator converter for ReduceLogSum.""" @classmethod def _impl_v1(cls, inputs, attr, params): if not infer_shape(inputs[0]): # promote scalar to 1-D tensor inputs[0] = _op.expand_dims(inputs[0], axis=0) if "axes" in attr: axis = attr.get("axes", 0) else: axis_len = len(infer_shape(inputs[0])) axis = list(range(axis_len)) attr = {"axis": axis, "keepdims": attr.get("keepdims", True)} out = AttrCvt("sum")(inputs, attr) return _op.log(out) class ArgMax(OnnxOpConverter): """Operator converter for ArgMax.""" @classmethod def _impl_v13(cls, inputs, attr, params): axis = attr.get("axis", 0) keepdims = attr.get("keepdims", True) select_last_index = attr.get("select_last_index", False) attr = {"axis": axis, "keepdims": keepdims, "select_last_index": select_last_index} return _op.cast(AttrCvt("argmax")(inputs, attr), "int64") class ArgMin(OnnxOpConverter): """Operator converter for ArgMin.""" @classmethod def _impl_v13(cls, inputs, attr, params): axis = attr.get("axis", 0) keepdims = attr.get("keepdims", True) select_last_index = attr.get("select_last_index", False) attr = {"axis": axis, "keepdims": keepdims, "select_last_index": select_last_index} return _op.cast(AttrCvt("argmin")(inputs, attr), "int64") class Softmax(OnnxOpConverter): """Operator converter for Softmax.""" @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get("axis", 1) in_shape = infer_shape(inputs[0]) ndim = len(in_shape) if axis < 0: axis += ndim if axis == 0: reshape_shape = [-1] elif axis == ndim - 1: return _op.nn.softmax(inputs[0], axis=axis) else: axis_val = [in_shape[i] for i in range(axis)] reshape_shape = [np.prod(axis_val)] + [-1] data_reshape = _op.reshape(inputs[0], newshape=reshape_shape) out = _op.nn.softmax(data_reshape, axis=-1) out = _op.reshape(out, newshape=in_shape) return out @classmethod def _impl_v13(cls, inputs, attr, _): axis = attr.get("axis", -1) ndim = len(infer_shape(inputs[0])) if axis < 0: axis += ndim return _op.nn.softmax(inputs[0], axis=axis) class LogSoftmax(OnnxOpConverter): """Operator converter for Softmax.""" @classmethod def run_calculation(cls, inputs, attr, params, opset): """Run the calculation for Log Softmax calculation.""" res = Softmax.get_converter(opset)(inputs, attr, params) return _op.log(res) @classmethod def _impl_v1(cls, inputs, attr, params): return cls.run_calculation(inputs, attr, params, opset=1) @classmethod def _impl_v13(cls, inputs, attr, params): return cls.run_calculation(inputs, attr, params, opset=13) class Hardmax(OnnxOpConverter): """Operator converter for Hardmax.""" @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get("axis", 1) ndim = len(infer_shape(inputs[0])) if axis < 0: axis += ndim dtype = infer_type(inputs[0]).checked_type.dtype if axis == 0: pre = _op.const([1], "int64") else: pre = _op.prod( _op.strided_slice(shape_of(inputs[0]), [0], [axis], [1]), axis=0, keepdims=True ) post = _op.prod( _op.strided_slice(shape_of(inputs[0]), [axis], [2147483647], [1]), axis=0, keepdims=True ) newshape = _op.concatenate([pre, post], axis=0) x = _op.reshape(inputs[0], fold_constant(newshape)) argmax = _op.argmax(x, axis=1) onehot = _op.one_hot( argmax, _op.const(1.0, dtype), _op.const(0.0, dtype), fold_constant(_op.take(shape_of(x), _op.const([1], "int64"))), 1, dtype, ) return _op.reshape(onehot, shape_of(inputs[0])) @classmethod def _impl_v13(cls, inputs, attr, params) -> relay.Expr: inferred_type = infer_type(inputs[0]) dtype = inferred_type.checked_type.dtype ndim = len(inferred_type.checked_type.shape) axis = attr.get("axis", -1) % ndim argmax = _op.argmax(inputs[0], axis=axis) return _op.one_hot( argmax, _op.const(1.0, dtype), _op.const(0.0, dtype), fold_constant(_op.take(shape_of(inputs[0]), _op.const([axis], "int64"))), axis, dtype, ) class OneHot(OnnxOpConverter): """Operator converter for OneHot.""" @classmethod def _impl_v9(cls, inputs, attr, params): # Extract relay one_hot inputs. indices, depth, values = inputs ndim = len(infer_shape(indices)) # Split onnx on off values into two separate expressions. off_value, on_value = _op.take(values, _op.const(0)), _op.take(values, _op.const(1)) # Extract the datatype of the output from on_value. dtype = infer_type(on_value).checked_type.dtype ind_dtype = infer_type(indices).checked_type.dtype # Normalize the indices to a positive range indices = _op.where( indices < _op.const(0, ind_dtype), indices + _op.cast(depth, ind_dtype), indices ) # set default value when axis is not set in the model if "axis" not in attr: attr["axis"] = -1 axis = attr["axis"] if axis < 0: axis += ndim + 1 return _op.one_hot(indices, on_value, off_value, depth, axis, dtype=dtype) class ConstantOfShape(OnnxOpConverter): """Operator converter for ConstantOfShape.""" @classmethod def _impl_v9(cls, inputs, attr, params): if "value" in attr: np_value = get_numpy(attr.pop("value"))[0] value = _expr.const(np_value) dtype = np_value.dtype.name else: value = _expr.const(0) dtype = "float32" output = _op.full(value, inputs[0], dtype=dtype) return output class Constant(OnnxOpConverter): """Operator converter for ConstantOfShape.""" @classmethod def _impl_v9(cls, inputs, attr, params): if "value" not in attr: raise tvm.errors.OpAttributeRequired("no value in Constant") value = attr.pop("value") # Constants may rarely have string types. These are likely exported # from other frameworks and not actually used in TVM. We'll just use # a zero valued constant for compatibility. if isinstance(value, bytes): np_value = np.asarray([0]).astype("int64") else: np_value = get_numpy(value) dtype = np_value.dtype.name value = _expr.const(np_value, dtype) return value class Sign(OnnxOpConverter): """Operator converter for Sign.""" @classmethod def _impl_v1(cls, inputs, attr, params): return _op.sign(inputs[0]) class Equal(Elemwise): """Operator converter for Equal.""" name = "equal" class Not(Elemwise): """Operator converter for Not.""" @classmethod def _impl_v1(cls, inputs, attr, params): return _op.logical_not(inputs[0]) class And(Elemwise): """Operator converter for And.""" @classmethod def _impl_v1(cls, inputs, attr, params): return _op.logical_and(inputs[0], inputs[1]) class Tile(Elemwise): """Operator converter for Tile""" @classmethod def _impl_v6(cls, inputs, attr, params): return _op.tile(inputs[0], inputs[1]) class Erf(OnnxOpConverter): """Operator converter for Erf""" @classmethod def _impl_v1(cls, inputs, attr, params): return _op.erf(inputs[0]) class Where(OnnxOpConverter): """Operator converter for Where""" @classmethod def _impl_v9(cls, inputs, attr, params): return _op.where(*inputs) class Or(Elemwise): """Operator converter for Or.""" @classmethod def _impl_v7(cls, inputs, attr, params): return _op.logical_or(inputs[0], inputs[1]) class Expand(OnnxOpConverter): """Operator converter for Expand.""" @classmethod def _impl_v8(cls, inputs, attr, params): dtype = infer_type(inputs[1]).checked_type.dtype in_shape = shape_of(inputs[0], dtype=dtype) shape = inputs[1] # Currently 'op.broadcast_to' expect the rank of the given 'shape' # (the 2nd input) is always higher than that of the given 'input' (the 1st input) # However, ONNX Expand supports multi-directional broadcasting, which allows # above pattern and also some extent of 'shape' can be smaller than the corresponding # extent of 'input'. In this case, the extent of 'shape' must be 1. # https://github.com/onnx/onnx/blob/main/docs/Broadcasting.md # In above cases, we cannot directorly apply 'op.broadcast_to' instead of 'expand' # so, here we solved this problem by expanding the given 'shape' itself. def expand_shape(in_shape, shape): """A function expands the shape when the rank is lower than that of the given intput. Also it replaces the extent of the shape with the corresponding extent of the intput when it is 1. """ in_dims = infer_shape(in_shape)[0] new_dims = infer_shape(shape)[0] if in_dims < new_dims: in_shape = _op.concatenate( [ _expr.const( [ 1, ] * (new_dims - in_dims), dtype=dtype, ), in_shape, ], axis=0, ) elif new_dims < in_dims: shape = _op.concatenate( [ _expr.const( [ 1, ] * (in_dims - new_dims), dtype=dtype, ), shape, ], axis=0, ) new_shape = _op.maximum(in_shape, shape) return new_shape shape = fold_constant(expand_shape(in_shape, shape)) return _op.broadcast_to(inputs[0], shape=shape) class RNN(OnnxOpConverter): """Operator converter for RNNs such as RNN, LSTM and GRU.""" @classmethod def _activation_helper(cls, activation, alpha, beta): convert_map = _get_convert_map(1) attrs = {} if alpha is not None: attrs["alpha"] = alpha if beta is not None: attrs["beta"] = beta return lambda x: convert_map[activation.decode("utf-8")]([x], attrs, {}) @classmethod def _activation_needs_alpha(cls, activation): needs_alpha = [ "Affine", "LeakyRelu", "ThresholdedRelu", "ScaledTanh", "HardSigmoid", "Elu", ] return activation.decode("utf-8") in needs_alpha @classmethod def _activation_needs_beta(cls, activation): needs_beta = [ "Affine", "ScaledTanh", "HardSigmoid", ] return activation.decode("utf-8") in needs_beta @classmethod def bidir_rnn_cell( cls, input_seqs, weight_dicts, acts, ): """ Bidirectional RNN cell """ seq_len = len(input_seqs) forward_outputs, fw_H_t = rnn_cell( input_seqs, **weight_dicts[0], act=acts[0], ) reverse_outputs, rev_H_t = rnn_cell( input_seqs, **weight_dicts[1], act=acts[1], backwards=True, ) final_outputs = [] for i in range(seq_len): final_outputs.append( _op.stack([forward_outputs[i], reverse_outputs[seq_len - 1 - i]], axis=0) ) return ( _op.stack(final_outputs, axis=0), _op.stack([fw_H_t, rev_H_t], axis=0), ) @classmethod def _default_activations(cls, num_directions): return [_op.tanh] * num_directions @classmethod def _get_activations(cls, attr, multiplier, num_directions, rnn_type): """ Activation functions """ if "activations" in attr: activations = attr["activations"] if len(activations) != multiplier * num_directions: raise NotImplementedError( "{} assumes {} * num_directions activation functions are provided".format( rnn_type, multiplier ) ) alpha_loc = 0 alphas = attr.get("activation_alpha", []) if isinstance(alphas, float): alphas = [alphas] beta_loc = 0 betas = attr.get("activation_beta", []) if isinstance(betas, float): betas = [betas] acts = [] for i in range(multiplier * num_directions): alpha = None beta = None activation = activations[i] if cls._activation_needs_alpha(activation) and len(alphas) > alpha_loc: alpha = alphas[alpha_loc] alpha_loc += 1 if cls._activation_needs_beta(activation) and len(betas) > beta_loc: beta = betas[beta_loc] beta_loc += 1 acts.append(cls._activation_helper(activation, alpha, beta)) else: acts = cls._default_activations(num_directions) return acts @classmethod def _inputs_helper(cls, inputs, layout): """ Process inputs """ # Unpack inputs, note that if optional and not provided then value will be None. X = inputs[0] Wp = inputs[1] Rp = inputs[2] Bp = inputs[3] # Sequence length currently unused as it can be inferred from shapes. # sequence_lens = inputs['sequence_lens'] Hp_0 = inputs[5] num_directions = infer_shape(Wp)[0] if num_directions not in [1, 2]: raise ValueError("num_directions must be either 1 or 2!") if layout == 1: X = _op.transpose(X, axes=(1, 0)) # Initialize state if not provided. if Hp_0 is None: W_dtype = infer_type(Wp).checked_type.dtype X_shape = infer_shape(X) hidden_size = infer_shape(Rp)[-1] batch_size = X_shape[1] Hp_0 = _op.zeros((num_directions, batch_size, hidden_size), W_dtype) elif layout == 1: Hp_0 = _op.transpose(Hp_0, axes=(1, 0)) # TODO (vvchernov): It can be replaced by _op.split if issue #8412 is resolved X_steps = unbind(X, axis=0) H_ts = _op.split(Hp_0, num_directions) Ws = _op.split(Wp, num_directions) Rs = _op.split(Rp, num_directions) Bs = None if Bp is not None: Bs = _op.split(Bp, num_directions) return X_steps, H_ts, Ws, Rs, Bs, num_directions @classmethod def _impl_common(cls, inputs, attr, layout): X_steps, H_ts, Ws, Rs, Bs, num_directions = cls._inputs_helper(inputs, layout) acts = cls._get_activations(attr, 1, num_directions, "RNN") weights_dicts = [] for i in range(num_directions): weights_dict = {} weights_dict["hidden_state"] = _op.squeeze(H_ts[i], axis=[0]) weights_dict["w_inp"] = _op.squeeze(Ws[i], axis=[0]) weights_dict["w_hid"] = _op.squeeze(Rs[i], axis=[0]) if Bs is not None: Bi, Bh = _op.split(Bs[i], 2, -1) weights_dict["b_inp"] = _op.squeeze(Bi, axis=[0]) weights_dict["b_hid"] = _op.squeeze(Bh, axis=[0]) weights_dicts.append(weights_dict) if num_directions == 2: output, H = RNN.bidir_rnn_cell( input_seqs=X_steps, weight_dicts=weights_dicts, acts=acts, ) else: # outputs shape = [seqs_num, (batch_size, hidden_size)] outputs, H = rnn_cell( input_seqs=X_steps, **weights_dicts[0], act=acts[0], ) # output shape = (seqs_num, num_directions, batch_size, hidden_size) output = _op.expand_dims(_op.stack(outputs, axis=0), axis=1) H = _op.expand_dims(H, axis=0) if layout == 1: output = _op.transpose(output, axes=(1, 0)) H = _op.transpose(H, axes=(1, 0)) return _expr.TupleWrapper(_expr.Tuple((output, H)), 2) @classmethod def _impl_v7(cls, inputs, attr, params): return cls._impl_common(inputs, attr, 0) @classmethod def _impl_v14(cls, inputs, attr, params): layout = attr.get("layout", 0) return cls._impl_common(inputs, attr, layout) class LSTM(RNN): """Operator converter for LSTM""" @classmethod def bidir_lstm_cell( cls, input_seqs, weight_dicts, acts, ): """ Bidirectional LSTM cell """ seq_len = len(input_seqs) forward_outputs, fw_H_t, fw_C_t = lstm_cell( input_seqs, **weight_dicts[0], f_act=acts[0], g_act=acts[1], h_act=acts[2], ) reverse_outputs, rev_H_t, rev_C_t = lstm_cell( input_seqs, **weight_dicts[1], f_act=acts[3], g_act=acts[4], h_act=acts[5], backwards=True, ) final_outputs = [] for i in range(seq_len): final_outputs.append( _op.stack([forward_outputs[i], reverse_outputs[seq_len - 1 - i]], axis=0) ) return ( _op.stack(final_outputs, axis=0), _op.stack([fw_H_t, rev_H_t], axis=0), _op.stack([fw_C_t, rev_C_t], axis=0), ) @classmethod def _default_activations(cls, num_directions): return [_op.sigmoid, _op.tanh, _op.tanh] * num_directions @classmethod def _impl_common(cls, inputs, attr, layout): X_steps, H_ts, Ws, Rs, Bs, num_directions = cls._inputs_helper(inputs, layout) acts = cls._get_activations(attr, 3, num_directions, "LSTM") # cell state Cp_0 = inputs[6] if Cp_0 is None: C_ts = _expr.TupleWrapper( _expr.Tuple([_op.zeros_like(H_ts[i]) for i in range(num_directions)]), num_directions, ) else: if layout == 1: Cp_0 = _op.transpose(Cp_0, axes=(1, 0)) C_ts = _op.split(Cp_0, num_directions) # peepholes Pp = inputs[7] if Pp is not None: p_i, p_o, p_f = _op.split(Pp, 3, axis=1) p_is = _op.split(p_i, num_directions) p_fs = _op.split(p_f, num_directions) p_os = _op.split(p_o, num_directions) weights_dicts = [] for i in range(num_directions): weights_dict = {} weights_dict["hidden_state"] = _op.squeeze(H_ts[i], axis=[0]) weights_dict["cell_state"] = _op.squeeze(C_ts[i], axis=[0]) # Weights permutation: onnx format i-o-f-c, lstm cell format i-f-c-o mati, mato, matf, matc = _op.split(_op.squeeze(Ws[i], axis=[0]), 4) weights_dict["w_inp"] = _op.concatenate([mati, matf, matc, mato], axis=0) mati, mato, matf, matc = _op.split(_op.squeeze(Rs[i], axis=[0]), 4) weights_dict["w_hid"] = _op.concatenate([mati, matf, matc, mato], axis=0) if Bs is not None: Bi, Bh = _op.split(Bs[i], 2, -1) mati, mato, matf, matc = _op.split(_op.squeeze(Bi, axis=[0]), 4) weights_dict["b_inp"] = _op.concatenate([mati, matf, matc, mato], axis=0) mati, mato, matf, matc = _op.split(_op.squeeze(Bh, axis=[0]), 4) weights_dict["b_hid"] = _op.concatenate([mati, matf, matc, mato], axis=0) if Pp is not None: weights_dict["p_i"] = _op.squeeze(p_is[i], axis=[0]) weights_dict["p_f"] = _op.squeeze(p_fs[i], axis=[0]) weights_dict["p_o"] = _op.squeeze(p_os[i], axis=[0]) weights_dicts.append(weights_dict) if num_directions == 2: output, H, C = LSTM.bidir_lstm_cell( input_seqs=X_steps, weight_dicts=weights_dicts, acts=acts, ) else: # outputs shape = [seqs_num, (batch_size, hidden_size)] outputs, H, C = lstm_cell( input_seqs=X_steps, **weights_dicts[0], f_act=acts[0], g_act=acts[1], h_act=acts[2], ) # output shape = (seqs_num, num_directions, batch_size, hidden_size) output = _op.expand_dims(_op.stack(outputs, axis=0), axis=1) H = _op.expand_dims(H, axis=0) C = _op.expand_dims(C, axis=0) if layout == 1: output = _op.transpose(output, axes=(1, 0)) H = _op.transpose(H, axes=(1, 0)) C = _op.transpose(C, axes=(1, 0)) return _expr.TupleWrapper(_expr.Tuple((output, H, C)), 3) class GRU(RNN): """Operator convert for GRU""" @classmethod def bidir_gru_cell( cls, input_seqs, weight_dicts, acts, ): """ Bidirectional GRU cell """ seq_len = len(input_seqs) forward_outputs, fw_H_t = gru_cell( input_seqs, **weight_dicts[0], rz_act=acts[0], n_act=acts[1], ) reverse_outputs, rev_H_t = gru_cell( input_seqs, **weight_dicts[1], rz_act=acts[2], n_act=acts[3], backwards=True, ) final_outputs = [] for i in range(seq_len): final_outputs.append( _op.stack([forward_outputs[i], reverse_outputs[seq_len - 1 - i]], axis=0) ) return ( _op.stack(final_outputs, axis=0), _op.stack([fw_H_t, rev_H_t], axis=0), ) @classmethod def _default_activations(cls, num_directions): return [_op.sigmoid, _op.tanh] * num_directions @classmethod def _impl_common(cls, inputs, attr, layout): X_steps, H_ts, Ws, Rs, Bs, num_directions = cls._inputs_helper(inputs, layout) acts = cls._get_activations(attr, 2, num_directions, "GRU") linear_before_reset = attr.get("linear_before_reset", 0) weights_dicts = [] for i in range(num_directions): weights_dict = {} weights_dict["hidden_state"] = _op.squeeze(H_ts[i], axis=[0]) weights_dict["linear_before_reset"] = linear_before_reset # Weights permutation: onnx format i-o-f-c, lstm cell format i-f-c-o matz, matr, matn = _op.split(_op.squeeze(Ws[i], axis=[0]), 3) weights_dict["w_inp"] = _op.concatenate([matr, matz, matn], axis=0) matz, matr, matn = _op.split(_op.squeeze(Rs[i], axis=[0]), 3) weights_dict["w_hid"] = _op.concatenate([matr, matz, matn], axis=0) if Bs is not None: Bi, Bh = _op.split(Bs[i], 2, -1) matz, matr, matn = _op.split(_op.squeeze(Bi, axis=[0]), 3) weights_dict["b_inp"] = _op.concatenate([matr, matz, matn], axis=0) matz, matr, matn = _op.split(_op.squeeze(Bh, axis=[0]), 3) weights_dict["b_hid"] = _op.concatenate([matr, matz, matn], axis=0) weights_dicts.append(weights_dict) if num_directions == 2: output, H = GRU.bidir_gru_cell( input_seqs=X_steps, weight_dicts=weights_dicts, acts=acts, ) else: # outputs shape = [seqs_num, (batch_size, hidden_size)] outputs, H = gru_cell( input_seqs=X_steps, **weights_dicts[0], rz_act=acts[0], n_act=acts[1], ) # output shape = (seqs_num, num_directions, batch_size, hidden_size) output = _op.expand_dims(_op.stack(outputs, axis=0), axis=1) H = _op.expand_dims(H, axis=0) if layout == 1: output = _op.transpose(output, axes=(1, 0)) H = _op.transpose(H, axes=(1, 0)) return _expr.TupleWrapper(_expr.Tuple((output, H)), 2) class Resize(OnnxOpConverter): """Operator converter for Resize""" @classmethod def _impl_v10(cls, inputs, attr, params): mode = attr.get("mode").decode("ascii") if mode == "nearest": method = "nearest_neighbor" elif mode == "linear": method = "linear" elif mode == "cubic": method = "cubic" else: raise tvm.error.OpAttributeInvalid( 'Value {} in attribute "mode" of operator Resize is not valid.'.format(mode) ) scale = inputs[1] size = _op.cast(shape_of(inputs[0]), infer_type(scale).checked_type.dtype) * scale ndims = len(infer_shape(inputs[0])) out = None if ndims == 3: out_size = fold_constant(_op.strided_slice(size, [2], [3])) out = _op.image.resize1d(inputs[0], out_size, None, "NCW", method, "asymmetric") elif ndims == 4: out_size = fold_constant(_op.strided_slice(size, [2], [4])) out = _op.image.resize2d(inputs[0], out_size, None, "NCHW", method, "asymmetric") elif ndims == 5: out_size = fold_constant(_op.strided_slice(size, [2], [5])) out = _op.image.resize3d(inputs[0], out_size, None, "NCDHW", method, "asymmetric") else: raise NotImplementedError("Resize only supports 3, 4, or 5 dims") return out @classmethod def _impl_v11(cls, inputs, attr, params): scale = inputs[2] scale_shape = infer_shape(scale) if len(inputs) == 4: assert ( len(scale_shape) == 0 or scale_shape[0] == 0 ), "One of scale or size should be passed, not both." size = inputs[3] else: assert len(scale_shape) != 0, "One of scale or size should be passed." size = _op.cast(shape_of(inputs[0]), infer_type(scale).checked_type.dtype) * scale return cls.v11_13_common(inputs, size, attr, params) @classmethod def _impl_v13(cls, inputs, attr, params): scale = inputs[2] size = inputs[3] # Some versions of onnx exporters produce an opset 13 model with the opset 11 # resize op, handle that edge case if scale is not None and size is not None: return cls._impl_v11(inputs, attr, params) if size is not None: assert scale is None, "One of scale or size should be passed, not both." else: scale_type = infer_type(scale) scale_shape = scale_type.checked_type.shape scale_dtype = scale_type.checked_type.dtype assert len(scale_shape) != 0, "One of scale or size should be passed." size = _op.cast(shape_of(inputs[0]), scale_dtype) * scale return cls.v11_13_common(inputs, size, attr, params) @classmethod def v11_13_common(cls, inputs, size, attr, params): """ Resize v11 and Resize v13 are identical except in how they handle the passing of scale and size. This utility provides the implementation for both """ roi = inputs[1] if roi is not None and infer_shape(roi)[0] == 0: roi = None ndims = len(infer_shape(inputs[0])) mode = attr.get("mode").decode("ascii") if mode == "nearest": method = "nearest_neighbor" elif mode == "linear": method = "linear" elif mode == "cubic": method = "cubic" else: raise tvm.error.OpAttributeInvalid( 'Value {} in attribute "mode" of operator Resize is not valid.'.format(mode) ) coord_trans = attr.get("coordinate_transformation_mode", b"half_pixel").decode("ascii") nearest_mode = attr.get("nearest_mode", b"round_prefer_floor").decode("ascii") alpha = attr.get("cubic_coeff_a", -0.75) exclude = attr.get("exclude_outside", 0) extrapolation_value = attr.get("extrapolation_value", 0.0) if roi is not None: roi = fold_constant( _op.concatenate( [ _op.strided_slice(roi, [2], [ndims]), _op.strided_slice(roi, [ndims + 2], [2 * ndims]), ], axis=0, ) ) out_size = fold_constant(_op.strided_slice(size, [2], [ndims])) out = None if ndims == 3: out = _op.image.resize1d( inputs[0], out_size, roi, "NCW", method, coord_trans, nearest_mode, alpha, exclude, extrapolation_value, ) elif ndims == 4: out = _op.image.resize2d( inputs[0], out_size, roi, "NCHW", method, coord_trans, nearest_mode, alpha, exclude, extrapolation_value, ) elif ndims == 5: out = _op.image.resize3d( inputs[0], out_size, roi, "NCDHW", method, coord_trans, nearest_mode, alpha, exclude, extrapolation_value, ) else: raise NotImplementedError("Resize only supports 3, 4, or 5 dims") return out class NonZero(OnnxOpConverter): """Operator converter for NonZero""" @classmethod def _impl_v9(cls, inputs, attr, params): if len(inputs) > 1: raise ValueError("Expect 1 input only") output = AttrCvt(op_name="argwhere")(inputs, attr, params) # ONNX NonZero always outputs int64 output = _op.cast(output, "int64") return _op.transpose(output, axes=(1, 0)) class ReverseSequence(OnnxOpConverter): """Operator converter for ReverseSequence""" @classmethod def _impl_v10(cls, inputs, attr, params): return _op.reverse_sequence(inputs[0], inputs[1], attr["time_axis"], attr["batch_axis"]) class TopK(OnnxOpConverter): """Operator converter for TopK""" @classmethod def _impl_v1(cls, inputs, attr, params): if len(inputs) != 2: raise ValueError("Expect 2 input only") axis = attr.get("axis", -1) largest = attr.get("largest", 1) if largest == 0: # TODO(mbrookhart): optimize this by adding a smallest attribute to topi if this # ever becomes a bottleneck ndim = len(infer_shape(inputs[0])) if axis < 0: axis += ndim sort = _op.sort(inputs[0], axis=axis) argsort = _op.argsort(inputs[0], axis=axis, dtype="int64") begin = [0] * ndim stride = [1] * ndim end = _op.concatenate( [ _op.const([np.iinfo(np.int64).max] * axis, dtype="int64"), inputs[1], _op.const([np.iinfo(np.int64).max] * (ndim - axis - 1), dtype="int64"), ], axis=0, ) return _expr.TupleWrapper( _expr.Tuple( [ _op.strided_slice(sort, begin, end, stride), _op.strided_slice(argsort, begin, end, stride), ] ), 2, ) return _op.topk(inputs[0], inputs[1], axis=axis, dtype="int64") class Range(OnnxOpConverter): """Operator converter for Range""" @classmethod def _impl_v1(cls, inputs, attr, params): if len(inputs) != 3: raise ValueError("Expect 3 input only") return _op.arange( inputs[0], inputs[1], inputs[2], dtype=infer_type(inputs[0]).checked_type.dtype ) class IsInf(OnnxOpConverter): """Operator converter for IsInf""" @classmethod def _impl_v10(cls, inputs, attr, params): detect_negative = attr.get("detect_negative", 1) detect_positive = attr.get("detect_positive", 1) dtype = infer_type(inputs[0]).checked_type.dtype isinf = _op.isinf(inputs[0]) if not detect_negative: isinf = isinf * (inputs[0] > _op.const(0, dtype)) if not detect_positive: isinf = isinf * (inputs[0] < _op.const(0, dtype)) return isinf class Celu(OnnxOpConverter): """Operator convereter for celu""" @classmethod def _impl_v12(cls, inputs, attr, params): x = inputs[0] dtype = infer_type(x).checked_type.dtype alpha = _op.const(attr.get("alpha", 1.0), dtype) zero = _op.const(0, dtype) one = _op.const(1, dtype) out = _op.maximum(zero, x) + _op.minimum(zero, alpha * (_op.exp(x / alpha) - one)) return out class MaxRoiPool(OnnxOpConverter): """Operator converter for MaxRoiPool.""" @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 2, "MMaxRoiPool op take 2 inputs, {} given".format(len(inputs)) data = inputs[0] rois = inputs[1] pooled_shape = attr.get("pooled_shape") spatial_scale = attr.get("spatial_scale", 1.0) return _vision.roi_pool(data, rois, pooled_shape, spatial_scale) class RoiAlign(OnnxOpConverter): """Operator converter for RoiAlign.""" @classmethod def _impl_v1(cls, inputs, attr, params): if len(inputs) != 3: raise ValueError("Expect 3 inputs only") x = inputs[0] rois = inputs[1] batch_indices = inputs[2] mode = attr.get("mode", b"avg") if mode not in (b"avg", b"max"): raise NotImplementedError("RoiAlign in Relay only uses avg and max modes") output_height = attr.get("output_height", 1) output_width = attr.get("output_width", 1) sampling_ratio = attr.get("sampling_ratio", 0) spatial_scale = attr.get("spatial_scale", 1.0) batch_indices = _op.expand_dims(batch_indices, axis=1, num_newaxis=1) batch_indices = _op.cast(batch_indices, infer_type(rois).checked_type.dtype) rois = _op.concatenate([batch_indices, rois], 1) return _vision.roi_align( x, rois, [output_height, output_width], spatial_scale, sampling_ratio, mode=mode ) class Clip(OnnxOpConverter): """Operator converter for Clip.""" @staticmethod def convert_attributes(inputs, attr, params): convert = AttrCvt("clip", transforms={"min": "a_min", "max": "a_max"}) return convert(inputs, attr, params) @classmethod def _impl_v1(cls, inputs, attr, params): if "min" not in attr: attr["min"] = -np.inf if "max" not in attr: attr["max"] = np.inf return Clip.convert_attributes(inputs, attr, params) @classmethod def _impl_v11(cls, inputs, attr, params): if len(inputs) == 3 and isinstance(inputs[2], _expr.Constant): attr["max"] = inputs[2].data.numpy().item() inputs = inputs[0:2] if len(inputs) >= 2 and isinstance(inputs[1], _expr.Constant): attr["min"] = inputs[1].data.numpy().item() inputs = inputs[0:1] if "min" in attr and "max" in attr: return Clip.convert_attributes(inputs, attr, params) assert len(inputs) <= 3, "Clip-11 takes up to 3 inputs, input, min, max" result = inputs[0] for i, op in enumerate([_op.tensor.maximum, _op.tensor.minimum]): if i < len(inputs) - 1: if inputs[i + 1] is not None: result = op(result, inputs[i + 1]) return result class Softplus(OnnxOpConverter): """Operator converter for Softplus.""" @classmethod def _impl_v1(cls, inputs, attr, params): data = inputs[0] data_dtype = infer_type(data).checked_type.dtype data = _op.exp(data) + _expr.const(1, dtype=data_dtype) return _op.log(data) class Loop(OnnxOpConverter): """Operator converter for Loop""" @classmethod def _impl_v11(cls, inputs, attr, params): max_loop_count = inputs[0] cond = inputs[1] loop_deps = inputs[2:] num_deps = len(loop_deps) # Create a copy of the body function to prevent the original # from being modified. body = copy.copy(attr["body"]) iter_dtype = infer_type(max_loop_count).checked_type.dtype # Determine what condition mode we're in. assert cond is not None or max_loop_count is not None is_for_loop = max_loop_count is not None and cond is None is_condition_for_loop = cond is not None and max_loop_count is not None # Loop inputs will be packed as # [iter_count, max_count, condition, loop_deps, scan_outputs] def cond_fn(*loop_inputs): i = loop_inputs[0] max_count = loop_inputs[1] w = loop_inputs[2] if cond is not None: out_while = _op.equal(w, _expr.const(True, "bool")) if max_loop_count is not None: out_loop = _op.less(i, max_count) if is_condition_for_loop: return _op.logical_and(out_while, out_loop) if is_for_loop: return out_loop return out_while # Get the current graph proto and create a clone for the subgraph graph_scope = GraphProto.current subgraph_scope = GraphProto( graph_scope._shape, graph_scope._dtype, graph_scope._freeze_params ) # Load nodes from outer graph into inner graph. subgraph_scope._nodes = graph_scope._nodes.copy() # Create a list of variables for each value updated in the loop. def get_var(name, val, scan=False): checked_type = infer_type(val) if hasattr(checked_type, "type_annotation"): checked_type = checked_type.type_annotation if hasattr(checked_type, "checked_type"): checked_type = checked_type.checked_type shape = get_const_tuple(checked_type.shape) actual_shape = [] for dim in shape: if isinstance(dim, int) and dim == 0: actual_shape.append(_ty.Any()) else: actual_shape.append(dim) if scan: return _expr.var(name, shape=[_ty.Any()] + actual_shape, dtype=checked_type.dtype) return _expr.var(name, shape=actual_shape, dtype=checked_type.dtype) loop_vars = [ _expr.var(body.input[0].name, shape=(), dtype=iter_dtype), # iteration count _expr.var("max_count", shape=(), dtype=iter_dtype), # iteration count get_var(body.input[1].name, cond), # exit condition ] loop_vars += [get_var(body.input[i + 2].name, v) for i, v in enumerate(loop_deps)] loop_var_names = [v.name_hint for v in loop_vars] num_scan_outputs = len(body.output) - (1 + num_deps) # Construct variables and initial empty tensors for any scan outputs. # To do this, we'll figure out the output shapes of the body subgraph by importing # it and doing type inference. scan_output_vars = [] scan_output_init = [] if num_scan_outputs > 0: with subgraph_scope: loop_outputs = subgraph_scope.from_onnx( body, graph_scope.opset, get_output_expr=True ) loop_outputs = _expr.TupleWrapper(loop_outputs, len(body.output)) for i in range(num_scan_outputs): name, _, _, _ = get_info(body.output[i + 1 + num_deps]) output_node = infer_type(loop_outputs[i + 1 + num_deps]) shape = get_const_tuple(output_node.checked_type.shape) dtype = output_node.checked_type.dtype scan_output_vars.append( _expr.var(name, shape=([_ty.Any()] * (len(shape) + 1)), dtype=dtype) ) scan_output_init.append( _op.reshape(_expr.const(np.array([]).astype(dtype)), [0] + [1] * len(shape)) ) # Now we can remove loop iter variables from our inner loop's inputs. # This is kind of a hack since we have graph inputs that we don't # want to treat as actual inputs. while len(body.input) != 0: body.input.pop(0) # Define the loop body, in this function we need to unpack loop inputs, # convert the loop subgraph, and pack outputs for the next iteration. def body_fn(*loop_inputs): # Unpack inputs loop_count = loop_inputs[0] max_count = loop_inputs[1] cond = loop_inputs[2] current_vars = list(loop_inputs[3 : (3 + num_deps)]) scan_outputs = loop_inputs[(3 + num_deps) :] # Prepare body inputs by adding them to node dictionary. new_inputs = [loop_count, max_count, cond] + current_vars for i, inp in enumerate(new_inputs): subgraph_scope._nodes[loop_var_names[i]] = inp # Get the output of the current loop using the updated inputs. with subgraph_scope: loop_outputs = subgraph_scope.from_onnx( body, graph_scope.opset, get_output_expr=True ) # Unpack the body outputs and prepare variables for next iteration. new_cond = loop_outputs[0] new_loop_vars = [loop_outputs[i] for i in range(1, 1 + num_deps)] new_scan_outputs = [loop_outputs[i] for i in range(1 + num_deps, len(loop_outputs))] # Add new scan outputs to tracking combined_scan_outputs = [] for i, scan in enumerate(scan_outputs): rank = len(infer_shape(scan)) - 1 new_scan = new_scan_outputs[i] expand_scan = _op.expand_dims(new_scan, axis=0) # For non scalar outputs we need to broadcast the initial value. if rank > 0: new_scan_shape = shape_of(new_scan, dtype=iter_dtype) scan_broadcast = _op.concatenate( [_op.reshape(loop_count, [1]), new_scan_shape], axis=0 ) scan = _op.broadcast_to(scan, scan_broadcast) combined_scan = _op.concatenate([scan, expand_scan], axis=0) combined_scan_outputs.append(combined_scan) # Increment counter. if max_loop_count is not None: incr = _expr.const(1, dtype=iter_dtype) loop_count = loop_count + incr # Pack loop outputs for next iteration # [iter_count, cond, loop_deps, loop_scans] return [loop_count, max_count, new_cond] + new_loop_vars + combined_scan_outputs # Create the loop function. loop = fold_constant(_loops.while_loop(cond_fn, loop_vars + scan_output_vars, body_fn)) # Now need to run initial values through the graph. init_count = _expr.const(0, dtype=iter_dtype) loop_vals = loop(init_count, max_loop_count, cond, *loop_deps, *scan_output_init) # Extract final iteration outputs. if num_deps + num_scan_outputs == 1: outputs = _expr.TupleGetItem(loop_vals, 3) else: outputs = _expr.TupleWrapper( _expr.Tuple( [ _expr.TupleGetItem(loop_vals, i + 3) for i in range(num_deps + num_scan_outputs) ] ), num_deps + num_scan_outputs, ) # Update outer graph with constants found in the subgraph. free_vars = analysis.free_vars(loop) graph_scope._params.update(subgraph_scope._params) graph_scope._nodes.update(subgraph_scope._nodes) for var in free_vars: graph_scope._nodes.update({var.name_hint: var}) return outputs class If(OnnxOpConverter): """Operator converter for If""" @classmethod def _impl_v1(cls, inputs, attr, params): cond = inputs[0] # Convert array to bool if needed. if len(infer_shape(cond)) > 0: cond = _op.take(cond, _expr.const(0, dtype="int64")) then_branch = attr.get("then_branch", None) else_branch = attr.get("else_branch", None) assert then_branch is not None and else_branch is not None # Create graph converters for both branches. graph_scope = GraphProto.current then_graph = GraphProto(graph_scope._shape, graph_scope._dtype, graph_scope._freeze_params) then_graph._nodes = graph_scope._nodes.copy() else_graph = GraphProto(graph_scope._shape, graph_scope._dtype, graph_scope._freeze_params) else_graph._nodes = graph_scope._nodes.copy() # Convert each branch to a relay expression. with then_graph: then_expr = then_graph.from_onnx(then_branch, graph_scope.opset, get_output_expr=True) with else_graph: else_expr = else_graph.from_onnx(else_branch, graph_scope.opset, get_output_expr=True) # Add constants from both branches to parent graph. graph_scope._params.update(then_graph._params) graph_scope._nodes.update(then_graph._nodes) then_free_vars = analysis.free_vars(then_expr) for var in then_free_vars: graph_scope._nodes.update({var.name_hint: var}) graph_scope._params.update(else_graph._params) graph_scope._nodes.update(else_graph._nodes) else_free_vars = analysis.free_vars(else_expr) for var in else_free_vars: graph_scope._nodes.update({var.name_hint: var}) # Now we can construct the relay if statement and return. ret = _expr.If(cond, then_expr, else_expr) if len(then_branch.output) > 1: ret = _expr.TupleWrapper(ret, len(then_branch.output)) return ret class Scan(OnnxOpConverter): """Operator converter for Scan""" @classmethod def _impl_v8(cls, inputs, attr, params): new_inputs = inputs[1:] batch_num = infer_shape(inputs[1])[0] out = [] for i in range(batch_num): v9_inputs = [ _op.take(new_inputs[j], _expr.const(i), axis=0) for j in range(len(new_inputs)) ] results = cls._impl_v9(v9_inputs, attr, params) results = [_op.expand_dims(results[j], axis=0) for j in range(len(results))] if i == 0: out = results else: out = [_op.concatenate([out[j], results[j]], axis=0) for j in range(len(results))] out = _expr.TupleWrapper(_expr.Tuple(out), len(out)) return out @classmethod def _impl_v9(cls, inputs, attr, params): body = attr.get("body") num_scan_inputs = attr.get("num_scan_inputs") num_all_inputs = len(inputs) num_state_inputs = len(body.input) - num_scan_inputs num_state_outputs = num_state_inputs num_all_outputs = len(body.output) num_scan_outputs = num_all_outputs - num_state_outputs scan_input_axes = attr.get("scan_input_axes", [0] * num_scan_inputs) scan_input_directions = attr.get("scan_input_directions", [0] * num_scan_inputs) scan_output_axes = list(attr.get("scan_output_axes", [0] * num_scan_outputs)) scan_output_directions = attr.get("scan_output_directions", [0] * num_scan_outputs) # loop count are the same for all scan inputs, so get loop count by first input scan # strided_slice not support dynamic axes, so assume input shape are static max_loop_count = infer_shape(inputs[num_state_inputs])[scan_input_axes[0]] # Create a copy of the body function to prevent the original # from being modified. body = copy.copy(attr["body"]) # Loop inputs will be packed as # [iter_count, loop_deps, scan_outputs] def cond_fn(*loop_inputs): i = loop_inputs[0] return _op.less(i, relay.const(max_loop_count, "int32")) # Get the current graph proto and create a clone for the subgraph graph_scope = GraphProto.current subgraph_scope = GraphProto( graph_scope._shape, graph_scope._dtype, graph_scope._freeze_params ) # Load nodes from outer graph into inner graph. subgraph_scope._nodes = graph_scope._nodes.copy() # Create a list of variables for each value updated in the loop. def get_var(name, val, scan=False): checked_type = infer_type(val) if hasattr(checked_type, "type_annotation"): checked_type = checked_type.type_annotation if hasattr(checked_type, "checked_type"): checked_type = checked_type.checked_type shape = get_const_tuple(checked_type.shape) actual_shape = [] for dim in shape: if isinstance(dim, int) and dim == 0: actual_shape.append(_ty.Any()) else: actual_shape.append(dim) if scan: return _expr.var(name, shape=[_ty.Any()] + actual_shape, dtype=checked_type.dtype) return _expr.var(name, shape=actual_shape, dtype=checked_type.dtype) # Construct variables and initial empty tensors for any scan outputs. # To do this, we'll figure out the output shapes of the body subgraph by importing # it and doing type inference. scan_output_vars = [] scan_output_init = [] if num_scan_outputs > 0: with subgraph_scope: loop_outputs = subgraph_scope.from_onnx( body, graph_scope.opset, get_output_expr=True ) loop_outputs = _expr.TupleWrapper(loop_outputs, len(body.output)) for i in range(num_scan_outputs): name, _, _, _ = get_info(body.output[i + num_state_outputs]) output_node = infer_type(loop_outputs[i + num_state_outputs]) shape = list(get_const_tuple(output_node.checked_type.shape)) if scan_output_axes[i] < 0: scan_output_axes[i] = len(shape) + scan_output_axes[i] + 1 shape.insert(scan_output_axes[i], max_loop_count) dtype = output_node.checked_type.dtype scan_output_vars.append(_expr.var(name, shape=shape, dtype=dtype)) scan_output_init.append(_op.zeros(shape, dtype)) # loop vars = [iter_count, scan_state, scan_out] loop_vars = [ _expr.var("iter", shape=(), dtype="int32"), # iteration count ] loop_vars += [ get_var(body.input[i].name, v) for i, v in enumerate(inputs) if i < num_state_inputs ] loop_vars += scan_output_vars body_input_var_names = ["iter"] + [body.input[i].name for i in range(len(body.input))] # # Now we can remove loop iter variables from our inner loop's inputs. # # This is kind of a hack since we have graph inputs that we don't # # want to treat as actual inputs. while len(body.input) != 0: body.input.pop(0) # Define the loop body, in this function we need to unpack loop inputs, # convert the loop subgraph, and pack outputs for the next iteration. def body_fn(*loop_inputs): # Unpack inputs loop_count = loop_inputs[0] state_vars = list(loop_inputs[1 : 1 + num_state_inputs]) scan_vars = list(loop_inputs[1 + num_state_inputs :]) # body take scan graph scan inputs as original input input_scan_exprs = [] for i in range(num_state_inputs, num_all_inputs): if scan_input_directions[i - num_state_inputs] != 0: input_scan_exprs.append( relay.take( inputs[i], relay.const(max_loop_count - 1, "int32") - loop_count, axis=scan_input_axes[i - num_state_inputs], ) ) else: input_scan_exprs.append( relay.take( inputs[i], loop_count, axis=scan_input_axes[i - num_state_inputs], ) ) # Prepare body inputs by adding them to node dictionary. body_inputs = [loop_count] + state_vars + input_scan_exprs for i, inp in enumerate(body_inputs): subgraph_scope._nodes[body_input_var_names[i]] = inp # Get the output of the current loop using the updated inputs. with subgraph_scope: loop_outputs = subgraph_scope.from_onnx( body, graph_scope.opset, get_output_expr=True ) # Unpack the body outputs and prepare variables for next iteration. new_state_vars = [loop_outputs[i] for i in range(num_state_outputs)] new_scan_vars = [loop_outputs[i] for i in range(num_state_outputs, num_all_outputs)] # Add new scan outputs to tracking combined_scan_outputs = [] for i in range(num_scan_outputs): if scan_output_directions[i] == 0: # append new scan output combined_scan = _op.concatenate( [scan_vars[i], _op.expand_dims(new_scan_vars[i], axis=scan_output_axes[i])], axis=scan_output_axes[i], ) # pop head scan output combined_scan = _op.strided_slice( combined_scan, begin=[1], end=[max_loop_count + 1], strides=[1], axes=[scan_output_axes[i]], ) else: # prepend new scan output combined_scan = _op.concatenate( [_op.expand_dims(new_scan_vars[i], axis=scan_output_axes[i]), scan_vars[i]], axis=scan_output_axes[i], ) # pop tail scan output combined_scan = _op.strided_slice( combined_scan, begin=[0], end=[max_loop_count], strides=[1], axes=[scan_output_axes[i]], ) combined_scan_outputs.append(combined_scan) incr = _expr.const(1, dtype="int32") loop_count = loop_count + incr # Pack loop outputs for next iteration # [iter_count, state_var, scan_var] return [loop_count] + new_state_vars + combined_scan_outputs # Create the loop function. loop = fold_constant(_loops.while_loop(cond_fn, loop_vars, body_fn)) # Now need to run initial values through the graph. init_count = _expr.const(0, dtype="int32") input_states = [inputs[i] for i in range(num_state_inputs)] loop_vals = loop(init_count, *input_states, *scan_output_init) outputs = _expr.TupleWrapper( _expr.Tuple([_expr.TupleGetItem(loop_vals, i + 1) for i in range(num_all_outputs)]), num_all_outputs, ) # Update outer graph with constants found in the subgraph. free_vars = analysis.free_vars(loop) graph_scope._params.update(subgraph_scope._params) graph_scope._nodes.update(subgraph_scope._nodes) for var in free_vars: graph_scope._nodes.update({var.name_hint: var}) return outputs class LinearRegressor(OnnxOpConverter): """Operator converter for LinearRegressor.""" @classmethod def _impl_v1(cls, inputs, attr, params): data = inputs[0] coefficients = attr.get("coefficients", 0) data_shape = infer_shape(data) targets = attr.get("targets", 1) coefficients = _expr.const(list(coefficients), dtype="float32") coefficients_shape = infer_shape(coefficients) coefficients = _op.reshape(coefficients, (targets, coefficients_shape[0] // targets)) if coefficients_shape[0] // targets < data_shape[-1]: data = _op.split(data, [coefficients_shape[0] // targets], -1)[0] mm_out = _op.nn.dense(data, coefficients) if "intercepts" in attr: intercepts = attr.get("intercepts", 0) intercepts = _expr.const(list(intercepts), dtype="float32") if targets == 1: return _op.nn.bias_add(mm_out, intercepts, axis=-1) return get_relay_op("add")(mm_out, intercepts) return mm_out class NonMaxSuppression(OnnxOpConverter): """Operator converter for NonMaxSuppression.""" @classmethod def _impl_v10(cls, inputs, attr, params): # Get parameter values boxes = inputs[0] scores = inputs[1] max_output_boxes_per_class = inputs[2] iou_threshold = inputs[3] score_threshold = inputs[4] boxes_dtype = infer_type(boxes).checked_type.dtype if attr.get("center_point_box", 0) != 0: xc, yc, w, h = _op.split(boxes, 4, axis=2) half_w = w / _expr.const(2.0, boxes_dtype) half_h = h / _expr.const(2.0, boxes_dtype) x1 = xc - half_w x2 = xc + half_w y1 = yc - half_h y2 = yc + half_h boxes = _op.concatenate([y1, x1, y2, x2], axis=2) if iou_threshold is None: iou_threshold = _expr.const(0.0, dtype="float32") if score_threshold is None: score_threshold = _expr.const(0.0, dtype="float32") def conditionally_squeeze_scalar(x): rank = len(infer_shape(x)) assert rank <= 1, "nms thresholds must be scalars" if rank == 1: return _op.squeeze(x, [0]) return x max_output_boxes_per_class = conditionally_squeeze_scalar(max_output_boxes_per_class) iou_threshold = conditionally_squeeze_scalar(iou_threshold) score_threshold = conditionally_squeeze_scalar(score_threshold) nms_out = _op.vision.all_class_non_max_suppression( boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold ) return _op.strided_slice(nms_out[0], _op.const([0], dtype="int64"), nms_out[1]) class ATen(OnnxOpConverter): """Operator converter for Pytorch ATen ops.""" @classmethod def _op_dispatch(cls, operator, inputs, attr, params): op_map = { "size": cls._size, "arange": cls._arange, "index_put": cls._index_put, "reshape": cls._reshape, "embedding_bag": cls._embedding_bag, } assert operator in op_map, "Operator %s is not supported." % operator return op_map[operator](inputs, attr, params) @classmethod def _size(cls, inputs, attr, params): return _op.take( _op.shape_of(inputs[0], dtype="int64"), _expr.const(-1, dtype="int64"), axis=0, mode="wrap", ) @classmethod def _arange(cls, inputs, attr, params): return _op.arange(inputs[0], inputs[1], inputs[2], dtype="int64") @classmethod def _check_index(cls, indices, values): def unfolding_indices(indices, values): n = len(indices) flatten_indices = [] slices_size = [] for index in indices: flatten_indices.append(_op.reshape(index, _op.const([-1]))) slices_size.append(infer_shape(flatten_indices[-1])[0]) repeat_size = [1] tile_size = [1] for i in range(1, n): repeat_size.append(slices_size[-i] * repeat_size[-1]) tile_size.append(slices_size[i - 1] * tile_size[-1]) repeat_size.reverse() unflod_slices = [] for i in range(n): unflod_slices.append( fold_constant( _op.repeat(_op.tile(flatten_indices[i], (tile_size[i],)), repeat_size[i], 0) ) ) return unflod_slices, _op.reshape(values, _op.const([-1])) values_shape = infer_shape(values) if len(values_shape) != 1: return unfolding_indices(indices, values) return indices, values @classmethod def _index_put(cls, inputs, attr, params): in_tensor = inputs[0] indices, values = cls._check_index(inputs[1 : len(inputs) - 2], inputs[len(inputs) - 2]) accumulate = inputs[len(inputs) - 1].data.asnumpy() != 0 if not accumulate: mode = "update" else: mode = "add" index_tensor = _op.stack(indices, axis=0) return _op.transform.scatter_nd(in_tensor, index_tensor, values, mode) @classmethod def _reshape(cls, inputs, attr, params): return _op.reshape(inputs[0], inputs[1]) @classmethod def _embedding_bag(cls, inputs, attr, params): mode_map = {0: _op.sum, 1: _op.mean, 2: _op.max} mode = attr.get("mode", 1) reduction_fn = mode_map[mode] weights, indices, offsets = inputs[0], inputs[1], inputs[2] offsets_shape = _op.shape_of(offsets, dtype="int64") indices_shape = _op.stack( [ _op.take(offsets_shape, _expr.const(0, dtype="int64")), _expr.const(-1, dtype="int64"), ], axis=0, ) indices = _op.reshape(indices, indices_shape) embedding = _op.take(weights, indices.astype("int64"), axis=0) rembedding = reduction_fn(embedding, axis=1) # EmbeddingBag has 4 outputs for some reason despite only one ever being used. # Fill the rest with 0s. unused_output = _expr.const(0, dtype="float32") return _expr.TupleWrapper( _expr.Tuple((rembedding, unused_output, unused_output, unused_output)), 4 ) @classmethod def _impl_v1(cls, inputs, attr, params): operator = attr.get("operator", None).decode("utf-8") assert operator, "ATen Operator not found" return cls._op_dispatch(operator, inputs, attr, params) class QuantizeLinear(OnnxOpConverter): """Operator converter for QuantizeLinear.""" @classmethod def _impl_v10(cls, inputs, attr, params): data, scale, zp = inputs out_dtype = infer_type(zp).checked_type.dtype return _qnn.op.quantize(data, scale, _op.cast(zp, "int32"), 0, out_dtype) @classmethod def _impl_v13(cls, inputs, attr, params): data, scale, zp = inputs out_dtype = infer_type(zp).checked_type.dtype axis = attr.get("axis", 1) if len(infer_shape(data)) < 2: axis = 0 return _qnn.op.quantize(data, scale, _op.cast(zp, "int32"), axis, out_dtype) class DequantizeLinear(OnnxOpConverter): """Operator converter for QuantizeLinear.""" @classmethod def _impl_v10(cls, inputs, attr, params): data, scale, zp = inputs return _qnn.op.dequantize(data, scale, _op.cast(zp, "int32"), 0) @classmethod def _impl_v13(cls, inputs, attr, params): data, scale, zp = inputs axis = attr.get("axis", 1) if len(infer_shape(data)) <= 1: axis = 0 return _qnn.op.dequantize(data, scale, _op.cast(zp, "int32"), axis) class DynamicQuantizeLinear(OnnxOpConverter): """Operator converter for QuantizeLinear.""" @classmethod def _impl_v11(cls, inputs, attr, params): """This op is deprecated an only supports uint8""" data = inputs[0] data_dtype = infer_type(data).checked_type.dtype zero = _op.const(0, dtype=data_dtype) maximum = _op.maximum(zero, _op.max(data)) minimum = _op.minimum(zero, _op.min(data)) scale = (maximum - minimum) / _op.const(255, dtype=data_dtype) zp = zero - _op.min(data) / scale zp = _op.cast(_op.round(_op.clip(zp, 0, 255)), "uint8") return _expr.TupleWrapper( _expr.Tuple( [_qnn.op.quantize(data, scale, _op.cast(zp, "int32"), 0, "uint8"), scale, zp] ), size=3, ) class QLinearConv(OnnxOpConverter): """Operator converter for QLinearConv.""" @classmethod def _impl_v10(cls, inputs, attr, params): data = inputs[0] x_scale = get_scalar(inputs[1], params) x_zero_point = get_scalar(inputs[2], params, "int32") weight = inputs[3] w_scale = get_scalar_or_1d_tensor(inputs[4], params) w_zero_point = get_scalar_or_1d_tensor(inputs[5], params, "int32") y_scale = fold_constant(get_scalar(inputs[6], params)) y_zero_point = get_scalar(inputs[7], params, "int32") # Check shapes for per channel quantization w_scale_shape = infer_shape(w_scale) w_zero_point_shape = infer_shape(w_zero_point) if len(w_scale_shape) == 1 or len(w_zero_point_shape) == 1: m = infer_shape(weight)[0] if m != w_scale_shape[0] or m != w_zero_point_shape[0]: raise tvm.error.OpAttributeInvalid( "The number of elements should be equal to the number of output channels" ) input_shape = infer_shape(data) ndim = len(input_shape) kernel_type = infer_type(weight) kernel_shapes = [get_const_tuple(kernel_type.checked_type.shape)] if "kernel_shape" not in attr: attr["kernel_shape"] = kernel_shapes[0][2:] if "auto_pad" in attr: attr["auto_pad"] = attr["auto_pad"].decode("utf-8") if attr["auto_pad"] in ("SAME_UPPER", "SAME_LOWER"): # Warning: Convolution does not yet support dynamic shapes, # one will need to run dynamic_to_static on this model after import zp = fold_constant(x_zero_point) assert isinstance(zp, relay.Constant), "Zero point expected to be a constant" data = autopad( data, attr.get("strides", [1] * (ndim - 2)), attr["kernel_shape"], attr.get("dilations", [1] * (ndim - 2)), pad_value=zp.data, mode=attr["auto_pad"], ) elif attr["auto_pad"] == "VALID": attr["pads"] = tuple([0 for i in range(ndim - 2)]) elif attr["auto_pad"] == "NOTSET": pass else: msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr["auto_pad"])) attr.pop("auto_pad") out_channels = kernel_shapes[0][0] dilation = attr.get("dilations", [1] * (ndim - 2)) strides = attr.get("strides", [1] * (ndim - 2)) padding = attr["pads"] if "pads" in attr else 0 groups = attr["group"] if "group" in attr else 1 if ndim != 4: raise tvm.error.OpAttributeInvalid( "Only 2D kernels are supported for operator QLinearConv." ) out = _qnn.op.conv2d( data, weight, x_zero_point, w_zero_point, x_scale, w_scale, kernel_size=attr["kernel_shape"], channels=out_channels, strides=strides, padding=padding, dilation=dilation, groups=groups, ) use_bias = len(inputs) == 9 if use_bias: out = _op.nn.bias_add(out, inputs[8]) out_dtype = infer_type(inputs[7]).checked_type.dtype requantize_scale = _op.multiply(x_scale, w_scale) # requantize requires y_scale to be constant, # if y_scale is not constant, doing dequantize -> quantize if isinstance(y_scale, _expr.Constant): out = _qnn.op.requantize( out, requantize_scale, _op.const(0, dtype="int32"), y_scale, y_zero_point, out_dtype=out_dtype, axis=1, ) else: out = _qnn.op.dequantize(out, requantize_scale, _op.const(0, dtype="int32"), axis=1) out = _qnn.op.quantize(out, y_scale, y_zero_point, axis=1, out_dtype=out_dtype) return out class QLinearAdd(OnnxOpConverter): """Operator converter for QLinearAdd from Microsoft onnxruntime contrib opset.""" @classmethod def _impl_v10(cls, inputs, attr, params): a = inputs[0] a_scale = get_scalar(inputs[1], params) a_zero_point = get_scalar(inputs[2], params, "int32") b = inputs[3] b_scale = get_scalar(inputs[4], params) b_zero_point = get_scalar(inputs[5], params, "int32") c_scale = get_scalar(inputs[6], params) c_zero_point = get_scalar(inputs[7], params, "int32") dtype = infer_type(a).checked_type.dtype ## Onnxruntime doesn't actually do this op in integer, they dequantize to fp32 ## and then requantize afer ## https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/core/mlas/lib/qladd.cpp a = _qnn.op.dequantize( inputs[0], a_scale, a_zero_point ) # , c_scale, c_zero_point, out_dtype = dtype) b = _qnn.op.dequantize( inputs[3], b_scale, b_zero_point ) # , c_scale, c_zero_point, out_dtype = dtype) out = _op.add(a, b) return _qnn.op.quantize(out, c_scale, c_zero_point, out_dtype=dtype) class QLinearMatMul(OnnxOpConverter): """ Operator converter for QLinearMatMul from Microsoft onnxruntime contrib opset. Limitations: - Not guaranteed to meet the integer-overflow behavior stipulated in the ONNX documentation for this operator. The QLinearMatMul converter is re-used for MatMulInteger and is adapted for the latter with the optional `expected_out_dtypes` argument. """ @classmethod def _impl_v10(cls, inputs, attr, params, expected_out_dtypes=None): if expected_out_dtypes is None: # The default QLinearMatMul converter is expected to have one of # these output dtypes. expected_out_dtypes = ["int8", "uint8"] # Some of the ops used below take scalar-like inputs, and may require either # of the following: # # - the input is Const node (not merely an expression that *could* be reduced # to a single Const at graph-compilation time) # # - the input has a specific dtype # # This function attempts to present 'x' in a form that meets both of those # requirements. def try_resolve_to_const(x, dtype_override=None): x2 = try_resolve_var_to_const(x, params) num_elem = np.prod(infer_shape(x)) if num_elem == 1: x2 = ensure_scalar_shape(x2) x_dtype = infer_type(x).checked_type.dtype if (dtype_override is not None) and (dtype_override != x_dtype): x2 = _op.cast(x2, dtype_override) x3 = fold_constant(x2) return x3 # Unpack the inputs and obtain some type info... a, a_scale, a_zp, b, b_scale, b_zp, y_scale, y_zp = inputs a_type = infer_type(a).checked_type # 'T1' in ONNX doc for this op a_scale_type = infer_type(a_scale).checked_type a_zp_type = infer_type(a_zp).checked_type b_type = infer_type(b).checked_type # 'T2' in ONNX doc for this op b_scale_type = infer_type(b_scale).checked_type b_zp_type = infer_type(b_zp).checked_type y_scale_type = infer_type(y_scale).checked_type y_zp_type = infer_type(y_zp).checked_type # 'T3' in ONNX doc for this op # Verify type assumptions, based on the ONNX doc for this op... assert a_type.dtype in ["int8", "uint8"] assert a_scale_type.dtype == "float32" assert a_zp_type.dtype == a_type.dtype assert b_type.dtype in ["int8", "uint8"] assert b_scale_type.dtype == "float32" assert b_zp_type.dtype == b_type.dtype assert y_scale_type.dtype == "float32" assert y_zp_type.dtype in expected_out_dtypes # _qnn.op.dense requires the zero-point values to have dtype int32. a_scale_scalar = try_resolve_to_const(a_scale) a_zp_scalar = try_resolve_to_const(a_zp, "int32") b_scale_scalar = try_resolve_to_const(b_scale) b_zp_scalar = try_resolve_to_const(b_zp, "int32") y_scale_scalar = try_resolve_to_const(y_scale) y_zp_scalar = try_resolve_to_const(y_zp, "int32") # TODO: Confirm that we're using 'num_hidden_units' correctly / as intended with # the '_qnn.op.dense' instance below. num_hidden_units = infer_shape(b)[-1] # - Specify the matmul result dtype as int32, so that hopefully the matmul will use # a 32-bit accumulator as seems to be required by the ONNX op's documentation. # # TL;DR: # The ONNX documentation for this op is clear about acceptable overflow # behavior during the matmul operation: # - The scalar multiplication ops MAY NOT overflow. # - The scalar addition ops, which sum the results of the scalar multiplication, # MAY overflow, but if they do so, it must behave as one would expect during # 32-bit integer-addition overflow. # As of this writing, Relay's qnn.op.dense operator doesn't expose a way for us to # express these constraints. # # TODO: Extend TVM / Relay / TIR / etc. to allow this kind of constraint to be # expressed in a Relay graph. And then update this importer and various TVM # backends accordingly. matmul_result_dtype = "int32" # TODO(vvchernov): possibly it is better to use unsigned type for result # if input types are unsigned: # if a_type.dtype == "uint8" and b_type.dtype == "uint8": # matmul_result_dtype = "uint32" matmul_result = qmatmul( a, b, a_zp_scalar, b_zp_scalar, a_scale_scalar, b_scale_scalar, num_hidden_units, matmul_result_dtype, ) # This information might only be found in the C++ code-comments for the # dense.matmul op, but the quantized tensor returned by _qnn.op.dense # has scale==(a_scale_scalar * b_scale_scalar), and zero_point==0. # # 'matmul_result_zp_scalar' has type 'int32' to satisfy input requirements # of the [de/re]quantize ops below. matmul_result_scale_scalar = fold_constant(_op.multiply(a_scale_scalar, b_scale_scalar)) matmul_result_zp_scalar = _op.const(0, dtype="int32") if "int32" in expected_out_dtypes: # This is the adaptation of the QLinearMatMul converter for MatMulInteger, # in the MatMulInteger case we skip the unnecessary requantization step. return matmul_result # requantize requires y_scale to be constant, # if y_scale is not constant, doing dequantize -> quantize if isinstance(y_scale_scalar, _expr.Constant): y = _qnn.op.requantize( matmul_result, matmul_result_scale_scalar, matmul_result_zp_scalar, y_scale_scalar, y_zp_scalar, axis=-1, rounding="TONEAREST", out_dtype=y_zp_type.dtype, ) else: matmul_result_deq = _qnn.op.dequantize( matmul_result, matmul_result_scale_scalar, matmul_result_zp_scalar, axis=0 ) y = _qnn.op.quantize( matmul_result_deq, y_scale_scalar, y_zp_scalar, axis=0, out_dtype=y_zp_type.dtype ) return y class MatMulInteger(OnnxOpConverter): """Operator converter for MatMulInteger.""" @classmethod def _impl_v10(cls, inputs, attr, params): a = inputs[0] b = inputs[1] a_dtype = infer_type(a).checked_type.dtype b_dtype = infer_type(b).checked_type.dtype assert a_dtype in ("int8", "uint8"), "MatMulInteger: invalid dtype for first input" assert b_dtype in ("int8", "uint8"), "MatMulInteger: invalid dtype for second input" assert a_dtype == b_dtype, "MatMulInteger: input dtypes must match" a_scale = _op.const(1.0, dtype="float32") b_scale = _op.const(1.0, dtype="float32") out_scale = _op.const(1.0, dtype="float32") a_zero_point = _op.const(0.0, dtype=a_dtype) b_zero_point = _op.const(0.0, dtype=b_dtype) out_zero_point = _op.const(0.0, dtype="int32") if len(inputs) == 4: a_zero_point = inputs[2] b_zero_point = inputs[3] a_zp_dtype = infer_type(a_zero_point).checked_type.dtype b_zp_dtype = infer_type(b_zero_point).checked_type.dtype assert ( a_zp_dtype == a_dtype and b_zp_dtype == b_dtype ), "MatMulInteger: input dtype doesn't match zero point dtype" elif len(inputs) != 2: raise AssertionError( "MatMulInteger op takes 2 or 4 inputs, {} given".format(len(inputs)) ) inputs = [ a, a_scale, a_zero_point, b, b_scale, b_zero_point, out_scale, out_zero_point, ] return QLinearMatMul.get_converter(10)(inputs, attr, params, expected_out_dtypes=["int32"]) class QLinearMul(OnnxOpConverter): """Operator converter for QLinearMul from Microsoft onnxruntime contrib opset.""" @classmethod def _impl_v10(cls, inputs, attr, params): a = inputs[0] a_scale = get_scalar(inputs[1], params) a_zero_point = get_scalar(inputs[2], params, "int32") b = inputs[3] b_scale = get_scalar(inputs[4], params) b_zero_point = get_scalar(inputs[5], params, "int32") y_scale = fold_constant(get_scalar(inputs[6], params)) y_zero_point = get_scalar(inputs[7], params, "int32") dtype = infer_type(a).checked_type.dtype ## Onnxruntime doesn't actually do this op in integer, they dequantize to fp32 ## and then requantize afer ## https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/core/mlas/lib/qlmul.cpp a = _qnn.op.dequantize(inputs[0], a_scale, a_zero_point) b = _qnn.op.dequantize(inputs[3], b_scale, b_zero_point) out = _op.multiply(a, b) return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=dtype) class QLinearLeakyRelu(OnnxOpConverter): """Operator converter for QLinearLeakyRelu from Microsoft onnxruntime contrib opset.""" @classmethod def _impl_v10(cls, inputs, attr, params): a_scale = get_scalar(inputs[1], params) a_zero_point = get_scalar(inputs[2], params, "int32") y_scale = fold_constant(get_scalar(inputs[3], params)) y_zero_point = get_scalar(inputs[4], params, "int32") alpha = float(attr.get("alpha", 1.0)) dtype = infer_type(inputs[0]).checked_type.dtype # Onnxruntime doesn't actually do this op in integer, they dequantize to fp32 # and then requantize afer (according to documentation below) # https://github.com/microsoft/onnxruntime/blob/master/docs/ContribOperators.md#com.microsoft.QLinearLeakyRelu a = _qnn.op.dequantize(inputs[0], a_scale, a_zero_point) out = _op.nn.leaky_relu(a, alpha) return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=dtype) class QLinearSigmoid(OnnxOpConverter): """Operator converter for QLinearSigmoid from Microsoft onnxruntime contrib opset.""" @classmethod def _impl_v10(cls, inputs, attr, params): x = inputs[0] x_scale = get_scalar(inputs[1], params) x_zero_point = get_scalar(inputs[2], params, "int32") y_scale = fold_constant(get_scalar(inputs[3], params)) y_zero_point = get_scalar(inputs[4], params, "int32") dtype = infer_type(x).checked_type.dtype ## Apparently, onnxruntime doesn't do this op in integer, they dequantize to fp32 ## and then requantize after: ## https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/core/ ## providers/dml/DmlExecutionProvider/src/GraphTransformer.cpp#L245 x = _qnn.op.dequantize(x, x_scale, x_zero_point) out = _op.sigmoid(x) return _qnn.op.quantize(out, y_scale, y_zero_point, out_dtype=dtype) class QLinearConcat(OnnxOpConverter): """Operator converter for QLinearConcat from Microsoft onnxruntime contrib opset.""" @classmethod def _impl_v1(cls, inputs, attr, params): # which axis to concat on axis = attr["axis"] y_scale = fold_constant(get_scalar(inputs[0], params)) y_zero_point = get_scalar(inputs[1], params, "int32") # input tensors, scales, zero_points assert ( len(inputs) % 3 == 2 ), "Additional input count must be a multiple of 3 -- tensor/scale/zero_point tuples" tensors = [] scales = [] zero_points = [] for i in range(2, len(inputs), 3): tensors.append(inputs[i]) scales.append(get_scalar(inputs[i + 1], params)) zero_points.append(get_scalar(inputs[i + 2], params, "int32")) return _qnn.op.concatenate(tensors, scales, zero_points, y_scale, y_zero_point, axis) class ConvInteger(OnnxOpConverter): """Operator converter for ConvInteger.""" @classmethod def _impl_v10(cls, inputs, attr, params): data = inputs[0] weight = inputs[1] data_zp = inputs[2] weight_zp = inputs[3] if data_zp is None: data_zp = _expr.const(0, "int32") if weight_zp is None: weight_zp = _expr.const(0, "int32") input_type = infer_type(data) input_shape = get_const_tuple(input_type.checked_type.shape) ndim = len(input_shape) kernel_type = infer_type(weight) kernel_shape = get_const_tuple(kernel_type.checked_type.shape) if "kernel_shape" not in attr: attr["kernel_shape"] = kernel_shape[2:] if "auto_pad" in attr: attr["auto_pad"] = attr["auto_pad"].decode("utf-8") if attr["auto_pad"] in ("SAME_UPPER", "SAME_LOWER"): # Warning: Convolution does not yet support dynamic shapes, # one will need to run dynamic_to_static on this model after import data = autopad( data, attr.get("strides", [1] * (ndim - 2)), attr["kernel_shape"], attr.get("dilations", [1] * (ndim - 2)), pad_value=data_zp, mode=attr["auto_pad"], ) elif attr["auto_pad"] == "VALID": attr["pads"] = tuple([0 for i in range(ndim - 2)]) elif attr["auto_pad"] == "NOTSET": pass else: msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr["auto_pad"])) attr.pop("auto_pad") out_channels = kernel_shape[0] dilation = attr.get("dilations", [1] * (ndim - 2)) strides = attr.get("strides", [1] * (ndim - 2)) padding = attr["pads"] if "pads" in attr else 0 groups = attr["group"] if "group" in attr else 1 if ndim != 4: raise tvm.error.OpAttributeInvalid( "Only 2D kernels are supported for operator ConvInteger." ) return _qnn.op.conv2d( data, weight, _op.cast(data_zp, "int32"), _op.cast(weight_zp, "int32"), _expr.const(1.0, "float32"), _expr.const(1.0, "float32"), kernel_size=attr["kernel_shape"], channels=out_channels, strides=strides, padding=padding, dilation=dilation, groups=groups, ) class BitShift(OnnxOpConverter): """Operator converter for NonZero""" @classmethod def _impl_v11(cls, inputs, attr, params): if len(inputs) != 2: raise ValueError("Bitshift expects 2 inputs") direction = attr.get("direction", "LEFT").decode("ascii") if direction == "LEFT": out = _op.left_shift(*inputs) elif direction == "RIGHT": out = _op.right_shift(*inputs) else: raise ValueError("Unsupported Shift Direction: " + direction) return out class Unique(OnnxOpConverter): """Operator converter for unique""" @classmethod def _impl_v11(cls, inputs, attr, params): if len(inputs) != 1: raise ValueError("Unique expects 1 input") data = inputs[0] axis = attr.get("axis", None) if axis is None: # If axis is None, flatten the input before calling unique data = _op.reshape(data, _op.const([-1])) else: data_shape = infer_shape(data) if len(data_shape) != 1: raise ValueError("TVM only supports 1D Unique operator.") is_sorted = attr.get("sorted", 1) # sorted is 0 or 1, 1 by default # ONNX documentation lists return_counts as optional but there is no input to specify # whether it is returned. Therefore we'll just always return it. unique = _op.unique(data, is_sorted=(is_sorted == 1), return_counts=True) num_unique = unique[3] trim_unique_lambda = lambda input: _op.strided_slice(input, _op.const([0]), num_unique) unique_vals = trim_unique_lambda(unique[0]) indices = _op.cast(trim_unique_lambda(unique[1]), "int64") # ONNX always returns int64 inverse_indices = _op.cast(unique[2], "int64") # ONNX always returns int64 counts = _op.cast(trim_unique_lambda(unique[4]), "int64") # ONNX always returns int64 # ONNX unique returns unique, indices, inverse_indices, (optional) counts return _expr.TupleWrapper(_expr.Tuple([unique_vals, indices, inverse_indices, counts]), 4) class Einsum(OnnxOpConverter): """Operator converter for Einsum""" @classmethod def _impl_v12(cls, inputs, attr, params): equation = attr["equation"].decode("utf-8") return _op.einsum(inputs, equation) class Trilu(OnnxOpConverter): """Operator converter for Trilu""" @classmethod def _impl_v14(cls, inputs, attr, params): upper = attr.get("upper", True) if len(inputs) == 2: data, k = inputs else: data = inputs[0] k = 0 return _op.trilu(data, k, upper) class GridSample(OnnxOpConverter): """Operator converter for GridSample""" @classmethod def _impl_v16(cls, inputs, attr, params): grid = inputs[1] # onnx grid is of shape (N, H, W, 2) which should be transposed to (N, 2, H, W) for relay grid = _op.transform.transpose(grid, axes=(0, 3, 1, 2)) method: str = attr.get("mode", b"bilinear").decode("utf-8") padding_mode: str = attr.get("padding_mode", b"zeros").decode("utf-8") # onnx default is 0 which should be changed to False in relay align_corners = attr.get("align_corners", 0) != 0 return _op.image.grid_sample( inputs[0], grid, method, padding_mode=padding_mode, align_corners=align_corners ) class RandomNormal(OnnxOpConverter): """Operator converter for random_normal""" @classmethod def _impl_v1(cls, inputs, attr, params): dtype = get_type(attr.get("dtype", 1)) mean = attr.get("mean", 0.0) scale = attr.get("scale", 1.0) seed = attr.get("seed", None) shape = attr["shape"] assert dtype in [ "float32", "float64", ], "Only float random value generation is currently supported." if seed is None: seed = np.random.randint(1e6) else: seed = int(seed) key = _random.threefry_key(seed) output = _op.random.normal(key, shape, dtype=dtype, mean=mean, scale=scale) _, vals = _expr.TupleWrapper(output, 2) return vals class RandomNormalLike(OnnxOpConverter): """Operator converter for random_normal_like""" @classmethod def _impl_v1(cls, inputs, attr, params): dtype = attr.get("dtype", None) scale = attr.get("scale", 1.0) mean = attr.get("mean", 0.0) seed = attr.get("seed", None) shape = infer_shape(inputs[0]) if dtype is None: dtype = infer_type(inputs[0]).checked_type.dtype else: dtype = get_type(dtype) assert dtype in [ "float32", "float64", ], "Only float random value generation is currently supported." if seed is None: seed = np.random.randint(1e6) else: seed = int(seed) key = _random.threefry_key(seed) output = _op.random.normal(key, shape, dtype=dtype, mean=mean, scale=scale) _, vals = _expr.TupleWrapper(output, 2) return vals class RandomUniform(OnnxOpConverter): """Operator converter for random_uniform""" @classmethod def _impl_v1(cls, inputs, attr, params): dtype = get_type(attr.get("dtype", 1)) high = attr.get("high", 1.0) low = attr.get("low", 0.0) seed = attr.get("seed", None) shape = attr["shape"] assert dtype in [ "float32", "float64", ], "Only float random value generation is currently supported." if seed is None: seed = np.random.randint(1e6) else: seed = int(seed) key = _random.threefry_key(seed) output = _op.random.uniform(key, shape, dtype=dtype, low=low, high=high) _, vals = _expr.TupleWrapper(output, 2) return vals class RandomUniformLike(OnnxOpConverter): """Operator converter for random_uniform_like""" @classmethod def _impl_v1(cls, inputs, attr, params): dtype = attr.get("dtype", None) high = attr.get("high", 1.0) low = attr.get("low", 0.0) seed = attr.get("seed", None) shape = infer_shape(inputs[0]) if dtype is None: dtype = infer_type(inputs[0]).checked_type.dtype else: dtype = get_type(dtype) assert dtype in [ "float32", "float64", ], "Only float random value generation is currently supported." if seed is None: seed = np.random.randint(1e6) else: seed = int(seed) key = _random.threefry_key(seed) output = _op.random.uniform(key, shape, dtype=dtype, low=low, high=high) _, vals = _expr.TupleWrapper(output, 2) return vals class Multinomial(OnnxOpConverter): """Operator converter for multinomial""" @classmethod def _impl_v7(cls, inputs, attr, params): dtype = attr.get("dtype", "int64") sample_size = attr.get("sample_size", 1) seed = attr.get("seed", None) if seed is None: seed = np.random.randint(1e6) key = _op.random.threefry_key(seed) output = _op.random.multinomial(key, inputs[0], sample_size) _, indices = _expr.TupleWrapper(output, 2) return _op.cast(indices, get_type(dtype)) class NegativeLogLikelihoodLoss(OnnxOpConverter): """Operator converter for NegativeLogLikehoodLoss""" VALID_REDUCTIONS = {"mean", "sum", "none"} @classmethod def run_calculation( cls: "NegativeLogLikelihoodLoss", input_tensor: relay.Expr, target_tensor: relay.Expr, weight_tensor: Optional[relay.Expr], ignore_index: int, ): """Run calculation for NegativeLogLikelihood, returning output tensor and weight tensor used for mean-style reductions. """ # Convert negative indices --> positive indices for gather ops, note we have to # use the original target tensor to interact with ignore_index to have proper behavior. normalized_target_tensor = normalize_gather_indices(input_tensor, target_tensor, 1) if weight_tensor is None: channels = infer_shape(input_tensor)[1] weight_tensor = relay.ones( [channels], dtype=infer_type(input_tensor).checked_type.dtype, ) loss = -relay.gather( input_tensor, axis=1, indices=relay.expand_dims(normalized_target_tensor, 1), ) loss = relay.squeeze(loss, axis=[1]) expanded_normalized_target_tensor = relay.expand_dims(normalized_target_tensor, 0) expanded_normalized_target_tensor = relay.nn.batch_flatten( expanded_normalized_target_tensor ) flattened_weights = relay.gather_nd(weight_tensor, expanded_normalized_target_tensor) select_weights = relay.reshape_like(flattened_weights, loss) loss *= select_weights if ignore_index is not None: # "Ignore" values whose target is the ignore_index mask_tensor = relay.equal( target_tensor, relay.const(ignore_index, dtype=target_tensor.type_annotation.dtype) ) mask_tensor = relay.const(1, dtype="int8") - relay.cast(mask_tensor, "int8") loss = relay.where( mask_tensor, loss, relay.const(0, infer_type(loss).checked_type.dtype) ) # This is not explained super clearly in the onnx spec, but masked values don't # contribute toward the final value in reduction select_weights *= relay.cast_like(mask_tensor, select_weights) weight_total = relay.sum(select_weights) return loss, weight_total @classmethod def _impl_v13(cls, inputs, attr, params): ignore_index = attr.get("ignore_index", None) reduction = attr.get("reduction", b"mean").decode("utf-8") if reduction not in cls.VALID_REDUCTIONS: raise ValueError( f"Unknown reduction type {reduction}, choices are {cls.VALID_REDUCTIONS}" ) input_tensor, target_tensor = inputs[0], inputs[1] if len(inputs) == 3: weight_tensor = inputs[2] else: weight_tensor = None loss, weight_total = cls.run_calculation( input_tensor, target_tensor, weight_tensor=weight_tensor, ignore_index=ignore_index, ) if reduction == "mean": return relay.sum(loss) / weight_total if reduction == "sum": return relay.sum(loss) # Case reduction == 'none' return loss class SoftmaxCrossEntropyLoss(OnnxOpConverter): """Operator converter for SCE_loss""" @classmethod def _impl_v13(cls, inputs, attr, params): ignore_index = attr.get("ignore_index", None) reduction = attr.get("reduction", b"mean").decode("utf-8") input_tensor, target_tensor = inputs[0], inputs[1] if len(inputs) == 3: weight_tensor = inputs[2] else: weight_tensor = None get_log_prob = attr["tvm_custom"]["num_outputs"] == 2 log_softmax_attr = {"axis": 1} log_softmax_tensor = LogSoftmax.get_converter(13)([input_tensor], log_softmax_attr, None) loss, weight_total = NegativeLogLikelihoodLoss.run_calculation( log_softmax_tensor, target_tensor, weight_tensor, ignore_index=ignore_index, ) if reduction == "mean": loss = relay.sum(loss) / weight_total elif reduction == "sum": loss = relay.sum(loss) if get_log_prob: return relay.TupleWrapper(relay.Tuple((loss, log_softmax_tensor)), 2) return loss class Adagrad(OnnxOpConverter): """Operator converter for adagrad op.""" @classmethod def _impl_v1(cls, inputs, attr, params): decay_factor = attr.get("decay_factor", 0.0) epsilon = attr.get("epsilon", 0.0) norm_coefficient = attr.get("norm_coefficient", 0.0) R = inputs[0] T = inputs[1] # convert attributes to constants, proper types dtype_inputs = infer_type(inputs[3]).checked_type.dtype decay_factor = relay.const(decay_factor, dtype=dtype_inputs) epsilon = relay.const(epsilon, dtype=dtype_inputs) norm_coefficient = relay.const(norm_coefficient, dtype=dtype_inputs) T = relay.cast_like(T, inputs[3]) assert ( len(inputs) - 2 ) % 3 == 0, f"Expect triplets for remaining inputs, found {len(inputs) - 2}" # Remaining inputs are: # [x_1, x_2 ..., x_1_gradient, x_2_gradient, ... x_1_sq_g, x_2_sq_g...] num_input_tensors = (len(inputs) - 2) // 3 output_tensors = [] output_accumulated_squared_gradients = [] for i in range(num_input_tensors): x = inputs[i + 2] gradient = inputs[i + 2 + num_input_tensors] accumulated_squared_gradient = inputs[i + 2 + 2 * num_input_tensors] r = R / (relay.const(1.0, dtype=dtype_inputs) + T * decay_factor) g_regularized = norm_coefficient * x + gradient new_accumulated_squared_gradient = ( accumulated_squared_gradient + g_regularized * g_regularized ) h_adaptive = relay.sqrt(new_accumulated_squared_gradient) + epsilon x_new = x - r * g_regularized / h_adaptive output_tensors.append(x_new) output_accumulated_squared_gradients.append(new_accumulated_squared_gradient) # append lists together, momentums come after result tensors result = output_tensors + output_accumulated_squared_gradients return _expr.TupleWrapper(_expr.Tuple(result), len(result)) class Adam(OnnxOpConverter): """Operator converter for Adam op.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = attr.get("alpha", 0.9) beta = attr.get("beta", 0.999) # Note in the docs epsilon default is 0.0 but in the tests it is set to 1e-2: # https://git.io/Ju5C4 epsilon = attr.get("epsilon", 1e-2) norm_coefficient = attr.get("norm_coefficient", 0.0) norm_coefficient_post = attr.get("norm_coefficient_post", 0.0) R = inputs[0] T = inputs[1] assert ( len(inputs) - 2 ) % 4 == 0, f"Expect 4-lets for remaining inputs, found {len(inputs) - 2}" # convert attributes to constants, proper types dtype_inputs = infer_type(inputs[3]).checked_type.dtype inverse_alpha = relay.const(1 - alpha, dtype=dtype_inputs) alpha = relay.const(alpha, dtype=dtype_inputs) inverse_beta = relay.const(1 - beta, dtype=dtype_inputs) beta = relay.const(beta, dtype=dtype_inputs) epsilon = relay.const(epsilon, dtype=dtype_inputs) norm_coefficient = relay.const(norm_coefficient, dtype=dtype_inputs) norm_coefficient_post = relay.const(norm_coefficient_post, dtype=dtype_inputs) one = relay.const(1, dtype=dtype_inputs) T = relay.cast_like(T, inputs[3]) # Remaining inputs are: # [x_1, x_2 ..., x_1_grad, x_2_grad, ... x_1_g_accum, x_2_g_accum..., x_1_g_sq_accum, ...] num_input_tensors = (len(inputs) - 2) // 4 output_tensors = [] output_accumulated_gradients = [] output_accumulated_squared_gradients = [] for i in range(num_input_tensors): x = inputs[i + 2] g = inputs[i + 2 + num_input_tensors] v = inputs[i + 2 + 2 * num_input_tensors] h = inputs[i + 2 + 3 * num_input_tensors] g_regularized = norm_coefficient * x + g v_new = alpha * v + inverse_alpha * g_regularized h_new = beta * h + inverse_beta * g_regularized * g_regularized h_sqrt = relay.sqrt(h_new) + epsilon true_branch = R * relay.sqrt(one - relay.power(beta, T)) / (one - relay.power(alpha, T)) R_adjusted = relay.If(T > relay.const(0, dtype=dtype_inputs), true_branch, R) x_new = x - R_adjusted * (v_new / h_sqrt) x_result = (one - norm_coefficient_post) * x_new output_tensors.append(x_result) output_accumulated_gradients.append(v_new) output_accumulated_squared_gradients.append(h_new) # append lists together to get final result result = ( output_tensors + output_accumulated_gradients + output_accumulated_squared_gradients ) return _expr.TupleWrapper(_expr.Tuple(result), len(result)) class Momentum(OnnxOpConverter): """Operator converter for Momentum op.""" @classmethod def _impl_v1(cls, inputs, attr, params): alpha = attr["alpha"] beta = attr["beta"] mode = attr["mode"].decode("utf-8") norm_coefficient = attr["norm_coefficient"] assert mode in ["nesterov", "standard"], f"Unknown momentum mode {mode}" R = inputs[0] T = inputs[1] assert ( len(inputs) - 2 ) % 3 == 0, f"Expect triplets for remaining inputs, found {len(inputs) - 2}" # Remaining inputs are: # [x_1, x_2 ..., x_1_gradient, x_2_gradient, ... x_1_momentum, x_2_momentum...] num_input_tensors = (len(inputs) - 2) // 3 # convert attributes to constants dtype_inputs = infer_type(inputs[3]).checked_type.dtype alpha = relay.const(alpha, dtype=dtype_inputs) beta = relay.const(beta, dtype=dtype_inputs) norm_coefficient = relay.const(norm_coefficient, dtype=dtype_inputs) default_beta = relay.const(1.0, dtype=dtype_inputs) # Calculate updated values for every input output_tensors = [] output_momentums = [] for i in range(num_input_tensors): x = inputs[i + 2] gradient = inputs[i + 2 + num_input_tensors] momentum = inputs[i + 2 + 2 * num_input_tensors] g_regularized = norm_coefficient * x + gradient beta_adjusted = relay.If(T > relay.const(0, dtype="int64"), beta, default_beta) new_momentum = alpha * momentum + beta_adjusted * g_regularized if mode == "standard": x_output = x - R * new_momentum else: # mode == 'nesterov' x_output = x - R * (g_regularized + alpha * new_momentum) output_tensors.append(x_output) output_momentums.append(new_momentum) # append lists together, momentums come after result tensors result = output_tensors + output_momentums return _expr.TupleWrapper(_expr.Tuple(result), len(result)) class Round(OnnxOpConverter): """Operator converter for round op.""" @classmethod def _impl_v11(cls, inputs, attr, params): # Onnx round uses Banker's rounding which rounds .5 to the nearest even integer x = inputs[0] dtype = infer_type(x).checked_type.dtype half = _expr.const(0.5, dtype=dtype) one = _expr.const(1, dtype=dtype) two = _expr.const(2, dtype=dtype) rounded = _op.ceil(x - half) bankers_mask = one - (_op.ceil(x + half) - _op.floor(x + half)) non_even = _op.abs(_op.mod(rounded, two)) return rounded + (bankers_mask * non_even) class SequenceConstruct(OnnxOpConverter): """Operator converter for sequence construction op.""" @classmethod def _impl_v11(cls, inputs, attr, params): # Construct a tuple from input tensors. return _expr.Tuple(inputs) class SequenceInsert(OnnxOpConverter): """Operator converter for sequence insert op.""" @classmethod def _impl_v11(cls, inputs, attr, params): # Insert a new tensor into a tuple of tensors. input_sequence = inputs[0] new_tensor = inputs[1] if len(inputs) == 3: position = inputs[2] # Non constant position is not supported. if isinstance(position, _expr.Constant): position = position.data.numpy() elif position.name_hint in params: position = params[position.name_hint].numpy() else: raise NotImplementedError("Position must be a constant.") else: position = -1 if position < 0: position = len(input_sequence) + position + 1 # Convert sequence to a list, insert new tensor, and repackage as Tuple. tensor_list = [input_sequence[i] for i in range(len(input_sequence))] # Insert new tensor. tensor_list.insert(position, new_tensor) # Create new tuple and return. return _expr.Tuple(tensor_list) class ConcatFromSequence(OnnxOpConverter): """Operator converter for sequence concatenation op.""" @classmethod def _impl_v11(cls, inputs, attr, params): axis = attr.get("axis", 0) new_axis = attr.get("new_axis", 0) # If a new axis should be created, just stack input tensors. if new_axis == 1: return _op.stack(inputs[0], axis=axis) return _op.concatenate(inputs[0], axis=axis) # compatible operators that do NOT require any conversion. _identity_list = [] # _convert_map defines maps of name to converter functor(callable) # for 1 to 1 mapping, use Renamer if nothing but name is different # use AttrCvt if attributes need to be converted # for 1 to N mapping(composed), use custom callable functions # for N to 1 mapping, currently not supported(?) def _get_convert_map(opset): return { # defs/experimental "Identity": Renamer("copy"), "Optional": Optional_.get_converter(opset), "OptionalHasElement": OptionalHasElement.get_converter(opset), "OptionalGetElement": OptionalGetElement.get_converter(opset), "Affine": Affine.get_converter(opset), "BitShift": BitShift.get_converter(opset), "ThresholdedRelu": ThresholdedRelu.get_converter(opset), "ScaledTanh": ScaledTanh.get_converter(opset), "ParametricSoftplus": ParametricSoftPlus.get_converter(opset), "Constant": Constant.get_converter(opset), "ConstantOfShape": ConstantOfShape.get_converter(opset), # 'GivenTensorFill' "FC": AttrCvt("dense", ignores=["axis", "axis_w"]), "Scale": Scale.get_converter(opset), # 'GRUUnit' # 'ATen' # 'ImageScaler' "MeanVarianceNormalization": MeanVarianceNormalization.get_converter(opset), # 'Crop' # 'Embedding' "Upsample": Upsample.get_converter(opset), "SpatialBN": BatchNorm.get_converter(opset), # defs/generator # 'RandomUniform' # 'RandomNormal' # 'RandomUniformLike' # 'RandomNormalLike' # defs/logical # defs/math "Add": Add.get_converter(opset), "Sub": Sub.get_converter(opset), "Mul": Mul.get_converter(opset), "Div": Div.get_converter(opset), "Neg": Renamer("negative"), "Abs": Absolute.get_converter(opset), "Reciprocal": Reciprocal.get_converter(opset), "Floor": Renamer("floor"), "Ceil": Renamer("ceil"), "Round": Round.get_converter(opset), "IsInf": IsInf.get_converter(opset), "IsNaN": Renamer("isnan"), "Sqrt": Renamer("sqrt"), "Relu": Renamer("relu"), "Celu": Celu.get_converter(opset), "LeakyRelu": Renamer("leaky_relu"), "Selu": Selu.get_converter(opset), "Elu": Elu.get_converter(opset), "Gelu": Gelu.get_converter(opset), "FastGelu": FastGelu.get_converter(opset), "BiasGelu": BiasGelu.get_converter(opset), "LayerNormalization": LayerNormalization.get_converter(opset), # TODO: We need a better way to handle different domains, in case # of name collisions. EmbedLayerNormalization, SkipLayerNormalization, and Attention # are in the `com.microsoft` domain. "EmbedLayerNormalization": EmbedLayerNormalization.get_converter(opset), "SkipLayerNormalization": SkipLayerNormalization.get_converter(opset), "Attention": Attention.get_converter(opset), "Exp": Renamer("exp"), "Greater": Renamer("greater"), "GreaterOrEqual": Renamer("greater_equal"), "Less": Renamer("less"), "LessOrEqual": Renamer("less_equal"), "Log": Renamer("log"), "Acos": Renamer("acos"), "Acosh": Renamer("acosh"), "Asin": Renamer("asin"), "Asinh": Renamer("asinh"), "Atan": Renamer("atan"), "Atanh": Renamer("atanh"), "Cos": Renamer("cos"), "Cosh": Renamer("cosh"), "Sin": Renamer("sin"), "Sinh": Renamer("sinh"), "Tan": Renamer("tan"), "Tanh": Renamer("tanh"), "Pow": Pow.get_converter(opset), "PRelu": Prelu.get_converter(opset), "Sigmoid": Renamer("sigmoid"), "HardSigmoid": HardSigmoid.get_converter(opset), "HardSwish": HardSwish.get_converter(opset), "Max": Maximum.get_converter(opset), "Min": Minimum.get_converter(opset), "Sum": Sum.get_converter(opset), "Mean": Mean.get_converter(opset), "Clip": Clip.get_converter(opset), "Softplus": Softplus.get_converter(opset), # softmax default axis is different in onnx "Softmax": Softmax.get_converter(opset), "LogSoftmax": LogSoftmax.get_converter(opset), "OneHot": OneHot.get_converter(opset), "Hardmax": Hardmax.get_converter(opset), "Shrink": Shrink.get_converter(opset), "Softsign": Softsign.get_converter(opset), "Gemm": Gemm.get_converter(opset), "MatMul": MatMul.get_converter(opset), "MatMulInteger": MatMulInteger.get_converter(opset), "MatMulInteger16": MatMulInteger16.get_converter(opset), "Mod": Mod.get_converter(opset), "Xor": Renamer("logical_xor"), # defs/nn "AveragePool": AveragePool.get_converter(opset), "LpPool": LpPool.get_converter(opset), "GlobalLpPool": GlobalLpPool.get_converter(opset), "MaxPool": MaxPool.get_converter(opset), "MaxUnpool": MaxUnpool.get_converter(opset), "Conv": Conv.get_converter(opset), "ConvTranspose": ConvTranspose.get_converter(opset), "GlobalAveragePool": GlobalAveragePool.get_converter(opset), "GlobalMaxPool": GlobalMaxPool.get_converter(opset), "BatchNormalization": BatchNorm.get_converter(opset), "InstanceNormalization": InstanceNorm.get_converter(opset), # 'LpNormalization' "Dropout": AttrCvt("dropout", {"ratio": "rate"}, ignores=["is_test"]), "Flatten": Flatten.get_converter(opset), "LRN": LRN.get_converter(opset), # Recurrent Layers "RNN": RNN.get_converter(opset), "LSTM": LSTM.get_converter(opset), "GRU": GRU.get_converter(opset), # defs/vision "MaxRoiPool": MaxRoiPool.get_converter(opset), "RoiAlign": RoiAlign.get_converter(opset), "NonMaxSuppression": NonMaxSuppression.get_converter(opset), # defs/reduction "ReduceMax": ReduceMax.get_converter(opset), "ReduceMin": ReduceMin.get_converter(opset), "ReduceSum": ReduceSum.get_converter(opset), "ReduceMean": ReduceMean.get_converter(opset), "ReduceProd": ReduceProd.get_converter(opset), "ReduceLogSumExp": ReduceLogSumExp.get_converter(opset), "ReduceLogSum": ReduceLogSum.get_converter(opset), "ReduceSumSquare": ReduceSumSquare.get_converter(opset), "ReduceL1": ReduceL1.get_converter(opset), "ReduceL2": ReduceL2.get_converter(opset), # defs/sorting "ArgMax": ArgMax.get_converter(opset), "ArgMin": ArgMin.get_converter(opset), "TopK": TopK.get_converter(opset), # defs/tensor "Cast": Cast.get_converter(opset), "CastLike": CastLike.get_converter(opset), "Reshape": Reshape.get_converter(opset), "Expand": Expand.get_converter(opset), "Concat": Concat.get_converter(opset), "Split": Split.get_converter(opset), "Slice": Slice.get_converter(opset), "Transpose": AttrCvt("transpose", {"perm": "axes"}), "DepthToSpace": DepthToSpace.get_converter(opset), "SpaceToDepth": SpaceToDepth.get_converter(opset), "Gather": Gather.get_converter(opset), "GatherElements": GatherElements.get_converter(opset), "GatherND": GatherND.get_converter(opset), "Compress": Compress.get_converter(opset), "Size": AttrCvt("ndarray_size", extras={"dtype": "int64"}), "Scatter": Scatter.get_converter(opset), "ScatterElements": Scatter.get_converter(opset), "ScatterND": ScatterND.get_converter(opset), "EyeLike": EyeLike.get_converter(opset), "Squeeze": Squeeze.get_converter(opset), "Unsqueeze": Unsqueeze.get_converter(opset), "Pad": Pad.get_converter(opset), "Shape": Shape.get_converter(opset), "Sign": Sign.get_converter(opset), "Equal": Equal.get_converter(opset), "Not": Not.get_converter(opset), "And": And.get_converter(opset), "Tile": Tile.get_converter(opset), "Erf": Erf.get_converter(opset), "Where": Where.get_converter(opset), "Or": Or.get_converter(opset), "Resize": Resize.get_converter(opset), "NonZero": NonZero.get_converter(opset), "Range": Range.get_converter(opset), "CumSum": CumSum.get_converter(opset), "Unique": Unique.get_converter(opset), "Einsum": Einsum.get_converter(opset), "Trilu": Trilu.get_converter(opset), "GridSample": GridSample.get_converter(opset), # defs/control_flow "Loop": Loop.get_converter(opset), "If": If.get_converter(opset), # Torch ATen Dispatcher. "ATen": ATen.get_converter(opset), # Quantization "QuantizeLinear": QuantizeLinear.get_converter(opset), "DequantizeLinear": DequantizeLinear.get_converter(opset), "DynamicQuantizeLinear": DynamicQuantizeLinear.get_converter(opset), "ReverseSequence": ReverseSequence.get_converter(opset), "QLinearConv": QLinearConv.get_converter(opset), "QLinearConcat": QLinearConcat.get_converter(opset), "QLinearAdd": QLinearAdd.get_converter(opset), "QLinearMatMul": QLinearMatMul.get_converter(opset), "QLinearMul": QLinearMul.get_converter(opset), "QLinearSigmoid": QLinearSigmoid.get_converter(opset), "ConvInteger": ConvInteger.get_converter(opset), "QLinearAveragePool": QLinearAveragePool.get_converter(opset), "QLinearGlobalAveragePool": QLinearGlobalAveragePool.get_converter(opset), "QLinearLeakyRelu": QLinearLeakyRelu.get_converter(opset), # Random number generation. "RandomNormal": RandomNormal.get_converter(opset), "RandomNormalLike": RandomNormalLike.get_converter(opset), "RandomUniform": RandomUniform.get_converter(opset), "RandomUniformLike": RandomUniformLike.get_converter(opset), "Multinomial": Multinomial.get_converter(opset), # Loss functions / training "NegativeLogLikelihoodLoss": NegativeLogLikelihoodLoss.get_converter(opset), "SoftmaxCrossEntropyLoss": SoftmaxCrossEntropyLoss.get_converter(opset), "Adagrad": Adagrad.get_converter(opset), "Adam": Adam.get_converter(opset), "Momentum": Momentum.get_converter(opset), "Scan": Scan.get_converter(opset), # ML "LinearRegressor": LinearRegressor.get_converter(opset), # Sequence operators "SequenceConstruct": SequenceConstruct.get_converter(opset), "SequenceInsert": SequenceInsert.get_converter(opset), "ConcatFromSequence": ConcatFromSequence.get_converter(opset), } class GraphProto: """A helper class for handling Relay expression copying from pb2.GraphProto. Definition: https://github.com/onnx/onnx/blob/main/onnx/onnx.proto Parameters ---------- shape : dict of str to tuple, optional The input shape to the graph dtype : str or dict of str to str The input types to the graph freeze_params: bool If this parameter is true, the importer will take any provided onnx input values (weights, shapes, etc) and embed them into the relay model as Constants instead of variables. This allows more aggressive optimizations at compile time and helps in making models static if certain inputs represent attributes relay would traditionally consider compile-time constants. """ current = None def __init__(self, shape, dtype, freeze_params=False): self._nodes = {} self._params = {} self._inputs = {} self._renames = {} self._num_input = 0 self._num_param = 0 self._shape = shape.copy() if shape else {} self._input_names = [] self._dtype = dtype self.opset = None self._freeze_params = freeze_params def __enter__(self): self._old_manager = GraphProto.current GraphProto.current = self return self def __exit__(self, ptype, value, trace): GraphProto.current = self._old_manager def freeze(self, func, params): bind_map = {} for name in params.keys(): if name in self._nodes.keys(): bind_map[self._nodes[name]] = _expr.const(params[name]) body = _expr.bind(func.body, bind_map) fn = _function.Function(analysis.free_vars(body), body) return fn, {} def from_onnx(self, graph, opset, get_output_expr=False): """Construct Relay expression from ONNX graph. Onnx graph is a python protobuf object. The companion parameters will be handled automatically. However, the input names from onnx graph is vague, mixing inputs and network weights/bias such as "1", "2"... For convenience, we rename the `real` input names to "input_0", "input_1"... And renaming parameters to "param_0", "param_1"... Parameters ---------- graph : onnx protobuf object The loaded onnx graph opset : opset version get_output_expr: bool If set to true, this conversion will return each output expression rather than a packaged module. This can be useful when converting subgraphs to relay. Returns ------- mod : tvm.IRModule The returned relay module params : dict A dict of name: tvm.nd.array pairs, used as pretrained weights """ self.opset = opset self._parse_graph_initializers(graph) self._parse_graph_input(graph) self._check_user_inputs_in_outermost_graph_scope() self._check_for_unsupported_ops(graph) self._construct_nodes(graph) # now return the outputs outputs = [self._nodes[self._parse_value_proto(i)] for i in graph.output] outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) # If requested, directly return the converted expressions. if get_output_expr: return outputs ## Maintain the order of inputs and parameters from the ONNX graph, but only include ## those parameters that are needed to execute the relay graph free_vars = analysis.free_vars(outputs) nodes = {v: k for k, v in self._nodes.items()} free_vars = [nodes[var] for var in free_vars] for i_name in self._params: if i_name in free_vars and i_name not in self._inputs: self._inputs[i_name] = self._nodes[i_name] # Create a function from our output expression and all input variables. func = _function.Function([v for k, v in self._inputs.items()], outputs) return IRModule.from_expr(func), self._params def _parse_graph_initializers(self, graph): """Parse network inputs to relay, aka parameters.""" for init_tensor in graph.initializer: if not init_tensor.name.strip(): raise ValueError("Tensor's name is required.") array = self._parse_array(init_tensor) if self._freeze_params: self._nodes[init_tensor.name] = _expr.const(array) else: self._params[init_tensor.name] = array self._nodes[init_tensor.name] = new_var( init_tensor.name, shape=self._params[init_tensor.name].shape, dtype=self._params[init_tensor.name].dtype, ) def _parse_graph_input(self, graph): for i in graph.input: # from onnx v0.2, GraphProto.input has type ValueInfoProto, # and the name is 'i.name' i_name, i_shape, d_type, i_shape_name = get_info(i) if i_name in self._params: # i is a param instead of input self._num_param += 1 self._nodes[i_name] = new_var( i_name, shape=self._params[i_name].shape, dtype=self._params[i_name].dtype ) elif i_name in self._nodes: continue else: self._num_input += 1 self._input_names.append(i_name) if i_name in self._shape: i_shape = self._shape[i_name] else: if "?" in str(i_shape): warning_msg = ( "Input %s has unknown dimension shapes: %s. " "Specifying static values may improve performance" % (i_name, str(i_shape_name)) ) warnings.warn(warning_msg) if isinstance(self._dtype, dict): dtype = self._dtype[i_name] if i_name in self._dtype else d_type else: dtype = d_type self._nodes[i_name] = new_var(i_name, shape=i_shape, dtype=dtype) self._inputs[i_name] = self._nodes[i_name] def _check_user_inputs_in_outermost_graph_scope(self): """Only check user inputs in the outer-most graph scope.""" if self._old_manager is None: assert all( [name in self._input_names for name in self._shape.keys()] ), "User specified the shape for inputs that weren't found in the graph: " + str( self._shape ) def _check_for_unsupported_ops(self, graph): convert_map = _get_convert_map(self.opset) unsupported_ops = set() for node in graph.node: op_name = node.op_type if ( op_name not in convert_map and op_name != "Constant" and op_name not in _identity_list ): unsupported_ops.add(op_name) if unsupported_ops: msg = "The following operators are not supported for frontend ONNX: " msg += ", ".join(unsupported_ops) raise tvm.error.OpNotImplemented(msg) def _construct_nodes(self, graph): """Nodes are stored as directed acyclic graph.""" for node in graph.node: op_name = node.op_type attr = self._parse_attr(node.attribute) # Create and populate input list. inputs = onnx_input() for i in node.input: if i != "": inputs.append(self._nodes[self._renames.get(i, i)]) else: inputs.append(None) i_name = self._parse_value_proto(node) node_output = self._fix_outputs(op_name, node.output) attr["tvm_custom"] = {} attr["tvm_custom"]["name"] = i_name attr["tvm_custom"]["num_outputs"] = len(node_output) op = self._convert_operator(op_name, inputs, attr, self.opset) if not isinstance(op, _expr.TupleWrapper): outputs_num = 1 else: outputs_num = len(op) if outputs_num == 1: op = fold_constant(op) else: op = _expr.TupleWrapper(fold_constant(op.astuple()), len(op)) if outputs_num > 1: # ONNX supports optional outputs for some nodes. # This block searches for missing outputs in the ONNX graph # and removes any unneeded ops valid_outputs = [False] * outputs_num for i, output in enumerate(node_output): if output != "": valid_outputs[i] = True # If we have outputs ONNX isn't expecting, we need to drop them if not all(valid_outputs): tup = op.astuple() # TupleWrapper can also wrap ops with TupleType outputs if isinstance(tup, _expr.Tuple): # For tuples, we extract the fields instead of using GetTupleItem outputs = [tup.fields[i] for i, valid in enumerate(valid_outputs) if valid] else: # For call nodes, we need to GetTupleItem outputs = [op[i] for i, valid in enumerate(valid_outputs) if valid] # Create the new op with valid outputs if len(outputs) == 1: op = outputs[0] elif len(outputs) != outputs_num: op = _expr.TupleWrapper(_expr.Tuple(outputs), len(outputs)) # Drop invalid outputs for the onnx node outputs_num = len(outputs) node_output = [output for output in node_output if output != ""] assert ( len(node_output) == outputs_num ), "Number of output mismatch {} vs {} in {}.".format( len(node_output), outputs_num, op_name ) if outputs_num == 1: self._nodes[node_output[0]] = op else: for k, i in zip(list(node_output), range(len(node_output))): self._nodes[k] = op[i] def _parse_value_proto(self, value_proto): """Parse ValueProto or raw str.""" try: name = value_proto.name except AttributeError: name = value_proto return name def _parse_array(self, tensor_proto): np_array = get_numpy(tensor_proto).reshape(tuple(tensor_proto.dims)) return _nd.array(np_array) def _parse_attr(self, attr_proto): """Convert a list of AttributeProto to a dict, with names as keys.""" attrs = {} for a in attr_proto: for f in ["f", "i", "s", "g"]: if a.HasField(f): attrs[a.name] = getattr(a, f) for f in ["floats", "ints", "strings"]: if list(getattr(a, f)): assert a.name not in attrs, "Only one type of attr is allowed" attrs[a.name] = tuple(getattr(a, f)) for f in ["t"]: if a.HasField(f): attrs[a.name] = getattr(a, f) for f in ["tensors"]: if list(getattr(a, f)): assert a.name not in attrs, "Only one type of attr is allowed" attrs[a.name] = tuple(getattr(a, f)) for f in ["graphs"]: if list(getattr(a, f)): raise NotImplementedError("Field {} is not supported in relay.".format(f)) if a.name not in attrs: raise ValueError("Cannot parse attribute: \n{}\n.".format(a)) return attrs def _convert_operator(self, op_name, inputs, attrs, opset): """Convert ONNX operator into a Relay operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- op_name : str Operator name, such as Convolution, FullyConnected inputs : list of tvm.relay.function.Function List of inputs. attrs : dict Dict of operator attributes opset : int Opset version Returns ------- sym : tvm.relay.function.Function Converted relay function """ convert_map = _get_convert_map(opset) if op_name in _identity_list: sym = get_relay_op(op_name)(*inputs, **attrs) elif op_name in convert_map: sym = convert_map[op_name](inputs, attrs, self._params) else: raise NotImplementedError("Operator {} not implemented.".format(op_name)) return sym def _fix_outputs(self, op_name, outputs): """A hack to handle dropout or similar operator that have more than one out in ONNX. """ if op_name == "Dropout": if len(outputs) == 1: return outputs # TODO(zhreshold): support dropout mask? outputs = outputs[:-1] return outputs def from_onnx( model, shape=None, dtype="float32", opset=None, freeze_params=True, convert_config=None ): """Convert a ONNX model into an equivalent Relay Function. ONNX graphs are represented as Python Protobuf objects. The companion parameters will be handled automatically. However, the input names from onnx graph is vague, mixing inputs and network weights/bias such as "1", "2"... For convenience, we rename the `real` input names to "input_0", "input_1"... And renaming parameters to "param_0", "param_1"... By default, ONNX defines models in terms of dynamic shapes. The ONNX importer retains that dynamism upon import, and the compiler attempts to convert the model into a static shapes at compile time. If this fails, there may still be dynamic operations in the model. Not all TVM kernels currently support dynamic shapes, please file an issue on discuss.tvm.apache.org if you hit an error with dynamic kernels. Parameters ---------- model : protobuf object ONNX ModelProto after ONNX v1.1.0 shape : dict of str to tuple, optional The input shape to the graph dtype : str or dict of str to str The input types to the graph opset : int, optional Override to autodetected opset. This can be helpful for some testing. freeze_params: bool If this parameter is true, the importer will take any provided onnx input values (weights, shapes, etc) and embed them into the relay model as Constants instead of variables. This allows more aggressive optimizations at compile time and helps in making models static if certain inputs represent attributes relay would traditionally consider compile-time constants. convert_config : Optional[Dict[str, Any]] Default config: use_nt_batch_matmul : bool = True True to convert qualified onnx `matmul` to `nn.batch_matmul` strict to NT format (transpose_a=False, transpose_b=True). Returns ------- mod : tvm.IRModule The relay module for compilation params : dict of str to tvm.nd.NDArray The parameter dict to be used by relay """ global ONNX_DEFAULT_CONFIGS if convert_config is not None: ONNX_DEFAULT_CONFIGS.update(convert_config) try: import onnx if hasattr(onnx.checker, "check_model"): # try use onnx's own model checker before converting any model try: onnx.checker.check_model(model) except Exception as e: # pylint: disable=c-extension-no-member, broad-except # the checker is a bit violent about errors, so simply print warnings here warnings.warn(str(e)) except ImportError: pass g = GraphProto(shape, dtype, freeze_params) graph = model.graph try: opset_in_model = 1 if model.opset_import: # TODO: for now we only really support ai.onnx op set # TODO: handle other namespaces well see https://github.com/apache/tvm/issues/10950 for opset_identifier in model.opset_import: # As per https://github.com/onnx/onnx/blob/main/docs/IR.md # All operator sets except the default one must specify the operator version if str(opset_identifier.domain) in ["ai.onnx", ""]: opset_in_model = opset_identifier.version break except AttributeError: opset_in_model = 1 if opset is None: opset = opset_in_model elif opset < opset_in_model: warnings.warn( "" f"You are overwritting original opset ver = {opset_in_model} by lower ver = {opset}. " f"That might cause model conversion errors." ) # Use the graph proto as a scope so that ops can access other nodes if needed. with g: mod, params = g.from_onnx(graph, opset) if freeze_params: mod = relay.transform.DynamicToStatic()(mod) return mod, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/paddlepaddle.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, len-as-condition, unused-argument, too-many-lines # pylint: disable=import-outside-toplevel """Paddle: PArallel Distributed Deep LEarning.""" import warnings import numpy as np import tvm from tvm.ir import IRModule from ... import nd as _nd from .. import analysis from .. import ty as _ty from .. import expr as _expr from .. import function as _function from .. import ty as _ty from .. import op as _op from .common import ( autopad, fold_constant, get_relay_op, infer_shape, infer_type, infer_value, shape_of, try_infer_value, new_var, ) __all__ = ["from_paddle"] def _dtype_shape_promotion(inputs): """Promote data type and shape for list of tensors.""" dtype_order = ["bool", "int8", "int16", "int32", "int64", "float32", "float64"] ranks = [len(infer_shape(x)) for x in inputs] if set(ranks) == set([1, 0]): for i, r in enumerate(ranks): if r == 0: inputs[i] = _op.expand_dims(inputs[i], axis=0) dtypes = set(dtype_order.index(infer_type(x).checked_type.dtype) for x in inputs) if len(dtypes) == 1: return inputs max_dtype = dtype_order[max(dtypes)] for i, input_op in enumerate(inputs): if infer_type(input_op).checked_type.dtype != max_dtype: inputs[i] = input_op.astype(max_dtype) return inputs def _convert_dtype_value(val): """Converts a Paddle type id to a string.""" convert_dtype_map = { 21: "int8", 20: "uint8", 6: "float64", 5: "float32", 4: "float16", 3: "int64", 2: "int32", 1: "int16", 0: "bool", } if val not in convert_dtype_map: msg = "Paddle data type value %d is not handled yet." % (val) raise NotImplementedError(msg) return convert_dtype_map[val] def convert_unary_op(g, op, block): """Operator converter for all the unary operators.""" # op_map stores mapping relationship between paddlepaddle and relay op_map = { "isinf_v2": _op.isinf, "isfinite_v2": _op.isfinite, "isnan_v2": _op.isnan, } if op.type in op_map: unary_func = op_map[op.type] else: # while paddle operator's name is same with relay unary_func = get_relay_op(op.type) out = unary_func(g.get_node(op.input("X")[0])) g.add_node(op.output("Out")[0], out) def convert_binary_logical_op(g, op, block): """Operator converter for logical op.""" ipt0 = g.get_node(op.input("X")[0]) ipt1 = g.get_node(op.input("Y")[0]) op_func = get_relay_op(op.type) out = op_func(ipt0, ipt1) g.add_node(op.output("Out")[0], out) def convert_addmm(g, op, block): """Operator converter for addmm.""" input_x = g.get_node(op.input("Input")[0]) x = g.get_node(op.input("X")[0]) y = g.get_node(op.input("Y")[0]) alpha = op.attr("Alpha") beta = op.attr("Beta") dtype = block.var(op.output("Out")[0]).dtype dtype = _convert_dtype_value(dtype) if not isinstance(alpha, _expr.Expr) and alpha != 1: alpha = _expr.const(alpha, dtype) x *= alpha if not isinstance(beta, _expr.Expr) and beta != 1: beta = _expr.const(beta, dtype) input_x *= beta transposed_y = _op.transpose(y, axes=[1, 0]) dense_out = _op.nn.dense(x, transposed_y) out = dense_out + input_x g.add_node(op.output("Out")[0], out) def convert_arg_max_min(g, op, block): """Operator converter for arg_max and arg_min.""" axis = op.attr("axis") keepdims = op.attr("keepdims") flatten = op.attr("flatten") dtype = op.attr("dtype") dtype = _convert_dtype_value(dtype) func = _op.argmax if op.type == "arg_max" else _op.argmin x = g.get_node(op.input("X")[0]) if axis is None or flatten: x = _op.reshape(x, [-1]) out = func(x, axis=None, keepdims=True) else: out = func(x, axis=axis, keepdims=keepdims) if dtype != infer_type(out).checked_type.dtype: out = _op.cast(out, dtype) g.add_node(op.output("Out")[0], out) def convert_argsort(g, op, block): """Operator converter for argsort.""" x = g.get_node(op.input("X")[0]) axis = op.attr("axis") descending = op.attr("descending") out_indices = _op.argsort(x, axis, not descending, dtype="int64") out = _op.gather(x, axis, out_indices) g.add_node(op.output("Out")[0], out) g.add_node(op.output("Indices")[0], out_indices) def convert_assign(g, op, block): """Operator converter for assign.""" out = g.get_node(op.input("X")[0]) g.add_node(op.output("Out")[0], out) def convert_assign_value(g, op, block): """Operator converter for assign_value.""" keys = ["bool_values", "fp32_values", "int32_values", "int64_values"] dtypes = ["bool", "float32", "int32", "int64"] for i, key in enumerate(keys): dtype = dtypes[i] value = np.array(op.attr(key)).astype(dtype) if value is not None and value.size >= 1: break shape = op.attr("shape") value = value.reshape(shape) out = _op.const(value, dtype=dtype) g.add_node(op.output("Out")[0], out) def convert_batch_norm(g, op, block): """Operator converter for batch_norm.""" ipt_name = op.input("X")[0] scale_name = op.input("Scale")[0] bias_name = op.input("Bias")[0] mean_name = op.input("Mean")[0] variance_name = op.input("Variance")[0] epsilon = op.attr("epsilon") out = _op.nn.batch_norm( g.get_node(ipt_name), g.get_node(scale_name), g.get_node(bias_name), g.get_node(mean_name), g.get_node(variance_name), epsilon=epsilon, ) g.add_node(op.output("Y")[0], out[0]) def convert_bmm(g, op, block): """Operator converter for bmm.""" x = g.get_node(op.input("X")[0]) y = g.get_node(op.input("Y")[0]) y = _op.transpose(y, [0, 2, 1]) out = _op.nn.batch_matmul(x, y) g.add_node(op.output("Out")[0], out) def convert_brelu(g, op, block): """Operator converter for brelu.""" x = g.get_node(op.input("X")[0]) t_max = op.attr("t_max") t_min = op.attr("t_min") out = _op.tensor.clip(x, t_min, t_max) g.add_node(op.output("Out")[0], out) def convert_cast(g, op, block): """Operator converter for cast.""" dtype = op.attr("out_dtype") dtype = _convert_dtype_value(dtype) x = g.get_node(op.input("X")[0]) out = _op.cast(x, dtype=dtype) g.add_node(op.output("Out")[0], out) def convert_clip(g, op, block): """Operator converter for clip.""" x = g.get_node(op.input("X")[0]) dtype = infer_type(x).checked_type.dtype # if the min/max value is a tensor min_max_is_tensor = False if op.input("Min"): min_value = g.get_node(op.input("Min")[0]) min_value, infered = try_infer_value(min_value, g.get_params()) if infered: min_value = min_value.tolist()[0] if isinstance(min_value, _expr.Expr): min_max_is_tensor = True else: min_value = op.attr("min") if op.input("Max"): max_value = g.get_node(op.input("Max")[0]) max_value, infered = try_infer_value(max_value, g.get_params()) if infered: max_value = max_value.tolist()[0] if isinstance(max_value, _expr.Expr): min_max_is_tensor = True else: max_value = op.attr("max") if min_max_is_tensor: if not isinstance(min_value, _expr.Expr): min_value = _op.const(min_value, dtype) if not isinstance(max_value, _expr.Expr): max_value = _op.const(max_value, dtype) out = _op.maximum(x, min_value) out = _op.minimum(out, max_value) else: out = _op.clip(x, min_value, max_value) g.add_node(op.output("Out")[0], out) def convert_concat(g, op, block): """Operator converter for concat.""" inputs = [g.get_node(op.input("X")[i]) for i in range(len(op.input("X")))] axis = op.attr("axis") inputs = _dtype_shape_promotion(inputs) out = _op.concatenate(inputs, axis=axis) g.add_node(op.output("Out")[0], out) def convert_conv2d(g, op, block): """Operator converter for conv2d.""" dilations = op.attr("dilations") groups = op.attr("groups") paddings = op.attr("paddings") padding_algorithm = op.attr("padding_algorithm") strides = op.attr("strides") kernel = g.get_node(op.input("Filter")[0]) input_x = g.get_node(op.input("Input")[0]) out_channels, _, k_h, k_w = infer_shape(kernel) if padding_algorithm == "VALID": paddings = [0, 0] elif padding_algorithm == "SAME": # Handle history issue of PaddlePaddle # while padding_algorithm == "SAME" # dilations will be set to [1, 1] dilations = [1, 1] input_x = autopad(input_x, strides, [k_h, k_w], dilations) paddings = [0, 0] elif padding_algorithm == "EXPLICIT": if len(paddings) == 2: paddings = [paddings[0], paddings[1], paddings[0], paddings[1]] elif len(paddings) == 4: paddings = [paddings[0], paddings[2], paddings[1], paddings[3]] else: msg = 'Value {} in attribute "padding" of operator Conv is not "valid."' raise tvm.error.OpAttributeInvalid(msg.format(padding_algorithm)) out = _op.nn.conv2d( input_x, kernel, strides=strides, padding=paddings, dilation=dilations, groups=groups, channels=out_channels, kernel_size=[k_h, k_w], ) g.add_node(op.output("Output")[0], out) def convert_conv2d_transpose(g, op, block): """Operator converter for conv2d_transpose.""" dilations = op.attr("dilations") groups = op.attr("groups") paddings = op.attr("paddings") padding_algorithm = op.attr("padding_algorithm") strides = op.attr("strides") output_padding = op.attr("output_padding") if op.attr("output_padding") else [0, 0] kernel = g.get_node(op.input("Filter")[0]) input_x = g.get_node(op.input("Input")[0]) _, out_channels, k_h, k_w = infer_shape(kernel) k_size = [k_h, k_w] if padding_algorithm == "VALID": paddings = [0, 0] elif padding_algorithm == "SAME": # SAME padding of conv2d_transpose is not same with conv2d # We cannot use auto_pad here, only static shape is supported now dilations = [1, 1] input_shape = shape_of(input_x) h_w = _op.strided_slice(input_shape, [2], [4]) try: h_w = infer_value(h_w, g.get_params()).numpy().tolist() except Exception as e: msg = "The SAME padding algorithm of conv2d_transpose not support dynamic shape" raise tvm.error.OpAttributeInvalid(msg) from e paddings = [] for i in range(2): if strides[i] == 1 or h_w[i] % strides[i] == 0: pad = max(k_size[i] - strides[i], 0) else: pad = max(k_size[i] - (h_w[i] % strides[i]), 0) pad_before = pad // 2 pad_after = pad - pad_before paddings.insert(-1, pad_before) paddings.append(pad_after) elif padding_algorithm == "EXPLICIT": if len(paddings) == 2: paddings = [paddings[0], paddings[1], paddings[0], paddings[1]] elif len(paddings) == 4: paddings = [paddings[0], paddings[2], paddings[1], paddings[3]] else: msg = 'Value {} in attribute "padding" of operator Conv is not "valid."' raise tvm.error.OpAttributeInvalid(msg.format(padding_algorithm)) out = _op.nn.conv2d_transpose( input_x, kernel, strides=strides, padding=paddings, dilation=dilations, groups=groups, channels=out_channels * groups, kernel_size=k_size, output_padding=output_padding, ) g.add_node(op.output("Output")[0], out) def convert_cumsum(g, op, block): """Operator converter for cumsum.""" axis = op.attr("axis") exclusive = op.attr("exclusive") flatten = op.attr("flatten") reverse = op.attr("reverse") x = g.get_node(op.input("X")[0]) if axis is None or flatten: x = _op.reshape(x, [-1]) if reverse: x = _op.reverse(x, axis=axis) out = _op.cumsum(x, axis=axis, exclusive=exclusive) out = _op.reverse(out, axis=axis) else: out = _op.cumsum(x, axis=axis, exclusive=exclusive) g.add_node(op.output("Out")[0], out) def convert_dropout(g, op, block): """Operator converter for dropout.""" x = g.get_node(op.input("X")[0]) g.add_node(op.output("Out")[0], x) def convert_dot(g, op, block): """Operator converter for dot.""" # x, y should be 1D or 2D tensor # when it's 2D tensor, the first dimension means batch dimension x = g.get_node(op.input("X")[0]) y = g.get_node(op.input("Y")[0]) out = _op.sum(_op.multiply(x, y), axis=[-1], keepdims=True) g.add_node(op.output("Out")[0], out) def convert_elementwise_op(g, op, block): """Operator converter for all the elementwise operators.""" op_map = { "elementwise_div": "divide", "elementwise_add": "add", "elementwise_mul": "multiply", "elementwise_sub": "subtract", "elementwise_mod": "mod", "elementwise_max": "maximum", "elementwise_min": "minimum", "elementwise_pow": "power", "elementwise_floordiv": "floor_divide", "equal": "equal", "greater_equal": "greater_equal", "greater_than": "greater", "less_equal": "less_equal", "less_than": "less", "not_equal": "not_equal", } op_func = op_map[op.type] ipt0 = g.get_node(op.input("X")[0]) ipt1 = g.get_node(op.input("Y")[0]) ipt0_shape = infer_shape(ipt0) ipt1_shape = infer_shape(ipt1) axis = op.attr("axis") if len(ipt0_shape) != len(ipt1_shape): if axis < 0: axis = axis + len(ipt0_shape) if axis != len(ipt0_shape) - 1: ipt1 = _op.expand_dims(ipt1, axis=axis, num_newaxis=(len(ipt0_shape) - axis - 1)) op_func = get_relay_op(op_func) out = op_func(ipt0, ipt1) g.add_node(op.output("Out")[0], out) def convert_elu(g, op, block): """Operator converter for elu.""" x = g.get_node(op.input("X")[0]) dtype = infer_type(x).checked_type.dtype alpha = op.attr("alpha") alpha = _expr.const(-1.0 * alpha, dtype=dtype) out = alpha * _op.nn.relu(_expr.const(1, dtype=dtype) - _op.exp(x)) + _op.nn.relu(x) g.add_node(op.output("Out")[0], out) def convert_expand(g, op, block): """Operator converter for expand.""" x = g.get_node(op.input("X")[0]) if op.input("Shape"): sizes = g.get_node(op.input("Shape")[0]) else: sizes = op.attr("shape") if isinstance(sizes, _expr.Expr): sizes = try_infer_value(sizes, parameters=g.get_params())[0] if isinstance(sizes, np.ndarray): sizes = sizes.tolist() out = _op.broadcast_to(x, sizes) g.add_node(op.output("Out")[0], out) def convert_expand_as(g, op, block): """Operator converter for expand_as.""" x = g.get_node(op.input("X")[0]) target_shape = op.attr("target_shape") out = _op.broadcast_to(x, target_shape) g.add_node(op.output("Out")[0], out) def convert_feed(g, op, block): """Converter for model input node.""" if block is not None: ipt_name = op.output("Out")[0] ipt_shape = block.var(ipt_name).shape ipt_dtype = block.var(ipt_name).dtype ipt_dtype = str(ipt_dtype).strip().split(".")[1] else: ipt_shape = op.shape ipt_dtype = str(op.dtype).strip().split(".")[1] ipt_name = op.name if g.shape_dict is not None: ipt_shape = g.shape_dict[ipt_name] if isinstance(ipt_shape, tuple): ipt_shape = list(ipt_shape) for i, s in enumerate(ipt_shape): if s < 0: ipt_shape[i] = _ty.Any() out = new_var(ipt_name, shape=ipt_shape, dtype=ipt_dtype) g.add_node(ipt_name, out) def convert_fill_any_like(g, op, block): """Operator converter for fill_any_like.""" dtype = op.attr("dtype") dtype = _convert_dtype_value(dtype) x = g.get_node(op.input("X")[0]) value = _expr.const(op.attr("value"), dtype=dtype) out = _op.transform.full_like(x, value).astype(dtype) g.add_node(op.output("Out")[0], out) def convert_fill_constant(g, op, block): """Operator converter for fill_constant.""" value = op.attr("value") shape = block.var(op.output("Out")[0]).shape dtype = op.attr("dtype") dtype = _convert_dtype_value(dtype) value = _expr.const(value).astype(dtype) if "ValueTensor" in op.input_names and op.input("ValueTensor"): shape = g.get_node(op.input("ValueTensor")[0]) if "ShapeTensor" in op.input_names and op.input("ShapeTensor"): shape = g.get_node(op.input("ShapeTensor")[0]) if isinstance(shape, _expr.Expr): shape = try_infer_value(shape, parameters=g.get_params())[0] if isinstance(shape, np.ndarray): shape = shape.tolist() out = _op.full(value, shape=shape, dtype=dtype) g.add_node(op.output("Out")[0], out) def convert_fill_constant_batch_size_like(g, op, block): """Operator converter for fill_constant_batch_size_like.""" x = g.get_node(op.input("Input")[0]) value = op.attr("value") shape = op.attr("shape") input_dim_idx = op.attr("input_dim_idx") output_dim_idx = op.attr("output_dim_idx") dtype = op.attr("dtype") dtype = _convert_dtype_value(dtype) input_shape = shape_of(x) batch = _op.strided_slice(input_shape, begin=[input_dim_idx], end=[input_dim_idx + 1]).astype( "int32" ) shape_before = shape[:output_dim_idx] shape_before = _expr.const(shape_before, dtype="int32") shape_after = shape[output_dim_idx + 1 :] shape_after = _expr.const(shape_after, dtype="int32") out_shape = _op.concatenate([shape_before, batch, shape_after], axis=0) out_shape, infered = try_infer_value(out_shape, g.get_params()) if infered: out_shape = out_shape.tolist() constant = _expr.const(value, dtype=dtype).astype(dtype) out = _op.full(constant, out_shape, dtype=dtype) g.add_node(op.output("Out")[0], out) def convert_flatten(g, op, block): """Operator converter for flatten.""" x = g.get_node(op.input("X")[0]) input_shape = list(infer_shape(x)) start = op.attr("start_axis") end = op.attr("stop_axis") ndim = len(input_shape) if end < 0: end += ndim new_shape = [0] * start new_shape.append(-1) squeeze_axes = [] for i in range(start + 1, end + 1): new_shape.append(1) squeeze_axes.append(i) for _ in range(end + 1, ndim): new_shape.append(0) out = _op.reshape(x, new_shape) if squeeze_axes: out = _op.squeeze(out, axis=squeeze_axes) g.add_node(op.output("Out")[0], out) def convert_gather(g, op, block): """Operator converter for gather.""" x = g.get_node(op.input("X")[0]) index = g.get_node(op.input("Index")[0]) axis = op.attr("axis") out = _op.take(x, index, axis) g.add_node(op.output("Out")[0], out) def convert_gather_nd(g, op, block): """Operator converter for gather_nd.""" x = g.get_node(op.input("X")[0]) index = g.get_node(op.input("Index")[0]) shape = infer_shape(index) perm = list(range(0, len(shape) - 1)) perm.insert(0, len(shape) - 1) index = _op.transpose(index, axes=perm) out = _op.gather_nd(x, index, 0, shape[-1]) g.add_node(op.output("Out")[0], out) def convert_gelu(g, op, block): """Operator converter for gelu.""" x = g.get_node(op.input("X")[0]) out = x * ( _expr.const(0.5, dtype="float32") + _op.erf(x * _expr.const(0.5**0.5, dtype="float32")) * _expr.const(0.5, dtype="float32") ) g.add_node(op.output("Out")[0], out) def convert_group_norm(g, op, block): """Operator converter for group_norm.""" x = g.get_node(op.input("X")[0]) num_groups = op.attr("groups") epsilon = op.attr("epsilon") gamma = g.get_node(op.input("Scale")[0]) beta = g.get_node(op.input("Bias")[0]) out = _op.nn.group_norm( x, gamma=gamma, beta=beta, num_groups=num_groups, axis=1, epsilon=epsilon, center=True, scale=True, ) g.add_node(op.output("Y")[0], out) def convert_hard_shrink(g, op, block): """Operator converter for hard_shrink.""" x = g.get_node(op.input("X")[0]) dtype = infer_type(x).checked_type.dtype threshold = op.attr("threshold") threshold = _op.const(threshold, dtype) out = _op.logical_or(x < _op.const(-1.0, dtype) * threshold, x > threshold) out = _op.cast(out, dtype) * x g.add_node(op.output("Out")[0], out) def convert_hard_sigmoid(g, op, block): """Operator converter for hard_sigmoid.""" slope = op.attr("slope") x = g.get_node(op.input("X")[0]) out = x * _expr.const(slope) + _expr.const(0.5) out = _op.clip(out, 0, 1) g.add_node(op.output("Out")[0], out) def convert_hard_swish(g, op, block): """Operator converter for hard_swish.""" offset = op.attr("offset") scale = op.attr("scale") threshold = op.attr("threshold") assert np.isclose(offset, 3.0), "Only support offset==3.0 for PaddlePaddle's hard_swish" assert np.isclose(scale, 6.0), "Only support scale==6.0 for PaddlePaddle's hard_swish" assert np.isclose(threshold, 6.0), "Only support threshold==6.0 for PaddlePaddle's hard_swish" x = g.get_node(op.input("X")[0]) out = _op.clip(x, -1 * offset, offset) out = out / _expr.const(threshold) + _expr.const(0.5) out = x * out g.add_node(op.output("Out")[0], out) def convert_interpolate(g, op, block): """Operator converter for interpolate.""" def get_interpolate_mode(op): """Get parameters for interpolation methods.""" interp_method = op.attr("interp_method") align_corners = op.attr("align_corners") align_mode = op.attr("align_mode") rounding_method = "" if interp_method == "nearest": interp_method = "nearest_neighbor" coordinate_transformation_mode = "asymmetric" rounding_method = "floor" elif interp_method == "bilinear": interp_method = "linear" if not align_corners and align_mode == 0: coordinate_transformation_mode = "half_pixel" else: if align_corners: coordinate_transformation_mode = "align_corners" else: coordinate_transformation_mode = "asymmetric" elif interp_method == "bicubic": interp_method = "cubic" if align_corners: coordinate_transformation_mode = "align_corners" else: coordinate_transformation_mode = "half_pixel" else: msg = "interp_method {} is not supported for PaddlePaddle's interpolate" raise tvm.error.OpAttributeInvalid(msg.format(interp_method)) return rounding_method, interp_method, coordinate_transformation_mode layout = op.attr("data_layout") out_h = op.attr("out_h") out_w = op.attr("out_w") scale = op.attr("scale") if not isinstance(scale, (list, tuple)): scale = [scale, scale] x = g.get_node(op.input("X")[0]) x_shape = infer_shape(x) assert len(x_shape) == 4, "Only 4D input tensor is supported for PaddlePaddle's interpolate" input_out_size = op.input("OutSize") input_size_tensor = op.input("SizeTensor") input_scale = op.input("Scale") rounding_method, interp_method, coordinate_transformation_mode = get_interpolate_mode(op) if input_size_tensor: # if out_size is a list of tensor out_size = list() for name in input_size_tensor: size = g.get_node(name) if len(infer_shape(size)) == 0: size = _op.reshape(size, [-1]) out_size.append(size) out_size = _op.concatenate(out_size, axis=0) out_size, infered = try_infer_value(out_size, parameters=g.get_params()) if infered: out_size = out_size.tolist() elif input_scale: # if out_size is not defined, but scale is defined input_scale = g.get_node(input_scale[0]) input_shape = shape_of(x).astype("float32") if layout.startswith("NC"): out_size = _op.strided_slice(input_shape, begin=[2], end=[4]) * input_scale else: out_size = _op.strided_slice(input_shape, begin=[1], end=[3]) * input_scale out_size = out_size.astype("int32") out_size, infered = try_infer_value(out_size, parameters=g.get_params()) if infered: out_size = out_size.tolist() elif scale and scale[0] > 0 and scale[1] > 0: # use attribute scale input_shape = shape_of(x).astype("float32") input_scale = _expr.const(np.array([scale[0], scale[1]]).astype("float32")) if layout.startswith("NC"): out_size = _op.strided_slice(input_shape, begin=[2], end=[4]) * input_scale else: out_size = _op.strided_slice(input_shape, begin=[1], end=[3]) * input_scale out_size = out_size.astype("int32") out_size, infered = try_infer_value(out_size, parameters=g.get_params()) if infered: out_size = out_size.tolist() elif input_out_size: # if out_size is a tensor out_size = g.get_node(input_out_size[0]) out_size, infered = try_infer_value(out_size, parameters=g.get_params()) if infered: out_size = out_size.tolist() else: # if out_size is a constant value out_size = [out_h, out_w] out = _op.image.resize2d( x, size=out_size, layout=layout, method=interp_method, coordinate_transformation_mode=coordinate_transformation_mode, rounding_method=rounding_method, cubic_alpha=-0.75, ) g.add_node(op.output("Out")[0], out) def convert_instance_norm(g, op, block): """Operator converter for instance_norm.""" x = g.get_node(op.input("X")[0]) gamma = g.get_node(op.input("Scale")[0]) beta = g.get_node(op.input("Bias")[0]) epsilon = op.attr("epsilon") scale = center = True out = _op.nn.instance_norm(x, gamma, beta, axis=1, epsilon=epsilon, center=center, scale=scale) g.add_node(op.output("Y")[0], out) def convert_layer_norm(g, op, block): """Operator converter for layer_norm.""" begin_norm_axis = op.attr("begin_norm_axis") epsilon = op.attr("epsilon") x = g.get_node(op.input("X")[0]) bias_input = op.input("Bias") scale_input = op.input("Scale") x_shape = infer_shape(x) assert begin_norm_axis in ( len(x_shape) - 1, -1, ), "Support only normalization over last one dimension." if bias_input: bias = g.get_node(bias_input[0]) else: bias = _expr.const(np.zeros(x_shape[begin_norm_axis])) if scale_input: scale = g.get_node(scale_input[0]) else: scale = _expr.const(np.ones(x_shape[begin_norm_axis])) out = _op.nn.layer_norm( x, gamma=scale, beta=bias, axis=begin_norm_axis, epsilon=epsilon, center=True, scale=True ) g.add_node(op.output("Y")[0], out) def convert_leaky_relu(g, op, block): """Operator converter for leaky_relu.""" alpha = op.attr("alpha") x = g.get_node(op.input("X")[0]) out = _op.nn.leaky_relu(x, alpha=alpha) g.add_node(op.output("Out")[0], out) def convert_log1p(g, op, block): """Operator converter for log1p.""" x = g.get_node(op.input("X")[0]) dtype = infer_type(x).checked_type.dtype one = _expr.const(1, dtype=dtype) out = _op.log(x + one) g.add_node(op.output("Out")[0], out) def convert_logical_not(g, op, block): """Operator converter for logical_not op.""" ipt0 = g.get_node(op.input("X")[0]) op_func = get_relay_op(op.type) out = op_func(ipt0) g.add_node(op.output("Out")[0], out) def convert_logsigmoid(g, op, block): """Operator converter for logsigmoid.""" x = g.get_node(op.input("X")[0]) out = _op.log(_op.tensor.sigmoid(x)) g.add_node(op.output("Out")[0], out) def convert_logsoftmax(g, op, block): """Operator converter for logsoftmax.""" x = g.get_node(op.input("X")[0]) axis = op.attr("axis") ndim = len(infer_shape(x)) if axis < 0: axis += ndim m = _op.max(x, [axis], keepdims=True) e = _op.exp(x - m) s = _op.sum(e, [axis], keepdims=True) out = x - m - _op.log(s) g.add_node(op.output("Out")[0], out) def convert_logsumexp(g, op, block): """Operator converter for logsumexp.""" input_x = g.get_node(op.input("X")[0]) axis = op.attr("axis") if op.attr("reduce_all"): axis = None keepdims = op.attr("keepdim") out = get_relay_op("logsumexp")(input_x, axis=axis, keepdims=keepdims) if not axis and not keepdims: out = _op.expand_dims(out, axis=0) g.add_node(op.output("Out")[0], out) def convert_lookup_table(g, op, block): """Operator converter for lookup_table_v2.""" indices = g.get_node(op.input("Ids")[0]) padding_idx = op.attr("padding_idx") weights = g.get_node(op.input("W")[0]) if padding_idx != -1: if op.input("W")[0] in g.get_params(): weights = g.get_params(op.input("W")[0]) weights[padding_idx] = 0.0 weights = _expr.const(weights) else: shape, infered = try_infer_value(shape_of(weights), g.get_params()) if infered: shape = shape.tolist() assert not isinstance( shape, _expr.Expr ), "Shape of weight has to be fixed for PaddlePaddle's lookup_table" filters = np.ones(shape).astype(infer_type(weights).checked_type.dtype) filters[padding_idx] = 0.0 filters = _expr.const(filters) weights = weights * filters out = _op.take(weights, indices.astype("int32"), axis=0) g.add_node(op.output("Out")[0], out) def convert_matmul(g, op, block): """Operator converter for matmul.""" inputs = [g.get_node(op.input("X")[0]), g.get_node(op.input("Y")[0])] a_shape = infer_shape(inputs[0]) b_shape = infer_shape(inputs[1]) if op.has_attr("trans_x"): # for matmul_v2 trans_x = op.attr("trans_x") trans_y = op.attr("trans_y") else: # for matmul trans_x = op.attr("transpose_X") trans_y = op.attr("transpose_Y") if trans_x: perm = list(range(len(a_shape))) perm[-2] = len(a_shape) - 1 perm[-1] = len(a_shape) - 2 inputs[0] = _op.transpose(inputs[0], axes=perm) if trans_y: perm = list(range(len(b_shape))) perm[-2] = len(b_shape) - 1 perm[-1] = len(b_shape) - 2 inputs[1] = _op.transpose(inputs[1], axes=perm) # This implemention almost keeps same with ONNX # Need to check input shape as batch matmul must be supported. a_shape = shape_of(inputs[0], dtype="int32") a_rank = infer_shape(a_shape)[0] b_shape = shape_of(inputs[1], dtype="int32") b_rank = infer_shape(b_shape)[0] # When performing a batch matmul, we need to properly handle N-dim shapes. if a_rank > 2 or b_rank > 2: def flatten_to_nd(x, x_shape, nd=3): ndims = infer_shape(x_shape)[0] if ndims == nd: return x newshape = _op.concatenate( [ _expr.const([-1], dtype=infer_type(x_shape).checked_type.dtype), _op.strided_slice(x_shape, [ndims - nd + 1], [ndims]), ], 0, ) out = _op.reshape(x, fold_constant(newshape)) return out b_type = infer_type(inputs[1]) # Convert to dense if the second matrix is 2d and non-dynamic if b_rank == 2 and not _ty.is_dynamic(b_type.checked_type): a = flatten_to_nd(inputs[0], a_shape, 2) b = _op.transpose(inputs[1]) output = _op.nn.dense(a, b) else: # Convert a and b into 3 dimensional tensors. a = flatten_to_nd(inputs[0], a_shape, 3) b = flatten_to_nd(inputs[1], b_shape, 3) # Transpose matrix dimensions of b. b = _op.transpose(b, [0, 2, 1]) # Perform a batch matmul. output = _op.nn.batch_matmul(a, b) # Determine the output batch dimension. if a_rank > b_rank: out_batch = _op.strided_slice(a_shape, [0], [a_rank - 2]) elif a_rank < b_rank: out_batch = _op.strided_slice(b_shape, [0], [b_rank - 2]) # If its unclear how broadcasting should be applied, the output # shape is determined by choosing the maximum value from each input. else: out_batch = _op.concatenate( [ _op.maximum( _op.strided_slice(a_shape, [i], [i + 1]), _op.strided_slice(b_shape, [i], [i + 1]), ) for i in range(a_rank - 2) ], 0, ) # Reshape output to original dimensions. final_shape = _op.concatenate( [ out_batch, _op.strided_slice( a_shape, [infer_shape(a_shape)[0] - 2], [infer_shape(a_shape)[0] - 1] ), _op.strided_slice( b_shape, [infer_shape(b_shape)[0] - 1], [infer_shape(b_shape)[0]] ), ], 0, ) out = _op.reshape(output, fold_constant(final_shape)) else: if b_rank == 1: inputs[1] = _op.expand_dims(inputs[1], 1, 1) # Otherwise a simple dense op will get the job done. input_1_t = _op.transpose(inputs[1], axes=(1, 0)) out = _op.nn.dense(inputs[0], input_1_t) if b_rank == 1: out = _op.squeeze(out, axis=[-1]) if op.has_attr("alpha"): alpha = op.attr("alpha") if not np.isclose(alpha, 1.0): out = out * _expr.const(alpha).astype("float32") g.add_node(op.output("Out")[0], out) def convert_meshgrid(g, op, block): """Operator converter for meshgrid.""" inputs = op.input("X") x = [g.get_node(i) for i in inputs] outs = _op.meshgrid(x, indexing="ij") for i, out in enumerate(outs): g.add_node(op.output("Out")[i], out) def convert_mul(g, op, block): """Operator converter for mul.""" x = g.get_node(op.input("X")[0]) y = g.get_node(op.input("Y")[0]) x_num_col_dims = op.attr("x_num_col_dims") y_num_col_dims = op.attr("y_num_col_dims") x_shape = shape_of(x, dtype="int32") y_shape = shape_of(y, dtype="int32") x_dim = infer_shape(x_shape)[0] y_dim = infer_shape(y_shape)[0] if x_num_col_dims < 0: x_num_col_dims += x_dim if y_num_col_dims < 0: y_num_col_dims += y_dim if x_num_col_dims == 1: x = _op.nn.batch_flatten(x) else: pre_shape = _op.prod(_op.strided_slice(x_shape, [0], [x_num_col_dims], [1]), keepdims=True) post_shape = _op.prod( _op.strided_slice(x_shape, [x_num_col_dims], [x_dim], [1]), keepdims=True ) new_shape = _op.concatenate([pre_shape, post_shape], axis=0) new_shape = fold_constant(new_shape) x = _op.reshape(x, new_shape) if y_num_col_dims == 1: y = _op.nn.batch_flatten(y) else: pre_shape = _op.prod(_op.strided_slice(y_shape, [0], [y_num_col_dims], [1]), keepdims=True) post_shape = _op.prod( _op.strided_slice(y_shape, [y_num_col_dims], [y_dim], [1]), keepdims=True ) new_shape = _op.concatenate([pre_shape, post_shape], axis=0) new_shape = fold_constant(new_shape) y = _op.reshape(y, new_shape) y = _op.transpose(y) out = _op.nn.dense(x, y) out_pre_shape = _op.strided_slice(x_shape, [0], [x_num_col_dims], [1]) out_post_shape = _op.strided_slice(y_shape, [y_num_col_dims], [y_dim], [1]) out_shape = _op.concatenate([out_pre_shape, out_post_shape], axis=0) out_shape = fold_constant(out_shape) out = _op.reshape(out, out_shape) g.add_node(op.output("Out")[0], out) def convert_mv(g, op, block): """Operator converter for mv.""" x = g.get_node(op.input("X")[0]) y = g.get_node(op.input("Vec")[0]) y = _op.expand_dims(y, axis=-1) y = _op.transpose(y) out = _op.nn.dense(x, y) out = _op.squeeze(out, axis=[-1]) g.add_node(op.output("Out")[0], out) def convert_padding(g, op, block): """Operator converter for padding.""" input_x = g.get_node(op.input("X")[0]) input_padding = op.input("Paddings") if input_padding: padding = g.get_node(input_padding[0]) padding = infer_value(padding, g.get_params()).numpy().tolist() else: padding = op.attr("paddings") padding = op.attr("paddings") value = op.attr("value") data_format = op.attr("data_format") mode = op.attr("mode") assert mode != "circular", "Don't support mod='circular' for PaddlePaddle's padding" if mode == "replicate": mode = "edge" pad_len = len(padding) new_paddings = [0] * (pad_len + 4) for i in range(0, pad_len, 2): index = -1 - i if data_format[:2] != "NC": index = -3 - i new_paddings[index] = padding[i + 1] new_paddings[index - 1] = padding[i] new_paddings = [new_paddings[i : i + 2] for i in range(0, len(new_paddings), 2)] out = _op.nn.pad(input_x, new_paddings, pad_value=value, pad_mode=mode) g.add_node(op.output("Out")[0], out) def convert_pixel_shuffle(g, op, block): """Operator converter for pixel_shuffle.""" x = g.get_node(op.input("X")[0]) upscale_factor = op.attr("upscale_factor") out = _op.nn.depth_to_space(x, upscale_factor, mode="CRD") g.add_node(op.output("Out")[0], out) def convert_pool2d(g, op, block): """Operator converter for pool2d.""" adaptive = op.attr("adaptive") ceil_mode = op.attr("ceil_mode") global_pooling = op.attr("global_pooling") ksize = op.attr("ksize") paddings = op.attr("paddings") padding_algorithm = op.attr("padding_algorithm") pooling_type = op.attr("pooling_type") data_format = op.attr("data_format") if global_pooling: adaptive = True ksize = [1, 1] input_x = g.get_node(op.input("X")[0]) _, _, in_h, in_w = infer_shape(input_x) op_map = { "avg": "avg_pool2d", "max": "max_pool2d", } strides = op.attr("strides") if isinstance(strides, int): strides = [strides, strides] if isinstance(ksize, int): ksize = [ksize, ksize] if isinstance(paddings, int): paddings = [paddings] * 2 if padding_algorithm == "VALID": paddings = [0, 0] elif padding_algorithm == "SAME": input_x = autopad(input_x, strides, ksize) paddings = [0, 0] elif padding_algorithm == "EXPLICIT": if len(paddings) == 2: paddings = [paddings[0], paddings[1], paddings[0], paddings[1]] elif len(paddings) == 4: paddings = [paddings[0], paddings[2], paddings[1], paddings[3]] else: msg = 'Value {} in attribute "padding" of operator Pool2d is not "valid."' raise tvm.error.OpAttributeInvalid(msg.format(padding_algorithm)) # handle with special case # while kernel size less than input size # shrink kernel size to input size if ( not isinstance(in_h, _op.Expr) and padding_algorithm == "EXPLICIT" and in_h + paddings[0] + paddings[2] < ksize[0] ): ksize[0] = in_h if ( not isinstance(in_w, _op.Expr) and padding_algorithm == "EXPLICIT" and in_w + paddings[1] + paddings[3] < ksize[1] ): ksize[1] = in_w if not adaptive: if pooling_type == "avg": exclusive = op.attr("exclusive") out = _op.nn.avg_pool2d( input_x, pool_size=ksize, strides=strides, padding=paddings, ceil_mode=ceil_mode, count_include_pad=not exclusive, ) else: out = getattr(_op.nn, op_map[pooling_type])( input_x, pool_size=ksize, strides=strides, padding=paddings, ceil_mode=ceil_mode ) else: out = getattr(_op.nn, "adaptive_" + op_map[pooling_type])( input_x, output_size=ksize, layout=data_format ) g.add_node(op.output("Out")[0], out) def convert_pow(g, op, block): """Operator converter for pow.""" x = g.get_node(op.input("X")[0]) dtype = block.var(op.output("Out")[0]).dtype dtype = _convert_dtype_value(dtype) factor = op.attr("factor") factor = _expr.const(factor, dtype=dtype) out = _op.power(x, factor) g.add_node(op.output("Out")[0], out) def convert_prelu(g, op, block): """Operator converter for prelu.""" x = g.get_node(op.input("X")[0]) alpha = g.get_node(op.input("Alpha")[0]) ndims = len(infer_shape(x)) axis = 0 if ndims <= 1 else 1 mode = op.attr("mode") if mode == "all": if ndims == 1: shape = _op.strided_slice(shape_of(x), [0], [1]) else: shape = _op.strided_slice(shape_of(x), [1], [2]) alpha = _op.broadcast_to(alpha, fold_constant(shape)) out = _op.nn.prelu(x, alpha, axis) g.add_node(op.output("Out")[0], out) def convert_range(g, op, block): """Operator converter for range.""" start = g.get_node(op.input("Start")[0]) stop = g.get_node(op.input("End")[0]) step = g.get_node(op.input("Step")[0]) dtype = infer_type(start).checked_type.dtype params = [] for param in (start, stop, step): param, infered = try_infer_value(param, g.get_params()) if infered: param = param.tolist() if isinstance(param, list): param = param[0] if isinstance(param, _expr.Expr): param = _op.squeeze(param) else: param = _op.const(param, dtype=dtype) params.append(param) out = _op.transform.arange(params[0], params[1], params[2], dtype=dtype) g.add_node(op.output("Out")[0], out) def convert_reciprocal(g, op, block): """Operator converter for reciprocal.""" x = g.get_node(op.input("X")[0]) dtype = infer_type(x).checked_type.dtype out = _expr.const(1.0, dtype) / x g.add_node(op.output("Out")[0], out) def convert_reduce(g, op, block): """Operator converter for series of reduce operators.""" op_map = { "reduce_all": "all", "reduce_any": "any", "reduce_max": "max", "reduce_min": "min", "reduce_prod": "prod", "reduce_sum": "sum", "reduce_mean": "mean", } op_name = op_map[op.type] input_x = g.get_node(op.input("X")[0]) axis = op.attr("dim") if op.attr("reduce_all"): axis = None keepdims = op.attr("keep_dim") out = get_relay_op(op_name)(input_x, axis=axis, keepdims=keepdims) if not axis and not keepdims: # use `expand_dims` to solve the following situation # for TVM, the shape of `out` will be (, ) # for Paddle, the shape of `out` will be [1] out = _op.expand_dims(out, axis=0) g.add_node(op.output("Out")[0], out) def convert_relu6(g, op, block): """Operator converter for relu6.""" x = g.get_node(op.input("X")[0]) out = _op.clip(x, 0.0, 6.0) g.add_node(op.output("Out")[0], out) def convert_reshape(g, op, block): """Operator converter for reshape.""" input_shape = op.input("Shape") input_shape_tensor = op.input("ShapeTensor") data = g.get_node(op.input("X")[0]) if input_shape: new_shape = g.get_node(input_shape[0]) elif input_shape_tensor: new_shape = [] for shape_name in input_shape_tensor: shape = g.get_node(shape_name) if len(infer_shape(shape)) == 0: shape = _op.reshape(shape, [-1]) new_shape.append(shape) new_shape = _op.concatenate(new_shape, axis=0) new_shape, infered = try_infer_value(new_shape, parameters=g.get_params()) if infered: new_shape = new_shape.tolist() else: new_shape = op.attr("shape") out = _op.reshape(data, new_shape) g.add_node(op.output("Out")[0], out) def convert_rnn(g, op, block): """Operator converter for rnn.""" def generate_lstm( input_seqs, hidden_state, cell_state, w_inp, w_hid, b_inp, b_hid, f_act, g_act, h_act, backwards=False, ): """Implementation of LSTM cell for paddlepaddle of TVM""" h_list = [] seq_length = len(input_seqs) for i in range(seq_length): step = input_seqs[i] if not backwards else input_seqs[seq_length - (i + 1)] step = _op.squeeze(step, axis=[0]) gates = _op.nn.dense(step, w_inp) + _op.nn.dense(hidden_state, w_hid) if b_inp is not None: gates += b_inp if b_hid is not None: gates += b_hid i, f, c, o = _op.split(gates, 4, axis=-1) i = f_act(i) f = f_act(f) c = g_act(c) C = f * cell_state + i * c o = f_act(o) H = o * h_act(C) hidden_state = H cell_state = C h_list.append(_op.expand_dims(H, axis=0)) if backwards: h_list = h_list[::-1] # Concatenate outputs and add back in direction axis. concatenated = _op.concatenate(h_list, 0) output = _op.expand_dims(concatenated, axis=1) hidden_state = _op.expand_dims(hidden_state, axis=0) cell_state = _op.expand_dims(cell_state, axis=0) return output, hidden_state, cell_state def generate_gru( input_seqs, hidden_state, w_inp, w_hid, b_inp, b_hid, rz_act, n_act, backwards=False ): """Implementation of GRU cell for paddlepaddle of TVM""" h_list = [] seq_length = len(input_seqs) for i in range(seq_length): step = input_seqs[i] if not backwards else input_seqs[seq_length - (i + 1)] step = _op.squeeze(step, axis=[0]) xwt = _op.nn.dense(step, w_inp) hwt = _op.nn.dense(hidden_state, w_hid) if b_inp is not None: xwt += b_inp if b_hid is not None: hwt += b_hid i_r, i_z, i_n = _op.split(xwt, 3, axis=-1) h_r, h_z, h_n = _op.split(hwt, 3, axis=-1) r_gate = rz_act(i_r + h_r) z_gate = rz_act(i_z + h_z) n_gate = n_act(i_n + r_gate * h_n) hidden_state = (hidden_state - n_gate) * z_gate + n_gate h_list.append(_op.expand_dims(hidden_state, axis=0)) if backwards: h_list = h_list[::-1] # Concatenate outputs and add back in direction axis. concatenated = _op.concatenate(h_list, 0) output = _op.expand_dims(concatenated, axis=1) hidden_state = _op.expand_dims(hidden_state, axis=0) return output, hidden_state def generate_simplernn( input_seqs, hidden_state, w_inp, w_hid, b_inp, b_hid, n_act, backwards=False ): """Implementation of SimpleRNN cell for paddlepaddle of TVM""" h_list = [] seq_length = len(input_seqs) for i in range(seq_length): step = input_seqs[i] if not backwards else input_seqs[seq_length - (i + 1)] step = _op.squeeze(step, axis=[0]) xwt = _op.nn.dense(step, w_inp) hwt = _op.nn.dense(hidden_state, w_hid) if b_inp is not None: xwt += b_inp if b_hid is not None: hwt += b_hid n_gate = n_act(xwt + hwt) hidden_state = n_gate h_list.append(_op.expand_dims(hidden_state, axis=0)) if backwards: h_list = h_list[::-1] # Concatenate outputs and add back in direction axis. concatenated = _op.concatenate(h_list, 0) output = _op.expand_dims(concatenated, axis=1) hidden_state = _op.expand_dims(hidden_state, axis=0) return output, hidden_state def make_param_inputs(g, node, layer, hidden_size, num_layers): """Param for weight and bias.""" bidirect_len = 4 if node.attr("is_bidirec") else 2 all_layer_param_len = len(node.input("WeightList")) weight_list = node.input("WeightList")[: all_layer_param_len // 2] bias_list = node.input("WeightList")[all_layer_param_len // 2 :] layer_weight_list = weight_list[layer * bidirect_len : layer * bidirect_len + bidirect_len] layer_bias_list = bias_list[layer * bidirect_len : layer * bidirect_len + bidirect_len] param_list = layer_weight_list + layer_bias_list param_list_len = len(param_list) input_weights = param_list[0 : param_list_len // 2 : 2] hidden_weights = param_list[1 : param_list_len // 2 : 2] input_bias = param_list[param_list_len // 2 : param_list_len : 2] hidden_bias = param_list[param_list_len // 2 + 1 : param_list_len : 2] return input_weights, hidden_weights, input_bias, hidden_bias def make_init_param_inputs(g, node, layer): """Init param for inputs.""" mode = node.attr("mode") if mode == "LSTM": all_init_h, all_init_c = node.input("PreState") bidirect_len = 2 if node.attr("is_bidirec") else 1 init_h = _op.strided_slice( g.get_node(all_init_h), [layer * bidirect_len], [layer * bidirect_len + bidirect_len], axes=[0], ) init_c = _op.strided_slice( g.get_node(all_init_c), [layer * bidirect_len], [layer * bidirect_len + bidirect_len], axes=[0], ) return init_h, init_c all_init_h = node.input("PreState")[0] bidirect_len = 2 if node.attr("is_bidirec") else 1 init_h = _op.strided_slice( g.get_node(all_init_h), [layer * bidirect_len], [layer * bidirect_len + bidirect_len], axes=[0], ) return init_h hidden_size = op.attr("hidden_size") num_layers = op.attr("num_layers") is_bidirec = op.attr("is_bidirec") mode = op.attr("mode") input_x = g.get_node(op.input("Input")[0]) num_directions = 1 if is_bidirec: num_directions = 2 x_shape = infer_shape(input_x) time_steps = x_shape[0] x_steps = _op.split(input_x, indices_or_sections=time_steps, axis=0) for layer in range(num_layers): input_weights, hidden_weights, input_bias, hidden_bias = make_param_inputs( g, op, layer, hidden_size, num_layers ) if mode == "LSTM": init_h, init_c = make_init_param_inputs(g, op, layer) init_hs = _op.split(init_h, num_directions) init_cs = _op.split(init_c, num_directions) result_output = [] result_H = [] result_C = [] for i in range(num_directions): H_t = _op.squeeze(init_hs[i], axis=[0]) C_t = _op.squeeze(init_cs[i], axis=[0]) W = g.get_node(input_weights[i]) R = g.get_node(hidden_weights[i]) WB = g.get_node(input_bias[i]) RB = g.get_node(hidden_bias[i]) output, H, C = generate_lstm( input_seqs=x_steps, hidden_state=H_t, cell_state=C_t, w_inp=W, w_hid=R, b_inp=WB, b_hid=RB, f_act=_op.sigmoid, g_act=_op.tanh, h_act=_op.tanh, backwards=i == 1, ) result_output.append(output) result_H.append(H) result_C.append(C) output = _op.concatenate(result_output, axis=1) H = _op.concatenate(result_H, axis=0) C = _op.concatenate(result_C, axis=0) elif mode == "GRU": init_h = make_init_param_inputs(g, op, layer) init_hs = _op.split(init_h, num_directions) result_output = [] result_H = [] for i in range(num_directions): H_t = _op.squeeze(init_hs[i], axis=[0]) W = g.get_node(input_weights[i]) R = g.get_node(hidden_weights[i]) WB = g.get_node(input_bias[i]) RB = g.get_node(hidden_bias[i]) output, H = generate_gru( input_seqs=x_steps, hidden_state=H_t, w_inp=W, w_hid=R, b_inp=WB, b_hid=RB, rz_act=_op.sigmoid, n_act=_op.tanh, backwards=i == 1, ) result_output.append(output) result_H.append(H) output = _op.concatenate(result_output, axis=1) H = _op.concatenate(result_H, axis=0) elif mode == "RNN_TANH": init_h = make_init_param_inputs(g, op, layer) init_hs = _op.split(init_h, num_directions) result_output = [] result_H = [] for i in range(num_directions): H_t = _op.squeeze(init_hs[i], axis=[0]) W = g.get_node(input_weights[i]) R = g.get_node(hidden_weights[i]) WB = g.get_node(input_bias[i]) RB = g.get_node(hidden_bias[i]) output, H = generate_simplernn( input_seqs=x_steps, hidden_state=H_t, w_inp=W, w_hid=R, b_inp=WB, b_hid=RB, n_act=_op.tanh, backwards=i == 1, ) result_output.append(output) result_H.append(H) output = _op.concatenate(result_output, axis=1) H = _op.concatenate(result_H, axis=0) output = _op.transpose(output, axes=[0, 2, 1, 3]) output = _op.reshape(output, newshape=(0, 0, -1)) x_steps = _op.split(output, indices_or_sections=time_steps, axis=0) g.add_node(op.output("Out")[0], output) def convert_scale(g, op, block): """Operator converter for scale.""" scale = op.attr("scale") bias = op.attr("bias") bias_after_scale = op.attr("bias_after_scale") x = g.get_node(op.input("X")[0]) if np.isclose(scale, 1.0) and np.isclose(bias, 0.0): out = x else: if np.isclose(bias, 0.0): out = x * _expr.const(np.array(scale).astype("float32")) elif np.isclose(scale, 1.0): out = x + _expr.const(np.array(bias).astype("float32")) else: if bias_after_scale: out = x * _expr.const(np.array(scale).astype("float32")) + _expr.const( np.array(bias).astype("float32") ) else: out = (x + _expr.const(np.array(bias).astype("float32"))) * _expr.const( np.array(scale).astype("float32") ) g.add_node(op.output("Out")[0], out) def convert_scatter(g, op, block): """Operator converter for scatter.""" x = g.get_node(op.input("X")[0]) index = g.get_node(op.input("Ids")[0]) updates = g.get_node(op.input("Updates")[0]) overwrite = op.attr("overwrite") shape = infer_shape(updates) ndims = len(shape) index = _op.expand_dims(index, axis=-1, num_newaxis=ndims - 1) index = _op.transform.broadcast_to(index, shape) if overwrite: out = _op.scatter(x, index, updates, axis=0) else: out = _op.scatter_add(_op.zeros_like(x), index, updates, axis=0) out += _op.scatter(x, index, _op.zeros_like(updates), axis=0) g.add_node(op.output("Out")[0], out) def convert_scatter_nd_add(g, op, block): """Operator converter for scatter_nd_add.""" x = g.get_node(op.input("X")[0]) index = g.get_node(op.input("Index")[0]) updates = g.get_node(op.input("Updates")[0]) indices_dim = len(infer_shape(index)) axes = list(range(indices_dim)) index = _op.transpose(index, axes[-1:] + axes[:-1]) out = _op.scatter_nd(x, index, updates, mode="add") g.add_node(op.output("Out")[0], out) def convert_selu(g, op, block): """Operator converter for selu.""" x = g.get_node(op.input("X")[0]) dtype = infer_type(x).checked_type.dtype alpha = _op.const(op.attr("alpha"), dtype) scale = _op.const(op.attr("scale"), dtype) out = ( _expr.const(-1.0, dtype=dtype) * alpha * _op.nn.relu(_expr.const(1.0, dtype=dtype) - _op.exp(x)) ) out = scale * (out + _op.nn.relu(x)) g.add_node(op.output("Out")[0], out) def convert_shape(g, op, block): """Operator converter for shape.""" x = g.get_node(op.input("Input")[0]) out = shape_of(x, dtype="int32") g.add_node(op.output("Out")[0], out) def convert_size(g, op, block): """Operator converter for size.""" input_x = g.get_node(op.input("Input")[0]) out = _op.ndarray_size(input_x, dtype="int64") out = _op.expand_dims(out, axis=0) g.add_node(op.output("Out")[0], out) def convert_slice(g, op, block): """Operator converter for slice.""" data = g.get_node(op.input("Input")[0]) dims = len(infer_shape(data)) axes = op.attr("axes") indices = _expr.const(axes, dtype="int64") decrease_axis = op.attr("decrease_axis") if isinstance(decrease_axis, int): decrease_axis = [decrease_axis] if op.input("StartsTensor"): starts = g.get_node(op.input("StartsTensor")[0]) starts, infered = try_infer_value(starts, g.get_params()) if infered: starts = starts.tolist() elif op.input("StartsTensorList"): starts = [] for start_index in op.input("StartsTensorList"): start_index = g.get_node(start_index).astype("int64") starts.append(start_index) starts = _op.concatenate(starts, axis=0) starts, infered = try_infer_value(starts, g.get_params()) if infered: starts = starts.tolist() else: starts = op.attr("starts") if len(axes) < dims: if isinstance(starts, _expr.Expr): starts = _op.scatter( _op.const([0] * dims, dtype=infer_type(starts).checked_type.dtype), indices, starts, axis=0, ) else: base = [0] * dims for i, axis in enumerate(axes): base[axis] = starts[i] starts = base if op.input("EndsTensor"): ends = g.get_node(op.input("EndsTensor")[0]) ends, infered = try_infer_value(ends, g.get_params()) if infered: ends = ends.tolist() elif op.input("EndsTensorList"): ends = [] for end_index in op.input("EndsTensorList"): end_index = g.get_node(end_index).astype("int64") ends.append(end_index) ends = _op.concatenate(ends, axis=0) ends, infered = try_infer_value(ends, g.get_params()) if infered: ends = ends.tolist() else: ends = op.attr("ends") if len(axes) < dims: if isinstance(ends, _expr.Expr): ends = _op.scatter( _expr.const( np.array([np.iinfo(np.int32).max] * dims), dtype=infer_type(ends).checked_type.dtype, ), indices, ends, axis=0, ) else: base = [np.iinfo(np.int32).max] * dims for i, axis in enumerate(axes): base[axis] = ends[i] ends = base strides = None if "StridesTensor" in op.input_names and op.input("StridesTensor"): strides = g.get_node(op.input("StridesTensor")[0]) strides, infered = try_infer_value(strides, g.get_params()) if infered: strides = strides.tolist() elif "StridesTensorList" in op.input_names and op.input("StridesTensorList"): strides = [] for strides_index in op.input("StridesTensorList"): strides_index = g.get_node(strides_index).astype("int64") strides.append(strides_index) strides = _op.concatenate(strides, axis=0) strides, infered = try_infer_value(strides, g.get_params()) if infered: strides = strides.tolist() elif op.has_attr("strides"): strides = op.attr("strides") if len(axes) < dims: if isinstance(strides, _expr.Expr): strides = _op.scatter( _expr.const( np.array([1] * dims), dtype=infer_type(strides).checked_type.dtype, ), indices, strides, axis=0, ) elif strides: base = [1] * dims for i, axis in enumerate(axes): base[axis] = strides[i] strides = base if not strides: strides = _op.const([1] * dims, dtype="int64") out = _op.strided_slice(data, begin=starts, end=ends, strides=strides) if decrease_axis: out = _op.squeeze(out, axis=decrease_axis) g.add_node(op.output("Out")[0], out) def convert_softmax(g, op, block): """Operator converter for softmax.""" axis = op.attr("axis") input_shape = block.var(op.input("X")[0]).shape if axis < 0: axis = len(input_shape) + axis x = g.get_node(op.input("X")[0]) m = _op.max(x, axis, keepdims=True) e = _op.exp(x - m) out = e / _op.sum(e, axis, keepdims=True) g.add_node(op.output("Out")[0], out) def convert_softplus(g, op, block): """Operator converter for softplus.""" x = g.get_node(op.input("X")[0]) dtype = infer_type(x).checked_type.dtype beta = op.attr("beta") beta = _expr.const(beta, dtype=dtype) out = _op.log(_op.exp(x * beta) + _expr.const(1.0, dtype=dtype)) / beta g.add_node(op.output("Out")[0], out) def convert_softsign(g, op, block): """Operator converter for softsign.""" x = g.get_node(op.input("X")[0]) dtype = infer_type(x).checked_type.dtype out = x / (_op.const(1.0, dtype) + _op.abs(x)) g.add_node(op.output("Out")[0], out) def convert_split(g, op, block): """Operator converter for split.""" x = g.get_node(op.input("X")[0]) axis = op.input("AxisTensor") if axis: axis = g.get_node(axis[0]) axis, infered = try_infer_value(axis, g.get_params()) if infered: axis = axis.tolist()[0] else: axis = op.attr("axis") sections = op.input("SectionsTensorList") if sections: tmp_section = [] for i in sections: i = g.get_node(i) i, infered = try_infer_value(i, g.get_params()) if infered: i = i.tolist() else: raise ValueError("Dynamic Split not yet supported.") tmp_section.extend(i) sections = tmp_section else: sections = op.attr("sections") if sections: indices = [] split_index = 0 for i in sections[:-1]: if i == -1: input_shape = infer_shape(x)[axis] i = input_shape - np.sum(sections) - 1 split_index += i indices.append(split_index) else: indices = op.attr("num") out = _op.split(x, indices, axis) for i, out_i in enumerate(out): g.add_node(op.output("Out")[i], out_i) def convert_square(g, op, block): """Operator converter for square.""" x = g.get_node(op.input("X")[0]) dtype = block.var(op.output("Out")[0]).dtype dtype = _convert_dtype_value(dtype) out = _op.power(x, _expr.const(2, dtype)) g.add_node(op.output("Out")[0], out) def convert_squeeze(g, op, block): """Operator converter for squeeze2.""" x = g.get_node(op.input("X")[0]) axes = op.attr("axes") if not axes: axes = None x = _op.squeeze(x, axis=axes) g.add_node(op.output("Out")[0], x) def convert_swish(g, op, block): """Operator converter for swish.""" x = g.get_node(op.input("X")[0]) beta = op.attr("beta") assert beta == 1.0, "Only support beta==1.0 for PaddlePaddle's swish" out = x * _op.tensor.sigmoid(x) g.add_node(op.output("Out")[0], out) def convert_transpose(g, op, block): """Operator converter for transpose.""" perm = op.attr("axis") out = _op.transpose(g.get_node(op.input("X")[0]), axes=perm) g.add_node(op.output("Out")[0], out) def convert_unsqueeze(g, op, block): """Operator converter for unsqueeze.""" x = g.get_node(op.input("X")[0]) axes = sorted(op.attr("axes")) for axis in axes: x = _op.expand_dims(x, axis=axis, num_newaxis=1) g.add_node(op.output("Out")[0], x) _convert_map = { "abs": convert_unary_op, "acos": convert_unary_op, "addmm": convert_addmm, "arg_max": convert_arg_max_min, "arg_min": convert_arg_max_min, "argsort": convert_argsort, "asin": convert_unary_op, "assign": convert_assign, "assign_value": convert_assign_value, "atan": convert_unary_op, "batch_norm": convert_batch_norm, "bicubic_interp_v2": convert_interpolate, "bilinear_interp_v2": convert_interpolate, "bmm": convert_bmm, "brelu": convert_brelu, "cast": convert_cast, "ceil": convert_unary_op, "clip": convert_clip, "concat": convert_concat, "conv2d": convert_conv2d, "conv2d_transpose": convert_conv2d_transpose, "cos": convert_unary_op, "cosh": convert_unary_op, "cumsum": convert_cumsum, "depthwise_conv2d": convert_conv2d, "depthwise_conv2d_transpose": convert_conv2d_transpose, "dot": convert_dot, "dropout": convert_dropout, "elementwise_add": convert_elementwise_op, "elementwise_div": convert_elementwise_op, "elementwise_floordiv": convert_elementwise_op, "elementwise_max": convert_elementwise_op, "elementwise_min": convert_elementwise_op, "elementwise_mod": convert_elementwise_op, "elementwise_mul": convert_elementwise_op, "elementwise_pow": convert_elementwise_op, "elementwise_prod": convert_elementwise_op, "elementwise_sub": convert_elementwise_op, "elu": convert_elu, "equal": convert_elementwise_op, "erf": convert_unary_op, "exp": convert_unary_op, "expand_v2": convert_expand, "expand_as_v2": convert_expand_as, "feed": convert_feed, "fill_any_like": convert_fill_any_like, "fill_constant": convert_fill_constant, "fill_constant_batch_size_like": convert_fill_constant_batch_size_like, "flatten_contiguous_range": convert_flatten, "floor": convert_unary_op, "floor_mod": convert_elementwise_op, "gather": convert_gather, "gather_nd": convert_gather_nd, "gelu": convert_gelu, "greater_equal": convert_elementwise_op, "greater_than": convert_elementwise_op, "group_norm": convert_group_norm, "hard_shrink": convert_hard_shrink, "hard_sigmoid": convert_hard_sigmoid, "hard_swish": convert_hard_swish, "instance_norm": convert_instance_norm, "isfinite_v2": convert_unary_op, "isinf_v2": convert_unary_op, "isnan_v2": convert_unary_op, "layer_norm": convert_layer_norm, "leaky_relu": convert_leaky_relu, "less_equal": convert_elementwise_op, "less_than": convert_elementwise_op, "log": convert_unary_op, "log2": convert_unary_op, "log10": convert_unary_op, "log1p": convert_log1p, "logical_and": convert_binary_logical_op, "logical_not": convert_logical_not, "logical_or": convert_binary_logical_op, "logical_xor": convert_binary_logical_op, "logsigmoid": convert_logsigmoid, "log_softmax": convert_logsoftmax, "logsumexp": convert_logsumexp, "lookup_table_v2": convert_lookup_table, "matmul": convert_matmul, "matmul_v2": convert_matmul, "meshgrid": convert_meshgrid, "mul": convert_mul, "mv": convert_mv, "nearest_interp_v2": convert_interpolate, "not_equal": convert_elementwise_op, "pad1d": convert_padding, "pad2d": convert_padding, "pad3d": convert_padding, "pixel_shuffle": convert_pixel_shuffle, "pool2d": convert_pool2d, "pow": convert_pow, "prelu": convert_prelu, "range": convert_range, "relu": convert_unary_op, "relu6": convert_relu6, "reshape2": convert_reshape, "round": convert_unary_op, "reciprocal": convert_reciprocal, "reduce_all": convert_reduce, "reduce_any": convert_reduce, "reduce_max": convert_reduce, "reduce_min": convert_reduce, "reduce_prod": convert_reduce, "reduce_sum": convert_reduce, "reduce_mean": convert_reduce, "rnn": convert_rnn, "rsqrt": convert_unary_op, "scale": convert_scale, "scatter": convert_scatter, "scatter_nd_add": convert_scatter_nd_add, "selu": convert_selu, "shape": convert_shape, "sigmoid": convert_unary_op, "sign": convert_unary_op, "sin": convert_unary_op, "sinh": convert_unary_op, "size": convert_size, "slice": convert_slice, "softmax": convert_softmax, "softplus": convert_softplus, "softsign": convert_softsign, "split": convert_split, "strided_slice": convert_slice, "sqrt": convert_unary_op, "square": convert_square, "squeeze2": convert_squeeze, "swish": convert_swish, "tan": convert_unary_op, "tanh": convert_unary_op, "transpose2": convert_transpose, "unsqueeze2": convert_unsqueeze, } class GraphProto: """A helper class for handling relay functions from PaddlePaddle model.""" def __init__(self): self.nodes = {} self.params = {} self.shape_dict = None def get_node(self, name): """get node from graph""" assert name in self.nodes return self.nodes[name] def add_node(self, name, node): """add a node to graph""" self.nodes[name] = fold_constant(node) def get_params(self, name=None): """Get params from graph.""" if name is None: return self.params assert name in self.params return self.params[name] def extract_parameters(self, program, scope=None): """Extract all the weights from PaddlePaddle program.""" self.params = {} variables = program.global_block().vars for name in variables: var = program.global_block().var(name) if name.endswith("feed") or name.endswith("fetch"): continue if not var.persistable: continue if isinstance(scope, dict): self.params[name] = _nd.array(scope[name]) else: self.params[name] = _nd.array(np.array(scope.var(name).get_tensor())) shape = self.params[name].shape dtype = self.params[name].dtype self.nodes[name] = new_var(name, shape=shape, dtype=dtype) def check_input_shape(self, op, block): """Check the shape information of model's inputs, fixed shape is recommended.""" ipt_name = op.input(op.input_names[0]) ipt_shape = block.var(ipt_name).shape for i in ipt_shape: if i < 0: warning_msg = "Input {}(shape={}) has unkown dimension shapes. \ Specifying static values may improve performance".format( ipt_name, ipt_shape ) warnings.warn(warning_msg) def check_unsupported_ops(self, program): """Check whether all the operators are supported.""" unsupported_ops = set() for block in program.blocks: for op in block.ops: if op.type == "fetch": continue if op.type not in _convert_map: unsupported_ops.add(op.type) if len(unsupported_ops) > 0: msg = "The following operators are not supported for frontend Paddle: " msg += ", ".join(unsupported_ops) raise tvm.error.OpNotImplemented(msg) def ops_to_relay(self, program, input_specs=None): """Convert PaddlePaddle operators to TVM relay functions.""" if input_specs is not None: for input_spec in input_specs: convert_feed(self, input_spec, None) for block in program.blocks: for op in block.ops: if op.type == "fetch": continue convert_func = _convert_map[op.type] convert_func(self, op, block) def from_program(self, program, shape_dict, scope): """Construct the TVM relay expression from PaddlePaddle program.""" self.shape_dict = shape_dict if scope is None: import paddle scope = paddle.fluid.global_scope() self.check_unsupported_ops(program) self.extract_parameters(program, scope) self.ops_to_relay(program) output_names = list() for block in program.blocks: for op in block.ops: if op.type == "fetch": output_names.append(op.input("X")[0]) outputs = [self.nodes[name] for name in output_names] outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) free_vars = analysis.free_vars(outputs) func = _function.Function(free_vars, outputs) mod = IRModule.from_expr(func) return mod, self.params def from_translated_layer(self, layer, shape_dict): """Construct the TVM relay expression from PaddlePaddle TranslatedLayer.""" self.shape_dict = shape_dict program = layer.program() parameters = dict() for param in layer.parameters() + layer.buffers(): parameters[param.name] = np.array(param.value().get_tensor()) self.check_unsupported_ops(program) self.extract_parameters(program, parameters) input_specs = layer._input_spec() self.ops_to_relay(program, input_specs) output_names = [x.name for x in layer._output_spec()] outputs = [self.nodes[name] for name in output_names] outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) free_vars = analysis.free_vars(outputs) func = _function.Function(free_vars, outputs) mod = IRModule.from_expr(func) # remove unused parameters final_params = dict() for var in free_vars: if var.name_hint in self.params: final_params[var.name_hint] = self.params[var.name_hint] self.params = final_params return mod, self.params def from_paddle(program_or_layer, shape_dict=None, scope=None): """Convert a PaddlePaddle model into an equivalent Relay Function. PaddlePaddle Program/TranslatedLayer represent the computation graph of PaddlePaddle model, and PaddlePaddle scope stores all the weights of PaddlePaddle model. Parameters ---------- program_or_layer : object of `paddle.static.Program` or `paddle.jit.TranslatedLayer` Loaded model by `paddle.static.load_inference_model` or `paddle.jit.load` shape_dict : dict of str to tuple/list, optional The input shape of model scope : object of `paddle.static.Scope`, optional The scope that saves all the weights of model, use `paddle.static.global_scope` by default Returns ------- mod : tvm.IRModule The relay module for compilation params : dict of str to tvm.nd.NDArray """ import paddle # disable system signal capturing in paddle framework # the signal capturing may cause conflict while running autotvm with paddle frontend paddle.disable_signal_handler() g = GraphProto() if isinstance(program_or_layer, paddle.jit.TranslatedLayer): # model is loaded by `paddle.jit.load` mod, params = g.from_translated_layer(program_or_layer, shape_dict) elif isinstance(program_or_layer, paddle.static.Program): # model is loaded by `paddle.static.load_inference_model` mod, params = g.from_program(program_or_layer, shape_dict, scope) else: raise Exception("Only PaddlePaddle's Program and TranslatedLayer are supported.") return mod, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/pytorch.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, too-many-lines, len-as-condition, no-else-return, unused-variable, too-many-nested-blocks # pylint: disable=consider-iterating-dictionary, invalid-name, unused-argument, unused-variable, broad-except # pylint: disable=import-outside-toplevel, simplifiable-if-expression, cell-var-from-loop, unnecessary-lambda # pylint: disable=missing-function-docstring, redefined-builtin """PT: PyTorch frontend.""" import functools import itertools import math import sys import numpy as np import tvm from tvm.ir import IRModule from tvm.topi.utils import get_const_tuple from .. import analysis as _analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from .. import qnn, transform from ..expr_functor import ExprMutator from ..loops import while_loop from ..prelude import Prelude, StaticTensorArrayOps from ..ty import Any, TensorType, TupleType from . import qnn_torch from .common import AttrCvt, get_relay_op, gru_cell, logger, rnn_cell from .common import infer_shape as _infer_shape from .common import infer_value as _infer_value from .common import infer_value_simulated as _infer_value_simulated from .common import lstm_cell, try_infer_value, unbind, fold_constant from .pytorch_utils import is_version_greater_than, getattr_attr_name __all__ = ["from_pytorch"] # This returns a "subgraph" which puts variables whenever # the type is known. It also records things to map the input # nodes to the extracted graph's nodes. # As Python objects are not round-trippable through C++, and # our type annotations only live in Python, we need to map # the we need to map the nodes we get in visiting to the nodes # we used to construct the graph (they are the same in C++, # match each other in dictionary lookups, but are not the same # in Python) by using the hint dictionary filled as # {node: node for node in nodes} to get the type annotations. # https://discuss.tvm.apache.org/t/round-tripping-objects-through-the-ffi/8440 class _TypeFinder(ExprMutator): def __init__(self, types): super().__init__() self.counter = 0 self.vars = {} self.types = types self.leave = set() # some variables are not inputs def visit_let(self, let): self.leave.add(let.var) return super().visit_let(let) def visit_function(self, fn): self.leave.update(fn.params) return super().visit_function(fn) def visit(self, expr): if expr in self.leave: return super().visit(expr) if expr in self.vars: return self.vars[expr] if isinstance(expr, tvm.relay.Var): self.vars[expr] = expr return expr if expr in self.types: ty = self.types[expr] v = tvm.relay.var(f"_{self.counter}", type_annotation=ty) self.counter += 1 self.vars[expr] = v return v v = super().visit(expr) return v def _should_construct_dynamic_list(list_construct_node): # if this list is element-accessed or modified at runtime, generate List ADT def inplace_add_to_add(op_name): if op_name == "aten::add_": return "aten::add" else: return op_name uses = _get_uses(list_construct_node) for loop_use in filter(lambda use: use.user.kind() == "prim::Loop", uses): block_input_index = loop_use.offset - 1 block = list(loop_use.user.blocks())[0] list_loop_var = list(block.inputs())[block_input_index] uses += _get_uses(list_loop_var.node()) op_names = map(inplace_add_to_add, set(use.user.kind() for use in uses)) list_ops = set(["aten::add", "aten::__getitem__"]) intersect = list_ops.intersection(op_names) if len(intersect) > 0 and intersect != set(["aten::add"]): return True # if add op outputs list, it is dynamic so we need to construct List ADT for use in filter(lambda use: use.user.kind() in ["aten::add", "aten::add_"], uses): output_type = _get_node_type(use.user) if output_type == "ListType": return True return False def _is_int_seq(seq): # TODO (t-vi): handle non-int constants? (like numpy.intXX) return len(seq) > 0 and all([isinstance(i, int) for i in seq]) # operator implementation class PyTorchOpConverter: """A helper class for holding PyTorch op converters.""" def __init__(self, prelude, default_dtype): self.prelude = prelude self.default_dtype = default_dtype self.create_convert_map() self.types = {} # map from nodes to (Relay) type annotations # this incrementally infers the type, see the comments on the type visitor # above. def infer_type(self, node, mod=None): """An incremental method to infer the type of a node in the relay graph.""" if node in self.types: return self.types[node] if isinstance(node, tvm.relay.Var): return node.type_annotation tf = _TypeFinder(types=self.types) new_node = tf.visit(node) fn = _function.Function(list(tf.vars.values()), new_node) new_mod = IRModule({"main": fn}) if mod is not None: new_mod.update(mod) new_mod = transform.RemoveUnusedFunctions()(new_mod) new_mod = transform.InferType()(new_mod) entry = new_mod["main"] ty = entry.body.checked_type self.types[node] = ty return self.types[node] def infer_type_with_prelude(self, val): body = self.infer_type(val, self.prelude.mod) return body # list ADT utilities def convert_to_list_adt(self, py_lst): elem_tys = [self.infer_type_with_prelude(elem) for elem in py_lst] msg = "List elements should have identical types" assert all(map(lambda ty: ty == elem_tys[0], elem_tys)), msg # get_type returns type_name, ctor1, ..., ctorN # 1 is nil _, cons, nil = self.prelude.mod.get_type("List") adt_lst = nil() for elem in reversed(py_lst): adt_lst = cons(elem, adt_lst) return adt_lst def map_tensor_array_constructor(self, adt_lst, shape): static_tensor_array_ops = StaticTensorArrayOps(self.prelude, "float32", shape) static_tensor_array_ops.register() tensor_create = self.prelude.get_tensor_ctor_static("tensor_constructor", "float32", shape) return self.prelude.map(tensor_create, adt_lst) def convert_to_tensor_array(self, adt_lst): _, cons, nil = self.prelude.mod.get_type("List") if self.prelude.length(adt_lst) == 0: return nil() checked_type = self.infer_type_with_prelude(self.prelude.hd(adt_lst)) shape = checked_type.shape tensor_array = self.map_tensor_array_constructor(adt_lst, shape) return tensor_array, tuple(shape) def infer_shape(self, inputs, mod=None): """A method to get the output type of an intermediate node in the graph.""" typ = self.infer_type(inputs, mod=mod) if hasattr(typ, "shape"): # Regular operator that outputs tensors return get_const_tuple(typ.shape) # The return type is not a tensor, for example List return typ def infer_shape_with_prelude(self, inputs): return self.infer_shape(inputs, mod=self.prelude.mod) def record_output_type(self, output): if isinstance(output, tuple): cleaned_output = [o for o in output if o is not None] types = self.infer_type_with_prelude(_expr.Tuple(cleaned_output)) for o, t in zip(cleaned_output, types.fields): self.types[o] = t elif isinstance(output, _expr.Expr): self.infer_type_with_prelude(output) # it can also happen that the type is int or so def pytorch_promote_types(self, inputs, dtypes): """This promotes TVM inputs with TVM dtypes passed like PyTorch would""" actual_dtypes = [] for i, inp in enumerate(inputs): if isinstance(inp, _expr.Expr): idt = self.infer_type(inp).dtype actual_dtypes.append(idt) else: actual_dtypes.append(dtypes[i]) dtypes = actual_dtypes tensor_dtypes = [dt for inp, dt in zip(inputs, dtypes) if not np.isscalar(inp)] non_tensor_inputs = [inp for inp in inputs if np.isscalar(inp)] result_type = _pytorch_result_type(tensor_dtypes, non_tensor_inputs) results = [] for inp, dt in zip(inputs, dtypes): if np.isscalar(inp): results.append(_expr.const(inp, dtype=result_type)) elif dt == result_type: results.append(inp) else: results.append(_op.cast(inp, result_type)) return results def is_quantized_tensor(self, data): # If a quantized Torch module is saved and loaded back, dtype will be dropped # Since dtypes from Torch tensors are not reliable in such cases, we use # Relay's type inference result to decide if an input tensor is quantized ty = self.infer_type_with_prelude(data) return ty.dtype == "uint8" # Operator implementations def make_elemwise(self, name): def elemwise(inputs, input_types): if name == "divide": # https://pytorch.org/docs/stable/generated/torch.div.html#torch.div # None - default behavior. Performs no rounding and, if both input and # other are integer types, promotes the inputs to the default scalar type. if all(["int" in input_type for input_type in input_types[:2]]): input_types[:2] = ["float32"] * 2 cast_inputs = [] for inp in inputs[:2]: if np.isscalar(inp): cast_inputs.append(_expr.const(inp, dtype="float32")) else: cast_inputs.append(_op.cast(inp, "float32")) inputs[:2] = cast_inputs data0, data1 = self.pytorch_promote_types(inputs[:2], input_types[:2]) return get_relay_op(name)(data0, data1) return elemwise def min_max_common(self, name_elemwise, name_reduce, inputs, input_types): if len(inputs) == 1: data = self.pytorch_promote_types(inputs[:1], input_types[:1]) return get_relay_op(name_reduce)(data[0]) elif len(inputs) >= 2 and isinstance(inputs[1], (list, int)): data = self.pytorch_promote_types(inputs[:1], input_types[:1]) dim = inputs[1] keepdims = inputs[2] if len(inputs) > 2 else False # also return dummy indices return get_relay_op(name_reduce)(data[0], axis=dim, keepdims=keepdims), None else: data0, data1 = self.pytorch_promote_types(inputs[:2], input_types[:2]) return get_relay_op(name_elemwise)(data0, data1) def max(self, inputs, input_types): return self.min_max_common("maximum", "max", inputs, input_types) def min(self, inputs, input_types): return self.min_max_common("minimum", "min", inputs, input_types) def maximum(self, inputs, input_types): data0, data1 = self.pytorch_promote_types(inputs[:2], input_types[:2]) return _op.maximum(data0, data1) def minimum(self, inputs, input_types): data0, data1 = self.pytorch_promote_types(inputs[:2], input_types[:2]) return _op.minimum(data0, data1) def make_unary(self, name): def unary(inputs, input_types): # this is just to ensure tensor input (data,) = self.pytorch_promote_types(inputs[:1], input_types[:1]) return get_relay_op(name)(data) return unary def log1p(self, inputs, input_types): # 1_plus_log x = log(x + 1) (dtype,) = input_types one = _expr.const(1, dtype=dtype) return _op.log(inputs[0] + one) def square(self, inputs, input_types): (dtype,) = input_types return _op.power(inputs[0], _expr.const(2, dtype)) def lerp(self, inputs, input_types): if len(inputs) != 3: msg = "Wrong number of arguments (%d) to parse." % (len(inputs)) raise AssertionError(msg) start = inputs[0] end = inputs[1] weight = inputs[2] return start + weight * (end - start) def arange(self, inputs, input_types): def _get_value(val, dtype): # dtype is a tvm dtype if isinstance(val, _expr.Expr): inp = _op.cast(val, dtype) ret, _ = try_infer_value(inp, lambda ret: _expr.const(ret, dtype)) else: ret = _create_typed_const(val, dtype) return ret def _get_type(val, inp_type): if isinstance(val, _expr.Expr): dtype = str(self.infer_type(val)) return dtype return inp_type # PyTorch arange uses the following type semantics: # - if a dtype is given, start, stop, step are converted to that dtype # - if no dtype is given and all args are integral, dtype is int64 # - if no dtype is given and there is a float arg, dtype is float32 if len(inputs) in {5, 6, 7}: # inputs look like [_,_,_,dtype,layout,device,requires_grad] # therefore dtype_idx is always the length of inputs minus 4 dtype_idx = len(inputs) - 4 types = [_get_type(inputs[i], input_types[i]) for i in range(dtype_idx)] if inputs[dtype_idx] is not None: dtype = _convert_dtype_value(inputs[dtype_idx]) elif any([t.startswith("float") for t in types]): dtype = "float32" else: dtype = "int64" # - if len(inputs) == 5, inputs = [stop, dtype, ...] # - if len(inputs) == 6, inputs = [start, stop, dtype, ...] # - if len(inputs) == 7, inputs = [start, stop, step, dtype, ...] start = _get_value(inputs[0], dtype) if len(inputs) > 5 else _expr.const(0, dtype) stop = _get_value(inputs[1 if len(inputs) > 5 else 0], dtype) step = _get_value(inputs[2], dtype) if len(inputs) > 6 else _expr.const(1, dtype) else: msg = "Unknown number of arguments (%d) to parse." % (len(inputs)) raise AssertionError(msg) return _op.transform.arange(start=start, stop=stop, step=step, dtype=dtype) def squeeze(self, inputs, input_types): data = inputs[0] if len(inputs) == 1: axis = None else: # TODO (t-vi): why is the cast to int needed? similarly elsewhere axis = [int(inputs[1])] return _op.transform.squeeze(data, axis) def unsqueeze(self, inputs, input_types): data = inputs[0] axis = inputs[1] return _op.transform.expand_dims(data, int(axis), 1) def concatenate(self, inputs, input_types): def tensor_array_concat(lst, axis): assert axis == 0, "Tensor array concat supported only for axis 0" tensor_array, shape = self.convert_to_tensor_array(lst) concat_shape = (Any(),) + shape[1:] concat = self.prelude.get_global_var_static("tensor_array_concat", "float32", shape) concatenated = concat(tensor_array) static_tensor_array_ops = StaticTensorArrayOps(self.prelude, "float32", concat_shape) static_tensor_array_ops.register() get_tensor = self.prelude.get_global_var_static( "tensor_get_data", "float32", concat_shape ) return get_tensor(concatenated) data = inputs[0] axis = inputs[1] if not isinstance(data, list): return tensor_array_concat(data, axis) if isinstance(data, _expr.Expr): data = [data] return _op.tensor.concatenate(data, int(axis)) def slice(self, inputs, input_types): axis_dtype = "int64" index_size_limit = sys.maxsize data = inputs[0] dshape = self.infer_shape(data) ndim = len(dshape) dim = int(inputs[1]) stride = inputs[4] target_begin, is_begin_const = try_infer_value( inputs[2], lambda ret: ret.astype(np.int).item(0) ) target_end, is_end_const = try_infer_value( inputs[3], lambda ret: ret.astype(np.int).item(0) ) # A fast path when slicing is nop. if ( isinstance(target_begin, int) and isinstance(target_end, int) and target_begin == 0 and target_end >= index_size_limit and stride == 1 ): return data if target_begin is None and target_end is None: return data # Process begin begin = [0] * ndim if target_begin is not None: begin[dim] = target_begin if target_begin is not None and not isinstance(begin[dim], int): tmp = [] for b in begin: if isinstance(b, int): tmp.append(_op.expand_dims(_expr.const(b, axis_dtype), axis=0)) else: tmp.append(_op.cast(_op.expand_dims(b, axis=0), axis_dtype)) begin = _op.concatenate(tmp, axis=0) btype = self.infer_type(begin).dtype if str(btype) != axis_dtype: begin = _op.cast(begin, axis_dtype) # Process end if isinstance(target_end, int) and target_end >= index_size_limit: target_end = dshape[dim] if any([isinstance(d, tvm.tir.Any) for d in dshape]): end = _op.shape_of(data) else: end = dshape if isinstance(target_end, int): if isinstance(end, list): end[dim] = target_end else: all_static = True for i, shape_dim in enumerate(dshape): if i != dim and isinstance(shape_dim, tvm.tir.Any): all_static = False if all_static: end = list(get_const_tuple(dshape)) end[dim] = target_end else: target_end = _expr.const(target_end) end = _op.scatter( end, _op.expand_dims(_expr.const(dim), axis=0), _op.expand_dims(target_end, axis=0), axis=0, ) else: end = _op.cast(_op.shape_of(data), axis_dtype) if target_end is not None and not isinstance(target_end, tvm.tir.Any): ttype = self.infer_type(target_end).dtype if str(ttype) != axis_dtype: target_end = _op.cast(target_end, axis_dtype) end = _op.scatter( end, _op.expand_dims(_expr.const(dim), axis=0), _op.expand_dims(target_end, axis=0), axis=0, ) if not isinstance(end, list): etype = self.infer_type(end).dtype if str(etype) != axis_dtype: end = _op.cast(end, axis_dtype) strides = [1] * ndim strides[dim] = stride return _op.transform.strided_slice( data, begin=begin, end=end, strides=strides, slice_mode="end" ) def narrow(self, inputs, input_types): # Inputs are: # 0 - the tensor to narrow # 1 - the dimension along which to narrow # 2 - the starting dimension # 3 - the distance to the ending dimension # Lets find the ending dimension end = self.add(inputs[2:4], input_types[2:4]) stride = 1 slice_input = inputs[:3] + [end, stride] slice_types = input_types + ["int32"] return self.slice(slice_input, slice_types) def split(self, inputs, input_types): data = inputs[0] split_size = int(inputs[1]) dim = int(inputs[2]) split_index = split_size indices = [] while split_index < self.infer_shape(data)[dim]: indices.append(split_index) split_index += split_size return _op.split(data, indices, dim) def split_with_sizes(self, inputs, input_types): data = inputs[0] sections = inputs[1] dim = int(inputs[2]) if len(sections) == 1: # a special case used in torchvision detection models return _expr.TupleWrapper(_expr.Tuple([data]), 1) split_index = 0 indices = [] for i in range(len(sections) - 1): index, _ = try_infer_value(sections[i], lambda ret: int(ret)) split_index += index indices.append(split_index) return _op.split(data, indices, dim) def tensor_split(self, inputs, input_types): # Reference: https://pytorch.org/docs/stable/generated/torch.tensor_split.html import torch if not isinstance(inputs[1], (int, list, tuple, torch.Tensor)): msg = "indices_or_sections type %s could not be parsed in tensor_split op" % ( type(inputs[1]) ) raise AssertionError(msg) if isinstance(inputs[1], torch.Tensor) and not ( list(inputs[1].shape) == [] or list(inputs[1].shape) == 1 ): msg = "indices_or_sections must be a zero-dimensional or one-dimensional long tensor" raise AssertionError(msg) if isinstance(inputs[1], int) or ( isinstance(inputs[1], torch.Tensor) and list(inputs[1].shape) == [] ): data = inputs[0] n = int(inputs[1]) dim = int(inputs[2]) split_size = int(self.infer_shape(data)[dim] / n) split_rest = int(self.infer_shape(data)[dim] % n) indices = [] split_index = split_size if split_rest == 0: for i in range(n - 1): indices.append(split_index) split_index += split_size else: for i in range(split_rest): indices.append(split_index + 1) split_index = (i + 1) * (split_index + 1) for i in range(n - split_rest - 1): split_index += split_size indices.append(split_index) return _op.split(data, indices, dim) else: data = inputs[0] sections = inputs[1] dim = int(inputs[2]) if isinstance(sections, tuple): sections = list(sections) elif isinstance(sections, torch.Tensor): sections = sections.cpu().numpy().tolist() return _op.split(data, sections, dim) def select(self, inputs, input_types): data = inputs[0] dim = int(inputs[1]) index = _wrap_const(inputs[2]) return _op.transform.take(data, index, axis=dim, mode="wrap") def take(self, inputs, input_types): data = inputs[0] indices = _op.cast(inputs[1], "int32") return _op.transform.take(data, indices=indices, mode="wrap") def topk(self, inputs, input_types): data = inputs[0] axis = int(inputs[2]) is_ascend = not bool(inputs[3]) sort = bool(inputs[4]) if isinstance(inputs[1], _expr.Expr): k, _ = try_infer_value(inputs[1], lambda ret: ret.tolist()) else: k = inputs[1] if not sort: msg = "Currently supports only sorted output for topk operator." raise AssertionError(msg) outs = _op.topk(data, k=k, axis=axis, is_ascend=is_ascend, ret_type="both", dtype="int64") return outs[0], outs[1] def reciprocal(self, inputs, input_types): data = inputs[0] return _expr.const(1.0, dtype=input_types[0]) / data def repeat(self, inputs, input_types): data = inputs[0] reps = [] for r in inputs[1]: if isinstance(r, int): reps.append(r) else: reps.append(int(_infer_value(r, {}).numpy())) return _op.transform.tile(data, reps=reps) def repeat_interleave(self, inputs, input_types): data = inputs[0] if isinstance(inputs[1], int): repeats = inputs[1] axis = inputs[2] elif isinstance(inputs[1], _expr.Expr): if isinstance(inputs[1], _expr.Constant): repeats = int(inputs[1].data.numpy()) else: repeats, _ = try_infer_value(inputs[1], lambda ret: ret.tolist()) axis = inputs[2] else: msg = "Only repeat with one value as repeat is currently supported." raise AssertionError(msg) if axis is None: # Flatten the data if no axis is given from torch data = _op.transform.reshape(data, [-1]) axis = 0 return _op.transform.repeat(data, repeats=repeats, axis=axis) def addcdiv(self, inputs, input_types): data, t1, t2, c = self.pytorch_promote_types(inputs[:4], input_types[:4]) return data + (c * (t1 / t2)) def addcmul(self, inputs, input_types): data, t1, t2, c = self.pytorch_promote_types(inputs[:4], input_types[:4]) return data + (c * (t1 * t2)) def where(self, inputs, input_types): if len(inputs) == 1: return self.nonzero([inputs[0], True], input_types) cond = inputs[0] x, y = self.pytorch_promote_types(inputs[1:3], input_types[1:3]) return _op.where(cond, x, y) def full_impl(self, data, fill_value, dtype): size = [] need_reshape = False new_shape = [] for dim in data: if isinstance(dim, _expr.Expr): if isinstance(dim, _expr.Constant): dim = int(dim.data.numpy()) if isinstance(size, list): size.append(dim) new_shape.append(dim) else: dim, success = try_infer_value(dim, lambda ret: int(ret), lambda: 0) new_shape.append(dim) if success: if isinstance(size, list): size.append(dim) else: size = None need_reshape = True else: if isinstance(size, list): size.append(dim) new_shape.append(dim) if size is None: tmp = [] for dim in data: tmp.append(_op.cast(_op.expand_dims(dim, axis=0), "int64")) size = _op.concatenate(tmp, axis=0) if not isinstance(fill_value, _expr.Constant): fill_value = _expr.const(fill_value, dtype=dtype) out = _op.full(fill_value, size, dtype=dtype) if need_reshape: out = _op.reshape(out, new_shape) return out def ones(self, inputs, input_types): data = inputs[0] import torch if not isinstance(data, (_expr.Expr, list, torch.Tensor, np.ndarray)): msg = "Data type %s could not be parsed in ones op" % (type(data)) raise AssertionError(msg) if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = self.default_dtype return self.full_impl(data, 1, dtype) def ones_like(self, inputs, input_types): data = inputs[0] out = _op.ones_like(data) # If the input and the output datatype is different, do a cast if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = self.default_dtype if input_types[0] != dtype: out = _op.cast(out, dtype) return out def new_ones(self, inputs, input_types): size = inputs[1] import torch if not isinstance(size, (_expr.Expr, list, tuple, torch.Size, np.ndarray)): msg = "Data type %s could not be parsed in ones op" % (type(size)) raise AssertionError(msg) if inputs[2] is not None: dtype = _convert_dtype_value(inputs[2]) else: dtype = input_types[0] return self.full_impl(size, 1, dtype) def zeros(self, inputs, input_types): data = inputs[0] import torch if not isinstance(data, (_expr.Expr, list, torch.Tensor, np.ndarray)): msg = "Data type %s could not be parsed in zeros op" % (type(data)) raise AssertionError(msg) if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = self.default_dtype return self.full_impl(data, 0, dtype) def zero_(self, inputs, input_types): data = inputs[0] return self.full_impl(self.infer_shape(data), 0, input_types[0]) def zeros_like(self, inputs, input_types): data = inputs[0] out = _op.zeros_like(data) # If the input and the output datatype is different, do a cast if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = self.default_dtype if input_types[0] not in dtype: out = _op.cast(out, dtype) return out def full(self, inputs, input_types): data = inputs[0] fill_value = inputs[1] import torch if not isinstance(data, (_expr.Expr, list, torch.Tensor, np.ndarray)): msg = "Data type %s could not be parsed in full op" % (type(data)) raise AssertionError(msg) if inputs[2] is not None: # dtype given dtype = _convert_dtype_value(inputs[2]) else: # if dtype is None, torch uses a global default set by torch.set_default_tensor_type() dtype = self.default_dtype return self.full_impl(data, fill_value, dtype) def full_like(self, inputs, input_types): data = inputs[0] fill_value = inputs[1] out = _op.full_like(data, _expr.const(fill_value)) # If the input and the output datatype is different, do a cast if inputs[2] is not None: # dtype given dtype = _convert_dtype_value(inputs[2]) else: # if dtype is None, torch uses a global default set by torch.set_default_tensor_type() dtype = self.default_dtype if input_types[0] not in dtype: out = _op.cast(out, dtype) return out def new_full(self, inputs, input_types): data = inputs[1] fill_value = inputs[2] import torch if not isinstance(data, (_expr.Expr, list, tuple, torch.Size)): msg = "Data type %s could not be parsed in full op" % (type(data)) raise AssertionError(msg) if inputs[3] is not None: # dtype given dtype = _convert_dtype_value(inputs[3]) else: # if dtype is None, use the dtype of the input tensor dtype = self.infer_type(input[0]) return self.full_impl(data, fill_value, dtype) def fill_(self, inputs, input_types): data = inputs[0] fill_value = inputs[1] if not isinstance(fill_value, (bool, int, float, complex)): fill_value = fold_constant(fill_value) return self.full_impl(self.infer_shape(data), fill_value, input_types[0]) def linspace(self, inputs, input_types): start = inputs[0] stop = inputs[1] step = inputs[2] # Find the spacing between values as step if step != 1: step = (stop - start) / (step - 1) stop = stop + step else: stop = start + step if inputs[3] is None: import torch dtype = _convert_data_type(str(torch.get_default_dtype())) else: dtype = _convert_dtype_value(inputs[3]) start = _create_typed_const(start, dtype) stop = _create_typed_const(stop, dtype) step = _create_typed_const(step, dtype) return _op.transform.arange(start=start, stop=stop, step=step, dtype=dtype) def relu(self, inputs, input_types): data = inputs[0] if self.is_quantized_tensor(data): assert len(inputs) == 3, "Input quant param not found in op inputs" input_zero_point = _expr.const(inputs[2], dtype="int32") return qnn_torch.quantized_relu(data, input_zero_point) return _op.nn.relu(data) def relu6(self, inputs, input_types): data = inputs[0] return _op.tensor.clip(data, 0.0, 6.0) def prelu(self, inputs, input_types): # Reference: https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html#torch.nn.PReLU data = inputs[0] dim = self.get_dims(data) ndims = len(dim) axis = 0 if ndims == 1 else 1 alpha = _op.broadcast_to(inputs[1], (dim[axis])) return _op.nn.prelu(data, alpha, axis) def leaky_relu(self, inputs, input_types): data = inputs[0] alpha = float(inputs[1]) return _op.nn.leaky_relu(data, alpha) def elu(self, inputs, input_types): data = inputs[0] dtype = input_types[0] alpha = _expr.const(-float(inputs[1]), dtype=dtype) return alpha * _op.nn.relu(_expr.const(1, dtype=dtype) - _op.exp(data)) + _op.nn.relu(data) def celu(self, inputs, input_types): data = inputs[0] dtype = input_types[0] alpha = _expr.const(float(inputs[1]), dtype=dtype) return alpha * _op.nn.relu( _expr.const(1, dtype=dtype) - _op.exp(data / alpha) ) + _op.nn.relu(data) def gelu(self, inputs, input_types): data = inputs[0] dtype = input_types[0] # gelu is data * normcdf(data) # normcdf expressed as erf because we don't currently have that intrinsic # note that there is also a fastgelu variant approximating normcdf # with tanh and third order polynomials, but this is "true" gelu return data * ( _expr.const(0.5, dtype=dtype) + _op.erf(data * _expr.const(0.5**0.5, dtype=dtype)) * _expr.const(0.5, dtype=dtype) ) def selu(self, inputs, input_types): data = inputs[0] # https://pytorch.org/docs/stable/nn.html#selu dtype = input_types[0] alpha = _expr.const(-1.6732632423543772848170429916717, dtype=dtype) gamma = _expr.const(1.0507009873554804934193349852946, dtype=dtype) return gamma * ( alpha * _op.nn.relu(_expr.const(1.0, dtype=dtype) - _op.exp(data)) + _op.nn.relu(data) ) def silu(self, inputs, input_types): data = inputs[0] return data * _op.tensor.sigmoid(data) def glu(self, inputs, input_types): """ Applies the gated linear unit function GLU(a,b)= a * sigmoid(b) where a is the first half of the input matrices and b is the second half. Link: https://pytorch.org/docs/stable/generated/torch.nn.GLU.html """ data = inputs[0] dim = inputs[1] relay_tup = _op.transform.split(data, 2, dim) return relay_tup[0] * _op.tensor.sigmoid(relay_tup[1]) def log_sigmoid(self, inputs, input_types): data = inputs[0] mn = _op.minimum(_op.const(0, dtype=input_types[0]), data) z = _op.exp(-_op.abs(data)) return mn - self.log1p([z], input_types) def cross_entropy_loss_with_logits(self, inputs, input_types): input = inputs[0] target = inputs[1] weights = inputs[2] reduction = inputs[3] ignore_index = inputs[4] label_smoothing = inputs[5] input_shape = self.infer_shape(input) target_shape = self.infer_shape(target) if input_shape != target_shape: if reduction == 0: reduction = "none" elif reduction == 1: reduction = "mean" else: reduction = "sum" num_class = self.infer_shape(input)[1] if weights is None: weights = _op.full(_expr.const(1), (num_class,), dtype=input_types[0]) return _op.nn.nll_loss( _op.nn.log_softmax(input), target, weights, reduction, ignore_index ) assert reduction == 1, "reduction not supported in cross_entropy_loss" assert ignore_index == -100, "ignore_index not supported in cross_entropy_loss" assert label_smoothing == 0.0, "label_smoothing not supported in cross_entropy_loss" assert weights is None, "weight not supported in cross_entropy_loss" return _op.nn.cross_entropy_with_logits(_op.nn.log_softmax(input), target) def l1_loss(self, inputs, input_types): assert len(inputs) == 3 [predictions, targets, reduction] = inputs delta = _op.abs(_op.subtract(predictions, targets)) if reduction == 0: # reduction = "none" return delta elif reduction == 1: # reduction = "mean" return _op.mean(delta) else: # reduction = "sum" return _op.sum(delta) def mse_loss(self, inputs, input_types): assert len(inputs) == 3 [predictions, targets, reduction] = inputs delta = _op.subtract(predictions, targets) delta = _op.power(delta, _expr.const(2, input_types[0])) if reduction == 0: # reduction = "none" return delta elif reduction == 1: # reduction = "mean" return _op.mean(delta) else: # reduction = "sum" return _op.sum(delta) def hard_sigmoid(self, inputs, input_types): def _relu6(x): return _op.tensor.clip(x, 0.0, 6.0) def func(x): return _relu6(x + _expr.const(3.0)) / _expr.const(6.0) if self.is_quantized_tensor(inputs[0]): input_scale = _expr.const(inputs[1]) input_zero_point = _expr.const(inputs[2]) # PyTorch seems to use the following output qparams, but accuracy # is broken if we use this. # TODO(masahi): Revisit this parameter choice # # Taken from src/ATen/native/quantized/cpu/kernels/QuantizedOpKernels.cpp # output_scale = _expr.const(0.00390625) # 1.0 / 2^8 # output_zero_point = _expr.const(-128) output_scale = input_scale output_zero_point = input_zero_point data = qnn.op.dequantize(inputs[0], input_scale, input_zero_point, axis=1) out = func(data) return qnn.op.quantize(out, output_scale, output_zero_point, out_dtype="uint8") return func(inputs[0]) def hard_swish(self, inputs, input_types): data = inputs[0] return data * self.hard_sigmoid(inputs, input_types) def adaptive_avg_pool(self, op, inputs, input_types): data = inputs[0] output_size = inputs[1] def func(x): return op(x, output_size=output_size) if self.is_quantized_tensor(data): return qnn_torch.apply_with_upcast(data, func) return func(data) def adaptive_max_pool(self, op, inputs, input_types): data = inputs[0] output_size = inputs[1] # returns dummy indices too return op(data, output_size=output_size), None @staticmethod def convert_const_list(data): if isinstance(data, list): for i, _ in enumerate(data): if isinstance(data[i], _expr.Expr): data[i] = int(_infer_value_simulated(data[i], {}).numpy()) return data def maxpool_2d(self, inputs, input_types): data = inputs[0] pool_size = self.convert_const_list(inputs[1]) strides = self.convert_const_list(inputs[2] if inputs[2] else pool_size) padding = inputs[3] dilation = inputs[4] ceil_mode = int(inputs[5]) return _op.nn.max_pool2d( data, pool_size=pool_size, strides=strides, dilation=dilation, padding=padding, layout="NCHW", ceil_mode=ceil_mode, ) def maxpool_2d_with_indices(self, inputs, input_types): # returns dummy indices too return self.maxpool_2d(inputs, input_types), None def maxpool_1d(self, inputs, input_types): data = inputs[0] pool_size = inputs[1] strides = inputs[2] if inputs[2] else pool_size padding = inputs[3] dilation = inputs[4] ceil_mode = int(inputs[5]) return _op.nn.max_pool1d( data, pool_size=pool_size, strides=strides, dilation=dilation, padding=padding, layout="NCW", ceil_mode=ceil_mode, ) def maxpool_3d(self, inputs, input_types): data = inputs[0] need_squeeze = False if len(self.get_dims(data)) == 4: need_squeeze = True data = _op.expand_dims(data, 0) pool_size = inputs[1] strides = inputs[2] if inputs[2] else pool_size padding = inputs[3] dilation = inputs[4] ceil_mode = int(inputs[5]) res = _op.nn.max_pool3d( data, pool_size=pool_size, strides=strides, dilation=dilation, padding=padding, ceil_mode=ceil_mode, ) return res if not need_squeeze else _op.squeeze(res, [0]) def hardtanh(self, inputs, input_types): a = inputs[0] tanh_min = float(inputs[1]) tanh_max = float(inputs[2]) return _op.tensor.clip(a, tanh_min, tanh_max) def convolution(self, inputs, input_types): # Use transpose or normal use_transpose = True if inputs[6] == 1 else False data = inputs[0] weight = inputs[1] bias = inputs[2] strides = tuple(inputs[3]) padding = tuple(inputs[4]) dilation = tuple(inputs[5]) if isinstance(weight, _expr.Expr): inferred_shape = self.infer_shape(weight) weight_shape = [] for infer in inferred_shape: weight_shape.append(infer) else: msg = "Data type %s could not be parsed in conv op" % (type(weight)) raise AssertionError(msg) groups = int(inputs[8]) if use_transpose: channels = weight_shape[1] * groups in_channels = weight_shape[0] else: channels = weight_shape[0] in_channels = weight_shape[1] # Check if this is depth wise convolution # We need to reshape weight so that Relay could recognize this is depth wise # weight_shape[1] is always in_channels // groups # For depthwise, in_channels == groups, so weight_shape[1] == 1 # If groups > 1 but weight_shape[1] != 1, this is group convolution if groups > 1 and in_channels == 1: channel_multiplier = channels // groups new_weight_shape = (groups, channel_multiplier) + tuple(weight_shape[2:]) weight = _op.transform.reshape(weight, new_weight_shape) kernel_size = weight_shape[2:] use_bias = isinstance(bias, _expr.Expr) # We are trying to invoke various relay operations through a single conv_op variable. # However the function signatures for some operations have additional attributes so we # pass these in along with the standard ones. additional_arguments = dict() if use_transpose: if len(kernel_size) == 3: conv_op = _op.nn.conv3d_transpose elif len(kernel_size) == 2: conv_op = _op.nn.conv2d_transpose else: conv_op = _op.nn.conv1d_transpose output_padding = tuple(inputs[7]) additional_arguments["output_padding"] = output_padding else: if len(kernel_size) == 3: conv_op = _op.nn.conv3d elif len(kernel_size) == 2: conv_op = _op.nn.conv2d else: conv_op = _op.nn.conv1d if len(kernel_size) == 3: data_layout = "NCDHW" kernel_layout = "OIDHW" elif len(kernel_size) == 2: data_layout = "NCHW" kernel_layout = "OIHW" if use_transpose: # Transposed convolutions have IOHW layout. kernel_layout = "IOHW" else: data_layout = "NCW" kernel_layout = "OIW" # Conv1d does not currently support grouped convolution so we convert it to conv2d is_grouped_conv1d = False if groups > 1 and len(kernel_size) == 1 and not use_transpose: is_grouped_conv1d = True conv_op = _op.nn.conv2d kernel_size = [1] + kernel_size strides = (1,) + strides padding = (0,) + padding dilation = (1,) + dilation data = _op.expand_dims(data, axis=2) weight = _op.expand_dims(weight, axis=2) data_layout = "NCHW" kernel_layout = "OIHW" conv_out = conv_op( data, weight, strides=strides, padding=padding, dilation=dilation, groups=groups, channels=channels, kernel_size=kernel_size, data_layout=data_layout, kernel_layout=kernel_layout, out_layout="", out_dtype="", **additional_arguments, ) if use_bias: res = _op.nn.bias_add(conv_out, bias) else: res = conv_out if is_grouped_conv1d: # Because we conducted grouped conv1d convolution through conv2d we must # squeeze the output to get the correct result. res = _op.squeeze(res, axis=[2]) return res def softmax(self, inputs, input_types): data = inputs[0] axis = inputs[1] if isinstance(axis, str): axis = int(axis) return _op.nn.softmax(data, axis=axis) def threshold(self, inputs, input_types): data = inputs[0] return _op.nn.relu(data) def contiguous(self, inputs, input_types): return inputs[0] def batch_norm(self, inputs, input_types): data = inputs[0] data_type = input_types[0] channels = self.infer_shape(data) if isinstance(inputs[1], _expr.Expr) and isinstance(inputs[2], _expr.Expr): scale = center = True weight = inputs[1] beta = inputs[2] gamma = weight else: scale = center = False if not scale: gamma = _create_typed_const(np.ones([int(channels[1])]), data_type) if not center: beta = _create_typed_const(np.zeros([int(channels[1])]), data_type) moving_mean = inputs[3] moving_var = inputs[4] epsilon = float(inputs[7]) return _op.nn.batch_norm( data, gamma, beta, moving_mean, moving_var, axis=1, epsilon=epsilon, center=center, scale=scale, )[0] def instance_norm(self, inputs, input_types): data = inputs[0] data_type = input_types[0] channels = self.infer_shape(data) if isinstance(inputs[1], _expr.Expr) and isinstance(inputs[2], _expr.Expr): scale = center = True weight = inputs[1] beta = inputs[2] gamma = weight else: scale = center = False if not scale: gamma = _create_typed_const(np.ones([int(channels[1])]), data_type) if not center: beta = _create_typed_const(np.zeros([int(channels[1])]), data_type) epsilon = float(inputs[7]) return _op.nn.instance_norm( data, gamma, beta, axis=1, epsilon=epsilon, center=center, scale=scale ) def get_dims(self, data): import torch if isinstance(data, _expr.Expr): dims = self.infer_shape(data) elif isinstance(data, list): dims = data elif isinstance(data, (torch.Tensor, np.ndarray)): dims = data.shape else: msg = "Data type %s could not be parsed" % type(data) raise AssertionError(msg) return dims def layer_norm(self, inputs, input_types): data = inputs[0] ndims = len(self.get_dims(inputs[1])) assert ndims == 1, "Support only normalization over last one dimension." return _op.nn.layer_norm( data, gamma=inputs[2], beta=inputs[3], axis=-1, epsilon=float(inputs[4]), center=True, scale=True, ) def group_norm(self, inputs, input_types): data = inputs[0] gamma = inputs[2] beta = inputs[3] num_groups = inputs[1] epsilon = float(inputs[4]) return _op.nn.group_norm( data, gamma=gamma, beta=beta, num_groups=num_groups, axis=1, epsilon=epsilon, center=True, scale=True, ) def transpose(self, inputs, input_types): data = inputs[0] import torch if isinstance(data, _expr.Expr): ndims = len(self.infer_shape_with_prelude(data)) elif isinstance(data, list): ndims = data elif isinstance(data, (torch.Tensor, np.ndarray)): ndims = data.shape else: msg = "Data type %s could not be parsed in transpose op" % (type(data)) raise AssertionError(msg) if isinstance(data, tvm.runtime.NDArray): ndims = len(data.shape) axes = list(range(ndims)) num_inputs = len(inputs) if num_inputs == 1: if ndims >= 2: axes[-1] = ndims - 2 axes[-2] = ndims - 1 if not isinstance(data, _expr.Expr): data = _expr.const(data) elif num_inputs == 3: parse = lambda i: ndims * (i < 0) + i src, dst = [parse(int(inputs[i])) for i in [1, 2]] axes[src] = dst axes[dst] = src else: axes = inputs[1] return _op.transform.transpose(data, axes) def numpy_T(self, inputs, input_types): data = inputs[0] shape = self.infer_shape(data) if len(shape) != 2: logger.warning( "The use of Tensor.T on tensors of dimensions != 2 is deprecated" "and will be removed in a future release of PyTorch." ) return _op.transform.transpose(data) def flatten(self, inputs, input_types): data = inputs[0] start = int(inputs[1]) end = int(inputs[2]) dshape = get_const_tuple(self.infer_shape_with_prelude(data)) ndim = len(dshape) if start < 0: start += ndim if end < 0: end += ndim assert start <= end, "start dim cannot come after end dim" new_shape = [0] * start new_shape.append(-1) squeeze_axes = [] for i in range(start + 1, end + 1): new_shape.append(1) squeeze_axes.append(i) for _ in range(end + 1, ndim): new_shape.append(0) out = _op.reshape(data, new_shape) if squeeze_axes: out = _op.squeeze(out, axis=squeeze_axes) return out def addmm(self, inputs, input_types): input_mat = inputs[0] mat1 = inputs[1] data_type = input_types[1] mat2 = inputs[2] beta = inputs[3] alpha = inputs[4] if not isinstance(alpha, _expr.Expr) and alpha != 1: alpha = _create_typed_const(alpha, data_type) mat1 *= alpha if not isinstance(beta, _expr.Expr) and beta != 1: beta = _create_typed_const(beta, data_type) mat2 *= beta transposed_mat2 = _op.transform.transpose(mat2, axes=[1, 0]) units = self.infer_shape(transposed_mat2)[0] dense_out = _op.nn.dense(mat1, transposed_mat2, units=units) return dense_out + input_mat def size(self, inputs, input_types): shape = self.infer_shape_with_prelude(inputs[0]) axis = None if len(inputs) > 1: axis = int(inputs[1]) if any(map(lambda s: isinstance(s, tvm.tir.expr.Any), shape)): if axis is None or isinstance(shape[axis], tvm.tir.expr.Any): shape_dynamic = _op.shape_of(inputs[0], dtype="int32") if axis is not None: return _op.take(shape_dynamic, _expr.const(axis), 0) return shape_dynamic if axis is not None: return _expr.const(shape[axis]) return _expr.const(shape) def numtotensor(self, inputs, input_types): val = inputs[0] dtype = input_types[0] if isinstance(val, _expr.Expr): return val if isinstance(val, tvm.tir.IntImm): val = val.__int__() dtype = int arr = val * np.ones([]).astype(dtype) return arr def tensortonum(self, inputs, input_types): return inputs[0] def view(self, inputs, input_types): data = inputs[0] if len(inputs) == 3: shape_inp = [inputs[1], self.infer_shape(inputs[2])[0]] else: if isinstance(inputs[1], list): shape_inp = inputs[1] else: shape_inp = self.infer_shape(inputs[1]) new_shape = shape_inp for i, shape in enumerate(shape_inp): if isinstance(shape, _expr.Expr): val = _infer_value_simulated(shape, {}) new_shape[i] = val.numpy().item(0) return _op.transform.reshape(data, new_shape) def reshape(self, inputs, input_types): data = inputs[0] new_shape = inputs[1] tmp_shape = [] is_dyn = False for s in new_shape: if isinstance(s, _expr.Constant): tmp_shape.append(int(s.data.numpy())) elif isinstance(s, _expr.Expr): dim, success = try_infer_value(s, lambda ret: int(ret)) tmp_shape.append(dim) if not success: is_dyn = True else: tmp_shape.append(s) if is_dyn: new_shape = [] for i, s in enumerate(tmp_shape): if not isinstance(s, _expr.Expr): s = _expr.const(s, "int64") else: s = _op.cast(s, "int64") new_shape.append(_op.expand_dims(s, axis=0)) new_shape = _op.concatenate(new_shape, axis=0) else: new_shape = tmp_shape return _op.transform.reshape(data, new_shape) def reshape_as(self, inputs, input_types): data = inputs[0] new_shape = self.infer_shape(inputs[1]) return _op.transform.reshape(data, new_shape) def pixel_shuffle(self, inputs, input_types): data = inputs[0] upscale_factor = inputs[1] upscale_squared = upscale_factor * upscale_factor b, c, h, w = self.infer_shape(data) assert ( c % upscale_squared == 0 ), "input channel should be divisible by square of upscale_factor" ndims = len(self.infer_shape_with_prelude(data)) axes = list(range(ndims)) num_inputs = len(inputs) oc = c // upscale_squared oh = h * upscale_factor ow = w * upscale_factor new_shape = [b, oc, upscale_factor, upscale_factor, h, w] out_shape = [b, oc, oh, ow] data = _op.transform.reshape(data, new_shape) # The data will be transposed to # [b, oc, h, upscale_factor, w, upscale_factor] # for further reshape axes = [0, 1, 4, 2, 5, 3] data = _op.transform.transpose(data, axes) return _op.transform.reshape(data, out_shape) def clone(self, inputs, input_types): data = inputs[0] return _op.tensor.copy(data) def log_softmax(self, inputs, input_types): data = inputs[0] axis = int(inputs[1]) return _op.nn.log_softmax(data, axis) def sigmoid(self, inputs, input_types): data = inputs[0] def func(x): return _op.tensor.sigmoid(x) if self.is_quantized_tensor(data): assert len(inputs) == 5, "Input/Ouput quant param not found in op inputs" return qnn_torch.quantized_sigmoid(inputs) return func(data) def softplus(self, inputs, input_types): dtype = input_types[0] beta = _expr.const(float(inputs[1]), dtype=dtype) return _op.log(_op.exp(inputs[0] * beta) + _expr.const(1.0, dtype=dtype)) / beta def make_avg_pool(self, dim): def avg_pool(inputs, input_types): data = inputs[0] pool_size = self.convert_const_list(inputs[1]) strides = self.convert_const_list(inputs[2] if inputs[2] else pool_size) padding = inputs[3] ceil_mode = int(inputs[4]) count_include_pad = int(inputs[5]) def func(x): if dim == 1: return _op.nn.avg_pool1d( x, pool_size=pool_size, strides=strides, padding=padding, dilation=(1,), ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) elif dim == 2: return _op.nn.avg_pool2d( x, pool_size=pool_size, strides=strides, padding=padding, dilation=(1, 1), ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) elif dim == 3: return _op.nn.avg_pool3d( x, pool_size=pool_size, strides=strides, padding=padding, dilation=(1, 1, 1), ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) else: msg = "Average Pooling dimension should be between 1 and 3" raise RuntimeError(msg) if self.is_quantized_tensor(data): return qnn_torch.apply_with_upcast(data, func) return func(data) return avg_pool def linear(self, inputs, input_types): # https://pytorch.org/docs/stable/nn.functional.html#linear # 0 - input # 1 - weight bias = inputs[2] a_shape = self.infer_shape_with_prelude(inputs[0]) b_shape = self.infer_shape_with_prelude(inputs[1]) if len(a_shape) == 2 and len(b_shape) == 2: mm_out = _op.nn.dense(inputs[0], inputs[1]) elif len(b_shape) == 1: mm_out = self.matmul([inputs[0], inputs[1]], input_types[:2]) else: mm_out = self.matmul( [inputs[0], _op.transpose(inputs[1], axes=(1, 0))], input_types[:2] ) if isinstance(bias, _expr.Expr): bias_ndims = len(self.infer_shape_with_prelude(bias)) if bias_ndims == 1: return _op.nn.bias_add(mm_out, bias, axis=-1) mm_dtype = self.infer_type_with_prelude(mm_out).dtype return self.add([mm_out, bias], [mm_dtype, input_types[2]]) return mm_out def dropout(self, inputs, input_types): data = inputs[0] rate = float(inputs[1]) return _op.nn.dropout(data, rate) def make_reduce(self, name): def reduce(inputs, input_types): data = inputs[0] axis = None keepdims = False if len(inputs) > 2: # default, torch have only data, axis=None, keepdims=False if isinstance(inputs[1], int): axis = int(inputs[1]) elif _is_int_seq(inputs[1]): axis = inputs[1] else: axis = list(self.infer_shape(inputs[1])) keepdims = bool(inputs[2]) return get_relay_op(name)(data, axis=axis, keepdims=keepdims) return reduce def norm(self, inputs, input_types): data = inputs[0] dtype = input_types[0] axis = None keepdims = False if len(inputs) > 3: axis = inputs[2] keepdims = bool(inputs[3]) order = inputs[1] if order == np.inf: return _op.reduce.max(_op.abs(data), axis=axis, keepdims=keepdims) elif order == np.NINF: return _op.reduce.min(_op.abs(data), axis=axis, keepdims=keepdims) else: reci_order = _expr.const(1.0 / order, dtype=dtype) order = _expr.const(order) return _op.power( _op.reduce.sum(_op.power(_op.abs(data), order), axis=axis, keepdims=keepdims), reci_order, ) def frobenius_norm(self, inputs, input_types): data = inputs[0] axis = None keepdims = False if len(inputs) > 2: axis = inputs[1] if len(inputs[1]) > 0 else None keepdims = bool(inputs[2]) return _op.sqrt(_op.reduce.sum((data * data), axis=axis, keepdims=keepdims)) def std(self, inputs, input_types): data = inputs[0] if len(inputs) == 2: axis = None keepdims = False unbiased = bool(inputs[1]) else: axis = inputs[1] keepdims = bool(inputs[3]) unbiased = bool(inputs[2]) return _op.reduce.std(data, axis=axis, keepdims=keepdims, unbiased=unbiased) def variance(self, inputs, input_types): data = inputs[0] if len(inputs) == 2: axis = None keepdims = False unbiased = bool(inputs[1]) else: axis = inputs[1] keepdims = bool(inputs[3]) unbiased = bool(inputs[2]) return _op.reduce.variance(data, axis=axis, keepdims=keepdims, unbiased=unbiased) def mean(self, inputs, input_types): data = inputs[0] if inputs[1]: axis = inputs[1] else: axis = None if len(inputs) > 2 and inputs[2]: keepdims = int(inputs[2]) else: keepdims = False if len(inputs) > 3 and inputs[3]: exclude = int(inputs[3]) else: exclude = False def func(x): return _op.mean(x, axis, keepdims, exclude) if self.is_quantized_tensor(data): assert len(inputs) == 6, "Input quant param not found in op inputs" input_scale = _expr.const(inputs[4]) input_zero_point = _expr.const(inputs[5]) # refer to aten/src/ATen/native/quantized/cpu/qreduction.cpp return qnn_torch.apply_with_fp32_fallback(data, input_scale, input_zero_point, func) return func(data) def var_mean(self, inputs, input_types): data = inputs[0] if len(inputs) == 2: axis = None keepdims = False unbiased = bool(inputs[1]) else: axis = inputs[1] keepdims = bool(inputs[3]) unbiased = bool(inputs[2]) m, v = _op.reduce.mean_variance(data, axis, keepdims, False, unbiased) return v, m def chunk(self, inputs, input_types): data = inputs[0] num_chunks = int(inputs[1]) axis = int(inputs[2]) if isinstance(data, _expr.Expr): inferred_shape = self.infer_shape_with_prelude(data) shape = [] for infer in inferred_shape: shape.append(infer) dim = int(shape[axis]) if dim % num_chunks: unif_size = int(dim / (num_chunks - 1)) else: unif_size = int(dim / num_chunks) indeces = [] for i in range(unif_size, dim, unif_size): indeces.append(i) return _op.split(data, indeces, axis) def matmul(self, inputs, input_types): inputs_0 = inputs[0] inputs_1 = inputs[1] # Need to check input shape as batch matmul must be supported. a_shape = self.infer_shape_with_prelude(inputs_0) b_shape = self.infer_shape_with_prelude(inputs_1) # When performing a batch matmul, we need to properly handle N-dim shapes. if len(a_shape) > 2 and len(b_shape) > 2: # Convert a into a 3 dimensional tensors. need_reshape_output = False if len(a_shape) != 3: a = _op.reshape(inputs_0, [-1, a_shape[-2], a_shape[-1]]) need_reshape_output = True else: a = inputs_0 # Transpose matrix dimensions of b. trans_axes = list(range(len(b_shape))) trans_axes[-2], trans_axes[-1] = trans_axes[-1], trans_axes[-2] b = _op.transpose(inputs_1, trans_axes) # Convert b into a 3 dimensional tensor. Note that the last two dimensions # are transposed. if len(b_shape) != 3: b = _op.reshape(b, [-1, b_shape[-1], b_shape[-2]]) # Perform a batch matmul. output = _op.nn.batch_matmul(a, b) # Reshape output to original dimensions. if need_reshape_output: return _op.reshape(output, [*a_shape[:-2], a_shape[-2], b_shape[-1]]) return output elif len(a_shape) > 2: inputs_0 = _op.reshape(inputs_0, [-1, a_shape[-1]]) elif len(a_shape) == 1: return _op.squeeze(_op.nn.matmul(_op.expand_dims(inputs_0, axis=0), inputs_1), axis=[0]) if len(b_shape) > 2: trans_axes = list(range(len(b_shape))) trans_axes[-2], trans_axes[-1] = trans_axes[-1], trans_axes[-2] input_1 = _op.reshape(_op.transpose(inputs_1, trans_axes), [-1, b_shape[-2]]) elif len(b_shape) == 2: input_1 = _op.transpose(inputs_1, axes=(1, 0)) elif len(b_shape) == 1: input_1 = _op.expand_dims(inputs_1, 0, 1) out = _op.nn.dense(inputs_0, input_1) if len(b_shape) == 1: out = _op.squeeze(out, axis=[-1]) # Reshape output into a N dimensional tensor when a or b dim > 2 if len(a_shape) > 2: out = _op.reshape(out, [*a_shape[:-1], b_shape[-1]]) elif len(b_shape) > 2: out = _op.reshape(out, [a_shape[-2], -1, b_shape[-1]]) out = _op.reshape( _op.transpose(out, [1, 0, 2]), [*b_shape[:-2], a_shape[-2], b_shape[-1]] ) return out def expand(self, inputs, input_types): data_in = inputs[0] shape = list(self.infer_shape(data_in)) ndims = len(shape) sizes = inputs[1] out = data_in out_dims = len(sizes) if ndims < out_dims: num_newaxis = out_dims - ndims out = _op.expand_dims(out, axis=0, num_newaxis=num_newaxis) shape = [1] * num_newaxis + shape for i in range(out_dims): if sizes[i] != -1 and shape[i] == 1: if not isinstance(sizes[i], int): sizes[i] = int(_infer_value(sizes[i], {}).numpy()) out = _op.repeat(out, sizes[i], axis=i) return out def int(self, inputs, input_types): if isinstance(inputs[0], _expr.Expr): return inputs[0] return int(inputs[0]) def identity(self, inputs, input_types): return inputs[0] def none(self, inputs, input_types): return None def pad_common(self, mode, pad_value, inputs, input_types): data = inputs[0] if isinstance(inputs[1], list): pad_list = inputs[1] else: pad_list = list(self.infer_shape(inputs[1])) # initialize paddings based on input len pad_len = len(self.infer_shape(data)) * 2 paddings = [0] * pad_len if len(pad_list) >= 2: paddings[-1] = pad_list[1] paddings[-2] = pad_list[0] if len(pad_list) >= 4: paddings[-3] = pad_list[3] paddings[-4] = pad_list[2] if len(pad_list) >= 6: paddings[-5] = pad_list[5] paddings[-6] = pad_list[4] # group into tuple of 2 ints paddings = [paddings[i : i + 2] for i in range(0, len(paddings), 2)] const_paddings = [] non_zero_found = False for pad in paddings: const_paddings.append([]) for p in pad: if isinstance(p, _expr.Expr): p = int(_infer_value(p, {}).numpy()) elif not isinstance(p, int): raise NotImplementedError("pad width should be int/expr") const_paddings[-1].append(p) if p != 0: non_zero_found = True if not non_zero_found: return data elif mode == "constant": return _op.nn.pad(data, const_paddings, pad_value=pad_value, pad_mode=mode) else: return _op.nn.pad(data, const_paddings, pad_mode=mode) def pad(self, inputs, input_types): # mode: Optional default "constant" if len(inputs) > 2 and inputs[2] is not None: mode = inputs[2] else: mode = "constant" # pad_value: Optional default 0 if len(inputs) == 4 and inputs[3] is not None: pad_value = inputs[3] else: pad_value = 0 # replicate is edge in TVM's padding mode if mode == "replicate": mode = "edge" elif mode == "circular": raise ValueError("circular mode for torch.nn.functional.pad are not supported in TVM") return self.pad_common(mode, pad_value, inputs, input_types) def constant_pad_nd(self, inputs, input_types): return self.pad_common("constant", _expr.const(inputs[2]), inputs, input_types) def reflection_pad1d(self, inputs, input_types): return self.pad_common("reflect", 0, inputs, input_types) def reflection_pad2d(self, inputs, input_types): return self.pad_common("reflect", 0, inputs, input_types) def replication_pad1d(self, inputs, input_types): return self.pad_common("edge", 0, inputs, input_types) def replication_pad2d(self, inputs, input_types): return self.pad_common("edge", 0, inputs, input_types) def replication_pad3d(self, inputs, input_types): return self.pad_common("edge", 0, inputs, input_types) def clamp_common(self, data, min=None, max=None): def get_v(v, default_v): if isinstance(v, _expr.Constant): return float(v.data.numpy()) if isinstance(v, _expr.Expr): infer_v, success = try_infer_value(v, lambda ret: float(ret)) if success: return infer_v if v is not None: return v return default_v dtype = self.infer_type(data).dtype type_info = np.finfo(dtype) if "float" in dtype else np.iinfo(dtype) # TODO(masahi): Properly handle inf in a one-way clamp case. if min is not None and max is not None: amin = get_v(min, type_info.min) amax = get_v(max, type_info.max) elif min is not None: amin = get_v(min, type_info.min) amax = type_info.max else: amin = type_info.min amax = get_v(max, type_info.max) return _op.clip(data, amin, amax) def clamp(self, inputs, _): return self.clamp_common(inputs[0], min=inputs[1], max=inputs[2]) def clamp_min(self, inputs, input_types): return self.clamp_common(inputs[0], min=inputs[1]) def clamp_max(self, inputs, input_types): return self.clamp_common(inputs[0], max=inputs[1]) def to(self, inputs, input_types): data = inputs[0] dtype = inputs[1] if inputs[1] is not None and not isinstance(inputs[1], str) else inputs[2] # special handling for aten::to(data, 6, _, _, _) case # 6 means dtype = float # this happens when converting upsampling with scale factor cast_map = { 5: "float16", 6: "float32", 7: "float64", 3: "int32", 4: "int64", } cast_func = {5: float, 6: float, 7: float, 3: int, 4: int} ret = data if isinstance(data, _expr.Expr): actual_dtype = str(self.infer_type(data).dtype) if dtype in cast_map and cast_map[dtype] != actual_dtype: ret = _op.cast(data, cast_map[dtype]) elif dtype in cast_map: ret = cast_func[dtype](data) return ret def get_upsample_out_size(self, inputs, method): # This assumes a static shape out_size = [] if inputs[1] is not None: for size in inputs[1]: if not isinstance(size, int): out_size.append(int(_infer_value(size, {}).numpy())) else: out_size.append(size) else: scale_index = 3 if method != "nearest_neighbor" else 2 scales = inputs[scale_index] assert scales is not None, "neither out size nor scale provided" assert isinstance(scales, list) ishape = self.infer_shape(inputs[0]) for i, scale in enumerate(scales): out_size.append(int(math.floor(float(ishape[2 + i]) * scale))) return out_size def make_upsample(self, method): def upsample(inputs, input_types): data = inputs[0] out_size = self.get_upsample_out_size(inputs, method) if len(inputs) > 2 and method != "nearest_neighbor": align_corners = inputs[2] else: align_corners = False if method == "nearest_neighbor": coord_trans = "asymmetric" elif align_corners: coord_trans = "align_corners" else: coord_trans = "half_pixel" def func(x): return _op.image.resize2d( x, out_size, None, "NCHW", method, coord_trans, cubic_alpha=-0.75 ) if self.is_quantized_tensor(data): # input qparams are manually appended by us assert isinstance(inputs[-2], float) assert isinstance(inputs[-1], int) input_scale = _expr.const(inputs[-2]) input_zero_point = _expr.const(inputs[-1]) # currently piggy backs to fp32, it gets identical output as torch return qnn_torch.apply_with_fp32_fallback(data, input_scale, input_zero_point, func) return func(data) return upsample def make_upsample3d(self, method): def upsample3d(inputs, input_types): data = inputs[0] out_size = self.get_upsample_out_size(inputs, method) if len(inputs) > 2 and method == "linear": align_corners = inputs[2] else: align_corners = False if method == "nearest_neighbor": coord_trans = "asymmetric" elif align_corners: coord_trans = "align_corners" else: coord_trans = "half_pixel" return _op.image.resize3d(data, out_size, None, "NCDHW", method, coord_trans) return upsample3d def expand_as(self, inputs, input_types): target = inputs[1] t0 = self.infer_type(inputs[0]).dtype t1 = self.infer_type(inputs[1]).dtype if str(t0) != str(t1): target = _op.cast(target, t0) return _op.broadcast_to_like(inputs[0], target) def broadcast_tensors(self, inputs, input_types): tensor_list = inputs[0] import torch res_shape = list(torch.broadcast_shapes(*[self.infer_shape(t) for t in tensor_list])) return [_op.broadcast_to(tensor, res_shape) for tensor in tensor_list] def Bool(self, inputs, input_types): assert len(inputs) == 1 return inputs[0] def Float(self, inputs, input_types): assert len(inputs) == 1 return _op.cast(inputs[0], "float32") def bitwise_not(self, inputs, input_types): data = inputs[0] # The input tensor must be of integral or Boolean types. # For bool tensors, it computes the logical NOT if input_types[0] == "bool": out = _op.logical_not(_op.cast(data, "bool")) else: out = _op.bitwise_not(_op.cast(data, "int")) return out def bitwise_xor(self, inputs, input_types): lhs = inputs[0] rhs = inputs[1] lhs = _op.cast(lhs, "bool") if input_types[0] == "bool" else _op.cast(lhs, "int") rhs = _op.cast(rhs, "bool") if input_types[1] == "bool" else _op.cast(rhs, "int") return _op.bitwise_xor(lhs, rhs) def logical_not(self, inputs, input_types): data = _wrap_const(inputs[0]) return _op.logical_not(_op.cast(data, "bool")) def logical_xor(self, inputs, input_types): lhs = _op.cast(inputs[0], "bool") rhs = _op.cast(inputs[1], "bool") return _op.logical_xor(lhs, rhs) def list_getitem(self, inputs, input_types): return self.prelude.nth(inputs[0], _wrap_const(inputs[1])) def list_len(self, inputs, input_types): return self.prelude.length(inputs[0]) def type_as(self, inputs, input_types): assert len(inputs) == 2 assert len(input_types) == 2 return _op.cast(inputs[0], input_types[1]) def gather(self, inputs, input_types): data = inputs[0] axis = inputs[1] indices = inputs[2] return _op.gather(data, axis, indices) def add(self, inputs, input_types): # add_ is overloaded for tensor add and list concat if input_types[0] == "ListType": return self.prelude.concat(inputs[0], inputs[1]) return self.make_elemwise("add")(inputs, input_types) def tensor_array_stack(self, inputs, input_types): dim = inputs[1] assert dim == 0, "stacking on a dynamic tensor list only supported on a first axis" tensor_array, shape = self.convert_to_tensor_array(inputs[0]) stacked_shape = (Any(),) + shape stack = self.prelude.get_global_var_static("tensor_array_stack", "float32", shape) stacked = stack(tensor_array) static_tensor_array_ops = StaticTensorArrayOps(self.prelude, "float32", stacked_shape) static_tensor_array_ops.register() get_tensor = self.prelude.get_global_var_static("tensor_get_data", "float32", stacked_shape) return get_tensor(stacked) def stack(self, inputs, input_types): if isinstance(inputs[0], list): # a static python list of tensors dim = inputs[1] return _op.stack(inputs[0], dim) else: # List ADT case assert isinstance(inputs[0], _expr.Expr) ty = self.infer_type_with_prelude(inputs[0]) list_ty = self.prelude.mod.get_global_type_var("List") msg = "The input list is expected to be List ADT" assert isinstance(ty, tvm.ir.TypeCall) and ty.func == list_ty, msg return self.tensor_array_stack(inputs, input_types) def sub(self, inputs, input_types): if len(inputs) == 3: data0, data1, alpha = self.pytorch_promote_types(inputs, input_types) return get_relay_op("subtract")(data0, alpha * data1) else: data0, data1 = self.pytorch_promote_types(inputs, input_types) return get_relay_op("subtract")(data0, data1) def rsub(self, inputs, input_types): data0, data1, alpha = self.pytorch_promote_types(inputs, input_types) # note: rsub means data0 and data1 swap places return get_relay_op("subtract")(data1, alpha * data0) def embedding(self, inputs, input_types): weight = inputs[0] indices = inputs[1] return _op.take(weight, indices.astype("int32"), axis=0) def one_hot(self, inputs, input_types): indices = inputs[0].astype("int32") num_classes = inputs[1] if num_classes == -1: msg = "Inferring the number of classes is not yet supported." raise NotImplementedError(msg) dtype = "int32" on_value = tvm.relay.const(1.0, dtype) off_value = tvm.relay.const(0.0, dtype) return _op.one_hot(indices, on_value, off_value, num_classes, -1, dtype) def index(self, inputs, input_types): data = inputs[0] indices_list = [] for indices in inputs[1]: if self.infer_type(indices).dtype == "bool": # adv_index does not support a mask as the index tensor (it will treat 0/1 as # an index rather than a flag). # So we use argwhere to turn the mask into indices, which will also take care # of the dynamism in the indexing by mask. indices_list.append(_op.squeeze(_op.transform.argwhere(indices), axis=[1])) else: indices_list.append(indices) return _op.adv_index([data] + indices_list) def meshgrid(self, inputs, input_types): data = inputs[0] return _op.meshgrid(data, indexing="ij") def nms(self, inputs, input_types): boxes = inputs[0] scores = inputs[1] iou_threshold = inputs[2] # TVM NMS assumes score > 0 scores = scores - _op.min(scores) + _op.const(1.0) num_boxes = _op.shape_of(scores) # PyTorch NMS doesn't have score_threshold, so no need to run get_valid_count indices = _op.transform.arange(_op.squeeze(num_boxes), dtype="int32") indices = _op.expand_dims(indices, 0, 1) # Generate data with shape (1, num_anchors, 5) scores = AttrCvt(op_name="expand_dims", extras={"axis": -1, "num_newaxis": 1})([scores], {}) data = _op.concatenate([scores, boxes], -1) data = _op.expand_dims(data, 0, 1) # Perform Non-Maximum Suppression, # PyTorch NMS doesn't have parameter top_k and max_output_size score_index = 0 top_k = max_out_size = -1 nms_ret = get_relay_op("non_max_suppression")( data=data, valid_count=num_boxes, indices=indices, max_output_size=max_out_size, iou_threshold=iou_threshold, force_suppress=True, top_k=top_k, coord_start=1, score_index=score_index, id_index=-1, return_indices=True, invalid_to_bottom=False, ) # squeeze the two outputs of nms for strided_slice size = get_relay_op("squeeze")(nms_ret[1], axis=[1]) data_slice = get_relay_op("squeeze")(nms_ret[0], axis=[0]) # strided slice to get the dynamic result ret = get_relay_op("strided_slice")( data_slice, begin=_expr.const([0]), end=size, slice_mode="size" ) # in torchvision, indices from nms are int64 return _op.cast(ret, "int64") def logsumexp(self, inputs, input_types): data = self.pytorch_promote_types(inputs[:1], input_types[:1]) dim_list = inputs[1] keepdim = inputs[2] if len(inputs) > 2 else False # dim is output of prim::ListConstruct, even if it is int in python code assert isinstance(dim_list, list), "dim is expected to be a list" return _op.logsumexp(data[0], axis=dim_list, keepdims=keepdim) def roi_align(self, inputs, input_types): data = inputs[0] boxes = inputs[1] output_size = (inputs[3], inputs[4]) spatial_scale = inputs[2] sample_ratio = inputs[5] aligned = False if len(inputs) < 7 else inputs[6] if aligned: boxes -= _expr.const(0.5 / spatial_scale) return _op.vision.roi_align(data, boxes, output_size, spatial_scale, sample_ratio) def deform_conv2d(self, inputs, input_types): data = inputs[0] weight = inputs[1] offset = inputs[2] if len(inputs) > 12: strides_offset = 5 bias = inputs[4] logger.warning("mask argument in deformable conv2d is not supported and ignored") else: strides_offset = 4 bias = inputs[3] strides = (inputs[strides_offset], inputs[strides_offset + 1]) padding = (inputs[strides_offset + 2], inputs[strides_offset + 3]) dilation = (inputs[strides_offset + 4], inputs[strides_offset + 5]) groups = inputs[strides_offset + 6] deformable_groups = inputs[strides_offset + 7] weight_shape = self.infer_shape(weight) output_channels = weight_shape[0] kernel_size = (weight_shape[2], weight_shape[3]) conv_out = _op.nn.deformable_conv2d( data, offset, weight, strides, padding, dilation, deformable_groups, groups, output_channels, kernel_size, ) return _op.nn.bias_add(conv_out, bias) def stft(self, inputs, input_types): data = inputs[0] n_fft = inputs[1] hop_length = inputs[2] win_length = inputs[3] window = inputs[4] normalized = inputs[5] onesided = inputs[6] return _op.stft(data, n_fft, hop_length, win_length, window, normalized, onesided) def unbind(self, inputs, input_types): data = inputs[0] axis = int(inputs[1]) return unbind(data, axis) def shape_as_tensor(self, inputs, input_types): is_symbolic_shape = False input_shape = self.infer_shape(inputs[0], self.prelude.mod) for axis in input_shape: if not isinstance(axis, (int, tvm.tir.IntImm)): is_symbolic_shape = True break if is_symbolic_shape: ret = _op.shape_of(inputs[0], dtype="int64") else: ret = _expr.const(np.array(input_shape), dtype="int64") return ret def logical_and(self, inputs, input_types): lhs = _op.cast(inputs[0], "bool") rhs = _op.cast(inputs[1], "bool") return _op.logical_and(lhs, rhs) def nonzero(self, inputs, input_types, is_numpy_style=False): data = inputs[0] ret = _op.transform.argwhere(data) if is_numpy_style or (len(inputs) > 1 and inputs[1]): return unbind(ret, 1) return ret def nonzero_numpy(self, inputs, input_types): return self.nonzero(inputs, input_types, is_numpy_style=False) def scatter(self, inputs, input_types): data = inputs[0] axis = int(inputs[1]) index = inputs[2] src = inputs[3] return _op.transform.scatter(data, index, src, axis) def index_put(self, inputs, input_types): in_tensor = inputs[0] indices = inputs[1] values = inputs[2] accumulate = inputs[3] if not accumulate: mode = "update" else: mode = "add" # Combine array of index tensors into one index tensor with shape (N,_) index_tensor = _op.stack(indices, axis=0) return _op.transform.scatter_nd(in_tensor, index_tensor, values, mode) def scalar_tensor(self, inputs, input_types): data = inputs[0] cast_map = { 6: "float32", 7: "float64", 3: "int32", 4: "int64", } type_key = inputs[1] if isinstance(data, _expr.Constant): data = data.data.numpy().tolist() return _expr.const(data, cast_map[type_key]) def interpolate(self, inputs, input_types): if isinstance(inputs[1], _expr.Expr): out_size = inputs[1] elif isinstance(inputs[1], list): out_size = [] for i in [0, 1]: size, _ = try_infer_value( inputs[1][i], lambda ret: ret.astype(np.int), lambda: _op.expand_dims(inputs[1][i], axis=0), ) out_size.append(size) out_size = _op.concatenate(out_size, axis=0) data = inputs[0] align_corners = inputs[4] method = inputs[3] if method.startswith("nearest"): method = "nearest_neighbor" elif method[0:2] == "bi": method = method[2:] if method == "nearest_neighbor": coord_trans = "asymmetric" elif align_corners: coord_trans = "align_corners" else: coord_trans = "half_pixel" return _op.image.resize2d( data, out_size, None, "NCHW", method, coord_trans, cubic_alpha=-0.75 ) def numel(self, inputs, input_types): return _op.ndarray_size(inputs[0]) def empty(self, inputs, input_types): shape = inputs[0] return _op.zeros(shape, _convert_dtype_value(inputs[1])) def empty_like(self, inputs, input_types): shape = self.infer_shape(inputs[0]) if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = input_types[0] return _op.zeros(shape, dtype) def new_empty(self, inputs, input_types): size = inputs[1] import torch if not isinstance(size, (_expr.Expr, list, tuple, torch.Size, np.ndarray)): msg = "Data type %s could not be parsed in empty op" % (type(size)) raise AssertionError(msg) if inputs[2] is not None: dtype = _convert_dtype_value(inputs[2]) else: dtype = input_types[0] return _op.zeros(size, dtype) def randn(self, inputs, input_types): import time # use current time as seed shape = inputs[0] output = _op.random.normal(_op.random.threefry_key(int(time.time())), shape) _, values = _expr.TupleWrapper(output, 2) return values def bincount(self, inputs, input_types): data = inputs[0] weights = inputs[1] input_type = self.infer_type(data).dtype if input_type == "int64": logger.warning( "Casting an int64 input to int32, since we do not have int64 atomic add" "needed for bincount yet." ) data = _op.cast(data, "int32") maximum = _op.max(data) dim = maximum + _expr.const(1, dtype="int32") if weights: weight_type = self.infer_type(weights) out_dtype = weight_type.dtype updates = weights else: out_dtype = "int32" updates = _op.ones_like(data) counts = _op.zeros(_op.reshape(dim, [1]), out_dtype) out = _op.scatter_add(counts, data, updates, axis=0) if input_type == "int32": # Torch always outputs int64 results for bincount return _op.cast(out, "int64") return out def scatter_add(self, inputs, input_types): data = inputs[0] axis = inputs[1] index = inputs[2] src = inputs[3] return _op.scatter_add(data, index, src, axis=axis) def cumsum(self, inputs, input_types): data = inputs[0] dim = inputs[1] dtype = inputs[2] if inputs[2] is not None: dtype = _convert_dtype_value(inputs[2]) return _op.cumsum(data, axis=dim, dtype=dtype) def masked_fill(self, inputs, input_types): mask = inputs[1] value = _op.cast(_wrap_const(inputs[2]), input_types[0]) return _op.where(mask, value, inputs[0]) def masked_select(self, inputs, input_types): mask = inputs[1] indices = self.nonzero([mask], input_types, is_numpy_style=True) return _op.adv_index([inputs[0]] + [indices[i] for i in range(indices.size)]) def sort(self, inputs, input_types): data = inputs[0] dim = inputs[1] is_descending = inputs[2] # pytorch sort returns both sorted indices and values indices = _op.argsort(data, dim, not is_descending) return _op.gather(data, dim, indices), indices def argsort(self, inputs, input_types): data = inputs[0] dim = inputs[1] is_descending = inputs[2] return _op.argsort(data, dim, not is_descending) def is_floating_point(self, inputs, input_types): assert len(inputs) == 1 if isinstance(inputs[0], _expr.Expr): input_type = self.infer_type(inputs[0]).dtype else: input_type = input_types[0] is_float = input_type in ["float32", "float64", "float16", "bfloat16"] return _expr.const(is_float) def unique(self, inputs, input_types): assert len(inputs) == 4 [data, is_sorted, return_inverse, return_counts] = inputs if not is_sorted: logger.warning("TVM always assumes sorted=True for torch.unique") is_sorted = True if return_counts: [unique, indices, inverse_indices, num_uniq, counts] = _op.unique( data, is_sorted=is_sorted, return_counts=True ) unique_sliced = _op.strided_slice(unique, begin=[0], end=num_uniq, slice_mode="size") counts_sliced = _op.strided_slice(counts, begin=[0], end=num_uniq, slice_mode="size") return (unique_sliced, inverse_indices, counts_sliced) else: [unique, indices, inverse_indices, num_uniq] = _op.unique( data, is_sorted=is_sorted, return_counts=False ) unique_sliced = _op.strided_slice(unique, begin=[0], end=num_uniq, slice_mode="size") return (unique_sliced, inverse_indices) def nll_loss(self, inputs, input_types): assert len(inputs) == 5 [predictions, targets, weights, reduction, ignore_index] = inputs num_class = self.infer_shape(predictions)[1] if reduction == 0: reduction = "none" elif reduction == 1: reduction = "mean" else: reduction = "sum" if weights is None: weights = _op.full(_expr.const(1), (num_class,), dtype=input_types[0]) return _op.nn.nll_loss(predictions, targets, weights, reduction, ignore_index) def flip(self, inputs, input_types): data = inputs[0] axis = inputs[1] return _op.transform.reverse(data, axis=axis[0]) def bidir_rnn_cell(self, input_seqs, weights_dicts, act=_op.tanh): """ Bidirectional RNN cell """ seq_len = len(input_seqs) forward_outputs, fw_H_t = rnn_cell(input_seqs, **weights_dicts[0], backwards=False, act=act) reverse_outputs, rev_H_t = rnn_cell(input_seqs, **weights_dicts[1], backwards=True, act=act) final_outputs = [] for i in range(seq_len): final_outputs.append( _op.concatenate([forward_outputs[i], reverse_outputs[seq_len - 1 - i]], axis=-1) ) return final_outputs, _op.stack([fw_H_t, rev_H_t], axis=0) def rnn_layers(self, input_data, layer_weights_dicts, bidirectional, act, dropout_p=0.0): """ Methods iterates layers for Stacked RNN """ layers_num = len(layer_weights_dicts) # split input sequence to samples set input_seqs = unbind(input_data, 0) # [seq_num, (batch, feature_size)] output_hiddens = [] for i in range(layers_num): weights_dicts = layer_weights_dicts[i] # input_seqs shape = [seq_num, (batch, feature_size)] or # [seq_num, (batch, 2*feature_size)] for bidirectional if bidirectional: input_seqs, H_t = self.bidir_rnn_cell(input_seqs, weights_dicts, act=act) else: input_seqs, H_t = rnn_cell(input_seqs, **weights_dicts[0], act=act) output_hiddens.append(H_t) # TODO (yuanfz98): in pytorch implementation train is also checked # see https://github.com/pytorch/pytorch/blob/70c8daf43946b53af6493d058899ef952d27d339 # /aten/src/ATen/native/RNN.cpp#L1054 if dropout_p != 0 and i < layers_num - 1: # for input in input_seqs: # input = _op.dropout(input, dropout_p) raise NotImplementedError("Dropout for GRU has not been supported yet!") output_hiddens = ( _op.concatenate(output_hiddens, 0) if bidirectional else _op.stack(output_hiddens, 0) ) return _op.stack(input_seqs, 0), output_hiddens def rnn(self, inputs, input_types, nonlinearity): """ Description of RNN in pytorch: https://pytorch.org/docs/stable/generated/torch.nn.RNN.html#torch.nn.RNN Description of inputs: https://github.com/pytorch/pytorch/blob/736fb7d22cc948b739db2c35aeb5ad4d19aea4f4/torch/overrides.py#L937 """ # TODO (yuanfz98): support dropout assert len(inputs) == 9, "Input of size 9 is expected" # Unpack inputs, note that if optional and not provided then value will be None. _X = inputs[0] # _X shape (seq_num, batch, feature_size) or (batch, seq_num, feature_size) hidden_state = inputs[1] # Hidden state shape (hidden_layers_num, batch, hidden_size) _weights = inputs[2] # Wi layer[0] shape (hidden_size, feature_size) # Wh layer[0] shape (hidden_size, hidden_size) # Bi layer[0] shape (hidden_size) # Bh layer[0] shape (hidden_size) # Wi layer[>0] shape (hidden_size, hidden_size * num_directions) # Wh layer[>0] shape (hidden_size, hidden_size) # Bi layer[>0] shape (hidden_size) # Bh layer[>0] shape (hidden_size) # Scalar inputs has_biases = inputs[3] num_layers = inputs[4] dropout_p = inputs[5] # dropout probability, if 0.0 it means there is no dropout # train = inputs[6] bidirectional = inputs[7] batch_first = inputs[8] num_directions = 1 if bidirectional: num_directions = 2 rsd = len(_weights) % num_layers assert rsd == 0, "The number of weights must be a multiple of the number of layers!" rsd = (len(_weights) / num_layers) % num_directions assert ( rsd == 0 ), "The number of weights in layer must be a multiple of the number of directions!" weights_num = int(len(_weights) / num_layers / num_directions) if has_biases: assert weights_num == 4, "The weights number in layer is expected equal to 4" else: assert weights_num == 2, "The weights number in layer is expected equal to 2" if nonlinearity == "tanh": act = _op.tanh elif nonlinearity == "relu": act = _op.nn.relu assert act, "The nonlinearity is unknown" X = ( _op.transpose(_X, (1, 0, 2)) if batch_first else _X ) # always (seq_num, batch, feature_size) # TODO (yuanfz98): Which data type should be used? from input or weights? # Instead of it _infer_type(X).checked_type.dtype can be used X_dtype = input_types[0] X_shape = _infer_shape(X) # (seq_num, batch, feature_size) hidden_size = int(_infer_shape(_weights[0])[0]) batch_size = X_shape[1] # Initialize hidden states if not provided. layers_h = [] hidden_layers_num = num_directions * num_layers if hidden_state is None: h_0 = _op.zeros((batch_size, hidden_size), X_dtype) for i in range(hidden_layers_num): layers_h.append(h_0) else: layers_h = unbind(hidden_state, 0) layer_weights_dicts = [] k = 0 # layer counter if has_biases: names = ["hidden_state", "w_inp", "w_hid", "b_inp", "b_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of RNN weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) j = i + weights_num rev_tensors = [layers_h[2 * k + 1], *_weights[j : j + 4]] rev_weights_dict = dict(zip(names, rev_tensors)) layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) layer_weights_dicts.append([fw_weights_dict]) k += 1 else: names = ["hidden_state", "w_inp", "w_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of RNN weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) j = i + weights_num rev_tensors = [layers_h[2 * k + 1], *_weights[j : j + 2]] rev_weights_dict = dict(zip(names, rev_tensors)) layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of RNN weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) layer_weights_dicts.append([fw_weights_dict]) k += 1 assert ( len(layer_weights_dicts) == num_layers and k == num_layers ), "For stacked RNN number of weights sets should be the same as number of layers!" output, out_hidden_state = self.rnn_layers( X, layer_weights_dicts, bidirectional, act, dropout_p=dropout_p, ) # output shape = (seq_num, batch, hidden_size) or # (seq_num, batch, 2*feature_size) for bidirectional if batch_first: output = _op.transpose(output, (1, 0, 2)) return (output, out_hidden_state) def bidir_gru_cell( self, input_seqs, weights_dicts, ): """ Bidirectional GRU cell """ seq_len = len(input_seqs) forward_outputs, fw_H_t = gru_cell( input_seqs, **weights_dicts[0], ) reverse_outputs, rev_H_t = gru_cell( input_seqs, **weights_dicts[1], backwards=True, ) final_outputs = [] for i in range(seq_len): final_outputs.append( _op.concatenate([forward_outputs[i], reverse_outputs[seq_len - 1 - i]], axis=-1) ) return final_outputs, _op.stack([fw_H_t, rev_H_t], axis=0) def gru_layers(self, input_data, layer_weights_dicts, bidirectional, dropout_p=0.0): """ Methods iterates layers for Stacked GRU """ layers_num = len(layer_weights_dicts) # split input sequence to samples set input_seqs = unbind(input_data, 0) # [seq_num, (batch, feature_size)] output_hiddens = [] for i in range(layers_num): weights_dicts = layer_weights_dicts[i] # input_seqs shape = [seq_num, (batch, feature_size)] or # [seq_num, (batch, 2*feature_size)] for bidirectional if bidirectional: input_seqs, H_t = self.bidir_gru_cell(input_seqs, weights_dicts) else: input_seqs, H_t = gru_cell(input_seqs, **weights_dicts[0]) output_hiddens.append(H_t) # TODO (vvchernov): in pytorch implementation train is also checked # see https://github.com/pytorch/pytorch/blob/70c8daf43946b53af6493d058899ef952d27d339 # /aten/src/ATen/native/RNN.cpp#L1054 if dropout_p != 0 and i < layers_num - 1: # for input in input_seqs: # input = _op.dropout(input, dropout_p) raise NotImplementedError("Dropout for GRU has not been supported yet!") return _op.stack(input_seqs, 0), _op.stack(output_hiddens, 0) def gru(self, inputs, input_types): """ Description of GRU in pytorch: https://pytorch.org/docs/stable/generated/torch.nn.GRU.html?highlight=gru#torch.nn.GRU """ # TODO (vvchernov): support dropout assert len(inputs) == 9, "Input of size 9 is expected" # Unpack inputs, note that if optional and not provided then value will be None. _X = inputs[0] # _X shape (seq_num, batch, feature_size) or (batch, seq_num, feature_size) hidden_state = inputs[1] # Hidden state shape (hidden_layers_num, batch, hidden_size) _weights = inputs[2] # Wi layer[0] shape (3 * hidden_size, feature_size) # Wh layer[0] shape (3 * hidden_size, hidden_size) # Bi layer[0] shape (3 * hidden_size) # Bh layer[0] shape (3 * hidden_size) # Wi layer[>0] shape (3 * hidden_size, hidden_size * num_directions) # Wh layer[>0] shape (3 * hidden_size, hidden_size) # Bi layer[>0] shape (3 * hidden_size) # Bh layer[>0] shape (3 * hidden_size) # Scalar inputs has_biases = inputs[3] num_layers = inputs[4] dropout_p = inputs[5] # dropout probability, if 0.0 it means there is no dropout # train = inputs[6] bidirectional = inputs[7] batch_first = inputs[8] num_directions = 1 if bidirectional: num_directions = 2 rsd = len(_weights) % num_layers assert rsd == 0, "The number of weights must be a multiple of the number of layers!" rsd = (len(_weights) / num_layers) % num_directions assert ( rsd == 0 ), "The number of weights in layer must be a multiple of the number of directions!" weights_num = int(len(_weights) / num_layers / num_directions) if has_biases: assert weights_num == 4, "The weights number in layer is expected equal to 4" else: assert weights_num == 2, "The weights number in layer is expected equal to 2" X = _op.transpose(_X, (1, 0, 2)) if batch_first else _X # TODO (vvchernov): Which data type should be used? from input or weights? # Instead of it _infer_type(X).checked_type.dtype can be used X_dtype = input_types[0] X_shape = _infer_shape(X) # (seq_num, batch, feature_size) hidden_size = int(_infer_shape(_weights[0])[0] / 3) batch_size = X_shape[1] # Initialize hidden states if not provided. layers_h = [] hidden_layers_num = num_directions * num_layers if hidden_state is None: h_0 = _op.zeros((batch_size, hidden_size), X_dtype) for i in range(hidden_layers_num): layers_h.append(h_0) else: layers_h = unbind(hidden_state, 0) layer_weights_dicts = [] k = 0 # layer counter if has_biases: names = ["hidden_state", "w_inp", "w_hid", "b_inp", "b_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) j = i + weights_num rev_tensors = [layers_h[2 * k + 1], *_weights[j : j + 4]] rev_weights_dict = dict(zip(names, rev_tensors)) layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) layer_weights_dicts.append([fw_weights_dict]) k += 1 else: names = ["hidden_state", "w_inp", "w_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) j = i + weights_num rev_tensors = [layers_h[2 * k + 1], *_weights[j : j + 2]] rev_weights_dict = dict(zip(names, rev_tensors)) layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) layer_weights_dicts.append([fw_weights_dict]) k += 1 assert ( len(layer_weights_dicts) == num_layers and k == num_layers ), "For stacked GRU number of weights sets should be the same as number of layers!" output, out_hidden_state = self.gru_layers( X, layer_weights_dicts, bidirectional, dropout_p=dropout_p, ) # output shape = (seq_num, batch, hidden_size) or # (seq_num, batch, 2*feature_size) for bidirectional if batch_first: output = _op.transpose(output, (1, 0, 2)) return (output, out_hidden_state) def bidir_lstm_cell( self, input_seqs, weights_dicts, ): """ Bidirectional LSTM cell """ seq_len = len(input_seqs) forward_outputs, fw_H_t, fw_C_t = lstm_cell( input_seqs, **weights_dicts[0], ) reverse_outputs, rev_H_t, rev_C_t = lstm_cell( input_seqs, **weights_dicts[1], backwards=True, ) final_outputs = [] for i in range(seq_len): final_outputs.append( _op.concatenate([forward_outputs[i], reverse_outputs[seq_len - 1 - i]], axis=-1) ) return final_outputs, (fw_H_t, fw_C_t), (rev_H_t, rev_C_t) def lstm_layers(self, input_data, layer_weights_dicts, bidirectional, dtype, dropout_p=0.0): """ Methods iterates layers for Stacked LSTM """ layers_num = len(layer_weights_dicts) # split input sequence to samples set input_seqs = unbind(input_data, 0) # [seq_num, (batch, feature_size)] output_hiddens = [] for i in range(layers_num): weights_dicts = layer_weights_dicts[i] # input_seqs shape = [seq_num, (batch, feature_size)] or # [seq_num, (batch, 2*feature_size)] for bidirectional if bidirectional: input_seqs, H_t, C_t = self.bidir_lstm_cell(input_seqs, weights_dicts) else: input_seqs, H_t, C_t = lstm_cell(input_seqs, **weights_dicts[0]) output_hiddens.append((H_t, C_t)) # TODO (vvchernov): in pytorch implementation train is also checked # see https://github.com/pytorch/pytorch/blob/70c8daf43946b53af6493d058899ef952d27d339 # /aten/src/ATen/native/RNN.cpp#L1054 if dropout_p != 0 and i < layers_num - 1: # for input in input_seqs: # input = _op.dropout(input, dropout_p) raise NotImplementedError("Dropout for LSTM has not been supported yet!") final_hiddens = [] if bidirectional: for output_hidden in output_hiddens: final_hiddens.append(output_hidden[0]) final_hiddens.append(output_hidden[1]) else: final_hiddens = output_hiddens return _op.stack(input_seqs, 0), final_hiddens def lstm(self, inputs, input_types): """ Description of LSTM in pytorch:https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html Native implementation for torch version less than 1.8.0 (projection is unsupported): https://github.com/pytorch/pytorch/blob/70c8daf43946b53af6493d058899ef952d27d339/aten/ \ src/ATen/native/RNN.cpp#L1396 Native implementation for torch version from 1.8.0 and higher (projection is supported): https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/RNN.cpp#L1483 """ # TODO (vvchernov): support dropout assert len(inputs) == 9, "Input of size 9 is expected" # Unpack inputs, note that if optional and not provided then value will be None. _X = inputs[0] # _X shape (seq_num, batch, feature_size) or (batch, seq_num, feature_size) hidden_states = inputs[1] assert len(hidden_states) == 2, "lstm expects two hidden states" h_0 = hidden_states[0] c_0 = hidden_states[1] # H0 shape (hidden_layers_num, batch, proj_size) if projection # else (hidden_layers_num, batch, hidden_size) # C0 shape (hidden_layers_num, batch, hidden_size) _weights = inputs[2] # If no projection # Wi layer[0] shape (4 * hidden_size, feature_size) # Wh layer[0] shape (4 * hidden_size, hidden_size) # Bi layer[0] shape (4 * hidden_size) # Bh layer[0] shape (4 * hidden_size) # Wi layer[>0] shape (4 * hidden_size, hidden_size * num_directions) # Wh layer[>0] shape (4 * hidden_size, hidden_size) # Bi layer[>0] shape (4 * hidden_size) # Bh layer[>0] shape (4 * hidden_size) # If projection # Wi layer[0] shape (4 * hidden_size, feature_size) # Wh layer[0] shape (4 * hidden_size, proj_size) # Bi layer[0] shape (4 * hidden_size) # Bh layer[0] shape (4 * hidden_size) # P layer[0] shape (proj_size, hidden_size) # Wi layer[>0] shape (4 * hidden_size, proj_size * num_directions) # Wh layer[>0] shape (4 * hidden_size, proj_size) # Bi layer[>0] shape (4 * hidden_size) # Bh layer[>0] shape (4 * hidden_size) # P layer[>0] shape (proj_size, hidden_size) # Scalar inputs has_biases = inputs[3] num_layers = inputs[4] dropout_p = inputs[5] # dropout probability, if 0.0 it means there is no dropout # train = inputs[6] bidirectional = inputs[7] batch_first = inputs[8] num_directions = 1 if bidirectional: num_directions = 2 rsd = len(_weights) % num_layers assert rsd == 0, "The number of weights must be a multiple of the number of layers!" rsd = (len(_weights) / num_layers) % num_directions assert ( rsd == 0 ), "The number of weights in layer must be a multiple of the number of directions!" has_proj = False proj_size = 0 weights_num = int(len(_weights) / num_layers / num_directions) if has_biases: if weights_num == 5: has_proj = True proj_size = _infer_shape(_weights[4])[0] else: assert weights_num == 4, "The weights number in layer is expected equal to 4" else: if weights_num == 3: has_proj = True proj_size = _infer_shape(_weights[2])[0] else: assert weights_num == 2, "The weights number in layer is expected equal to 2" X = _op.transpose(_X, (1, 0, 2)) if batch_first else _X # TODO (vvchernov): Which data type should be used? from input or weights? # Instead of it _infer_type(X).checked_type.dtype can be used X_dtype = input_types[0] X_shape = _infer_shape(X) # (seq_num, batch, feature_size) hidden_size = _infer_shape(_weights[0])[0] / 4 batch_size = X_shape[1] # Initialize hidden states if not provided. layers_h = [] layers_c = [] hidden_layers_num = num_directions * num_layers if h_0 is None: if has_proj: h_0 = _op.zeros((batch_size, proj_size), X_dtype) else: h_0 = _op.zeros((batch_size, hidden_size), X_dtype) for i in range(hidden_layers_num): layers_h.append(h_0) else: layers_h = unbind(h_0, 0) if c_0 is None: c_0 = _op.zeros((batch_size, hidden_size), X_dtype) for i in range(hidden_layers_num): layers_c.append(c_0) else: layers_c = unbind(c_0, 0) layer_weights_dicts = [] k = 0 # layer counter if has_biases: names = ["hidden_state", "cell_state", "w_inp", "w_hid", "b_inp", "b_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of LSTM weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], layers_c[2 * k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) if has_proj: fw_weights_dict["proj"] = _weights[i + 4] j = i + weights_num rev_tensors = [layers_h[2 * k + 1], layers_c[2 * k + 1], *_weights[j : j + 4]] rev_weights_dict = dict(zip(names, rev_tensors)) if has_proj: rev_weights_dict["proj"] = _weights[j + 4] layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of LSTM weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], layers_c[k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) if has_proj: fw_weights_dict["proj"] = _weights[i + 4] layer_weights_dicts.append([fw_weights_dict]) k += 1 else: names = ["hidden_state", "cell_state", "w_inp", "w_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of LSTM weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], layers_c[2 * k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) if has_proj: fw_weights_dict["proj"] = _weights[i + 2] j = i + weights_num rev_tensors = [layers_h[2 * k + 1], layers_c[2 * k + 1], *_weights[j : j + 2]] rev_weights_dict = dict(zip(names, rev_tensors)) if has_proj: rev_weights_dict["proj"] = _weights[j + 2] layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of LSTM weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], layers_c[k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) if has_proj: fw_weights_dict["proj"] = _weights[i + 2] layer_weights_dicts.append([fw_weights_dict]) k += 1 assert ( len(layer_weights_dicts) == num_layers and k == num_layers ), "For stacked LSTM number of weights sets should be the same as number of layers!" outputs = self.lstm_layers( X, layer_weights_dicts, bidirectional, dtype=X_dtype, dropout_p=dropout_p, ) # output shape = (seq_num, batch, hidden_size) or # (seq_num, batch, 2*feature_size) for bidirectional output = outputs[0] hy = [] cy = [] for hidden in outputs[1]: hy.append(hidden[0]) cy.append(hidden[1]) if batch_first: output = _op.transpose(output, (1, 0, 2)) return (output, _op.stack(hy, 0), _op.stack(cy, 0)) def all_any_common(self, op, inputs, input_types): if len(inputs) >= 2: dim = inputs[1] else: dim = None if len(inputs) >= 3: keepdim = inputs[2] else: keepdim = False if self.infer_type(inputs[0]).dtype != "bool": # The input dtype can be uint8. inp = _op.cast(inputs[0], "bool") else: inp = inputs[0] return op(inp, axis=dim, keepdims=keepdim) def searchsorted_common( self, sorted_sequence, values, out_int32, right, side=None, out=None, sorter=None ): assert side is None and out is None and sorter is None, "unsupported parameters" dtype = "int32" if out_int32 else "int64" values_shape = _infer_shape(values) if len(values_shape) == 0: values = _op.expand_dims(values, 0) out = _op.searchsorted(sorted_sequence, values, right=right, dtype=dtype) if len(values_shape) == 0: return _op.squeeze(out) return out def searchsorted(self, inputs, input_types): return self.searchsorted_common(*inputs) def bucketize(self, inputs, input_types): return self.searchsorted_common(inputs[1], inputs[0], inputs[2], inputs[3]) def roll(self, inputs, input_types): def slide_axes(inp, shape, ax): axes = list(range(len(shape))) axes = axes[:ax] + [-1] + axes[ax:-1] return _op.transpose(inp, axes) x = inputs[0] shifts = inputs[1] dims = inputs[2] shape = self.infer_shape(x) start = _expr.const(0, "int64") step = _expr.const(1, "int64") out = x for i, dim in enumerate(dims): roll_dim = _expr.const(shape[dim], "int64") indices_1d = _op.mod( _op.transform.arange(start, roll_dim, step, "int64") - _expr.const(shifts[i], "int64") + roll_dim, roll_dim, ) # First fill in the last axis with roll indices, and then do transpose to # bring the roll indices into the desired axis. indices = slide_axes( _op.tile(indices_1d, shape[:dim] + shape[dim + 1 :] + (1,)), shape, dim, ) out = _op.gather(out, dim, indices) return out def einsum(self, inputs, input_types): equation, data = inputs return _op.einsum(data, equation) def dot(self, inputs, _): lhs, rhs = inputs return _op.sum(_op.multiply(lhs, rhs)) def mv(self, inputs, _): lhs, rhs = inputs # Convert the 1D matrix (vector) into a 2D matrix with the extra # dimension=1 rhs_matrix = _op.transform.expand_dims(rhs, 0) # Run multiplication dense_result = _op.nn.dense(lhs, rhs_matrix, units=None) # Chop off the extra result dimension return _op.transform.squeeze(dense_result) def grid_sampler(self, inputs, input_types): interpolate_mode = inputs[2] padding_mode = inputs[3] align_corners = inputs[4] data_shape = self.infer_shape_with_prelude(inputs[0]) if len(data_shape) == 4: layout = "NCHW" axes = [0, 3, 1, 2] grid = _op.transform.transpose(inputs[1], axes) elif len(data_shape) == 5: layout = "NCDHW" axes = [0, 4, 1, 2, 3] grid = _op.transform.transpose(inputs[1], axes) else: msg = f"only 4D and 5D are supported." raise ValueError(msg) if interpolate_mode == 0: interpolate_str = "bilinear" elif interpolate_mode == 1: interpolate_str = "nearest" elif interpolate_mode == 2: interpolate_str = "bicubic" else: msg = f"interpolation method {interpolate_mode} is not supported" raise ValueError(msg) if padding_mode == 0: padding_mode_str = "zeros" elif padding_mode == 1: padding_mode_str = "border" elif padding_mode == 2: padding_mode_str = "reflection" else: msg = f"padding_mode {padding_mode} is not supported" raise ValueError(msg) return _op.image.grid_sample( inputs[0], grid, interpolate_str, layout, padding_mode_str, align_corners ) def trilu(self, inputs, input_types, mode): data = inputs[0] k = inputs[1] if inputs[1] else 0 upper = True if mode == "triu" else False return _op.trilu(data, k, upper) def multinomial(self, inputs, input_types): probs = inputs[0] num_samples = inputs[1] replacement = inputs[2] if inputs[2] else True assert not ( replacement is False and num_samples > 1 ), "Multinomial without replacement is not yet supported." # Ideally this seed would be generated by a previous threefry operation. # Eventually we might want to add a global store for random keys. seed = np.random.randint(1e6) key = _op.random.threefry_key(seed) output = _op.random.multinomial(key, probs, num_samples) _, indices = _expr.TupleWrapper(output, 2) return indices # Operator mappings def create_convert_map(self): self.convert_map = { "aten::is_floating_point": self.is_floating_point, "aten::pixel_shuffle": self.pixel_shuffle, "aten::device": self.none, "prim::device": self.none, "aten::sub": self.sub, "aten::max": self.max, "aten::min": self.min, "aten::maximum": self.maximum, "aten::minimum": self.minimum, "aten::amax": self.max, "aten::amin": self.min, "aten::stft": self.stft, "aten::mul": self.make_elemwise("multiply"), "aten::pow": self.make_elemwise("power"), "aten::lerp": self.lerp, "aten::arange": self.arange, "aten::meshgrid": self.meshgrid, "aten::div": self.make_elemwise("divide"), "aten::floor_divide": self.make_elemwise("floor_divide"), "aten::true_divide": self.make_elemwise("divide"), "aten::fmod": self.make_elemwise("trunc_mod"), "aten::remainder": self.make_elemwise("floor_mod"), "aten::addcdiv": self.addcdiv, "aten::addcmul": self.addcmul, "aten::ones": self.ones, "aten::ones_like": self.ones_like, "aten::zeros": self.zeros, "aten::zero_": self.zero_, "aten::zeros_like": self.zeros_like, "aten::new_ones": self.new_ones, "aten::full": self.full, "aten::full_like": self.full_like, "aten::new_full": self.new_full, "aten::fill_": self.fill_, "aten::linspace": self.linspace, "aten::reciprocal": self.reciprocal, "aten::repeat": self.repeat, "aten::repeat_interleave": self.repeat_interleave, "aten::to": self.to, "aten::squeeze": self.squeeze, "aten::unsqueeze": self.unsqueeze, "aten::cat": self.concatenate, "aten::slice": self.slice, "aten::narrow": self.narrow, "aten::split": self.split, "aten::tensor_split": self.tensor_split, "aten::split_with_sizes": self.split_with_sizes, "aten::select": self.select, "aten::take": self.take, "aten::where": self.where, "aten::topk": self.topk, "aten::relu": self.relu, "aten::relu6": self.relu6, "aten::prelu": self.prelu, "aten::leaky_relu": self.leaky_relu, "aten::elu": self.elu, "aten::celu": self.celu, "aten::gelu": self.gelu, "aten::selu": self.selu, "aten::silu": self.silu, "aten::glu": self.glu, "aten::log_sigmoid": self.log_sigmoid, "aten::adaptive_avg_pool1d": functools.partial( self.adaptive_avg_pool, _op.nn.adaptive_avg_pool1d ), "aten::adaptive_avg_pool2d": functools.partial( self.adaptive_avg_pool, _op.nn.adaptive_avg_pool2d ), "aten::adaptive_avg_pool3d": functools.partial( self.adaptive_avg_pool, _op.nn.adaptive_avg_pool3d ), "aten::adaptive_max_pool1d": functools.partial( self.adaptive_max_pool, _op.nn.adaptive_max_pool1d ), "aten::adaptive_max_pool2d": functools.partial( self.adaptive_max_pool, _op.nn.adaptive_max_pool2d ), "aten::adaptive_max_pool3d": functools.partial( self.adaptive_max_pool, _op.nn.adaptive_max_pool3d ), "aten::max_pool2d": self.maxpool_2d, "aten::max_pool2d_with_indices": self.maxpool_2d_with_indices, "aten::max_pool1d": self.maxpool_1d, "aten::max_pool3d": self.maxpool_3d, "aten::hardtanh": self.hardtanh, "aten::_convolution": self.convolution, "aten::softmax": self.softmax, "aten::threshold": self.threshold, "aten::contiguous": self.contiguous, "aten::batch_norm": self.batch_norm, "aten::instance_norm": self.instance_norm, "aten::layer_norm": self.layer_norm, "aten::group_norm": self.group_norm, "aten::transpose": self.transpose, "aten::t": self.transpose, "aten::numpy_T": self.numpy_T, "aten::flatten": self.flatten, "aten::addmm": self.addmm, "aten::size": self.size, "aten::view": self.view, "aten::reshape": self.reshape, "aten::reshape_as": self.reshape_as, "aten::clone": self.clone, "aten::log_softmax": self.log_softmax, "aten::sigmoid": self.sigmoid, "aten::softplus": self.softplus, "aten::avg_pool1d": self.make_avg_pool(1), "aten::avg_pool2d": self.make_avg_pool(2), "aten::avg_pool3d": self.make_avg_pool(3), "aten::linear": self.linear, "aten::dropout": self.dropout, "aten::feature_dropout": self.dropout, "aten::alpha_dropout": self.dropout, "aten::mean": self.mean, "aten::chunk": self.chunk, "aten::unsafe_chunk": self.chunk, "aten::matmul": self.matmul, "aten::bmm": self.matmul, "aten::expand": self.expand, "aten::Int": self.int, "prim::NumToTensor": self.numtotensor, "prim::ImplicitTensorToNum": self.tensortonum, "aten::ScalarImplicit": self.tensortonum, "aten::pad": self.pad, "aten::constant_pad_nd": self.constant_pad_nd, "aten::reflection_pad1d": self.reflection_pad1d, "aten::reflection_pad2d": self.reflection_pad2d, "aten::replication_pad1d": self.replication_pad1d, "aten::replication_pad2d": self.replication_pad2d, "aten::replication_pad3d": self.replication_pad3d, "aten::permute": self.transpose, "aten::sum": self.make_reduce("sum"), "aten::prod": self.make_reduce("prod"), "aten::argmin": self.make_reduce("argmin"), "aten::argmax": self.make_reduce("argmax"), "aten::norm": self.norm, "aten::frobenius_norm": self.frobenius_norm, "aten::std": self.std, "aten::var": self.variance, "aten::var_mean": self.var_mean, "aten::abs": self.make_unary("abs"), "aten::neg": self.make_unary("negative"), "aten::cos": self.make_unary("cos"), "aten::cosh": self.make_unary("cosh"), "aten::sin": self.make_unary("sin"), "aten::sinh": self.make_unary("sinh"), "aten::tan": self.make_unary("tan"), "aten::tanh": self.make_unary("tanh"), "aten::acos": self.make_unary("acos"), "aten::asin": self.make_unary("asin"), "aten::atan": self.make_unary("atan"), "aten::log": self.make_unary("log"), "aten::log2": self.make_unary("log2"), "aten::log10": self.make_unary("log10"), "aten::log1p": self.log1p, "aten::exp": self.make_unary("exp"), "aten::erf": self.make_unary("erf"), "aten::trunc": self.make_unary("trunc"), "aten::sign": self.make_unary("sign"), "aten::sqrt": self.make_unary("sqrt"), "aten::rsqrt": self.make_unary("rsqrt"), "aten::square": self.square, "aten::tril": functools.partial(self.trilu, mode="tril"), "aten::triu": functools.partial(self.trilu, mode="triu"), "aten::ceil": self.make_unary("ceil"), "aten::floor": self.make_unary("floor"), "aten::round": self.make_unary("round"), "aten::isfinite": self.make_unary("isfinite"), "aten::isinf": self.make_unary("isinf"), "aten::isnan": self.make_unary("isnan"), "aten::clamp": self.clamp, "aten::clamp_min": self.clamp_min, "aten::clamp_max": self.clamp_max, "aten::detach": self.identity, "aten::upsample_bilinear2d": self.make_upsample("linear"), "aten::upsample_bicubic2d": self.make_upsample("cubic"), "aten::upsample_nearest2d": self.make_upsample("nearest_neighbor"), "aten::upsample_trilinear3d": self.make_upsample3d("linear"), "aten::upsample_nearest3d": self.make_upsample3d("nearest_neighbor"), "aten::expand_as": self.expand_as, "aten::broadcast_tensors": self.broadcast_tensors, "aten::lt": self.make_elemwise("less"), "aten::gt": self.make_elemwise("greater"), "aten::le": self.make_elemwise("less_equal"), "aten::ge": self.make_elemwise("greater_equal"), "aten::ne": self.make_elemwise("not_equal"), "aten::eq": self.make_elemwise("equal"), "aten::logical_not": self.logical_not, "aten::logical_xor": self.logical_xor, "aten::bitwise_not": self.bitwise_not, "aten::bitwise_xor": self.bitwise_xor, "aten::Bool": self.Bool, "aten::Float": self.Float, "aten::rsub": self.rsub, "aten::embedding": self.embedding, "aten::one_hot": self.one_hot, "aten::mm": self.matmul, "aten::add": self.add, "aten::stack": self.stack, "aten::__getitem__": self.list_getitem, "aten::len": self.list_len, "aten::type_as": self.type_as, "aten::gather": self.gather, "aten::index_select": self.select, "aten::index": self.index, "torchvision::nms": self.nms, "aten::logsumexp": self.logsumexp, "torchvision::roi_align": self.roi_align, "torchvision::deform_conv2d": self.deform_conv2d, "aten::unbind": self.unbind, "aten::__and__": self.logical_and, "aten::logical_and": self.logical_and, "aten::_shape_as_tensor": self.shape_as_tensor, "aten::nonzero": self.nonzero, "aten::nonzero_numpy": self.nonzero_numpy, "aten::scatter": self.scatter, "aten::index_put": self.index_put, "aten::scalar_tensor": self.scalar_tensor, "aten::__interpolate": self.interpolate, "aten::IntImplicit": self.identity, "aten::tensor": self.identity, # used for example in tensor(1.0) "aten::numel": self.numel, "aten::empty": self.empty, "aten::empty_like": self.empty_like, "aten::new_empty": self.new_empty, "aten::randn": self.randn, "aten::bincount": self.bincount, "aten::scatter_add": self.scatter_add, "aten::__not__": self.logical_not, "aten::hardswish": self.hard_swish, "aten::hardsigmoid": self.hard_sigmoid, "aten::cumsum": self.cumsum, "aten::masked_fill": self.masked_fill, "aten::masked_select": self.masked_select, "aten::argsort": self.argsort, "aten::sort": self.sort, "aten::_unique2": self.unique, "aten::nll_loss": self.nll_loss, "aten::nll_loss2d": self.nll_loss, "aten::nll_loss_nd": self.nll_loss, "aten::cross_entropy_loss": self.cross_entropy_loss_with_logits, "aten::l1_loss": self.l1_loss, "aten::mse_loss": self.mse_loss, "aten::flip": self.flip, "aten::rnn_tanh": functools.partial(self.rnn, nonlinearity="tanh"), "aten::rnn_relu": functools.partial(self.rnn, nonlinearity="relu"), "aten::gru": self.gru, "aten::lstm": self.lstm, "aten::all": functools.partial(self.all_any_common, _op.all), "aten::any": functools.partial(self.all_any_common, _op.any), "aten::searchsorted": self.searchsorted, "aten::bucketize": self.bucketize, "aten::roll": self.roll, "aten::einsum": self.einsum, "aten::dot": self.dot, "aten::mv": self.mv, "aten::grid_sampler": self.grid_sampler, "aten::__ior__": self.make_elemwise("bitwise_or"), "aten::__iand__": self.make_elemwise("bitwise_and"), "aten::__ixor__": self.make_elemwise("bitwise_xor"), "aten::__lshift__": self.make_elemwise("left_shift"), "aten::__rshift__": self.make_elemwise("right_shift"), "aten::multinomial": self.multinomial, } def update_convert_map(self, custom_map): self.convert_map.update(custom_map) def report_missing_conversion(self, op_names): """Check if all ops in an input graph are supported by TVM""" known_ops = [ "prim::Constant", "prim::GetAttr", "prim::ListConstruct", "prim::ListUnpack", "prim::TupleConstruct", "prim::TupleUnpack", "prim::RaiseException", "prim::If", "prim::Loop", ] known_ops += list(self.convert_map.keys()) known_ops += list(qnn_torch.convert_map.keys()) missing = [] for op_name in op_names: # Also take care of in-place variant ops like aten::relu_ if op_name not in known_ops and not ( op_name.endswith("_") and op_name[:-1] in known_ops ): missing.append(op_name) if missing: msg = "The following operators are not implemented: {}".format(missing) raise NotImplementedError(msg) def convert_block(self, block, outputs): """Translate Torch "Block", used for prim::If and prim::Loop""" ops = _get_operator_nodes(block.nodes()) ret_names = _get_input_names(block.returnNode()) return self.convert_operators(ops, outputs, ret_names) def convert_if(self, if_node, outputs): """Translate Torch prim::If to Relay If""" cond = outputs[if_node.inputsAt(0).debugName()] blocks = list(if_node.blocks()) true_branch = self.convert_block(blocks[0], outputs) false_branch = self.convert_block(blocks[1], outputs) assert len(true_branch) == 1 and len(false_branch) == 1 return _expr.If(cond, true_branch[0], false_branch[0]) def convert_loop(self, loop_node, outputs): """Translate Torch prim::Loop to Relay while_loop""" def get_input(index): ivalue = loop_node.inputsAt(index) inode = ivalue.node() if inode.kind() == "prim::Constant": return _expr.const(_get_constant(inode)) var_name = ivalue.debugName() assert var_name in outputs return _wrap_const(outputs[var_name]) # Refer to the spec for prim::Loop below # https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/OVERVIEW.md#loops # The first input: %max_trip_count # The second input: %initial_condition # The rest of input: loop variables max_loop_count = get_input(0) init_cond = get_input(1) num_loop_var = len(list(loop_node.inputs())) - 2 init_vals = [get_input(i + 2) for i in range(num_loop_var)] # while loop has always max_loop_count being int64 max # max_loop_count.data (tvm.runtime.NDArray) is -1, so _get_constant again is_while_loop = ( isinstance(max_loop_count, _expr.Constant) and _get_constant(loop_node.inputsAt(0).node()) == sys.maxsize ) if is_while_loop: loop_iter_dtype = "bool" # while loop with non input dependent condition such as while i < 10: # init_cond is int, need to cast to bool to type check if isinstance(init_cond, _expr.Constant): init_cond = _op.cast(init_cond, "bool") init_loop_iter_val = init_cond else: loop_iter_dtype = "int32" # always count from 0 init_loop_iter_val = _expr.const(0, dtype="int32") body_block = list(loop_node.blocks())[0] block_input_names = _get_input_names(body_block) num_block_inputs = len(block_input_names) name_val_pairs = list(zip(block_input_names, [init_loop_iter_val] + init_vals)) outputs.update(name_val_pairs) def get_var(name, val): if val: checked_type = self.infer_type_with_prelude(val) if hasattr(checked_type, "shape"): shape = get_const_tuple(checked_type.shape) actual_shape = [] for dim in shape: if isinstance(dim, int) and dim == 0: actual_shape.append(Any()) else: actual_shape.append(dim) return _expr.var(name, shape=actual_shape, dtype=checked_type.dtype) else: return _expr.var(name, type_annotation=checked_type) return _expr.var(name) loop_iter_var = _expr.var(block_input_names[0], shape=(), dtype=loop_iter_dtype) loop_vars = [get_var(name, val) for name, val in name_val_pairs[1:]] # Add non constant free variables to loop variables to prevent code blow up # Without this, if there are two for loops in a row, which often happens # if the outer loop is unrolled, the computation corresponding to the first for loop # is inlined inside loop body, turning O(N) + O(N) computation into O(N^2). # This issue was found when converting from Stacked LSTM test. Torch does not add the # outputof the eariler loop into loop variables of the next loop. # So the variable corresponding to the first loop output appears free in the second # loop body. free_vars = [ var for var in _get_free_vars_from_block(body_block) if var in outputs and not isinstance(outputs[var], (_expr.Constant, int, float, str)) and outputs[var] ] prev_outputs = {} for name in free_vars: prev_output = outputs[name] new_loop_var = get_var(name, prev_output) prev_outputs[name] = prev_output outputs[name] = new_loop_var loop_vars.append(new_loop_var) init_vals.append(prev_output) def cond(*current_vals): i = current_vals[0] if is_while_loop: return _op.equal(i, _expr.const(True, "bool")) return _op.less(i, max_loop_count) def body(*current_vals): # Update loop variables using the prev iteration outputs assert len(current_vals) == num_block_inputs + len(free_vars) for (i, val) in enumerate(current_vals): if i < num_block_inputs: outputs[block_input_names[i]] = val else: outputs[free_vars[i - num_block_inputs]] = val block_outputs = self.convert_block(body_block, outputs) block_outputs += [outputs[name] for name in free_vars] if not is_while_loop: # iter var increment implicit in torch, so do it manually # for while loop, block_outputs[0] is already a boolean, # the result of termination check incr = _expr.const(1, dtype="int32") block_outputs[0] = current_vals[0] + incr return block_outputs loop = while_loop(cond, [loop_iter_var] + loop_vars, body) loop_val = loop(init_loop_iter_val, *init_vals) # restore original output values for free vars outputs.update(prev_outputs) # The first element is a loop counter or boolean condition, ignore it return [_expr.TupleGetItem(loop_val, i + 1) for i in range(num_loop_var)] def convert_operators(self, operators, outputs, ret_names): """Convert each Torch IR operators to Relay equivalent""" for node_name, op_node in operators: operator = op_node.kind() inputs = _get_op_inputs(op_node, outputs) if operator == "prim::Constant": outputs[node_name] = _get_constant(op_node) elif operator == "prim::ListConstruct" and _should_construct_dynamic_list(op_node): outputs[node_name] = self.convert_to_list_adt(inputs) elif operator == "prim::ListConstruct": # This assumes that no more elements will be appended to this list # In this case, we keep the Python list outputs[node_name] = inputs elif operator == "prim::TupleConstruct": def _handel_nested_input(inputs): inputs_list = [] for i, _ in enumerate(inputs): if isinstance(inputs[i], list): inputs_list.append(_handel_nested_input(inputs[i])) else: assert isinstance(inputs[i], _expr.Expr) inputs_list.append(inputs[i]) return _expr.Tuple(inputs_list) outputs[node_name] = _handel_nested_input(inputs) elif operator in ["prim::ListUnpack", "prim::TupleUnpack"]: assert len(inputs) == 1 if isinstance(inputs[0], (list, _expr.TupleWrapper)): unpacked = inputs[0] else: unpacked = _unpack_tuple(inputs[0]) outputs.update(zip(_get_output_names(op_node), unpacked)) elif operator == "prim::prim::RaiseException": logger.warning("raising exceptions is ignored") outputs[node_name] = None elif operator == "prim::If": if_out = self.convert_if(op_node, outputs) outputs[node_name] = if_out elif operator == "prim::Loop": loop_out = self.convert_loop(op_node, outputs) unpacked_names = _get_output_names(op_node) assert len(loop_out) == len(unpacked_names) outputs.update(zip(unpacked_names, loop_out)) else: if operator not in self.convert_map: # At this point, the only possible ops that are not in convert_map are # in-place variant of ops like aten::relu_ assert operator.endswith("_") logger.warning( "An in-place op %s found, the result will not be correct " "if the model depends on side-effects by this op.", operator, ) relay_op = self.convert_map[operator[:-1]] else: relay_op = self.convert_map[operator] relay_out = relay_op( inputs, _get_input_types(op_node, outputs, default_dtype=self.default_dtype) ) self.record_output_type(relay_out) if isinstance(relay_out, tuple): # This is for torch operators that return multiple outputs # See _adaptive_max_2d above for example out_names = _get_output_names(op_node) outputs.update(zip(out_names, relay_out)) else: assert op_node.outputsSize() == 1 outputs[node_name] = relay_out return [_wrap_const(outputs[ret_name]) for ret_name in ret_names] def _pytorch_result_type(dtypes, non_tensor_inputs): """This promotes TVM dtypes like PyTorch would""" import torch dtype_map = { "float64": torch.float64, "float32": torch.float32, "float16": torch.float16, "bfloat16": torch.bfloat16, "int64": torch.int64, "int32": torch.int32, "int16": torch.int16, "int8": torch.int8, "uint8": torch.uint8, "bool": torch.bool, } if len(dtypes) > 0: result_type = dtypes[0] for dt in dtypes[1:]: if dt != result_type: # we don't want to work with same types as we # don't do quantized here (which cannot be promoted?) result_type = _convert_data_type( str( torch.result_type( torch.zeros((), dtype=dtype_map[result_type]), torch.zeros((), dtype=dtype_map[dt]), ) ) ) else: result_type = "bool" # this is the smallest type... for inp in non_tensor_inputs: result_type = _convert_data_type( str(torch.result_type(torch.zeros((), dtype=dtype_map[result_type]), inp)) ) return result_type # Helper functions for operator implementation def _convert_dtype_value(val): """converts a PyTorch the PyTorch numeric type id to a torch scalar type.""" convert_torch_dtype_map = { 11: "torch.bool", 7: "torch.float64", 6: "torch.float32", 5: "torch.float16", 4: "torch.int64", 3: "torch.int32", 2: "torch.int16", 1: "torch.int8", 0: "torch.uint8", None: "torch.int64", } # Default is torch.int64 if val in convert_torch_dtype_map: return _convert_data_type(convert_torch_dtype_map[val]) else: msg = "Torch data type value %d is not handled yet." % (val) raise NotImplementedError(msg) def _convert_data_type(input_type, default_dtype=None): """converts the PyTorch scalar type input_type to a TVM dtype. optionally, default_dtype can be a TVM dtype that is used if input_type is None (but not when it is unknown)""" if input_type is None and default_dtype is not None: return default_dtype input_type = input_type.lower() if input_type in ["double", "float64", "torch.float64"]: return "float64" elif input_type in ["float", "float32", "torch.float32"]: return "float32" elif input_type in ["half", "float16", "torch.float16"]: return "float16" elif input_type in ["long", "int64", "torch.int64"]: return "int64" elif input_type in ["int", "int32", "torch.int32"]: return "int32" elif input_type in ["short", "int16", "torch.int16"]: return "int16" elif input_type in ["char", "int8", "torch.int8"]: return "int8" elif input_type in ["byte", "uint8", "torch.uint8"]: return "uint8" elif input_type in ["quint8", "torch.quint8"]: return "quint8" elif input_type in ["qint8", "torch.qint8"]: return "qint8" elif input_type in ["qint32", "torch.qint32"]: return "qint32" elif input_type in ["bool", "torch.bool"]: return "bool" elif input_type in ["str"]: return "str" else: raise NotImplementedError("input_type {} is not handled yet".format(input_type)) return "float32" # Never reached def _create_typed_const(data, dtype): """create a (scalar) constant of given value and dtype. dtype should be a TVM dtype""" if dtype == "float64": typed_data = _expr.const(np.float64(data), dtype=dtype) elif dtype == "float32": typed_data = _expr.const(np.float32(data), dtype=dtype) elif dtype == "float16": typed_data = _expr.const(np.float16(data), dtype=dtype) elif dtype == "int64": typed_data = _expr.const(np.int64(data), dtype=dtype) elif dtype == "int32": typed_data = _expr.const(np.int32(data), dtype=dtype) elif dtype == "int16": typed_data = _expr.const(np.int16(data), dtype=dtype) elif dtype == "int8": typed_data = _expr.const(np.int8(data), dtype=dtype) elif dtype == "uint8": typed_data = _expr.const(np.uint8(data), dtype=dtype) else: raise NotImplementedError("input_type {} is not handled yet".format(dtype)) return typed_data def _wrap_const(c): if not isinstance(c, (_expr.Expr, list, tvm.tir.expr.Any)): return _expr.const(c) return c def _run_jit_passes(graph, enable_lower_all_tuples=True): """The inline pass is necessary to unwrap prim::CallMethod""" # pylint: disable=c-extension-no-member import torch if is_version_greater_than("1.5.1"): # This is required for torchvision detection models from 1.6 above # It is the same as _jit_pass_inline, except that it has some special # case behaviors for some ops such as aten::__interpolate() torch._C._jit_pass_onnx_function_substitution(graph) else: torch._C._jit_pass_inline(graph) if enable_lower_all_tuples: torch._C._jit_pass_lower_all_tuples(graph) def _get_tensor_and_var(torch_tensor, name): tensor = tvm.nd.array(torch_tensor.cpu().numpy()) var = _expr.var(name, shape=tensor.shape, dtype=tensor.dtype) return tensor, var def _get_output_name(node): assert node.outputsSize() == 1 return node.output().debugName() def _get_output_names(node): return [output.debugName() for output in node.outputs()] def _get_input_names(node_or_graph): return [inp.debugName() for inp in node_or_graph.inputs()] def _get_op_inputs(op_node, outputs): return [outputs[name] for name in _get_input_names(op_node)] def _get_node_type(node): assert node.outputsSize() == 1 return node.output().type().kind() def _get_uses(node): uses = [] for output in node.outputs(): uses += output.uses() return uses def _get_users(node): return [use.user for use in _get_uses(node)] def _getattr_full_name(getattrs, sep="."): return sep.join([getattr_attr_name(node) for node in getattrs]) def _get_pytorch_value_type(typ, default_dtype="float32"): kind = typ.kind() if kind == "TensorType": if typ.scalarType() is None: # Tensor's type can be unknown if we use torch.jit.script(...) # Defaults can be passed in, if not it is float32 logger.warning("Untyped Tensor found, assume it is %s", default_dtype) return default_dtype else: return _convert_data_type(typ.scalarType()) elif kind == "ListType": return "ListType" elif kind in ["IntType", "FloatType", "BoolType", "StringType", "OptionalType"]: pt_dtype = str(typ).lower() dtype = pt_dtype if pt_dtype == "OptionalType" else _convert_data_type(pt_dtype) return dtype else: return "UnsupportedType" def _get_input_types(op_node, outputs, default_dtype="float32"): """Returns a TVM dtype for each input nodes derived from the torch type""" in_types = [] for inp in op_node.inputs(): if inp.node().kind() == "prim::GetAttr": # GetAttr nodes always return None when we call scalarType() on it name = inp.debugName() assert name in outputs if isinstance(outputs[name], _expr.Var): in_types.append(outputs[name].type_annotation.dtype) else: # For quantized modules with parameters, here we would get # "prim::GetAttr[name="_packed_params"]". Since the dtype corresponding to # _packed_params is not needed by quantized ops, we return an arbitrary type. in_types.append(default_dtype) else: in_types.append(_get_pytorch_value_type(inp.type(), default_dtype=default_dtype)) return in_types def _get_constant(node): """Retrieve a constant associated with this prim::Constant node""" attribute_names = node.attributeNames() num_attributes = len(attribute_names) if num_attributes == 1: attr_name = attribute_names[0] ty = node.output().type().kind() if ty == "IntType": return node.i(attr_name) elif ty == "BoolType": return bool(node.i(attr_name)) elif ty in ["FloatType", "LongType"]: return node.f(attr_name) elif ty in ["TensorType", "CompleteTensorType"]: tensor = node.t(attr_name) if tensor.is_cuda: tensor = tensor.cpu() if len(tensor.shape) == 0: # tensor(0.1) # TODO(t-vi): When is this needed? return tensor.item() return _wrap_const(tensor.numpy()) elif ty in ["DeviceObjType", "StringType"]: return node.s(attr_name) elif ty == "FunctionType": return None else: raise NotImplementedError("Unsupported type: %s" % ty) else: assert num_attributes == 0 return None def _get_operator_nodes(nodes): """Returns torch IR nodes that need conversion to Relay""" ops = [] # Traverse nodes and add to graph for node in nodes: if node.outputsSize() == 0: continue if node.outputsSize() > 1: node_name = "_".join(_get_output_names(node)) else: node_name = _get_output_name(node) if node.kind() != "prim::GetAttr": ops.append((node_name, node)) return ops def _get_relay_input_vars(graph, input_infos, prelude, is_module=True, default_dtype="float32"): """ Return Relay vars from input shapes and create entries based on expected graph inputs - to allow translation """ graph_inputs = list(graph.inputs()) if is_module: # a module has "self" as first input, which we do not need/want graph_inputs = graph_inputs[1:] if not isinstance(input_infos, list): msg = "Graph inputs input_infos should be a list" raise RuntimeError(msg) if len(graph_inputs) != len(input_infos): msg = "PyTorch has {} inputs and input_infos lists {}.".format( len(graph_inputs), len(input_infos) ) raise RuntimeError(msg) def get_relay_ty(ishape, itype, pt_type): if pt_type.kind() == "TensorType": if not (_is_int_seq(ishape) or len(ishape) == 0): msg = "Shape for Tensors must be lists of ints" raise RuntimeError(msg) if (pt_type.dim() is not None and pt_type.dim() != len(ishape)) or ( pt_type.sizes() is not None and any([s1 != s2 for s1, s2 in zip(pt_type.sizes(), ishape)]) ): msg = "Shapes of input list and information in the graph do not match" raise RuntimeError(msg) pt_dtype = pt_type.scalarType() if not pt_dtype and itype: pt_dtype = itype dtype = _convert_data_type(pt_dtype, default_dtype=default_dtype) return TensorType(ishape, dtype) elif pt_type.kind() == "TupleType": if not isinstance(ishape, tuple): msg = "Shapes for tuples must be tuples" raise RuntimeError(msg) return TupleType( [get_relay_ty(elem, itype, pt_t) for elem, pt_t in zip(ishape, pt_type.elements())] ) elif pt_type.kind() == "ListType": if not isinstance(ishape, list): msg = "Shapes for lists must be lists" raise RuntimeError(msg) pt_elemtype = pt_type.getElementType() elem_tys = [get_relay_ty(s, itype, pt_elemtype) for s in ishape] if len(elem_tys) > 0 and not all(map(lambda ty: ty == elem_tys[0], elem_tys)): msg = "List elements need have identical types" raise RuntimeError(msg) rlist, _, _ = prelude.mod.get_type("List") return rlist(elem_tys[0]) elif pt_type.kind() == "OptionalType": # we do not support None yet, so we fill in the type return get_relay_ty(ishape, itype, pt_type.getElementType()) # TODO: scalar inputs raise NotImplementedError("unsupported input type") input_vars = {} new_input_infos = [] for num, inp in enumerate(input_infos): if not isinstance(inp, tuple): msg = "Graph input {} is not a tuple".format(num) raise RuntimeError(msg) if len(inp) != 2 or not isinstance(inp[0], str): msg = ( "Graph input {} is not valid," " expected ('name', shape) or ('name', (shape, dtype))".format(inp) ) raise RuntimeError(msg) if not isinstance(inp[1], tuple) or len(inp[1]) == 0 or not isinstance(inp[1][-1], str): new_input_infos.append((inp[0], (inp[1], default_dtype))) else: new_input_infos.append(inp) input_types = [ (name, get_relay_ty(info[0], info[1], gi.type())) for (name, info), gi in zip(new_input_infos, graph_inputs) ] ir_inputs = [i.debugName() for i in graph_inputs] for ir_input, (name, itype) in zip(ir_inputs, input_types): inp = _expr.var(name, type_annotation=itype) # Translate from graph input to user input name input_vars[ir_input] = inp return input_vars def _unpack_tuple(tup): def unpack(tup, num_fields): return [_expr.TupleGetItem(tup, i) for i in range(num_fields)] if isinstance(tup, _expr.Tuple): return unpack(tup, len(tup.fields)) elif isinstance(tup.type_annotation, TupleType): return unpack(tup, len(tup.type_annotation.fields)) # shouldn't happen assert False def _get_free_vars_from_block(block): block_inp_names = _get_input_names(block) bound_names = block_inp_names free_vars = set() for node in block.nodes(): inp_names = _get_input_names(node) list_diff = [name for name in inp_names if name not in bound_names] free_vars.update(list_diff) bound_names += _get_output_names(node) return free_vars def get_use_chains(root_node, terminate=lambda _: False): """ Track a chain of users of this node forward, returning a list of chains See get_attr_chains below for its usage """ def concat_lists(lists): return itertools.chain.from_iterable(lists) def inner(current, accum): users = _get_users(current) if not users or terminate(users): return [accum] return concat_lists([inner(nxt, accum + [nxt]) for nxt in users]) return inner(root_node, [root_node]) def get_attr_chains(root_getattr_node): """Returns chains of attribute access starting from root_getattr_node For example, given attribute "block", as in "self.block" when "self" points to the top level torch.nn.Module, it returns lists of attribute "chains", e.g. ['block', '2'], ['block', '1'], ['block', '0', '_packed_params'] These sets of attributes form full attribute accessors. For example, "self.block.1", "self.block.2" will return the second and third submodule, and "self.block.0._packed_params" will return the parameters of the first submodule. """ def terminate(users): next_attrs = [user for user in users if user.kind() == "prim::GetAttr"] return len(next_attrs) == 0 return get_use_chains(root_getattr_node, terminate) def convert_params(graph, state_dict, use_parser_friendly_name=False): """ Return Relay vars and TVM NDArrays for input parameters A chain of prim::GetAttr nodes is processed one at a time """ getattr_nodes = graph.findAllNodes("prim::GetAttr", recurse=True) params = {} param_tensors = {} packed_param_map = {} vars_by_name = {} seen = set() attr_name_sep = "_" if use_parser_friendly_name else "." for node in getattr_nodes: if _get_output_name(node) in seen: continue for getattrs in get_attr_chains(node): seen.update(map(_get_output_name, getattrs)) full_attr = _getattr_full_name(getattrs, attr_name_sep) full_attr_node_name = _get_output_name(getattrs[-1]) if full_attr.endswith("_packed_params"): # for quantized models packed_param_map[full_attr_node_name] = full_attr elif full_attr in state_dict: if full_attr in vars_by_name: var = vars_by_name[full_attr] else: torch_tensor = state_dict[full_attr] tensor, var = _get_tensor_and_var(torch_tensor, full_attr) param_tensors[full_attr] = tensor vars_by_name[full_attr] = var params[full_attr_node_name] = var return params, param_tensors, packed_param_map def get_all_op_names(graph): """Return all operator names in the input graph""" nodes = list(graph.nodes()) prim_with_blocks = ["prim::If", "prim::Loop"] for prim in prim_with_blocks: prim_nodes = graph.findAllNodes(prim, recurse=True) for prim_node in prim_nodes: for block in prim_node.blocks(): nodes += block.nodes() return set(node.kind() for node in nodes) def from_pytorch( script_module, input_infos, custom_convert_map=None, default_dtype="float32", use_parser_friendly_name=False, keep_quantized_weight=False, ): """Load PyTorch model in the form of a scripted PyTorch model and convert into relay. The companion parameters will be handled automatically. Parameters ---------- script_module : TopLevelTracedModule object TorchScripted PyTorch graph Note: We currently only support traces (ie: torch.jit.trace(model, input)) input_infos : List of tuples Can be (input name, input shape) or (input name, (input shape, input types)) Graph level input shape and type list The same input names need to be used for deployment, so choose easy to remember names (such as: input0, input1) e.g. [('input0', (1, 2)), ('input1', (3, 4))] or [('input0', ((1, 2), 'int')), ('input1', ((3, 4), 'float'))] custom_convert_map : Dictionary of str to Relay op A custom op conversion map in the same format as _convert_map above default_type : str The default dtype to use when type information is not provided by PyTorch. use_parser_friendly_name : bool When True, replace '.' with `_' in a original parameter name. The Relay text parser treats a variable name followed by a period as a tuple element access, so a variable name like "dense.weight" cannot be parsed correctly. Use this option when you want to run the AnnotateSpans pass on the imported module. keep_quantized_weight : bool Return quantized weights and bias, rather than float ones. PyTorch stores quantized weights in a custom format, so we cannot directly access 8 bit weights as Numpy arrays. We use a PyTorch function to unpack quantized weights into float32 arrays and quantization parameters. By default, we return float32 weights and rely on the QNN lowering and the Relay constant folding pass to quantize weights at compile time. In BYOC use cases, however, we cannot apply the constant folding pass on a QNN graph. If keep_quantized_weight is True, we quantize weights in the frontend using a function that is equivalent to qnn.op.quantize(...) operating on Numpy arrays. Returns ------- mod : tvm.IRModule The module that optimizations will be performed on. params : dict of str to tvm.runtime.NDArray Dict of converted parameters stored in tvm.runtime.ndarray format """ import torch mod = tvm.IRModule() prelude = Prelude(mod) enable_lower_all_tuples = True converter = PyTorchOpConverter(prelude, default_dtype) graph = script_module.graph.copy() # Check if lower_all_tuples pass can be enabled graph_inputs = list(graph.inputs()) for inp in graph_inputs: if inp.type().kind() == "TupleType" or inp.type().kind() == "ListType": enable_lower_all_tuples = False break _run_jit_passes(graph, enable_lower_all_tuples) if custom_convert_map: converter.update_convert_map(custom_convert_map) op_names = get_all_op_names(graph) converter.report_missing_conversion(op_names) is_module = isinstance(script_module, torch.jit.ScriptModule) params = script_module.state_dict() if is_module else {} outputs = _get_relay_input_vars( graph, input_infos, prelude, default_dtype=default_dtype, is_module=is_module ) if use_parser_friendly_name: new_names = [key.replace(".", "_") for key in params.keys()] params = dict(zip(new_names, params.values())) param_vars, tensors, packed_param_map = convert_params(graph, params, use_parser_friendly_name) tvm_params = {k: tvm.nd.array(v) for k, v in tensors.items()} outputs.update(param_vars) ret_name = _get_input_names(graph.return_node()) # For quantized models quantized_ops = set(["aten::quantize_per_tensor", "quantized::linear_dynamic"]) if len(quantized_ops.intersection(set(op_names))) > 0: weight_quant_params = qnn_torch.get_weight_quant_params( script_module, packed_param_map.values() ) qnn_torch.inline_input_quant_params_for_fx(graph, tensors) input_scales_for_bias = qnn_torch.add_input_quant_params_to_op_inputs(graph) qnn_torch.add_quant_params_to_outputs( outputs, packed_param_map, weight_quant_params, input_scales_for_bias, keep_quantized_weight, ) qnn_torch.add_quant_params(tvm_params, weight_quant_params) converter.update_convert_map(qnn_torch.convert_map) outputs = converter.convert_operators(_get_operator_nodes(graph.nodes()), outputs, ret_name) # ListConstruct kept original python list. Convert to tuple. outputs = [_expr.Tuple(output) if isinstance(output, list) else output for output in outputs] if len(outputs) > 1: ret = _expr.Tuple(outputs) else: ret = outputs[0] # Separate data inputs and parameters to make sure data inputs come first. func_args = [] data_inputs = [] for arg in _analysis.free_vars(ret): if arg.name_hint not in tvm_params.keys(): data_inputs.append(arg) else: func_args.append(arg) func_args = data_inputs + func_args mod["main"] = tvm.relay.Function(func_args, ret) return transform.RemoveUnusedFunctions()(mod), tvm_params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/pytorch_utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-outside-toplevel, unused-argument, invalid-name """ Common utilities used by PyTorch frontend """ from .. import expr from .. import op from ..dataflow_pattern import ( wildcard, is_constant, is_op, rewrite, is_tuple, is_tuple_get_item, is_if, DFPatternCallback, ) def is_version_greater_than(ver): """ Returns True if the local PyTorch version is greater than the one given as an argument. """ import torch from distutils.version import LooseVersion torch_ver = torch.__version__ # PT version numbers can include +cu[cuda version code] # and we don't want to include that in the comparison if "+cu" in torch_ver: torch_ver = torch_ver.split("+cu")[0] return LooseVersion(torch_ver) > ver def getattr_attr_name(node): attribute_names = node.attributeNames() assert len(attribute_names) == 1 return node.s(attribute_names[0]) def dyn_strided_slice_pattern(inp, end): """A pattern to detect dynamic strided slice op.""" zero = is_constant() cast_like = is_op("cast_like")(zero, is_constant()) less = is_op("less")(is_constant(), cast_like) shape_of = is_op("shape_of")(inp) cast_like = is_op("cast_like")(shape_of, is_constant()) add = is_op("add")(is_constant(), cast_like) where = is_op("where")(less, add, is_constant()) return is_op("dyn.strided_slice")(inp, where, end, is_constant()) def batched_nms_pattern(boxes, scores, idxs, iou_threshold, num_boxes, indices): """A pattern to detect batched_nms function in torchvision The inputs to this function, boxes, scores, idxs, iou_threshold are wildcard patterns which can be used later in the rewriting to extract matched Relay fragments. We want to detect the following PyTorch code snippet: def batched_nms(boxes, scores, idxs, iou_threshold): max_coordinate = boxes.max() offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes)) boxes_for_nms = boxes + offsets[:, None] keep = nms(boxes_for_nms, scores, iou_threshold) return keep Here is how PyTorch frontend lowers above PyTorch code. For simplicity, Relay ops for dealing with dynamic strided_slice are omitted. %num_boxes, %indices are complex expressions, but since we can use the wildcard part for them, we do not need to construct their patterns. %2 = expand_dims(%scores, axis=-1); %3 = cast(%idxs, dtype="float32"); %4 = max(%boxes); %5 = add(%4, 1f); %6 = multiply(%3, %5); %7 = strided_slice(%6, begin=[0], end=[4507], strides=[1]); %8 = expand_dims(%7, axis=1); %9 = add(%boxes, %8); %10 = (%2, %9); %11 = concatenate(%10, axis=-1); %12 = expand_dims(%11, axis=0); ... ... %17 = vision.non_max_suppression(%12, %num_boxes, %indices, -1, 0.7f, ...); """ one = is_constant() # Equivalent PyTorch code from above snippet # offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes)) cast = is_op("cast")(idxs) mx = is_op("max")(boxes) add = is_op("add")(mx, one) mul = is_op("multiply")(cast, add) shape_of = is_op("shape_of")(mul) cast = is_op("cast")(shape_of) # Add offsets to the boxes expand_dims = is_op("expand_dims")(mul) add = is_op("add")(boxes, expand_dims) # The rest of patterns correspond to the PyTorch frontend conversion # function for torchvision::nms score_expand_dims = is_op("expand_dims")(scores) tup = is_tuple([score_expand_dims, add]) concat = is_op("concatenate")(tup) data = is_op("expand_dims")(concat) return is_op("vision.non_max_suppression")( data, num_boxes, indices, is_constant(), iou_threshold ) def topk_after_batch_nms_pattern(cond, true_branch, data, valid_count, indices, iou_threshold): """ Detect the following pattern used in torchvision detection models. def batched_nms(...): if boxes.numel() == 0: return torch.empty((0,), dtype=torch.int64, device=boxes.device) else: ... return nms(boxes_for_nms, scores, iou_threshold) keep = batched_nms(boxes, scores, lvl, self.nms_thresh) keep = keep[:post_nms_top_k] # keep only topk scoring predictions An equivalent Relay subgraph: %1184 = if (%1117) { ... } else { ... %1172 = vision.non_max_suppression(%1167, %1168, %1171, -1, 0.7f, ...); ... %1183 = dyn.strided_slice(%1174, %1180, %1182, ...); cast(%1183, dtype="int64") }; %1185 = strided_slice(%1184, begin=[0], end=[1000], strides=[1]); """ nms = is_op("vision.non_max_suppression")( data, valid_count, indices, is_constant(), iou_threshold ) indices = is_op("squeeze")(is_tuple_get_item(nms, 0)) size = is_op("squeeze")(is_tuple_get_item(nms, 1)) dyn_strided_slice = dyn_strided_slice_pattern(indices, size) cast_i64 = is_op("cast")(dyn_strided_slice) batched_nms_result = is_if(cond, true_branch, cast_i64) return is_op("strided_slice")(batched_nms_result) class MulticlassNMSRewrite(DFPatternCallback): """A callback to rewrite nms and restore batched nms.""" def __init__(self): super().__init__() # exprs to extract self.boxes = wildcard() self.scores = wildcard() self.idxs = wildcard() self.iou_threshold = wildcard() self.num_boxes = wildcard() self.indices = wildcard() self.pattern = batched_nms_pattern( self.boxes, self.scores, self.idxs, self.iou_threshold, self.num_boxes, self.indices, ) def convert_batched_nms(self, boxes, scores, idxs, iou_thres, num_boxes, indices): """Restore class-aware NMS using extracted class indices""" scores = op.expand_dims(scores, axis=-1, num_newaxis=1) idxs = op.expand_dims(idxs, axis=-1, num_newaxis=1) idxs = op.cast(idxs, "float32") data = op.concatenate([idxs, scores, boxes], -1) data = op.expand_dims(data, 0, 1) top_k = max_out_size = -1 out = op.vision.non_max_suppression( data=data, valid_count=num_boxes, indices=indices, max_output_size=max_out_size, iou_threshold=iou_thres, force_suppress=False, top_k=top_k, coord_start=2, score_index=1, id_index=0, return_indices=True, invalid_to_bottom=False, ) return out.tuple_value def callback(self, pre, post, node_map): boxes = node_map[self.boxes][0] scores = node_map[self.scores][0] idxs = node_map[self.idxs][0] iou_thres = node_map[self.iou_threshold][0] num_boxes = node_map[self.num_boxes][0] indices = node_map[self.indices][0] return self.convert_batched_nms(boxes, scores, idxs, iou_thres, num_boxes, indices) class PostNMSTopKRewrite(DFPatternCallback): """A callback to rewrite nms to exploit max_out_size parameter.""" def __init__(self): super().__init__() self.cond = wildcard() self.true_branch = wildcard() self.data = wildcard() self.valid_count = wildcard() self.indices = wildcard() self.iou_threshold = wildcard() self.pattern = topk_after_batch_nms_pattern( self.cond, self.true_branch, self.data, self.valid_count, self.indices, self.iou_threshold, ) def rewrite_batch_nms_with_max_out_size( self, cond, true_branch, data, valid_count, indices, iou_threshold, post_nms_topk ): """Use the detected post NMS topk parameter in NMS op.""" nms_ret = op.vision.non_max_suppression( data=data, valid_count=valid_count, indices=indices, max_output_size=post_nms_topk, iou_threshold=iou_threshold, force_suppress=False, top_k=-1, coord_start=2, score_index=1, id_index=0, return_indices=True, invalid_to_bottom=False, ) size = op.squeeze(nms_ret[1], axis=[1]) data_slice = op.squeeze(nms_ret[0], axis=[0]) ret = op.strided_slice(data_slice, begin=expr.const([0]), end=size, slice_mode="size") nms_result = op.cast(ret, "int64") return expr.If(cond, true_branch, nms_result) def callback(self, pre, post, node_map): post_nms_topk = post.attrs.end[0].value return self.rewrite_batch_nms_with_max_out_size( node_map[self.cond][0], node_map[self.true_branch][0], node_map[self.data][0], node_map[self.valid_count][0], node_map[self.indices][0], node_map[self.iou_threshold][0], post_nms_topk, ) def scatter_roi_align_result_pattern(levels, roi_align_results, num_scales): """Detect the Relay subgraph corresponding to the following PyTorch code first_result = roi_align_results[0] dtype, device = first_result.dtype, first_result.device res = torch.zeros((levels.size(0), first_result.size(1), first_result.size(2), first_result.size(3)), dtype=dtype, device=device) for level in range(len(roi_align_results)): index = torch.where(levels == level)[0].view(-1, 1, 1, 1) index = index.expand(index.size(0), roi_align_results[level].size(1), roi_align_results[level].size(2), roi_align_results[level].size(3)) res = res.scatter(0, index, roi_align_results[level]) return res """ def do_where(levels, _): idx_in_level = is_op("argwhere")(is_op("equal")(levels, is_constant())) idx_in_level = is_op("split")(idx_in_level) idx_in_level = is_tuple_get_item(idx_in_level, 0) idx_in_level = is_op("squeeze")(idx_in_level) idx_in_level = is_tuple_get_item(is_tuple([idx_in_level]), 0) return idx_in_level scatter_res = wildcard() for i in range(num_scales): # index = torch.where(levels == level)[0].view(-1, 1, 1, 1) scatter_indices = do_where(levels, i) scatter_indices = is_op("reshape")(scatter_indices) # index = index.expand(index.size(0), # unmerged_results[level].size(1), # unmerged_results[level].size(2), # unmerged_results[level].size(3)) scatter_indices = is_op("repeat")(scatter_indices) scatter_indices = is_op("repeat")(scatter_indices) scatter_indices = is_op("repeat")(scatter_indices) scatter_res = is_op("scatter")(scatter_res, scatter_indices, roi_align_results[i]) return is_op("reshape")(scatter_res) class ScatterRewrite(DFPatternCallback): """A callback to rewrite repeated scatters with a batched gather.""" def __init__(self, num_scales): super().__init__() self.num_scales = num_scales self.levels = wildcard() self.roi_align_results = [] for _ in range(num_scales): self.roi_align_results.append(wildcard()) self.pattern = scatter_roi_align_result_pattern( self.levels, self.roi_align_results, num_scales ) def convert_scatter_to_gather(self, levels, roi_align_results): """Replace the detected scatter loop with the following PyTorch code indices_per_level = [] for level in range(num_scales): idx_in_level = torch.where(levels == level)[0] indices_per_leve.append(idx_in_level) stacked_features = torch.cat(roi_align_results, dim=0) stacked_indices = torch.cat(indices_per_level, dim=0) argsort_indices = torch.argort(stacked_indices) return stacked_features[argsort_indices, :] """ # Collect inidices and concat them indices_per_level = [] for i in range(self.num_scales): equal = op.equal(levels, expr.const(i, dtype="int64")) argwhere = op.argwhere(equal) split = op.split(argwhere, indices_or_sections=1, axis=1) squeeze = op.squeeze(split[0], axis=[1]) indices = op.cast(squeeze, dtype="int64") indices_per_level.append(indices) indices_concat = op.concatenate(indices_per_level, 0) # Concat roi align results per level, and argsort indices # To prepare for a batched gather roi_align_results_concat = op.concatenate(roi_align_results, 0) argsort_indices = op.cast(op.argsort(indices_concat), dtype="int64") # Permute rows by argsorted indices permuted = op.take(roi_align_results_concat, argsort_indices, axis=0) return op.reshape(permuted, [0, -1, 1, 1]) def callback(self, pre, post, node_map): levels = node_map[self.levels][0] roi_align_results = [node_map[feat][0] for feat in self.roi_align_results] return self.convert_scatter_to_gather(levels, roi_align_results) def rewrite_nms_to_batched_nms(mod): """Rewrite the input graph to replace non maximum surpression in torchvision that does not take class id into account with the one that avoids IOU tests between different classes. """ mod["main"] = rewrite(MulticlassNMSRewrite(), mod["main"]) return mod def rewrite_batched_nms_with_max_out_size(mod): """Rewrite the input graph to detect slicing after batched nms and use the slicing size as the parameter max_out_size in NMS. """ mod["main"] = rewrite(PostNMSTopKRewrite(), mod["main"]) return mod def rewrite_scatter_to_gather(mod, num_scales): """Rewrite the input graph to replace a repeated scatter loop with a batched gather. The scatter loop is used in torchvision MultiScaleRoIAlign to merge roi_align results for all scales. The scatter is used to emulate inplace updates. """ mod["main"] = rewrite(ScatterRewrite(num_scales), mod["main"]) return mod
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/qnn_torch.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-outside-toplevel """ Functions to convert quantized torch models to QNN """ import numpy as np import tvm from tvm import relay from tvm.relay import expr as _expr from tvm.relay import op as _op from tvm.relay.frontend.common import infer_shape from .common import logger from .pytorch_utils import is_version_greater_than, getattr_attr_name class QNNParam(object): """A placeholder for weight quantization parameters""" def __init__(self, weight, bias, scale, zero_point): self.weight = weight self.bias = None if bias is None else bias.detach().numpy() self.scale = _expr.const(scale) self.zero_point = _expr.const(zero_point, dtype="int32") class ConvPackedParam(QNNParam): """A placeholder for quantized conv2d op attributes As of PyTorch 1.6, attributes of quantized conv2d ops, like stride, padding etc are stored in ConvPackedParams objects, together with weights and quantization parameters """ def __init__( self, weight_np, bias, scale, zero_point, stride, padding, dilation, groups, output_padding, ): super().__init__(weight_np, bias, scale, zero_point) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups # Used only for conv_transpose2d self.output_padding = output_padding def _get_quant_params(qweight): import torch weight_np = qweight.dequantize().numpy() if qweight.qscheme() == torch.per_tensor_affine: return weight_np, qweight.q_scale(), int(qweight.q_zero_point()) scales = qweight.q_per_channel_scales().numpy() zero_points = qweight.q_per_channel_zero_points().numpy() # This is an assumption posed by QNN msg = "The values of zero points should be all zero for per channel" assert np.all(zero_points == 0), msg return weight_np, scales, 0 def make_qnn_param(qweight, bias): weight_np, scale, zero_point = _get_quant_params(qweight) return QNNParam(weight_np, bias, scale, zero_point) def make_conv_packed_param(qweight, bias, packed_params): weight_np, scale, zero_point = _get_quant_params(qweight) stride = packed_params.stride() padding = packed_params.padding() dilation = packed_params.dilation() groups = packed_params.groups() output_padding = packed_params.output_padding() return ConvPackedParam( weight_np, bias, scale, zero_point, stride, padding, dilation, groups, output_padding, ) def get_weight_quant_params(script_module, packed_param_names): """Retrieve and unpack weight parameters from quantized modules""" import torch param_name = "_packed_params" quant_params = {} def filter_func(named_module): m = named_module[1] return isinstance(m, torch.jit.RecursiveScriptModule) and ( ("Conv" in m.original_name) or (m.original_name == "LinearPackedParams") ) for name, m in filter(filter_func, script_module.named_modules()): key = name + "." + param_name state_dict = m.state_dict() if key not in packed_param_names: continue if len(state_dict) == 0 and not hasattr(m, param_name): # for v1.6 and above # This case seems to happen if a model is serialized # and loaded back # This module can be safely ignored continue if len(state_dict) == 0 and hasattr(m, param_name): # for v1.6 and above packed_params = m._packed_params else: assert len(state_dict) == 1 packed_params = list(state_dict.values())[0] if "Conv" in m.original_name and len(state_dict) == 0: qweight, bias = torch.ops.quantized.conv2d_unpack(packed_params) quant_params[key] = make_conv_packed_param(qweight, bias, packed_params) elif "Conv" in m.original_name: qweight, bias = torch.ops.quantized.conv2d_unpack(packed_params) quant_params[key] = make_qnn_param(qweight, bias) elif m.original_name == "LinearPackedParams": qweight, bias = torch.ops.quantized.linear_unpack(packed_params) quant_params[key] = make_qnn_param(qweight, bias) return quant_params def quantize_numpy(weight, scale, zero_point, out_dtype_np): iinfo = np.iinfo(out_dtype_np) clip_min = iinfo.min clip_max = iinfo.max if len(scale.shape) > 0: scale = np.reshape(scale, [weight.shape[0]] + [1] * (len(weight.shape) - 1)) transformed = zero_point + weight / scale return np.clip(np.round(transformed), clip_min, clip_max).astype(out_dtype_np) def add_quant_params_to_outputs( outputs, packed_param_map, quant_params, input_scales_for_bias, keep_quantized_weight=False ): """ Add quant params to outputs so that they can be referenced by other ops later. Weights are quantized here. """ for node_name, packed_param_name in packed_param_map.items(): qparam = quant_params[packed_param_name] weight_scale = _get_numpy(qparam.scale) param_prefix = packed_param_name[: -len("._packed_params")] if keep_quantized_weight: qparam.weight_var = _expr.var( param_prefix + "_weight", shape=qparam.weight.shape, dtype="int8" ) qparam.weight = quantize_numpy( qparam.weight, weight_scale, _get_numpy(qparam.zero_point), np.int8 ) qweight = qparam.weight_var else: qparam.weight_var = _expr.var( param_prefix + "_weight", shape=qparam.weight.shape, dtype="float32" ) qweight = relay.qnn.op.quantize( qparam.weight_var, qparam.scale, qparam.zero_point, out_dtype="int8", axis=0 ) if qparam.bias is not None: float_bias_var = _expr.var( param_prefix + "_bias", shape=qparam.bias.shape, dtype="float32" ) if node_name not in input_scales_for_bias: # This case is for dynamic quantization, where the input activation scale is # unknown until runtime. qparam.bias_var = float_bias_var qbias = qparam.bias_var elif keep_quantized_weight: qparam.bias_var = _expr.var( param_prefix + "_bias", shape=qparam.bias.shape, dtype="int32" ) qparam.bias = quantize_numpy( qparam.bias, input_scales_for_bias[node_name] * weight_scale, 0, np.int32 ) qbias = qparam.bias_var else: qparam.bias_var = float_bias_var qbias = relay.qnn.op.quantize( qparam.bias_var, _expr.const(input_scales_for_bias[node_name] * weight_scale), _expr.const(0, "int32"), out_dtype="int32", axis=0, ) else: qbias = None quant_params[packed_param_name] = qparam params = [qweight, qparam.scale, qparam.zero_point, qbias] if isinstance(quant_params[packed_param_name], ConvPackedParam): params += [ qparam.stride, qparam.padding, qparam.dilation, qparam.groups, qparam.output_padding, ] outputs[node_name] = params def _get_quant_param_for_input(input_value): """ We want to know the input scale and zp of this input_value, since input quant params are not explicitly passed around in torch (they are embedded in a QTensor data structure, not visible statically). We know that it is quantized using output scale and zp of some previous quantized op. The purpose of this function is to find that pair of parameters. """ # Indices for output scale and zp # For example, in quantized::conv2d(%input, %1, %2, %3, %4, %5, %6, %7), # 6th and 7th arg are output scale and zp respectively. # PyTorch 1.6 changed qconv API if is_version_greater_than("1.5.1"): qconv_indices = (2, 3) else: qconv_indices = (6, 7) output_quant_param_indices = { "aten::quantize_per_tensor": (1, 2), "quantized::conv2d": qconv_indices, "quantized::conv2d_relu": qconv_indices, "quantized::linear": (2, 3), "quantized::linear_relu": (2, 3), "quantized::add_relu": (2, 3), "quantized::add": (2, 3), "quantized::mul_relu": (2, 3), "quantized::mul": (2, 3), "quantized::cat": (2, 3), "quantized::mul_scalar": (2, 3), "quantized::add_scalar": (2, 3), "quantized::hardswish": (1, 2), "quantized::conv_transpose2d": qconv_indices, "quantized::leaky_relu": (3, 4), "aten::sigmoid": (1, 2), } def dfs(current_node): # trace back to find the producer of this input value current_op = current_node.kind() if current_op in output_quant_param_indices: indices = output_quant_param_indices[current_op] scale = current_node.inputsAt(indices[0]) zp = current_node.inputsAt(indices[1]) return scale, zp # Trace back eariler nodes, dfs order # Assume quantized tensor comes earlier in the args for arg in current_node.inputs(): return dfs(arg.node()) # If input_value is not quantized, we reach here. return None, None return dfs(input_value.node()) def _get_add_scalar_output_quant_param(input_scale, input_zero_point, scalar): """ Determine the output scale and zp of quantized::add_scalar op This is used for mobilenet v3 Refer to aten/src/ATen/native/quantized/cpu/qadd.cpp The names of variables are the same as torch impl """ q_min = 0 q_max = 255 s = input_scale z = input_zero_point c = scalar c_q = round(c / s) if q_min > z - c_q: s_prime = (float(q_max) - (z - c_q)) / (float(q_max) - q_min) * s z_prime = q_min elif q_max < z - c_q: s_prime = (float(z - c_q) - q_min) / (float(q_max) - q_min) * s z_prime = q_max else: s_prime = s z_prime = z - c_q return s_prime, z_prime def _get_mul_scalar_output_quant_param(input_scale, input_zero_point, scalar): """ Determine the output scale and zp of quantized::mul_scalar op This is used for mobilenet v3 Refer to aten/src/ATen/native/quantized/cpu/qmul.cpp The names of variables are the same as torch impl """ q_min = 0 q_max = 255 self_scale = input_scale self_zero_point = input_zero_point other_val = scalar if other_val > 0.0: s_prime = other_val * self_scale z_prime = self_zero_point elif other_val == 0.0: s_prime = 1.0 z_prime = 0 else: s_prime = abs(other_val) * self_scale z_prime = q_max - (self_zero_point - q_min) return s_prime, z_prime def _add_output_quant_params_to_scalar_op(node, graph, input_scale, input_zero_point, scalar): """ The output scale and zp of {add,mul}_scalar op are not explicit in the IR They are required for _get_quant_param_for_input above to work correctly So calculate these params using the same way torch does, and make new constant nodes in the input IR. Also add these params to the inputs of scalar op. For example, %6 : float = prim::Constant[value=3.]() %input : QUInt8(1, 3, 224, 224) = quantized::add_scalar(%x.1, %6) becomes %6 : float = prim::Constant[value=3.]() %7 : float = prim::Constant[value=0.015686161816120148]() %8 : int = prim::Constant[value=0]() %input : UInt8(1, 3, 224, 224) = quantized::add_scalar(%x.1, %6, %7, %8) %7 and %8 are newly created output scale and zp constant nodes """ # pylint: disable=c-extension-no-member import torch operator = node.kind() if operator == "quantized::mul_scalar": out_scale, out_zero_point = _get_mul_scalar_output_quant_param( input_scale, input_zero_point, scalar ) elif operator == "quantized::add_scalar": out_scale, out_zero_point = _get_add_scalar_output_quant_param( input_scale, input_zero_point, scalar ) else: raise NotImplementedError("unsupported scalar op: %s" % operator) # create new constant nodes and add them to graph out_scale_node = graph.create("prim::Constant") out_zero_point_node = graph.create("prim::Constant") out_scale_node.insertBefore(node) out_zero_point_node.insertBefore(node) out_scale_node.f_("value", out_scale) out_zero_point_node.i_("value", out_zero_point) out_scale_node.output().setType(torch._C.FloatType.get()) out_zero_point_node.output().setType(torch._C.IntType.get()) node.addInput(out_scale_node.output()) node.addInput(out_zero_point_node.output()) def _add_output_quant_params_to_sigmoid_op(node, graph): """ Refer to aten/src/ATen/native/quantized/cpu/qsigmoid.cpp, the output scale and zp of sigmoid op are two fixed numbers. So we need to make two new constant nodes in the input IR and add these params to the inputs of sigmoid op. """ # pylint: disable=c-extension-no-member import torch # suppose scale_type is uint8 out_scale = 1.0 / 256 out_zero_point = 0 # create new constant nodes and add them to graph out_scale_node = graph.create("prim::Constant") out_zero_point_node = graph.create("prim::Constant") out_scale_node.insertBefore(node) out_zero_point_node.insertBefore(node) out_scale_node.f_("value", out_scale) out_zero_point_node.i_("value", out_zero_point) out_scale_node.output().setType(torch._C.FloatType.get()) out_zero_point_node.output().setType(torch._C.IntType.get()) node.addInput(out_scale_node.output()) node.addInput(out_zero_point_node.output()) def add_input_quant_params_to_op_inputs(graph): """ In Torch, input quant params are not explicitly passed around Instead, they are stored in QTensor data structure, and retrieved at runtime by each quantized ops. However, they need to be known statically for QNN translation. To workaround and simplify the translation of inputs, we manually add input quant params to inputs of Torch quantized operators listed below. See _quantized_conv2d() below for example of why this is helpful. For example, %input : QUInt8(1, 512, 7, 7) = quantized::add(%x.8, %x.9, %434, %435) becomes %395 : float = prim::Constant[value=0.036212071776390076]() %396 : int = prim::Constant[value=0]() %430 : float = prim::Constant[value=0.16080744564533234]() %431 : int = prim::Constant[value=42]() %input : QUInt8(1, 512, 7, 7) = quantized::add(%x.8, %x.9, %434, %435, %430, %431, %395, %396) %434, %435 are output scale and zp of quantized::add op %430, %431, %395, %396 are two pairs of input (scale, zp) for two tensors added by this function """ # How many quantized tensors each op takes as inputs? # A pair of (scale, zp) for each input quantized tensor will be added # to the input nodes num_quantized_inputs = { "quantized::conv2d": 1, "quantized::conv2d_relu": 1, "quantized::linear": 1, "quantized::linear_relu": 1, "quantized::add_relu": 2, "quantized::add": 2, "quantized::mul_relu": 2, "quantized::mul": 2, "aten::dequantize": 1, "aten::mean": 1, "aten::sigmoid": 1, "aten::upsample_nearest2d": 1, "aten::upsample_bilinear2d": 1, "aten::relu_": 1, "aten::relu": 1, "quantized::add_scalar": 1, "quantized::mul_scalar": 1, "quantized::relu6": 1, "quantized::hardswish": 1, "aten::hardsigmoid": 1, "quantized::conv_transpose2d": 1, "quantized::leaky_relu": 1, } need_input_quant_param = set(num_quantized_inputs.keys()) need_input_quant_param.add("quantized::cat") input_scales_for_bias = {} for node in graph.nodes(): operator = node.kind() if operator not in need_input_quant_param: continue input_scales = [] input_zero_points = [] if operator == "quantized::cat": # the number of inputs to concat is not constant # so handle it separately inputs = node.inputsAt(0).node().inputs() for inp in inputs: scale, zp = _get_quant_param_for_input(inp) input_scales.append(scale) input_zero_points.append(zp) else: for i in range(num_quantized_inputs[operator]): scale, zp = _get_quant_param_for_input(node.inputsAt(i)) if scale is not None and zp is not None: input_scales.append(scale) input_zero_points.append(zp) if operator in ["quantized::add_scalar", "quantized::mul_scalar"]: scalar = node.inputsAt(1).node().f("value") inp_scale = input_scales[0].node().f("value") inp_zero_point = input_zero_points[0].node().i("value") # see the comments in this function above _add_output_quant_params_to_scalar_op(node, graph, inp_scale, inp_zero_point, scalar) if operator == "aten::sigmoid": _add_output_quant_params_to_sigmoid_op(node, graph) for scale, zp in zip(input_scales, input_zero_points): node.addInput(scale) node.addInput(zp) if "quantized::conv" in operator or "quantized::linear" in operator: # This is required for quantizing the bias assert len(input_scales) == 1, "One quantized parameter expected for qconv or qlinear." input_scales_for_bias[node.inputsAt(1).debugName()] = input_scales[0].node().f("value") return input_scales_for_bias def add_quant_params(params, quant_params): """Add quant parameters to TVM param map""" for qparam in quant_params.values(): params[qparam.weight_var.name_hint] = tvm.nd.array(qparam.weight) if qparam.bias is not None: params[qparam.bias_var.name_hint] = tvm.nd.array(qparam.bias) def inline_input_quant_params_for_fx(graph, params): """ Canonicalize input scale and zero point access for FX-quantized graphs. We expect input qparams to aten::quantize_per_tensor to be prim::Constant, but that's not the case for FX-based quantized models as shown below. We replace prim::GetAttr with prim::Constant so that FX-based quantized models can be converted in the same way as eager-mode based quantized models. Before: %pan_input_zero_point_1 : Tensor = prim::GetAttr[name="pan_input_zero_point_1"](%backbone) %pan_input_scale_1 : Tensor = prim::GetAttr[name="pan_input_scale_1"](%backbone) ... %quantize_per_tensor_2 ... = aten::quantize_per_tensor(..., %pan_input_scale_1, %pan_input_zero_point_1, ...) After: %2402 : int = prim::Constant[value=0]() %2403 : float = prim::Constant[value=1.]() %quantize_per_tensor_2 ... = aten::quantize_per_tensor(..., %2403, %2402, ...) """ # pylint: disable=c-extension-no-member import torch def get_full_attr_name(current): current_attr = getattr_attr_name(current) inputs = list(current.inputs()) if len(inputs) == 1 and inputs[0].node().kind() == "prim::GetAttr": return get_full_attr_name(inputs[0].node()) + "." + current_attr return current_attr for node in graph.findAllNodes("prim::GetAttr", recurse=True): out_name = node.output().debugName() if "_scale" in out_name or "_zero_point" in out_name: full_attr = get_full_attr_name(node) assert full_attr in params, "%s not found in param dict." % full_attr param_np = params[full_attr].numpy() new_const_node = graph.create("prim::Constant") new_const_node.insertBefore(node) if "_scale" in out_name: new_const_node.f_("value", param_np) new_const_node.output().setType(torch._C.FloatType.get()) else: new_const_node.i_("value", param_np.item()) new_const_node.output().setType(torch._C.IntType.get()) node.replaceAllUsesWith(new_const_node) def apply_with_upcast(data, func): inp = _op.cast(data, dtype="int32") out = func(inp) return _op.cast(out, "uint8") def apply_with_fp32_fallback(data, input_scale, input_zero_point, func_fp32): dequantized = relay.qnn.op.dequantize(data, input_scale, input_zero_point) out = func_fp32(dequantized) return relay.qnn.op.quantize(out, input_scale, input_zero_point, out_dtype="uint8", axis=1) def quantized_relu(data, input_zero_point): # refer to aten/src/ATen/native/quantized/cpu/qrelu.cpp zp = _op.cast(input_zero_point, dtype="uint8") return _op.tensor.maximum(data, zp) def quantized_sigmoid(inputs): data = inputs[0] output_scale = _expr.const(inputs[1]) output_zero_point = _expr.const(inputs[2]) input_scale = _expr.const(inputs[3]) input_zero_point = _expr.const(inputs[4]) return relay.qnn.op.sigmoid( data, input_scale, input_zero_point, output_scale, output_zero_point ) def _quantize_per_tensor(): def _impl(inputs, _): dim = len(infer_shape(inputs[0])) if dim > 1: axis = 1 else: axis = 0 return relay.qnn.op.quantize( inputs[0], _expr.const(inputs[1]), _expr.const(inputs[2]), out_dtype="uint8", axis=axis ) return _impl def _dequantize(): def _impl(inputs, _): assert len(inputs) == 3, "Input quant params not found in op inputs" inp_scale = _expr.const(inputs[1]) inp_zero_point = _expr.const(inputs[2]) return relay.qnn.op.dequantize(inputs[0], inp_scale, inp_zero_point) return _impl def _get_numpy(relay_const_scalar): return relay_const_scalar.data.numpy() def _get_scalar(relay_const_scalar): return _get_numpy(relay_const_scalar).item(0) def _do_bias_and_requantize( output, bias, input_scale, weight_scale, output_scale, output_zero_point, with_relu ): """Output processing for conv and linear""" # this is a vector for per channel case requant_input_scale = _expr.const(_get_numpy(input_scale) * _get_numpy(weight_scale)) # Torch does bias add and requanize scale in fp32 # refer to third_party/fbgemm/include/fbgemm/OutputProcessing-inl.h # Instead, we do bias add in int32 and use qnn requantize, which needs # integer input. # We observed no loss in accuracy in doing this way, and it is better # for tvm because bias quantization can be done at compile time # Instead, the torch way requires rounding of activation at runtime if bias is not None: requantize_input = _op.nn.bias_add(output, bias) else: requantize_input = output requantized = relay.qnn.op.requantize( requantize_input, requant_input_scale, relay.const(0, "int32"), output_scale, output_zero_point, out_dtype="int32", axis=1, ) clip_min = 0 if with_relu: clip_min = _get_scalar(output_zero_point) clip = _op.tensor.clip(requantized, clip_min, 255.0) return _op.cast(clip, dtype="uint8") def _quantized_conv2d(with_relu=False): def _impl(inputs, _): # refer to src/ATen/native/quantized/cpu/qconv.cpp # inputs[0]: input tensor # inputs[1]: (weight, scale, zero_point, bias) # inputs[2-5]: stride, padding, dilation, groups # inputs[6]: output_scale # inputs[7]: output_zero_point # inputs[8]: input_scale (added manually by frontend) # inputs[9]: input_zero_point (added manually by frontend) conv_params = inputs[1] weight = conv_params[0] weight_scale = conv_params[1] weight_zero_point = conv_params[2] bias = conv_params[3] if len(conv_params) > 4: # Torch 1.6 or newer case strides = conv_params[4] padding = conv_params[5] dilation = conv_params[6] groups = conv_params[7] output_scale = _expr.const(inputs[2]) output_zero_point = _expr.const(inputs[3]) assert len(inputs) == 6, "Input quant params not found in op inputs" # These are manually added by add_input_quant_params_to_op_inputs above # In torch, they are retrieved from QTensor data structure at runtime input_scale = _expr.const(inputs[4]) input_zero_point = _expr.const(inputs[5]) else: strides = inputs[2] padding = inputs[3] dilation = inputs[4] groups = inputs[5] output_scale = _expr.const(inputs[6]) output_zero_point = _expr.const(inputs[7]) assert len(inputs) == 10, "Input quant params not found in op inputs" input_scale = _expr.const(inputs[8]) input_zero_point = _expr.const(inputs[9]) weight_shape = infer_shape(weight) kernel_size = (weight_shape[2], weight_shape[3]) out_channels = weight_shape[0] if padding[0] != 0 or padding[1] != 0: pad_val = _get_scalar(input_zero_point) inp = _op.nn.pad( inputs[0], pad_width=((0, 0), (0, 0), (padding[0], padding[0]), (padding[1], padding[1])), pad_value=float(pad_val), ) else: inp = inputs[0] # padding is (0, 0) because we did explicit pad op with # pad value being zero point above conv_out = relay.qnn.op.conv2d( inp, weight, input_zero_point, weight_zero_point, input_scale, weight_scale, kernel_size=kernel_size, dilation=dilation, strides=strides, padding=(0, 0), groups=groups, channels=out_channels, ) return _do_bias_and_requantize( conv_out, bias, input_scale, weight_scale, output_scale, output_zero_point, with_relu ) return _impl def _linear(with_relu=False): # similar to conv def _impl(inputs, _): weight = inputs[1][0] weight_scale = inputs[1][1] weight_zero_point = inputs[1][2] output_scale = _expr.const(inputs[2]) output_zero_point = _expr.const(inputs[3]) assert len(inputs) == 6, "Input quant params not found in op inputs" # Manually added by add_input_quant_params_to_op_inputs above input_scale = _expr.const(inputs[4]) input_zero_point = _expr.const(inputs[5]) weight_shape = infer_shape(weight) dense = relay.qnn.op.dense( inputs[0], weight, input_zero_point, weight_zero_point, input_scale, weight_scale, units=weight_shape[0], ) bias_var = inputs[1][3] return _do_bias_and_requantize( dense, bias_var, input_scale, weight_scale, output_scale, output_zero_point, with_relu ) return _impl def _binop(relay_op, with_relu=False, fp32_piggy_back=False): def qnn_impl( lhs, rhs, input_scale_lhs, input_zero_point_lhs, input_scale_rhs, input_zero_point_rhs, output_scale, output_zero_point, ): qnn_out = relay_op( lhs, rhs, input_scale_lhs, input_zero_point_lhs, input_scale_rhs, input_zero_point_rhs, output_scale, output_zero_point, ) if with_relu: clip_min = _get_scalar(output_zero_point) return _op.tensor.clip(qnn_out, clip_min, 255) return qnn_out # refer to aten/src/ATen/native/quantized/cpu/{qadd, qmul}.cpp # they piggy backs to fp32 math by dequantize -> fp32 math -> quantize def torch_impl( lhs, rhs, input_scale_lhs, input_zero_point_lhs, input_scale_rhs, input_zero_point_rhs, output_scale, output_zero_point, ): if isinstance(lhs, _expr.Call) and lhs.op.name == "qnn.quantize": lhs = lhs.args[0] else: lhs = relay.qnn.op.dequantize(lhs, input_scale_lhs, input_zero_point_lhs) if isinstance(rhs, _expr.Call) and rhs.op.name == "qnn.quantize": rhs = rhs.args[0] else: rhs = relay.qnn.op.dequantize(rhs, input_scale_rhs, input_zero_point_rhs) fp32_out = relay_op(lhs, rhs) if with_relu: fp32_out = _op.nn.relu(fp32_out) return relay.qnn.op.quantize( fp32_out, output_scale, output_zero_point, axis=-1, out_dtype="uint8" ) def _impl(inputs, _): lhs = inputs[0] rhs = inputs[1] output_scale = _expr.const(inputs[2]) output_zero_point = _expr.const(inputs[3]) assert len(inputs) == 8, "Input quant params not found in op inputs" # Manually added by add_input_quant_params_to_op_inputs above input_scale_lhs = _expr.const(inputs[4]) input_zero_point_lhs = _expr.const(inputs[5]) input_scale_rhs = _expr.const(inputs[6]) input_zero_point_rhs = _expr.const(inputs[7]) if fp32_piggy_back: logger.info("Piggy backing to FP32 op (PyTorch way)") return torch_impl( lhs, rhs, input_scale_lhs, input_zero_point_lhs, input_scale_rhs, input_zero_point_rhs, output_scale, output_zero_point, ) return qnn_impl( lhs, rhs, input_scale_lhs, input_zero_point_lhs, input_scale_rhs, input_zero_point_rhs, output_scale, output_zero_point, ) return _impl def _cat(fp32_piggy_back=False): # refer to aten/src/ATen/native/quantized/cpu/qconcat.cpp # for concat they also piggy backs to fp32(!) # dequantize -> fp32 math -> quantize def torch_impl(inputs, input_scales, input_zero_points, output_scale, output_zero_point, axis): dequantized = [] for inp, inp_scale, inp_zp in zip(inputs, input_scales, input_zero_points): dequantized.append(relay.qnn.op.dequantize(inp, inp_scale, inp_zp)) concat = _op.tensor.concatenate(dequantized, axis=axis) return relay.qnn.op.quantize( concat, output_scale, output_zero_point, axis=axis, out_dtype="uint8" ) def _impl(inputs, _): axis = inputs[1] output_scale = _expr.const(inputs[2]) output_zero_point = _expr.const(inputs[3]) num_inputs = (len(inputs) - 4) // 2 input_scales = [] input_zero_points = [] for i in range(0, num_inputs): input_scales.append(_expr.const(inputs[4 + i * 2])) input_zero_points.append(_expr.const(inputs[4 + i * 2 + 1])) if fp32_piggy_back: return torch_impl( inputs[0], input_scales, input_zero_points, output_scale, output_zero_point, axis ) return relay.qnn.op.concatenate( inputs[0], input_scales, input_zero_points, output_scale, output_zero_point, axis ) return _impl def _add_scalar(): # this is used for mobilenet v3 def _impl(inputs, _): # refer to aten/src/ATen/native/quantized/cpu/qadd.cpp assert len(inputs) == 6, "Input quant params not found in op inputs" s = inputs[4] z = inputs[5] c = inputs[1] c_q = round(c / s) q_min = 0 q_max = 255 # math for calculating output scale and zp are already done # during _add_output_quant_params_to_scalar_op above out_scale = _expr.const(inputs[2]) out_zp = _expr.const(inputs[3]) if q_min > z - c_q or q_max < z - c_q: # TODO(masahi): Replace this with integer only compute dequant = relay.qnn.op.dequantize(inputs[0], _expr.const(s), _expr.const(z)) dequantized_add = _op.tensor.add(dequant, _expr.const(c_q * s)) return relay.qnn.op.quantize( dequantized_add, out_scale, out_zp, axis=1, out_dtype="uint8" ) # only scale change return inputs[0] return _impl def quantize_scalar(data, scale, zero_point): # used to quantize 6., in mobilenet v3 transformed = zero_point + data / scale return max(0, min(round(transformed), 255)) def _relu6(): # refer to src/ATen/native/quantized/cpu/qrelu.cpp def _impl(inputs, _): assert len(inputs) == 4, "Input quant params not found in op inputs" input_scale = inputs[2] input_zero_point = inputs[3] six = quantize_scalar(6.0, input_scale, input_zero_point) return _op.tensor.clip(inputs[0], input_zero_point, six) return _impl def _leaky_relu(fp32_piggy_back=False): # refer to src/ATen/native/quantized/cpu/qrelu.cpp def _impl_fp32(inputs, _): alpha = inputs[1] output_scale = _expr.const(inputs[3]) output_zero_point = _expr.const(inputs[4]) input_scale = _expr.const(inputs[5]) input_zero_point = _expr.const(inputs[6]) dequant = relay.qnn.op.dequantize(inputs[0], input_scale, input_zero_point) dequantized = _op.nn.leaky_relu(dequant, alpha) return relay.qnn.op.quantize( dequantized, output_scale, output_zero_point, out_dtype="uint8" ) def _impl_int8(inputs, _): alpha = inputs[1] output_scale = _expr.const(inputs[3]) output_zero_point = _expr.const(inputs[4]) input_scale = _expr.const(inputs[5]) input_zero_point = _expr.const(inputs[6]) return relay.qnn.op.leaky_relu( inputs[0], alpha, input_scale, input_zero_point, output_scale, output_zero_point ) def _impl(inputs, _): assert len(inputs) == 7, "Input quant params not found in op inputs" if fp32_piggy_back: return _impl_fp32(inputs, _) return _impl_int8(inputs, _) return _impl def _mul_scalar(): # this is used for mobilenet v3 def _impl(inputs, _): # refer to aten/src/ATen/native/quantized/cpu/qmul.cpp # math for calculating output scale and zp are already done # during _add_output_quant_params_to_scalar_op above assert len(inputs) == 6, "Input quant params not found in op inputs" other_val = inputs[1] # scalar if other_val > 0.0: # only scale change return inputs[0] if other_val == 0.0: shape = infer_shape(inputs[0]) return _op.full(_expr.const(0), shape, dtype="uint8") # negative scale case q_min = 0 q_max = 255 bias = _expr.const(q_max + q_min, dtype="int8") int8 = bias - _op.cast(inputs[0], "int8") return _op.cast(int8, "uint8") return _impl def _hswish(fp32_piggy_back=False): def _impl_fp32(inputs): # refer to src/ATen/native/quantized/cpu/kernels/QuantizedOpKernels.cpp # They fallback to fp32 def relu6(x): return _op.tensor.clip(x, 0.0, 6.0) def hardsigmoid(x): dtype = "float32" return relu6(x + _expr.const(3.0, dtype=dtype)) / _expr.const(6.0, dtype=dtype) output_scale = _expr.const(inputs[1]) output_zero_point = _expr.const(inputs[2]) input_scale = _expr.const(inputs[3]) input_zero_point = _expr.const(inputs[4]) dequant = relay.qnn.op.dequantize(inputs[0], input_scale, input_zero_point, axis=1) dequantized_hswish = dequant * hardsigmoid(dequant) return relay.qnn.op.quantize( dequantized_hswish, output_scale, output_zero_point, out_dtype="uint8" ) def _impl_int8(inputs): output_scale = _expr.const(inputs[1]) output_zero_point = _expr.const(inputs[2]) input_scale = _expr.const(inputs[3]) input_zero_point = _expr.const(inputs[4]) return relay.qnn.op.hardswish( inputs[0], input_scale, input_zero_point, output_scale, output_zero_point ) def _impl(inputs, _): assert len(inputs) == 5, "Input quant params not found in op inputs" if fp32_piggy_back: return _impl_fp32(inputs) return _impl_int8(inputs) return _impl def _linear_dynamic(): def _calculate_qparam(inp): # reference ATen/native/quantized/cpu/qlinear_dynamic.cpp # ChooseQuantizationParams function mn = _op.min(inp) mx = _op.max(inp) # Ensure that the interval contains 0 mn = _op.minimum(mn, _op.const(0.0, dtype="float32")) mx = _op.maximum(mx, _op.const(0.0, dtype="float32")) qmax = 255 # reduce_range became True in v1.6 if is_version_greater_than("1.5.1"): qmax = 127 scale = (mx - mn) / _expr.const(qmax, dtype="float32") zero_point_from_min = -(mn / scale) zero_point = _op.cast(_op.round(_op.clip(zero_point_from_min, 0.0, qmax)), "int32") return scale, zero_point def _impl(inputs, _): weight = inputs[1][0] weight_scale = inputs[1][1] weight_zero_point = inputs[1][2] inp = inputs[0] input_scale, input_zero_point = _calculate_qparam(inp) qinp = relay.qnn.op.quantize(inp, input_scale, input_zero_point, out_dtype="uint8") data_shape = infer_shape(inp) if len(data_shape) > 2: qinp = _op.reverse_reshape(qinp, [-1, 0]) weight_shape = infer_shape(weight) units = weight_shape[0] dense = relay.qnn.op.dense( qinp, weight, input_zero_point, weight_zero_point, input_scale, weight_scale, units=units, ) bias_var = inputs[1][3] dequant_scale = input_scale * weight_scale dense_out = relay.qnn.op.dequantize( dense, dequant_scale, input_zero_point=relay.const(0, "int32"), axis=1 ) if len(data_shape) > 2: new_shape = list(data_shape[:-1]) new_shape.append(units) dense_out = _op.reshape(dense_out, new_shape) if bias_var is not None: return dense_out + bias_var return dense_out return _impl def _quantized_conv_transpose2d(with_relu=False): def _impl(inputs, _): # Refer to aten/src/ATen/native/quantized/cpu/qconv.cpp # Supported in Torch 1.7 or newer conv_params = inputs[1] weight = conv_params[0] weight_scale = conv_params[1] weight_zero_point = conv_params[2] bias = conv_params[3] strides = conv_params[4] padding = conv_params[5] dilation = conv_params[6] groups = conv_params[7] output_padding = conv_params[8] output_scale = _expr.const(inputs[2]) output_zero_point = _expr.const(inputs[3]) assert len(inputs) == 6, "Input quant params not found in op inputs" # These are manually added by add_input_quant_params_to_op_inputs above # In torch, they are retrieved from QTensor data structure at runtime input_scale = _expr.const(inputs[4]) input_zero_point = _expr.const(inputs[5]) weight_shape = list(infer_shape(weight)) kernel_size = (weight_shape[2], weight_shape[3]) out_channels = weight_shape[1] conv_out = relay.qnn.op.conv2d_transpose( inputs[0], weight, input_zero_point, weight_zero_point, input_scale, weight_scale, kernel_size=kernel_size, dilation=dilation, strides=strides, padding=padding, groups=groups, channels=out_channels, output_padding=output_padding, out_dtype="int32", kernel_layout="IOHW", ) return _do_bias_and_requantize( conv_out, bias, input_scale, weight_scale, output_scale, output_zero_point, with_relu ) return _impl convert_map = { "aten::quantize_per_tensor": _quantize_per_tensor(), "quantized::conv2d_relu": _quantized_conv2d(with_relu=True), "aten::dequantize": _dequantize(), "quantized::conv2d": _quantized_conv2d(), "quantized::add_relu": _binop(relay.qnn.op.add, with_relu=True), "quantized::add": _binop(relay.qnn.op.add), "quantized::mul_relu": _binop(relay.qnn.op.mul, with_relu=True), "quantized::mul": _binop(relay.qnn.op.mul), "quantized::linear": _linear(), "quantized::linear_relu": _linear(with_relu=True), "quantized::cat": _cat(), "quantized::add_scalar": _add_scalar(), "quantized::mul_scalar": _mul_scalar(), "quantized::relu6": _relu6(), "quantized::leaky_relu": _leaky_relu(), "quantized::linear_dynamic": _linear_dynamic(), "quantized::hardswish": _hswish(fp32_piggy_back=False), "quantized::conv_transpose2d": _quantized_conv_transpose2d(), }
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/tensorflow.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition, broad-except # pylint: disable=import-outside-toplevel, redefined-builtin """TF: Tensorflow frontend.""" import warnings from collections import defaultdict # Numpy support import numpy as np import tvm from tvm.ir import IRModule from tvm.relay.prelude import Prelude from tvm.relay.transform import InferType from .. import analysis from .. import expr as _expr from .. import function as _function from ..ty import Any from ..expr_functor import ExprMutator, ExprVisitor from .common import get_relay_op from .common import infer_type as _infer_type from .common import infer_shape as _infer_shape from .common import infer_value as _infer_value from .tensorflow_ops import _convert_map from .tensorflow_ops import _need_prelude_for_shape_inference from .tensorflow_ops import _get_more_static_shape __all__ = ["from_tensorflow"] # The default configurations of Relay TensorFlow frontend. TF_DEFAULT_CONFIGS = { # By default, TVM converts `tf.matmul` to `transpose(weight) + nn.dense`, which introduces # unnecessary overhead in weight transpose. Change this flag to False to directly convert to # `nn.matmul` to get rid of the overhead. # However, please note that `nn.matmul` is in experimental so it may have some performance # issues. "use_dense": True, # By default, TVM converts `tf.batch_matmul` to `transpose(weight) + nn.batch_matmul_NT`. # Change this flag to False to directly convert to `nn.batch_matmul`. # Note that `nn.batch_matmul` with format other than NT is in experimental, it may have some # performance issues. "use_nt_batch_matmul": True, } # compatible operators that do NOT require any conversion. _identity_list = [] # Operators that get pruned away when the complete graph is frozen. # These operators are not needed for inference. _freezed_graph_pruned_op_list = [ "ReadVariableOp", "ResourceGather", "Variable", "VariableV2", "VarHandleOp", "Assign", "AssignVariableOp", ] # An internal list to contain all the control flow primitives used in Tensorflow # 1.x. _control_flow_nodes = ["Merge", "Switch", "NextIteration", "Exit", "Enter", "LoopCond"] # A map to record tensor array write ops and input ta/tensor indices # Value is (index of tensor array, index of written node) _tensor_array_write_ops = { "TensorArrayWrite": (3, 2), "TensorArrayScatter": (0, 2), "TensorArraySplit": (0, 1), } def is_tensor_array_constuctor(tf_node): """Check whether is tensor array constructor node.""" is_ta = False ta_start = "TensorArrayV" if tf_node.op.startswith(ta_start): is_ta = tf_node.op[len(ta_start)].isnumeric() return is_ta def find_parent_loop_name(node_name, while_loop_name_set): """Find name of direct parent while loop.""" ploop_name = "" name_prefix = node_name.rsplit("/", 1)[0] if name_prefix.startswith("^"): name_prefix = name_prefix[1:] for lname in while_loop_name_set: if name_prefix.startswith(lname) and len(ploop_name) < len(lname): ploop_name = lname if len(ploop_name) == 0: ploop_name = name_prefix return ploop_name def _in_while_loop(control_flow_node_map, op_name): """ Check if a given control flow operator is part of a while loop execution frame. This is based on the fact that there is only one occurrence of `LoopCond` for a loop execution frame and it is only presented in the loop construct. Parameters ---------- control_flow_node_map : Dict[str, Set[str]] A dictionary contains the unique control flow execution frame name to a set of primitive operators mapping. op_name : str The name of a control flow primitive. Returns ------- ret : bool Return true if the operator is in a while loop execution frame, otherwise, return false. """ return op_name in control_flow_node_map and "LoopCond" in control_flow_node_map[op_name] class RewriteSubgraph(ExprMutator): """ A helper class to rewrite expr in while loop function to variable. Parameters ---------- rewrite_map : Dict[expr, expr] A dictionary contains a set of expr to var mapping. """ def __init__(self, rewrite_map): ExprMutator.__init__(self) self.rewrite_map = rewrite_map def visit(self, expr): if expr in self.rewrite_map: return self.rewrite_map[expr] return super().visit(expr) def rewrite_subgraph(expr, rewrites): """Rewrite loop body.""" return RewriteSubgraph(rewrites).visit(expr) class Branch: """A class contains the components that are used to build up a Relay if node. Parameters ---------- cond : tvm.relay.Expr The condition of a if node. true_branch : tvm.relay.Expr The body of the true branch of a if expression. false_branch: tvm.relay.Expr The body of the false branch of a if expression. _if : tvm.relay.Expr An internal variable indicates where an if expression is already created for a matched TF condition construct. Examples -------- The following is a cond statement written in TensorFlow: .. code-block:: python def vanilla_cond(): i = tf.constant(1) j = tf.constant(4) def f1(): return tf.multiply(1, 17) def f2(): return tf.add(4, 23) r = tf.cond(tf.less(i, j), f1, f2) This condition statement should be converted into Relay in the following form: .. code-block:: python fn (%Const: Tensor[(1,), int32], %Const_1: Tensor[(1,), int32], %cond/Mul/x: Tensor[(1,), int32], %cond/Mul/y: Tensor[(1,), int32], %cond/Add/x: Tensor[(1,), int32], %cond/Add/y: Tensor[(1,), int32]) { %0 = less(%Const, %Const_1) # ty=Tensor[(1,), bool] %1 = min(%0) if (%1) { %2 = multiply(%cond/Mul/x, %cond/Mul/y) %2 } else { %3 = add(%cond/Add/x, %cond/Add/y) %3 } } """ def __init__(self): self._if = None self.cond = None self.true_branch = None self.false_branch = None def _if_node(self): """An internal API to create a relay if node from the matched TF condition construct. """ # `cond` returns a tensor that contains boolean values. We add a `min` # operator to checks if there is any false value. If so, this condition # doesn't not hold. cond = tvm.relay.op.min(self.cond) return tvm.relay.If(cond, self.true_branch, self.false_branch) def if_node(self): """Create an tvm.relay.If node if it hasn't been created yet.""" if self._if is None: self._if = self._if_node() return self._if class VarChecker(ExprVisitor): """Check whether a Variable is used in loop body. Parameters ---------- var : relay.expr.Var Relay Variable to be checked. """ def __init__(self, var): ExprVisitor.__init__(self) self._var = var self.used = False def visit(self, expr): if self._var == expr: self.used = True super().visit(expr) class Loop: """ A class contains the components that are used to build up a Relay recursive call. Parameters ---------- mod : tvm.IRModule Module for current parsed IR. loop_name : str Name prefix of while loop in TensorFlow graph. lvar2expr : dict from str to dict from Relay.expr.Var to Relay.expr A dictionary recording all loop vars and corresponding relay expression. Examples -------- The following is a vanilla loop from TensorFlow: .. code-block:: python i = tf.constant(0) c = lambda i: tf.less(i, 10) b = lambda i: tf.add(i, 1) r = tf.while_loop(c, b, [i]) It will be converted to the following recursive call in Relay: .. code-block:: python fn (%while/Less/y: Tensor[(1,), int32], %while/Add/y: Tensor[(1,), int32], %Const: Tensor[(1,), int32]) { %0 = fn(%loop_var0: Tensor[(1,), int32]) { %1 = less(%loop_var0, %while/Less/y) %2 = min(%1) if (%2) { %3 = add(%loop_var0, %while/Add/y) free_var %while_loop %4 = %while_loop(%3) %4 } else { %5 = (%loop_var0,) %5 } } let %while_loop1 = %0 %6 = %while_loop1(%Const) %6 } """ def __init__(self, mod, loop_name, lvar2expr): self.cond = None self.body = [] self._loop = None self._mod = mod self._loop_name = loop_name self._lvar2expr = lvar2expr self.loop_vars = [] self.aligned = False def _while_loop(self): """An internal API to create a Relay recursive call for a matched TF `while_loop` construct. """ bind_map = {} wl = tvm.relay.var("while_loop") sb = tvm.relay.scope_builder.ScopeBuilder() lv_list = [] expr_list = [] extra_vars = [] for i, lv in enumerate(self.loop_vars): if self._loop_name not in self._lvar2expr: self._lvar2expr[self._loop_name] = {} # Handle the case when loop var is not properly lifted. # This can happen when loop var node name is set accidentally # beginning with loop name. if lv not in self._lvar2expr[self._loop_name]: var_name = "{}_loop_var_{}".format(self._loop_name, i) var_type = _infer_type(lv, self._mod).checked_type loop_var = tvm.relay.var(var_name, type_annotation=var_type) self._lvar2expr[self._loop_name][loop_var] = lv bind_map[lv] = loop_var self.loop_vars[i] = loop_var lv = loop_var lv_list.append(lv) expr_list.append(self._lvar2expr[self._loop_name][lv]) if bind_map: self.cond = rewrite_subgraph(self.cond, bind_map) self.body = [rewrite_subgraph(b, bind_map) for b in self.body] cond = tvm.relay.op.min(self.cond) for lv, exp in self._lvar2expr[self._loop_name].items(): if lv not in self.loop_vars: var_checker = VarChecker(lv) for bd in self.body + [cond]: var_checker.visit(bd) if var_checker.used: lv_list.append(lv) expr_list.append(exp) extra_vars.append(lv) break with sb.if_scope(cond): sb.ret(wl(*list(self.body + extra_vars))) with sb.else_scope(): sb.ret(tvm.relay.Tuple(lv_list)) loop_fn = tvm.relay.Function(lv_list, sb.get()) sb = tvm.relay.scope_builder.ScopeBuilder() sb.let(wl, loop_fn) loop_ret = wl(*expr_list) sb.ret(loop_ret) ret = sb.get() return ret def while_loop(self): """Instantiate a while loop if it has not been created yet.""" if self._loop is None: self._loop = self._while_loop() return self._loop return self._loop class GraphProto(object): """A helper class for handling relay graph copying from Tensorflow GraphDef. Definition: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto """ def __init__(self): self._nodes = {} self._tf_node_map = {} self._params = {} self._input_shapes = {} self._output_shapes = {} self._num_rnn_layer = False self._input_shapes = {} self._loops = {} self._branches = {} self._mod = IRModule({}) self._prelude = Prelude(self._mod) self._control_flow_node_map = defaultdict(set) self._loop_body_order = {} self._loop_var_order = {} self._lvar2expr = {} self._lname_map = {} self._sorted_cf_node_names = [] self._while_loop_name_set = set() self._main_graph_proto = self self._tensor_array_shapes = {} self._tensor_array_shape_nodes = {} def _get_relay_func(self, graph, layout="NHWC", shape=None, outputs=None): """Construct relay nodes from tensorflow graph definition - GraphDef. Follow the tensorflow graph definition to parse and convert it to Relay. Some of the assumptions listed below. -> All Placeholders are considered as graph input. -> All Const nodes are params. -> Last node is assumed as graph output. -> _output_shapes : Graph should be frozen with add_shapes=True. Or user can pass input shape dictionary optionally. -> DecodeJpeg, ResizeBilinear: These are dummy operators. Hence user should handle preprocessing outside. -> CheckNumerics: No implementation as of now for this. Just copies input to output. Parameters ---------- graph : tensorflow graph definition object The loaded tensorflow GraphDef layout : target layout to be used (Optional) NCHW only supported now to enable NHWC models on GPU. shape : Dictionary of input dimensions (Optional) Graph level input shape dictionary. outputs : List of output tensor names (Optional) if not specified then the last node is assumed as graph output. Returns ------- mod : tvm.IRModule The module that optimizations will be performed on. params : dict A dict of name: tvm.nd.array pairs, used as pretrained weights """ try: from tensorflow.python.framework import tensor_util except ImportError as e: raise ImportError("Unable to import tensorflow which is required {}".format(e)) missing_operators = self._parse_import_prerequisites(graph) control_flow_nodes = [] ta_write_nodes = [] ta_gather_nodes = [] ta_construct_nodes = [] self._in_shape = shape self._layout = layout self._graph = graph if missing_operators: freezed_ops = [op for op in missing_operators if op in _freezed_graph_pruned_op_list] if freezed_ops: raise Exception( "Graph is not frozen. Provide a frozen graph. " "Found operators {}".format(freezed_ops) ) raise NotImplementedError( "The following operators are not implemented: {}".format(missing_operators) ) for node in graph.node: node_name_prefix = node.name.rsplit("/", 1)[0] self._control_flow_node_map[node_name_prefix].add(node.op) self._tf_node_map[node.name] = node # Parse output_shapes attribute parsed_attr = self._parse_attr(node.attr) if "_output_shapes" in parsed_attr: self._output_shapes[node.name] = [ tensor_util.TensorShapeProtoToList(tshape) for tshape in parsed_attr["_output_shapes"] ] else: self._output_shapes[node.name] = [None] # Parse placeholder and const here since input shape info is required. if node.op == "Placeholder" or node.op == "PlaceholderWithDefault": # Give priority to user argument. if shape and node.name in shape: self._input_shapes[node.name] = list(shape[node.name]) else: self._input_shapes[node.name] = tensor_util.TensorShapeProtoToList( node.attr["shape"].shape ) for idx, dim in enumerate(self._input_shapes[node.name]): if dim < 0: self._input_shapes[node.name][idx] = Any() self._output_shapes[node.name] = [self._input_shapes[node.name]] attr = self._parse_attr(node.attr) self._nodes[node.name] = [ _expr.var( node.name, shape=self._input_shapes[node.name], dtype=attr["dtype"].name ) ] # Ignore user's input shape for Non placeholder elif node.op == "Const": tensor_value = node.attr["value"].tensor self._input_shapes[node.name] = tensor_util.TensorShapeProtoToList( tensor_value.tensor_shape ) self._output_shapes[node.name] = [self._input_shapes[node.name]] if shape and node.name in shape: warnings.warn( "Ignore the passed shape. Shape in graphdef " "will be used for operator %s." % node.name ) for key, value in node.attr.items(): self._parse_param(key, value, node.name, self._in_shape) elif node.op in _control_flow_nodes: # We assume that the direct parent node of Exit is a while loop block if node.op == "Exit": self._while_loop_name_set.add(node_name_prefix) control_flow_nodes.append(node) elif node.op.startswith("TensorArray"): if is_tensor_array_constuctor(node): ta_construct_nodes.append(node) else: for ta_write_name, idx in _tensor_array_write_ops.items(): if node.op.startswith(ta_write_name): ta_write_nodes.append((node, idx)) break if node.op.startswith("TensorArrayGather"): ta_gather_nodes.append(node) # Use tensor array gather to infer static tensor array shape for gather_node in ta_gather_nodes: input_ta_name = gather_node.input[0] input_ta_node = self._tf_node_map[input_ta_name] if is_tensor_array_constuctor(input_ta_node): gather_attr = self._parse_attr(gather_node.attr) if "element_shape" not in gather_attr: continue raw_elem_shape = tensor_util.TensorShapeProtoToList(gather_attr["element_shape"]) elem_shape = [] for dim in raw_elem_shape: if dim < 0: elem_shape.append(Any()) else: elem_shape.append(int(dim)) self._tensor_array_shapes[input_ta_node.name] = elem_shape # Fetch node contains static tensor array shape for item in ta_write_nodes: wnode = item[0] ta_idx, inode_idx = item[1] stack = [self._tf_node_map[wnode.input[ta_idx].split(":")[0]]] while stack: cnode = stack.pop(0) if not cnode.op.startswith("TensorArray"): for iname in cnode.input: stack.append(self._tf_node_map[iname.split(":")[0]]) elif cnode.name != wnode.name: if is_tensor_array_constuctor(cnode): inode = self._tf_node_map[wnode.input[inode_idx].split(":")[0]] tn = wnode.input[inode_idx].split(":") output_index = int(tn[1]) if len(tn) > 1 else 0 self._tensor_array_shape_nodes[cnode.name] = (inode, wnode.op, output_index) break # First, parse all control flow nodes. # Convert tf.cond to Branch and tf.while_loop to Loop. sorted_cf_nodes = [] exit_pos_map = {} ordered_prefix = [] # Sort control flow nodes to move all Exit nodes to the end # of corresponding while_loop block. for node in control_flow_nodes: loop_name = find_parent_loop_name(node.name, self._while_loop_name_set) if node.op == "Exit": if loop_name not in exit_pos_map: ordered_prefix.append(loop_name) exit_pos_map[loop_name] = len(sorted_cf_nodes) sorted_cf_nodes.append(node) elif loop_name in self._while_loop_name_set: if loop_name not in exit_pos_map: sorted_cf_nodes.append(node) else: sorted_cf_nodes.insert(exit_pos_map[loop_name], node) for j in range(ordered_prefix.index(loop_name), len(ordered_prefix)): exit_pos_map[ordered_prefix[j]] += 1 else: sorted_cf_nodes.append(node) for node in sorted_cf_nodes: self._sorted_cf_node_names.append(node.name) for node in sorted_cf_nodes: self._backtrack_construct(node.name) # Second, parse other nodes to re-create TF graph using Relay operators. for node in graph.node: self._backtrack_construct(node.name) out = [] if outputs is None: last_node = graph.node[-1] op = self._nodes[last_node.name.split(":")[0]] if last_node.op == "Exit": out = [op[0].tuple_value] else: out = op else: for out_name in outputs: if ":" in out_name: out_name, out_num = out_name.split(":") out_num = int(out_num) out.append(self._nodes[out_name][out_num]) else: out.append(self._nodes[out_name][0]) if isinstance(out, _expr.TupleWrapper): out = out.tuple_value else: out = out[0] if len(out) == 1 else _expr.Tuple(out) fvars = analysis.free_vars(out) func = _function.Function(fvars, out) final_params = {} for fv in fvars: if fv.name_hint in self._params: final_params[fv.name_hint] = self._params[fv.name_hint] self._params = final_params return func def from_tensorflow(self, graph, layout="NHWC", shape=None, outputs=None): """Wrapper to _get_relay_func which converts Tensorflow graph to Relay function which is used as main function for the Relay module """ func = self._get_relay_func(graph, layout=layout, shape=shape, outputs=outputs) self._mod["main"] = func return self._mod, self._params def _parse_import_prerequisites(self, graph): """Calculate the named preconditions from TensorFlow `graph`. Return prerequisites for parsing: a. Set of operator names which don't have their mapping in TVM, i.e. which are not supported """ missing_operators = set() from tensorflow.python.framework import op_def_registry for node in graph.node: getOpDef = ( op_def_registry._registered_ops.get if hasattr(op_def_registry, "_registered_ops") else op_def_registry.get ) op_def = getOpDef(node.op) if node.op == "Placeholder" or node.op == "PlaceholderWithDefault": pass elif node.op == "Const": pass elif node.op in ["PartitionedCall", "StatefulPartitionedCall"]: pass else: if any([node.op in t for t in [_identity_list, _convert_map, _control_flow_nodes]]): pass elif op_def is not None and op_def.is_stateful: missing_operators.add(node.op) else: missing_operators.add(node.op) return missing_operators def _parse_param(self, key, value, name, shape): try: from tensorflow.python.framework import tensor_util except ImportError as e: raise ImportError("Unable to import tensorflow which is required {}".format(e)) if key == "value": np_array = tensor_util.MakeNdarray(value.tensor) if np_array.dtype == np.dtype(object): # Object types are generally tensorflow DT_STRING (DecodeJpeg op). # Just leave it as placeholder. if shape and name in shape: var_shape = shape[name] else: var_shape = tensor_util.TensorShapeProtoToList(value.tensor.tensor_shape) self._nodes[name] = [_expr.var(name, shape=var_shape, dtype="uint8")] return array_ndim = len(np_array.shape) if array_ndim == 0: self._nodes[name] = [tvm.relay.const(np_array, np_array.dtype)] else: self._params[name] = tvm.nd.array(np_array) self._nodes[name] = [ _expr.var(name, shape=self._params[name].shape, dtype=self._params[name].dtype) ] else: if key not in ("dtype", "_output_shapes", "_class"): raise NotImplementedError( "Other attributes for a Const(param) Node {} ? .".format(key) ) def _get_attr(self, buf): """Returns the value of the attr of this buf with the given `name`. Args: buf: attrvalue protobuf. Returns: The value of the attr, as a Python object. Raises: ValueError: If this op does not have an attr with the given `name`. """ fields = ["s", "i", "f", "b", "type", "shape", "tensor", "func"] x = buf ret = [] try: from tensorflow.python.framework import dtypes except ImportError as e: raise ImportError("Unable to import tensorflow which is required {}".format(e)) # Treat an empty oneof value as an empty list. if not x.WhichOneof("value"): return ret if x.HasField("list"): for f in fields: if getattr(x.list, f): if f == "type": ret += [dtypes.as_dtype(x) for x in list(getattr(x.list, f))] else: ret += list(getattr(x.list, f)) else: for f in fields: if x.HasField(f): if f == "type": ret = dtypes.as_dtype(getattr(x, f)) else: ret = getattr(x, f) return ret def _parse_attr(self, attr_proto): """Convert a list of AttributeProto to a dict, with names as keys.""" attrs = {} for key, value in attr_proto.items(): attrs[key] = self._get_attr(value) return attrs def _convert_control_flow_operator(self, node, inputs, attrs, control_flow_node_map): """ Convert the Relay control flow primitive into corresponding component of a Relay control flow construct, i.e. `tf.cond` and `tf.while_loop` are converted in Relay `If` and recusrive call, respectively. Parameters ---------- node: TensorFlow graph node object. A TensorFlow graph node object. inputs : List[tvm.relay.Expr] List of input symbols. attrs : Dict[tvm.Attrs] Dict of operator attributes. control_flow_node_map : Dict[str, Set[str]] A dictionary contains the execution frame name to primitives mapping. Returns ------- op : tvm.relay.Expr Converted relay expression. """ node_name_prefix = node.name.rsplit("/", 1)[0] plname = find_parent_loop_name(node.name, self._while_loop_name_set) if node.op == "Merge": if _in_while_loop(self._control_flow_node_map, node_name_prefix): op = self._licm_construct(plname, node.input[0]) if node_name_prefix not in self._loops: self._loops[node_name_prefix] = Loop(self._mod, plname, self._lvar2expr) else: if node_name_prefix not in self._branches: switch_prefix = node_name_prefix + "/Switch" merge_idx = self._sorted_cf_node_names.index(node.name) for i in range(merge_idx - 1, -1, -1): cf_name = self._sorted_cf_node_names[i] if cf_name.startswith(switch_prefix): self._backtrack_construct(cf_name) break branch = self._branches[node_name_prefix] false_br = self._licm_construct(plname, node.input[0]) true_br = self._licm_construct(plname, node.input[1]) branch.true_branch = true_br branch.false_branch = false_br op = branch.if_node() if node_name_prefix not in self._while_loop_name_set: try: cond_val = np.all( _infer_value(branch.cond, self._params, self._mod).numpy() ) if cond_val: op = branch.true_branch else: op = branch.false_branch except Exception: op = branch.if_node() elif node.op == "Exit": loop = self._loops[node_name_prefix] # Check whether the order of loop variables aligns # with loop body. If not, create new loop variable list # with correct order. if not loop.aligned: loop_vars = [] for i in self._loop_body_order[node_name_prefix]: for j, k in enumerate(self._loop_var_order[node_name_prefix]): if k == i: loop_vars.append(loop.loop_vars[j]) loop.loop_vars = loop_vars loop.aligned = True exit_name = node.name.split("/")[-1] if "_" in exit_name: exit_number = int(exit_name[5:]) else: exit_number = 0 expr = loop.while_loop() body_pos = exit_number for i, j in enumerate(self._loop_body_order[node_name_prefix]): if exit_number == j: body_pos = i break op = _expr.TupleGetItem(expr, body_pos) elif node.op == "Enter": op = self._licm_construct(plname, node.input[0]) elif node.op == "LoopCond": op = self._licm_construct(plname, node.input[0]) self._loops[node_name_prefix].cond = op elif node.op == "Switch": op = self._licm_construct(plname, node.input[0]) cond = self._licm_construct(plname, node.input[1]) if _in_while_loop(self._control_flow_node_map, node_name_prefix): if node_name_prefix not in self._loop_var_order: self._loop_var_order[node_name_prefix] = [] if node.name.endswith("Switch"): self._loop_var_order[node_name_prefix].append(0) else: self._loop_var_order[node_name_prefix].append( int(node.name.split("Switch_")[-1]) ) self._loops[node_name_prefix].loop_vars.append(op) else: if node_name_prefix not in self._branches: self._branches[node_name_prefix] = Branch() self._branches[node_name_prefix].cond = cond elif node.op == "NextIteration": if node_name_prefix not in self._loop_body_order: self._loop_body_order[node_name_prefix] = [] if node.name.endswith("NextIteration"): self._loop_body_order[node_name_prefix].append(0) else: self._loop_body_order[node_name_prefix].append( int(node.name.split("NextIteration_")[-1]) ) op = self._licm_construct(plname, node.input[0]) self._loops[node_name_prefix].body.append(op) else: raise Exception("Cannot identify control flow operator: " + "{}".format(node.op)) return op def _partition_call_operator(self, inputs, attr): """ Convert the Relay Partition call ops into Relay Function calls and function definitions from Tensorflow graph library attribute to Relay global functions Parameters ---------- node: TensorFlow graph node object. A TensorFlow graph node object. inputs : List[tvm.relay.Expr] List of input symbols. attrs : Dict[tvm.Attrs] Dict of operator attributes. Returns ------- op : tvm.relay.Expr Converted relay expression. """ try: from tensorflow.python.framework import function_def_to_graph except ImportError as e: raise ImportError("Unable to import tensorflow which is required {}".format(e)) main_graph_proto = self._main_graph_proto outer_graph_def = main_graph_proto._graph node_func_name = attr.get("f").name func = next( (f for f in outer_graph_def.library.function if f.signature.name == node_func_name), None, ) if func: devices = set(node.device for node in func.node_def) if len(devices) > 1: raise Exception( "Found inconsistent Device assignment in the " "Stateful Partitioned SubGraph. Rejecting " "the subgraph " ) # Convert function definition to graph func_input_shapes = func.attr["_input_shapes"].list.shape subgraph, _ = function_def_to_graph.function_def_to_graph_def(func, func_input_shapes) # Computing subgraph's input shape dictionary subgraph_shape_dict, input_expr_dict = {}, {} for f_arg, input in zip(func.signature.input_arg, inputs): input_expr_dict[f_arg.name] = input subgraph_shape_dict[f_arg.name] = _infer_shape(input, main_graph_proto._mod) func_name = "func_{}".format(func.signature.name) try: global_func = main_graph_proto._mod[func_name] sub_func = global_func sub_params = main_graph_proto._params except ValueError: # Construct relay nodes from the subgraph g1 = SubGraphProto(main_graph_proto) sub_func, sub_params = g1.from_tensorflow(subgraph, shape=subgraph_shape_dict) main_graph_proto._params.update(sub_params) func_expr = _function.Function(sub_func.params, sub_func.body) global_func = tvm.relay.GlobalVar(func_name) main_graph_proto._mod[global_func] = func_expr main_graph_proto._mod = InferType()(main_graph_proto._mod) param_exprs = [] for param_expr in sub_func.params: # sub_params is subset of sub_func.params param_name = param_expr.vid.name_hint if param_name in input_expr_dict.keys(): param_exprs.append(input_expr_dict[param_name]) elif param_name in sub_params.keys(): param_exprs.append(param_expr) else: raise Exception("Input parameter {} not found".format(param_name)) sb = tvm.relay.scope_builder.ScopeBuilder() loop_ret = global_func(*param_exprs) sb.ret(loop_ret) ret = sb.get() else: raise Exception("Function not found - {}".format(node_func_name)) return ret def _convert_operator( self, op_name, node_name, inputs, attrs, identity_list=None, convert_map=None ): """Convert from Tensorflow operator to relay operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- op_name : str Operator name, such as Conv2D, AvgPool inputs : list of relay.op List of input symbols. attrs : dict Dict of operator attributes identity_list : list List of operators that don't require conversion convert_map : dict Dict of name : callable, where name is the op's name that require conversion to relay, callable are functions which take attrs and return (new_op_name, new_attrs) Returns ------- sym : relay.op Converted relay operator """ identity_list = identity_list if identity_list else _identity_list convert_map = convert_map if convert_map else _convert_map if op_name in identity_list: sym = get_relay_op(op_name)(*inputs, **attrs) elif op_name in convert_map: if _need_prelude_for_shape_inference(op_name): sym = convert_map[op_name](inputs, attrs, self._params, self._prelude) else: sym = convert_map[op_name](inputs, attrs, self._params, self._mod) elif op_name in ["PartitionedCall", "StatefulPartitionedCall"]: sym = self._partition_call_operator(inputs, attrs) else: raise NotImplementedError("Operator {} not implemented.".format(op_name)) sym = self._set_span(sym, node_name) return sym @staticmethod def _set_span(sym, node_name): span = tvm.relay.Span(tvm.relay.SourceName(node_name), 0, 0, 0, 0) if isinstance(sym, _expr.Call) and sym.span is None: sym = _expr.Call(sym.op, sym.args, sym.attrs, sym.type_args, span) elif isinstance(sym, _expr.TupleWrapper): tuple_value = sym.tuple_value if isinstance(tuple_value, _expr.Call) and tuple_value.span is None: tuple_value = _expr.Call( tuple_value.op, tuple_value.args, tuple_value.attrs, tuple_value.type_args, span ) sym = _expr.TupleWrapper(tuple_value, sym.size) return sym def _licm_construct(self, loop_name, node_name): """Construct a node by considering whether it is loop invariant with the given while loop. If yes, we generate a loop Variable. Otherwise, return regular converted relay expression. Parameters ---------- loop_name : str TensorFlow while loop name to be checked. node_name : str TensorFlow node name. Returns ------- out : relay.Expr or relay.Var Converted relay expression or loop var. """ actual_expr = self._backtrack_construct(node_name) tn = node_name.split(":") node_name = tn[0].split("^")[-1] cloop_name = find_parent_loop_name(node_name, self._while_loop_name_set) if loop_name in self._while_loop_name_set and not cloop_name.startswith(loop_name): if loop_name not in self._lvar2expr: self._lvar2expr[loop_name] = {} if loop_name not in self._lname_map: self._lname_map[loop_name] = {} if node_name not in self._lname_map[loop_name]: var_name = "{}_loop_var".format(node_name) var_type = _infer_type(actual_expr, self._mod).checked_type loop_var = tvm.relay.var(var_name, type_annotation=var_type) try: extra_param = _infer_value(actual_expr, self._params, self._mod) self._params[var_name] = extra_param except Exception: pass self._lvar2expr[loop_name][loop_var] = actual_expr self._lname_map[loop_name][node_name] = loop_var ret = loop_var else: ret = self._lname_map[loop_name][node_name] else: ret = actual_expr return ret def _backtrack_construct(self, node_name): """Convert a specific tensorflow node to relay expression. If any of its ancestor node is not converted yet, backtrack as far as input node and covert all nodes on the path. This is required when parsing control flow nodes, since the parsing order may not follow the original graph def. Parameters ---------- node_name : str TensorFlow node name. Returns ------- op : relay.Expr Converted relay expression """ try: from tensorflow.python.framework import tensor_util except ImportError as e: raise ImportError("Unable to import tensorflow which is required {}".format(e)) input_op_name = node_name.split(":")[0].split("^")[-1] if input_op_name not in self._nodes: node = self._tf_node_map[input_op_name] attr = self._parse_attr(node.attr) if node.op in _control_flow_nodes: attr = self._parse_attr(node.attr) op = self._convert_control_flow_operator( node, [], attr, self._control_flow_node_map ) else: attr["_output_shapes"] = self._output_shapes[input_op_name] attr["_node_name"] = node.name attr["_target_layout"] = self._layout inputs = [self._backtrack_construct(iname) for iname in node.input] plname = find_parent_loop_name(node_name, self._while_loop_name_set) # For TensorArrayV3 op, we need to infer shape first if is_tensor_array_constuctor(node): raw_elem_shape = tensor_util.TensorShapeProtoToList(attr["element_shape"]) elem_shape = [] for dim in raw_elem_shape: if dim < 0: elem_shape.append(Any()) else: elem_shape.append(dim) if elem_shape: attr["shape"] = elem_shape if attr["identical_element_shapes"] or elem_shape: shape_node, wnode_op, output_index = self._tensor_array_shape_nodes[ node.name ] name = shape_node.name if output_index > 0: name += ":" + str(output_index) converted = self._backtrack_construct(name) shape = _infer_shape(converted, self._mod) if wnode_op.startswith("TensorArraySplit"): shape = (Any(),) + shape[1:] elif wnode_op.startswith("TensorArrayScatter"): shape = shape[1:] if node.name in self._tensor_array_shapes: preset_shape = self._tensor_array_shapes[node.name] shape = _get_more_static_shape(shape, preset_shape) if "shape" in attr: attr["shape"] = _get_more_static_shape(shape, attr["shape"]) else: attr["shape"] = shape # LICM if plname in self._while_loop_name_set: for i, iname in enumerate(node.input): actual_input = self._licm_construct(plname, iname) inputs[i] = actual_input op = self._convert_operator(node.op, node.name, inputs, attr) if isinstance(op, np.ndarray): self._params[node.name] = tvm.nd.array(op) op = [ _expr.var( node.name, shape=self._params[node.name].shape, dtype=self._params[node.name].dtype, ) ] elif isinstance(op, (_expr.Expr, _expr.TupleGetItem)): op = [op] self._nodes[input_op_name] = op out = self._nodes[input_op_name] if isinstance(out, _expr.TupleWrapper): tn = node_name.split(":") tensor_slot = int(tn[1]) if len(tn) > 1 else 0 return out[tensor_slot] return out[0] class SubGraphProto(GraphProto): """A helper class for handling relay subgraph copying from Tensorflow GraphDef.""" def __init__(self, main_graph_proto): super().__init__() self._main_graph_proto = main_graph_proto # holds main graph proto object def from_tensorflow(self, graph, layout="NHWC", shape=None, outputs=None): """Wrapper to _get_relay_func which converts Tensorflow graph to Relay function. Return Relay function and params """ func = self._get_relay_func(graph, layout=layout, shape=shape, outputs=outputs) return func, self._params def from_tensorflow(graph, layout="NHWC", shape=None, outputs=None, convert_config=None): """Load tensorflow graph which is a python tensorflow graph object into relay. The companion parameters will be handled automatically. Parameters ---------- graph : GraphDef object Tensorflow GraphDef layout : target layout to be used (Optional) NCHW only supported now to enable NHWC models on GPU. shape : Dictionary of input dimensions (Optional) Graph level input shape dictionary. outputs : List of output tensor names (Optional) if not specified then the last node is assumed as graph output. convert_config : Optional[Dict[str, Any]] Default config: use_dense : bool = True Ture to convert `tf.matmul` to `nn.dense`, else to `nn.matmul`. The `nn.dense` op requires the data tensor to be non-transposed and weight tensor to be transposed, may insert extra `transpose` to the original graph. use_nt_batch_matmul : bool = True True to convert `tf.batch_matmul` to `nn.batch_matmul` strict to NT format (transpose_a=False, transpose_b=True). Returns ------- mod : tvm.IRModule The module that optimizations will be performed on. params : dict of str to tvm.nd.NDArray Dict of converted parameters stored in tvm.nd.NDArray format """ global TF_DEFAULT_CONFIGS if convert_config is not None: TF_DEFAULT_CONFIGS.update(convert_config) g = GraphProto() mod, params = g.from_tensorflow(graph, layout, shape, outputs) return mod, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/tensorflow2.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, too-many-lines, len-as-condition, broad-except, too-many-nested-blocks """Tensorflow2.x graph to relay converter. If model is constructed using tf2.x API, then use this converter: from tvm.relay.frontend.tensorflow2 import from_tensorflow Otherwise use the tf1.x converter: from tvm.relay.frontend.tensorflow import from_tensorflow """ import numpy as np import tensorflow as tf from tensorflow.python.framework import function_def_to_graph, tensor_util, dtypes import tvm from tvm.relay.transform import InferType from tvm.relay.prelude import Prelude from tvm.ir import IRModule from .. import expr as _expr from .. import analysis from .. import function as _function from ..loops import while_loop as _while_loop from .common import infer_type as _infer_type from .tensorflow_ops import _convert_map as _convert_map_common from .tensorflow_ops import _get_more_static_shape_rank from .tensorflow2_ops import _convert_map as _convert_map_tf2 from .tensorflow2_ops import _need_prelude_for_shape_inference from ..ty import Any __all__ = ["from_tensorflow"] # A map to record tensor list write ops and input tl/tensor indices # Value is (index of tensor list, index of written node) _tensor_list_write_ops = { "TensorListSetItem": (0, 2), } def _infer_type_with_prelude(val, prelude): body = _infer_type(val, prelude.mod) return body.checked_type def set_span(sym, node_name): """set span of symbol""" span = tvm.relay.Span(tvm.relay.SourceName(node_name), 0, 0, 0, 0) if isinstance(sym, _expr.Call): sym = _expr.Call(sym.op, sym.args, sym.attrs, sym.type_args, span) elif isinstance(sym, _expr.TupleWrapper): tuple_value = sym.tuple_value if isinstance(tuple_value, _expr.Call): tuple_value = _expr.Call( tuple_value.op, tuple_value.args, tuple_value.attrs, tuple_value.type_args, span ) sym = _expr.TupleWrapper(tuple_value, sym.size) return sym def is_tensor_list_constuctor(tf_node): """Check whether is tensor list constructor node.""" return tf_node.op == "TensorListReserve" def convert_const_node(node, shape): """convert tf const node into relay const or var""" # get the value of the constant tensor_value = node.attr["value"].tensor np_array = tensor_util.MakeNdarray(tensor_value) if np_array.dtype == np.dtype(object): if shape and node.name in shape: var_shape = shape[node.name] else: var_shape = tensor_util.TensorShapeProtoToList(tensor_value.tensor_shape) param = None sym = [_expr.var(node.name, shape=var_shape, dtype="uint8")] return sym, param if len(np_array.shape) == 0: param = None sym = [tvm.relay.const(np_array, np_array.dtype)] else: param = tvm.nd.array(np_array) sym = [_expr.var(node.name, shape=param.shape, dtype=param.dtype)] return sym, param def get_attr(buf): """convert value of a node attribute. node attribute is part of a node in a graph. Parameters ---------- buf: attrvalue protobuf. <class 'tensorflow.core.framework.attr_value_pb2.AttrValue'> Returns ------- The value of the attr, as a Python object. Raises: ------- ValueError: If this op does not have an attr with the given `name`. """ fields = ["s", "i", "f", "b", "type", "shape", "tensor", "func"] ret = [] if not buf.WhichOneof("value"): return ret if buf.HasField("list"): for f in fields: if getattr(buf.list, f): if f == "type": ret += [dtypes.as_dtype(x) for x in list(getattr(buf.list, f))] else: ret += list(getattr(buf.list, f)) else: for f in fields: if buf.HasField(f): if f == "type": ret = dtypes.as_dtype(getattr(buf, f)) else: ret = getattr(buf, f) return ret def parse_attr(attr_proto): """Convert node attributes (a serialized map of key-value pairs) in a node to a dict Parameters ---------- attr_proto: <class 'google.protobuf.pyext._message.MessageMapContainer'> Returns ------- Dict {string: python object} """ attrs = {} for key, value in attr_proto.items(): attrs[key] = get_attr(value) return attrs def convert_placeholder(shape, node, in_type=None): """convert tf placeholder into relay var. Example -------- a tf placeholder with name "x" is converted to [Var(x, ty=TensorType([], float32))] """ if shape and node.name in shape: input_shape = list(shape[node.name]) else: input_shape = tensor_util.TensorShapeProtoToList(node.attr["shape"].shape) for idx, dim in enumerate(input_shape): if dim < 0: input_shape[idx] = Any() attr = parse_attr(node.attr) if in_type is not None: sym = [_expr.var(node.name, type_annotation=in_type)] else: sym = [_expr.var(node.name, shape=input_shape, dtype=attr["dtype"].name)] return input_shape, sym class RelayModule: """states related to the entire relay module (multiple functions) after converted from tf graphdef""" def __init__(self): self.mod = IRModule({}) self.params = {} self.prelude = Prelude(self.mod) class GraphProto: """Capturing states when converting a tf graph to a single relay function.""" def __init__(self, module): self._module = module self._prelude = self._module.prelude self._params = {} self._nodes = {} self._input_shapes = {} self._output_shapes = {} self._tf_node_map = {} self._gdef_lib = {} self._tensor_list_shapes = {} self._tensor_list_shape_nodes = {} self._sub_map = {} self._sub_input_idx_map = {} def from_tensorflow( self, graph, layout="NHWC", shape=None, outputs=None, input_types=None, gdef_lib=None ): """Wrapper to _get_relay_func which converts Tensorflow graph to Relay function which is used as main function for the Relay module """ if input_types is None: input_types = {} if gdef_lib is None: gdef_lib = {} self._gdef_lib = gdef_lib func = self._get_relay_func( graph, layout=layout, shape=shape, outputs=outputs, input_types=input_types ) return func, self._params def _analysis_tensor_list_op( self, graph, node, tl_write_nodes, tl_stack_nodes, tl_construct_nodes, sub_func_name="", root_node="", ): if sub_func_name and sub_func_name not in self._sub_input_idx_map: self._sub_input_idx_map[sub_func_name] = {} if node.op == "Placeholder": # record placeholder node in sub functions self._sub_map[sub_func_name] = node self._sub_input_idx_map[sub_func_name][node.name] = len( self._sub_input_idx_map[sub_func_name] ) if node.op.startswith("TensorList"): if is_tensor_list_constuctor(node): tl_construct_nodes.append(node) else: for tl_write_name, idx in _tensor_list_write_ops.items(): if node.op.startswith(tl_write_name): tl_write_nodes.append((node, idx, sub_func_name, root_node)) if node.op.startswith("TensorListStack"): tl_stack_nodes.append(node) elif node.op.startswith("StatelessWhile"): root_node = node.name cond_fn_name, body_fn_name = [ parse_attr(node.attr).get(x).name for x in ["cond", "body"] ] for fn_name in [cond_fn_name, body_fn_name]: subfunction = self._gdef_lib[fn_name] sub_func_name = fn_name for sub_node in subfunction.node: # bypass const node if sub_node.op == "Const": continue self._tf_node_map[sub_node.name] = sub_node self._analysis_tensor_list_op( subfunction, sub_node, tl_write_nodes, tl_stack_nodes, tl_construct_nodes, sub_func_name=sub_func_name, root_node=root_node, ) def _infer_static_shape_stack_node(self, tl_stack_nodes): for stack_node in tl_stack_nodes: if len(stack_node.input) < 2: # Stack node does not have shape continue input_shape_name = stack_node.input[1].split(":")[0] input_shape_node = self._tf_node_map[input_shape_name] stack = [self._tf_node_map[stack_node.input[0].split(":")[0]]] in_idx = -1 while stack: cnode = stack.pop(0) if not cnode.op.startswith("TensorList"): if in_idx and cnode.op.startswith("StatelessWhile"): stack.append(self._tf_node_map[cnode.input[in_idx].split(":")[0]]) else: for iname in cnode.input: if self._tf_node_map[iname.split(":")[0]].op.startswith( "StatelessWhile" ): # identify input index based on output index if iname.split(":")[1]: in_idx = int(iname.split(":")[1]) stack.append(self._tf_node_map[iname.split(":")[0]]) # identify the corresponding constructor node and add shape to _tensor_list_shapes elif cnode.name != stack_node.name: if is_tensor_list_constuctor(cnode): shape_attr = parse_attr(input_shape_node.attr) if "value" not in shape_attr: continue raw_elem_shape = tensor_util.MakeNdarray(shape_attr["value"]) elem_shape = [] for dim in raw_elem_shape: if dim < 0: elem_shape.append(Any()) else: elem_shape.append(int(dim)) self._tensor_list_shapes[cnode.name] = elem_shape break def _infer_static_shape_write_node(self, tl_write_nodes): for item in tl_write_nodes: wnode = item[0] ta_idx, inode_idx = item[1] sub_func_name = item[2] root_name = item[3] stack = [self._tf_node_map[wnode.input[ta_idx].split(":")[0]]] while stack: cnode = stack.pop(0) if not cnode.op.startswith("TensorList"): if cnode.op == "Placeholder" and sub_func_name: # need to map subfunction input_idx = self._sub_input_idx_map[sub_func_name][cnode.name] stack.append( self._tf_node_map[ self._tf_node_map[root_name].input[input_idx].split(":")[0] ] ) else: for iname in cnode.input: stack.append(self._tf_node_map[iname.split(":")[0]]) # identify the corresponding constructor node and add it to _tensor_list_shape_nodes elif cnode.name != wnode.name: if is_tensor_list_constuctor(cnode): inode = self._tf_node_map[wnode.input[inode_idx].split(":")[0]] tn = wnode.input[inode_idx].split(":") output_index = int(tn[1]) if len(tn) > 1 else 0 self._tensor_list_shape_nodes[cnode.name] = (inode, wnode.op, output_index) break def _get_relay_func(self, graph, layout="NHWC", shape=None, outputs=None, input_types=None): if input_types is None: input_types = {} tl_write_nodes = [] tl_stack_nodes = [] tl_construct_nodes = [] self._layout = layout for node in graph.node: name = node.name self._tf_node_map[name] = node if node.op == "Placeholder": in_type = None if node.name in input_types: in_type = input_types[node.name] self._input_shapes[name], self._nodes[name] = convert_placeholder( shape, node, in_type ) elif node.op == "Const": sym, param = convert_const_node(node, shape) self._nodes[node.name] = sym if param: self._params[node.name] = param # recursivly iterate tensorlist op if seen while loop else: self._analysis_tensor_list_op( graph, node, tl_write_nodes, tl_stack_nodes, tl_construct_nodes ) # Use tensor list stack to infer static tensor list shape self._infer_static_shape_stack_node(tl_stack_nodes) # Fetch node contains static tensor list shape self._infer_static_shape_write_node(tl_write_nodes) for node in graph.node: self._backtrack_construct(graph, node.name) return self._func(graph, outputs) def _func(self, graph, outputs): out = [] if outputs is None: last_node = graph.node[-1] op = self._nodes[last_node.name.split(":")[0]] if last_node.op == "Exit": out = [op[0].tuple_value] else: out = op else: for out_name in outputs: if ":" in out_name: out_name = out_name.split(":") out_name, out_num = out_name[0], out_name[-1] out_num = int(out_num) out.append(self._nodes[out_name][out_num]) else: out.append(self._nodes[out_name][0]) if isinstance(out, _expr.TupleWrapper): out = out.astuple() else: out = out[0] if len(out) == 1 else _expr.Tuple(out) fvars = analysis.free_vars(out) func = _function.Function(fvars, out) final_params = {} for fv in fvars: if fv.name_hint in self._params: final_params[fv.name_hint] = self._params[fv.name_hint] self._params = final_params return func def _convert_operator(self, graph, op_name, node_name, inputs, attrs): """Convert from Tensorflow operator to relay operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- graph: <class 'tensorflow.core.framework.graph_pb2.GraphDef'> TF2 frozen graph def op_name : str Operator name, such as Conv2D, AvgPool node_name: str Name of the node in TF2 graph, such as Identity:0 inputs : list of relay.op List of input symbols. attrs : dict Dict of operator attributes Returns ------- sym : relay.op Converted relay operator """ if op_name in ["PartitionedCall", "StatefulPartitionedCall"]: sym = _partition_call_operator( self._module, graph, inputs, attrs, self._prelude, gdef_lib=self._gdef_lib, ) elif op_name in ["StatelessIf", "If"]: sym = _convert_if( self._module, graph, inputs, attrs, self._prelude, gdef_lib=self._gdef_lib ) elif op_name in ["StatelessWhile", "While"]: sym = _convert_loop( self._module, graph, inputs, attrs, node_name, self._tf_node_map, self._prelude, gdef_lib=self._gdef_lib, ) elif op_name in _convert_map_common: # assert op are exclusive assert not set(_convert_map_common.keys()) & set(_convert_map_tf2.keys()) if _need_prelude_for_shape_inference(op_name): sym = _convert_map_common[op_name](inputs, attrs, self._params, self._prelude) else: sym = _convert_map_common[op_name](inputs, attrs, self._params, self._module.mod) elif op_name in _convert_map_tf2: if _need_prelude_for_shape_inference(op_name): sym = _convert_map_tf2[op_name](inputs, attrs, self._params, self._prelude) else: sym = _convert_map_tf2[op_name](inputs, attrs, self._params, self._module.mod) else: raise NotImplementedError("Operator {} not implemented.".format(op_name)) sym = set_span(sym, node_name) return sym def _parse_element_shape(self, elem_shape, shape_attr): if "value" in shape_attr: raw_elem_shape = tensor_util.MakeNdarray(shape_attr["value"]) if raw_elem_shape.size == 1 and raw_elem_shape == -1: elem_shape.append(Any()) else: for dim in raw_elem_shape: if dim < 0: elem_shape.append(Any()) else: elem_shape.append(dim) def _backtrack_construct(self, graph, node_name): """Convert a specific tensorflow node to relay expression. If any of its ancestor node is not converted yet, backtrack as far as input node and covert all nodes on the path. resurion is used here. This is required when parsing control flow nodes, since the parsing order may not follow the original graph def. to discover input node, current tf node's input is iterated: tensorflow/core/framework/node_def.proto message NodeDef { repeated string input = 3; } a node has many inputs (other nodes). each input has the following format: data input is "node:src_output". node is the string name. control input is "^node". Parameters ---------- graph : <class 'tensorflow.core.framework.graph_pb2.GraphDef'> TF2 frozen graph def node_name : str node name Returns ------- op : relay.Expr Converted relay expression. Examples -------- tf expression "x+1" is converted to relay expression: CallNode(Op(add), [Var(x, ty=TensorType([], float32)), Constant(1.0)], (nullptr), []) """ input_op_name = node_name.split(":")[0].split("^")[-1] if input_op_name not in self._nodes: node = self._tf_node_map[input_op_name] attr = parse_attr(node.attr) if "_output_shapes" in attr: self._output_shapes[node.name] = [ tensor_util.TensorShapeProtoToList(tshape) for tshape in attr["_output_shapes"] ] else: self._output_shapes[node.name] = [None] attr["_output_shapes"] = self._output_shapes[input_op_name] attr["_node_name"] = node.name attr["_target_layout"] = self._layout inputs = [self._backtrack_construct(graph, iname) for iname in node.input] # infer shape for TensorList op if is_tensor_list_constuctor(node): input_shape_name = ( node.input[1] if "TensorListFromTensor" in node.op else node.input[0] ) input_shape_name = input_shape_name.split(":")[0] input_shape_node = self._tf_node_map[input_shape_name] shape_attr = parse_attr(input_shape_node.attr) elem_shape = [] self._parse_element_shape(elem_shape, shape_attr) if elem_shape: attr["shape"] = elem_shape if ( "identical_element_shapes" in attr and attr["identical_element_shapes"] ) or elem_shape: shape = elem_shape if node.name in self._tensor_list_shapes: preset_shape = self._tensor_list_shapes[node.name] shape = _get_more_static_shape_rank(shape, preset_shape) attr["shape"] = shape op = self._convert_operator(graph, node.op, node.name, inputs, attr) if isinstance(op, np.ndarray): self._params[node.name] = tvm.nd.array(op) op = [ _expr.var( node.name, shape=self._params[node.name].shape, dtype=self._params[node.name].dtype, ) ] elif isinstance(op, (_expr.Expr, _expr.TupleGetItem)): op = [op] self._nodes[input_op_name] = op out = self._nodes[input_op_name] if isinstance(out, _expr.TupleWrapper): tn = node_name.split(":") tensor_slot = int(tn[1]) if len(tn) > 1 else 0 return out[tensor_slot] return out[0] def _partition_call_operator(module, graph, inputs, attr, prelude, gdef_lib): """convert tf PartitionedCall node to a relay function call""" node_func_name = attr.get("f").name return _convert_function( module, graph, inputs, attr, node_func_name, prelude, gdef_lib=gdef_lib ) def _convert_if(module, graph, inputs, attr, prelude, gdef_lib): """Convert tf If/StatelessIf to Relay If""" cond_expr = inputs[0] branch_names = [attr.get(x).name for x in ["then_branch", "else_branch"]] then_fn, else_fn = [ _convert_function(module, graph, inputs[1:], attr, name, prelude, gdef_lib=gdef_lib) for name in branch_names ] out = _expr.If(cond_expr, then_fn, else_fn) return out def _convert_loop(module, graph, inputs, attr, node_name, nodes, prelude, gdef_lib): """convert tf while_loop to Relay loop""" input_size = len(inputs) cond_fn_name, body_fn_name = [attr.get(x).name for x in ["cond", "body"]] def convert_vars(loop_inputs, input_signature): """convert inputs to relay vars to be used as loop variables Loop inputs are packed as: [iteration_number, max_iterations, loop_variables...] """ new_vars = [] for i, v in enumerate(loop_inputs): if isinstance(v, _expr.Constant): vtype = _infer_type(v).checked_type.dtype new_vars.append(_expr.var(input_signature[i].name, shape=(), dtype=vtype)) else: vtype = _infer_type_with_prelude(v, prelude) new_vars.append(_expr.var(input_signature[i].name, type_annotation=vtype)) return new_vars while_func = next( (f for f in graph.library.function if f.signature.name == attr["body"].name), None, ) loop_inputs = convert_vars(inputs, while_func.signature.input_arg) def cond_fn(*loop_inputs): return _convert_function( module, graph, loop_inputs, attr, cond_fn_name, prelude, gdef_lib=gdef_lib ) # Define the loop body, in this function we need to unpack loop inputs, # convert the loop subgraph, and pack outputs for the next iteration. def body_fn(*loop_inputs): # Increment loop iteration counter loop_count = loop_inputs[0] + _expr.const(1, dtype="int32") max_count = loop_inputs[1] fn = _convert_function( module, graph, loop_inputs, attr, body_fn_name, prelude, gdef_lib=gdef_lib ) # Repack loop variables out = [loop_count, max_count] + [_expr.TupleGetItem(fn, i) for i in range(2, input_size)] return out loop = _while_loop(cond_fn, loop_inputs, body_fn) outputs = loop(*inputs) outputs = _expr.TupleWrapper( _expr.Tuple([_expr.TupleGetItem(outputs, i) for i in range(input_size)]), input_size ) return outputs def _convert_function( module, graph, inputs, attr, node_func_name, prelude, gdef_lib, in_shapes=None ): """Convert given tf node to a relay function call Parameters ---------- module : IRModule where converted function is stored graph: <class 'tensorflow.core.framework.graph_pb2.GraphDef'> top level tf graphdef inputs : List[tvm.relay.Expr] List of input symbols. Parameters for the function. attrs : Dict[tvm.Attrs] Dict of operator attributes. node_func_name : str Name of tf2 node to be converted Returns ------- op : tvm.relay.Expr <class 'tvm.relay.expr.Call'> Examples -------- a tf function "x+1", is implemented as a subgraph in the library section of the graph. this subgraph is converted to a relay function such as fn (%x: float32) { add(%x, 1f) /* Identity */ } the subgraph has a function name such as __inference_add_95 the tf function call operator is returned as relay expression, such as: free_var %x: float32; @func___inference_add_95(%x) """ func = next( (f for f in graph.library.function if f.signature.name == node_func_name), None, ) if func is None: raise Exception("Function not found - {}".format(node_func_name)) devices = set(node.device for node in func.node_def) if len(devices) > 1: raise Exception( "node_def in function {} contains > 1 types of devices {}".format( node_func_name, devices ) ) subgraph = gdef_lib[node_func_name] # preserve library functions in subgraphs to make them available to nested functions for fn in graph.library.function: subgraph.library.function.add().CopyFrom(fn) # Computing subgraph's input shape and type dictionaries input_expr_dict = {} input_types = {} for f_arg, input_ in zip(func.signature.input_arg, inputs): input_expr_dict[f_arg.name] = input_ input_types[f_arg.name] = _infer_type_with_prelude(input_, prelude) func_name = "func_{}".format(func.signature.name) try: global_func = module.mod[func_name] sub_func = global_func sub_params = module.params except ValueError: # Construct relay nodes from the subgraph g1 = GraphProto(module) output_sig = [func.ret[f.name] for f in func.signature.output_arg] # TODO: unify prelude and main IRModules sub_func, sub_params = g1.from_tensorflow( subgraph, outputs=output_sig, input_types=input_types, gdef_lib=gdef_lib ) module.params.update(sub_params) func_expr = _function.Function(sub_func.params, sub_func.body) global_func = tvm.relay.GlobalVar(func_name) module.mod[global_func] = func_expr module.mod = InferType()(module.mod) prelude.mod = module.mod param_exprs = [] for param_expr in sub_func.params: # sub_params is subset of sub_func.params param_name = param_expr.vid.name_hint if param_name in input_expr_dict.keys(): param_exprs.append(input_expr_dict[param_name]) elif param_name in sub_params.keys(): param_exprs.append(param_expr) else: raise Exception("Input parameter {} not found".format(param_name)) sb = tvm.relay.scope_builder.ScopeBuilder() loop_ret = global_func(*param_exprs) sb.ret(loop_ret) ret = sb.get() return ret def from_tensorflow(graph_def, layout="NHWC", shape=None, outputs=None): """convert tensorflow2.x graph into relay function. Parameters ---------- graph_def : must be frozen graph (no variables allowed). Placeholders are assumed to be inputs to the graph. tensorflow/core/framework/graph.proto message GraphDef { repeated NodeDef node = 1; FunctionDefLibrary library = 2; } tensorflow/core/framework/function.proto message FunctionDef { repeated NodeDef node_def = 3; } layout : str The layout for the model. shape : List[str, List[int]] Input to the model. It is a key and shape vector mapping. Applies to placeholders. outputs : List[str] The list of output nodes. The last node is treated as the output if not specified. Returns ------- mod : tvm.IRModule The module that optimizations will be performed on. params : dict of str to tvm.nd.NDArray Dict of converted parameters stored in tvm.nd.NDArray format. Examples -------- "x+1" tf module where x has a shape of (2,2) is converted as follows: mod : tvm.IRModule def @func___inference_add_95(%x: Tensor[(2, 2), float32], %add/y: Tensor[(2, 2), float32]) -> Tensor[(2, 2), float32] { add(%x, %add/y) /* Identity */ /* ty=Tensor[(2, 2), float32] */ } def @main(%x1: Tensor[(2, 2), float32], %add/y1: Tensor[(2, 2), float32]) { @func___inference_add_95(%x1, %add/y1) /* Identity */ } params : dict of str to tvm.nd.NDArray {'add/y': <tvm.nd.NDArray shape=(2, 2), cpu(0)> """ with tf.Graph().as_default(): tf.import_graph_def(graph_def, name="") # Subgraph graph_defs are cached here to avoid a TF error when parsing after prelude init graph_def_library = {} for func in graph_def.library.function: inshape = func.attr["_input_shapes"].list.shape ( graph_def_library[func.signature.name], _, ) = function_def_to_graph.function_def_to_graph_def(func, inshape) module = RelayModule() g = GraphProto(module) func, params = g.from_tensorflow( graph_def, layout, shape, outputs, gdef_lib=graph_def_library ) module.mod["main"] = func module.params.update(params) return module.mod, module.params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/tensorflow2_ops.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, too-many-lines, len-as-condition, broad-except """Tensorflow2.x to relay converter ops and helper""" import tvm from tvm.relay.prelude import StaticTensorArrayOps, get_tensor_array_shape from .. import op as _op from ..ty import Any from .common import infer_value as _infer_value from .common import infer_type as _infer_type from .tensorflow_ops import _get_more_static_shape_rank def _infer_type_with_prelude(val, prelude): body = _infer_type(val, prelude.mod) return body.checked_type def _need_prelude_for_shape_inference(op): return "TensorList" in op or "TensorArray" in op def _tensorlist_reserve(): def _impl(inputs, attr, params, prelude): dtype_str = attr.get("element_dtype").name elem_shape = _infer_value(inputs[0], params, prelude.mod) elem_shape = tuple(elem_shape.numpy().astype("int32").flatten()) if elem_shape or "shape" in attr: shape = attr["shape"] if "shape" in attr else elem_shape static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, shape) static_tensor_array_ops.register() tensor_array_constructor = static_tensor_array_ops.get_global_var("tensor_array") tensor_array = tensor_array_constructor(inputs[1]) else: tensor_array_constructor = prelude.get_global_var("tensor_array", dtype_str) tensor_array = tensor_array_constructor(inputs[1]) return tensor_array return _impl def _tensorlist_set_item(): def _impl(inputs, attr, params, prelude): dtype_str = attr.get("element_dtype").name input_ta = inputs[0] input_ta_shape = get_tensor_array_shape(input_ta, dtype_str, prelude) input_t_shape = _infer_type_with_prelude(inputs[2], prelude).shape input_rank = len(input_t_shape) if input_ta_shape is None: tensor_name = "tensor{}".format(input_rank) tensor_func = prelude.get_tensor_ctor(tensor_name, dtype_str) v = tensor_func(inputs[2]) write_func = prelude.get_global_var("tensor_array_write", dtype_str) out = write_func(input_ta, inputs[1], v) else: static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_ta_shape) static_tensor_array_ops.register() tensor_func = static_tensor_array_ops.get_ctor("tensor_constructor") v = tensor_func(inputs[2]) # Write tensor with more static shape # convert shape with -1 to any() input_ta_shape_a = [] for dim in input_ta_shape: if isinstance(dim, (int, tvm.tir.expr.IntImm)): if dim < 0: input_ta_shape_a.append(Any()) else: input_ta_shape_a.append(dim) else: input_ta_shape_a.append(dim) actual_shape = _get_more_static_shape_rank(input_t_shape, input_ta_shape_a) if actual_shape != input_ta_shape_a: new_shape = [] num_any_dim = 0 for dim in actual_shape: if not isinstance(dim, int): num_any_dim += 1 new_shape.append(dim if isinstance(dim, int) else -1) if num_any_dim <= 1: v = tensor_func(_op.reshape(inputs[2], new_shape)) write_func = prelude.get_global_var_static( "tensor_array_write", dtype_str, input_ta_shape_a ) out = write_func(input_ta, inputs[1], v) return out return _impl def _tensorlist_get_item(): def _impl(inputs, attr, params, prelude): dtype_str = attr["element_dtype"].name input_shape = get_tensor_array_shape(inputs[0], dtype_str, prelude) if input_shape is None: read_func = prelude.get_global_var("tensor_array_read", dtype_str) out = read_func(inputs[0], _op.take(inputs[1], tvm.relay.const(0))) else: static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_shape) static_tensor_array_ops.register() read_func = static_tensor_array_ops.get_global_var("tensor_array_read") out_tensor = read_func(inputs[0], _op.take(inputs[1], tvm.relay.const(0))) get_data_func = static_tensor_array_ops.get_global_var("tensor_get_data") out = get_data_func(out_tensor) return out return _impl def _tensorlist_stack(): def _impl(inputs, attr, params, prelude): dtype_str = attr["element_dtype"].name input_ta_shape = get_tensor_array_shape(inputs[0], dtype_str, prelude) if input_ta_shape is None: stack_func = prelude.get_global_var("tensor_array_stack", dtype_str) out = stack_func(inputs[0]) else: if "num_elements" in attr: num_elements = attr["num_elements"] static_tensor_array_ops = StaticTensorArrayOps( prelude, dtype_str, input_ta_shape, num_elements ) static_tensor_array_ops.register() stack_func = prelude.get_global_var_static( "tensor_array_stack", dtype_str, input_ta_shape, num_elements ) out_tensor = stack_func(inputs[0]) out_shape = ( (num_elements,) + input_ta_shape if num_elements and num_elements == 1 else (Any(),) + input_ta_shape ) static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, out_shape) static_tensor_array_ops.register() get_data_func = prelude.get_global_var_static("tensor_get_data", dtype_str, out_shape) out = get_data_func(out_tensor) return out return _impl def _tensorlist_from_tensor(): def _impl(inputs, attr, params, prelude): dtype_str = attr["element_dtype"].name input_ta_shape = _infer_type_with_prelude(inputs[0], prelude).shape if input_ta_shape is None: unstack_func = prelude.get_global_var("tensor_array_unstack", dtype_str) out = unstack_func(inputs[0]) else: static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_ta_shape) static_tensor_array_ops.register() unstack_func = prelude.get_global_var_static( "tensor_array_unstack", dtype_str, input_ta_shape ) out = unstack_func(inputs[0]) return out return _impl _convert_map = { "TensorListFromTensor": _tensorlist_from_tensor(), "TensorListGetItem": _tensorlist_get_item(), "TensorListReserve": _tensorlist_reserve(), "TensorListSetItem": _tensorlist_set_item(), "TensorListStack": _tensorlist_stack(), }
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/tensorflow_ops.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition, broad-except # pylint: disable=import-outside-toplevel, redefined-builtin """TF: Tensorflow frontend.""" import warnings from collections import deque # Numpy support import numpy as np import tvm from tvm.relay.prelude import StaticTensorArrayOps, get_tensor_array_shape from tvm.topi.utils import get_const_tuple from .. import expr as _expr from .. import op as _op from ..ty import Any from .common import AttrCvt, get_relay_op from .common import infer_type as _infer_type from .common import infer_shape as _infer_shape from .common import infer_channels as _infer_channels from .common import infer_value as _infer_value def check_symbolic_shape(shape): return not all([isinstance(dim, (int, tvm.tir.IntImm)) for dim in shape]) def list_shape_of(tensor, ndim): shape_tensor = _op.shape_of(tensor) return [ _op.strided_slice(shape_tensor, begin=[i], end=[i + 1], strides=[1]) for i in range(ndim) ] def _get_pad_pair(input1d, kernel1d, stride1d): if isinstance(input1d, tvm.tir.Any) and stride1d != 1: raise tvm.error.OpAttributeUnImplemented( "SAME padding is not supported in combination with dynamic height or width when stride" " is not 1." ) if stride1d == 1 or input1d % stride1d == 0: pad = max(kernel1d - stride1d, 0) else: pad = max(kernel1d - (input1d % stride1d), 0) pad_before = pad // 2 pad_after = pad - pad_before return [pad_before, pad_after] def _math_name_picker(surfix): def _impl(attr): return "broadcast_" + surfix return _impl def _dimension_picker(prefix, surfix=""): def _impl(attr): kernel = attr["kernel_shape"] if len(kernel) == 2: return prefix + "2d" + surfix if len(kernel) == 3: return prefix + "3d" + surfix raise tvm.error.OpAttributeInvalid( "Only 2D or 3D kernels are supported for operator {}".format(prefix + "2d or 3d") ) return _impl def _dimension_constraint(): def _dim_check(attrs): if len(attrs["kernel_shape"]) in (2, 3): return True return False return _dim_check, "Only 2d or 3d kernel supported." def _get_param(params, input_node): if isinstance(input_node, _expr.Constant): return np.atleast_1d(input_node.data.numpy()) return params[input_node.name_hint].numpy() def _get_num_param(params, input_node): return _get_param(params, input_node).item() def _get_list_param(params, input_node, mod): try: return _get_param(params, input_node).tolist() except (IndexError, KeyError, AttributeError): return _infer_value(input_node, params, mod).numpy().tolist() def _get_tuple_param(params, input_node): return tuple(_get_param(params, input_node)) def _need_prelude_for_shape_inference(op): return "TensorArray" in op def _get_more_static_shape(shape0, shape1): """Compare two shapes with the same rank, and return the one with fewer symbolic dimension. """ assert len(shape0) == len(shape1) num_sym_dim0 = 0 num_sym_dim1 = 0 for dim0, dim1 in zip(list(shape0), list(shape1)): if not isinstance(dim0, int): num_sym_dim0 += 1 if not isinstance(dim1, int): num_sym_dim1 += 1 if num_sym_dim0 < num_sym_dim1: return shape0 return shape1 def _get_more_static_shape_rank(shape0, shape1): """Compare two shapes with different rank, and return the one with fewer symbolic dimension. """ num_sym_dim0 = sum([not isinstance(dim, (int, tvm.tir.expr.IntImm)) for dim in list(shape0)]) num_sym_dim1 = sum([not isinstance(dim, (int, tvm.tir.expr.IntImm)) for dim in list(shape1)]) if num_sym_dim0 < num_sym_dim1: return shape0 return shape1 def _rsqrt(): def _impl(inputs, attr, params, mod): inputs.append(tvm.relay.const(-0.5, attr["T"].name)) return AttrCvt(op_name="power")(inputs, attr) return _impl def _argx(func, func_name): """A common wrapper for argmin and argmax operations""" def _impl(inputs, attr, params, mod): try: # In Tensorflow, `axis` argument is a Tensor, not attribute. We # support the case where it inputs from a scalar constant. axis_input_value = [_get_num_param(params, inputs[1])] except (IndexError, KeyError): raise TypeError( "Unsupported argument for `{}` : `axis` should be a constant".format(func_name) ) out = func(inputs[0], axis=axis_input_value, keepdims=False) dtype = attr["output_type"].name if dtype != "int32": out = _op.cast(out, dtype=dtype) return out return _impl def _elemwise(name): def _impl(inputs, attr, params, mod): assert len(inputs) == 2, "{} take 2 inputs, {} given".format(name, len(inputs)) return get_relay_op(name)(*inputs) return _impl def _pool3d(name): def _impl(inputs, attr, params, mod): attr["data_format"] = attr["data_format"].decode("utf-8") flip_layout = False input_shape = _infer_shape(inputs[0], mod) if attr["data_format"] == "NDHWC": attr["kernel_shape"] = (attr["ksize"][1], attr["ksize"][2], attr["ksize"][3]) attr["strides"] = (attr["strides"][1], attr["strides"][2], attr["strides"][3]) elif attr["data_format"] == "NCDHW": attr["kernel_shape"] = (attr["ksize"][2], attr["ksize"][3], attr["ksize"][4]) attr["strides"] = (attr["strides"][2], attr["strides"][3], attr["strides"][4]) else: msg = 'Value {} of attribute "data_format" of operator Pooling ' "is not valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["data_format"])) if attr["data_format"] == "NDHWC": input_shape = [_infer_shape(inputs[0], mod)[i] for i in (0, 4, 1, 2, 3)] inputs[0] = _op.transpose(inputs[0], axes=(0, 4, 1, 2, 3)) attr["data_format"] = "NCDHW" flip_layout = True attr["padding"] = attr["padding"].decode("utf-8") if attr["padding"] == "VALID": attr["padding"] = [0, 0, 0, 0, 0, 0] elif attr["padding"] == "SAME": stride_d, stride_h, stride_w = attr["strides"] kernel_d, kernel_h, kernel_w = attr["kernel_shape"] if attr["data_format"] == "NDHWC": in_d = input_shape[1] in_h = input_shape[2] in_w = input_shape[3] else: in_d = input_shape[2] in_h = input_shape[3] in_w = input_shape[4] pad_d = _get_pad_pair(in_d, kernel_d, stride_d) pad_v = _get_pad_pair(in_h, kernel_h, stride_h) pad_h = _get_pad_pair(in_w, kernel_w, stride_w) attr["padding"] = [pad_d[0], pad_v[0], pad_h[0], pad_d[1], pad_v[1], pad_h[1]] else: msg = 'Value {} in attribute "padding" of operator Pooling is ' "not valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["padding"])) if name == "avg_pool": attr["count_include_pad"] = False attr["ceil_mode"] = False out = AttrCvt( op_name=name, transforms={"kernel_shape": "pool_size", "data_format": "layout"}, ignores=["ksize"], )(inputs, attr) if flip_layout: out = _op.transpose(out, axes=(0, 2, 3, 4, 1)) return out return _impl def _pooling(name): def _impl(inputs, attr, params, mod): attr["data_format"] = attr["data_format"].decode("utf-8") flip_layout = False input_shape = _infer_shape(inputs[0], mod) if attr["data_format"] == "NHWC": attr["kernel_shape"] = (attr["ksize"][1], attr["ksize"][2]) attr["strides"] = (attr["strides"][1], attr["strides"][2]) elif attr["data_format"] == "NCHW": attr["kernel_shape"] = (attr["ksize"][2], attr["ksize"][3]) attr["strides"] = (attr["strides"][2], attr["strides"][3]) else: msg = 'Value {} of attribute "data_format" of operator Pooling ' "is not valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["data_format"])) if attr["_target_layout"] == "NCHW" and attr["data_format"] == "NHWC": tmp_shape = _infer_shape(inputs[0], mod) input_shape = [tmp_shape[ii] for ii in (0, 3, 1, 2)] inputs[0] = _op.transpose(inputs[0], axes=(0, 3, 1, 2)) attr["data_format"] = "NCHW" flip_layout = True # Fix padding attr["padding"] = attr["padding"].decode("utf-8") if attr["padding"] == "VALID": attr["padding"] = [0, 0] elif attr["padding"] == "SAME": stride_h, stride_w = attr["strides"] kernel_h, kernel_w = attr["kernel_shape"] if attr["data_format"] == "NHWC": in_h = input_shape[1] in_w = input_shape[2] else: in_h = input_shape[2] in_w = input_shape[3] pad_v = _get_pad_pair(in_h, kernel_h, stride_h) pad_h = _get_pad_pair(in_w, kernel_w, stride_w) attr["padding"] = [pad_v[0], pad_h[0], pad_v[1], pad_h[1]] elif attr["padding"] == "EXPLICIT": paddings = attr["explicit_paddings"] assert len(paddings) == 8 if flip_layout or attr["data_format"] == "NHWC": attr["padding"] = [paddings[2], paddings[4], paddings[3], paddings[5]] else: attr["padding"] = [paddings[4], paddings[6], paddings[5], paddings[7]] else: msg = 'Value {} in attribute "padding" of operator Pooling is ' "not valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["padding"])) if name == "avg_pool": attr["count_include_pad"] = False out = AttrCvt( op_name=_dimension_picker(name), transforms={"kernel_shape": "pool_size", "data_format": "layout"}, ignores=["ksize", "explicit_paddings"], extras={"ceil_mode": False}, custom_check=_dimension_constraint(), )(inputs, attr) if flip_layout: out = _op.transpose(out, axes=(0, 2, 3, 1)) return out return _impl def _conv(opname): def _impl(inputs, attr, params, mod): attr["data_format"] = attr["data_format"].decode("utf-8") flip_layout = False if opname == "conv_transpose" and attr["data_format"] == "NHWC": # transform to NCHW for TVM backend compatible and set 'flip_layout' # to have output flip back to NHWC inputs[2] = _op.transpose(inputs[2], axes=(0, 3, 1, 2)) attr["strides"][1], attr["strides"][2], attr["strides"][3] = ( attr["strides"][3], attr["strides"][1], attr["strides"][2], ) attr["data_format"] = "NCHW" # Check whether output shapes attribute is set and not None if ( opname == "conv_transpose" and len(attr["_output_shapes"]) > 0 and attr["_output_shapes"][0] ): tmp_shape = attr["_output_shapes"][0] tmp_shape = [tmp_shape[ii] for ii in (0, 3, 1, 2)] attr["_output_shapes"][0] = tmp_shape flip_layout = True inputs_data = inputs[0] if opname != "conv_transpose" else inputs[2] # NCHW Layout require weights transpose weights_shape = _infer_shape(inputs[1], mod) if attr["data_format"] == "NCHW": tmp_shape = weights_shape if opname in ["conv", "conv_transpose"]: tmp_shape = [tmp_shape[ii] for ii in (3, 2, 0, 1)] inputs[1] = _op.transpose(inputs[1], axes=(3, 2, 0, 1)) else: tmp_shape = [tmp_shape[ii] for ii in (2, 3, 0, 1)] inputs[1] = _op.transpose(inputs[1], axes=(2, 3, 0, 1)) weights_shape = tmp_shape input_shape = _infer_shape(inputs_data, mod) if attr["_target_layout"] == "NCHW" and attr["data_format"] == "NHWC": input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)] inputs_data = _op.transpose(inputs_data, axes=(0, 3, 1, 2)) if opname in ["conv", "conv_transpose"]: weights_shape = [weights_shape[ii] for ii in (3, 2, 0, 1)] inputs[1] = _op.transpose(inputs[1], axes=(3, 2, 0, 1)) else: weights_shape = [weights_shape[ii] for ii in (2, 3, 0, 1)] inputs[1] = _op.transpose(inputs[1], axes=(2, 3, 0, 1)) attr["data_format"] = "NCHW" attr["strides"] = [attr["strides"][ii] for ii in (0, 3, 1, 2)] flip_layout = True if attr["data_format"] == "NHWC": in_channels = input_shape[3] kernel_h, kernel_w, _, depth_mult = weights_shape attr["kernel_shape"] = (weights_shape[0], weights_shape[1]) if opname == "conv": attr["channels"] = weights_shape[3] elif opname == "conv_transpose": attr["channels"] = weights_shape[2] else: attr["channels"] = input_shape[3] * depth_mult if "dilations" in attr: attr["dilations"] = (attr["dilations"][1], attr["dilations"][2]) attr["strides"] = (attr["strides"][1], attr["strides"][2]) elif attr["data_format"] == "NCHW": in_channels = input_shape[1] _, depth_mult, kernel_h, kernel_w = weights_shape attr["kernel_shape"] = (weights_shape[2], weights_shape[3]) if opname == "conv": attr["channels"] = weights_shape[0] elif opname == "conv_transpose": attr["channels"] = weights_shape[1] else: attr["channels"] = input_shape[1] * depth_mult if attr["channels"] < 0: attr["channels"] *= -1 if "dilations" in attr: attr["dilations"] = (attr["dilations"][2], attr["dilations"][3]) attr["strides"] = (attr["strides"][2], attr["strides"][3]) else: msg = 'Value {} in attribute "data_format" of operator Conv is ' "not valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["data_format"])) if opname == "depthwise": attr["groups"] = in_channels # Fix padding attr["padding"] = attr["padding"].decode("utf-8") if attr["padding"] == "VALID": attr["padding"] = [0, 0] elif attr["padding"] == "SAME": stride_h, stride_w = attr["strides"] kernel_h, kernel_w = attr["kernel_shape"] pdata_shape = input_shape # Check whether output shapes attribute is set and not None if ( opname == "conv_transpose" and len(attr["_output_shapes"]) > 0 and attr["_output_shapes"][0] ): pdata_shape = attr["_output_shapes"][0] if attr["data_format"] == "NHWC": in_h = pdata_shape[1] in_w = pdata_shape[2] else: in_h = pdata_shape[2] in_w = pdata_shape[3] dilation_h = attr["dilations"][0] dilation_w = attr["dilations"][1] dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h) pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w) attr["padding"] = [pad_v[0], pad_h[0], pad_v[1], pad_h[1]] elif attr["padding"] == "EXPLICIT": paddings = attr["explicit_paddings"] assert len(paddings) == 8 if flip_layout or attr["data_format"] == "NHWC": attr["padding"] = [paddings[2], paddings[4], paddings[3], paddings[5]] else: attr["padding"] = [paddings[4], paddings[6], paddings[5], paddings[7]] else: msg = 'Value {} in attribute "padding" of operator Conv is not ' "valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["padding"])) if "kernel_layout" not in attr: if opname == "conv": attr["kernel_layout"] = "HWIO" if attr["data_format"] == "NHWC" else "OIHW" elif opname == "conv_transpose": # conv_transpose in TVM has weights be IOHW for NCHW attr["kernel_layout"] = "HWIO" if attr["data_format"] == "NHWC" else "IOHW" else: attr["kernel_layout"] = "HWOI" if attr["data_format"] == "NHWC" else "OIHW" # Ignore the new attributes from TF2.0, for now. out = AttrCvt( op_name=_dimension_picker( "conv", surfix="_transpose" if opname == "conv_transpose" else "" ), ignores=["explicit_paddings"], transforms={ "kernel_shape": "kernel_size", "data_format": "data_layout", "dilations": ("dilation", (0, 0)), "group": ("groups", 1), }, custom_check=_dimension_constraint(), )([inputs_data, inputs[1]], attr) if flip_layout: out = _op.transpose(out, axes=(0, 2, 3, 1)) return out return _impl # Dilation2d def _dilation2d(): def _impl(inputs, attr, params, mod): if "data_format" not in attr: attr["data_format"] = "NHWC" input_shape = _infer_shape(inputs[0], mod) weights_shape = _infer_shape(inputs[1], mod) if attr["_target_layout"] == "NCHW" and attr["data_format"] == "NHWC": input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)] inputs[0] = _op.transpose(inputs[0], axes=(0, 3, 1, 2)) weights_shape = [weights_shape[ii] for ii in (2, 0, 1)] inputs[1] = _op.transpose(inputs[1], axes=(2, 0, 1)) attr["data_format"] = "NCHW" if attr["data_format"] in ["NHWC", "NCHW"]: if "rates" in attr: attr["dilations"] = attr["rates"] if "dilations" in attr: attr["dilations"] = (attr["dilations"][1], attr["dilations"][2]) attr["strides"] = (attr["strides"][1], attr["strides"][2]) else: msg = 'Value {} in attribute "data_format" of operator Dilation2D is ' "not valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["data_format"])) attr["padding"] = attr["padding"].decode("utf-8") if attr["padding"] == "VALID": attr["padding"] = [0, 0] elif attr["padding"] == "SAME": stride_h, stride_w = attr["strides"] if attr["data_format"] == "NHWC": kernel_h, kernel_w = weights_shape[0], weights_shape[1] else: kernel_h, kernel_w = weights_shape[1], weights_shape[2] if attr["data_format"] == "NHWC": in_h = input_shape[1] in_w = input_shape[2] else: in_h = input_shape[2] in_w = input_shape[3] dilation_h = attr["dilations"][0] dilation_w = attr["dilations"][1] dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h) pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w) if attr["data_format"] == "NHWC": inputs[0] = _op.nn.pad( data=inputs[0], pad_width=((0, 0), (pad_v[0], pad_v[1]), (pad_h[0], pad_h[1]), (0, 0)), ) else: inputs[0] = _op.nn.pad( data=inputs[0], pad_width=((0, 0), (0, 0), (pad_v[0], pad_v[1]), (pad_h[0], pad_h[1])), ) attr["padding"] = [0, 0] else: msg = 'Value {} in attribute "padding" of operator Dilation2d is not ' "valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["padding"])) attr["kernel_layout"] = "HWI" if attr["data_format"] == "NHWC" else "IHW" out = AttrCvt( op_name="dilation2d", ignores=["explicit_paddings", "rates"], transforms={ "data_format": "data_layout", }, )([inputs[0], inputs[1]], attr) if attr["_target_layout"] == "NCHW": out = _op.transpose(out, axes=(0, 2, 3, 1)) return out return _impl def _conv3d(opname): def _impl(inputs, attr, params, mod): attr["data_format"] = attr["data_format"].decode("utf-8") flip_layout = False inputs_data = inputs[0] if opname != "conv_transpose" else inputs[2] # NCDHW Layout require weights transpose weights_shape = _infer_shape(inputs[1], mod) if attr["data_format"] == "NCDHW": tmp_shape = weights_shape tmp_shape = [tmp_shape[ii] for ii in (4, 3, 0, 1, 2)] inputs[1] = _op.transpose(inputs[1], axes=(4, 3, 0, 1, 2)) weights_shape = tmp_shape input_shape = _infer_shape(inputs_data, mod) if attr["_target_layout"] == "NCDHW" and attr["data_format"] == "NDHWC": input_shape = [input_shape[ii] for ii in (0, 4, 1, 2, 3)] inputs_data = _op.transpose(inputs_data, axes=(0, 4, 1, 2, 3)) weights_shape = [weights_shape[ii] for ii in (4, 3, 0, 1, 2)] inputs[1] = _op.transpose(inputs[1], axes=(4, 3, 0, 1, 2)) attr["data_format"] = "NCDHW" attr["strides"] = [attr["strides"][ii] for ii in (0, 4, 1, 2, 3)] flip_layout = True if attr["data_format"] == "NDHWC": kernel_d, kernel_h, kernel_w, _, _ = weights_shape attr["kernel_shape"] = (kernel_d, kernel_h, kernel_w) if opname == "conv": attr["channels"] = weights_shape[4] elif opname == "conv_transpose": attr["channels"] = weights_shape[3] if "dilations" in attr: attr["dilations"] = ( attr["dilations"][1], attr["dilations"][2], attr["dilations"][3], ) attr["strides"] = (attr["strides"][1], attr["strides"][2], attr["strides"][3]) elif attr["data_format"] == "NCDHW": _, _, kernel_d, kernel_h, kernel_w = weights_shape attr["kernel_shape"] = (kernel_d, kernel_h, kernel_w) if opname == "conv": attr["channels"] = weights_shape[0] elif opname == "conv_transpose": attr["channels"] = weights_shape[1] if "dilations" in attr: attr["dilations"] = ( attr["dilations"][2], attr["dilations"][3], attr["dilations"][4], ) attr["strides"] = (attr["strides"][2], attr["strides"][3], attr["strides"][4]) else: msg = 'Value {} in attribute "data_format" of operator Conv is ' "not valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["data_format"])) # Fix padding attr["padding"] = attr["padding"].decode("utf-8") if attr["padding"] == "VALID": attr["padding"] = [0, 0, 0] elif attr["padding"] == "SAME": stride_d, stride_h, stride_w = attr["strides"] kernel_d, kernel_h, kernel_w = attr["kernel_shape"] pdata_shape = input_shape if opname == "conv_transpose" and len(attr["_output_shapes"]) > 0: pdata_shape = attr["_output_shapes"][0] if attr["data_format"] == "NDHWC": in_d = pdata_shape[1] in_h = pdata_shape[2] in_w = pdata_shape[3] else: in_d = pdata_shape[2] in_h = pdata_shape[3] in_w = pdata_shape[4] dilation_d = attr["dilations"][0] dilation_h = attr["dilations"][1] dilation_w = attr["dilations"][2] dilated_kernel_d = (kernel_d - 1) * dilation_d + 1 dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_d = _get_pad_pair(in_d, dilated_kernel_d, stride_d) pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h) pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w) attr["padding"] = [pad_d[0], pad_v[0], pad_h[0], pad_d[1], pad_v[1], pad_h[1]] elif attr["padding"] == "EXPLICIT": paddings = attr["explicit_paddings"] assert len(paddings) == 10 if flip_layout or attr["data_format"] == "NDHWC": attr["padding"] = [ paddings[2], paddings[4], paddings[6], paddings[3], paddings[5], paddings[7], ] else: attr["padding"] = [ paddings[4], paddings[6], paddings[8], paddings[5], paddings[7], paddings[9], ] else: msg = 'Value {} in attribute "padding" of operator Conv is not ' "valid." raise tvm.error.OpAttributeInvalid(msg.format(attr["padding"])) if "kernel_layout" not in attr: attr["kernel_layout"] = "DHWIO" if attr["data_format"] == "NDHWC" else "OIDHW" use_bias = len(inputs) == (3 if opname != "conv_transpose" else 4) channel_axis = 1 if attr["data_format"] == "NCDHW" else 4 # Ignore the new attributes from TF2.0, for now. out = AttrCvt( op_name=_dimension_picker( "conv", surfix="_transpose" if opname == "conv_transpose" else "" ), ignores=["explicit_paddings", "Tshape"], transforms={ "kernel_shape": "kernel_size", "data_format": "data_layout", "dilations": ("dilation", (0, 0)), "group": ("groups", 1), }, custom_check=_dimension_constraint(), )([inputs_data, inputs[1]], attr) if use_bias: out = _op.nn.bias_add( out, inputs[2] if opname != "conv_transpose" else inputs[3], axis=channel_axis ) if flip_layout: out = _op.transpose(out, axes=(0, 2, 3, 4, 1)) return out return _impl def _nms(return_scores=False): def _impl(inputs, attr, params, mod): # Get parameter values try: max_output_size = int(np.atleast_1d(inputs[2].data.numpy().astype("int64"))[0]) except Exception: try: max_output_size = ( _infer_value(inputs[2], params, mod).numpy().astype("int64").tolist()[0] ) except Exception: max_output_size = inputs[2] iou_threshold = np.atleast_1d(inputs[3].data.numpy())[0] # score_threshold was introduced from V3 score_threshold = np.atleast_1d(inputs[4].data.numpy())[0] if len(inputs) > 4 else 0.0 pad_output = "pad_to_max_output_size" # Generate data with shape (1, num_anchors, 5) scores = AttrCvt( op_name="expand_dims", ignores=["T_threshold", pad_output], extras={"axis": -1, "num_newaxis": 1}, )([inputs[1]], attr) data = get_relay_op("concatenate")([scores, inputs[0]], -1) data = get_relay_op("expand_dims")(data, 0, 1) # reason why using get_valid_counts is for inference performance ct, data, indices = get_relay_op("get_valid_counts")( data, score_threshold=score_threshold, id_index=-1, score_index=0 ) # TensorFlow NMS doesn't have parameter top_k top_k = -1 # TF doesn't have class id for nms input score_index = 0 nms_ret = get_relay_op("non_max_suppression")( data=data, valid_count=ct, indices=indices, max_output_size=max_output_size, iou_threshold=iou_threshold, force_suppress=True, top_k=top_k, coord_start=1, score_index=score_index, id_index=-1, return_indices=True, invalid_to_bottom=False, ) if pad_output in attr and attr[pad_output]: return nms_ret # squeeze it, TF NMS is not batched size = get_relay_op("squeeze")(nms_ret[1], axis=[1]) data_slice = get_relay_op("squeeze")(nms_ret[0], axis=[0]) # slice to get the dynamic result ret = get_relay_op("strided_slice")( data_slice, begin=_expr.const([0]), end=size, slice_mode="size" ) # NonMaxSuppressionV5 returns scores. pad_output is always False for NMSv5. if return_scores: if "soft_nms_sigma" in attr and attr["soft_nms_sigma"] != 0.0: raise tvm.error.OpAttributeUnImplemented( "soft_nms_sigma for NonMaxSuppressionV5 is not supported" ) ret_scores = _op.take(inputs[1], ret, axis=0) return _expr.TupleWrapper(_expr.Tuple([ret, ret_scores, size]), 3) return ret return _impl def convert_combined_nms_with_all_class_nms( batch_size, max_output_boxes_per_batch, num_class, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, max_total_size, clip_boxes, ): """Converts TF combined_nms using Relay all_class_max_suppression op""" (selected_indices, selected_scores, num_detections,) = _op.vision.all_class_non_max_suppression( boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, output_format="tensorflow", ) box_range = _op.arange( _op.const(0, dtype="int64"), _op.const(max_total_size, dtype="int64"), dtype="int64" ) assert isinstance(batch_size, int), "dynamic batch size not supported yet." tile_batch_reps = _op.const([batch_size, 1]) box_range_2d = _op.tile(box_range, tile_batch_reps) valid_mask = _op.cast( _op.less(box_range_2d, _op.expand_dims(num_detections, axis=1)), "float32" ) def select_topk(do_zero_pad): def true_branch(): arange = _op.arange( _op.const(0, dtype="int64"), _op.const(max_output_boxes_per_batch, dtype="int64"), dtype="int64", ) pad = _op.full( _op.const(0, dtype="int64"), (max_total_size - max_output_boxes_per_batch,) ) topk_indices = _op.tile(_op.concatenate([arange, pad], 0), tile_batch_reps) nmsed_scores = _op.gather(selected_scores, 1, topk_indices) nmsed_scores = nmsed_scores * valid_mask return nmsed_scores, topk_indices def false_branch(): if isinstance(max_output_boxes_per_class, int): # Do topk on smaller input if possible slice_mx = _op.const([max_output_boxes_per_class * num_class], dtype="int64") selected_scores_slice = _op.strided_slice( selected_scores, begin=_op.const([0], dtype="int64"), end=slice_mx, axes=[1] ) else: selected_scores_slice = selected_scores return _op.topk(selected_scores_slice, k=max_total_size, axis=1, ret_type="both") # TODO(masahi): support dynamic num_boxes # return _expr.If(do_zero_pad, true_branch(), false_branch()) return true_branch() if do_zero_pad else false_branch() assert isinstance(max_output_boxes_per_batch, int), "dynamic number of boxes not supported yet." nmsed_scores, topk_indices = select_topk(max_output_boxes_per_batch < max_total_size) indices = _op.take(selected_indices, topk_indices, axis=1, batch_dims=1) nmsed_box_indices = _op.take(indices, _op.const(1), axis=2) nmsed_classes = _op.take(indices, _op.const(0), axis=2) nmsed_classes = _op.cast(nmsed_classes, "float32") nmsed_boxes = _op.take(boxes, nmsed_box_indices, axis=1, batch_dims=1) num_detections = _op.minimum(num_detections, _op.const(max_total_size, dtype="int64")) if clip_boxes: nmsed_boxes = _op.maximum(nmsed_boxes, _expr.const(0, dtype="float32")) nmsed_boxes = _op.minimum(nmsed_boxes, _expr.const(1, dtype="float32")) nmsed_boxes = nmsed_boxes * _op.expand_dims(valid_mask, axis=2) return _expr.TupleWrapper( _expr.Tuple([nmsed_boxes, nmsed_scores, nmsed_classes, num_detections]), 4 ) def _combined_nms(): def _impl(inputs, attr, params, mod): # Get parameter values boxes = inputs[0] scores = inputs[1] try: max_output_size = int(np.atleast_1d(inputs[2].data.numpy().astype("int64"))[0]) except Exception: try: max_output_size = ( _infer_value(inputs[2], params, mod).numpy().astype("int64").tolist()[0] ) except Exception: max_output_size = inputs[2] max_total_size = inputs[3] iou_threshold = np.atleast_1d(inputs[4].data.numpy())[0] score_threshold = np.atleast_1d(inputs[5].data.numpy())[0] if attr["pad_per_class"]: raise tvm.error.OpAttributeUnImplemented( "pad_per_class for CombinedNonMaxSuppression is not supported" ) boxes_shape = _infer_shape(inputs[0], mod) scores_shape = _infer_shape(inputs[1], mod) batch_size = boxes_shape[0] num_anchors = boxes_shape[1] q = boxes_shape[2] num_classes = scores_shape[2] assert isinstance(batch_size, int) and isinstance( num_anchors, int ), "Dynamic inputs not supported yet" if q == 1: boxes = _op.squeeze(boxes, axis=[2]) scores_trans = _op.transpose(scores, [0, 2, 1]) max_output_boxes_per_batch = num_anchors * num_classes return convert_combined_nms_with_all_class_nms( batch_size, max_output_boxes_per_batch, num_classes, boxes, scores_trans, max_output_size, iou_threshold, score_threshold, max_total_size.data.numpy().item(), attr["clip_boxes"], ) boxes = _op.reshape(boxes, newshape=[batch_size, num_anchors * num_classes, 4]) scores = _op.reshape(scores, newshape=[batch_size, num_anchors * num_classes, 1]) # In TF, class is specified by memory layout only. ids = _op.arange(_op.const(num_classes, dtype="float32")) ids = _op.broadcast_to(ids, (batch_size, num_anchors, num_classes)) ids = _op.reshape(ids, newshape=[batch_size, num_anchors * num_classes, 1]) data = _op.concatenate([ids, scores, boxes], -1) ct, data, indices = _op.vision.get_valid_counts( data, score_threshold=score_threshold, id_index=0, score_index=1 ) nms_ret = _op.vision.non_max_suppression( data=data, valid_count=ct, indices=indices, max_output_size=max_output_size, iou_threshold=iou_threshold, force_suppress=False, top_k=-1, coord_start=2, score_index=1, id_index=0, return_indices=False, invalid_to_bottom=True, ) # Dynamic slice to max_total_size neg_one = _expr.const([-1]) slice_end = _op.concatenate( [neg_one, _op.expand_dims(max_total_size, axis=0), neg_one], axis=0 ) nms_ret = _op.strided_slice( nms_ret, begin=[0, 0, 0], end=slice_end, strides=[1, 1, 1], slice_mode="size" ) # Slice output into boxes, scores, classes nmsed_boxes = _op.strided_slice( nms_ret, begin=[0, 0, 2], end=[-1, -1, 4], slice_mode="size" ) if attr["clip_boxes"]: nmsed_boxes = _op.maximum(nmsed_boxes, _expr.const(0, dtype="float32")) nmsed_boxes = _op.minimum(nmsed_boxes, _expr.const(1, dtype="float32")) nmsed_scores = _op.strided_slice( nms_ret, begin=[0, 0, 1], end=[-1, -1, 1], slice_mode="size" ) nmsed_scores = _op.squeeze(nmsed_scores, axis=[2]) nmsed_classes = _op.strided_slice( nms_ret, begin=[0, 0, 0], end=[-1, -1, 1], slice_mode="size" ) nmsed_classes = _op.squeeze(nmsed_classes, axis=[2]) # Get number of valid boxes nms_count = _op.sum( _op.cast(_op.greater(nmsed_scores, _expr.const(0, dtype="float32")), "int32"), axis=1 ) # TVM uses -1 for invalid outputs while TF uses 0 box_range = _op.arange(_expr.const(0, dtype="int32"), max_total_size, dtype="int32") shape = _op.strided_slice(_op.shape_of(nmsed_boxes), begin=[0], end=[2]) box_range = _op.broadcast_to(box_range, shape) valid_mask = _op.cast(_op.less(box_range, _op.expand_dims(nms_count, axis=1)), "float32") nmsed_boxes = nmsed_boxes * _op.expand_dims(valid_mask, axis=2) # Could instead use mask for scores, classes if negative values are possible. nmsed_scores = _op.maximum(nmsed_scores, _expr.const(0, dtype="float32")) nmsed_classes = _op.maximum(nmsed_classes, _expr.const(0, dtype="float32")) return _expr.TupleWrapper( _expr.Tuple([nmsed_boxes, nmsed_scores, nmsed_classes, nms_count]), 4 ) return _impl def _decode_image(): def _impl(inputs, attr, params, mod): # Image decode wrapper: Expecting user to feed decoded input to next layer drop this layer. warnings.warn("DecodeJpeg: It's a pass through, please handle preprocessing before input") return inputs[0] return _impl def _unravel_index(): def _impl(inputs, attr, params, mod): return _op.unravel_index(inputs[0], inputs[1]) return _impl def _crop_and_resize(): def _impl(inputs, attr, params, mod): # input image is a 4-D tensor of shape [batch, image_height, image_width, depth] # boxes is a 2-D tensor of shape [num_boxes, 4], 4 is for [y1, x1, y2, x2] crop_size = _get_list_param(params, inputs[3], mod) method = attr["method"].decode() method = "nearest_neighbor" if method == "nearest" else method if method not in ["bilinear", "nearest_neighbor"]: raise tvm.error.OpAttributeUnImplemented("Method {} is not supported".format(method)) layout = attr["layout"] if "layout" in attr else "NHWC" extrapolation_value = attr["extrapolation_value"] return get_relay_op("crop_and_resize")( inputs[0], inputs[1], inputs[2], crop_size, layout, method, extrapolation_value ) return _impl def _cast(): def _impl(inputs, attr, params, mod): return inputs[0].astype(attr["DstT"].name) return _impl def _expand_dims(): def _impl(inputs, attr, params, mod): dim_input = inputs.pop(1) axis = _get_num_param(params, dim_input) return AttrCvt( op_name="expand_dims", ignores=["Tdim", "N"], extras={"axis": int(axis), "num_newaxis": 1}, )(inputs, attr) return _impl def _expm1(): # op description: https://www.tensorflow.org/api_docs/python/tf/math/expm1 def _impl(inputs, attr, params, mod): exp_out = get_relay_op("exp")(inputs[0]) return exp_out - tvm.relay.const(1.0) return _impl def _resize(method): def _impl(inputs, attr, params, mod): if attr["_output_shapes"][0] is not None: size = attr["_output_shapes"][0][1:3] # Important that the size is defined. If an axis is not, we need to infer what # the shape should be. if -1 in size: size = _infer_value(inputs[1], params, mod).numpy().reshape([-1]).tolist() else: size = _infer_value(inputs[1], params, mod).numpy().reshape([-1]).tolist() attr["size"] = size inputs.pop(1) # NHWC attr["layout"] = "NHWC" if attr.pop("align_corners") is True: attr["coordinate_transformation_mode"] = "align_corners" else: attr["coordinate_transformation_mode"] = "asymmetric" # Ignore the new attributes from TF2.0, for now. return AttrCvt( op_name="resize2d", ignores=["Tdim", "half_pixel_centers"], extras={"method": method, "roi": None}, )(inputs, attr) return _impl def _check_numerics(): def _impl(inputs, attr, params, mod): # Making a copy node assuming no need to verify return AttrCvt(op_name="copy", ignores=["message"])(inputs, attr) return _impl def _assert(): # ToDo: In general people want asserts to be gone from TensorFlow graphs # when they are optimizing them, so converting it to a no-op is # reasonable. However, it would be nice to have the option to keep them # once Relay gets a Halt or Assert op. return _no_op() def _no_op(): def _impl(inputs, attr, params, mod): # ToDo: This should really be an op that returns nothing, which could # be represented as an empty tuple. It turns out that TVM # infrastructure doesn't like running functions that return None and # also don't like running functions that return an empty tuple. So it # doesn't work, but it should be made to work and then this could be # improved. In the mean time, it is hard to imagine a case where it # matters in any real way that a no-op is converted to a constant 0. return tvm.relay.const(0) return _impl def _matmul(): def _impl(inputs, attr, params, mod): from .tensorflow import TF_DEFAULT_CONFIGS channels = _infer_channels(inputs[1], not attr["transpose_b"]) if TF_DEFAULT_CONFIGS["use_dense"]: if attr["transpose_a"]: inputs[0] = _op.transpose(inputs[0], axes=(1, 0)) if not attr["transpose_b"]: inputs[1] = _op.transpose(inputs[1], axes=(1, 0)) return AttrCvt( op_name="dense", extras={"units": channels}, ignores=["transpose_a", "transpose_b", "T"], )(inputs, attr) return AttrCvt( op_name="matmul", extras={"units": channels}, ignores=["T"], )(inputs, attr) return _impl def _batch_matmul(): def _impl(inputs, attr, params, mod): from .tensorflow import TF_DEFAULT_CONFIGS input_x = inputs[0] input_y = inputs[1] orig_shape_x = _infer_shape(input_x, mod) orig_shape_y = _infer_shape(input_y, mod) ndim = len(orig_shape_x) ndim_y = len(orig_shape_y) is_static = not check_symbolic_shape(orig_shape_x) # reshape n-dimensional batch matmul into 3d if ndim > 3: outer_dims = [orig_shape_x[i] for i in range(0, len(orig_shape_x) - 2)] if is_static: num_outer_elts = np.prod(outer_dims) new_shape_x = (num_outer_elts, orig_shape_x[-2], orig_shape_x[-1]) if ndim_y > 2: new_shape_y = (num_outer_elts, orig_shape_y[-2], orig_shape_y[-1]) elif ndim_y == 2: new_shape_y = (1, orig_shape_y[-2], orig_shape_y[-1]) else: # handle dynamic shape (dyn.reshape op) shape_of_x = list_shape_of(inputs[0], ndim) shape_of_y = list_shape_of(inputs[1], ndim) new_shape_x = [_op.const(1), shape_of_x[-2], shape_of_x[-1]] new_shape_y = [_op.const(1), shape_of_y[-2], shape_of_y[-1]] for i in range(ndim - 2): new_shape_x[0] *= shape_of_x[i] new_shape_y[0] *= shape_of_y[i] new_shape_x = _op.concatenate(_op.Tuple(new_shape_x), axis=0) new_shape_y = _op.concatenate(_op.Tuple(new_shape_y), axis=0) input_x = _op.reshape(input_x, newshape=new_shape_x) input_y = _op.reshape(input_y, newshape=new_shape_y) elif ndim_y == 2: input_y = _op.reshape(input_y, (1, orig_shape_y[-2], orig_shape_y[-1])) adj_x = attr["adj_x"] adj_y = attr["adj_y"] if TF_DEFAULT_CONFIGS["use_nt_batch_matmul"]: # Strictly convert all batch_matmul to NT format input_x = _op.transpose(input_x, axes=[0, 2, 1]) if adj_x else input_x input_y = _op.transpose(input_y, axes=[0, 2, 1]) if not adj_y else input_y ret = get_relay_op("batch_matmul")(input_x, input_y) else: ret = get_relay_op("batch_matmul")( input_x, input_y, transpose_a=adj_x, transpose_b=adj_y ) # reshape result back to n-dimensional if ndim > 3: if is_static: final_shape = list(orig_shape_x) final_shape[-2] = orig_shape_x[-1] if adj_x else orig_shape_x[-2] final_shape[-1] = orig_shape_y[-2] if adj_y else orig_shape_y[-1] else: # calculate the resulting shape = [shape[:-2], 0, 0] final_shape = list(shape_of_x) final_shape[-2] = shape_of_x[-1] if adj_x else shape_of_x[-2] final_shape[-1] = shape_of_y[-2] if adj_y else shape_of_y[-1] final_shape = _op.concatenate(_op.Tuple(final_shape), axis=0) ret = _op.reshape(ret, newshape=final_shape) return ret return _impl def _sparse_tensor_dense_matmul(): def _impl(inputs, attr, params, mod): # Loading this by default causes TVM to not be loadable from other languages. # Sparse utility from scipy from scipy.sparse import csr_matrix assert len(inputs) == 4, "There should be 4 input tensors" indices_tensor = _infer_value(inputs[0], params, mod).numpy() values_tensor = _infer_value(inputs[1], params, mod).numpy() dense_shape_tensor = _infer_value(inputs[2], params, mod).numpy() data = inputs[3] rows = [x[0] for x in indices_tensor] cols = [x[1] for x in indices_tensor] # Create scipy sparse Tensor(CSR) weight_sp = csr_matrix( (values_tensor, (rows, cols)), shape=tuple(dense_shape_tensor.tolist()) ) # As per tensorflow implementation, we have 4 possible input combination # and the first input(A) is always sparse and second input(B) is always dense. # Case 1: A , B , adjoint_a=False, adjoint_b=False --> A * B # Case 2: A , B , adjoint_a=True, adjoint_b=False --> A.T * B # Case 3: A , B , adjoint_a=False, adjoint_b=True --> A * B.T # Case 4: A , B , adjoint_a=True, adjoint_b=True --> A.T * B.T # # Topi implementation for sparse_dense(matmul) has 2 possible input # combination where first input(A) is always dense # and second input(B) is always sparse. # Case 1: A , B, sparse_lhs = False --> A * B.T # Case 2: A , B, sparse_lhs = True --> B * A.T # # The mapping would be as below: # TF Case 1: A , B , adjoint_a=False, adjoint_b=False # --> In TF: A * B --> In Topi: A * B.T.T # --> sparse_dense(transpose(B), A, sparse_lhs=True) # # TF Case 2: A , B , adjoint_a=True, adjoint_b=False # --> In TF: A.T * B --> In Topi: A.T * B.T.T # --> sparse_dense(transpose(B), transpose(A), sparse_lhs=True) # # TF Case 3: A , B , adjoint_a=False, adjoint_b=True # --> In TF: A * B.T --> In Topi: A * B # --> sparse_dense(B, A, sparse_lhs=True) # # TF Case 4: A , B , adjoint_a=True, adjoint_b=True # --> In TF: A.T * B.T --> In Topi: (B * A.T).T # --> transpose(sparse_dense(B, transpose(A), sparse_lhs=False)) # By default, in tensorflow the first input ,i.e., data is sparse sparse_lhs = True # TF Case 1: if not attr.get("adjoint_a") and not attr.get("adjoint_b"): data = _op.transpose(data) # TF Case 2: elif attr.get("adjoint_a") and not attr.get("adjoint_b"): data = _op.transpose(data) weight_sp = csr_matrix(weight_sp.transpose()) # TF Case 3: elif not attr.get("adjoint_a") and attr.get("adjoint_b"): pass # TF Case 4: # attr.get("adjoint_a") and attr.get("adjoint_b"): else: sparse_lhs = False weight_sp = csr_matrix(weight_sp.transpose()) weight_data = _expr.const(weight_sp.data, weight_sp.data.dtype) weight_indptrs = _expr.const(weight_sp.indptr, weight_sp.indptr.dtype) weight_indices = _expr.const(weight_sp.indices, weight_sp.indices.dtype) ret = _op.nn.sparse_dense(data, [weight_data, weight_indices, weight_indptrs], sparse_lhs) if not sparse_lhs: # TF Case 4 ret = _op.transpose(ret) return ret return _impl def _sparse_fill_empty_rows(): def _impl(inputs, attr, params, mod): assert len(inputs) == 4, "There should be 4 input tensors" sparse_indices = inputs[0] sparse_values = inputs[1] sparse_indices_num_cols = _infer_shape(sparse_indices, mod)[1] first_column = _op.split(sparse_indices, sparse_indices_num_cols, axis=1)[0] sorted_indices = _op.argsort(_op.squeeze(first_column)) sorted_sparse_indices = _op.take(sparse_indices, sorted_indices, axis=0) sorted_sparse_values = _op.take(sparse_values, sorted_indices, axis=0) new_sparse_indices, new_sparse_values, empty_row_indicator = _op.sparse_fill_empty_rows( sorted_sparse_indices, sorted_sparse_values, inputs[2], inputs[3] ) return _expr.TupleWrapper( _expr.Tuple([new_sparse_indices, new_sparse_values, empty_row_indicator]), 3, ) return _impl def _sparse_reshape(): def _impl(inputs, attr, params, mod): assert len(inputs) == 3, "There should be 3 input tensors" new_indices, new_shape = get_relay_op("sparse_reshape")(inputs[0], inputs[1], inputs[2]) return _expr.TupleWrapper(_expr.Tuple([new_indices, new_shape]), 2) return _impl def _math_segment_sum(): def _impl(inputs, attr, params, mod): assert len(inputs) == 2, "There should be 2 input tensors" return get_relay_op("segment_sum")(inputs[0], inputs[1]) return _impl def _sparse_segment_sum(): def _impl(inputs, attr, params, mod): assert len(inputs) == 3, "There should be 3 input tensors" data = _op.take(inputs[0], inputs[1], axis=0) return _op.segment_sum(data, inputs[2]) return _impl def _sparse_segment_sum_with_num_segments(): def _impl(inputs, attr, params, mod): assert len(inputs) == 4, "There should be 4 input tensors" data = _op.take(inputs[0], inputs[1], axis=0) num_segments = int(inputs[3].data.numpy().item()) return _op.segment_sum(data, inputs[2], num_segments) return _impl def row_wise_divide(multi_dim_tensor, one_dim_vector): """ This function enables row-wise division of multi_dim_tensor and one_dim_vector. To achieve this, it is first tiled to the appropriate shape and then elemwise_division """ multi_dim_tensor_offrow_shape = _op.strided_slice( _op.shape_of(multi_dim_tensor, "int32"), [1], [-1], slice_mode="size" ) one_dim_vector_tiled_shape = _op.concatenate( [_op.reverse(multi_dim_tensor_offrow_shape, 0), _expr.const([1])], axis=0 ) one_dim_vector_tiled = _op.transpose(_op.tile(one_dim_vector, one_dim_vector_tiled_shape)) return _op.divide(multi_dim_tensor, one_dim_vector_tiled) def count_all_indices(segment_ids, counts_dtype, num_segments=None): """ This snippet calculates the sqrt count of each index among all valid indices Valid indices are from 0 to max of [segment ids, num_segments] """ max_segments = _op.reshape(_op.max(segment_ids), -1) + _expr.const([1]) if num_segments: max_segments = _op.maximum(max_segments, _expr.const([num_segments])) max_ones = _op.maximum(max_segments, _op.shape_of(segment_ids)) counts = _op.segment_sum( _op.ones(max_ones, counts_dtype), segment_ids, num_segments=num_segments ) real_counts = _op.clip(counts, 1, 2147483647) # Clip max doesn't work over int32 return real_counts def _sparse_segment_sum_sqrtn(): def _impl(inputs, attr, params, mod): assert len(inputs) == 3, "There should be 3 input tensors" data = _op.take(inputs[0], inputs[1], axis=0) real_counts = count_all_indices(inputs[2], attr["T"].name) real_sqrt_counts = _op.sqrt(_op.cast_like(real_counts, data)) # Calculate regular segment sum segment_sum = _op.segment_sum(data, inputs[2]) return row_wise_divide(segment_sum, real_sqrt_counts) return _impl def _sparse_segment_sum_sqrtn_with_num_segments(): def _impl(inputs, attr, params, mod): assert len(inputs) == 4, "There should be 4 input tensors" data = _op.take(inputs[0], inputs[1], axis=0) num_segments = int(inputs[3].data.numpy().item()) real_counts = count_all_indices(inputs[2], attr["T"].name, num_segments=num_segments) real_sqrt_counts = _op.sqrt(_op.cast_like(real_counts, data)) # Calculate regular segment sum segment_sum = _op.segment_sum(data, inputs[2], num_segments=num_segments) return row_wise_divide(segment_sum, real_sqrt_counts) return _impl def _sparse_segment_mean(): def _impl(inputs, attr, params, mod): assert len(inputs) == 3, "There should be 3 input tensors" data = _op.take(inputs[0], inputs[1], axis=0) real_counts = count_all_indices(inputs[2], attr["T"].name) # Calculate regular segment sum segment_sum = _op.segment_sum(data, inputs[2]) return row_wise_divide(segment_sum, real_counts) return _impl def _sparse_segment_mean_with_num_segments(): def _impl(inputs, attr, params, mod): assert len(inputs) == 4, "There should be 4 input tensors" data = _op.take(inputs[0], inputs[1], axis=0) num_segments = int(inputs[3].data.numpy().item()) real_counts = count_all_indices(inputs[2], attr["T"].name, num_segments=num_segments) # Calculate regular segment sum segment_sum = _op.segment_sum(data, inputs[2], num_segments=num_segments) return row_wise_divide(segment_sum, real_counts) return _impl def _sparse_tensor_dense_add(): # Sparse utility from scipy from scipy.sparse import csr_matrix def _impl(inputs, attr, params, mod): assert ( len(inputs) == 4 ), "There should be 4 input tensors [sparse_indices, sparse_values, sparse_shape, dense]." indices_tensor = _infer_value(inputs[0], params, mod).numpy() values_tensor = _infer_value(inputs[1], params, mod).numpy() dense_shape_tensor = _infer_value(inputs[2], params, mod).numpy() data = inputs[3] rows = [x[0] for x in indices_tensor] cols = [x[1] for x in indices_tensor] # Create scipy sparse Tensor(CSR) weight_sp = csr_matrix( (values_tensor, (rows, cols)), shape=tuple(dense_shape_tensor.tolist()) ) weight_data = _expr.const(weight_sp.data, weight_sp.data.dtype) weight_indptrs = _expr.const(weight_sp.indptr, weight_sp.indptr.dtype) weight_indices = _expr.const(weight_sp.indices, weight_sp.indices.dtype) ret = _op.nn.sparse_add(data, [weight_data, weight_indices, weight_indptrs]) return ret return _impl def _identity(): def _impl(inputs, attr, params, mod): return inputs[0] return _impl def _identityn(): def _impl(inputs, attr, params, mod): return inputs return _impl def _concatV2(): def _impl(inputs, attr, params, mod): pop_node = inputs.pop(len(inputs) - 1) try: axis = int(_get_num_param(params, pop_node)) except (IndexError, KeyError, AttributeError): try: axis = int(_infer_value(pop_node, params, mod).numpy()) except Exception: axis = int(pop_node) return AttrCvt(op_name="concatenate", ignores=["T", "N", "Tidx"], extras={"axis": axis})( [inputs], attr ) return _impl def _concat(): def _impl(inputs, attr, params, mod): pop_node = inputs.pop(0) axis = int(_get_num_param(params, pop_node)) return AttrCvt(op_name="concatenate", ignores=["N"], extras={"axis": axis})([inputs], attr) return _impl def _pack(): def _impl(inputs, attr, params, mod): axis = int(attr["axis"]) inputs_reshaped = [_op.expand_dims(i, axis=axis, num_newaxis=1) for i in inputs] return _op.concatenate(inputs_reshaped, axis) return _impl def _tensor_array(): def _impl(inputs, attr, params, prelude): dtype_str = attr.get("dtype").name assert not attr["dynamic_size"], "Dynamic size tensor array is " "not supported in TVM yet." if "shape" in attr: shape = attr["shape"] static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, shape) static_tensor_array_ops.register() tensor_array_constructor = static_tensor_array_ops.get_global_var("tensor_array") tensor_array = tensor_array_constructor(inputs[0]) else: tensor_array_constructor = prelude.get_global_var("tensor_array", dtype_str) tensor_array = tensor_array_constructor(inputs[0]) return tensor_array return _impl def _tensor_array_scatter(): def _impl(inputs, attr, params, prelude): dtype_str = attr.get("T").name input_ta = inputs[0] input_shape = get_tensor_array_shape(input_ta, dtype_str, prelude) values_shape = _infer_shape(inputs[2], prelude.mod) input_t_shape = values_shape[1:] indices_shape = _infer_shape(inputs[1], prelude.mod) if input_shape is None: values_rank = len(values_shape) unstack_name = "tensor_array_unstack_tensor{}".format(values_rank) unstack_function = prelude.get_global_var(unstack_name, dtype_str) values = unstack_function(inputs[2]) tensor_array_scatter_func = prelude.get_global_var("tensor_array_scatter", dtype_str) else: input_t_shape = _get_more_static_shape(input_t_shape, input_shape) values_shape = (values_shape[0],) + input_t_shape static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_t_shape) static_tensor_array_ops.register() # Register static indices shape if isinstance(indices_shape[0], int): static_tensor_array_ops.define_tensor_array_scatter(indices_shape, True) tensor_array_scatter_func = prelude.get_global_var_static( "tensor_array_scatter", dtype_str, input_t_shape ) static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, values_shape) static_tensor_array_ops.register() unstack_function = prelude.get_global_var_static( "tensor_array_unstack", dtype_str, values_shape ) values = unstack_function(inputs[2]) ret = tensor_array_scatter_func(input_ta, inputs[1], values) return ret return _impl def _tensor_array_gather(): def _impl(inputs, attr, params, prelude): dtype_str = attr.get("dtype").name input_shape = get_tensor_array_shape(inputs[2], dtype_str, prelude) indices_shape = _infer_shape(inputs[1], prelude.mod) if input_shape is None: gather_func = prelude.get_var("tensor_array_gather", dtype_str) out = gather_func(inputs[2], inputs[1]) else: static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_shape) static_tensor_array_ops.register() if not isinstance(indices_shape[0], int): gather_function = prelude.get_global_var_static( "tensor_array_gather", dtype_str, input_shape ) out_tensor_t = gather_function(inputs[2], inputs[1]) out_shape = (indices_shape[0],) + input_shape static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, out_shape) static_tensor_array_ops.register() # Output shape is (indices_shape[0],) + input_shape get_data_func = prelude.get_global_var_static( "tensor_get_data", dtype_str, out_shape ) out = get_data_func(out_tensor_t) else: # For fixed length indices, directly generate static shape output read_func = prelude.get_global_var_static( "tensor_array_read", dtype_str, input_shape ) get_data_func = prelude.get_global_var_static( "tensor_get_data", dtype_str, input_shape ) tensor_list = [] for i in range(indices_shape[0]): index = _op.take(inputs[1], tvm.relay.const(i)) out_tensor = get_data_func(read_func(inputs[2], index)) tensor_list.append(_op.expand_dims(out_tensor, axis=0)) if indices_shape[0] > 1: out = _op.concatenate(tensor_list, axis=0) else: out = tensor_list[0] return out return _impl def _tensor_array_size(): def _impl(inputs, attr, params, prelude): return prelude.length(inputs[0]) return _impl def _tensor_array_write(): def _impl(inputs, attr, params, prelude): dtype_str = attr.get("T").name input_ta = inputs[3] input_ta_shape = get_tensor_array_shape(input_ta, dtype_str, prelude) input_t_shape = _infer_shape(inputs[2], prelude.mod) input_rank = len(input_t_shape) if input_ta_shape is None: tensor_name = "tensor{}".format(input_rank) tensor_func = prelude.get_tensor_ctor(tensor_name, dtype_str) v = tensor_func(inputs[2]) write_func = prelude.get_global_var("tensor_array_write", dtype_str) else: input_ta_rank = len(input_ta_shape) assert input_ta_rank == input_rank, "Shape rank mismatch: {} vs {}".format( input_ta_rank, input_rank ) static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_ta_shape) static_tensor_array_ops.register() tensor_func = static_tensor_array_ops.get_ctor("tensor_constructor") v = tensor_func(inputs[2]) # Write tensor with more static shape actual_shape = _get_more_static_shape(input_t_shape, input_ta_shape) if actual_shape != input_t_shape: new_shape = [] num_any_dim = 0 for dim in actual_shape: if not isinstance(dim, int): num_any_dim += 1 new_shape.append(dim if isinstance(dim, int) else -1) if num_any_dim <= 1: v = tensor_func(_op.reshape(inputs[2], new_shape)) write_func = prelude.get_global_var_static( "tensor_array_write", dtype_str, input_ta_shape ) return write_func(input_ta, _op.take(inputs[1], tvm.relay.const(0)), v) return _impl def _tensor_array_read(): def _impl(inputs, attr, params, prelude): dtype_str = attr["dtype"].name input_shape = get_tensor_array_shape(inputs[2], dtype_str, prelude) if input_shape is None: read_func = prelude.get_global_var("tensor_array_read", dtype_str) out = read_func(inputs[2], _op.take(inputs[1], tvm.relay.const(0))) else: static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_shape) static_tensor_array_ops.register() read_func = static_tensor_array_ops.get_global_var("tensor_array_read") out_tensor = read_func(inputs[2], _op.take(inputs[1], tvm.relay.const(0))) get_data_func = static_tensor_array_ops.get_global_var("tensor_get_data") out = get_data_func(out_tensor) return out return _impl def _tensor_array_split(): def _impl(inputs, attr, params, prelude): dtype_str = attr.get("T").name input_ta = inputs[0] input_ta_shape = get_tensor_array_shape(input_ta, dtype_str, prelude) lengths = _op.cast(inputs[2], "int32") lengths_shape = _infer_shape(lengths, prelude.mod) value_shape = _infer_shape(inputs[1], prelude.mod) input_rank = len(value_shape) if input_ta_shape is None: tensor_name = "tensor{}".format(input_rank) tensor_ctor = prelude.get_tensor_ctor(tensor_name, dtype_str) v = tensor_ctor(inputs[1]) split_func = prelude.get_global_var("tensor_array_split", dtype_str) else: input_ta_rank = len(input_ta_shape) assert input_ta_rank == input_rank, "Shape rank mismatch: {} vs {}".format( input_ta_rank, input_rank ) static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_ta_shape) static_tensor_array_ops.register() # Check static value/indices shape if isinstance(value_shape[0], int) or isinstance(lengths_shape[0], int): static_tensor_array_ops.define_tensor_array_split(value_shape, lengths_shape, True) static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, value_shape) static_tensor_array_ops.register() tensor_ctor = static_tensor_array_ops.get_ctor("tensor_constructor") v = tensor_ctor(inputs[1]) split_func = prelude.get_global_var_static( "tensor_array_split", dtype_str, input_ta_shape ) return split_func(input_ta, v, lengths) return _impl def _tensor_array_concat(): def _impl(inputs, attr, params, prelude): dtype_str = attr["dtype"].name input_shape = get_tensor_array_shape(inputs[1], dtype_str, prelude) if input_shape is None: concat_func = prelude.get_global_var("tensor_array_concat", dtype_str) out = concat_func(inputs[1]) else: static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, input_shape) static_tensor_array_ops.register() concat_func = prelude.get_global_var_static( "tensor_array_concat", dtype_str, input_shape ) out_tensor = concat_func(inputs[1]) out_shape = (Any(),) + input_shape[1:] static_tensor_array_ops = StaticTensorArrayOps(prelude, dtype_str, out_shape) static_tensor_array_ops.register() get_data_func = prelude.get_global_var_static("tensor_get_data", dtype_str, out_shape) out = get_data_func(out_tensor) return out return _impl def _tile(): def _impl(inputs, attr, params, mod): reps_input = inputs.pop() if isinstance(reps_input, _expr.Call): np_reps = _infer_value(reps_input, params, mod).numpy() reps = [np_reps.flatten()[i] for i in range(np_reps.flatten().shape[0])] else: reps = _get_list_param(params, reps_input, mod) new_input = [inputs.pop(0)] return AttrCvt(op_name="tile", extras={"reps": tuple(reps)}, ignores=["Tmultiples"])( new_input, attr ) return _impl def _slice(): def _impl(inputs, attr, params, mod): try: begin = _get_list_param(params, inputs[1], mod) except Exception: # Handle symbolic begin begin = inputs[1] try: size = _get_list_param(params, inputs[2], mod) except Exception: # Handle symbolic size size = inputs[2] # Align begin and strides for dynamic shape. data_dim = len(_infer_shape(inputs[0], mod)) strides = [1] * data_dim if not isinstance(begin, (_expr.Call, _expr.Var)): for _ in range(len(begin), data_dim): begin.append(0) elif not isinstance(size, (_expr.Call, _expr.Var)): for _ in range(len(size), data_dim): size.append(-1) return _op.strided_slice( inputs[0], begin=begin, end=size, strides=strides, slice_mode="size" ) return _impl def _reshape(): def _impl(inputs, attr, params, mod): pop_node = inputs.pop(1) try: shape_arg = _get_tuple_param(params, pop_node) except AttributeError: # Shape operator is already pruned, hence # try to infer shape by precompute prune if possible. try: params_new = _infer_value(pop_node, params, mod) shape_arg = tuple(params_new.numpy().astype("int32").flatten()) except Exception: # Deal with symbolic shape case. if isinstance(pop_node, _expr.Call) and "shape_of" in str(pop_node.op): # shape_of is the direct ancestor. return _op.reshape_like(inputs[0], pop_node.args[0]) shape_arg = pop_node return AttrCvt(op_name="reshape", extras={"newshape": shape_arg}, ignores=["Tshape"])( inputs, attr ) return _impl def _depth_to_space(): def _impl(inputs, attr, params, mod): block_size = int(attr["block_size"]) layout = attr["data_format"].decode("utf-8") return _op.nn.depth_to_space(inputs[0], block_size, layout) return _impl def _space_to_depth(): def _impl(inputs, attr, params, mod): block_size = int(attr["block_size"]) layout = attr["data_format"].decode("utf-8") return _op.nn.space_to_depth(inputs[0], block_size, layout) return _impl def _sparse_to_dense(): def _impl(inputs, attr, params, mod): sparse_indices = inputs[0] output_shape = inputs[1] sparse_values = inputs[2] default_value = inputs[3] return _op.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value) return _impl def _bias_add(): def _impl(inputs, attr, params, mod): # Must expand for proper broadcasting in NCHW. if "data_format" in attr and attr["data_format"].decode("utf-8") == "NCHW": bias = _op.reshape(inputs[1], newshape=(1, -1, 1, 1)) else: bias = inputs[1] return _op.add(inputs[0], bias) return _impl def _broadcast_args(): def _impl(inputs, attr, params, mod): if isinstance(inputs[0], _expr.Var): s0 = params[inputs[0].name_hint] else: s0 = _infer_value(inputs[0], params, mod) if isinstance(inputs[1], _expr.Var): s1 = params[inputs[1].name_hint] else: s1 = _infer_value(inputs[1], params, mod) s0 = list(s0.numpy().reshape([-1])) s1 = list(s1.numpy().reshape([-1])) s0_size, s1_size = len(s0), len(s1) out = deque([]) for i in range(1, min(s0_size, s1_size) + 1): if s0[s0_size - i] == s1[s1_size - i]: out.appendleft(s0[s0_size - i]) elif s0[s0_size - i] == 1: out.appendleft(s1[s1_size - i]) else: assert s1[s1_size - i] == 1, "Incompatible broadcast type %s and %s" % ( s0[s0_size - i], s1[s1_size - i], ) out.appendleft(s0[s0_size - i]) if s0_size < s1_size: for i in range(s0_size + 1, s1_size + 1): out.appendleft(s1[s1_size - i]) if s1_size < s0_size: for i in range(s1_size + 1, s0_size + 1): out.appendleft(s0[s0_size - i]) return _expr.const(list(out), attr["T"].name) return _impl def _broadcast_to(): def _impl(inputs, attr, params, mod): if isinstance(inputs[1], _expr.Var): shape = params[inputs[1].name_hint] else: shape = _infer_value(inputs[1], params, mod) shape = list(shape.numpy().reshape([-1])) return _op.broadcast_to(inputs[0], shape) return _impl def _squeeze(): def _impl(inputs, attr, params, mod): if len(attr["squeeze_dims"]) == 0: attr["squeeze_dims"] = None return AttrCvt( op_name="squeeze", transforms={"squeeze_dims": "axis"}, ignores=["T", "_cloned"] )(inputs, attr) return _impl def _fused_batch_norm(): def _impl(inputs, attr, params, mod): # Tensorflow: (data, gamma, beta, moving_mean, moving_variance) # Relay: (data, gamma, beta, moving_mean, moving_varience) assert len(inputs) == 5 axis = 3 need_cast = False if "data_format" in attr: attr["data_format"] = attr["data_format"].decode("utf-8") if attr["data_format"] == "NCHW": axis = 1 if "U" in attr and attr["U"].name != attr["T"].name: need_cast = True inputs[0] = _op.cast(inputs[0], dtype=attr["U"].name) # Check if mean and variance are empty # If so, replace them with Mean and Variance Ops # For run-time calculation moving_mean_shape = [int(n) for n in inputs[3].type_annotation.shape] moving_variance_shape = [int(n) for n in inputs[4].type_annotation.shape] if moving_mean_shape[0] == 0 and moving_variance_shape[0] == 0: inputs[3] = _op.mean(inputs[0], axis=axis, keepdims=False, exclude=True) inputs[4] = _op.variance(inputs[0], axis=axis, keepdims=False, exclude=True) out = AttrCvt( op_name="batch_norm", transforms={"scale_after_normalization": "scale", "variance_epsilon": "epsilon"}, extras={"axis": axis}, ignores=["data_format", "U", "exponential_avg_factor"], disables=["momentum"], )(inputs, attr) if need_cast: out = _expr.TupleGetItem(out.astuple(), 0) out = _op.cast(out, dtype=attr["T"].name) return out return _impl def _batch_norm(): def _impl(inputs, attr, params, mod): # Rearrange inputs from # (data, moving_mean, moving_variance, beta, gamma) # to # (data, gamma, beta, moving_mean, moving_var) new_inputs = [inputs[0], inputs[4], inputs[3], inputs[1], inputs[2]] axis = 3 if "data_format" in attr: attr["data_format"] = attr["data_format"].decode("utf-8") if attr["data_format"] == "NCHW": axis = 1 return AttrCvt( op_name="batch_norm", transforms={"scale_after_normalization": "scale", "variance_epsilon": "epsilon"}, extras={"axis": axis}, ignores=["data_format", "exponential_avg_factor"], disables=["momentum"], )(new_inputs, attr) return _impl def _relu6(): def _impl(inputs, attr, params, mod): return _op.clip(inputs[0], a_min=0, a_max=6) return _impl def _shape(): def _impl(inputs, attr, params, mod): is_symbolic_shape = False input_shape = _infer_shape(inputs[0], mod) for axis in input_shape: if not isinstance(axis, (int, tvm.tir.IntImm)): is_symbolic_shape = True break if is_symbolic_shape: ret = _op.shape_of(inputs[0], dtype=attr["out_type"].name) else: ret = np.array(input_shape, dtype=attr["out_type"].name) return ret return _impl def _fill(): def _impl(inputs, attr, params, mod): try: output_shape = _infer_value(inputs[0], params, mod).numpy().tolist() except Exception: output_shape = inputs[0] return _op.full(inputs[1], output_shape, attr["T"].name) return _impl def _lrn(): def _impl(inputs, attr, params, mod): attr_new = {} depth_radius = attr.get("depth_radius", 5) size = (depth_radius * 2) + 1 attr_new["axis"] = 3 # Fix axis, NHWC format attr_new["size"] = size attr_new["bias"] = attr.get("bias", 1) attr_new["alpha"] = attr.get("alpha", 1) * size attr_new["beta"] = attr.get("beta", 0.5) return AttrCvt(op_name="lrn")(inputs, attr_new) return _impl def _sum(): def _impl(inputs, attr, params, mod): axis = _get_tuple_param(params, inputs[1]) return AttrCvt( op_name="sum", extras={"axis": axis}, transforms={"keep_dims": "keepdims"}, ignores=["name", "Tidx"], )([inputs[0]], attr) return _impl def _reduce(op): def _impl(inputs, attr, params, mod): axis = _get_list_param(params, inputs[1], mod) axis = tuple(axis) if not axis: axis = None return AttrCvt( op_name=op, extras={"axis": axis}, transforms={"keep_dims": "keepdims"}, ignores=["name", "Tidx"], )([inputs[0]], attr) return _impl def _euclidean_norm(): def _impl(inputs, attr, params, mod): axis = tuple(_get_list_param(params, inputs[1], mod)) keep_dims = bool(attr.get("keep_dims", False)) return _op.sqrt( _op.cast(_op.reduce.sum(_op.multiply(inputs[0], inputs[0]), axis, keep_dims), "float32") ) return _impl def _square(): def _impl(inputs, attr, params, mod): return _op.multiply(inputs[0], inputs[0]) return _impl def _gather(): "GatherV2, Gather" def _impl(inputs, attr, params, mod): if len(inputs) > 2: axis = _get_num_param(params, inputs.pop(2)) else: axis = 0 batch_dims = 0 if int(attr.get("batch_dims", 0)) != 0: batch_dims = int(attr.get("batch_dims", 0)) new_input = inputs[0:2] op_ = AttrCvt( op_name="take", extras={ "axis": tvm.tir.const(axis, "int32"), "batch_dims": tvm.tir.const(batch_dims, "int32"), }, ignores=["Tindices", "Tparams", "validate_indices", "Taxis", "_class"], )(new_input, attr) return op_ return _impl def _gather_nd(): """GatherNd""" def _impl(inputs, attr, params, mod): indices_dims = len(_infer_shape(inputs[1], mod)) indices = _op.transpose(inputs[1], axes=[-1] + list(range(indices_dims - 1))) return AttrCvt(op_name="gather_nd", ignores=["Tindices", "Tparams", "Taxis", "_class"])( [inputs[0], indices], attr ) return _impl def _stridedSlice(): def _impl(inputs, attr, params, mod): """Strided Slice. Operator description: https://www.tensorflow.org/api_docs/python/tf/strided_slice Tensorflow mask validation: https://github.com/tensorflow/tensorflow/blob/master/ tensorflow/core/util/strided_slice_op.cc#L147-L368 """ begin = _get_list_param(params, inputs[1], mod) end = _get_list_param(params, inputs[2], mod) stride = _get_list_param(params, inputs[3], mod) begin_mask = int(attr.get("begin_mask", 0)) end_mask = int(attr.get("end_mask", 0)) ellipsis_mask = int(attr.get("ellipsis_mask", 0)) new_axis_mask = int(attr.get("new_axis_mask", 0)) shrink_axis_mask = int(attr.get("shrink_axis_mask", 0)) in_type = _infer_type(inputs[0], mod) data_shape = get_const_tuple(in_type.checked_type.shape) data_dim = len(data_shape) stride_dim = len(stride) if data_dim == 0 and isinstance(inputs[0], _expr.Constant): new_data = inputs[0].data.numpy().reshape(1) return _expr.const(new_data, inputs[0].data.dtype) # This is a special routine to handle strided_slice after shape_of. # We need this since in some cases we want to do strided_slice on # a partial symbolic shape, such as (1, ?), and get a static shape # (1,). Directly slice on shape_of will result in fully dynamic shape. # TODO(kevinthesun): Can we generalize this process with partial eval? if isinstance(inputs[0], _expr.Call) and inputs[0].op == _op.get("shape_of"): bg = begin[0] ed = end[0] st = stride[0] if ed <= 0 < st: ed += data_shape[0] in_shape = _infer_shape(inputs[0].args[0], mod) dtype = in_type.checked_type.dtype out_data = [] idx = bg while idx < ed: if isinstance(in_shape[idx], int): out_data.append(in_shape[idx]) else: break idx += st # Only return when in_shape is fully static in the range from begin to end. if idx >= ed: ret = _expr.const(out_data, dtype) if shrink_axis_mask: ret = _op.squeeze(ret) return ret def _transform_mask(stride_dim, ellipsis_mask): """Handle mask inputs to create new begin, end, stride and output shape""" m_begin = [0] * data_dim m_end = [0] * data_dim m_stride = [0] * data_dim fshape_indices = [] # Count new axis after ellipsis_mask, consider while applying ellipsis_mask. ellipsis_seen = False new_axes_after_ellipsis = 0 for i in range(stride_dim): mask = 1 << i if ellipsis_seen and (mask & new_axis_mask) != 0: new_axes_after_ellipsis += 1 if (mask & ellipsis_mask) != 0: ellipsis_seen = True if not ellipsis_seen: # Used later for extending the stride attributes in the below loop. ellipsis_mask |= 1 << stride_dim stride_dim += 1 final_index = 0 for index in range(stride_dim): mask = 1 << index if mask & ellipsis_mask: # Identify the end index for applying ellipsis_mask to_index = min( ((data_dim - (stride_dim - index)) + 1 + new_axes_after_ellipsis), data_dim ) for i in range(final_index, to_index): m_begin[final_index] = 0 m_end[final_index] = data_shape[final_index] m_stride[final_index] = 1 fshape_indices.append(final_index) final_index += 1 elif mask & new_axis_mask: fshape_indices.append(-1) elif not mask & new_axis_mask: if final_index == len(m_begin): break if mask & begin_mask: m_begin[final_index] = -1 if stride[index] < 0 else 0 elif begin[index]: m_begin[final_index] = begin[index] if mask & end_mask: m_end[final_index] = ( -(data_shape[final_index] + 1) if stride[index] < 0 else data_shape[final_index] ) elif end[index]: m_end[final_index] = end[index] m_stride[final_index] = stride[index] if mask & shrink_axis_mask: # Tensorflow make axis with shrink_axis_mask as dimension 1 m_begin[final_index] = ( data_shape[final_index] + begin[index] if begin[index] < 0 else begin[index] ) m_end[final_index] = m_begin[final_index] + 1 m_stride[final_index] = 1 fshape_indices.append(-2) else: fshape_indices.append(final_index) final_index += 1 return m_begin, m_end, m_stride, fshape_indices fshape_indices = None if begin_mask or end_mask or ellipsis_mask or new_axis_mask or shrink_axis_mask: begin, end, stride, fshape_indices = _transform_mask(stride_dim, ellipsis_mask) out = _op.strided_slice(inputs[0], begin=begin, end=end, strides=stride) out_shape = _infer_shape(out, mod=mod) if not fshape_indices: fshape_indices = range(len(out_shape)) # Create final output shape. final_output = [] for gather_index in fshape_indices: if gather_index == -1: final_output.append(1) elif gather_index == -2: pass else: final_output.append(out_shape[gather_index]) if not final_output: if not shrink_axis_mask: ret = out else: final_shape = [] for dim in out_shape: if dim != 1: final_shape.append(dim) if len(final_shape) == 0: ret = _op.squeeze(out) else: # We need reshape to handle dynamic shape. ret = _op.reshape(out, newshape=tuple(final_shape)) else: ret = _op.reshape(out, newshape=tuple(final_output)) return ret return _impl def _pad(name): def _impl(inputs, attr, params, mod): try: padlist = _get_param(params, inputs[1]) except (IndexError, KeyError, AttributeError): try: padlist = _infer_value(inputs[1], params, mod).numpy().tolist() except Exception: padlist = inputs[1] if isinstance(padlist, _expr.Expr): paddings = padlist else: paddings = tuple(tuple(l) for l in padlist) attr["pad_width"] = paddings attr["pad_value"] = 0 new_inputs = [inputs[0]] if name == "PadV2": try: attr["pad_value"] = _get_num_param(params, inputs[2]) except (IndexError, KeyError, AttributeError): attr["pad_value"] = inputs[2] return AttrCvt( op_name="pad", ignores=["Tpaddings"], )(new_inputs, attr) return _impl def _mirror_pad(): def _impl(inputs, attr, params, mod): padlist = _get_param(params, inputs[1]) paddings = tuple(tuple(l) for l in padlist) attr["pad_width"] = paddings mode = attr["mode"].decode("utf-8") attr["mode"] = mode new_inputs = [inputs[0]] return AttrCvt( op_name="mirror_pad", ignores=["Tpaddings"], )(new_inputs, attr) return _impl def _transpose(): def _impl(inputs, attr, params, mod): # If perm is not specified, axes is left empty, # otherwise its value is get from params axes = _get_list_param(params, inputs[1], mod) return _op.transpose(inputs[0], axes=axes) return _impl def _where(): def _impl(inputs, attr, params, mod): if len(inputs) == 1: return AttrCvt(op_name="argwhere")(inputs, attr) return AttrCvt(op_name="where")(inputs, attr) return _impl def _clip_by_value(): def _impl(inputs, attr, params, mod): a_min = _get_num_param(params, inputs[1]) a_max = _get_num_param(params, inputs[2]) return _op.clip(inputs[0], a_min=a_min, a_max=a_max) return _impl def _reverse_v2(): def _impl(inputs, attr, params, mod): axis = _get_num_param(params, inputs[1]) return AttrCvt(op_name="reverse", ignores=["Tidx"], extras={"axis": int(axis)})( [inputs[0]], attr ) return _impl def _rank(): def _impl(inputs, attr, params, mod): input_shape = _infer_shape(inputs[0], mod) name = attr["_node_name"] params[name] = tvm.nd.array(np.array([len(input_shape)]).astype("int32")) return [_expr.var(name, shape=params[name].shape, dtype="int32")] return _impl def _range(): def _impl(inputs, attr, params, mod): try: start = _get_param(params, inputs[0])[0] except (IndexError, KeyError, AttributeError): try: start = _infer_value(inputs[1], params, mod).numpy().tolist() start = start if not isinstance(start, list) else start[0] except Exception: # Symbolic start start = inputs[0] try: limit = ( _get_param(params, inputs[1])[0] if hasattr(inputs[1], "name_hint") or isinstance(inputs[1], _expr.Constant) else params.pop("Rank").numpy()[0] ) except (IndexError, KeyError, AttributeError): try: limit = _infer_value(inputs[1], params, mod).numpy().tolist() limit = limit if not isinstance(limit, list) else limit[0] except Exception: limit = inputs[1] try: delta = _get_param(params, inputs[2])[0] except (IndexError, KeyError, AttributeError): try: delta = _infer_value(inputs[2], params, mod).numpy().tolist() delta = delta if not isinstance(delta, list) else delta[0] except Exception: # Symbolic delta delta = inputs[2] # if all attributes are constant, evalute the range function and return relay.const dtype = attr["Tidx"].name if "Tidx" in attr else str(start.dtype) if all( [ isinstance(start, (np.int32, np.int64, int, np.float32, np.float64, float)), isinstance(limit, (np.int32, np.int64, int, np.float32, np.float64, float)), isinstance(delta, (np.int32, np.int64, int, np.float32, np.float64, float)), ] ): return tvm.relay.const(list(range(int(start), int(limit), int(delta))), dtype=dtype) if isinstance(start, (np.int32, np.int64, int, np.float32, np.float64, float)): start = _expr.const(start, dtype=dtype) if isinstance(limit, (np.int32, np.int64, int, np.float32, np.float64, float)): limit = _expr.const(limit, dtype=dtype) if isinstance(delta, (np.int32, np.int64, int, np.float32, np.float64, float)): delta = _expr.const(delta, dtype=dtype) return AttrCvt( op_name="arange", ignores=["Tidx", "_class"], extras={"start": start, "stop": limit, "step": delta, "dtype": dtype}, )([], attr) return _impl def _einsum(): def _impl(inputs, attr, params, mod): einsum_attr = dict(attr) einsum_attr["equation"] = einsum_attr["equation"].decode("utf-8") return AttrCvt(op_name="einsum", ignores=["N"])([inputs], einsum_attr) return _impl def _elu(): def _impl(inputs, attr, params, mod): dtype = attr["T"].name alpha = tvm.relay.const(-1.0, dtype) return alpha * _op.nn.relu(tvm.relay.const(1, dtype) - _op.exp(inputs[0])) + _op.nn.relu( inputs[0] ) return _impl def _selu(): def _impl(inputs, attr, params, mod): dtype = attr["T"].name alpha = tvm.relay.const(-1.6732632423543772848170429916717, dtype) gamma = tvm.relay.const(1.0507009873554804934193349852946, dtype) return gamma * ( alpha * _op.nn.relu(tvm.relay.const(1, dtype) - _op.exp(inputs[0])) + _op.nn.relu(inputs[0]) ) return _impl def _mean(): def _impl(inputs, attr, params, mod): axis = _get_tuple_param(params, inputs[1]) return AttrCvt( op_name="mean", ignores=["Tdim", "Tidx"], transforms={"keep_dims": "keepdims"}, extras={"axis": axis}, )([inputs[0]], attr) return _impl def _broadcast(name): def _impl(inputs, attr, params, mod): return AttrCvt(op_name=name, ignores=["name", "incompatible_shape_error", "Tidx"])( inputs, attr ) return _impl def _split(has_size_vector): # TF documentation https://www.tensorflow.org/api_docs/python/tf/split def _impl(inputs, attr, params, mod): try: # order and number of inputs are different: # if has_size_vector: # https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/split-v # else: # https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/split # in addition, `axis` and `num_or_size_splits` can be tensors in TensorFlow, # we can only support constants if has_size_vector: input_node_index = 0 input_axis_index = 2 size_splits = _get_param(params, inputs[1]) section_beginnings = np.cumsum(size_splits)[:-1] indices_or_sections = tuple(section_beginnings) else: input_node_index = 1 input_axis_index = 0 indices_or_sections = attr["num_split"] input_node = inputs[input_node_index] axis_input_value = _get_num_param(params, inputs[input_axis_index]) except (IndexError, KeyError, AttributeError): raise TypeError( "Unsupported argument for split: `axis` and `num_or_size_splits` " "should be constants" ) return _op.split( input_node, indices_or_sections=indices_or_sections, axis=int(axis_input_value) ) return _impl def _unpack(): def _impl(inputs, attr, params, mod): input_node = inputs[0] axis = attr["axis"] input_shape = _infer_shape(input_node, mod) axis_length = input_shape[axis] if axis_length < 0: raise TypeError("Unstack with unknown axis length") splitted = _op.split(input_node, indices_or_sections=axis_length, axis=axis) axis = [axis] return _expr.TupleWrapper( _expr.Tuple([_op.squeeze(split_item, axis=axis) for split_item in splitted]), len(splitted), ) return _impl def _softmax(): def _impl(inputs, attr, params, mod): return AttrCvt(op_name="softmax", transforms={"axis": ("axis", 1)})([inputs[0]], attr) return _impl def _softsign(): # op description: https://www.tensorflow.org/api_docs/python/tf/math/softsign def _impl(inputs, attr, params, mod): abs_out = get_relay_op("abs")(inputs[0]) add_out = abs_out + tvm.relay.const(1, attr["T"].name) return inputs[0] / add_out return _impl def _softplus(): # op description: https://www.tensorflow.org/api_docs/python/tf/math/softplus def _impl(inputs, attr, params, mod): exp_out = AttrCvt("exp")(inputs, attr) inputs.append(tvm.relay.const(1, attr["T"].name)) rh = tvm.relay.const(1, attr["T"].name) add_out = get_relay_op("add")(exp_out, rh) return get_relay_op("log")(add_out) return _impl def _topk(): def _impl(inputs, attr, params, mod): k_input = inputs.pop(1) try: k = int(_get_num_param(params, k_input)) except (IndexError, KeyError, AttributeError): try: k = int(_infer_value(k_input, params, mod).numpy().tolist()) except Exception: k = k_input if isinstance(k, int): if k < 1: raise tvm.error.OpAttributeInvalid( "Attribute k must be positive in operator TopKV2" ) k = _expr.const(k) if attr["sorted"] is False: raise tvm.error.OpAttributeUnImplemented( "Attribute sorted=False is not supported in operator TopKV2" ) return AttrCvt( op_name="topk", ignores=["sorted"], extras={"k": k, "is_ascend": False, "dtype": "int32"}, )([inputs[0]], attr) return _impl def _floordiv(): def _impl(inputs, attr, params, mod): assert len(inputs) == 2 return AttrCvt("floor_divide")(inputs, attr) return _impl def _floormod(): def _impl(inputs, attr, params, mod): assert len(inputs) == 2 return AttrCvt("floor_mod")(inputs, attr) return _impl def _logical(name): def _impl(inputs, attr, params, mod): return AttrCvt(op_name=name)(inputs, attr) return _impl def _space_to_batch_nd(): def _impl(inputs, attr, params, mod): block_shape = _get_list_param(params, inputs[1], mod) paddings = _get_list_param(params, inputs[2], mod) paddings = np.squeeze(paddings) if len(paddings.shape) == 1: paddings = np.expand_dims(paddings, axis=0) paddings = paddings.tolist() attr["block_shape"] = block_shape attr["paddings"] = paddings out = AttrCvt("space_to_batch_nd", ignores=["Tblock_shape", "Tpaddings"])([inputs[0]], attr) return out return _impl def _batch_to_space_nd(): def _impl(inputs, attr, params, mod): block_shape = _get_list_param(params, inputs[1], mod) crops = _get_list_param(params, inputs[2], mod) crops = np.squeeze(crops) if len(crops.shape) == 1: crops = np.expand_dims(crops, axis=0) crops = crops.tolist() attr["block_shape"] = block_shape attr["crops"] = crops out = AttrCvt("batch_to_space_nd", ignores=["Tblock_shape", "Tcrops"])([inputs[0]], attr) return out return _impl def _atan2(): def _impl(inputs, attr, params, mod): divide = _elemwise("divide")(inputs, attr, params, mod) return get_relay_op("atan")(divide) return _impl def _prod(): def _impl(inputs, attr, params, mod): axis = _get_num_param(params, inputs[1]) keepdims = attr["keep_dims"] return _op.prod(inputs[0], int(axis), keepdims=keepdims) return _impl def _log1p(): # op description: https://www.tensorflow.org/api_docs/python/tf/math/log1p def _impl(inputs, attr, params, mod): one = tvm.relay.const(1, attr["T"].name) add_out = get_relay_op("add")(inputs[0], one) return get_relay_op("log")(add_out) return _impl def _one_hot(): def _impl(inputs, attr, params, mod): depth = int(_get_num_param(params, inputs[1])) dtype = attr["T"].name on_value = _get_num_param(params, inputs[2]) off_value = _get_num_param(params, inputs[3]) new_inputs = [ inputs[0], tvm.relay.const(on_value, dtype), tvm.relay.const(off_value, dtype), ] return AttrCvt("one_hot", ignores=["TI"], extras={"depth": depth, "dtype": dtype})( new_inputs, attr ) return _impl def _squared_difference(): def _impl(inputs, attr, params, mod): difference = _op.subtract(inputs[0], inputs[1]) return _op.multiply(difference, difference) return _impl def _size(): def _impl(inputs, attr, params, mod): new_attr = attr new_attr["out_type"] = attr["out_type"].name return AttrCvt("ndarray_size", transforms={"out_type": "dtype"})(inputs, new_attr) return _impl def _add_n(): def _impl(inputs, attr, params, mod): if not isinstance(inputs, tuple): inputs = list(inputs) assert len(inputs) > 0, "add_n take >=1 inputs, but 0 given." _res = inputs[0] for each in inputs[1:]: _res = _op.add(_res, each) return _res return _impl def _LSTMBlockCell(): def _impl(inputs, attr, params, mod): """LSTM Block cell. Calculations and return values are described in: https://github.com/tensorflow/tensorflow/blob/ r1.8/tensorflow/contrib/rnn/python/ops/lstm_ops.py#L41-L114 Parameters ---------- inputs : relay.Expr Input data in_state_c: list of relay.Expr Cell state input values for all the layers in_state_h: list of relay.Expr Hidden state input values for all the layers attrs : dict Dict of operator attributes params : dict List of pretrained weights and bias Returns ------- relay.Expr.TupleWapper [i, cs, f, o, ci, co, h] """ in_data = inputs[0] in_state_c = inputs[1] in_state_h = inputs[2] in_weight = inputs[3] in_bias = inputs[7] forget_bias = attr.pop("forget_bias") input_shape = _infer_shape(inputs[0], mod) weight_shape = _infer_shape(inputs[3], mod) batch_size, input_size = input_shape[0], input_shape[1] num_hidden_layers = weight_shape[1] in_data = _op.reshape(in_data, newshape=(batch_size, input_size)) ixh = _op.concatenate([in_data, in_state_h], axis=1) in_weight = _op.transpose(in_weight, axes=None) gates = _op.nn.dense(ixh, in_weight, units=num_hidden_layers) gates_bias = _op.add(gates, in_bias) gate_list = _op.split(gates_bias, indices_or_sections=4, axis=1) in_gate = _op.sigmoid(gate_list[0]) in_transform = _op.tanh(gate_list[1]) forget_gate = _op.add(gate_list[2], tvm.relay.const(forget_bias, attr["T"].name)) forget_gate = _op.sigmoid(forget_gate) out_gate = _op.sigmoid(gate_list[3]) next_c = _op.add(_op.multiply(forget_gate, in_state_c), _op.multiply(in_gate, in_transform)) co = _op.tanh(next_c) next_h = out_gate * co return tvm.relay.TupleWrapper( tvm.relay.Tuple([in_gate, next_c, forget_gate, out_gate, in_transform, co, next_h]), 7 ) return _impl def _unique(return_counts=True): def _impl(inputs, attr, params, mod): assert len(inputs) == 1 data = inputs[0] if return_counts: [unique, _, inverse_indices, num_uniq, counts] = _op.unique( data, is_sorted=False, return_counts=True ) unique_sliced = _op.strided_slice(unique, begin=[0], end=num_uniq, slice_mode="size") counts_sliced = _op.strided_slice(counts, begin=[0], end=num_uniq, slice_mode="size") return _expr.TupleWrapper( _expr.Tuple([unique_sliced, inverse_indices, counts_sliced]), 3, ) [unique, _, inverse_indices, num_uniq] = _op.unique( data, is_sorted=False, return_counts=False ) unique_sliced = _op.strided_slice(unique, begin=[0], end=num_uniq, slice_mode="size") return _expr.TupleWrapper( _expr.Tuple([unique_sliced, inverse_indices]), 2, ) return _impl def _bincount(): def _impl(inputs, attr, params, mod): input = inputs[0] # arr: int32 Tensor size = inputs[1] # size: non-negative int scalar Tensor # weights: int32, int64, float32, or float64 Tensor with the same shape as arr # or a length-0 Tensor, in which case it acts as all weights equal to 1. weights = inputs[2] # Returns: Output: 1D Tensor with length equal to size # The counts or summed weights for each value in the range [0, size). input_shape = _infer_shape(input, mod) if len(input_shape) > 1: input = _op.reshape(input, [-1]) is_weights_zero_tensor = True if weights: weights_shape = _infer_shape(weights, mod) is_weights_zero_tensor = weights_shape == (0,) if len(weights_shape) > 1: weights = _op.reshape(weights, [-1]) # Output should have the same dtype as weights. if is_weights_zero_tensor: # if weights are length-0 Tensor - output dtype is float32 out_dtype = "float32" updates = _op.cast(_op.ones_like(input), out_dtype) else: out_dtype = _infer_type(weights, mod).checked_type.dtype updates = weights counts_shape = _op.reshape(size, [1]) counts = _op.zeros(counts_shape, out_dtype) out = _op.scatter_add(counts, input, updates, axis=0) return out return _impl def _dense_bincount(): def _impl(inputs, attr, params, mod): input = inputs[0] # input: int32, int64. 1D or 2D int Tensor size = inputs[1] # size: non-negative int scalar Tensor # weights: int32, int64, float32, or float64 Tensor with the same shape as input # or a length-0 Tensor, in which case it acts as all weights equal to 1. weights = inputs[2] # Returns: Output: 1D Tensor with length equal to size # or 2D Tensor with [batch_size, size]. # The counts or summed weights for each value in the range [0, size). input_dtype = _infer_type(input, mod).checked_type.dtype input_shape = _infer_shape(input, mod) is_2d_input = len(input_shape) == 2 if input_dtype == "int64": warnings.warn( "Casting an int64 input to int32, since we do not have int64 atomic add" "needed for bincount yet." ) input = _op.cast(input, "int32") is_weights_zero_tensor = True if weights: weights_shape = _infer_shape(weights, mod) is_weights_zero_tensor = weights_shape == (0,) # Output should have the same dtype as weights. if is_weights_zero_tensor: # if weights are length-0 Tensor - output dtype is float32 out_dtype = "float32" updates = _op.cast(_op.ones_like(input), out_dtype) else: out_dtype = _infer_type(weights, mod).checked_type.dtype updates = weights if is_2d_input: batch_arr = _op.take(_op.shape_of(input), _expr.const([0])) size_arr = _op.reshape(size, [1]) counts_shape = _op.concatenate([batch_arr, size_arr], axis=0) counts = _op.zeros(counts_shape, out_dtype) out = _op.scatter_add(counts, input, updates, axis=1) else: counts_shape = _op.reshape(size, [1]) counts = _op.zeros(counts_shape, out_dtype) out = _op.scatter_add(counts, input, updates, axis=0) if attr["binary_output"]: out = _op.cast(_op.cast(out, "bool"), out_dtype) return out return _impl # _convert_map defines maps of name to converter functor(callable) # for 1 to 1 mapping, use Renamer if nothing but name is different # use AttrCvt if attributes need to be converted # for 1 to N mapping(composed), use custom callable functions # for N to 1 mapping, currently not supported(?) _convert_map = { "Abs": AttrCvt("abs"), "Acos": AttrCvt("acos"), "Acosh": AttrCvt("acosh"), "Add": _elemwise("add"), "AddN": _add_n(), "AddV2": _elemwise("add"), "All": _reduce("all"), "Any": _reduce("any"), "ArgMax": _argx(_op.argmax, "argmax"), "ArgMin": _argx(_op.argmin, "argmin"), "Asin": AttrCvt("asin"), "Asinh": AttrCvt("asinh"), "Assert": _assert(), "Atan": AttrCvt("atan"), "Atanh": AttrCvt("atanh"), "Atan2": _atan2(), "AvgPool": _pooling("avg_pool"), "AvgPool3D": _pool3d("avg_pool3d"), "BatchMatMul": _batch_matmul(), "BatchMatMulV2": _batch_matmul(), "BatchNormWithGlobalNormalization": _batch_norm(), "BatchToSpaceND": _batch_to_space_nd(), "BiasAdd": _bias_add(), "Bincount": _bincount(), "BroadcastTo": _broadcast_to(), "BroadcastArgs": _broadcast_args(), "Cast": _cast(), "Ceil": AttrCvt("ceil"), "CheckNumerics": _check_numerics(), "ClipByValue": _clip_by_value(), "Concat": _concat(), "ConcatV2": _concatV2(), "Conv2D": _conv("conv"), "Conv2DBackpropInput": _conv("conv_transpose"), "Conv3D": _conv3d("conv"), "Conv3DBackpropInputV2": _conv3d("conv_transpose"), "Cos": AttrCvt("cos"), "Cosh": AttrCvt("cosh"), "CropAndResize": _crop_and_resize(), "DecodeJpeg": _decode_image(), "DenseBincount": _dense_bincount(), "DepthToSpace": _depth_to_space(), "DepthwiseConv2dNative": _conv("depthwise"), "Dilation2D": _dilation2d(), "Einsum": _einsum(), "Elu": _elu(), "Equal": _broadcast("equal"), "Erf": AttrCvt("erf"), "EuclideanNorm": _euclidean_norm(), "Exp": AttrCvt("exp"), "ExpandDims": _expand_dims(), "Expm1": _expm1(), "Fill": _fill(), "Floor": AttrCvt("floor"), "FloorDiv": _floordiv(), "FloorMod": _floormod(), "FusedBatchNorm": _fused_batch_norm(), "FusedBatchNormV2": _fused_batch_norm(), "FusedBatchNormV3": _fused_batch_norm(), "Gather": _gather(), "GatherNd": _gather_nd(), "GatherV2": _gather(), "Greater": _broadcast("greater"), "GreaterEqual": _broadcast("greater_equal"), "Identity": _identity(), "IdentityN": _identityn(), "InvertPermutation": AttrCvt("invert_permutation"), "IsFinite": AttrCvt("isfinite"), "IsInf": AttrCvt("isinf"), "IsNan": AttrCvt("isnan"), "LeakyRelu": AttrCvt("leaky_relu"), "LeftShift": AttrCvt("left_shift"), "Less": _broadcast("less"), "LessEqual": _broadcast("less_equal"), "Log": AttrCvt("log"), "Log1p": _log1p(), "LogicalAnd": _logical("logical_and"), "LogicalNot": _logical("logical_not"), "LogicalOr": _logical("logical_or"), "LogSoftmax": AttrCvt("log_softmax"), "LRN": _lrn(), "LSTMBlockCell": _LSTMBlockCell(), "MatMul": _matmul(), "Max": _reduce("max"), "Maximum": _elemwise("maximum"), "MaxPool": _pooling("max_pool"), "MaxPool3D": _pool3d("max_pool3d"), "Mean": _mean(), "Min": _reduce("min"), "Minimum": _elemwise("minimum"), "MirrorPad": _mirror_pad(), "Mod": _elemwise("mod"), "Mul": _elemwise("multiply"), "Neg": AttrCvt("negative"), "NonMaxSuppressionV2": _nms(), "NonMaxSuppressionV3": _nms(), "NonMaxSuppressionV4": _nms(), "NonMaxSuppressionV5": _nms(True), "CombinedNonMaxSuppression": _combined_nms(), "NoOp": _no_op(), "NotEqual": _broadcast("not_equal"), "OneHot": _one_hot(), "Pack": _pack(), "Pad": _pad("Pad"), "PadV2": _pad("PadV2"), "Pow": _elemwise("power"), "Prod": _prod(), "Range": _range(), "Rank": _rank(), "RealDiv": _elemwise("divide"), "Relu": AttrCvt("relu"), "Relu6": _relu6(), "Reshape": _reshape(), "ResizeBicubic": _resize("cubic"), "ResizeBilinear": _resize("linear"), "ResizeNearestNeighbor": _resize("nearest_neighbor"), "ReverseV2": _reverse_v2(), "RightShift": AttrCvt("right_shift"), "Rint": AttrCvt("round"), "Round": AttrCvt("round"), "Rsqrt": _rsqrt(), "Select": _where(), "SelectV2": _where(), "Selu": _selu(), "Shape": _shape(), "Sigmoid": AttrCvt("sigmoid"), "Sign": AttrCvt("sign"), "Sin": AttrCvt("sin"), "Sinh": AttrCvt("sinh"), "Size": _size(), "Slice": _slice(), "Softmax": _softmax(), "Softplus": _softplus(), "Softsign": _softsign(), "SpaceToBatchND": _space_to_batch_nd(), "SpaceToDepth": _space_to_depth(), "SparseToDense": _sparse_to_dense(), "SparseTensorDenseMatMul": _sparse_tensor_dense_matmul(), "SparseFillEmptyRows": _sparse_fill_empty_rows(), "SparseReshape": _sparse_reshape(), "SegmentSum": _math_segment_sum(), "SparseSegmentSum": _sparse_segment_sum(), "SparseSegmentSumWithNumSegments": _sparse_segment_sum_with_num_segments(), "SparseSegmentSqrtN": _sparse_segment_sum_sqrtn(), "SparseSegmentSqrtNWithNumSegments": _sparse_segment_sum_sqrtn_with_num_segments(), "SparseSegmentMean": _sparse_segment_mean(), "SparseSegmentMeanWithNumSegments": _sparse_segment_mean_with_num_segments(), "SparseTensorDenseAdd": _sparse_tensor_dense_add(), "Split": _split(False), "SplitV": _split(True), "Sqrt": AttrCvt("sqrt"), "Square": _square(), "SquaredDifference": _squared_difference(), "Squeeze": _squeeze(), "StopGradient": _identity(), "StridedSlice": _stridedSlice(), "Sub": _elemwise("subtract"), "Sum": _sum(), "Tan": AttrCvt("tan"), "Tanh": AttrCvt("tanh"), "TensorArrayConcatV3": _tensor_array_concat(), "TensorArrayGatherV3": _tensor_array_gather(), "TensorArrayReadV3": _tensor_array_read(), "TensorArrayScatterV3": _tensor_array_scatter(), "TensorArraySizeV3": _tensor_array_size(), "TensorArraySplitV3": _tensor_array_split(), "TensorArrayV3": _tensor_array(), "TensorArrayWriteV3": _tensor_array_write(), "Tile": _tile(), "TopKV2": _topk(), "Transpose": _transpose(), "TruncateMod": _elemwise("mod"), "Unique": _unique(False), "UniqueWithCounts": _unique(True), "Unpack": _unpack(), "UnravelIndex": _unravel_index(), "Where": _where(), "ZerosLike": AttrCvt("zeros_like"), }
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/tensorflow_parser.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """TF: Tensorflow parser""" # pylint: disable=import-outside-toplevel, assignment-from-no-return import os from tvm.contrib import utils class TFParser(object): """ A Wrapper to handle tensorflow models parsing, TensorFlow is needed Parameters ---------- model_dir : tensorflow frozen pb file or a directory that contains saved model or checkpoints. outputs : List of output tensor names (Optional) Optional output node names. This will be protected for saved model when we do remove training nodes. Examples -------- .. code-block:: python parser = TFParser(model_dir) graphdef = parser.parse() """ def __init__(self, model_dir, outputs=None): from tensorflow.core.framework import graph_pb2 self._tmp_dir = utils.tempdir() self._model_dir = model_dir self._graph = graph_pb2.GraphDef() self._outputs = outputs or [] def _set_graph(self, graph): """Set Graph""" self._graph = graph def _get_graph(self): """Get Graph""" return self._graph def _load_pb_file(self): """Load single pb file""" graph = self._get_graph() with open(self._model_dir, "rb") as f: graph.ParseFromString(f.read()) return graph def _get_tag_set(self): """Return the tag set of saved model, multiple metagraphs are not supported""" try: from tensorflow.contrib.saved_model.python.saved_model.reader import ( get_saved_model_tag_sets, ) except ImportError: try: from tensorflow.python.tools.saved_model_utils import get_saved_model_tag_sets except ImportError: raise ImportError( "InputConfiguration: Unable to import get_saved_model_tag_sets which is " "required to get tag set from saved model." ) tag_sets = get_saved_model_tag_sets(self._model_dir) return tag_sets[0] def _get_output_names(self): """Return the concatenated output names""" try: import tensorflow.compat.v1 as tf except ImportError: raise ImportError( "InputConfiguration: Unable to import tensorflow which is " "required to restore from saved model." ) tags = self._get_tag_set() output_names = set() with tf.Session() as sess: meta_graph_def = tf.saved_model.loader.load(sess, tags, self._model_dir) for sig_def in meta_graph_def.signature_def.values(): for output_tensor in sig_def.outputs.values(): output_names.add(output_tensor.name.replace(":0", "")) tf.reset_default_graph() return ",".join(output_names) def _load_saved_model(self): """Load the tensorflow saved model.""" try: from tensorflow.python.tools import freeze_graph from tensorflow.python.framework import ops from tensorflow.python.framework import graph_util from tensorflow.core.framework import graph_pb2 except ImportError: raise ImportError( "InputConfiguration: Unable to import tensorflow which is " "required to restore from saved model." ) saved_model_dir = self._model_dir output_graph_filename = self._tmp_dir.relpath("tf_frozen_model.pb") input_saved_model_dir = saved_model_dir output_node_names = self._get_output_names() input_binary = False input_saver_def_path = False restore_op_name = None filename_tensor_name = None clear_devices = True input_meta_graph = False checkpoint_path = None input_graph_filename = None saved_model_tags = ",".join(self._get_tag_set()) freeze_graph.freeze_graph( input_graph_filename, input_saver_def_path, input_binary, checkpoint_path, output_node_names, restore_op_name, filename_tensor_name, output_graph_filename, clear_devices, "", "", "", input_meta_graph, input_saved_model_dir, saved_model_tags, ) with ops.Graph().as_default(): # pylint: disable=not-context-manager output_graph_def = graph_pb2.GraphDef() with open(output_graph_filename, "rb") as f: output_graph_def.ParseFromString(f.read()) output_graph_def = graph_util.remove_training_nodes( output_graph_def, protected_nodes=self._outputs ) return output_graph_def def _load_ckpt(self): """TODO: Load checkpoint model.""" raise RuntimeError( "InputConfiguration: Loading tf checkpoint model is " "not supported yet." ) def parse(self): """ Parse tensorflow models: checkpoints, saved models, and single frozen pb file. Returns ------- GraphDef of the passed model """ graph = None if os.path.isdir(self._model_dir): ckpt = os.path.join(self._model_dir, "checkpoint") if not os.path.isfile(ckpt): if not os.path.isdir(os.path.join(self._model_dir, "variables")): raise RuntimeError("InputConfiguration: Invalid model path.") graph = self._load_saved_model() else: graph = self._load_ckpt() elif os.path.isfile(self._model_dir): # Only .pb or .pbtxt is a valid suffix name. if self._model_dir.endswith(".pb") or self._model_dir.endswith(".pbtxt"): cur_dir = os.path.dirname(self._model_dir) else: raise RuntimeError("InputConfiguration: Invalid model format.") # It is a saved model if `variables` directory is present at the # same directory with the pb or pbtxt file. if os.path.isdir(os.path.join(cur_dir, "variables")): self._model_dir = cur_dir graph = self._load_saved_model() else: graph = self._load_pb_file() else: raise RuntimeError("InputConfiguration: Unrecognized model " "file or path.") self._set_graph(graph) return graph
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/tflite.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, too-many-lines, import-outside-toplevel """Tensorflow lite frontend.""" import itertools import math import numpy as np import tvm from tvm import relay from tvm.ir import IRModule from tvm.runtime.name_transforms import sanitize_name from ... import nd as _nd from .. import analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from .. import qnn as _qnn from .common import ExprTable from .common import infer_shape as _infer_shape from .common import lstm_cell, to_int_list, shape_of, try_infer_value from .tflite_flexbuffer import FlexBufferDecoder __all__ = ["from_tflite"] class TensorWrapper(object): """Tensor wrapper for TFLite Tensor""" def __init__(self, tensor_idx, tensor, buffer, qnn_params=None): self.tensor_idx = tensor_idx self.tensor = tensor self.buffer = buffer self.qnn_params = qnn_params class OperatorConverter(object): """Operator Converted for converting TFLite ops to Relay ops""" def __init__(self, model, subgraph, exp_tab): try: from tflite.ActivationFunctionType import ActivationFunctionType from tflite.BuiltinOperator import BuiltinOperator from tflite.BuiltinOptions import BuiltinOptions except ImportError: raise ImportError("The tflite package must be installed") self.model = model self.subgraph = subgraph self.exp_tab = exp_tab self.builtin_op_code = build_str_map(BuiltinOperator()) self.activation_fn_type = build_str_map(ActivationFunctionType()) self.builtin_options = build_str_map(BuiltinOptions()) self.prefetched_nodes = {} self.allow_custom_ops = False # Add more operators self.convert_map = { "ABS": self.convert_abs, "ADD": self.convert_add, "ADD_N": self.convert_add_n, "ARG_MAX": self.convert_arg_max, "ARG_MIN": self.convert_arg_min, "AVERAGE_POOL_2D": self.convert_average_pool2d, "BATCH_TO_SPACE_ND": self.convert_batch_to_space_nd, "CAST": self.convert_cast, "CEIL": self.convert_ceil, "CONCATENATION": self.convert_concatenation, "CONV_2D": self.convert_conv2d, "COS": self.convert_cos, "DENSIFY": self.convert_densify, "DEPTH_TO_SPACE": self.convert_depth_to_space, "DEPTHWISE_CONV_2D": self.convert_depthwise_conv2d, "DEQUANTIZE": self.convert_dequantize, "DETECTION_POSTPROCESS": self.convert_detection_postprocess, "DIV": self.convert_div, "ELU": self.convert_elu, "EQUAL": self.convert_equal, "EXP": self.convert_exp, "EXPAND_DIMS": self.convert_expand_dims, "FAKE_QUANT": self.convert_fake_quant, "FILL": self.convert_fill, "FLOOR_DIV": self.convert_floor_div, "FLOOR_MOD": self.convert_floor_mod, "FLOOR": self.convert_floor, "FULLY_CONNECTED": self.convert_fully_connected, "GATHER": self.convert_gather, "GATHER_ND": self.convert_gather_nd, "GREATER_EQUAL": self.convert_greater_equal, "GREATER": self.convert_greater, "HARD_SWISH": self.convert_hard_swish, "L2_NORMALIZATION": self.convert_l2_normalization, "L2_POOL_2D": self.convert_l2_pool2d, "LEAKY_RELU": self.convert_leaky_relu, "LESS_EQUAL": self.convert_less_equal, "LESS": self.convert_less, "LOCAL_RESPONSE_NORMALIZATION": self.convert_lrn, "LOG": self.convert_log, "LOG_SOFTMAX": self.convert_log_softmax, "LOGICAL_AND": self.convert_logical_and, "LOGICAL_NOT": self.convert_logical_not, "LOGICAL_OR": self.convert_logical_or, "LOGISTIC": self.convert_logistic, "MATRIX_DIAG": self.convert_matrix_diag, "MATRIX_SET_DIAG": self.convert_matrix_set_diag, "MAX_POOL_2D": self.convert_max_pool2d, "MAXIMUM": self.convert_maximum, "MEAN": self.convert_reduce_mean, "MINIMUM": self.convert_minimum, "MIRROR_PAD": self.convert_mirror_pad, "MUL": self.convert_mul, "NEG": self.convert_neg, "NOT_EQUAL": self.convert_not_equal, "ONE_HOT": self.convert_one_hot, "PACK": self.convert_pack, "PAD": self.convert_pad, "PADV2": self.convert_pad, "POW": self.convert_pow, "PRELU": self.convert_prelu, "RANGE": self.convert_range, "QUANTIZE": self.convert_quantize, "REDUCE_ANY": self.convert_reduce_any, "REDUCE_MAX": self.convert_reduce_max, "REDUCE_MIN": self.convert_reduce_min, "REDUCE_PROD": self.convert_reduce_prod, "RELU": self.convert_relu, "RELU6": self.convert_relu6, "RELU_N1_TO_1": self.convert_relu_n1_to_1, "RESHAPE": self.convert_reshape, "RESIZE_BILINEAR": self.convert_resize_bilinear, "RESIZE_NEAREST_NEIGHBOR": self.convert_resize_nearest_neighbor, "ROUND": self.convert_round, "RSQRT": self.convert_rsqrt, "REVERSE_SEQUENCE": self.convert_reverse_sequence, "REVERSE_V2": self.convert_reverse_v2, "SELECT": self.convert_select, "SHAPE": self.convert_shape, "SIN": self.convert_sin, "SLICE": self.convert_slice, "SOFTMAX": self.convert_softmax, "SPACE_TO_BATCH_ND": self.convert_space_to_batch_nd, "SPACE_TO_DEPTH": self.convert_space_to_depth, "SPARSE_TO_DENSE": self.convert_sparse_to_dense, "SPLIT": self.convert_split, "SPLIT_V": self.convert_split_v, "SQRT": self.convert_sqrt, "SQUARE": self.convert_square, "SQUARED_DIFFERENCE": self.convert_squared_difference, "SQUEEZE": self.convert_squeeze, "STRIDED_SLICE": self.convert_strided_slice, "SUB": self.convert_sub, "SUM": self.convert_reduce_sum, "TAN": self.convert_tan, "TANH": self.convert_tanh, "TILE": self.convert_tile, "TOPK_V2": self.convert_topk_v2, "TRANSPOSE_CONV": self.convert_transpose_conv, "TRANSPOSE": self.convert_transpose, "UNPACK": self.convert_unpack, "UNIDIRECTIONAL_SEQUENCE_LSTM": self.convert_unidirectional_sequence_lstm, "WHERE": self.convert_select, "ZEROS_LIKE": self.convert_zeros_like, "NON_MAX_SUPPRESSION_V5": self.convert_nms_v5, } def check_unsupported_ops(self): """Check unsupported TFLite ops in our converter.""" unsupported_ops_set = set() dynamic_range_ops_set = set() for op_idx in range(self.subgraph.OperatorsLength()): op = self.subgraph.Operators(op_idx) op_code_str = self.get_op_code_str(op) if op_code_str not in self.convert_map: unsupported_ops_set.add(op_code_str) continue # Trying to exclude "dynamic range quantization" optimized ops as not supported in TVM qnn_in_cnt = len( [_.qnn_params for _ in self.get_input_tensors(op)[0:1] if _.qnn_params is not None] ) qnn_weight_cnt = len( [_.qnn_params for _ in self.get_input_tensors(op)[1:] if _.qnn_params is not None] ) qnn_out_cnt = len( [_.qnn_params for _ in self.get_output_tensors(op) if _.qnn_params is not None] ) if qnn_in_cnt == 0 and qnn_out_cnt == 0 and qnn_weight_cnt > 0: dynamic_range_ops_set.add(op_code_str) raise_msg = "" if unsupported_ops_set: msg = "The following operators are not supported in frontend " "TFLite: {}\n" ops = str(list(unsupported_ops_set)).strip("[,]") raise_msg += msg.format(ops) if dynamic_range_ops_set: msg = ( "The following operators are likely to have dynamic range quantization: {}. " "If you are running an optimized graph, please turn off dynamic range quantization " "or use full integer quantization" ) raise_msg += msg.format(str(list(dynamic_range_ops_set)).strip("[,]")) if len(raise_msg) > 0: raise tvm.error.OpNotImplemented(raise_msg) def unbind(self, data, axis=1): """ This is a modified version compared to the one in common.py. The onnx version takes a relay.Expr.Call, the tflite version a TensorWrapper. Also this version by default splits along axis 1 and not axis 0 as the onnx version. Parameters ---------- data : tvm.relay.frontend.tflite.TensorWrapper Input tensor axis : int Axis along which tensor is split. Returns ------- result : List[relay.Expr] The sequence of computed tensors """ shape = to_int_list(self.get_tensor_shape(data)) if axis >= len(shape): msg = "Please check input dim, it shouldn't be greater than or equal to rank." raise AttributeError(msg) selections = shape[axis] shape.pop(axis) timestep = 0 # Reshape to make time step as the first dim shape.insert(timestep, selections) res_split = _op.split( _op.reshape(self.get_expr(data.tensor_idx), tuple(shape)), selections, timestep ) ret = [] for i in range(selections): ret.append(_op.squeeze(res_split[i], axis=[timestep])) return _expr.TupleWrapper(_expr.Tuple(ret), selections) def convert_op_to_relay(self): """Convert TFLite ops to relay ops""" for op_idx in range(self.subgraph.OperatorsLength()): op = self.subgraph.Operators(op_idx) op_code_str = self.get_op_code_str(op) output_tensors = self.get_output_tensors(op) try: from tflite.Operator import Operator except ImportError: raise ImportError("The tflite package must be installed") assert isinstance(op, Operator) ret = self.convert_map[op_code_str](op) # In case the Op can be prefetched, the output can be optimized out if ret is None: continue if len(output_tensors) == 1: tensor_idx = output_tensors[0].tensor_idx self.exp_tab.set_expr(get_tensor_name(self.subgraph, tensor_idx), ret) else: for idx, output_tensor in enumerate(output_tensors): self.exp_tab.set_expr( get_tensor_name(self.subgraph, output_tensor.tensor_idx), ret[idx] ) def get_op_code_str(self, op): """Get TFLite ops string representation""" try: from tflite.BuiltinOperator import BuiltinOperator except ImportError: raise ImportError("The tflite package must be installed") op_code_list_idx = op.OpcodeIndex() op_c = self.model.OperatorCodes(op_code_list_idx) # In TFlite 2.4.x there was a change where the type of the field that contained # the builtin code changed from int8 to int32 in the flat buffer representation. # However, to retain support for old flat buffers that were created, they retained # the original 8 bit field, but named it "deprecated_builtin_code" in TFLite 2.4. # This means that the API function BuiltinCode() which originally returned the value # of the 8 bit field would now look for the value in the new int32 field in the # schema and DeprecatedBuiltinCode() will look at the old 8 bit field. # In TFLite 2.4, if the opcode value is less than 127, it can be in either field # (however, if it is only in the "builtin_code" field, the model is not backward # compatible), so similarly to TFLite 2.4 reader, we'll pick the higher value of the # two fields. # Remember however that this value came into existence only after Tensorflow # lite 2.4.x and hence encase it in a try -except block. # Phew ! try: opc = max(op_c.DeprecatedBuiltinCode(), op_c.BuiltinCode()) except AttributeError: # In versions before 2.4 the int8 field that holds the builtin code is accessed # by BuiltinCode() and DeprecatedBuiltinCode() doesn't exist opc = op_c.BuiltinCode() op_code_id = opc try: op_code_str = self.builtin_op_code[op_code_id] except KeyError: raise NotImplementedError( "TFLite operator with code " + str(op_code_id) + " is not supported by this version of the fbs schema." ) if op_code_id == BuiltinOperator.CUSTOM: # Custom operator custom_op_code_str = self.model.OperatorCodes(op_code_list_idx).CustomCode() if self.allow_custom_ops: return "CUSTOM" if custom_op_code_str == b"TFLite_Detection_PostProcess": return "DETECTION_POSTPROCESS" raise NotImplementedError("Custom operators are currently not supported") return op_code_str def get_input_tensors(self, op): operator_inputs = op.InputsAsNumpy() return self.get_tensors(operator_inputs) def get_output_tensors(self, op): operator_outputs = op.OutputsAsNumpy() return self.get_tensors(operator_outputs) def get_tensors(self, tensors_idx_list): """Get tensor wrapper list from given TFLite tensor index list""" return_list = list() for tensor_idx in tensors_idx_list: if tensor_idx < 0: return_list.append(TensorWrapper(tensor_idx, 0, 0)) continue tensor = self.subgraph.Tensors(tensor_idx) buffer_idx = tensor.Buffer() buffer = self.model.Buffers(buffer_idx) # Check if the tensors are quantized. Parse if yes. qnn_params = None tflite_qnn_params = tensor.Quantization() if tflite_qnn_params is not None: # TFLite supports both per-tensor and per-axis (aka channel) quantization. For # per-tensor quantization, scale and zero points are scalar values. For per-axis # quantization, scale and zero points for the weights are tensors (activations are # per-tensor quantized). However, the TFLite quantization spec puts restrictions on # zero points for per-axis quantization. Specifically, the zero point is a tensor # but all values are 0. More information can be found here - # https://www.tensorflow.org/lite/performance/quantization_spec tflite_scale = tflite_qnn_params.ScaleAsNumpy() tflite_zero_point = tflite_qnn_params.ZeroPointAsNumpy() is_qnn_params_valid = True # Handle Per-axis and per-tensor cases if isinstance(tflite_scale, np.ndarray): assert isinstance(tflite_zero_point, np.ndarray) # Tensor - Per-axis quantization if tflite_scale.size != 1 and tflite_zero_point.size != 1: scale = tflite_scale # Ensure that all zero points are zeros zero_point = tflite_zero_point if not np.all(zero_point == 0): raise tvm.error.OpAttributeInvalid( "TFLite per-axis quantization restricts all zero points to be" + " 0, but a non-zero value is observed" ) zero_point = int(zero_point[0]) # Scalar - Per-tensor quantization elif tflite_scale.size == 1 and tflite_zero_point.size == 1: scale = float(tflite_scale[0]) zero_point = int(tflite_zero_point[0]) else: raise NotImplementedError( "Quantized type {} (scale) and {} (zero point) not supported".format( type(tflite_scale), type(tflite_zero_point) ) ) elif tflite_scale == 0 and tflite_zero_point == 0: # Handle corner case for ops like quantized reshape whose second operand (shape) # has zero scale and zero zero point. This is not used. is_qnn_params_valid = False else: raise NotImplementedError( "Quantized type {} not supported".format(type(tflite_scale)) ) # Check that the scale and zero points are valid. if is_qnn_params_valid: qnn_params = dict() qnn_params["scale"] = relay.const(scale, "float32") qnn_params["zero_point"] = relay.const(zero_point, "int32") return_list.append(TensorWrapper(tensor_idx, tensor, buffer, qnn_params)) return return_list def get_tensor_type_as_numpy(self, tensor_wrapper): """Returns np.dtype out of TensorType""" assert isinstance(tensor_wrapper, TensorWrapper) try: from tflite.TensorType import TensorType return { TensorType.UINT8: np.uint8, TensorType.INT8: np.int8, TensorType.INT16: np.int16, TensorType.FLOAT16: np.float16, TensorType.FLOAT32: np.float32, TensorType.INT32: np.int32, TensorType.INT64: np.int64, TensorType.BOOL: np.bool_, }[tensor_wrapper.tensor.Type()] except ImportError: raise ImportError("The tflite package must be installed") except KeyError: raise NotImplementedError( "Tensor type '{}' currently not supported".format(tensor_wrapper.tensor.Type()) ) # pylint: disable=no-else-return def get_tensor_value(self, tensor_wrapper, is_sparse=False): """Get tensor buffer value from given tensor wrapper""" assert isinstance(tensor_wrapper, TensorWrapper) dtype = self.get_tensor_type_as_numpy(tensor_wrapper) data = tensor_wrapper.buffer.DataAsNumpy() if tensor_wrapper.tensor.ShapeLength() != 0: shape = to_int_list(self.get_tensor_shape(tensor_wrapper)) else: shape = [] if is_sparse: return np.frombuffer(data, dtype=dtype) else: return np.frombuffer(data, dtype=dtype).reshape(shape) def get_tensor_type_str(self, tensor_type): """Get tensor type string representation when given TFLite tensor type""" try: from tflite.TensorType import TensorType except ImportError: raise ImportError("The tflite package must be installed") if tensor_type == TensorType.INT8: return "int8" if tensor_type == TensorType.INT16: return "int16" if tensor_type == TensorType.UINT8: return "uint8" if tensor_type == TensorType.FLOAT16: return "float16" if tensor_type == TensorType.FLOAT32: return "float32" if tensor_type == TensorType.INT32: return "int32" if tensor_type == TensorType.INT64: return "int64" if tensor_type == TensorType.BOOL: return "bool" raise NotImplementedError( "Tensor type {} is currently not supported".format(str(tensor_type)) ) def has_same_qnn_params(self, lhs_tensor, rhs_tensor): lhs_scale = lhs_tensor.qnn_params["scale"] rhs_scale = rhs_tensor.qnn_params["scale"] lhs_zero_point = lhs_tensor.qnn_params["zero_point"] rhs_zero_point = rhs_tensor.qnn_params["zero_point"] # 0.1 + 0.2 != 0.3 return np.allclose( lhs_scale.data.numpy(), rhs_scale.data.numpy(), rtol=1e-5, atol=1e-5 ) and np.allclose( lhs_zero_point.data.numpy(), rhs_zero_point.data.numpy(), rtol=1e-5, atol=1e-5 ) def is_quantized(self, op): """Check if an input tensor is quantized.""" input_tensors = self.get_input_tensors(op) first_tensor = input_tensors[0] return first_tensor.qnn_params is not None def quantize(self, expr, tensor_to_quantize): """Helper function to quantize a tensor with Relay""" tensor_type = tensor_to_quantize.tensor.Type() tensor_type_str = self.get_tensor_type_str(tensor_type) quantized = _qnn.op.quantize( data=expr, output_scale=tensor_to_quantize.qnn_params["scale"], output_zero_point=tensor_to_quantize.qnn_params["zero_point"], out_dtype=tensor_type_str, ) return quantized def dequantize(self, expr, tensor): """Helper function to dequantize a tensor with Relay""" dequantized = _qnn.op.dequantize( data=expr, input_scale=tensor.qnn_params["scale"], input_zero_point=tensor.qnn_params["zero_point"], ) return dequantized def convert_qnn_fused_activation_function( self, expr, fused_activation_fn, scale, zero_point, dtype ): """Convert TFLite fused activation function. The expr is an input quantized tensor with scale and zero point""" try: from tflite.ActivationFunctionType import ActivationFunctionType except ImportError: raise ImportError("The tflite package must be installed") # Quantize a float value to an quantized integer value quantize = lambda x: float(int(round(x / scale)) + zero_point) # Get min/max of the output dtype. This will be used to ensure that clip a_min/a_max are not # beyond the dtype range. qmin = float(tvm.tir.op.min_value(dtype).value) qmax = float(tvm.tir.op.max_value(dtype).value) # The input expr is a quantized tensor with its scale and zero point. We calculate the # suitable clip off points based on these scale and zero point. if fused_activation_fn == ActivationFunctionType.NONE: return expr if fused_activation_fn == ActivationFunctionType.RELU6: return _op.clip(expr, a_min=max(qmin, quantize(0)), a_max=min(qmax, quantize(6.0))) if fused_activation_fn == ActivationFunctionType.RELU_N1_TO_1: return _op.clip(expr, a_min=max(qmin, quantize(-1.0)), a_max=min(qmax, quantize(1.0))) if fused_activation_fn == ActivationFunctionType.RELU: return _op.clip(expr, a_min=max(qmin, quantize(0.0)), a_max=qmax) fused_activation_fn_str = self.activation_fn_type[fused_activation_fn] raise tvm.error.OpNotImplemented( "Quantized activation {} is not supported yet.".format(fused_activation_fn_str) ) def convert_conv2d(self, op): """Convert TFLite conv2d""" return self.convert_conv(op, "conv2d") def convert_depthwise_conv2d(self, op): """Convert TFLite depthwise conv2d""" return self.convert_conv(op, "depthwise") def convert_average_pool2d(self, op): """Convert TFLite average pool2d""" return self.convert_pool2d(op, "average") def convert_max_pool2d(self, op): """Convert TFLite max pool2d""" return self.convert_pool2d(op, "max") def convert_l2_pool2d(self, op): """Convert TFLite l2 pool2d""" return self.convert_pool2d(op, "l2") def convert_reshape(self, op): """Convert TFLite reshape""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.ReshapeOptions import ReshapeOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) in (1, 2), "input tensors should not be empty" output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "There should be only 1 output tensor" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx if len(input_tensors) == 2: shape_tensor = input_tensors[1] if self.has_expr(shape_tensor.tensor_idx): target_expr = self.get_expr(shape_tensor.tensor_idx) target_value, success = try_infer_value( target_expr, parameters={k: _nd.array(np.array(v)) for k, v in self.exp_tab.params.items()}, ) if success: # convert to flattened list from itertools import chain try: target_shape = list(chain(*target_value)) except TypeError: target_shape = list(chain(target_value)) else: target_shape = target_expr else: target_shape = self.get_tensor_value(shape_tensor) # convert to flattened list from itertools import chain try: target_shape = list(chain(*target_shape)) except TypeError: target_shape = list(chain(target_shape)) else: assert op.BuiltinOptionsType() == BuiltinOptions.ReshapeOptions op_options = op.BuiltinOptions() reshape_options = ReshapeOptions() reshape_options.Init(op_options.Bytes, op_options.Pos) target_shape = to_int_list(reshape_options.NewShapeAsNumpy()) in_expr = self.get_expr(input_tensor_idx) # If the tensors are quantized, ensure that input/output qnn params are same. input_tensor_type_str = self.get_tensor_type_str(input_tensor.tensor.Type()) if input_tensor.qnn_params and input_tensor_type_str == "int8": # TFLite 2.x quantization spec requires qnn params to be same and dtype to be int8. # For TFLite 1.x, dtype can be uint8 and qnn params can be different output_tensor = output_tensors[0] assert self.has_same_qnn_params( input_tensor, output_tensor ), "TFLite reshape requires input and output scale and zero points to be equal" out = _op.reshape(in_expr, newshape=target_shape) if input_tensor.qnn_params and input_tensor_type_str == "uint8": output_tensor = output_tensors[0] if not self.has_same_qnn_params(input_tensor, output_tensor): output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) out = _qnn.op.requantize( out, input_scale=input_tensor.qnn_params["scale"], input_zero_point=input_tensor.qnn_params["zero_point"], output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, ) return out def _convert_resize(self, method, op): """Generic method to Convert TFLite RESIZE operators""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.ResizeBilinearOptions import ResizeBilinearOptions # ResizeNearestNeighborOptions was added in tflite v1.13 tflite_ver = 1120 if "ResizeNearestNeighborOptions" in dir(BuiltinOptions): from tflite.ResizeNearestNeighborOptions import ResizeNearestNeighborOptions tflite_ver = 1130 except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" # images, 4-D Tensor with shape NHWC. input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] # size - 1-D int32 Tensor of 2 elements: new_height, new_width target_size = tuple(self.get_tensor_value(input_tensors[1])) # Options - align_corners (bool) resize_options = None align_corners = False bilinear_method = method == "linear" if bilinear_method: assert op.BuiltinOptionsType() == BuiltinOptions.ResizeBilinearOptions resize_options = ResizeBilinearOptions() elif tflite_ver >= 1130: assert op.BuiltinOptionsType() == BuiltinOptions.ResizeNearestNeighborOptions resize_options = ResizeNearestNeighborOptions() if resize_options is not None: op_options = op.BuiltinOptions() resize_options.Init(op_options.Bytes, op_options.Pos) align_corners = resize_options.AlignCorners() half_pixel_centers = resize_options.HalfPixelCenters() # Use layout NHWC coord_trans = "align_corners" if align_corners else "asymmetric" coord_trans = "half_pixel" if half_pixel_centers else coord_trans rounding_method = "" if method == "nearest_neighbor": if not align_corners and half_pixel_centers: rounding_method = "round_prefer_ceil" if bilinear_method and input_tensor.qnn_params: in_expr = self.dequantize(in_expr, input_tensor) out = _op.image.resize2d( in_expr, target_size, None, "NHWC", method, coord_trans, rounding_method ) if bilinear_method and output_tensor.qnn_params: out = self.quantize(out, output_tensor) return out def convert_resize_bilinear(self, op): """Convert TFLite RESIZE_BILINEAR""" return self._convert_resize("linear", op) def convert_resize_nearest_neighbor(self, op): """Convert TFLite RESIZE_NEAREST_NEIGHBOR""" return self._convert_resize("nearest_neighbor", op) def convert_l2_normalization(self, op): """Convert TFLite L2_NORMALIZATION""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.L2NormOptions import L2NormOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] assert op.BuiltinOptionsType() == BuiltinOptions.L2NormOptions op_options = op.BuiltinOptions() l2_norm_options = L2NormOptions() l2_norm_options.Init(op_options.Bytes, op_options.Pos) fused_activation_fn = l2_norm_options.FusedActivationFunction() # TFLite supports normalization only over the last dim input_tensor_rank = len(input_tensor.tensor.ShapeAsNumpy()) if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFLite quantized L2_NORMALIZATION operator is not supported yet." ) # TFL uses only the default epsilon value out = _op.nn.l2_normalize(in_expr, eps=1e-12, axis=[input_tensor_rank - 1]) # if we have fused activation fn if output_tensor.qnn_params: raise tvm.error.OpNotImplemented( "TFLite quantized L2_NORMALIZATION operator is not supported yet." ) out = self.convert_fused_activation_function(out, fused_activation_fn) return out def convert_lrn(self, op): """Convert TFLite LOCAL_RESPONSE_NORMALIZATION""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.LocalResponseNormalizationOptions import LocalResponseNormalizationOptions except ImportError: raise ImportError("The tflite package must be installed") if self.is_quantized(op): raise tvm.error.OpNotImplemented("TFlite quantized LRN operator is not supported yet.") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" assert op.BuiltinOptionsType() == BuiltinOptions.LocalResponseNormalizationOptions op_options = op.BuiltinOptions() lrn_options = LocalResponseNormalizationOptions() lrn_options.Init(op_options.Bytes, op_options.Pos) radius = lrn_options.Radius() bias = lrn_options.Bias() alpha = lrn_options.Alpha() beta = lrn_options.Beta() size = (radius * 2) + 1 alpha = alpha * size axis = 3 # NHWC format out = _op.nn.lrn(in_expr, size=size, axis=axis, bias=bias, alpha=alpha, beta=beta) return out def convert_logistic(self, op): """Convert TFLite LOGISTIC""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if input_tensor.qnn_params: in_expr = self.dequantize(in_expr, input_tensor) out = _op.sigmoid(in_expr) if output_tensor.qnn_params: out = self.quantize(out, output_tensor) return out def convert_softmax(self, op): """Convert TFLite softmax""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] params = {"axis": -1} # -1 is channel in_expr = self.get_expr(input_tensor_idx) # TODO - Naive softmax int8 implementation leads to bad accuracy. Currently, we can # dequantize to FP32 and perform softmax on FP32. We can investigate an integer only softmax # implementation in future. if input_tensor.qnn_params: in_expr = self.dequantize(in_expr, input_tensor) out = _op.nn.softmax(in_expr, **params) # Go back to integer dataype if the original operator was quantized. if output_tensor.qnn_params: out = self.quantize(out, output_tensor) return out def convert_tanh(self, op): """Convert TFLite TANH""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if input_tensor.qnn_params: in_expr = self.dequantize(in_expr, input_tensor) out = _op.tanh(in_expr) if output_tensor.qnn_params: out = self.quantize(out, output_tensor) return out def convert_range(self, op): """Convert TFLite Range""" try: from tflite.TensorType import TensorType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 3, "input tensors length should be 3" start, limit, delta = input_tensors[0], input_tensors[1], input_tensors[2] expressions = [self.get_tensor_expr(t) for t in [start, limit, delta]] # out type inference if delta.tensor.Type() == TensorType.FLOAT32: out_type = self.get_tensor_type_str(delta.tensor.Type()) else: out_type = self.get_tensor_type_str(start.tensor.Type()) out = _op.arange(expressions[0], expressions[1], expressions[2], out_type) return out def convert_shape(self, op): """Convert TFLite Shape""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.ShapeOptions import ShapeOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" assert op.BuiltinOptionsType() == BuiltinOptions.ShapeOptions op_options = op.BuiltinOptions() shape_options = ShapeOptions() shape_options.Init(op_options.Bytes, op_options.Pos) out_type = self.get_tensor_type_str(shape_options.OutType()) out = shape_of(self.get_tensor_expr(input_tensors[0]), dtype=out_type) return out def convert_relu(self, op): """Convert TFLite ReLU""" try: from tflite.ActivationFunctionType import ActivationFunctionType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if input_tensor.qnn_params: # Quantize a float value to an quantized integer value scale_val = get_scalar_from_constant(input_tensor.qnn_params["scale"]) zero_point_val = get_scalar_from_constant(input_tensor.qnn_params["zero_point"]) output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) out = self.convert_qnn_fused_activation_function( expr=in_expr, fused_activation_fn=ActivationFunctionType.RELU, scale=scale_val, zero_point=zero_point_val, dtype=output_tensor_type_str, ) else: out = _op.nn.relu(in_expr) if output_tensor.qnn_params: output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) out = _qnn.op.requantize( out, input_scale=input_tensor.qnn_params["scale"], input_zero_point=input_tensor.qnn_params["zero_point"], output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, ) return out def convert_hard_swish(self, op): """Convert TFLite Hard swish""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] def _relu6(data): return _op.tensor.clip(data, 0.0, 6.0) def _hard_swish(data): return data * _relu6(data + relay.const(3.0)) / relay.const(6.0) # Dequantize if the input is quantized. if input_tensor.qnn_params: in_expr = self.dequantize(in_expr, input_tensor) # Perform hardswish out = _hard_swish(in_expr) # Go back to integer dataype if the original operator was quantized. if output_tensor.qnn_params: out = self.quantize(out, output_tensor) return out def convert_relu6(self, op): """Convert TFLite ReLU6""" try: from tflite.ActivationFunctionType import ActivationFunctionType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if input_tensor.qnn_params: # Quantize a float value to an quantized integer value scale_val = get_scalar_from_constant(input_tensor.qnn_params["scale"]) zero_point_val = get_scalar_from_constant(input_tensor.qnn_params["zero_point"]) output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) out = self.convert_qnn_fused_activation_function( expr=in_expr, fused_activation_fn=ActivationFunctionType.RELU6, scale=scale_val, zero_point=zero_point_val, dtype=output_tensor_type_str, ) else: out = _op.clip(in_expr, a_min=0, a_max=6) if output_tensor.qnn_params: output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) out = _qnn.op.requantize( out, input_scale=input_tensor.qnn_params["scale"], input_zero_point=input_tensor.qnn_params["zero_point"], output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, ) return out def convert_leaky_relu(self, op): """Convert TFLite LEAKY_RELU""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.LeakyReluOptions import LeakyReluOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) assert op.BuiltinOptionsType() == BuiltinOptions.LeakyReluOptions op_options = op.BuiltinOptions() leaky_relu_options = LeakyReluOptions() leaky_relu_options.Init(op_options.Bytes, op_options.Pos) alpha_tensor = leaky_relu_options.Alpha() output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if input_tensor.qnn_params: in_expr = self.dequantize(in_expr, input_tensor) out = _op.nn.leaky_relu(in_expr, alpha_tensor) if output_tensor.qnn_params: out = self.quantize(out, output_tensor) return out def convert_relu_n1_to_1(self, op): """Convert TFLite RELU_N1_TO_1""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if input_tensor.qnn_params: # Quantize a float value to an quantized integer value scale_val = get_scalar_from_constant(input_tensor.qnn_params["scale"]) zero_point_val = get_scalar_from_constant(input_tensor.qnn_params["zero_point"]) quantize = lambda x: float(int(round(x / scale_val)) + zero_point_val) # Get min/max of the input dtype. This will be used to ensure that # clip a_min/a_max are not beyond the dtype range. input_tensor_type_str = self.get_tensor_type_str(input_tensor.tensor.Type()) qmin = float(tvm.tir.op.min_value(input_tensor_type_str).value) qmax = float(tvm.tir.op.max_value(input_tensor_type_str).value) out = _op.clip(in_expr, a_min=max(qmin, quantize(-1.0)), a_max=min(qmax, quantize(1.0))) else: out = _op.clip(in_expr, a_min=-1, a_max=1) if output_tensor.qnn_params: output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) out = _qnn.op.requantize( out, input_scale=input_tensor.qnn_params["scale"], input_zero_point=input_tensor.qnn_params["zero_point"], output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, ) return out def convert_log_softmax(self, op): """Convert TFLite LOG_SOFTMAX""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if input_tensor.qnn_params: in_expr = self.dequantize(in_expr, input_tensor) out = _op.nn.log_softmax(in_expr) if output_tensor.qnn_params: out = self.quantize(out, output_tensor) return out def convert_concatenation(self, op): """Convert TFLite concatenation""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.ConcatenationOptions import ConcatenationOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) >= 1, "input tensors should greater than 1" in_exprs = [self.get_tensor_expr(_) for _ in input_tensors] output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] assert op.BuiltinOptionsType() == BuiltinOptions.ConcatenationOptions op_options = op.BuiltinOptions() concatenation_options = ConcatenationOptions() concatenation_options.Init(op_options.Bytes, op_options.Pos) concatenation_axis = concatenation_options.Axis() fused_activation_fn = concatenation_options.FusedActivationFunction() if not input_tensors[0].qnn_params: out = _op.concatenate(in_exprs, axis=concatenation_axis) else: input_scales = [input_tensor.qnn_params["scale"] for input_tensor in input_tensors] input_zero_points = [ input_tensor.qnn_params["zero_point"] for input_tensor in input_tensors ] out = _qnn.op.concatenate( in_exprs, input_scales=input_scales, input_zero_points=input_zero_points, output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], axis=concatenation_axis, ) # Handle fused activations if output_tensor.qnn_params: scale_val = get_scalar_from_constant(output_tensor.qnn_params["scale"]) zero_point_val = get_scalar_from_constant(output_tensor.qnn_params["zero_point"]) output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) out = self.convert_qnn_fused_activation_function( expr=out, fused_activation_fn=fused_activation_fn, scale=scale_val, zero_point=zero_point_val, dtype=output_tensor_type_str, ) else: out = self.convert_fused_activation_function(out, fused_activation_fn) return out def _convert_unary_elemwise(self, relay_op, op): """Generic method to convert TFLite unary elemwise functions""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if input_tensor.qnn_params: in_expr = self.dequantize(in_expr, input_tensor) out = relay_op(in_expr) if output_tensor.qnn_params: out = self.quantize(out, output_tensor) return out def convert_abs(self, op): """Convert TFLite ABS""" return self._convert_unary_elemwise(_op.abs, op) def convert_ceil(self, op): """Convert TFLite CEIL""" return self._convert_unary_elemwise(_op.ceil, op) def convert_floor(self, op): """Convert TFLite FLOOR""" return self._convert_unary_elemwise(_op.floor, op) def convert_round(self, op): """Convert TFLite ROUND""" return self._convert_unary_elemwise(_op.round, op) def convert_exp(self, op): """Convert TFLite EXP""" return self._convert_unary_elemwise(_op.exp, op) def convert_log(self, op): """Convert TFLite LOG""" return self._convert_unary_elemwise(_op.log, op) def convert_sin(self, op): """Convert TFLite SIN""" return self._convert_unary_elemwise(_op.sin, op) def convert_tan(self, op): """Convert TFLite TAN""" return self._convert_unary_elemwise(_op.tan, op) def convert_cos(self, op): """Convert TFLite COS""" return self._convert_unary_elemwise(_op.cos, op) def convert_sqrt(self, op): """Convert TFLite SQRT""" return self._convert_unary_elemwise(_op.sqrt, op) def convert_rsqrt(self, op): """Convert TFLite RSQRT""" return self._convert_unary_elemwise(_op.rsqrt, op) def convert_neg(self, op): """Convert TFLite NEG""" return self._convert_unary_elemwise(_op.negative, op) def convert_elu(self, op): """Convert TFLite ELU""" if self.is_quantized(op): raise tvm.error.OpNotImplemented("TFlite quantized ELU operator is not supported yet.") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) exp_type = self.get_tensor_type_str(input_tensor.tensor.Type()) out = relay.const(-1.0, exp_type) * _op.nn.relu( relay.const(1.0, exp_type) - _op.exp(in_expr) ) + _op.nn.relu(in_expr) return out def convert_square(self, op): """Convert TFLite SQUARE""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized SQUARE operator is not supported yet." ) exp_type = self.get_tensor_type_str(output_tensor.tensor.Type()) out = _op.power(in_expr, relay.const(2, exp_type)) return out def _convert_elemwise( self, relay_op, op, ignore_qnn_params=False, comparison_op=False, ): """Generic method to Convert TFLite elemwise""" try: from tflite.AddOptions import AddOptions from tflite.BuiltinOptions import BuiltinOptions from tflite.DivOptions import DivOptions from tflite.MulOptions import MulOptions from tflite.SubOptions import SubOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" lhs_tensor = input_tensors[0] rhs_tensor = input_tensors[1] lhs_expr = self.get_tensor_expr(lhs_tensor) rhs_expr = self.get_tensor_expr(rhs_tensor) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] # TFLite format demands equal scale and zero_point tuple parameters for some operations # to allow us to use non-quantized operation instead of quantized if ignore_qnn_params=True if ignore_qnn_params and not comparison_op: assert ( lhs_tensor.qnn_params and self.has_same_qnn_params(lhs_tensor, output_tensor) and self.has_same_qnn_params(rhs_tensor, output_tensor) ), "All tensors should be quantized with the same (scale,zero-point) tuple parameters" # If quantized, extracts qnn params and call QNN add operator. if not ignore_qnn_params and lhs_tensor.qnn_params: assert rhs_tensor.qnn_params, "Both tensors should be quantized." assert output_tensor.qnn_params, "Output tensor should be quantized." out = relay_op( lhs=lhs_expr, rhs=rhs_expr, lhs_scale=lhs_tensor.qnn_params["scale"], lhs_zero_point=lhs_tensor.qnn_params["zero_point"], rhs_scale=rhs_tensor.qnn_params["scale"], rhs_zero_point=rhs_tensor.qnn_params["zero_point"], output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], ) else: out = relay_op(lhs_expr, rhs_expr) # Options (fused_activation_function) options = None if op.BuiltinOptionsType() == BuiltinOptions.AddOptions: options = AddOptions() elif op.BuiltinOptionsType() == BuiltinOptions.SubOptions: options = SubOptions() elif op.BuiltinOptionsType() == BuiltinOptions.MulOptions: options = MulOptions() elif op.BuiltinOptionsType() == BuiltinOptions.DivOptions: options = DivOptions() if options is not None: op_options = op.BuiltinOptions() options.Init(op_options.Bytes, op_options.Pos) fused_activation_fn = options.FusedActivationFunction() # Handle fused activations if not ignore_qnn_params and output_tensor.qnn_params: scale_val = get_scalar_from_constant(output_tensor.qnn_params["scale"]) zero_point_val = get_scalar_from_constant(output_tensor.qnn_params["zero_point"]) output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) out = self.convert_qnn_fused_activation_function( expr=out, fused_activation_fn=fused_activation_fn, scale=scale_val, zero_point=zero_point_val, dtype=output_tensor_type_str, ) else: out = self.convert_fused_activation_function(out, fused_activation_fn) return out def convert_add(self, op): """Convert TFLite ADD""" # Check if the input tensor is quantized, call QNN op if self.is_quantized(op): return self._convert_elemwise(_qnn.op.add, op) return self._convert_elemwise(_op.add, op) def convert_add_n(self, op): """Convert TFLite ADD_N""" output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" input_tensors = self.get_input_tensors(op) assert not input_tensors[0].qnn_params, "TFLite does not support quantized ADD_N." lhs_expr = self.get_tensor_expr(input_tensors[0]) for rhs_tensor in input_tensors[1:]: assert not rhs_tensor.qnn_params, "TFLite does not support quantized ADD_N" rhs_expr = self.get_tensor_expr(rhs_tensor) lhs_expr = _op.add(lhs_expr, rhs_expr) return lhs_expr def convert_sub(self, op): """Convert TFLite SUB""" # Check if the input tensor is quantized, call QNN op if self.is_quantized(op): return self._convert_elemwise(_qnn.op.subtract, op) return self._convert_elemwise(_op.subtract, op) def convert_mul(self, op): """Convert TFLite MUL""" # Check if the input tensor is quantized, call QNN op if self.is_quantized(op): return self._convert_elemwise(_qnn.op.mul, op) return self._convert_elemwise(_op.multiply, op) def convert_div(self, op): """Convert TFLite DIV""" # Check if the input tensor is quantized, call QNN op if self.is_quantized(op): raise tvm.error.OpNotImplemented("TFlite quantized DIV operator is not supported yet.") return self._convert_elemwise(_op.divide, op) def convert_pow(self, op): """Convert TFLite POW""" # Check if the input tensor is quantized, call QNN op if self.is_quantized(op): raise tvm.error.OpNotImplemented("TFlite quantized POW operator is not supported yet.") return self._convert_elemwise(_op.power, op) def convert_maximum(self, op): """Convert TFLite MAXIMUM""" return self._convert_elemwise(_op.maximum, op, self.is_quantized(op)) def convert_minimum(self, op): """Convert TFLite MINIMUM""" return self._convert_elemwise(_op.minimum, op, self.is_quantized(op)) def convert_greater(self, op): """Convert TFLite GREATER""" return self._convert_elemwise(_op.greater, op, self.is_quantized(op), comparison_op=True) def convert_squared_difference(self, op): """Convert TFLite SQUARED DIFFERENCE""" # Check if the input tensor is quantized, call QNN op if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized squared difference operator is not supported yet." ) difference = self._convert_elemwise(_op.subtract, op) # _convert_elemwise has guaranteed only have one output tensor exp_type = self.get_tensor_type_str(self.get_output_tensors(op)[0].tensor.Type()) out = _op.power(difference, relay.const(2, exp_type)) return out def convert_greater_equal(self, op): """Convert TFLite GREATER_EQUAL""" if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized GREATER_EQUAL operator is not supported yet." ) return self._convert_elemwise(_op.greater_equal, op) def convert_less(self, op): """Convert TFLite LESS""" if self.is_quantized(op): raise tvm.error.OpNotImplemented("TFlite quantized LESS operator is not supported yet.") return self._convert_elemwise(_op.less, op) def convert_less_equal(self, op): """Convert TFLite LESS_EQUAL""" if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized LESS_EQUAL operator is not supported yet." ) return self._convert_elemwise(_op.less_equal, op) def convert_equal(self, op): """Convert TFLite EQUAL""" return self._convert_elemwise(_op.equal, op, self.is_quantized(op), comparison_op=True) def convert_not_equal(self, op): """Convert TFLite NOT_EQUAL""" if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized NOT_EQUAL operator is not supported yet." ) return self._convert_elemwise(_op.not_equal, op) def _convert_logical_binary(self, relay_op, op): """Generic method to convert logical binary ops""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" lhs_tensor = input_tensors[0] lhs_expr = self.get_tensor_expr(lhs_tensor) rhs_tensor = input_tensors[1] rhs_expr = self.get_tensor_expr(rhs_tensor) out = relay_op(lhs_expr, rhs_expr) return out def convert_logical_and(self, op): """Convert tflite LOGICAL_AND""" return self._convert_logical_binary(_op.logical_and, op) def convert_logical_or(self, op): """Convert tflite LOGICAL_OR""" return self._convert_logical_binary(_op.logical_or, op) def convert_logical_not(self, op): """Convert tflite LOGICAL_NOT""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" data = self.get_expr(input_tensors[0].tensor_idx) out = _op.logical_not(data) return out def convert_gather(self, op): """Method to Convert TFLite GATHER operator""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.GatherOptions import GatherOptions from tflite.TensorType import TensorType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" data = self.get_tensor_expr(input_tensors[0]) indices = input_tensors[1] indices_type = indices.tensor.Type() assert indices_type in (TensorType.INT32, TensorType.INT64) assert op.BuiltinOptionsType() == BuiltinOptions.GatherOptions op_options = op.BuiltinOptions() gather_options = GatherOptions() gather_options.Init(op_options.Bytes, op_options.Pos) axis = gather_options.Axis() # Check the indices are with in bounds. data_shape = to_int_list(self.get_tensor_shape(input_tensors[0])) data_dim = len(data_shape) axis = data_dim + axis if axis < 0 else axis assert axis >= 0, "Axis out of bounds" assert axis < data_dim, "Axis out of bounds" if self.has_expr(indices.tensor_idx): indices_expr = self.get_expr(indices.tensor_idx) else: indices_val = self.get_tensor_value(indices) indices_expr = self.exp_tab.new_const( indices_val, dtype=self.get_tensor_type_str(indices_type) ) indices_shape = list(indices_val.shape) indices_len = len(indices_shape) out_shape = data_shape[:axis] + indices_shape[:] + data_shape[axis + 1 :] loopover = [range(s) for s in out_shape] for idx in list(itertools.product(*loopover)): real_indices = ( list(idx[:axis]) + [indices_val[idx[axis : axis + indices_len]]] + list(idx[axis + indices_len :]) ) if np.any(np.subtract(data_shape, real_indices) < 0): raise ValueError("TFLite out of bound indices are not supported.") # Use mode 'fast' since indices are already checked within bounds. out = _op.take(data, indices_expr, axis=axis, mode="fast") return out def convert_gather_nd(self, op): """Method to Convert TFLite GATHER_ND operator""" try: from tflite.TensorType import TensorType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" for t in input_tensors: assert not t.qnn_params, "Quantized input is not expected." data = self.get_tensor_expr(input_tensors[0]) indices = self.get_tensor_expr(input_tensors[1]) indices_type = input_tensors[1].tensor.Type() assert indices_type in (TensorType.INT32, TensorType.INT64) indices_dims = len(_infer_shape(indices)) indices_t = _op.transpose(indices, axes=[-1] + list(range(indices_dims - 1))) out = _op.gather_nd(data, indices_t) return out def convert_strided_slice(self, op): """Method to Convert TFLite STRIDED_SLICE operator. NOTE: Eventhough tensorflow supports begin_mask, end_mask, ellipsis_mask, new_axis_mask and shrink_axis_mask, tflite doesn't support these and expect these values to be zero. But in future, they may open up the mask implementation, so kept the implementation same as tensorflow. This op extracts a slice of size (end - begin) / stride from the given input tensor. Starting at the location specified by begin the slice continues by adding stride to the index until all dimensions are not less than end. Note that a stride can be negative, which causes a reverse slice. For slice input[val0, val1, ..., valn], begin/end/strides will be vectors of length n. In each mask field(begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask) the ith bit will correspond to the ith val. If the ith bit of begin_mask is set, begin[i] is ignored and the fullest possible range in that dimension is used instead. If the ith bit of ellipsis_mask is set, as many unspecified dimensions as needed will be inserted between other dimensions. Only one non-zero bit is allowed in ellipsis_mask. If the ith bit of new_axis_mask is set, then begin, end, and stride are ignored and a new length 1 dimension is added at this point in the output tensor. If the ith bit of shrink_axis_mask is set, it implies that the ith specification shrinks the dimensionality by 1, taking on the value at index begin[i]. end[i] and strides[i] are ignored in this case. begin and end are zero-indexed. strides entries must be non-zero. TVM Relay implementation of doesn't support mask, so the mask values are processed in this function and begin/end/strides are updated accordingly. If any mask is present, and since tvm doesn't support mask computation directly, the output need a final reshape. """ try: from tflite.BuiltinOptions import BuiltinOptions from tflite.StridedSliceOptions import StridedSliceOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 4, "input tensors length should be 4" data_expr = self.get_expr(input_tensors[0].tensor_idx) begin = list(self.get_tensor_value(input_tensors[1])) end = list(self.get_tensor_value(input_tensors[2])) stride = list(self.get_tensor_value(input_tensors[3])) assert op.BuiltinOptionsType() == BuiltinOptions.StridedSliceOptions op_options = op.BuiltinOptions() options = StridedSliceOptions() options.Init(op_options.Bytes, op_options.Pos) begin_mask = options.BeginMask() end_mask = options.EndMask() ellipsis_mask = options.EllipsisMask() new_axis_mask = options.NewAxisMask() shrink_axis_mask = options.ShrinkAxisMask() data_shape = to_int_list(self.get_tensor_shape(input_tensors[0])) data_dim = len(data_shape) stride_dim = len(stride) def _transform_mask(stride_dim, ellipsis_mask): """Handle mask inputs to create new begin, end, stride and output shape""" m_begin = [0] * data_dim m_end = [0] * data_dim m_stride = [0] * data_dim fshape_indices = [] # Count new axis after ellipsis_mask, consider while applying ellipsis_mask. ellipsis_seen = False new_axes_after_ellipsis = 0 for i in range(stride_dim): mask = 1 << i if ellipsis_seen and (mask & new_axis_mask) != 0: new_axes_after_ellipsis += 1 if (mask & ellipsis_mask) != 0: ellipsis_seen = True if not ellipsis_seen: # Used later for extending the stride attributes in the below loop. ellipsis_mask |= 1 << stride_dim stride_dim += 1 final_index = 0 for index in range(stride_dim): mask = 1 << index if mask & ellipsis_mask: # Identify the end index for applying ellipsis_mask to_index = min( ((data_dim - (stride_dim - index)) + 1 + new_axes_after_ellipsis), data_dim ) for i in range(final_index, to_index): m_begin[final_index] = 0 m_end[final_index] = data_shape[final_index] m_stride[final_index] = 1 fshape_indices.append(final_index) final_index += 1 elif mask & new_axis_mask: fshape_indices.append(-1) elif not mask & new_axis_mask: if final_index == len(m_begin): break if mask & begin_mask: m_begin[final_index] = data_shape[final_index] if stride[index] < 0 else 0 elif begin[index]: m_begin[final_index] = begin[index] if mask & end_mask: m_end[final_index] = 0 if stride[index] < 0 else data_shape[final_index] elif end[index]: m_end[final_index] = end[index] m_stride[final_index] = stride[index] if mask & shrink_axis_mask: # Tensorflow make axis with shrink_axis_mask as dimension 1 m_begin[final_index] = ( data_shape[final_index] + begin[index] if begin[index] < 0 else begin[index] ) m_end[final_index] = m_begin[final_index] + 1 m_stride[final_index] = 1 fshape_indices.append(-2) else: fshape_indices.append(final_index) final_index += 1 return m_begin, m_end, m_stride, fshape_indices fshape_indices = None if begin_mask or end_mask or ellipsis_mask or new_axis_mask or shrink_axis_mask: begin, end, stride, fshape_indices = _transform_mask(stride_dim, ellipsis_mask) out = _op.strided_slice(data_expr, begin=begin, end=end, strides=stride) out_shape = _infer_shape(out) if not fshape_indices: fshape_indices = range(len(out_shape)) # Create final output shape. final_output = [] final_len = len(fshape_indices) for gather_index in fshape_indices: if gather_index == -1: final_output.append(1) final_len += 1 elif gather_index == -2: final_len -= 1 else: final_output.append(out_shape[gather_index]) if final_len == 0: return _op.squeeze(out, axis=tuple(range(len(fshape_indices)))) if not final_output: return out return _op.reshape(out, newshape=tuple(final_output)) def convert_zeros_like(self, op): """Convert TFLite ZEROS LIKE""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) out = _op.zeros_like(in_expr) return out def convert_fill(self, op): """Convert TFLite FILL""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" if self.has_expr(input_tensors[0].tensor_idx): raise tvm.error.OpNotImplemented( "For dims parameter of Fill operator," " only constant values are supported." ) in_dims = list(self.get_tensor_value(input_tensors[0])) in_value_expr = self.get_expr(input_tensors[1].tensor_idx) out = _op.full(in_value_expr, in_dims) return out def _convert_reduce(self, relay_op, op): """Generic method to Convert TFLite REDUCE operators""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.ReducerOptions import ReducerOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" # input_tensor input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) # axis axis_value = self.get_tensor_value(input_tensors[1]) axis = tuple(axis_value) if len(axis_value.shape) > 0 else tuple((axis_value.item(),)) # Options - keep_dims (bool) # In case Options are not present, set keep_dims to False(default) if op.BuiltinOptionsType(): assert op.BuiltinOptionsType() == BuiltinOptions.ReducerOptions reduce_options = ReducerOptions() op_options = op.BuiltinOptions() reduce_options.Init(op_options.Bytes, op_options.Pos) keep_dims = reduce_options.KeepDims() else: keep_dims = False if input_tensor.qnn_params: in_expr = _op.cast(in_expr, "int32") out = relay_op(in_expr, axis, keep_dims) # Finally if the reduce is quantized. Add a requantize at the end. output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) if output_tensor.qnn_params: out = _qnn.op.requantize( out, input_scale=input_tensor.qnn_params["scale"], input_zero_point=input_tensor.qnn_params["zero_point"], output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, ) return out def convert_reduce_min(self, op): return self._convert_reduce(_op.reduce.min, op) def convert_reduce_max(self, op): return self._convert_reduce(_op.reduce.max, op) def convert_reduce_mean(self, op): return self._convert_reduce(_op.reduce.mean, op) def convert_reduce_prod(self, op): return self._convert_reduce(_op.reduce.prod, op) def convert_reduce_sum(self, op): return self._convert_reduce(_op.reduce.sum, op) def convert_reduce_any(self, op): return self._convert_reduce(_op.reduce.any, op) def _convert_arg_min_max(self, relay_op, op): """Generic method converting TFLite arg_min_max""" try: from tflite.ArgMaxOptions import ArgMaxOptions from tflite.ArgMinOptions import ArgMinOptions from tflite.BuiltinOptions import BuiltinOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "two input tensor arguments expected" output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "one output tensor expected" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) axis_tensor = input_tensors[1] # In Tensorflow, `axis` argument is a Tensor, not attribute. We # support the case where it inputs from a scalar constant. axis_value = self.get_tensor_value(axis_tensor) assert axis_value.size == 1 axis_value = axis_value.item() if op.BuiltinOptionsType() == BuiltinOptions.ArgMinOptions: arg_min_max_options = ArgMinOptions() elif op.BuiltinOptionsType() == BuiltinOptions.ArgMaxOptions: arg_min_max_options = ArgMaxOptions() op_options = op.BuiltinOptions() arg_min_max_options.Init(op_options.Bytes, op_options.Pos) # set keepdims to True since tflite 1.13 removes all dims of size 1 # WARNING: all other versions of tflite > 1.13 need keepdims=False out = relay_op(in_expr, axis=axis_value, keepdims=False, exclude=False) return out def convert_arg_min(self, op): """Convert TFLite ARG_MIN""" if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized ARG_MIN operator is not supported yet." ) return self._convert_arg_min_max(_op.argmin, op) def convert_arg_max(self, op): """Convert TFLite ARG_MAX""" return self._convert_arg_min_max(_op.argmax, op) def convert_fully_connected(self, op): """Convert TFLite fully connected""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.FullyConnectedOptions import FullyConnectedOptions from tflite.TensorType import TensorType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) in (2, 3), "input tensors length should be two or three" input_tensor = input_tensors[0] weight_tensor = input_tensors[1] output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] output_tensor_type = output_tensor.tensor.Type() output_tensor_type_str = self.get_tensor_type_str(output_tensor_type) weight_tensor_shape = to_int_list(self.get_tensor_shape(weight_tensor)) # Weight should have only 2 dimensions(TFLite convention) assert len(weight_tensor_shape) == 2, "Weight should be only 2-dim" # Input shape: [i_batch_size, ..., n_inputs] # Filter shape: [n_inputs, n_units] # # As we will transform Fully_Connected Input to Dense Op inputs as below # Dense expected Input shape: [batch_size, n_units] # Dense expected Weight shape: [out_dim, n_units] # Dense output shape: [batch_size, out_dim] target_shape = tuple((-1, weight_tensor_shape[1])) in_expr = self.get_tensor_expr(input_tensor) in_expr = _op.reshape(in_expr, target_shape) # TODO: Change the output shape calculation based on keep_dim option assert op.BuiltinOptionsType() == BuiltinOptions.FullyConnectedOptions op_options = op.BuiltinOptions() fully_connected_options = FullyConnectedOptions() fully_connected_options.Init(op_options.Bytes, op_options.Pos) fused_activation_fn = fully_connected_options.FusedActivationFunction() keep_num_dims = fully_connected_options.KeepNumDims() # weight tensor type should be INT8/UINT8 (quantization) or FLOAT32 weight_tensor_type = weight_tensor.tensor.Type() assert weight_tensor_type in (TensorType.INT8, TensorType.UINT8, TensorType.FLOAT32) weight_tensor_type_str = self.get_tensor_type_str(weight_tensor_type) if self.has_expr(weight_tensor.tensor_idx): weight_expr = self.get_expr(weight_tensor.tensor_idx) else: weight_value = self.get_tensor_value(weight_tensor) weight_expr = self.exp_tab.new_const(weight_value, dtype=weight_tensor_type_str) weight_shape = _infer_shape(weight_expr) if input_tensor.qnn_params: out = _qnn.op.dense( in_expr, weight_expr, input_zero_point=input_tensor.qnn_params["zero_point"], kernel_zero_point=weight_tensor.qnn_params["zero_point"], input_scale=input_tensor.qnn_params["scale"], kernel_scale=weight_tensor.qnn_params["scale"], units=weight_shape[0], out_dtype="int32", ) else: out = _op.nn.dense(in_expr, weight_expr, units=weight_shape[0]) # if we have bias if len(input_tensors) == 3: bias_tensor = input_tensors[2] if bias_tensor.tensor_idx != -1: bias_tensor_type = bias_tensor.tensor.Type() # bias tensor type should be INT32 (quantization) or FLOAT32 assert bias_tensor_type in (TensorType.INT32, TensorType.FLOAT32) bias_tensor_type_str = self.get_tensor_type_str(bias_tensor_type) if self.has_expr(bias_tensor.tensor_idx): bias_expr = self.get_expr(bias_tensor.tensor_idx) else: bias_expr = self.exp_tab.new_const( self.get_tensor_value(bias_tensor), dtype=bias_tensor_type_str ) out = _op.nn.bias_add(out, bias_expr) # Finally if the dense is quantized. Add a requantize at the end. if output_tensor.qnn_params: data_scale = input_tensor.qnn_params["scale"] weight_scale = weight_tensor.qnn_params["scale"] data_scale_val = get_scalar_from_constant(data_scale) weight_scale_val = get_scalar_from_constant(weight_scale) new_input_scale_val = data_scale_val * weight_scale_val new_input_scale = relay.const(new_input_scale_val, "float32") new_input_zero_point = relay.const(0, "int32") # Requantize out = _qnn.op.requantize( out, input_scale=new_input_scale, input_zero_point=new_input_zero_point, output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, ) # Call activation function output_scale_val = get_scalar_from_constant(output_tensor.qnn_params["scale"]) output_zero_point_val = get_scalar_from_constant(output_tensor.qnn_params["zero_point"]) out = self.convert_qnn_fused_activation_function( expr=out, fused_activation_fn=fused_activation_fn, scale=output_scale_val, zero_point=output_zero_point_val, dtype=output_tensor_type_str, ) else: out = self.convert_fused_activation_function(out, fused_activation_fn) # Change the output shape calculation based on keep_dim option if keep_num_dims: input_shape = _infer_shape(self.get_tensor_expr(input_tensor)) output_shape = input_shape[:-1] + tuple([weight_tensor_shape[0]]) out = _op.reshape(out, output_shape) return out def convert_squeeze(self, op): """Convert TFLite squeeze""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.SqueezeOptions import SqueezeOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) output_tensors = self.get_output_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" assert len(output_tensors) == 1, "output tensors length should be 1" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx assert op.BuiltinOptionsType() == BuiltinOptions.SqueezeOptions op_options = op.BuiltinOptions() squeeze_options = SqueezeOptions() squeeze_options.Init(op_options.Bytes, op_options.Pos) squeeze_axis = squeeze_options.SqueezeDimsAsNumpy() in_expr = self.get_expr(input_tensor_idx) out = _op.squeeze(in_expr, axis=tuple(squeeze_axis)) return out def convert_fused_activation_function(self, in_expr, fused_activation_fn): """Convert TFLite fused activation function""" try: from tflite.ActivationFunctionType import ActivationFunctionType except ImportError: raise ImportError("The tflite package must be installed") if fused_activation_fn == ActivationFunctionType.NONE: return in_expr if fused_activation_fn == ActivationFunctionType.RELU6: return _op.clip(in_expr, a_min=0, a_max=6) if fused_activation_fn == ActivationFunctionType.RELU: return _op.nn.relu(in_expr) if fused_activation_fn == ActivationFunctionType.RELU_N1_TO_1: return _op.clip(in_expr, a_min=-1, a_max=1) if fused_activation_fn == ActivationFunctionType.TANH: return _op.tanh(in_expr) fused_activation_fn_str = self.activation_fn_type[fused_activation_fn] raise tvm.error.OpNotImplemented( "Fused activation {} is not supported yet.".format(fused_activation_fn_str) ) def convert_conv(self, op, conv_type): """convolution implementation.""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.Conv2DOptions import Conv2DOptions from tflite.DepthwiseConv2DOptions import DepthwiseConv2DOptions from tflite.Padding import Padding from tflite.TensorType import TensorType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) >= 2, "input tensors length should be >= 2" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx weight_tensor = input_tensors[1] output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] output_tensor_type = output_tensor.tensor.Type() output_tensor_type_str = self.get_tensor_type_str(output_tensor_type) is_depthwise_conv = False if conv_type == "conv2d": assert op.BuiltinOptionsType() == BuiltinOptions.Conv2DOptions op_options = op.BuiltinOptions() conv_options = Conv2DOptions() conv_options.Init(op_options.Bytes, op_options.Pos) elif conv_type == "depthwise": is_depthwise_conv = True assert op.BuiltinOptionsType() == BuiltinOptions.DepthwiseConv2DOptions op_options = op.BuiltinOptions() conv_options = DepthwiseConv2DOptions() conv_options.Init(op_options.Bytes, op_options.Pos) depth_multiplier = conv_options.DepthMultiplier() else: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend TFLite.".format(conv_type) ) stride_h = conv_options.StrideH() stride_w = conv_options.StrideW() dilation_h = conv_options.DilationHFactor() dilation_w = conv_options.DilationWFactor() padding = conv_options.Padding() fused_activation_fn = conv_options.FusedActivationFunction() _, input_h, input_w, input_c = to_int_list(self.get_tensor_shape(input_tensor)) if is_depthwise_conv: # TFLite depthwise convolution kernel layout is: # 1 KH KW C(input_c * depth_multiplier) _, kernel_h, kernel_w, in_channels = to_int_list(self.get_tensor_shape(weight_tensor)) assert in_channels == input_c * depth_multiplier else: output_channels, kernel_h, kernel_w, _ = to_int_list( self.get_tensor_shape(weight_tensor) ) dilated_kernel_h = dilation_h * (kernel_h - 1) + 1 dilated_kernel_w = dilation_w * (kernel_w - 1) + 1 params = { "kernel_size": [kernel_h, kernel_w], "strides": [stride_h, stride_w], "dilation": [dilation_h, dilation_w], "padding": [0, 0], "data_layout": "NHWC", } if is_depthwise_conv: params["channels"] = int(in_channels) params["groups"] = int(input_c) # If number of input channels is 1, treat as normal # convolution. params["kernel_layout"] = "HWIO" if input_c == 1 else "HWOI" else: params["channels"] = int(output_channels) params["kernel_layout"] = "HWIO" # weight tensor type should be INT8/UINT8 (quantization) or FLOAT32 weight_tensor_type = weight_tensor.tensor.Type() assert weight_tensor_type in (TensorType.INT8, TensorType.UINT8, TensorType.FLOAT32) weight_tensor_type_str = self.get_tensor_type_str(weight_tensor_type) in_expr = self.get_expr(input_tensor_idx) # TFLite converts float32 models to float16 models by introducing # a Dequantize op in every op that contains a float32 values. # (weights, biases, and constants etc. ) # So conv op may have weight and bias as tensors instead of values. if self.has_expr(weight_tensor.tensor_idx): weight_expr = self.get_expr(weight_tensor.tensor_idx) if is_depthwise_conv: weight_expr = _op.reshape( weight_expr, (kernel_h, kernel_w, input_c, depth_multiplier) ) else: weight_expr = _op.transpose(weight_expr, axes=(1, 2, 3, 0)) else: if self.is_prefetched(weight_tensor.tensor_idx): weight_value = self.get_prefetched_node(weight_tensor.tensor_idx) else: weight_value = self.get_tensor_value(weight_tensor) # TFLite kernel layout: # convolution: # OC KH KW IC, we require KH KW IC OC (HWIO) # depthwise convolution: # 1 KH KW C(input_c * depth_multiplier), we require # KH KW IC M (depth_multiplier) (HWOI) if is_depthwise_conv: weight_value = weight_value.reshape(kernel_h, kernel_w, input_c, depth_multiplier) else: weight_value = weight_value.transpose((1, 2, 3, 0)) weight_expr = self.exp_tab.new_const(weight_value, dtype=weight_tensor_type_str) if padding == Padding.VALID: pass elif padding == Padding.SAME: pad_top, pad_bottom = get_pad_value(input_h, dilated_kernel_h, stride_h) pad_left, pad_right = get_pad_value(input_w, dilated_kernel_w, stride_w) do_pad = not (pad_top == 0 and pad_bottom == 0 and pad_left == 0 and pad_right == 0) if do_pad: params["padding"] = [pad_top, pad_left, pad_bottom, pad_right] else: raise tvm.error.OpAttributeUnImplemented( "Padding format {} is not supported for operator Conv.".format(padding) ) if input_tensor.qnn_params: qnn_conv2d_params = dict(params) qnn_conv2d_params["input_zero_point"] = input_tensor.qnn_params["zero_point"] qnn_conv2d_params["kernel_zero_point"] = weight_tensor.qnn_params["zero_point"] qnn_conv2d_params["out_dtype"] = ( "int64" if output_tensor_type_str == "int16" else "int32" ) qnn_conv2d_params["input_scale"] = input_tensor.qnn_params["scale"] qnn_conv2d_params["kernel_scale"] = weight_tensor.qnn_params["scale"] out = _qnn.op.conv2d(in_expr, weight_expr, **qnn_conv2d_params) else: out = _op.nn.conv2d(in_expr, weight_expr, **params) # if we have bias if len(input_tensors) == 3: bias_tensor = input_tensors[2] bias_tensor_type = bias_tensor.tensor.Type() # bias tensor type should be INT32 (int8 qnn) or INT64 (int16 qnn) or FLOAT32 assert bias_tensor_type in (TensorType.INT32, TensorType.INT64, TensorType.FLOAT32) bias_tensor_type_str = self.get_tensor_type_str(bias_tensor_type) if self.has_expr(bias_tensor.tensor_idx): bias_expr = self.get_expr(bias_tensor.tensor_idx) else: bias_expr = self.exp_tab.new_const( self.get_tensor_value(bias_tensor), dtype=bias_tensor_type_str ) channel_axis = 3 out = _op.nn.bias_add(out, bias_expr, axis=channel_axis) # Handle fused activation. if output_tensor.qnn_params: # Calculate the intermediate scale and zero point of the int32 output. data_scale = input_tensor.qnn_params["scale"] data_scale_val = get_scalar_from_constant(data_scale) weight_scale = weight_tensor.qnn_params["scale"] # If weight scale is scalar, it is per-tensor quantization if isinstance(weight_scale, float): weight_scale_val = get_scalar_from_constant(weight_scale) else: weight_scale_val = get_tensor_from_constant(weight_scale) new_input_scale_val = data_scale_val * weight_scale_val new_input_scale = relay.const(new_input_scale_val, "float32") new_input_zero_point = relay.const(0, "int32") # Finally requantize out = _qnn.op.requantize( out, input_scale=new_input_scale, input_zero_point=new_input_zero_point, output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, axis=3, ) # Call activation function output_scale_val = get_scalar_from_constant(output_tensor.qnn_params["scale"]) output_zero_point_val = get_scalar_from_constant(output_tensor.qnn_params["zero_point"]) out = self.convert_qnn_fused_activation_function( expr=out, fused_activation_fn=fused_activation_fn, scale=output_scale_val, zero_point=output_zero_point_val, dtype=output_tensor_type_str, ) else: out = self.convert_fused_activation_function(out, fused_activation_fn) return out def convert_split(self, op): """split implementation.""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.SplitOptions import SplitOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be == 2" axis_tensor = input_tensors[0] split_axis = self.get_tensor_value(axis_tensor) input_tensor = input_tensors[1] input_tensor_idx = input_tensor.tensor_idx assert op.BuiltinOptionsType() == BuiltinOptions.SplitOptions op_options = op.BuiltinOptions() split_options = SplitOptions() split_options.Init(op_options.Bytes, op_options.Pos) num_splits = split_options.NumSplits() in_expr = self.get_expr(input_tensor_idx) out = _op.split(in_expr, num_splits, axis=int(split_axis)) # Relay does not like a TupleWrapper of 1 element, further this # only shows up with tf1.13 if we use a split with num_splits==1. # In tf 1.14 this doesn't appear as it is automatically a reshape # operation. if isinstance(out, _expr.TupleWrapper): if out.size == 1: out = out[0] return out def convert_split_v(self, op): """SPLIT_V implementation.""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 3, "input tensors length should be 3" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx in_expr = self.get_expr(input_tensor_idx) if self.has_expr(input_tensors[1].tensor_idx): raise tvm.error.OpNotImplemented( "For size_splits parameter of SPLIT_V operator, " "only constant values are supported." ) size_splits = list(self.get_tensor_value(input_tensors[1])) size_splits = tuple(np.cumsum(size_splits)[:-1]) axis_tensor = input_tensors[2] split_axis = self.get_tensor_value(axis_tensor) out = _op.split(in_expr, size_splits, axis=int(split_axis)) # Relay does not like a TupleWrapper of 1 element, further this # only shows up with tf1.13 if we use a split with num_splits==1. # In tf 1.14 this doesn't appear as it is automatically a reshape # operation. if isinstance(out, _expr.TupleWrapper) and out.size == 1: out = out[0] return out def convert_slice(self, op): """Convert TFLite SLICE""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 3, "input tensors length should be == 3" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) begin = list(self.get_tensor_value(input_tensors[1])) size = list(self.get_tensor_value(input_tensors[2])) # strided_slice(Relay) needs the slice's end indices, not the size end = size input_tensor_shape = to_int_list(self.get_tensor_shape(input_tensor)) input_tensor_rank = len(input_tensor_shape) for i in range(input_tensor_rank): if size[i] == -1: end[i] = input_tensor_shape[i] else: end[i] += begin[i] out = _op.strided_slice(in_expr, begin, end) return out def convert_select(self, op): """Convert TFLite SELECT""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 3, "input tensors length should be == 3" cond = self.get_tensor_expr(input_tensors[0]) x = self.get_tensor_expr(input_tensors[1]) y = self.get_tensor_expr(input_tensors[2]) out = _op.where(cond, x, y) return out def convert_transpose(self, op): """transpose implementation.""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx in_expr = self.get_expr(input_tensor_idx) # axis in_axis = tuple(self.get_tensor_value(input_tensors[1])) if not in_axis: out = _op.transpose(in_expr) else: out = _op.transpose(in_expr, in_axis) return out def convert_reverse_sequence(self, op): """Convert TFLite REVERSE_SEQUENCE""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.ReverseSequenceOptions import ReverseSequenceOptions except ImportError: raise ImportError("The tflite package must be installed") if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFLite does not support quantized REVERSE_SEQUENCE operator yet." ) input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" in_expr = self.get_tensor_expr(input_tensors[0]) length_expr = self.get_tensor_expr(input_tensors[1]) assert op.BuiltinOptionsType() == BuiltinOptions.ReverseSequenceOptions op_options = op.BuiltinOptions() options = ReverseSequenceOptions() options.Init(op_options.Bytes, op_options.Pos) batch_axis = options.BatchDim() seq_axis = options.SeqDim() return _op.reverse_sequence(in_expr, length_expr, seq_axis, batch_axis) def convert_cast(self, op): """Convert TFLite CAST""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.CastOptions import CastOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) # MLIR-based converter outputs no BuiltinOptions for Cast operator. In this # case the output type can be derived from the Cast operator output tensor. # When TOCO converter is used there will be "normal" BuiltinOptions.CastOptions # with output type. if op.BuiltinOptions() is not None: assert op.BuiltinOptionsType() == BuiltinOptions.CastOptions op_options = op.BuiltinOptions() cast_options = CastOptions() cast_options.Init(op_options.Bytes, op_options.Pos) cast_dtype = cast_options.OutDataType() else: cast_dtype = self.get_output_tensors(op)[0].tensor.Type() out = _op.cast(in_expr, self.get_tensor_type_str(cast_dtype)) return out def convert_tile(self, op): """tile implementation.""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx in_expr = self.get_expr(input_tensor_idx) # reps (tuple of int) – The number of times repeating the tensor data. reps = tuple(self.get_tensor_value(input_tensors[1])) out = _op.tile(in_expr, reps) return out def convert_topk_v2(self, op): """Convert TFLite TOPK_v2""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx in_expr = self.get_expr(input_tensor_idx) k = self.get_tensor_value(input_tensors[1]) out = _op.topk(in_expr, int(k)) return out def convert_pool2d(self, op, pool_type): """pool2d implementation.""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.Padding import Padding from tflite.Pool2DOptions import Pool2DOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors should be 1" output_tensor = output_tensors[0] output_tensor_type = output_tensor.tensor.Type() output_tensor_type_str = self.get_tensor_type_str(output_tensor_type) assert op.BuiltinOptionsType() == BuiltinOptions.Pool2DOptions op_options = op.BuiltinOptions() pool2d_options = Pool2DOptions() pool2d_options.Init(op_options.Bytes, op_options.Pos) stride_h = pool2d_options.StrideH() stride_w = pool2d_options.StrideW() padding = pool2d_options.Padding() filter_h = pool2d_options.FilterHeight() filter_w = pool2d_options.FilterWidth() fused_activation_fn = pool2d_options.FusedActivationFunction() params = { "pool_size": (filter_h, filter_w), "strides": (stride_h, stride_w), "padding": [0, 0], "layout": "NHWC", } in_expr = self.get_expr(input_tensor_idx) _, input_h, input_w, _ = to_int_list(self.get_tensor_shape(input_tensor)) if padding == Padding.VALID: pass elif padding == Padding.SAME: pad_top, pad_bottom = get_pad_value(input_h, filter_h, stride_h) pad_left, pad_right = get_pad_value(input_w, filter_w, stride_w) params["padding"] = [pad_top, pad_left, pad_bottom, pad_right] else: raise tvm.error.OpAttributeUnImplemented( "Padding format {} for operator Pool2D is not supported.".format(padding) ) if pool_type == "average": if input_tensor.qnn_params: assert self.has_same_qnn_params(input_tensor, output_tensor), ( "TFLite avg_pool2dreshape requires input and output scale" "and zero points to be equal" ) out = _op.cast(in_expr, dtype="int32") out = _op.nn.avg_pool2d(out, **params) out = _op.cast(out, dtype=output_tensor_type_str) else: out = _op.nn.avg_pool2d(in_expr, **params) elif pool_type == "max": if input_tensor.qnn_params: assert self.has_same_qnn_params( input_tensor, output_tensor ), "qnn.op.max_pool2d requires input and output qnn params to be same" out = _op.nn.max_pool2d(in_expr, **params) elif pool_type == "l2": # L2_POOL_2D is equivalent to square_root(avg_pool(square(in_data))) # TFLite does not have support for quantised L2_POOL_2D op. assert ( not input_tensor.qnn_params ), "As TFLite does not have support for quantized L2_POOL_2D, \ Quantized input is not expected." exp_type = self.get_tensor_type_str(output_tensor.tensor.Type()) square_exp = _op.power(in_expr, relay.const(2, exp_type)) avg_pool_exp = _op.nn.avg_pool2d(square_exp, **params) out = _op.sqrt(avg_pool_exp) else: raise tvm.error.OpNotImplemented( "Operator {} is not supported for frontend TFLite.".format(pool_type + " pool") ) # Handle fused activations if output_tensor.qnn_params: scale_val = get_scalar_from_constant(output_tensor.qnn_params["scale"]) zero_point_val = get_scalar_from_constant(output_tensor.qnn_params["zero_point"]) out = self.convert_qnn_fused_activation_function( expr=out, fused_activation_fn=fused_activation_fn, scale=scale_val, zero_point=zero_point_val, dtype=output_tensor_type_str, ) else: out = self.convert_fused_activation_function(out, fused_activation_fn) return out def convert_pad(self, op): """Convert TFLite PAD/PADV2 \ TFLite treats PAD and PADV2 operators identically""" input_tensors = self.get_input_tensors(op) # TFLite PAD/PADV2 only supports CONSTANT mode assert ( len(input_tensors) == 2 or len(input_tensors) == 3 ), "input tensor's length should be 2 for PAD and 3 for PADV2" if len(input_tensors) == 3: assert ( input_tensors[0].tensor.Type() == input_tensors[2].tensor.Type() ), "constant_values tensor must be of same type as input tensor" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) # paddings pad_list = self.get_tensor_value(input_tensors[1]) # convert list of lists to tuple of tuples paddings = tuple(tuple(l) for l in pad_list) # Set the pad value, by default 0, unless constant_values parameter is provided pad_value = 0 if input_tensor.qnn_params: # Check that input and output tensor have same qnn params. output_tensors = self.get_output_tensors(op) output_tensor = output_tensors[0] assert self.has_same_qnn_params( input_tensor, output_tensor ), "TFLite PADV2 requires input and output scale and zero points to be equal" # The pad value for quantized pad is the input zero point by default. pad_value = float(input_tensor.qnn_params["zero_point"].data.numpy()) if len(input_tensors) == 3: pad_value = self.get_tensor_value(input_tensors[2]) if isinstance(pad_value, np.ndarray): pad_value = pad_value.tolist() if isinstance(pad_value, list): assert len(pad_value) == 1, "Only one constant value is expected." pad_value = pad_value[0] if input_tensor.qnn_params: # Check that input tensor and constant_values have same qnn params. assert self.has_same_qnn_params( input_tensor, input_tensors[2] ), "TFLite PADV2 requires input and constant_values tensors' \ scale and zero points to be equal" out = _op.nn.pad(in_expr, pad_width=paddings, pad_value=pad_value) return out def convert_floor_div(self, op): """Convert TFLite FLOOR_DIV""" if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized FLOOR DIV operator is not supported yet." ) return self._convert_elemwise(_op.floor_divide, op) def convert_floor_mod(self, op): """Convert TFLite FLOOR_MOD""" if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized FLOOR MOD operator is not supported yet." ) return self._convert_elemwise(_op.floor_mod, op) def convert_mirror_pad(self, op): """Convert TFLite MIRROR_PAD""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.MirrorPadOptions import MirrorPadOptions except ImportError: raise ImportError("The tflite package must be installed") # the quantized form MirrorPad is not yet implemented in TFLite. if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized MIRROR_PAD operator is not supported yet." ) input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" # tensor input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) # paddings pad_list = self.get_tensor_value(input_tensors[1]) # convert list of lists to tuple of tuples paddings = tuple(tuple(l.astype(np.int32)) for l in pad_list) assert op.BuiltinOptionsType() == BuiltinOptions.MirrorPadOptions op_options = op.BuiltinOptions() mirror_pad_options = MirrorPadOptions() mirror_pad_options.Init(op_options.Bytes, op_options.Pos) mode_byte = mirror_pad_options.Mode() mode = "REFLECT" if mode_byte == 0 else "SYMMETRIC" out = _op.nn.mirror_pad(in_expr, paddings, mode) return out def convert_pack(self, op): """Convert TFLite pack""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.PackOptions import PackOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" if input_tensors[0].qnn_params: output_tensor = output_tensors[0] assert self.has_same_qnn_params( input_tensors[0], output_tensor ), "TFLite pack requires input and output scale and zero points to be equal" for input_tensor in input_tensors: assert self.has_same_qnn_params( input_tensors[0], input_tensor ), "TFLite pack requires all input tensors to have same scale and zero point" assert op.BuiltinOptionsType() == BuiltinOptions.PackOptions op_options = op.BuiltinOptions() pack_options = PackOptions() pack_options.Init(op_options.Bytes, op_options.Pos) pack_axis = pack_options.Axis() pack_values_count = pack_options.ValuesCount() assert len(input_tensors) == pack_values_count, "Discordance in input values count" in_exprs = [self.get_tensor_expr(_) for _ in input_tensors] in_exprs_reshaped = [_op.expand_dims(_, axis=pack_axis, num_newaxis=1) for _ in in_exprs] out = _op.concatenate(in_exprs_reshaped, pack_axis) return out def convert_unpack(self, op): """Convert TFLite unpack""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.UnpackOptions import UnpackOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) assert op.BuiltinOptionsType() == BuiltinOptions.UnpackOptions op_options = op.BuiltinOptions() unpack_options = UnpackOptions() unpack_options.Init(op_options.Bytes, op_options.Pos) num_unpacks = unpack_options.Num() unpack_axis = unpack_options.Axis() # Relay doesn't support 'unpack' operator so we use 'split' & 'squeeze' instead. # We have to do 'squeeze' along the split axis. # Relay expects squeeze_axis to be List. squeeze_axis = [unpack_axis] # Relay doesn't like TupleWrapper of 1 element so we isolate the case of unpacking # a tensor by an axis with len(axis) == 1. For reference see convert_split(). # Such unpacking will result in the same tensor so we omit 'split' and only squeeze # along the axis of dim == 1. if num_unpacks == 1: squeezed = _op.squeeze(in_expr, axis=squeeze_axis) if isinstance(squeezed, _expr.TupleWrapper): squeezed = squeezed[0] else: splitted = _op.split(in_expr, indices_or_sections=num_unpacks, axis=unpack_axis) squeezed = _expr.TupleWrapper( _expr.Tuple( [_op.squeeze(split_item, axis=squeeze_axis) for split_item in splitted] ), len(splitted), ) return squeezed def convert_unidirectional_sequence_lstm(self, op): """Long Short Term Memory for TFLite implementation.""" if self.is_quantized(op): raise tvm.error.OpNotImplemented( "TFlite quantized UNIDIRECTIONALSEQUENCELSTM operator is not supported yet." ) input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 24, "input tensors length should be == 24" # Extract input tensor from saved model input_tensor = input_tensors[0] # Extract tensors from input tensors from saved model # Input weights input_input_weights = input_tensors[1] input_forget_weights = input_tensors[2] input_cell_weights = input_tensors[3] input_output_weights = input_tensors[4] # Recurrent weights recurrent_input_weights = input_tensors[5] recurrent_forget_weights = input_tensors[6] recurrent_cell_weights = input_tensors[7] recurrent_output_weights = input_tensors[8] # inputs 9, 10, 11, 16, 17, 20, 21, 22, 23 are not occupied # there locations are -1 in the flatbuffer # Bias weights input_gate_bias = input_tensors[12] forget_gate_bias = input_tensors[13] cell_gate_bias = input_tensors[14] output_gate_bias = input_tensors[15] # State input output_state_in = input_tensors[18] cell_state_in = input_tensors[19] # Extract output tensor from saved model output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" X_steps = self.unbind(input_tensor, axis=1) weights_dict = {} # hidden_state_weights is equivalent to output_state_in in tflite model out_state_in_shape = tuple(self.get_tensor_shape(output_state_in)) out_state_in_dtype = self.get_tensor_type_str(output_state_in.tensor.Type()) out_state_in_expr = _op.zeros(out_state_in_shape, dtype=out_state_in_dtype) weights_dict["hidden_state"] = _op.split(out_state_in_expr, 1)[0] # cell_state_weights is equivalent to output_state_in tflite model cell_state_in_shape = tuple(self.get_tensor_shape(cell_state_in)) cell_state_in_dtype = self.get_tensor_type_str(cell_state_in.tensor.Type()) cell_state_in_expr = _op.zeros(cell_state_in_shape, dtype=cell_state_in_dtype) weights_dict["cell_state"] = _op.split(cell_state_in_expr, 1)[0] # Process weight matrix of input: w_inp # Concatenate of [input_input_weight, input_forget_weights, # input_cell_weights, input_output_weights] input_input_weights_default_values = self.get_tensor_value(input_input_weights) input_input_weights_op = _op.split( _op.const(input_input_weights_default_values.tolist()), 1 ) input_output_weights_default_values = self.get_tensor_value(input_output_weights) input_output_weights_op = _op.split( _op.const(input_output_weights_default_values.tolist()), 1 ) input_forget_weights_default_values = self.get_tensor_value(input_forget_weights) input_forget_weights_op = _op.split( _op.const(input_forget_weights_default_values.tolist()), 1 ) input_cell_weights_default_values = self.get_tensor_value(input_cell_weights) input_cell_weights_op = _op.split(_op.const(input_cell_weights_default_values.tolist()), 1) weights_dict["w_inp"] = _op.concatenate( [ _op.squeeze(input_input_weights_op[0]), _op.squeeze(input_forget_weights_op[0]), _op.squeeze(input_cell_weights_op[0]), _op.squeeze(input_output_weights_op[0]), ], axis=0, ) # Process weight matrix of hidden state: # w_hid to support lstm_cell function. Not used in tflite recurrent_input_weights_values = self.get_tensor_value(recurrent_input_weights) recurrent_input_weights_op = _op.split( _op.const(recurrent_input_weights_values.tolist()), 1 ) recurrent_output_weights_values = self.get_tensor_value(recurrent_output_weights) recurrent_output_weights_op = _op.split( _op.const(recurrent_output_weights_values.tolist()), 1 ) recurrent_forget_weights_values = self.get_tensor_value(recurrent_forget_weights) recurrent_forget_weights_op = _op.split( _op.const(recurrent_forget_weights_values.tolist()), 1 ) recurrent_cell_weights_values = self.get_tensor_value(recurrent_cell_weights) recurrent_cell_weights_op = _op.split(_op.const(recurrent_cell_weights_values.tolist()), 1) weights_dict["w_hid"] = _op.concatenate( [ recurrent_input_weights_op[0], recurrent_forget_weights_op[0], recurrent_cell_weights_op[0], recurrent_output_weights_op[0], ], axis=0, ) # Process weight matrix of bias: b_inp input_gate_bias_values = self.get_tensor_value(input_gate_bias) input_gate_bias_op = _op.split(_op.const(input_gate_bias_values.tolist()), 1) output_gate_bias_values = self.get_tensor_value(output_gate_bias) output_gate_bias_op = _op.split(_op.const(output_gate_bias_values.tolist()), 1) forget_gate_bias_values = self.get_tensor_value(forget_gate_bias) forget_gate_bias_op = _op.split(_op.const(forget_gate_bias_values.tolist()), 1) cell_gate_bias_values = self.get_tensor_value(cell_gate_bias) cell_gate_bias_op = _op.split(_op.const(cell_gate_bias_values.tolist()), 1) weights_dict["b_inp"] = _op.concatenate( [ input_gate_bias_op[0], forget_gate_bias_op[0], cell_gate_bias_op[0], output_gate_bias_op[0], ], axis=0, ) # Process weight matrix of hidden bias: # b_hid (with the same shape as b_inp) gate_bias_dtype = self.get_tensor_type_str(input_gate_bias.tensor.Type()) weights_dict["b_hid"] = _op.split( _op.const( np.zeros(_infer_shape(weights_dict["b_inp"]), dtype=gate_bias_dtype), dtype=gate_bias_dtype, ), 1, )[0] outputs, _, _ = lstm_cell(input_seqs=X_steps, **weights_dict) output = _op.stack(outputs, axis=1) return output def convert_batch_to_space_nd(self, op): """batch_to_space_nd implementation.""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 3, "input tensors length should be 3" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx in_expr = self.get_expr(input_tensor_idx) block_shape = list(self.get_tensor_value(input_tensors[1])) crops = self.get_tensor_value(input_tensors[2]).tolist() out = _op.nn.batch_to_space_nd(in_expr, block_shape, crops) return out def convert_space_to_batch_nd(self, op): """space_to_batch_nd implementation.""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 3, "input tensors length should be 3" input_tensor = input_tensors[0] input_tensor_idx = input_tensor.tensor_idx in_expr = self.get_expr(input_tensor_idx) block_shape = list(self.get_tensor_value(input_tensors[1])) paddings = self.get_tensor_value(input_tensors[2]).tolist() out = _op.nn.space_to_batch_nd(in_expr, block_shape, paddings) return out def convert_depth_to_space(self, op): """Convert TFLite DEPTH_TO_SPACE""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.DepthToSpaceOptions import DepthToSpaceOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) assert op.BuiltinOptionsType() == BuiltinOptions.DepthToSpaceOptions op_options = op.BuiltinOptions() depth_to_space_options = DepthToSpaceOptions() depth_to_space_options.Init(op_options.Bytes, op_options.Pos) block_size = depth_to_space_options.BlockSize() out = _op.nn.depth_to_space(in_expr, block_size, layout="NHWC") return out def convert_space_to_depth(self, op): """Convert TFLite SPACE_TO_DEPTH""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.SpaceToDepthOptions import SpaceToDepthOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) assert op.BuiltinOptionsType() == BuiltinOptions.SpaceToDepthOptions op_options = op.BuiltinOptions() space_to_depth_options = SpaceToDepthOptions() space_to_depth_options.Init(op_options.Bytes, op_options.Pos) block_size = space_to_depth_options.BlockSize() out = _op.nn.space_to_depth(in_expr, block_size, layout="NHWC") return out def convert_sparse_to_dense(self, op): """Convert TFLite SPARSE_TO_DENSE""" try: from tflite.TensorType import TensorType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 4, "input tensors length should be 4" indices, values = input_tensors[0], input_tensors[2] default_value = input_tensors[3] output_shape = input_tensors[1] for t in input_tensors: assert not t.qnn_params, "Quantized input is not expected." for t in [indices, output_shape]: t_type = t.tensor.Type() assert t_type in (TensorType.INT32, TensorType.INT64) out = _op.sparse_to_dense( self.get_tensor_expr(indices), list(self.get_tensor_value(output_shape)), self.get_tensor_expr(values), self.get_tensor_expr(default_value), ) return out def convert_prelu(self, op): """Convert TFLite PReLU""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" input_tensor = input_tensors[0] alpha_tensor = input_tensors[1] if self.has_expr(alpha_tensor.tensor_idx): alpha_expr = self.get_expr(alpha_tensor.tensor_idx) else: alpha_tensor_type = alpha_tensor.tensor.Type() alpha_tensor_type_str = self.get_tensor_type_str(alpha_tensor_type) alpha_expr = self.exp_tab.new_const( self.get_tensor_value(alpha_tensor), dtype=alpha_tensor_type_str ) in_expr = self.get_expr(input_tensor.tensor_idx) data_shape = to_int_list(self.get_tensor_shape(input_tensor)) alpha_expr = _op.broadcast_to(alpha_expr, data_shape) alpha_expr = _op.reshape(alpha_expr, [-1]) out = _op.nn.prelu(_op.reshape(in_expr, [-1]), alpha_expr, axis=0) out = _op.reshape(out, data_shape) return out def convert_transpose_conv(self, op): """Convert TFLite TRANSPOSE_CONV""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.Padding import Padding from tflite.TensorType import TensorType from tflite.TransposeConvOptions import TransposeConvOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) >= 3, "input tensors length should be >= 3" # Input (data) Tensor. NHWC layout input_tensor = input_tensors[2] _, _, _, input_c = to_int_list(self.get_tensor_shape(input_tensor)) # Weights tensor. TFLite uses OHWI layout weights_tensor = input_tensors[1] out_channels, kernel_h, kernel_w, in_channels = to_int_list( self.get_tensor_shape(weights_tensor) ) assert ( input_c == in_channels ), "Input channel in the filter should match to channel in the input" # output_shape Tensor. NHWC layout output_shape_tensor = input_tensors[0] output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] output_tensor_type = output_tensor.tensor.Type() output_tensor_type_str = self.get_tensor_type_str(output_tensor_type) assert op.BuiltinOptionsType() == BuiltinOptions.TransposeConvOptions op_options = op.BuiltinOptions() deconv_options = TransposeConvOptions() deconv_options.Init(op_options.Bytes, op_options.Pos) padding = deconv_options.Padding() stride_h = deconv_options.StrideH() stride_w = deconv_options.StrideW() assert padding in ( Padding.VALID, Padding.SAME, ), "Padding format {} is not supported for operator TRANSPOSE_CONV".format(padding) # Data in_expr = self.get_expr(input_tensor.tensor_idx) # Weights weights_tensor_type = weights_tensor.tensor.Type() # weights tensor type should be UINT8 (quantization) or FLOAT32 assert weights_tensor_type in (TensorType.INT8, TensorType.UINT8, TensorType.FLOAT32) weight_tensor_type_str = self.get_tensor_type_str(weights_tensor_type) if self.has_expr(weights_tensor.tensor_idx): weight_expr_iohw = self.get_expr(weights_tensor.tensor_idx) weight_expr_iohw = _op.transpose(weight_expr_iohw, axes=(3, 0, 1, 2)) else: weight_value_ohwi = self.get_tensor_value(weights_tensor) # Relay kernel_layout should be OIHW # Relay weights layout should be different from kernel_layout - it should be IOHW weight_value_iohw = np.transpose(weight_value_ohwi, (3, 0, 1, 2)) weight_expr_iohw = self.exp_tab.new_const( weight_value_iohw, dtype=weight_tensor_type_str ) # Output shape value output_shape_value = self.get_tensor_value(output_shape_tensor) # Relay expects filter output channel to match to output tensor channel. assert ( out_channels == output_shape_value[3] ), "Output channel in the filter should match to channel in the output_shape" if padding == Padding.SAME: output_h, output_w = output_shape_value[1], output_shape_value[2] pad_top, pad_bottom = get_pad_value(output_h, kernel_h, stride_h) pad_left, pad_right = get_pad_value(output_w, kernel_w, stride_w) padding = (pad_top, pad_left, pad_bottom, pad_right) else: padding = (0, 0, 0, 0) if input_tensor.qnn_params: input_zero_point = input_tensor.qnn_params["zero_point"] kernel_zero_point = weights_tensor.qnn_params["zero_point"] input_scale = input_tensor.qnn_params["scale"] kernel_scale = weights_tensor.qnn_params["scale"] out = _qnn.op.conv2d_transpose( in_expr, weight_expr_iohw, input_zero_point, kernel_zero_point, input_scale, kernel_scale, strides=(stride_h, stride_w), padding=padding, channels=int(out_channels), kernel_size=(int(kernel_h), int(kernel_w)), data_layout="NHWC", kernel_layout="IOHW", out_dtype="int32", ) else: out = _op.nn.conv2d_transpose( in_expr, weight_expr_iohw, strides=(stride_h, stride_w), padding=padding, channels=int(out_channels), kernel_size=(int(kernel_h), int(kernel_w)), data_layout="NHWC", kernel_layout="IOHW", out_dtype=output_tensor_type_str, ) # Checking if there is a fused bias if len(input_tensors) == 4: bias_tensor = input_tensors[3] bias_tensor_type = bias_tensor.tensor.Type() # bias tensor type should be INT32 (quantization) or FLOAT32 assert bias_tensor_type in (TensorType.INT32, TensorType.FLOAT32) bias_tensor_type_str = self.get_tensor_type_str(bias_tensor_type) if self.has_expr(bias_tensor.tensor_idx): bias_expr = self.get_expr(bias_tensor.tensor_idx) else: bias_expr = self.exp_tab.new_const( self.get_tensor_value(bias_tensor), dtype=bias_tensor_type_str ) channel_axis = 3 out = _op.nn.bias_add(out, bias_expr, axis=channel_axis) if output_tensor.qnn_params: # Calculate the intermediate scale and zero point of the int32 output. data_scale = input_tensor.qnn_params["scale"] data_scale_val = get_scalar_from_constant(data_scale) weight_scale = weights_tensor.qnn_params["scale"] # If weight scale is scalar, it is per-tensor quantization if isinstance(weight_scale, float): weight_scale_val = get_scalar_from_constant(weight_scale) else: weight_scale_val = get_tensor_from_constant(weight_scale) new_input_scale_val = data_scale_val * weight_scale_val new_input_scale = relay.const(new_input_scale_val, "float32") new_input_zero_point = relay.const(0, "int32") out = _qnn.op.requantize( out, input_scale=new_input_scale, input_zero_point=new_input_zero_point, output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, axis=3, ) return out def convert_quantize(self, op): """Convert TFLite Quantize""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] input_tensor_type_str = self.get_tensor_type_str(input_tensor.tensor.Type()) in_expr = self.get_tensor_expr(input_tensor) output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type()) # The output must be quantized assert output_tensor.qnn_params # TFLite Quantize op can also act as Requantize op if input_tensor_type_str == "float32": out = self.quantize(in_expr, output_tensor) else: out = _qnn.op.requantize( in_expr, input_scale=input_tensor.qnn_params["scale"], input_zero_point=input_tensor.qnn_params["zero_point"], output_scale=output_tensor.qnn_params["scale"], output_zero_point=output_tensor.qnn_params["zero_point"], out_dtype=output_tensor_type_str, ) return out def convert_dequantize(self, op): """Convert TFLite Dequantize""" try: from tflite.TensorType import TensorType except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] if input_tensor.tensor.Type() == TensorType.FLOAT16: dtype = self.get_tensor_type_str(input_tensor.tensor.Type()) input_value = self.get_tensor_value(input_tensor) in_expr = self.exp_tab.new_const(input_value, dtype=dtype) out = relay.cast(in_expr, dtype="float32") return out in_expr = self.get_expr(input_tensor.tensor_idx) # The input must be quantized assert input_tensor.qnn_params # Dequantize the input. out = self.dequantize(in_expr, input_tensor) return out def convert_detection_postprocess(self, op): """Convert TFLite_Detection_PostProcess""" flexbuffer = op.CustomOptionsAsNumpy().tobytes() custom_options = FlexBufferDecoder(flexbuffer).decode() if "use_regular_nms" in custom_options: if custom_options["use_regular_nms"]: raise tvm.error.OpAttributeUnImplemented( "use_regular_nms=True is not yet supported for operator {}.".format( "TFLite_Detection_PostProcess" ) ) inputs = self.get_input_tensors(op) assert len(inputs) == 3, "inputs length should be 3" cls_pred = self.get_expr(inputs[1].tensor_idx) loc_prob = self.get_expr(inputs[0].tensor_idx) batch_size = inputs[1].tensor.Shape(0) anchor_values = self.get_tensor_value(inputs[2]) anchor_boxes = len(anchor_values) anchor_type = self.get_tensor_type_str(inputs[2].tensor.Type()) anchor_expr = self.exp_tab.new_const(anchor_values, dtype=anchor_type) if inputs[0].qnn_params: loc_prob = _qnn.op.dequantize( data=loc_prob, input_scale=inputs[0].qnn_params["scale"], input_zero_point=inputs[0].qnn_params["zero_point"], ) if inputs[1].qnn_params: cls_pred = _qnn.op.dequantize( data=cls_pred, input_scale=inputs[1].qnn_params["scale"], input_zero_point=inputs[1].qnn_params["zero_point"], ) if inputs[2].qnn_params: anchor_expr = _qnn.op.dequantize( data=anchor_expr, input_scale=inputs[2].qnn_params["scale"], input_zero_point=inputs[2].qnn_params["zero_point"], ) # reshape the cls_pred and loc_prob tensors so # they can be consumed by multibox_transform_loc cls_pred = _op.transpose(cls_pred, [0, 2, 1]) # loc_prob coords are in yxhw format # need to convert to xywh loc_coords = _op.split(loc_prob, 4, axis=2) loc_prob = _op.concatenate( [loc_coords[1], loc_coords[0], loc_coords[3], loc_coords[2]], axis=2 ) loc_prob = _op.reshape(loc_prob, [batch_size, anchor_boxes * 4]) # anchor coords are in yxhw format # need to convert to ltrb anchor_coords = _op.split(anchor_expr, 4, axis=1) anchor_y = anchor_coords[0] anchor_x = anchor_coords[1] anchor_h = anchor_coords[2] anchor_w = anchor_coords[3] plus_half = _expr.const(0.5, dtype="float32") minus_half = _expr.const(-0.5, dtype="float32") anchor_l = _op.add(anchor_x, _op.multiply(anchor_w, minus_half)) anchor_r = _op.add(anchor_x, _op.multiply(anchor_w, plus_half)) anchor_t = _op.add(anchor_y, _op.multiply(anchor_h, minus_half)) anchor_b = _op.add(anchor_y, _op.multiply(anchor_h, plus_half)) anchor_expr = _op.concatenate([anchor_l, anchor_t, anchor_r, anchor_b], axis=1) anchor_expr = _op.expand_dims(anchor_expr, 0) # attributes for multibox_transform_loc multibox_transform_loc_attrs = {} multibox_transform_loc_attrs["clip"] = False multibox_transform_loc_attrs["threshold"] = custom_options["nms_score_threshold"] multibox_transform_loc_attrs["variances"] = ( 1 / custom_options["x_scale"], 1 / custom_options["y_scale"], 1 / custom_options["w_scale"], 1 / custom_options["h_scale"], ) # attributes for non_max_suppression non_max_suppression_attrs = {} non_max_suppression_attrs["return_indices"] = False non_max_suppression_attrs["iou_threshold"] = custom_options["nms_iou_threshold"] non_max_suppression_attrs["force_suppress"] = True non_max_suppression_attrs["top_k"] = anchor_boxes non_max_suppression_attrs["max_output_size"] = custom_options["max_detections"] non_max_suppression_attrs["invalid_to_bottom"] = False ret = _op.vision.multibox_transform_loc( cls_pred, loc_prob, anchor_expr, **multibox_transform_loc_attrs ) ret = _op.vision.non_max_suppression(ret[0], ret[1], ret[1], **non_max_suppression_attrs) ret = _op.vision.get_valid_counts(ret, 0) valid_count = ret[0] # keep only the top 'max_detections' rows ret = _op.strided_slice( ret[1], [0, 0, 0], [batch_size, custom_options["max_detections"], 6] ) # the output needs some reshaping to match tflite ret = _op.split(ret, 6, axis=2) cls_ids = _op.reshape(ret[0], [batch_size, -1]) scores = _op.reshape(ret[1], [batch_size, -1]) boxes = _op.concatenate([ret[3], ret[2], ret[5], ret[4]], axis=2) ret = _expr.TupleWrapper(_expr.Tuple([boxes, cls_ids, scores, valid_count]), size=4) return ret def convert_nms_v5(self, op): """Convert TFLite NonMaxSuppressionV5""" # https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/non-max-suppression-v5 input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 6, "input tensor length should be 6" boxes = self.get_expr(input_tensors[0].tensor_idx) scores = self.get_expr(input_tensors[1].tensor_idx) max_output_size = self.get_tensor_value(input_tensors[2]) iou_threshold = self.get_tensor_value(input_tensors[3]) score_threshold = self.get_tensor_value(input_tensors[4]) soft_nms_sigma = self.get_tensor_value(input_tensors[5]) if isinstance(max_output_size, np.ndarray): assert max_output_size.size == 1, "only one value is expected." max_output_size = int(max_output_size) if isinstance(iou_threshold, np.ndarray): assert iou_threshold.size == 1, "only one value is expected." iou_threshold = float(iou_threshold) if isinstance(score_threshold, np.ndarray): assert score_threshold.size == 1, "only one value is expected." score_threshold = float(score_threshold) if isinstance(soft_nms_sigma, np.ndarray): assert soft_nms_sigma.size == 1, "only one value is expected." soft_nms_sigma = float(soft_nms_sigma) if soft_nms_sigma != 0.0: raise tvm.error.OpNotImplemented( "It is soft_nms when soft_nms_sigma != 0, which is not supported!" ) scores_expand = _op.expand_dims(scores, axis=-1, num_newaxis=1) data = _op.concatenate([scores_expand, boxes], -1) data = _op.expand_dims(data, axis=0, num_newaxis=1) count, data, indices = _op.vision.get_valid_counts( data, score_threshold=score_threshold, id_index=-1, score_index=0 ) nms_ret = _op.vision.non_max_suppression( data=data, valid_count=count, indices=indices, max_output_size=max_output_size, iou_threshold=iou_threshold, force_suppress=True, top_k=-1, coord_start=1, score_index=0, id_index=-1, return_indices=True, invalid_to_bottom=False, ) selected_indices = _op.squeeze(nms_ret[0], axis=[0]) selected_indices = _op.strided_slice(selected_indices, [0], [max_output_size]) valide_num = _op.squeeze(nms_ret[1], axis=[1]) selected_scores = _op.take(scores, selected_indices, axis=0) out = _expr.TupleWrapper(_expr.Tuple([selected_indices, selected_scores, valide_num]), 3) return out def convert_expand_dims(self, op): """Convert TFLite EXPAND_DIMS""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" if input_tensors[0].qnn_params: # Check that input and output tensor have same qnn params. output_tensors = self.get_output_tensors(op) assert self.has_same_qnn_params( input_tensors[0], output_tensors[0] ), "TFLite EXPAND_DIMS requires input and output tensors' \ scale and zero points to be equal" input_expr = self.get_tensor_expr(input_tensors[0]) axis = self.get_tensor_value(input_tensors[1]) if isinstance(axis, np.ndarray): assert axis.size == 1, "only one value is expected." axis = int(axis) ndims = len(input_tensors[0].tensor.ShapeAsNumpy()) assert -1 - ndims <= axis <= ndims, "axis out of range" out = _op.expand_dims(input_expr, axis, 1) return out def convert_one_hot(self, op): """Convert TFLite ONE_HOT""" try: from tflite.BuiltinOptions import BuiltinOptions from tflite.OneHotOptions import OneHotOptions except ImportError: raise ImportError("The tflite package must be installed") input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 4, "Input tensor's length should be 4" # Ensuring input isn't quantized assert all(not i.qnn_params for i in input_tensors), "Quantized input is not expected." # TFlite ONE_HOT requires both on_value # and off_value, making dtype redundant. indices = input_tensors[0] depth = input_tensors[1] on_value = input_tensors[2] off_value = input_tensors[3] assert ( on_value.tensor.Type() == off_value.tensor.Type() ), "on_value and off_value should be the same type" # Getting relay expr indices_expr = self.get_expr(indices.tensor_idx) on_value_expr = self.get_expr(on_value.tensor_idx) off_value_expr = self.get_expr(off_value.tensor_idx) # Getting depth value depth = self.get_tensor_value(depth) if isinstance(depth, np.ndarray): depth = int(depth) # Getting Axis from Option (Attributes) assert op.BuiltinOptionsType() == BuiltinOptions.OneHotOptions op_options = op.BuiltinOptions() one_hot_options = OneHotOptions() one_hot_options.Init(op_options.Bytes, op_options.Pos) axis = one_hot_options.Axis() # Setting dtype dtype = self.get_tensor_type_str(on_value.tensor.Type()) out = _op.one_hot(indices_expr, on_value_expr, off_value_expr, depth, axis, dtype) return out def convert_reverse_v2(self, op): """Convert TFLite REVERSE_V2""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensor's length should be 2" input_expr = self.get_expr(input_tensors[0].tensor_idx) # Getting axis value axis = self.get_tensor_value(input_tensors[1]) if isinstance(axis, np.ndarray): assert len(axis) == 1, "TFLite does not support multi-axis yet" axis = int(axis) out = _op.reverse(input_expr, axis) return out def convert_matrix_set_diag(self, op): """Convert TFLite MATRIX_SET_DIAG""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensor's length should be 2" assert ( input_tensors[0].tensor.Type() == input_tensors[1].tensor.Type() ), "input and diagonal should be the same type of tensors" if input_tensors[0].qnn_params: # Check that input and output tensor have same qnn params. output_tensors = self.get_output_tensors(op) assert self.has_same_qnn_params( input_tensors[0], output_tensors[0] ), "TFLite MATRIX_SET_DIAG requires input and output tensors' \ scale and zero points to be equal" # Check that input and diagonal tensor have same qnn params. assert self.has_same_qnn_params( input_tensors[0], input_tensors[1] ), "TFLite MATRIX_SET_DIAG requires input and diagonal tensors' \ scale and zero points to be equal" input_expr = self.get_tensor_expr(input_tensors[0]) diagonal_expr = self.get_tensor_expr(input_tensors[1]) out = _op.matrix_set_diag(input_expr, diagonal_expr) return out def convert_matrix_diag(self, op): """Convert TFLite MATRIX_DIAG""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensor's length should be 1" diagonal = input_tensors[0] if diagonal.qnn_params: # Check that diagonal and output tensor have same qnn params. output_tensors = self.get_output_tensors(op) assert self.has_same_qnn_params( diagonal, output_tensors[0] ), "TFLite MATRIX_DIAG requires diagonal and output tensors' \ scale and zero points to be equal" shape = to_int_list(self.get_tensor_shape(diagonal)) shape = np.append(shape, shape[-1]) dtype = self.get_tensor_type_str(diagonal.tensor.Type()) input_expr = _op.zeros(tuple(shape), dtype) diagonal_expr = self.get_tensor_expr(diagonal) out = _op.matrix_set_diag(input_expr, diagonal_expr) return out def convert_densify(self, op): """Convert TFLite DENSIFY""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" output_tensors = self.get_output_tensors(op) assert len(output_tensors) == 1, "output tensors length should be 1" output_tensor = output_tensors[0] sparse_weight_tensor = input_tensors[0] sparse_weight_tensor_type_str = self.get_tensor_type_str(sparse_weight_tensor.tensor.Type()) # NOTE: With current implementation in TFLite, Densify Op does not need to be present # in runtime. # TODO(ANSHUMAN87): we need to use the sparse_indices output # from below function and use that in sparse_to_dense Op. # Once the stack corruption issue is resolved in sparse_to_dense Op. _, dense_weight = prepare_dense_matrix_from_sparse( sparse_weight_tensor.tensor, self.get_tensor_value(sparse_weight_tensor, is_sparse=True), sparse_weight_tensor_type_str, ) self.set_prefetched_node(output_tensor.tensor_idx, dense_weight) def convert_fake_quant(self, op): """Convert TFLite FAKE_QUANT""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 1, "input tensors length should be 1" input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) from tflite.BuiltinOptions import BuiltinOptions from tflite.FakeQuantOptions import FakeQuantOptions assert op.BuiltinOptionsType() == BuiltinOptions.FakeQuantOptions op_options = op.BuiltinOptions() fake_quant_options = FakeQuantOptions() fake_quant_options.Init(op_options.Bytes, op_options.Pos) opt_min = fake_quant_options.Min() opt_max = fake_quant_options.Max() narrow_range = fake_quant_options.NarrowRange() num_bits = fake_quant_options.NumBits() assert 2 <= num_bits <= 16 quant_min = 1 if narrow_range else 0 quant_max = (1 << num_bits) - 1 scale = (opt_max - opt_min) / (quant_max - quant_min) zero_point_from_min = quant_min - opt_min / scale if zero_point_from_min <= quant_min: nudged_zero_point = quant_min elif zero_point_from_min >= quant_max: nudged_zero_point = quant_max else: nudged_zero_point = round(zero_point_from_min) nudged_min = (quant_min - nudged_zero_point) * scale nudged_max = (quant_max - nudged_zero_point) * scale nudged_min_expr = _op.const(nudged_min) clamped = _op.clip(in_expr, nudged_min, nudged_max) clamped_shifted = _op.subtract(clamped, nudged_min_expr) half = _op.const(0.5) one = _op.const(1.0) scale_expr = _op.const(scale) inv_scale = _op.divide(one, scale_expr) rounded = _op.floor(_op.add(_op.multiply(clamped_shifted, inv_scale), half)) return _op.add(_op.multiply(rounded, scale_expr), nudged_min_expr) def get_expr(self, input_tensor_idx): return self.exp_tab.get_expr(get_tensor_name(self.subgraph, input_tensor_idx)) def has_expr(self, input_tensor_idx): return self.exp_tab.has_expr(get_tensor_name(self.subgraph, input_tensor_idx)) def is_prefetched(self, input_tensor_idx): return ( self.prefetched_nodes.get(get_tensor_name(self.subgraph, input_tensor_idx)) is not None ) def set_prefetched_node(self, input_tensor_idx, value): self.prefetched_nodes[get_tensor_name(self.subgraph, input_tensor_idx)] = value def get_prefetched_node(self, input_tensor_idx): return self.prefetched_nodes[get_tensor_name(self.subgraph, input_tensor_idx)] def get_tensor_expr(self, tensor, is_sparse=False): """Return the Relay expr for tensor.""" if self.has_expr(tensor.tensor_idx): expr = self.get_expr(tensor.tensor_idx) else: type_str = self.get_tensor_type_str(tensor.tensor.Type()) expr = self.exp_tab.new_const(self.get_tensor_value(tensor, is_sparse), dtype=type_str) return expr def get_tensor_shape(self, tensor_wrapper): """Returns tensor shape. Infers shape if the shape is empty.""" assert isinstance(tensor_wrapper, TensorWrapper), "Expecting TensorWrapper here" return ( tensor_wrapper.tensor.ShapeAsNumpy() if tensor_wrapper.tensor.ShapeLength() > 0 else _infer_shape(self.get_tensor_expr(tensor_wrapper)) ) # pylint: disable=no-else-return def prepare_dense_matrix_from_sparse(sparse_tensor, sparse_tensor_value, sparse_tensor_type): """Prepare sparse indices and dense matrix from TFLite sparse parameters.""" # The function is implemented based on TFLite sparse parameter specifications # Please refer # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/schema/schema.fbs#L89 # for details about each parameters sparsity = sparse_tensor.Sparsity() dense_shape = sparse_tensor.ShapeAsNumpy() orig_rank = len(dense_shape) # The traversal order of the dimensions defined in the `shape` field of the to be dense tensor. traversal_order = sparsity.TraversalOrderAsNumpy() # For an n-dimensional tensor with a k-dimensional block (0 <= k <= n), # stores how a block dimension in (dn, ..., dn+k-1) maps to the original # tensor dimension in (d0, ..., dn). It's stored in the order of (dn, ..., dn+k-1). # If not block-sparse, this field is NULL. block_map = sparsity.BlockMapAsNumpy() total_rank = sparsity.TraversalOrderLength() dense_mat = np.full(shape=dense_shape, fill_value=0, dtype=sparse_tensor_type).flatten() from enum import Enum # NOTE: Here the Vector term is borrowed from TFLite spec. class VectorType(Enum): Empty = 0 Int32 = 1 Uint16 = 2 Uint8 = 3 def _get_vector_flag(v_type): if VectorType(v_type) == VectorType.Int32: return N.Int32Flags elif VectorType(v_type) == VectorType.Uint16: return N.Uint16Flags elif VectorType(v_type) == VectorType.Uint8: return N.Uint8Flags else: raise tvm.error.OpNotImplemented("The provided type {} is not supported".format(v_type)) def _get_flattened_index(indices, shape): index = 0 sub_elements = 1 for i in reversed(range(0, len(dense_shape))): index += indices[i] * sub_elements sub_elements *= shape[i] return index # DimensionMetadata per dimension: the metadata needed for # each dimension to locate the non-zero values in the original dense tensor # inline with traversal order parameter. # # sp_format has 2 possible values: {DENSE = 0, SPARSE_CSR = 1} # If format = DENSE{0} : DenseSize represents size of that dimension # If format = SPARSE_CSR{1} : array_segments represents how to segment the indices array, # each segment corresponds to one element in the previous dimension. array_indices # represents the index of the non-zero elements within this dimension # (as those in the CSR matrix format, where the first array is row pointers # and the second array is column indices). sp_format = np.zeros(sparsity.DimMetadataLength()) dim_metadata = [None] * (2 * sparsity.DimMetadataLength()) # Below loop will fetch all meta data per dimension based on format type # Dense or Sparse and will put it in an agnostic array for easy access # while preparing dense buffer or indices. for i in range(sparsity.DimMetadataLength()): sp_format[i] = sparsity.DimMetadata(i).Format() if sp_format[i] == 0: dim_metadata[2 * i] = [sparsity.DimMetadata(i).DenseSize()] else: from flatbuffers import number_types as N dim_metadata[2 * i] = ( sparsity.DimMetadata(i) .ArraySegments() .GetVectorAsNumpy( flags=_get_vector_flag(sparsity.DimMetadata(i).ArraySegmentsType()), off=4 ) ) dim_metadata[2 * i + 1] = ( sparsity.DimMetadata(i) .ArrayIndices() .GetVectorAsNumpy( flags=_get_vector_flag(sparsity.DimMetadata(i).ArrayIndicesType()), off=4 ) ) block_dim = 0 block_size = np.zeros(sparsity.BlockMapLength()) # Block size parameter if encoded in BSR format for i in range(orig_rank): if block_dim < sparsity.BlockMapLength() and block_map[block_dim] == i: orig_dim = traversal_order[orig_rank + block_dim] block_size[block_dim] = sparsity.DimMetadata(orig_dim).DenseSize() block_dim += 1 indices_list = [] # Below function iterates through each applicable indices per dimension # based on format type specified and finally produce the dense matrix and the NZ indices. def _def_prepare_dense_matrix_from_sparse(indices, level, prev_idx): if level == len(indices): start_pos = 0 orig_idx = np.zeros(orig_rank, dtype="int32") while start_pos < orig_rank: orig_idx[traversal_order[start_pos]] = indices[start_pos] start_pos += 1 while start_pos < len(indices): block_idx = traversal_order[start_pos] - orig_rank orig_dim = block_map[block_idx] orig_idx[orig_dim] = orig_idx[orig_dim] * block_size[block_idx] + indices[start_pos] start_pos += 1 indices_list.append(orig_idx) nonlocal value_idx dense_mat[_get_flattened_index(orig_idx, dense_shape)] = sparse_tensor_value[value_idx] value_idx += 1 else: metadata_idx = 2 * level if sp_format[level] == 0: shape_of_level = dim_metadata[metadata_idx][0] for idx in range(shape_of_level): indices[level] = idx _def_prepare_dense_matrix_from_sparse( indices, level + 1, prev_idx * shape_of_level + idx ) else: array_segments = dim_metadata[metadata_idx] array_indices = dim_metadata[metadata_idx + 1] for idx in range(array_segments[prev_idx], array_segments[prev_idx + 1]): indices[level] = array_indices[idx] _def_prepare_dense_matrix_from_sparse(indices, level + 1, idx) indices = np.zeros(total_rank) value_idx = 0 _def_prepare_dense_matrix_from_sparse(indices, 0, 0) return np.array(indices_list, dtype="int32"), dense_mat.reshape(dense_shape) def get_scalar_from_constant(expr): """Returns scalar value from Relay constant scalar.""" assert ( isinstance(expr, _expr.Constant) and not expr.data.shape ), "Expr is not a constant scalar." value = expr.data.numpy() assert value.dtype == np.dtype(np.int32) or value.dtype == np.dtype( np.float32 ), "value must be float32/int32" return value.item(0) def get_tensor_from_constant(expr): """Returns tensor of values from Relay constant node.""" assert isinstance(expr, _expr.Constant) value = expr.data.numpy() assert value.dtype == np.dtype(np.int32) or value.dtype == np.dtype( np.float32 ), "value must be float32/int32" return value def build_str_map(obj): """Build string map of TFLite enum int value Parameters ---------- obj: TFLite class which contains enum int value, such as BuiltInOptions Returns ------- String representation map of TFLite class enum int value """ ret = {} for field_name in dir(obj): if not field_name.startswith("_"): field_value = getattr(obj, field_name) if isinstance(field_value, int): ret[field_value] = field_name return ret # SAME padding: https://www.tensorflow.org/api_guides/python/nn def get_pad_value(data, kernel, stride): """Get the pad tuple of value for SAME padding Parameters ---------- data: 1D input data kernel: 1D input kernel stride: 1D input stride Returns ------- pad tuple of value """ out = int(math.ceil(float(data) / float(stride))) pad = max(0, (out - 1) * stride + kernel - data) pad_before = pad // 2 pad_after = pad - pad_before return pad_before, pad_after def get_tensor_name(subgraph, tensor_idx): """Get the tensor name. Parameters ---------- subgraph: tflite.Subgraph.Subgraph tensor: tensor index in subgraph Returns ------- tensor name in UTF-8 encoding """ return subgraph.Tensors(tensor_idx).Name().decode("utf-8") def _decode_type(n): _tflite_m = { 0: "float32", 1: "float16", 2: "int32", 3: "uint8", 4: "int64", 5: "string", 6: "bool", 7: "int16", 8: "complex64", 9: "int8", } return _tflite_m[n] def _input_type(model): subgraph_count = model.SubgraphsLength() assert subgraph_count > 0 shape_dict = {} dtype_dict = {} for subgraph_index in range(subgraph_count): subgraph = model.Subgraphs(subgraph_index) inputs_count = subgraph.InputsLength() assert inputs_count >= 1 for input_index in range(inputs_count): input_ = subgraph.Inputs(input_index) assert subgraph.TensorsLength() > input_ tensor = subgraph.Tensors(input_) input_shape = tuple(tensor.ShapeAsNumpy()) tensor_type = tensor.Type() input_name = tensor.Name().decode("utf8") shape_dict[input_name] = input_shape dtype_dict[input_name] = _decode_type(tensor_type) return shape_dict, dtype_dict def from_tflite(model, shape_dict=None, dtype_dict=None, op_converter=OperatorConverter): """Convert from tflite model into compatible relay Function. Parameters ---------- model: tflite.Model or tflite.Model.Model (depending on tflite version) shape_dict : dict of str to int list/tuple Input shapes of the model. dtype_dict : dict of str to str Input types of the model. Returns ------- mod : tvm.IRModule The relay module for compilation. params : dict of str to tvm.nd.NDArray The parameter dict to be used by relay """ try: import tflite.BuiltinOperator import tflite.SubGraph except ImportError: raise ImportError("The tflite package must be installed") # TFLite.Model.Model has changed to TFLite.Model from 1.14 to 2.1 try: import tflite assert isinstance(model, tflite.Model) except TypeError: import tflite.Model assert isinstance(model, tflite.Model.Model) _shape_dict, _dtype_dict = _input_type(model) if shape_dict is not None: _shape_dict.update(shape_dict) if dtype_dict is not None: _dtype_dict.update(dtype_dict) # keep the same as tflite assert model.SubgraphsLength() == 1, "only support one subgraph (main subgraph)" subgraph = model.Subgraphs(0) # model inputs / outputs model_inputs = subgraph.InputsAsNumpy() model_outputs = subgraph.OutputsAsNumpy() exp_tab = ExprTable() for model_input in model_inputs: model_input_name = get_tensor_name(subgraph, model_input) shape = _shape_dict[model_input_name] if model_input_name in _shape_dict else None dtype = _dtype_dict[model_input_name] if model_input_name in _dtype_dict else "float32" exp_tab.set_expr(model_input_name, _expr.var(model_input_name, shape=shape, dtype=dtype)) # op code in model op_converter = op_converter(model, subgraph, exp_tab) op_converter.check_unsupported_ops() op_converter.convert_op_to_relay() # params and outputs params = {k: _nd.array(np.array(v)) for k, v in exp_tab.params.items()} outputs = [exp_tab.get_expr(get_tensor_name(subgraph, i)) for i in model_outputs] outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) attrs = tvm.ir.make_node( "DictAttrs", **{ "output_tensor_names": [ sanitize_name(get_tensor_name(subgraph, model_output)) for model_output in model_outputs ] }, ) func = _function.Function(analysis.free_vars(outputs), outputs, attrs=attrs) mod = IRModule.from_expr(func) return mod, params
https://github.com/zk-ml/tachikoma
python/tvm/relay/frontend/tflite_flexbuffer.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, too-many-lines, import-outside-toplevel """Tensorflow lite frontend helper to parse custom options in Flexbuffer format.""" import struct from enum import IntEnum class BitWidth(IntEnum): """Flexbuffer bit width schema from flexbuffers.h""" BIT_WIDTH_8 = 0 BIT_WIDTH_16 = 1 BIT_WIDTH_32 = 2 BIT_WIDTH_64 = 3 class FlexBufferType(IntEnum): """Flexbuffer type schema from flexbuffers.h""" FBT_NULL = 0 FBT_INT = 1 FBT_UINT = 2 FBT_FLOAT = 3 # Types above stored inline, types below store an offset. FBT_KEY = 4 FBT_STRING = 5 FBT_INDIRECT_INT = 6 FBT_INDIRECT_UINT = 7 FBT_INDIRECT_FLOAT = 8 FBT_MAP = 9 FBT_VECTOR = 10 # Untyped. FBT_VECTOR_INT = 11 # Typed any size (stores no type table). FBT_VECTOR_UINT = 12 FBT_VECTOR_FLOAT = 13 FBT_VECTOR_KEY = 14 FBT_VECTOR_STRING = 15 FBT_VECTOR_INT2 = 16 # Typed tuple (no type table, no size field). FBT_VECTOR_UINT2 = 17 FBT_VECTOR_FLOAT2 = 18 FBT_VECTOR_INT3 = 19 # Typed triple (no type table, no size field). FBT_VECTOR_UINT3 = 20 FBT_VECTOR_FLOAT3 = 21 FBT_VECTOR_INT4 = 22 # Typed quad (no type table, no size field). FBT_VECTOR_UINT4 = 23 FBT_VECTOR_FLOAT4 = 24 FBT_BLOB = 25 FBT_BOOL = 26 FBT_VECTOR_BOOL = 36 # To Allow the same type of conversion of type to vector type class FlexBufferDecoder(object): """ This implements partial flexbuffer deserialization to be able to read custom options. It is not intended to be a general purpose flexbuffer deserializer and as such only supports a limited number of types and assumes the data is a flat map. """ def __init__(self, buffer): self.buffer = buffer def indirect_jump(self, offset, byte_width): """Helper function to read the offset value and jump""" unpack_str = "" if byte_width == 1: unpack_str = "<B" elif byte_width == 4: unpack_str = "<i" assert unpack_str != "" back_jump = struct.unpack(unpack_str, self.buffer[offset : offset + byte_width])[0] return offset - back_jump def decode_keys(self, end, size, byte_width): """Decodes the flexbuffer type vector. Map keys are stored in this form""" # Keys are strings here. The format is all strings separated by null, followed by back # offsets for each of the string. For example, (str1)\0(str1)\0(offset1)(offset2) The end # pointer is pointing at the end of all strings keys = list() for i in range(0, size): offset_pos = end + i * byte_width start_index = self.indirect_jump(offset_pos, byte_width) str_size = self.buffer[start_index:].find(b"\0") assert str_size != -1 s = self.buffer[start_index : start_index + str_size].decode("utf-8") keys.append(s) return keys def decode_vector(self, end, size, byte_width): """Decodes the flexbuffer vector""" # Each entry in the vector can have different datatype. Each entry is of fixed length. The # format is a sequence of all values followed by a sequence of datatype of all values. For # example - (4)(3.56)(int)(float) The end here points to the start of the values. values = list() for i in range(0, size): value_type_pos = end + size * byte_width + i value_type = FlexBufferType(self.buffer[value_type_pos] >> 2) value_bytes = self.buffer[end + i * byte_width : end + (i + 1) * byte_width] if value_type == FlexBufferType.FBT_BOOL: value = bool(value_bytes[0]) elif value_type == FlexBufferType.FBT_INT: value = struct.unpack("<i", value_bytes)[0] elif value_type == FlexBufferType.FBT_UINT: value = struct.unpack("<I", value_bytes)[0] elif value_type == FlexBufferType.FBT_FLOAT: value = struct.unpack("<f", value_bytes)[0] else: raise Exception values.append(value) return values def decode_map(self, end, byte_width, parent_byte_width): """Decodes the flexbuffer map and returns a dict""" mid_loc = self.indirect_jump(end, parent_byte_width) map_size = struct.unpack("<i", self.buffer[mid_loc - byte_width : mid_loc])[0] # Find keys keys_offset = mid_loc - byte_width * 3 keys_end = self.indirect_jump(keys_offset, byte_width) keys = self.decode_keys(keys_end, map_size, 1) # Find values values_end = self.indirect_jump(end, parent_byte_width) values = self.decode_vector(values_end, map_size, byte_width) return dict(zip(keys, values)) def decode(self): """Decode the buffer. Decoding is partially implemented""" root_end = len(self.buffer) - 1 root_byte_width = self.buffer[root_end] root_end -= 1 root_packed_type = self.buffer[root_end] root_end -= root_byte_width root_type = FlexBufferType(root_packed_type >> 2) byte_width = 1 << BitWidth(root_packed_type & 3) if root_type == FlexBufferType.FBT_MAP: return self.decode_map(root_end, byte_width, root_byte_width) raise NotImplementedError("Flexbuffer Decoding is partially imlpemented.")
https://github.com/zk-ml/tachikoma
python/tvm/relay/function.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, invalid-name, unused-import """The expression nodes of Relay.""" from __future__ import absolute_import import tvm._ffi from tvm.runtime import convert from tvm.ir import BaseFunc from .expr import Call from . import _ffi_api @tvm._ffi.register_object("relay.Function") class Function(BaseFunc): """A function declaration expression. Parameters ---------- params: List[tvm.relay.Var] List of input parameters to the function. body: tvm.relay.Expr The body of the function. ret_type: Optional[tvm.relay.Type] The return type annotation of the function. type_params: Optional[List[tvm.relay.TypeParam]] The additional type parameters, this is only used in advanced usecase of template functions. """ def __init__(self, params, body, ret_type=None, type_params=None, attrs=None): if type_params is None: type_params = convert([]) self.__init_handle_by_constructor__( _ffi_api.Function, params, body, ret_type, type_params, attrs ) def __call__(self, *args): """Invoke the global function. Parameters ---------- args: List[relay.Expr] Arguments. """ return Call(self, args, None, None) @tvm._ffi.register_func("relay.FunctionWithFields") def FunctionWithFields( function, params=None, body=None, ret_type=None, ty_params=None, attrs=None, virtual_device=None, span=None, ): """ Returns function with the given properties. A None property denotes 'no change'. Returns function if all properties are unchanged. Otherwise, returns a copy with the new fields. """ return _ffi_api.FunctionWithFields( function, params, body, ret_type, ty_params, attrs, virtual_device, span )
https://github.com/zk-ml/tachikoma
python/tvm/relay/loops.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """ Utilities for building Relay loops. """ from .scope_builder import ScopeBuilder from . import expr as _expr from . import function as _function def while_loop(cond, loop_vars, loop_bodies): """ Construct a while loop. Parameters ---------- cond: Callable[Tuple[relay.Expr], relay.Expr] The condition of the loop. loop_vars: Tuple[relay.Expr] The variables being looped over. The initial values of the loop, will be used to construct the loop variables. loop_bodies: Callable[Tuple[relay.Expr], Tuple[relay.Expr]] The body of the loop, should be a function which given loop variables produces the output result also as a tuple Returns ------- loop: relay.Expr The loop expression. """ sb = ScopeBuilder() loop = _expr.Var("while_loop") fresh_vars = [] for i, loop_var in enumerate(loop_vars): name = loop_var.name_hint if isinstance(loop_var, _expr.Var) else "arg{}".format(i) new_var = _expr.var(name, type_annotation=sb.type_of(loop_var)) fresh_vars.append(new_var) with sb.if_scope(cond(*fresh_vars)): sb.ret(loop(*loop_bodies(*fresh_vars))) with sb.else_scope(): sb.ret(_expr.Tuple(fresh_vars)) func = _function.Function(fresh_vars, sb.get()) let = _expr.Let(loop, func, loop) return let
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import, redefined-builtin """Relay core operators.""" # operator defs from .op import ( get, register_compute, register_gradient, register_pattern, register_alter_op_layout, register_legalize, OpPattern, OpStrategy, debug, register_external_compiler, register_fake_quantization_to_integer, register_mixed_precision_conversion, ) from . import strategy # Operators from .reduce import * from .tensor import * from .transform import * from .algorithm import * from . import vm from . import nn from . import annotation from . import memory from . import image from . import vision from . import op_attrs from . import random # operator registry from . import _tensor from . import _tensor_grad from . import _transform from . import _reduce from . import _algorithm from . import _math def _register_op_make(): # pylint: disable=import-outside-toplevel from . import _make from .. import expr expr._op_make = _make _register_op_make()
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/_algorithm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. "Definition of classic algorithms" # pylint: disable=invalid-name,unused-argument from __future__ import absolute_import from tvm.te.hybrid import script from tvm.runtime import convert from . import strategy from . import op as _reg from .op import OpPattern, register_pattern from .op import register_strategy, register_shape_func from ._tensor import elemwise_shape_func # sort register_strategy("sort", strategy.sort_strategy) register_pattern("sort", OpPattern.OPAQUE) register_shape_func("sort", False, elemwise_shape_func) # argsort register_strategy("argsort", strategy.argsort_strategy) register_pattern("argsort", OpPattern.OPAQUE) register_shape_func("argsort", False, elemwise_shape_func) # topk register_strategy("topk", strategy.topk_strategy) register_pattern("topk", OpPattern.OPAQUE) # searchsorted register_strategy("searchsorted", strategy.searchsorted_strategy) register_pattern("searchsorted", OpPattern.OPAQUE) @script def _topk_shape_func_input_shape(data_shape, k, axis): ndim = data_shape.shape[0] val_out = output_tensor((ndim,), "int64") indices_out = output_tensor((ndim,), "int64") for i in const_range(ndim): if i != axis: val_out[i] = int64(data_shape[i]) indices_out[i] = int64(data_shape[i]) else: if k < 1: val_out[i] = int64(data_shape[i]) indices_out[i] = int64(data_shape[i]) else: val_out[i] = int64(k) indices_out[i] = int64(k) return val_out, indices_out @_reg.register_shape_func("topk", False) def topk_shape_func(attrs, inputs, _): """ Shape func for topk. """ axis = attrs.axis if axis < 0: axis += inputs[0].shape[0] val_out, indices_out = _topk_shape_func_input_shape(inputs[0], attrs.k, convert(axis)) ret_type = attrs.ret_type if ret_type == "both": ret = [val_out, indices_out] elif ret_type == "values": ret = [val_out] else: ret = [indices_out] return ret @script def _searchsorted_shape(sorted_sequence_shape, values_shape): out_shape = output_tensor((values_shape.shape[0],), "int64") if sorted_sequence_shape.shape[0] > 1: assert ( sorted_sequence_shape.shape[0] == values_shape.shape[0] ), "Ranks of `sorted_sequence` and values must be the same if `sorted_sequence` is not 1-D." for i in range(values_shape.shape[0]): if sorted_sequence_shape.shape[0] > 1 and i < values_shape.shape[0] - 1: assert ( sorted_sequence_shape[i] == values_shape[i] ), "`sorted_sequence and `values` do not have the same shape along outer axes." out_shape[i] = values_shape[i] return out_shape @_reg.register_shape_func("searchsorted", False) def searchsorted_shape_func(attrs, inputs, _): """ Shape func for searchsorted operator. """ return [_searchsorted_shape(inputs[0], inputs[1])]
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/_make.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Constructor APIs""" import tvm._ffi tvm._ffi._init_api("relay.op._make", __name__)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/_math.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Backend compiler related feature registration""" from . import op as _reg from . import strategy # einsum _reg.register_strategy("einsum", strategy.einsum_strategy)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/_reduce.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Backend compiler related feature registration""" from __future__ import absolute_import from tvm.runtime import convert from tvm.te.hybrid import script from tvm.topi.utils import get_const_int, get_const_tuple from . import op as _reg _reg.register_reduce_schedule("argmax") _reg.register_reduce_schedule("argmin") _reg.register_reduce_schedule("sum") _reg.register_reduce_schedule("all") _reg.register_reduce_schedule("any") _reg.register_reduce_schedule("max") _reg.register_reduce_schedule("min") _reg.register_reduce_schedule("prod") _reg.register_reduce_schedule("mean") _reg.register_reduce_schedule("variance") def _create_axis_record(attrs, inputs): axes = attrs.axis if attrs.axis is None else list(get_const_tuple(attrs.axis)) exclude = get_const_int(attrs.exclude) > 0 keepdims = get_const_int(attrs.keepdims) > 0 data_shape = inputs[0] shape_size = data_shape.shape[0].value axis_record = [-1] * shape_size if axes is None: axes = list(range(shape_size)) for i, axis in enumerate(axes): if axis < 0: axes[i] = shape_size + axis if exclude: ex_axes = [] for i in range(shape_size): if i not in axes: ex_axes.append(i) axes = ex_axes for i in range(shape_size): if i not in axes: axis_record[i] = i if not keepdims: tmp = [] for i in axis_record: if i >= 0: tmp.append(i) axis_record = tmp return axis_record @script def _reduce_shape_func(data_shape, axis_record): out = output_tensor((len(axis_record),), "int64") for i in const_range(len(axis_record)): if axis_record[i] >= 0: out[i] = data_shape[axis_record[i]] else: out[i] = int64(1) return out def reduce_shape_func(attrs, inputs, _): """ Shape function for reduce op. """ axis_record = _create_axis_record(attrs, inputs) return [_reduce_shape_func(inputs[0], convert(axis_record))] _reg.register_shape_func("argmax", False, reduce_shape_func) _reg.register_shape_func("argmin", False, reduce_shape_func) _reg.register_shape_func("all", False, reduce_shape_func) _reg.register_shape_func("sum", False, reduce_shape_func) _reg.register_shape_func("max", False, reduce_shape_func) _reg.register_shape_func("min", False, reduce_shape_func) _reg.register_shape_func("prod", False, reduce_shape_func) _reg.register_shape_func("mean", False, reduce_shape_func) _reg.register_shape_func("variance", False, reduce_shape_func)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/_tensor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, len-as-condition """Backend compiler related feature registration""" from tvm.te.hybrid import script from tvm import topi from tvm.runtime import convert from .op import register_compute, register_shape_func, register_legalize from .op import register_broadcast_schedule, register_injective_schedule from .op import register_pattern, OpPattern register_broadcast_schedule("log") register_broadcast_schedule("log2") register_broadcast_schedule("log10") register_broadcast_schedule("tan") register_broadcast_schedule("cos") register_broadcast_schedule("cosh") register_broadcast_schedule("sin") register_broadcast_schedule("sinh") register_broadcast_schedule("acos") register_broadcast_schedule("acosh") register_broadcast_schedule("asin") register_broadcast_schedule("asinh") register_broadcast_schedule("atan") register_broadcast_schedule("atanh") register_broadcast_schedule("exp") register_broadcast_schedule("erf") register_broadcast_schedule("sqrt") register_broadcast_schedule("rsqrt") register_broadcast_schedule("sigmoid") register_broadcast_schedule("floor") register_broadcast_schedule("ceil") register_broadcast_schedule("trunc") register_broadcast_schedule("round") register_broadcast_schedule("sign") register_broadcast_schedule("abs") register_broadcast_schedule("tanh") register_broadcast_schedule("add") register_broadcast_schedule("subtract") register_broadcast_schedule("multiply") register_broadcast_schedule("divide") register_broadcast_schedule("floor_divide") register_broadcast_schedule("trunc_divide") register_broadcast_schedule("power") register_broadcast_schedule("copy") register_broadcast_schedule("logical_not") register_broadcast_schedule("logical_and") register_broadcast_schedule("logical_or") register_broadcast_schedule("logical_xor") register_broadcast_schedule("bitwise_not") register_broadcast_schedule("bitwise_and") register_broadcast_schedule("bitwise_or") register_broadcast_schedule("bitwise_xor") register_broadcast_schedule("negative") register_broadcast_schedule("mod") register_broadcast_schedule("floor_mod") register_broadcast_schedule("trunc_mod") register_broadcast_schedule("equal") register_broadcast_schedule("not_equal") register_broadcast_schedule("less") register_broadcast_schedule("less_equal") register_broadcast_schedule("greater") register_broadcast_schedule("greater_equal") register_broadcast_schedule("isnan") register_broadcast_schedule("isfinite") register_broadcast_schedule("isinf") register_injective_schedule("maximum") register_injective_schedule("minimum") register_injective_schedule("right_shift") register_injective_schedule("left_shift") register_injective_schedule("shape_of") register_injective_schedule("ndarray_size") register_injective_schedule("device_copy") register_broadcast_schedule("fast_exp") register_broadcast_schedule("fast_tanh") register_broadcast_schedule("fast_erf") @register_legalize("erf") def legalize_erf(attrs, inputs, types): """Legalize ERF op. Parameters ---------- attrs : tvm.ir.Attrs Attributes of current convolution inputs : list of tvm.relay.Expr The args of the Relay expr to be legalized types : list of types List of input and output types Returns ------- result : tvm.relay.Expr The legalized expr """ return topi.math.erf_legalize(attrs, inputs, types) # zeros @register_compute("zeros") def zeros_compute(attrs, inputs, output_type): assert not inputs return [topi.full(output_type.shape, output_type.dtype, 0.0)] register_broadcast_schedule("zeros") register_pattern("zeros", OpPattern.ELEMWISE) # zeros_like @register_compute("zeros_like") def zeros_like_compute(attrs, inputs, output_type): assert len(inputs) == 1 return [topi.full_like(inputs[0], 0.0)] register_broadcast_schedule("zeros_like") # ones @register_compute("ones") def ones_compute(attrs, inputs, output_type): assert not inputs return [topi.full(output_type.shape, output_type.dtype, 1.0)] register_broadcast_schedule("ones") register_pattern("ones", OpPattern.ELEMWISE) # ones_like @register_compute("ones_like") def ones_like_compute(attrs, inputs, output_type): assert len(inputs) == 1 return [topi.full_like(inputs[0], 1.0)] register_broadcast_schedule("ones_like") # clip @register_compute("clip") def clip_compute(attrs, inputs, output_type): assert len(inputs) == 1 return [topi.clip(inputs[0], attrs.a_min, attrs.a_max)] register_injective_schedule("clip") # fixed point multiply @register_compute("fixed_point_multiply") def fixed_point_multiply_compute(attrs, inputs, output_type): assert len(inputs) == 1 return [topi.fixed_point_multiply(inputs[0], attrs.multiplier, attrs.shift)] register_injective_schedule("fixed_point_multiply") # per-channel/per-axis fixed point multiply @register_compute("fixed_point_multiply_per_axis") def fixed_point_multiply_per_axis_compute(attrs, inputs, output_type): assert len(inputs) == 4 return [ topi.fixed_point_multiply_per_axis( *inputs, attrs.is_lshift_required, attrs.is_rshift_required, attrs.axes ) ] register_broadcast_schedule("fixed_point_multiply_per_axis") # full @script def _full_shape_func(shape): out_ndim = shape.shape[0] out = output_tensor((out_ndim,), "int64") for i in const_range(out_ndim): out[i] = int64(shape[i]) return out @script def _convert_shape(shape): out = output_tensor((len(shape),), "int64") for i in const_range(len(shape)): out[i] = int64(shape[i]) return out def full_shape_func(attrs, inputs, out_ndims): """ Shape func for full. """ if len(inputs) > 1: return [_full_shape_func(inputs[1])] return [_convert_shape(convert(attrs.shape))] def no_data_full_shape_func(attrs, inputs, out_ndims): """ Shape func for zeros and ones. """ if len(inputs) == 0: return [_convert_shape(convert(attrs.shape))] return [_full_shape_func(inputs[0])] @script def _broadcast_shape_func(x, y, ndim): out = output_tensor((ndim,), "int64") if len(x.shape) == 0: for i in const_range(ndim): out[i] = y[i] elif len(y.shape) == 0: for i in const_range(ndim): out[i] = x[i] else: ndim1 = x.shape[0] ndim2 = y.shape[0] for i in const_range(1, min(ndim1, ndim2) + 1): if x[ndim1 - i] == y[ndim2 - i]: out[ndim - i] = x[ndim1 - i] elif x[ndim1 - i] == 1: out[ndim - i] = y[ndim2 - i] else: assert y[ndim2 - i] == 1, "Incompatible broadcast type %s and %s" % ( x[ndim1 - i], y[ndim2 - i], ) out[ndim - i] = x[ndim1 - i] for i in const_range(min(ndim1, ndim2) + 1, ndim + 1): if ndim1 >= ndim2: out[ndim - i] = x[ndim1 - i] else: out[ndim - i] = y[ndim2 - i] return out def broadcast_shape_func(attrs, inputs, out_ndims): """ Shape function for broadcast op. """ return [_broadcast_shape_func(*inputs, out_ndims[0])] def elemwise_shape_func(attrs, inputs, _): """ Shape function for elemwise op. """ return [topi.math.identity(inputs[0])] register_shape_func("cast", False, elemwise_shape_func) register_shape_func("cast_like", False, elemwise_shape_func) register_shape_func("round", False, elemwise_shape_func) register_shape_func("zeros", False, no_data_full_shape_func) register_shape_func("zeros_like", False, elemwise_shape_func) register_shape_func("ones", False, no_data_full_shape_func) register_shape_func("ones_like", False, elemwise_shape_func) register_shape_func("full", False, full_shape_func) register_shape_func("full_like", False, elemwise_shape_func) register_shape_func("broadcast_to", True, full_shape_func) register_shape_func("add", False, broadcast_shape_func) register_shape_func("subtract", False, broadcast_shape_func) register_shape_func("multiply", False, broadcast_shape_func) register_shape_func("divide", False, broadcast_shape_func) register_shape_func("floor_divide", False, broadcast_shape_func) register_shape_func("trunc_divide", False, broadcast_shape_func) register_shape_func("power", False, broadcast_shape_func) register_shape_func("mod", False, broadcast_shape_func) register_shape_func("floor_mod", False, broadcast_shape_func) register_shape_func("trunc_mod", False, broadcast_shape_func) register_shape_func("logical_and", False, broadcast_shape_func) register_shape_func("logical_or", False, broadcast_shape_func) register_shape_func("logical_xor", False, broadcast_shape_func) register_shape_func("bitwise_not", False, broadcast_shape_func) register_shape_func("bitwise_and", False, broadcast_shape_func) register_shape_func("bitwise_or", False, broadcast_shape_func) register_shape_func("bitwise_xor", False, broadcast_shape_func) register_shape_func("equal", False, broadcast_shape_func) register_shape_func("not_equal", False, broadcast_shape_func) register_shape_func("less", False, broadcast_shape_func) register_shape_func("less_equal", False, broadcast_shape_func) register_shape_func("greater", False, broadcast_shape_func) register_shape_func("greater_equal", False, broadcast_shape_func) register_shape_func("maximum", False, broadcast_shape_func) register_shape_func("minimum", False, broadcast_shape_func) register_shape_func("left_shift", False, broadcast_shape_func) register_shape_func("right_shift", False, broadcast_shape_func) register_shape_func("sqrt", False, elemwise_shape_func) register_shape_func("rsqrt", False, elemwise_shape_func) register_shape_func("negative", False, elemwise_shape_func) register_shape_func("exp", False, elemwise_shape_func) register_shape_func("tan", False, elemwise_shape_func) register_shape_func("fast_exp", False, elemwise_shape_func) register_shape_func("fast_tanh", False, elemwise_shape_func) register_shape_func("fast_erf", False, elemwise_shape_func) register_shape_func("floor", False, elemwise_shape_func) register_shape_func("log", False, elemwise_shape_func) register_shape_func("device_copy", False, elemwise_shape_func) register_shape_func("clip", False, elemwise_shape_func) register_shape_func("log2", False, elemwise_shape_func) register_shape_func("sigmoid", False, elemwise_shape_func) register_shape_func("tanh", False, elemwise_shape_func) register_shape_func("logical_not", False, elemwise_shape_func) register_shape_func("ceil", False, elemwise_shape_func)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/_tensor_grad.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Gradient definitions for Relay operators""" from tvm.topi.nn.utils import get_pad_tuple from tvm.topi.utils import get_const_tuple from tvm.error import OpError from ..expr import Tuple, TupleGetItem, const, Var from ..ty import TensorType from ..loops import while_loop from . import nn as _nn from .op import register_gradient from .reduce import sum as _sum from .tensor import ( cos, cosh, exp, less, negative, ones_like, power, sin, sinh, sqrt, zeros_like, equal, shape_of, log, concatenate, ) from .transform import ( broadcast_to_like, collapse_sum_like, cast_like, reshape, reshape_like, strided_slice, take, transpose, where, repeat, expand_dims, full_like, split, squeeze, strided_set, arange, scatter_nd, ) @register_gradient("log") def log_grad(orig, grad): """Returns [grad * (1 / x)]""" x = orig.args[0] return [grad * ones_like(x) / x] @register_gradient("log2") def log2_grad(orig, grad): """Returns [grad * 1 / (log(2) * x)]""" x = orig.args[0] ones = ones_like(x) two = const(2.0, dtype=x.checked_type.dtype) return [grad * ones / (log(two) * x)] @register_gradient("log10") def log10_grad(orig, grad): """Returns [grad * 1 / (log(10) * x)]""" x = orig.args[0] ones = ones_like(x) ten = const(10.0, dtype=x.checked_type.dtype) return [grad * ones / (log(ten) * x)] @register_gradient("tan") def tan_grad(orig, grad): """Returns [grad / (cos^2(x))]""" x = orig.args[0] return [grad / (cos(x) * cos(x))] @register_gradient("cos") def cos_grad(orig, grad): """Returns [grad * (-sin(x))]""" x = orig.args[0] ones = ones_like(x) return [grad * (-ones * sin(x))] @register_gradient("cosh") def cosh_grad(orig, grad): """Returns [grad * sinh(x)]""" x = orig.args[0] return [grad * sinh(x)] @register_gradient("sin") def sin_grad(orig, grad): """Returns [grad * cos(x)]""" x = orig.args[0] return [grad * cos(x)] @register_gradient("sinh") def sinh_grad(orig, grad): """Returns [grad * cosh(x)]""" x = orig.args[0] return [grad * cosh(x)] @register_gradient("acos") def acos_grad(orig, grad): """Returns [grad * -1/((1 - (x ^ 2)) ^ 1/2)]""" x = orig.args[0] ones = ones_like(x) return [grad * (-ones / sqrt(ones - (x * x)))] @register_gradient("acosh") def acosh_grad(orig, grad): """Returns [grad * 1/((x - 1) ^ 1/2 * (x + 1) ^ 1/2)]""" x = orig.args[0] ones = ones_like(x) return [grad * ones / sqrt((x * x) - ones)] @register_gradient("asin") def asin_grad(orig, grad): """Returns [grad * 1/((1 - (x ^ 2)) ^ (1/2))]""" x = orig.args[0] ones = ones_like(x) return [grad * ones / sqrt(ones - (x * x))] @register_gradient("asinh") def asinh_grad(orig, grad): """Returns [grad * 1/((1 + (x ^ 2)) ^ (1/2))]""" x = orig.args[0] ones = ones_like(x) return [grad * ones / sqrt(ones + (x * x))] @register_gradient("atan") def atan_grad(orig, grad): """Returns [grad * 1 / (1 + x ^ 2)]""" x = orig.args[0] ones = ones_like(x) return [grad * ones / (ones + (x * x))] @register_gradient("atanh") def atanh_grad(orig, grad): """Returns [grad * 1 / (1 - x ^ 2)]""" x = orig.args[0] ones = ones_like(x) return [grad * ones / (ones - (x * x))] @register_gradient("exp") def exp_grad(orig, grad): """Returns [grad * exp(x)]""" return [grad * exp(orig.args[0])] @register_gradient("sqrt") def sqrt_grad(orig, grad): """Returns [grad * 0.5 * (x ^ -0.5)]""" x = orig.args[0] a = const(0.5, dtype=x.checked_type.dtype) return [grad * a * power(x, negative(a))] @register_gradient("sigmoid") def sigmoid_grad(orig, grad): """Returns [grad * sigmoid(x) * (1 - sigmoid(x))].""" return [grad * orig * (ones_like(orig) - orig)] @register_gradient("tanh") def tanh_grad(orig, grad): """Returns grad * (1 - tanh(x) * tanh(x)).""" return [grad * (ones_like(orig) - orig * orig)] @register_gradient("nn.relu") def relu_grad(orig, grad): """Returns grad * (select(x < 0, 0, 1)).""" x = orig.args[0] zeros = zeros_like(x) ones = ones_like(x) return [where(less(x, zeros), zeros, ones * grad)] @register_gradient("add") def add_grad(orig, grad): """Returns [grad, grad]""" return [collapse_sum_like(grad, orig.args[0]), collapse_sum_like(grad, orig.args[1])] @register_gradient("subtract") def subtract_grad(orig, grad): """Returns [grad, -grad]""" return [collapse_sum_like(grad, orig.args[0]), collapse_sum_like(negative(grad), orig.args[1])] @register_gradient("multiply") def multiply_grad(orig, grad): """Returns [grad * y, grad * x]""" x, y = orig.args return [collapse_sum_like(grad * y, x), collapse_sum_like(grad * x, y)] @register_gradient("divide") def divide_grad(orig, grad): """Returns [grad / y, - grad * (x / y) / y]""" x, y = orig.args return [collapse_sum_like(grad / y, x), collapse_sum_like(-(grad * orig / y), y)] @register_gradient("zeros") def zeros_grad(orig, grad): """Returns []""" return [] @register_gradient("dyn.zeros") def dyn_zeros_grad(orig, grad): """Returns the gradient of dyn.zeros which is just zero.""" assert len(orig.args) == 1 return [zeros_like(orig.args[0])] @register_gradient("ones") def ones_grad(orig, grad): """Returns []""" return [] @register_gradient("dyn.ones") def dyn_ones_grad(orig, grad): """Returns the gradient of dyn.ones which is just zero.""" assert len(orig.args) == 1 return [zeros_like(orig.args[0])] @register_gradient("zeros_like") def zeros_like_grad(orig, grad): """Returns [0]""" return [orig] @register_gradient("ones_like") def ones_like_grad(orig, grad): """Returns [0]""" return [zeros_like(orig.args[0])] @register_gradient("collapse_sum_like") def collapse_sum_like_grad(orig, grad): """Returns [broadcast_to_like(grad, x), 0]""" x, y = orig.args return [broadcast_to_like(grad, x), zeros_like(y)] @register_gradient("collapse_sum_to") def collapse_sum_to_grad(orig, grad): """Returns [broadcast_to_like(grad, x), 0]""" x, y = orig.args return [broadcast_to_like(grad, x), zeros_like(y)] @register_gradient("abs") def abs_grad(orig, grad): """Returns grad * (select(x < 0, -1, 1)).""" x = orig.args[0] zeros = zeros_like(x) ones = ones_like(x) return [where(less(x, zeros), -ones * grad, ones * grad)] @register_gradient("erf") def erf_grad(orig, grad): # c_2_div_sqrt_pi = 2.0 / math.sqrt(math.pi) (inp,) = orig.args c_2_div_sqrt_pi = const(1.1283791670955126, dtype=inp.checked_type.dtype) return [c_2_div_sqrt_pi * exp(-inp * inp) * grad] @register_gradient("clip") def clip_grad(orig, grad): """Returns grad * (select(x < min || max < x , 0, 1)).""" x = orig.args[0] a_min = orig.attrs.get_int("a_min") a_max = orig.attrs.get_int("a_max") a_mins = broadcast_to_like(const(a_min, dtype=x.checked_type.dtype), x) a_maxs = broadcast_to_like(const(a_max, dtype=x.checked_type.dtype), x) zeros = zeros_like(x) ones = ones_like(x) return [where(less(x, a_mins), zeros, where(less(a_maxs, x), zeros, ones * grad))] @register_gradient("nn.max_pool2d") def max_pool2d_grad(orig, grad): """Returns the gradient of max_pool2d.""" attrs = orig.attrs pool_grad = _nn.max_pool2d_grad( grad, orig.args[0], pool_size=attrs.pool_size, strides=attrs.strides, padding=attrs.padding, layout=attrs.layout, ceil_mode=attrs.ceil_mode, ) return [pool_grad] @register_gradient("nn.avg_pool2d") def avg_pool2d_grad(orig, grad): """Returns the gradient of avg_pool2d.""" attrs = orig.attrs pool_grad = _nn.avg_pool2d_grad( grad, orig.args[0], pool_size=attrs.pool_size, strides=attrs.strides, padding=attrs.padding, layout=attrs.layout, ceil_mode=attrs.ceil_mode, count_include_pad=attrs.count_include_pad, ) return [pool_grad] @register_gradient("nn.global_avg_pool2d") def global_avg_pool2d_grad(orig, grad): """Returns the gradient of global_avg_pool2d.""" data = orig.args[0] shape = data.checked_type.shape layout = orig.attrs.layout # we assume NCHW or NHWC layout for now, but easy to add more assert layout in ["NCHW", "NHWC"] if layout == "NCHW": pool_size = shape[2], shape[3] elif layout == "NHWC": pool_size = shape[1], shape[2] pool_grad = _nn.avg_pool2d_grad( grad, data, pool_size=pool_size, strides=(1, 1), padding=(0, 0), layout=layout ) return [pool_grad] @register_gradient("concatenate") def concatenate_grad(orig, grad): """ Returns the gradient of concatenate, which is just the downstream gradient split across the inputs. """ assert len(orig.args) == 1 t = orig.args[0] # calculate split indices. TODO(@altanh): support Any? axis_dims = [ty.shape[orig.attrs.axis] for ty in t.checked_type.fields] splits, cumsum = [], 0 for dim in axis_dims[:-1]: cumsum += dim splits.append(cumsum) grads = split(grad, tuple(splits), axis=orig.attrs.axis).tuple_value return [grads] @register_gradient("nn.conv2d") def conv2d_grad(orig, grad): """Gradient of conv2d""" attrs = orig.attrs data, weight = orig.args data_shape = get_const_tuple(data.checked_type.shape) weight_shape = get_const_tuple(weight.checked_type.shape) _, _, grad_h, grad_w = get_const_tuple(orig.checked_type.shape) _, _, in_h, in_w = data_shape _, _, filter_h, filter_w = weight_shape # infer output_padding fpad_top, fpad_left, fpad_bottom, fpad_right = get_pad_tuple( get_const_tuple(attrs.padding), (filter_h, filter_w) ) stride_h, stride_w = get_const_tuple(attrs.strides) out_h = (grad_h - 1) * stride_h - fpad_top - fpad_bottom + filter_h out_w = (grad_w - 1) * stride_w - fpad_left - fpad_right + filter_w output_padding = (in_h - out_h, in_w - out_w) assert attrs.data_layout == "NCHW", "only support NCHW data layout" assert attrs.kernel_layout == "OIHW", "only support OIHW kernel layout" assert attrs.out_layout in ["", "NCHW"], "only support NCHW output layout" if attrs.out_dtype in ["", None]: assert data.checked_type, "Call InferType first." out_dtype = data.checked_type.dtype else: out_dtype = attrs.out_dtype backward_data = _nn.conv2d_transpose( grad, weight, strides=attrs.strides, padding=attrs.padding, dilation=attrs.dilation, groups=attrs.groups, output_padding=output_padding, out_dtype=out_dtype, ) backward_weight = _nn.conv2d_backward_weight( grad, data, strides=attrs.strides, padding=attrs.padding, dilation=attrs.dilation, groups=attrs.groups, channels=attrs.channels, kernel_size=(filter_h, filter_w), grad_layout=attrs.out_layout if attrs.out_layout else attrs.data_layout, data_layout=attrs.data_layout, kernel_layout=attrs.kernel_layout, out_dtype=out_dtype, ) return [backward_data, backward_weight] def _get_reduce_axis(call): """Helper function that returns the reduce axis of the call as plain python ints.""" x, axis = call.args[0], call.attrs.axis shape = x.checked_type.concrete_shape # should never exclude when axis is None assert not (axis is None and call.attrs.exclude) if axis is None: return None # convert to nonnegative integers and sort axis = sorted([ax if ax >= 0 else len(shape) + ax for ax in map(int, axis)]) if call.attrs.exclude: axis = [ax for ax in range(len(shape)) if ax not in axis] return axis def _unreduce_expand(x, axis): """Helper function that returns x expanded on the reduced dimensions in axis.""" # assume axis is sorted nonnegative ints for ax in axis: x = expand_dims(x, ax) return x @register_gradient("max") def max_grad(orig, grad): """Returns the gradient of max""" x, axis = orig.args[0], _get_reduce_axis(orig) shape = x.checked_type.concrete_shape repeated = orig if axis is None: repeated = full_like(x, repeated) else: # expand dims (if necessary) and repeat along each axis if not orig.attrs.keepdims: repeated = _unreduce_expand(repeated, axis) grad = _unreduce_expand(grad, axis) for ax in axis: repeated = repeat(repeated, shape[ax], ax) indicators = cast_like(equal(repeated, x), grad) num_selected = _sum(indicators, axis, keepdims=True) # spread error across all max weights return [indicators * grad / num_selected] @register_gradient("nn.softmax") def softmax_grad(orig, grad): """Gradient of softmax""" return [(grad - _sum(grad * orig, orig.attrs.axis, True)) * orig] @register_gradient("nn.log_softmax") def log_softmax_grad(orig, grad): """Gradient of log_softmax""" return [grad - _sum(grad, axis=orig.attrs.axis, keepdims=True) * exp(orig)] @register_gradient("nn.bias_add") def bias_add_grad(orig, grad): """Returns gradient of bias_add""" data = orig.args[0] return [ collapse_sum_like(grad, data), _sum(grad, orig.attrs.axis, keepdims=False, exclude=True), ] @register_gradient("nn.dense") def dense_grad(orig, grad): """Returns [grad' @ weight, data @ grad']""" data, weight = orig.args return [ collapse_sum_like( _nn.dense(grad, transpose(weight), units=weight.checked_type.shape[1]), data ), collapse_sum_like( _nn.dense(transpose(grad), transpose(data), units=data.checked_type.shape[1]), weight ), ] @register_gradient("nn.matmul") def matmul_grad(orig, grad): """Returns [grad' @ tensor_b, tensor_a @ grad']""" tensor_a, tensor_b = orig.args if (orig.attrs["transpose_a"], orig.attrs["transpose_b"]) == (True, True): return [ collapse_sum_like( _nn.matmul(tensor_b, grad, transpose_a=True, transpose_b=True), tensor_a ), collapse_sum_like( _nn.matmul(grad, tensor_a, transpose_a=True, transpose_b=True), tensor_b ), ] if (orig.attrs["transpose_a"], orig.attrs["transpose_b"]) == (True, False): return [ collapse_sum_like(_nn.matmul(tensor_b, grad, transpose_b=True), tensor_a), collapse_sum_like(_nn.matmul(tensor_a, grad), tensor_b), ] if (orig.attrs["transpose_a"], orig.attrs["transpose_b"]) == (False, True): # Keep using Dense op here for not involving extra ops # TODO(jcf94): Merge all to nn.matmul when it is finally ready return dense_grad(orig, grad) # (orig.attrs["transpose_a"], orig.attrs["transpose_b"]) == (False, False) return [ collapse_sum_like(_nn.matmul(grad, tensor_b, transpose_b=True), tensor_a), collapse_sum_like(_nn.matmul(tensor_a, grad, transpose_a=True), tensor_b), ] @register_gradient("nn.batch_matmul") def batch_matmul_grad(orig, grad): """gradient for nn.batch_matmul: in einsum LHS_bik,RHS_bjk->RES_bij grads: GRAD_OUT_bij,RHS_bjk->GRAD_IN_LHS_bik GRAD_OUT_bij,LHS_bik->GRAD_IN_RHS_bjk """ lhs, rhs = orig.args if (orig.attrs["transpose_a"], orig.attrs["transpose_b"]) == (True, True): # ki, jk -> ij # jk, ij -> ki # ij, ki -> jk return [ collapse_sum_like(_nn.batch_matmul(rhs, grad, transpose_a=True, transpose_b=True), lhs), collapse_sum_like(_nn.batch_matmul(grad, lhs, transpose_a=True, transpose_b=True), rhs), ] if (orig.attrs["transpose_a"], orig.attrs["transpose_b"]) == (True, False): # ki, kj -> ij # kj, ij -> ki # ki, ij -> kj return [ collapse_sum_like( _nn.batch_matmul(rhs, grad, transpose_a=False, transpose_b=True), lhs ), collapse_sum_like( _nn.batch_matmul(lhs, grad, transpose_a=False, transpose_b=False), rhs ), ] if (orig.attrs["transpose_a"], orig.attrs["transpose_b"]) == (False, True): # ik, jk -> ij # ij, jk -> ik # ij, ik -> jk # Keep using NT format batch_matmul here for not involving extra ops # TODO(jcf94): Merge all to normal batch_matmul when it is finally ready return [ collapse_sum_like( _nn.batch_matmul( grad, transpose(rhs, [0, 2, 1]), transpose_a=False, transpose_b=True, ), lhs, ), collapse_sum_like( _nn.batch_matmul( transpose(grad, [0, 2, 1]), transpose(lhs, [0, 2, 1]), transpose_a=False, transpose_b=True, ), rhs, ), ] # (orig.attrs["transpose_a"], orig.attrs["transpose_b"]) == (False, False) # ik, kj -> ij # ij, kj -> ik # ik, ij -> kj return [ collapse_sum_like(_nn.batch_matmul(grad, rhs, transpose_a=False, transpose_b=True), lhs), collapse_sum_like(_nn.batch_matmul(lhs, grad, transpose_a=True, transpose_b=False), rhs), ] @register_gradient("reshape") def reshape_grad(orig, grad): """Gradient of reshape""" return [reshape_like(grad, orig.args[0])] @register_gradient("dyn.reshape") def dyn_reshape_grad(orig, grad): """Gradient of dyn_reshape""" return [reshape_like(grad, orig.args[0]), zeros_like(orig.args[1])] @register_gradient("shape_of") def shape_of_grad(orig, grad): """Gradient of shape_of""" return [zeros_like(orig.args[0])] @register_gradient("cast") def cast_grad(orig, grad): x = orig.args[0] return [cast_like(grad, x)] @register_gradient("cast_like") def cast_like_grad(orig, grad): x, like = orig.args return [cast_like(grad, x), zeros_like(like)] @register_gradient("nn.batch_flatten") def batch_flatten_grad(orig, grad): """Returns grad reshaped to data dims""" data = orig.args[0] return [reshape_like(grad, data)] @register_gradient("transpose") def transpose_grad(orig, grad): """Returns grad transposed over the complement of original transpose axes""" orig_axes = orig.attrs.axes if orig_axes: dims = len(orig_axes) new_axes = [0] * dims for i in range(dims): new_axes[int(orig_axes[i])] = i else: new_axes = None return [transpose(grad, axes=new_axes)] @register_gradient("negative") def negative_grad(orig, grad): """Returns -grad""" return [-grad] @register_gradient("sum") def sum_grad(orig, grad): """Returns grad broadcasted to data dims""" data, axis = orig.args[0], _get_reduce_axis(orig) if not orig.attrs.keepdims: if axis is None: axis = list(range(len(data.checked_type.concrete_shape))) grad = _unreduce_expand(grad, axis) return [broadcast_to_like(grad, data)] @register_gradient("mean") def mean_grad(orig, grad): """Returns grad broadcasted to data dims""" data, axis = orig.args[0], _get_reduce_axis(orig) shape = data.checked_type.concrete_shape if axis is None: axis = list(range(len(data.checked_type.concrete_shape))) if not orig.attrs.keepdims: grad = _unreduce_expand(grad, axis) mult = 1.0 for a in axis: mult /= shape[a] return [broadcast_to_like(grad * const(mult, dtype=data.checked_type.dtype), data)] @register_gradient("variance") def variance_grad(orig, grad): """Note that we take mean as an argument in the variance node""" data, data_mean, axis = orig.args[0], orig.args[1], _get_reduce_axis(orig) unbiased = orig.attrs.unbiased shape = data.checked_type.concrete_shape if axis is None: axis = list(range(len(data.checked_type.concrete_shape))) if not orig.attrs.keepdims: grad = _unreduce_expand(grad, axis) mult1 = 2.0 mult2 = -2.0 count = 1 for a in axis: count *= shape[a] if unbiased: mult2 = mult2 * count / (count - 1) count -= 1 mult1 /= count return [ (grad * const(mult1, dtype=data.checked_type.dtype)) * data, const(mult2, dtype=data.checked_type.dtype) * grad * data_mean, ] @register_gradient("copy") def copy_grad(orig, grad): return [grad] @register_gradient("nn.cross_entropy") def cross_entropy_grad(orig, grad): x, y = orig.args shape = shape_of(x) batch_size = take(shape, const(0, dtype="int32"), axis=0) grad = grad / batch_size.astype(x.checked_type.dtype) return [-grad * y / x, -grad * log(x)] @register_gradient("nn.cross_entropy_with_logits") def cross_entropy_with_logits_grad(orig, grad): x, y = orig.args shape = shape_of(x) batch_size = take(shape, const(0, dtype="int32"), axis=0) grad = grad / batch_size.astype(x.checked_type.dtype) return [-grad * y, -grad * x] @register_gradient("take") def take_grad(orig, grad): """ Returns the gradient of take. """ def make_scalar_tensor(v): if isinstance(v, int): v = const(v, dtype="int32") return reshape(v, (1,)) # TODO(@altanh): we currently assume indices are in range data, indices = orig.args axis = orig.attrs.axis batch_dims = orig.attrs.batch_dims zero, one = map(make_scalar_tensor, [0, 1]) data_grad = zeros_like(data) try: data_shape = data.checked_type.concrete_shape except TypeError as ty_err: raise OpError("currently take_grad only supports data with concrete shape") from ty_err if axis is None: axis = 0 data_grad = reshape(data_grad, (-1,)) data_shape = 1 for dim in data.checked_type.concrete_shape: data_shape *= dim data_shape = (data_shape,) else: axis = int(axis) if batch_dims is None: batch_dims = 0 else: batch_dims = int(batch_dims) if batch_dims != 0: raise OpError("take_grad only supports batch_dims equales to 0") strides = [1] * len(data_shape) if len(indices.checked_type.shape) == 0: # axis on grad has been squeezed in this case num_indices = one indices = reshape(indices, (1,)) grad = expand_dims(grad, int(axis)) elif len(indices.checked_type.shape) == 1: num_indices = take(shape_of(indices), zero, axis=0) else: raise OpError("take_grad only supports scalar or 1D indices") def loop_cond(data_grad, i): return squeeze(less(i, num_indices)) def loop_body(data_grad, i): index = take(indices, i, axis=0) grad_slice = take(grad, i, axis=axis) begin, end = [], [] for ax, size in enumerate(data_shape): size = make_scalar_tensor(size) begin.append(zero if ax != axis else index) end.append(size if ax != axis else index + one) begin, end = concatenate(begin, axis=0), concatenate(end, axis=0) # data_grad[:,...,index at axis,...,:] += grad_slice update = strided_slice(data_grad, begin, end, strides=strides) update = update + grad_slice # no need to expand grad_slice since i has shape (1,) next_data_grad = strided_set(data_grad, update, begin, end, strides=strides) return (next_data_grad, i + one) loop_vars = [ Var("data_grad", type_annotation=TensorType(data_shape, data.checked_type.dtype)), Var("i", type_annotation=TensorType((1,), "int32")), ] loop = while_loop(loop_cond, loop_vars, loop_body) result = loop(data_grad, zero) data_grad = TupleGetItem(result, 0) if orig.attrs.axis is None: data_grad = reshape_like(data_grad, data) return [data_grad, zeros_like(orig.args[1])] @register_gradient("contrib_reverse_reshape") def reverse_reshape_grad(orig, grad): """ Returns the gradient of reverse_reshape (same as reshape). """ return [reshape_like(grad, orig.args[0])] @register_gradient("stack") def stack_grad(orig, grad): """ Returns grad split across stacked inputs. """ stack_axis = int(orig.attrs.axis) sections = len(orig.args[0].checked_type.fields) splits = split(grad, sections, stack_axis) splits = Tuple([squeeze(x, axis=[stack_axis]) for x in splits]) return [splits] @register_gradient("squeeze") def squeeze_grad(orig, grad): """ Returns grad expanded to input size. """ # this should work, can't use expand_dims since we lose # squeeze information when axis=None return [reshape_like(grad, orig.args[0])] @register_gradient("expand_dims") def expand_dims_grad(orig, grad): """ Returns grad squeezed on expanded dims. """ axis = int(orig.attrs.axis) for _ in range(orig.attrs.num_newaxis): grad = squeeze(grad, axis=[axis]) return [grad] @register_gradient("arange") def arange_grad(orig, grad): """ Returns the gradient of arange. """ start, stop, step = orig.args length = take(shape_of(orig), const(0, dtype="int32"), axis=0) grad_start = cast_like(_sum(grad), start) grad_stop = zeros_like(stop) grad_step = cast_like(arange(length, dtype="int32"), grad) * grad grad_step = cast_like(_sum(grad_step), step) return [grad_start, grad_stop, grad_step] @register_gradient("gather_nd") def gather_nd_grad(orig, grad): """ Returns the gradient of gather_nd, which is simply scatter_nd. """ data, indices = orig.args return [scatter_nd(zeros_like(data), indices, grad, mode="add"), zeros_like(indices)] @register_gradient("reshape_like") def reshape_like_grad(orig, grad): """ Returns the gradient of reshape_like. """ data, shape_like = orig.args return [reshape_like(grad, data), zeros_like(shape_like)] @register_gradient("where") def where_grad(orig, grad): """ Returns the gradient of where. """ cond, x, y = orig.args g_zeros = zeros_like(grad) grad_x = collapse_sum_like(where(cond, grad, g_zeros), x) grad_y = collapse_sum_like(where(cond, g_zeros, grad), y) return [zeros_like(cond), grad_x, grad_y] @register_gradient("less_equal") def less_equal_grad(orig, grad): """ Returns the gradient of less_equal. """ return [zeros_like(orig.args[0]), zeros_like(orig.args[1])] @register_gradient("not_equal") def not_equal_grad(orig, grad): """ Returns the gradient of not_equal (just zeros). """ return [zeros_like(orig.args[0]), zeros_like(orig.args[1])] @register_gradient("strided_slice") def strided_slice_grad(orig, grad): """ Returns the gradient of strided_slice, which is equal to grad where the input was sliced and zero elsewhere. """ assert orig.attrs.axes is None, "grad for strided_slice with axes is not yet supported" x = orig.args[0] begin = get_const_tuple(orig.attrs.begin) end = get_const_tuple(orig.attrs.end) strides = get_const_tuple(orig.attrs.strides) if orig.attrs.slice_mode == "size": # convert sizes to ending indices and ignore strides end = list(end) for i, (start, size) in enumerate(zip(begin, end)): if size == -1: end[i] = int(x.checked_type.shape[i]) else: end[i] = start + size strides = None else: assert orig.attrs.slice_mode == "end" return [strided_set(zeros_like(x), grad, begin, end, strides)] @register_gradient("one_hot") def one_hot_grad(orig, grad): """ Returns the gradient of one_hot, which is the sum of grad at on and off indices for on_value and off_value respectively. """ indices, on_value, off_value = orig.args g_zeros = zeros_like(grad) on_mask = equal(orig, on_value) grad_on = _sum(where(on_mask, grad, g_zeros)) grad_off = _sum(where(on_mask, g_zeros, grad)) return [zeros_like(indices), cast_like(grad_on, on_value), cast_like(grad_off, off_value)]
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/_transform.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Backend compiler related feature registration""" # pylint: disable=invalid-name,unused-argument, len-as-condition, too-many-nested-blocks, # pylint: disable=too-many-local-variables, too-many-arguments, no-else-return from __future__ import absolute_import import tvm from tvm import te, topi from tvm.runtime import convert from tvm.te.hybrid import script from tvm.topi.utils import get_const_int, get_const_tuple from . import op as _reg from . import strategy from ._tensor import elemwise_shape_func from .op import OpPattern _reg.register_broadcast_schedule("broadcast_to") _reg.register_broadcast_schedule("broadcast_to_like") _reg.register_broadcast_schedule("expand_dims") _reg.register_broadcast_schedule("repeat") _reg.register_broadcast_schedule("tile") _reg.register_broadcast_schedule("where") _reg.register_injective_schedule("squeeze") _reg.register_injective_schedule("reshape") _reg.register_injective_schedule("reshape_like") _reg.register_injective_schedule("full") _reg.register_injective_schedule("full_like") _reg.register_injective_schedule("arange") _reg.register_injective_schedule("meshgrid") _reg.register_injective_schedule("reverse") _reg.register_injective_schedule("reverse_sequence") _reg.register_injective_schedule("cast") _reg.register_injective_schedule("cast_like") _reg.register_injective_schedule("reinterpret") _reg.register_injective_schedule("strided_slice") _reg.register_injective_schedule("slice_like") _reg.register_injective_schedule("split") _reg.register_injective_schedule("take") _reg.register_injective_schedule("stack") _reg.register_injective_schedule("contrib_reverse_reshape") _reg.register_injective_schedule("gather") _reg.register_injective_schedule("gather_nd") _reg.register_injective_schedule("sequence_mask") _reg.register_injective_schedule("one_hot") _reg.register_reduce_schedule("collapse_sum_like") _reg.register_reduce_schedule("collapse_sum_to") _reg.register_injective_schedule("unravel_index") _reg.register_injective_schedule("sparse_to_dense") _reg.register_injective_schedule("matrix_set_diag") _reg.register_injective_schedule("adv_index") # concatenate @_reg.register_compute("concatenate") def compute_concat(attrs, inputs, output_type): return [topi.concatenate(inputs, attrs.axis)] _reg.register_strategy("concatenate", strategy.concatenate_strategy) # sliding_window @_reg.register_compute("sliding_window") def compute_sliding_window(attrs, inputs, output_type): """Compute definition of sliding_window""" return [topi.sliding_window(inputs[0], attrs.axis, attrs.window_shape, attrs.strides)] _reg.register_strategy("sliding_window", strategy.sliding_window_strategy) # strided_set @_reg.register_compute("strided_set") def compute_strided_set(attrs, inputs, output_type): """Compute definition of strided_set""" return [topi.strided_set(inputs[0], inputs[1], inputs[2], inputs[3], inputs[4])] _reg.register_injective_schedule("strided_set") # layout_transform _reg.register_injective_schedule("layout_transform") _reg.register_pattern("layout_transform", OpPattern.INJECTIVE) _reg.register_injective_schedule("auto_scheduler_layout_transform") _reg.register_pattern("auto_scheduler_layout_transform", OpPattern.INJECTIVE) _reg.register_injective_schedule("meta_schedule_layout_transform") _reg.register_pattern("meta_schedule_layout_transform", OpPattern.INJECTIVE) # argwhere _reg.register_strategy("argwhere", strategy.argwhere_strategy) # scatter @_reg.register_compute("scatter") def compute_scatter(attrs, inputs, output_type): """Compute definition of scatter""" return [topi.scatter(inputs[0], inputs[1], inputs[2], attrs.axis)] _reg.register_strategy("scatter", strategy.scatter_strategy) # sparse_fill_empty_rows @_reg.register_compute("sparse_fill_empty_rows") def compute_sparse_fill_empty_rows(attrs, inputs, output_type): """Compute definition of sparse_fill_empty_rows""" return topi.sparse_fill_empty_rows( inputs[0], inputs[1], inputs[2], inputs[3], output_type.fields[0].shape, output_type.fields[1].shape, output_type.fields[2].shape, ) _reg.register_strategy("sparse_fill_empty_rows", strategy.sparse_fill_empty_rows_strategy) # sparse_reshape @_reg.register_compute("sparse_reshape") def compute_reshape(attrs, inputs, output_type): """Compute definition of sparse_reshape""" return topi.sparse_reshape( inputs[0], inputs[1], inputs[2], output_type.fields[0].shape, output_type.fields[1].shape, ) _reg.register_strategy("sparse_reshape", strategy.sparse_reshape_strategy) # stft @_reg.register_compute("stft") def compute_stft(attrs, inputs, output_type): """Compute definition of stft""" return topi.stft( inputs[0], attrs.n_fft, attrs.hop_length, attrs.win_length, attrs.window, attrs.normalized, attrs.onesided, output_type.shape, ) _reg.register_strategy("stft", strategy.stft_strategy) @script def _stft_shape_func(data, n_fft, hop_length, onesided): output_shape = output_tensor((4,), "int64") output_shape[0] = int64(data.shape[0]) if onesided: output_shape[1] = int64(int64(n_fft) // int64(2)) + int64(1) else: output_shape[1] = int64(n_fft) output_shape[2] = int64(int64(data.shape[1] - n_fft) // int64(hop_length)) + int64(1) output_shape[3] = int64(2) return output_shape @_reg.register_shape_func("stft", True) def stft_shape_func(attrs, inputs, _): """ Shape func for stft. """ return [ _stft_shape_func( inputs[0], convert(attrs.n_fft), convert(attrs.hop_length), convert(attrs.onesided) ) ] # trilu _reg.register_strategy("trilu", strategy.trilu_strategy) # scatter_add @_reg.register_compute("scatter_add") def compute_scatter_add(attrs, inputs, output_type): """Compute definition of scatter_add""" return [topi.scatter_add(inputs[0], inputs[1], inputs[2], attrs.axis)] _reg.register_strategy("scatter_add", strategy.scatter_add_strategy) # scatter_nd @_reg.register_compute("scatter_nd") def compute_scatter_nd(attrs, inputs, output_type): """Compute definition of scatter_nd""" return [topi.scatter_nd(inputs[0], inputs[1], inputs[2], attrs.mode)] _reg.register_strategy("scatter_nd", strategy.scatter_nd_strategy) # cumsum @_reg.register_compute("cumsum") def compute_cumsum(attrs, inputs, output_type): """Compute definition of cumsum""" return [topi.cumsum(inputs[0], attrs.axis, attrs.dtype, attrs.exclusive)] _reg.register_strategy("cumsum", strategy.cumsum_strategy) _reg.register_shape_func("cumsum", False, elemwise_shape_func) # cumprod @_reg.register_compute("cumprod") def compute_cumprod(attrs, inputs, output_type): """Compute definition of cumprod""" return [topi.cumprod(inputs[0], attrs.axis, attrs.dtype, attrs.exclusive)] _reg.register_strategy("cumprod", strategy.cumprod_strategy) _reg.register_shape_func("cumprod", False, elemwise_shape_func) @_reg.register_compute("unique") def compute_unique(attrs, inputs, output_type): """Compute definition of unique""" return topi.unique(inputs[0], attrs.sorted, attrs.return_counts) _reg.register_strategy("unique", strategy.unique_strategy) # invert_permutation _reg.register_strategy("invert_permutation", strategy.invert_permutation_strategy) _reg.register_shape_func("invert_permutation", False, elemwise_shape_func) ##################### # Shape functions # ##################### @script def _arange_shape_func(start, stop, step): out = output_tensor((1,), "int64") if step[()] < 0: out[0] = int64(ceil_div((int64(start[()]) - int64(stop[()])), int64(-step[()]))) else: out[0] = int64(ceil_div((int64(stop[()]) - int64(start[()])), int64(step[()]))) return out @_reg.register_shape_func("arange", True) def arange_shape_func(attrs, inputs, _): """ Shape func for arange """ return [_arange_shape_func(*inputs)] @script def _strided_slice_shape_func_input_shape(data_shape, begin, end, strides, slice_mode): ndim = len(data_shape) out = output_tensor((ndim,), "int64") for i in const_range(ndim): dim_size = int64(data_shape[i]) cbegin = int64(0) cend = dim_size cstride = int64(1) if len(strides) > i: cstride = int64(strides[i]) if len(begin) > i: cbegin = int64(begin[i]) elif cstride < 0: cbegin = dim_size if len(end) <= i: if cstride < 0: cend = int64(0) elif slice_mode != 0: cstride = int64(1) if end[i] < 0: cend = dim_size else: cend = cbegin + int64(end[i]) else: if end[i] > data_shape[i]: cend = dim_size else: cend = int64(end[i]) assert cstride != 0, "Strides can't be zero." if cbegin < 0: cbegin += dim_size if cend < 0: cend += dim_size if cstride < 0: if cend < 0: cend = int64(-1) if cbegin > dim_size - 1: cbegin = dim_size - 1 slice_range = cbegin - cend step = -cstride else: slice_range = cend - cbegin step = cstride out[i] = int64(ceil_div(slice_range, step)) return out @script def _strided_slice_shape_func_with_axes(data_shape, begin, end, strides, slice_mode, axes): ndim = data_shape.shape[0] out = output_tensor((ndim,), "int64") for i in const_range(ndim): out[i] = data_shape[i] for i in const_range(len(axes)): dim_size = int64(data_shape[axes[i]]) cbegin = int64(0) cend = dim_size cstride = int64(1) if len(strides) > i: cstride = int64(strides[i]) if len(begin) > i: cbegin = int64(begin[i]) elif cstride < 0: cbegin = dim_size if len(end) <= i: cend = dim_size elif slice_mode != 0: cstride = int64(1) if end[i] < 0: cend = dim_size else: cend = cbegin + int64(end[i]) else: if end[i] > data_shape[axes[i]]: cend = dim_size else: cend = int64(end[i]) assert cstride != 0, "Strides can't be zero." if cbegin < 0: cbegin += dim_size if cend < 0: cend += dim_size if cstride < 0: if cend < 0: cend = int64(-1) if cbegin > dim_size - 1: cbegin = dim_size - 1 slice_range = cbegin - cend step = -cstride else: slice_range = cend - cbegin step = cstride out[axes[i]] = int64(ceil_div(slice_range, step)) return out @_reg.register_shape_func("strided_slice", False) def strided_slice_shape_func(attrs, inputs, _): """ Shape func for strided_slice """ slice_mode = convert(0 if attrs.slice_mode == "end" else 1) if attrs.axes is None: return [ _strided_slice_shape_func_input_shape( inputs[0], attrs.begin, attrs.end, attrs.strides, slice_mode ) ] return [ _strided_slice_shape_func_with_axes( inputs[0], attrs.begin, attrs.end, attrs.strides, slice_mode, attrs.axes ) ] @script def _one_hot_shape_func(indices_shape, depth, axis): in_ndim = indices_shape.shape[0] out_ndim = in_ndim + 1 true_axis = in_ndim if axis == -1 else axis indices_i = 0 out = output_tensor((out_ndim,), "int64") for i in range(out_ndim): if i == true_axis: out[i] = int64(depth) else: out[i] = int64(indices_shape[indices_i]) indices_i += 1 return out @_reg.register_shape_func("one_hot", False) def one_hot_shape_func(attrs, inputs, _): """ Shape func for one_hot """ shape_func = [_one_hot_shape_func(inputs[0], convert(attrs.depth), convert(attrs.axis))] return shape_func @script def _concatenate_shape_func(inputs, axis): ndim = inputs[0].shape[0] out = output_tensor((ndim,), "int64") for i in const_range(ndim): if i != axis: out[i] = inputs[0][i] for j in const_range(1, len(inputs)): assert out[i] == inputs[j][i], "Dims mismatch in the inputs of concatenate." else: out[i] = int64(0) for j in const_range(len(inputs)): out[i] += inputs[j][i] return out @_reg.register_shape_func("concatenate", False) def concatenate_shape_func(attrs, inputs, _): axis = get_const_int(attrs.axis) if axis < 0: axis += inputs[0].shape[0] return [_concatenate_shape_func(inputs, convert(axis))] @script def _reshape_shape_func_input_shape(data_shape, newshape, ndim, allowzero): out = output_tensor((ndim,), "int64") src_idx = 0 dst_idx = 0 infer_idx = -1 copy = False skip = 0 for i in const_range(len(newshape)): if skip > 0: skip -= 1 elif newshape[i] > 0: out[dst_idx] = int64(newshape[i]) src_idx += 1 dst_idx += 1 elif newshape[i] == 0: if allowzero: out[dst_idx] = int64(newshape[i]) else: out[dst_idx] = data_shape[src_idx] src_idx += 1 dst_idx += 1 elif newshape[i] == -1: assert infer_idx < 0, "One and only one dim can be inferred" out[dst_idx] = int64(1) infer_idx = i src_idx += 1 dst_idx += 1 elif newshape[i] == -2: copy = True elif newshape[i] == -3: assert data_shape.shape[0] - src_idx > 1, "Not enough dims in input shape for -3" out[dst_idx] = data_shape[src_idx] * data_shape[src_idx + 1] src_idx += 2 dst_idx += 1 elif newshape[i] == -4: assert len(newshape) - i > 2, "Not enough dims in new shape for -4" if newshape[i + 1] == -1: assert newshape[i + 2] != -1, "Split dims cannot both be -1." out[dst_idx] = data_shape[src_idx] // int64(newshape[i + 2]) out[dst_idx + 1] = int64(newshape[i + 2]) else: out[dst_idx] = int64(newshape[i + 1]) if newshape[i + 2] == -1: out[dst_idx + 1] = data_shape[src_idx] // int64(newshape[i + 1]) else: out[dst_idx + 1] = int64(newshape[i + 2]) assert ( data_shape[src_idx] == out[dst_idx] * out[dst_idx + 1] ), "Product of split dims doesn't match to input dim" src_idx += 1 dst_idx += 2 skip = 2 else: assert False, "Invalid special values in new shape" if len(data_shape.shape) > 0: # if data is not constant, we can then handle -1 and -2 if copy: for i in range(src_idx, data_shape.shape[0]): out[dst_idx] = data_shape[i] dst_idx += 1 if infer_idx >= 0: old_size = int64(1) for i in const_range(data_shape.shape[0]): old_size *= data_shape[i] new_size = int64(1) for i in const_range(out.shape[0]): new_size *= out[i] out[infer_idx] = old_size // new_size return out @_reg.register_shape_func("reshape", False) def reshape_shape_func(attrs, inputs, out_ndims): newshape = get_const_tuple(attrs.newshape) allowzero = attrs.allowzero return [ _reshape_shape_func_input_shape( inputs[0], convert(newshape), out_ndims[0], convert(allowzero) ) ] @script def _take_no_axis_shape_func(indices_shape, out_ndim): out = output_tensor((out_ndim,), "int64") for i in const_range(out_ndim): out[i] = indices_shape[i] return out @script def _take_with_axis_shape_func(data_shape, indices_shape, axis, batch_dims, out_ndim): out = output_tensor((out_ndim,), "int64") for i in const_range(axis): out[i] = data_shape[i] if len(indices_shape.shape) == 0: # indices is constant for i in const_range(axis + 1, len(data_shape)): out[i - 1] = data_shape[i] else: for i in const_range(len(indices_shape) - batch_dims): out[axis + i] = indices_shape[i + batch_dims] for i in const_range(axis + 1, len(data_shape)): out[len(indices_shape) + i - 1 - batch_dims] = data_shape[i] return out @_reg.register_shape_func("take", False) def take_shape_func(attrs, inputs, out_ndims): """ Shape function for take op. """ if attrs.axis is None: return [_take_no_axis_shape_func(inputs[1], out_ndims[0])] axis = get_const_int(attrs.axis) batch_dims = get_const_int(attrs.batch_dims) data_ndim = int(inputs[0].shape[0]) if inputs[1].shape: indices_ndim = int(inputs[1].shape[0]) if axis < 0: axis += data_ndim assert 0 <= axis < data_ndim if batch_dims < 0: batch_dims += indices_ndim return [_take_with_axis_shape_func(*inputs, convert(axis), convert(batch_dims), out_ndims[0])] @_reg.register_legalize("take") def legalize_dyn_topk(attrs, inputs, types): """Legalize take op. Parameters ---------- attrs : tvm.ir.Attrs Attributes of current op inputs : list of tvm.relay.Expr The args of the Relay expr to be legalized types : list of types List of input and output types Returns ------- result : tvm.relay.Expr The legalized expr """ return topi.take_legalize(attrs, inputs, types) @script def _argwhere_shape_func_1d(condition): out = output_tensor((2,), "int64") out[0] = int64(0) out[1] = int64(1) for i1 in range(condition.shape[0]): if condition[i1] != 0: out[0] += int64(1) return out @script def _argwhere_shape_func_2d(condition): out = output_tensor((2,), "int64") out[0] = int64(0) out[1] = int64(2) for i1 in range(condition.shape[0]): for i2 in range(condition.shape[1]): if condition[i1, i2] != 0: out[0] += int64(1) return out @script def _argwhere_shape_func_3d(condition): out = output_tensor((2,), "int64") out[0] = int64(0) out[1] = int64(3) for i1 in range(condition.shape[0]): for i2 in range(condition.shape[1]): for i3 in range(condition.shape[2]): if condition[i1, i2, i3] != 0: out[0] += int64(1) return out @script def _argwhere_shape_func_4d(condition): out = output_tensor((2,), "int64") out[0] = int64(0) out[1] = int64(4) for i1 in range(condition.shape[0]): for i2 in range(condition.shape[1]): for i3 in range(condition.shape[2]): for i4 in range(condition.shape[3]): if condition[i1, i2, i3, i4] != 0: out[0] += int64(1) return out @script def _argwhere_shape_func_5d(condition): out = output_tensor((2,), "int64") out[0] = int64(0) out[1] = int64(5) for i1 in range(condition.shape[0]): for i2 in range(condition.shape[1]): for i3 in range(condition.shape[2]): for i4 in range(condition.shape[3]): for i5 in range(condition.shape[4]): if condition[i1, i2, i3, i4, i5] != 0: out[0] += int64(1) return out @_reg.register_shape_func("argwhere", True) def argwhere_shape_func(attrs, inputs, out_ndims): """ Shape function for argwhere. """ if len(inputs[0].shape) == 1: return [_argwhere_shape_func_1d(inputs[0])] if len(inputs[0].shape) == 2: return [_argwhere_shape_func_2d(inputs[0])] if len(inputs[0].shape) == 3: return [_argwhere_shape_func_3d(inputs[0])] if len(inputs[0].shape) == 4: return [_argwhere_shape_func_4d(inputs[0])] if len(inputs[0].shape) == 5: return [_argwhere_shape_func_5d(inputs[0])] return ValueError("Does not support rank higher than 5 in argwhere") _reg.register_shape_func("scatter", False, elemwise_shape_func) _reg.register_shape_func("scatter_add", False, elemwise_shape_func) _reg.register_shape_func("scatter_nd", False, elemwise_shape_func) @script def _sparse_fill_empty_rows_shape_func(sparse_indices, dense_shape): new_sparse_indices_shape = output_tensor((2,), "int64") new_sparse_values_shape = output_tensor((1,), "int64") empty_row_indicator_shape = output_tensor((1,), "int64") num_dense_rows = int64(dense_shape[0]) if int64(sparse_indices.shape[0]) == int64(0): # Handle Empty Case # Total rows will equal dense_shape[0] new_sparse_indices_shape[0] = num_dense_rows new_sparse_indices_shape[1] = int64(sparse_indices.shape[1]) new_sparse_values_shape[0] = num_dense_rows empty_row_indicator_shape[0] = num_dense_rows return (new_sparse_indices_shape, new_sparse_values_shape, empty_row_indicator_shape) else: count = int64(sparse_indices.shape[0]) # Add count of all rows already in sparse_indices for i in range(1, int64(sparse_indices.shape[0])): index = int64(sparse_indices[i, 0]) prev_index = int64(sparse_indices[i - 1, 0] + 1) if index > prev_index: count += index - prev_index # Add count of all rows between two consecutive indices count += int64(sparse_indices[0, 0]) # Add count from 0 to first row id in sparse_indices count += int64( num_dense_rows - 1 - sparse_indices[sparse_indices.shape[0] - 1, 0] ) # Add count from last row id to dense_shape - 1 new_sparse_indices_shape[0] = int64(count) new_sparse_indices_shape[1] = int64(sparse_indices.shape[1]) new_sparse_values_shape[0] = int64(count) empty_row_indicator_shape[0] = num_dense_rows return (new_sparse_indices_shape, new_sparse_values_shape, empty_row_indicator_shape) @_reg.register_shape_func("sparse_fill_empty_rows", True) def sparse_fill_empty_rows_func(attrs, inputs, _): return _sparse_fill_empty_rows_shape_func(inputs[0], inputs[2]) @script def _sparse_reshape_shape_func(sparse_indices_shape, prev_shape_shape, new_shape_shape): indices_shape = output_tensor((2,), "int64") indices_shape[0] = int64(sparse_indices_shape[0]) indices_shape[1] = int64(new_shape_shape[0]) shape_tensor = output_tensor((1,), "int64") shape_tensor[0] = int64(new_shape_shape[0]) return (indices_shape, shape_tensor) @_reg.register_shape_func("sparse_reshape", False) def sparse_reshape_shape_func(attrs, inputs, _): """ Shape func for sparse_reshape. """ return _sparse_reshape_shape_func(inputs[0], inputs[1], inputs[2]) @script def _layout_transform_shape_func( data_shape, out_layout_len, dst_equal_list, dst_mul_list, dst_div_list, dst_mix_list ): out = output_tensor((out_layout_len,), "int64") for i in const_range(len(dst_equal_list)): out[dst_equal_list[i][0]] = data_shape[dst_equal_list[i][1]] for i in const_range(len(dst_mul_list)): out[dst_mul_list[i][0]] = data_shape[dst_mul_list[i][1]] * data_shape[dst_mul_list[i][2]] for i in const_range(len(dst_div_list)): out[dst_div_list[i][0]] = data_shape[dst_div_list[i][1]] // dst_div_list[i][3] out[dst_div_list[i][2]] = int64(dst_div_list[i][3]) for i in const_range(len(dst_mix_list)): out[dst_mix_list[i][0]] = ( data_shape[dst_mix_list[i][1]] * dst_mix_list[i][2] // dst_mix_list[i][4] ) out[dst_mix_list[i][3]] = int64(dst_mix_list[i][4]) return out @_reg.register_shape_func("layout_transform", False) def layout_transform_shape_func(attrs, inputs, _): """ Shape function for layout_transform op. """ def _fetch_axis(layout): major_axes = [] minor_axes = {} num_start = -1 for i, item in enumerate(layout): if "A" <= item <= "Z": major_axes.append(item) elif "a" <= item <= "z": last_num = int(layout[num_start:i]) minor_axes[item] = last_num num_start = -1 elif num_start < 0: num_start = i return major_axes, minor_axes _, src_minor_axes = _fetch_axis(attrs.src_layout) dst_major_axes, dst_minor_axes = _fetch_axis(attrs.dst_layout) src_letter_list = [] dst_letter_list = [] for item in attrs.src_layout: if "A" <= item <= "Z" or "a" <= item <= "z": src_letter_list.append(item) for item in attrs.dst_layout: if "A" <= item <= "Z" or "a" <= item <= "z": dst_letter_list.append(item) out_layout_len = len(dst_major_axes) + len(dst_minor_axes) dst_equal_list = [] dst_mul_list = [] dst_div_list = [] dst_mix_list = [] for key in dst_major_axes: if key.lower() not in dst_minor_axes: if key.lower() not in src_minor_axes: dst_equal_list.append((dst_letter_list.index(key), src_letter_list.index(key))) else: dst_mul_list.append( ( dst_letter_list.index(key), src_letter_list.index(key), src_letter_list.index(key.lower()), ) ) else: if key.lower() not in src_minor_axes: dst_div_list.append( ( dst_letter_list.index(key), src_letter_list.index(key), dst_letter_list.index(key.lower()), dst_minor_axes[key.lower()], ) ) else: dst_mix_list.append( ( dst_letter_list.index(key), src_letter_list.index(key), src_minor_axes[key.lower()], dst_letter_list.index(key.lower()), dst_minor_axes[key.lower()], ) ) return [ _layout_transform_shape_func( inputs[0], convert(out_layout_len), convert(dst_equal_list), convert(dst_mul_list), convert(dst_div_list), convert(dst_mix_list), ) ] @script def _expand_dim_shape_func(data_shape, ndim, axis, num_newaxis): out = output_tensor((ndim + num_newaxis,), "int64") for i in const_range(out.shape[0]): if i < axis: out[i] = data_shape[i] elif i < axis + num_newaxis: out[i] = int64(1) else: out[i] = data_shape[i - num_newaxis] return out @_reg.register_shape_func("expand_dims", False) def expand_dim_shape_func(attrs, inputs, _): """ Shape function for expand_dim op. """ axis = get_const_int(attrs.axis) num_newaxis = get_const_int(attrs.num_newaxis) if axis < 0: axis = inputs[0].shape[0] + axis + 1 ndim = inputs[0].shape[0] if inputs[0].shape else 0 return [_expand_dim_shape_func(inputs[0], convert(ndim), convert(axis), convert(num_newaxis))] @script def _transpose_shape_func(data_shape, axes): out = output_tensor((data_shape.shape[0],), "int64") for i in const_range(len(axes)): out[i] = data_shape[axes[i]] return out @_reg.register_shape_func("transpose", False) def transpose_shape_func(attrs, inputs, _): """ Shape function for transpose op. """ axes = attrs.axes if attrs.axes is None else get_const_tuple(attrs.axes) if axes is None: axes = list(range(inputs[0].shape[0].value)) axes.reverse() axes = list(axes) for i, axis in enumerate(axes): if axis < 0: axes[i] = inputs[0].shape[0] + axis return [_transpose_shape_func(inputs[0], convert(axes))] _reg.register_schedule("transpose", strategy.schedule_transpose) @script def _squeeze_shape_func(data_shape, keep_axes, remove_axes): out = output_tensor((len(keep_axes),), "int64") for i in const_range(len(keep_axes)): out[i] = data_shape[keep_axes[i]] for i in const_range(len(remove_axes)): assert data_shape[remove_axes[i]] == 1, "Removed dimension must have size 1" return out @_reg.register_shape_func("squeeze", False) def squeeze_shape_func(attrs, inputs, _): """ Shape function for squeeze op. """ axis = attrs.axis if attrs.axis is None else get_const_tuple(attrs.axis) keep_axes = [] remove_axes = [] if axis is not None: for i in range(inputs[0].shape[0].value): if i not in axis: keep_axes.append(i) else: remove_axes.append(i) # Due to current relay type system, it is possible even # a static kernel function needs shape function. To handle # this case, we allow axis to be None in squeeze shape func # for now. # TODO(kevinthesun): Enhance relay type system to avoid this. if keep_axes: out = _squeeze_shape_func(inputs[0], convert(keep_axes), convert(remove_axes)) else: out = te.compute((), lambda *indices: 0) return [out] @script def _reshape_like_shape_func(target_shape): out = output_tensor((target_shape.shape[0],), "int64") for i in const_range(target_shape.shape[0]): out[i] = target_shape[i] return out @_reg.register_shape_func("reshape_like", False) def reshape_like_shape_func(attrs, inputs, _): """ Shape function for reshape_like op. """ return [_reshape_like_shape_func(inputs[1])] @script def _tile_shape_func(data, reps, ndim, tndim, rndim): out = output_tensor((tndim,), "int64") if ndim == rndim: for i in const_range(tndim): out[i] = data[i] * int64(reps[i]) elif ndim > rndim: ngap = ndim - rndim for i in const_range(ndim): if i < ngap: out[i] = data[i] else: out[i] = data[i] * int64(reps[i - ngap]) else: rgap = rndim - ndim for i in const_range(rndim): if i < rgap: out[i] = int64(reps[i]) else: out[i] = int64(reps[i]) * data[i - rgap] return out @_reg.register_shape_func("tile", False) def tile_shape_func(attrs, inputs, _): """ Shape function for tile op. """ reps = get_const_tuple(attrs.reps) ndim = inputs[0].shape[0].value rndim = len(reps) tndim = ndim if ndim > rndim else rndim return [ _tile_shape_func(inputs[0], convert(reps), convert(ndim), convert(tndim), convert(rndim)) ] @script def _split_shape_func(data_shape, index, indices_or_sections, param_is_indices, axis): out = output_tensor((data_shape.shape[0],), "int64") if param_is_indices: for i in const_range(data_shape.shape[0]): if i == axis: assert ( data_shape[axis] % indices_or_sections[0] == 0 ), "num_sections must be an integer factor of the size of axis" out[i] = ceil_div(data_shape[axis], indices_or_sections[0]) else: out[i] = data_shape[i] else: start = int64(0) if index > 0: start = int64(indices_or_sections[index - 1]) end = data_shape[axis] if index < len(indices_or_sections): end = int64(indices_or_sections[index]) for i in const_range(data_shape.shape[0]): if i == axis: out[i] = end - start else: out[i] = data_shape[i] return out @_reg.register_shape_func("split", False) def split_shape_func(attrs, inputs, _): """ Shape function for split op. """ if isinstance(attrs.indices_or_sections, (int, tvm.tir.IntImm)): indices_or_sections = get_const_int(attrs.indices_or_sections) assert indices_or_sections > 0, "Slice count must be > 0" else: indices_or_sections = list(get_const_tuple(attrs.indices_or_sections)) assert sorted(indices_or_sections)[0] > 0 and indices_or_sections == sorted( indices_or_sections ), "split_indices must be sorted" axis = get_const_int(attrs.axis) if axis < 0: axis += get_const_int(inputs[0].shape[0]) num_out = ( indices_or_sections if isinstance(indices_or_sections, int) else len(indices_or_sections) + 1 ) param_is_indices = isinstance(indices_or_sections, int) if param_is_indices: indices_or_sections = [indices_or_sections] return [ _split_shape_func( inputs[0], convert(i), convert(indices_or_sections), convert(param_is_indices), convert(axis), ) for i in range(num_out) ] @script def _repeat_shape_func(data_shape, repeats, axis): out = output_tensor((data_shape.shape[0],), "int64") for i in const_range(data_shape.shape[0]): if i == axis: out[i] = int64(data_shape[i] * repeats) else: out[i] = data_shape[i] return out @_reg.register_shape_func("repeat", False) def repeat_shape_func(attrs, inputs, _): """ Shape func for repeat. """ axis = get_const_int(attrs.axis) if axis < 0: axis = inputs[0].shape[0] + axis return [_repeat_shape_func(inputs[0], attrs.repeats, convert(axis))] @_reg.register_shape_func("broadcast_to_like", False) def broadcast_to_like_shape_func(attrs, inputs, _): """ Shape func for broadcast_to_like. """ return [topi.math.identity(inputs[1])] @script def _stack_shape_func(data_shape, axis, num_inputs): out = output_tensor((data_shape.shape[0] + 1,), "int64") for i in const_range(data_shape.shape[0] + 1): if i == axis: out[i] = int64(num_inputs) elif i < axis: out[i] = data_shape[i] else: out[i] = data_shape[i - 1] return out @_reg.register_shape_func("stack", False) def stack_shape_func(attrs, inputs, _): """ Shape func for stack. """ axis = get_const_int(attrs.axis) if axis < 0: axis += inputs[0].shape[0] + 1 return [_stack_shape_func(inputs[0], convert(axis), convert(len(inputs)))] @script def _broadcast_shape_tensors(shape_tensor1, shape_tensor2): rank1 = shape_tensor1.shape[0] rank2 = shape_tensor2.shape[0] out_rank = max(rank1, rank2) bcast_shape_tensor = output_tensor((out_rank,), "int64") for index in const_range(out_rank): dim1 = int64(1) dim2 = int64(1) if rank1 == out_rank: dim1 = shape_tensor1[index] elif rank1 - (out_rank - index) >= 0: dim1 = shape_tensor1[rank1 - (out_rank - index)] if rank2 == out_rank: dim2 = shape_tensor2[index] elif rank2 - (out_rank - index) >= 0: dim2 = shape_tensor2[rank2 - (out_rank - index)] assert dim1 == dim2 or dim1 == 1 or dim2 == 1, "Invalid broadcast shapes" bcast_shape_tensor[index] = max(dim1, dim2) return bcast_shape_tensor @_reg.register_shape_func("where", False) def where_shape_func(attrs, inputs, _): """ Shape func for where. """ def ensure_tensor(tensor): if len(tensor.shape) == 0: return topi.full((1,), "int64", 1) return tensor cond_shape = ensure_tensor(inputs[0]) x_shape = ensure_tensor(inputs[1]) y_shape = ensure_tensor(inputs[2]) bcast_shape = _broadcast_shape_tensors(x_shape, y_shape) out_shape = _broadcast_shape_tensors(bcast_shape, cond_shape) return [out_shape] @script def _adv_index_post_process(data_shape, bcast_shape, num_indices): data_rank = data_shape.shape[0] bcast_rank = bcast_shape.shape[0] out = output_tensor((data_rank + bcast_rank - num_indices,), "int64") for i in const_range(bcast_rank): out[i] = bcast_shape[i] for i in const_range(data_rank - num_indices): out[i + bcast_rank] = data_shape[i + num_indices] return out @_reg.register_shape_func("adv_index", False) def adv_index_shape_func(attrs, inputs, _): """ Shape func for adv_index. """ bcast_shape = inputs[1] for i in inputs[2:]: bcast_shape = _broadcast_shape_tensors(bcast_shape, i) return [_adv_index_post_process(inputs[0], bcast_shape, convert(len(inputs) - 1))] @script def _unique_shape(data_shape): unique_shape = output_tensor((1,), "int64") indices_shape = output_tensor((1,), "int64") inverse_indices_shape = output_tensor((1,), "int64") num_unique_shape = output_tensor((1,), "int64") unique_shape[0] = data_shape[0] indices_shape[0] = data_shape[0] inverse_indices_shape[0] = data_shape[0] num_unique_shape[0] = int64(1) return (unique_shape, indices_shape, inverse_indices_shape, num_unique_shape) @script def _unique_with_counts_shape(data_shape): unique_shape = output_tensor((1,), "int64") indices_shape = output_tensor((1,), "int64") inverse_indices_shape = output_tensor((1,), "int64") num_unique_shape = output_tensor((1,), "int64") counts_shape = output_tensor((1,), "int64") unique_shape[0] = data_shape[0] indices_shape[0] = data_shape[0] inverse_indices_shape[0] = data_shape[0] num_unique_shape[0] = int64(1) counts_shape[0] = data_shape[0] return (unique_shape, indices_shape, inverse_indices_shape, num_unique_shape, counts_shape) @_reg.register_shape_func("unique", False) def unique_shape_func(attrs, inputs, _): """ Shape func for unique operator. """ if attrs.return_counts: return _unique_with_counts_shape(inputs[0]) else: return _unique_shape(inputs[0]) @script def _gather_nd_shape(data_shape, indices_shape, batch_dims, index_rank): ndim = data_shape.shape[0] # using mdim = indices_shape[0] wouldn't work because a rank cannot # depend on a runtime shape dimension of indices tensor, even if the # dimension is always a known, fixed value. As a workaround, we assume that # the fixed gather dimension (the size of an indexing tuple) is recorded # in gather_nd op attributes. mdim = index_rank kdim = indices_shape.shape[0] - 1 out_shape = output_tensor((kdim + ndim - (mdim + batch_dims),), "int64") for i in range(1, kdim + 1): out_shape[i - 1] = indices_shape[i] for i in range(mdim + batch_dims, ndim): out_shape[kdim + i - (mdim + batch_dims)] = data_shape[i] return out_shape @_reg.register_shape_func("gather_nd", False) def gather_nd_shape_func(attrs, inputs, _): """ Shape func for gather_nd operator. """ batch_dims = get_const_int(attrs.batch_dims) index_rank = get_const_int(attrs.index_rank) assert index_rank > 0, "index_rank needs to be specified for dynamic gather_nd" return [_gather_nd_shape(inputs[0], inputs[1], convert(batch_dims), convert(index_rank))] @script def _gather_shape(data_shape, indices_shape, axis): out_shape = output_tensor((data_shape.shape[0],), "int64") for i in range(data_shape.shape[0]): if i != axis: assert ( data_shape[i] == indices_shape[i] ), "data and indices size at non-gather axes must be the same" out_shape[i] = indices_shape[i] return out_shape @_reg.register_shape_func("gather", False) def gather_shape_func(attrs, inputs, _): """ Shape func for gather operator. """ return [_gather_shape(inputs[0], inputs[1], attrs.axis)]
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/algorithm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Classic algorithm operation""" from __future__ import absolute_import as _abs from ..expr import Constant, Expr, TupleWrapper from . import _make from .dyn import _make as _dyn_make def sort(data, axis=-1, is_ascend=1): """Performs sorting along the given axis and returns data in sorted order. Parameters ---------- data : relay.Expr The input data tensor. axis : int, optional Axis long which to sort the input tensor. is_ascend : boolean, optional Whether to sort in ascending or descending order. Returns ------- out : relay.Expr Tensor with same shape as data. """ return _make.sort(data, axis, is_ascend) def argsort(data, axis=-1, is_ascend=1, dtype="int32"): """Performs sorting along the given axis and returns an array of indices having same shape as an input array that index data in sorted order. Parameters ---------- data : relay.Expr The input data tensor. valid_count : tvm.te.Tensor The number of valid elements to be sorted. axis : int, optional Axis long which to sort the input tensor. is_ascend : boolean, optional Whether to sort in ascending or descending order. dtype : string, optional The data type of the output indices. Returns ------- out : relay.Expr Tensor with same shape as data. """ return _make.argsort(data, axis, is_ascend, dtype) def topk(data, k=1, axis=-1, ret_type="both", is_ascend=False, dtype="int32"): """Get the top k elements in an input tensor along the given axis. ret_type specifies the return type, can be one of ("both", "values", "indices"). Parameters ---------- data : relay.Expr The input data tensor. k : int or relay.Expr, optional Number of top elements to select. Return all elements if k < 1. axis : int, optional Axis long which to sort the input tensor. ret_type: str, optional The return type [both, values, indices]. "both": return both top k data and indices. "values": return top k data only. "indices": return top k indices only. is_ascend : boolean, optional Whether to sort in ascending or descending order. dtype : string, optional The data type of the indices output. Returns ------- out : relay.Expr or List[relay.Expr] The computed result. """ if isinstance(k, Constant): k = k.data.numpy().item() if isinstance(k, Expr): out = _dyn_make.topk(data, k, axis, ret_type, is_ascend, dtype) else: out = _make.topk(data, k, axis, ret_type, is_ascend, dtype) if ret_type == "both": return TupleWrapper(out, 2) return out def searchsorted(sorted_sequence, values, right=False, dtype="int32"): """Find indices where elements should be inserted to maintain order. If `sorted_sequence` is N-dimensional, the innermost dimension of `values` are searched in the corresponding dimension of `sorted_sequence`. Parameters ---------- sorted_sequence : relay.Expr N-D or 1-D Tensor, containing monotonically increasing sequence on the innermost dimension. values : relay.Expr N-D Tensor containing the search values. When `sorted_sequence` is 1-D, the shape of `values` can be arbitrary. Otherwise, ranks of `sorted_sequence` and `values` must be the same, and outer N-1 axes must have the same size. right : bool, optional Controls which index is returned if a value lands exactly on one of sorted values. If False, the index of the first suitable location found is given. If true, return the last such index. If there is no suitable index, return either 0 or N (where N is the size of the innermost dimension). dtype : string, optional The data type of the output indices. Returns ------- indices : relay.Expr Tensor with same shape as values, representing the indices of elements of `values` if they are inserted in `sorted_sequence`. """ return _make.searchsorted(sorted_sequence, values, right, dtype)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/annotation/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import """Annotation related operators.""" from __future__ import absolute_import as _abs from .annotation import *
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/annotation/_make.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Constructor APIs""" import tvm._ffi tvm._ffi._init_api("relay.op.annotation._make", __name__)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/annotation/annotation.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Annotation operations.""" from tvm import target from tvm.runtime import ndarray as _nd from tvm.runtime import Device as _Device from . import _make from .. import op as reg def _make_virtual_device(device): if isinstance(device, _Device): return target.VirtualDevice(device) if isinstance(device, str): return target.VirtualDevice(_nd.device(device)) if isinstance(device, target.VirtualDevice): return device raise ValueError("expecting a Device or device name, but received a %s" % (type(device))) def on_device(body, device, constrain_result=False, constrain_body=True): """Annotates a body expression with device constraints. The constraint influences how the body is compiled, where the body is evaluated, and where the result of evaluation is stored. Note that the defaults for the constrain_body and constrain_result parameters should almost never need to be overridden by the user. These parameters are exposed here to help unit tests exercise the PlanDevices pass machinery. Parameters ---------- body : tvm.relay.Expr The expression to be annotated. device : Union[:py:class:`Device`, str] The device to annotate with. constrain_result : bool If false (the default), the result of the on_device is not constrained to be on device. constrain_body : bool If true (the default), the body of the on_device is constrained to be on device. Returns ------- result : tvm.relay.Expr The annotated expression. """ return _make.OnDevice(body, _make_virtual_device(device), constrain_result, constrain_body) def function_on_device(function, param_devices, result_device): """Annotates a Relay function with the device types on which its parameters and result should be stored. Parameters ---------- function : tvm.relay.Function The function to be annotated. param_devices : Array[Union[:py:class:`Device`, str]] The devices for each parameter. result_device: Union[:py:class:`Device`, str] The device for the function result. Returns ------- result : tvm.relay.Function The annotated function. """ return _make.FunctionOnDevice( function, [_make_virtual_device(d) for d in param_devices], _make_virtual_device(result_device), ) def stop_fusion(data): """Annotate an expression to prevent it being fused with following expressions. Parameters ---------- data : tvm.relay.Expr The expression to be annotated. Returns ------- result : tvm.relay.Expr The annotated expression. """ return _make.stop_fusion(data) def checkpoint(data): """Annotate an expression to be a checkpoint for the checkpointing memory optimization. Parameters ---------- data : tvm.relay.Expr The expression to be annotated. Returns ------- result : tvm.relay.Expr The annotated expression. """ return _make.checkpoint(data) reg.register_injective_schedule("annotation.checkpoint") def compiler_begin(data, compiler): """Annotate an expression to indicate that it is the beginning of a regeion that will be handled by the given compiler. Parameters ---------- data : tvm.relay.Expr The expression to be annotated. compiler : Str The compiler used to generate code of the annotated region. Returns ------- result : tvm.relay.Expr The annotated expression. """ return _make.compiler_begin(data, compiler) def compiler_end(data, compiler): """Annotate an expression to indicate that it is the end of a region that is handled by the provided compiler. Parameters ---------- data : tvm.relay.Expr The expression to be annotated. compiler : Str The compiler used to generate code of the annotated region. Returns ------- result : tvm.relay.Expr The annotated expression. """ return _make.compiler_end(data, compiler)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import """Contrib modules.""" from .register import get_pattern_table, register_pattern_table from .arm_compute_lib import * from .dnnl import * from .tachikoma import * from .bnns import * from .coreml import * from .ethosn import * from .libtorch import * from .tensorrt import * from .cutlass import * from .clml import *
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/_ethosn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Expose 'is supported' functions to Python.""" import tvm._ffi tvm._ffi._init_api("relay.ethos-n.support", __name__) tvm._ffi._init_api("relay.backend.contrib.ethos-n", __name__)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/arm_compute_lib.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, dangerous-default-value """Arm Compute Library supported operators.""" import tvm from tvm import relay from tvm._ffi import register_func from tvm.relay import transform from tvm.relay.build_module import bind_params_by_name from tvm.relay.expr import const from ...dataflow_pattern import is_constant, is_expr, is_op, is_tuple, wildcard from ..strategy.generic import is_depthwise_conv2d from .register import register_pattern_table def is_arm_compute_runtime_enabled(): """Check if the ACL graph executor is present. Returns ------- ret: bool True if present, False if not. """ check_enabled = tvm.get_global_func("relay.op.is_arm_compute_runtime_enabled", True) if check_enabled: return check_enabled() return False def partition_for_arm_compute_lib(mod, params=None, disabled_ops=["concatenate"], **opts): """Partition the graph greedily offloading supported operators to Arm Compute Library. Parameters ---------- mod : Module The module to run passes on. params : Optional[Dict[str, NDArray]] Constant input parameters. disabled_ops : Optional[list] Ops do not want to offload to ACL. Returns ------- ret : annotated and partitioned module. """ if params: mod["main"] = bind_params_by_name(mod["main"], params) seq = tvm.transform.Sequential( [ transform.InferType(), transform.MergeComposite(arm_compute_lib_pattern_table(disabled_ops)), transform.AnnotateTarget("arm_compute_lib", False), transform.PartitionGraph(), ] ) return seq(mod) @register_func("relay.ext.arm_compute_lib.optimize") def preprocess_module(mod): """ Pre-process a module containing functions ready for ACL codegen. For now we enforce OHWI kernel layout and fold the transforms away. Parameters ---------- mod : Module The module to run passes on. Returns ------- preprocessed_mod : The processed module. """ def convert_layout_conv2d(conv2d_function): def convert_conv(attrs, inputs, tinfos, desired_layouts): new_attrs = dict(attrs) data_info = tinfos[0] weight_info = tinfos[1] desired_data_layout, desired_kernel_layout = map(str, desired_layouts) new_attrs["data_layout"] = desired_data_layout new_attrs["kernel_layout"] = desired_kernel_layout if is_depthwise_conv2d( data_info.shape, attrs["data_layout"], weight_info.shape, attrs["kernel_layout"], attrs["groups"], ): dkl = desired_kernel_layout new_attrs["kernel_layout"] = dkl[3] + dkl[1:3] + dkl[0] return conv2d_function(*inputs, **new_attrs) return convert_conv with OpAttrContext( "nn.conv2d", "FTVMConvertOpLayout", convert_layout_conv2d(tvm.relay.nn.conv2d) ), OpAttrContext( "qnn.conv2d", "FTVMConvertOpLayout", convert_layout_conv2d(tvm.relay.qnn.op.conv2d) ): seq = tvm.transform.Sequential( [ transform.ConvertLayout( {"nn.conv2d": ["NHWC", "OHWI"], "qnn.conv2d": ["NHWC", "OHWI"]} ), transform.FoldConstant(), ] ) preprocessed_mod = seq(mod) return preprocessed_mod @register_pattern_table("arm_compute_lib") def arm_compute_lib_pattern_table(disabled_ops=["concatenate"]): """Get the ACL pattern table.""" def conv_pattern(): """Create a convolution pattern. Returns ------- pattern : dataflow_pattern.AltPattern Denotes the convolution pattern. """ pattern = is_op("nn.pad")(wildcard(), wildcard()) | wildcard() pattern = is_op("nn.conv2d")(pattern, is_constant()) pattern = pattern.optional(lambda x: is_op("nn.bias_add")(x, is_constant())) pattern = pattern.optional(is_op("nn.relu")) return pattern def qnn_conv_pattern(): """Create a quantized convolution pattern. Returns ------- pattern : dataflow_pattern.AltPattern Denotes the convolution pattern. """ pattern = is_op("nn.pad")(wildcard(), wildcard()) | wildcard() pattern = is_op("qnn.conv2d")( pattern, is_constant(), is_constant(), is_constant(), is_constant(), is_constant() ) pattern = pattern.optional(lambda x: is_op("nn.bias_add")(x, is_constant())) pattern = pattern.optional(is_op("nn.relu")) pattern = is_op("qnn.requantize")( pattern, wildcard(), wildcard(), is_constant(), is_constant() ) return pattern def dense_pattern(): """Create a dense (fully-connected) pattern. Returns ------- pattern : dataflow_pattern.AltPattern Denotes the convolution pattern. """ pattern = is_op("nn.dense")(wildcard(), is_constant()) pattern = pattern.optional(lambda x: is_op("nn.bias_add")(x, is_constant())) return pattern def qnn_dense_pattern(): """Create a quantized dense (fully-connected) pattern. Returns ------- pattern : dataflow_pattern.AltPattern Denotes the convolution pattern. """ pattern = is_op("qnn.dense")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant() ) pattern = pattern.optional(lambda x: is_op("nn.bias_add")(x, is_constant())) pattern = is_op("qnn.requantize")( pattern, wildcard(), wildcard(), is_constant(), is_constant() ) return pattern def avg_pool2d_pattern(): """Creates a pattern that matches either quantized avg_pool2d or quantized global_avg_pool2d. Returns ------- pattern : dataflow_pattern.AltPattern Denotes the convolution pattern. """ pattern = is_op("cast")(wildcard()) pattern = is_op("nn.avg_pool2d")(pattern) | is_op("nn.global_avg_pool2d")(pattern) pattern = is_op("cast")(pattern) return pattern def l2_pool2d_pattern(): """Create an l2 pooling pattern from equivalent relay operators. Returns ------- pattern : dataflow_pattern.AltPattern Denotes the convolution pattern. """ pattern = is_op("power")(wildcard(), is_expr(const(2.0))) pattern = is_op("nn.avg_pool2d")(pattern) pattern = is_op("sqrt")(pattern) return pattern def concatenate_pattern(): """Create an concatenate pattern from equivalent relay operators. Returns ------- pattern : dataflow_pattern.AltPattern Denotes the concatenate pattern. """ pattern = is_op("concatenate")(is_tuple(None)) return pattern def check_conv(extract): """Check conv pattern is supported by ACL.""" call = extract while call.op.name != "nn.conv2d": call = call.args[0] return conv2d(call) def check_qnn_conv(extract): """Check qnn conv pattern is supported by ACL.""" if extract.attrs.out_dtype != "uint8": return False call = extract while call.op.name != "qnn.conv2d": call = call.args[0] return qnn_conv2d(call) def check_dense(extract): """Check conv pattern is supported by ACL.""" call = extract while call.op.name != "nn.dense": call = call.args[0] return dense(call) def check_qnn_dense(extract): """Check qnn conv pattern is supported by ACL.""" if extract.attrs.out_dtype != "uint8": return False call = extract while call.op.name != "qnn.dense": call = call.args[0] return qnn_dense(call) def check_avg_pool2d(extract): """Check average pool2d pattern is supported by ACL.""" if extract.attrs.dtype != "uint8": return False pool = extract.args[0] if pool.args[0].attrs.dtype != "int32": return False return avg_pool2d(pool, from_quantized_composite=True) def check_l2_pool2d(extract): """Check l2 pool2d pattern is supported by ACL.""" pool = extract.args[0] return avg_pool2d(pool) def check_concatenate(expr): """Check concatenate pattern is supported by ACL.""" if "concatenate" in disabled_ops: return False attrs, type_args = expr.attrs, expr.type_args for idx in range(len(type_args[0].fields)): if type_args[0].fields[idx].dtype not in ["float32", "uint8"]: return False # ACL concatenate only supports maximum 4 dimensions input tensor if attrs.axis not in [-4, -3, -2, -1, 0, 1, 2, 3]: return False return True return [ ("arm_compute_lib.conv2d", conv_pattern(), check_conv), ("arm_compute_lib.qnn_conv2d", qnn_conv_pattern(), check_qnn_conv), ("arm_compute_lib.dense", dense_pattern(), check_dense), ("arm_compute_lib.qnn_dense", qnn_dense_pattern(), check_qnn_dense), ("arm_compute_lib.qnn_conv2d", qnn_conv_pattern(), check_qnn_conv), ("arm_compute_lib.avg_pool2d", avg_pool2d_pattern(), check_avg_pool2d), ("arm_compute_lib.l2_pool2d", l2_pool2d_pattern(), check_l2_pool2d), ("arm_compute_lib.concatenate", concatenate_pattern(), check_concatenate), ] def _register_external_op_helper(op_name, supported=True): @tvm.ir.register_op_attr(op_name, "target.arm_compute_lib") def _func_wrapper(expr): return supported return _func_wrapper _register_external_op_helper("reshape") @tvm.ir.register_op_attr("nn.conv2d", "target.arm_compute_lib") def conv2d(expr): """Check if the external ACL codegen for conv2d should be used.""" attrs, args = expr.attrs, expr.args if attrs.data_layout != "NHWC": return False if attrs.out_dtype != "float32" and attrs.out_dtype != "": return False data_typ = args[0].checked_type if len(data_typ.shape) != 4 or data_typ.shape[0] != 1 or data_typ.dtype != "float32": return False kernel_typ = args[1].checked_type if len(kernel_typ.shape) != 4 or kernel_typ.dtype != "float32": return False is_depthwise = is_depthwise_conv2d( data_typ.shape, attrs["data_layout"], kernel_typ.shape, attrs["kernel_layout"], attrs["groups"], ) if is_depthwise: return depthwise_conv2d(attrs, args) # ACL doesn't support grouped convolution if attrs.groups != 1 and not is_depthwise: return False return True def qnn_conv2d(expr): """Check if the external ACL codegen for qnn.conv2d should be used.""" attrs, args = expr.attrs, expr.args if attrs.data_layout != "NHWC": return False if attrs.out_dtype != "int32" and attrs.out_dtype != "": return False data_typ = args[0].checked_type if len(data_typ.shape) != 4 or data_typ.shape[0] != 1 or data_typ.dtype != "uint8": return False kernel_typ = args[1].checked_type if len(kernel_typ.shape) != 4 or kernel_typ.dtype != "uint8": return False is_depthwise = is_depthwise_conv2d( data_typ.shape, attrs["data_layout"], kernel_typ.shape, attrs["kernel_layout"], attrs["groups"], ) if is_depthwise: return depthwise_conv2d(attrs, args) # ACL doesn't support grouped convolution if attrs.groups != 1 and not is_depthwise: return False return True def depthwise_conv2d(attrs, args): """Check if the external ACL codegen for depthwise convolution should be used. Note ---- Relay does not have a depthwise conv2d operator whilst ACL does. We simply separate the checks for depthwise for clarity. """ kernel_typ = args[1].checked_type # Only supports 3x3, 5x5 depthwise if ( kernel_typ.shape[0] not in [3, 5] or kernel_typ.shape[1] not in [3, 5] or kernel_typ.shape[0] != kernel_typ.shape[1] ): return False # Stride must be (1, 1) or (2, 2) if (attrs.strides[0], attrs.strides[1]) not in [(1, 1), (2, 2)]: return False return True @tvm.ir.register_op_attr("nn.dense", "target.arm_compute_lib") def dense(expr): """Check if the external ACL codegen for dense should be used.""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type if data_typ.dtype != "float32": return False kernel_typ = args[1].checked_type if len(kernel_typ.shape) != 2 or kernel_typ.dtype != "float32": return False if attrs.out_dtype != "float32" and attrs.out_dtype != "": return False return True def qnn_dense(expr): """Check if the external ACL codegen for qnn.dense should be used.""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type if data_typ.dtype != "uint8": return False kernel_typ = args[1].checked_type if len(kernel_typ.shape) != 2 or kernel_typ.dtype != "uint8": return False if attrs.out_dtype != "int32": return False return True def check_dilation(attrs): """Prevents offloading if dilation other than (1, 1)""" if not isinstance(attrs, relay.op.op_attrs.GlobalPool2DAttrs): if not (len(attrs.dilation) == 2 and attrs.dilation[0] == 1 and attrs.dilation[1] == 1): return False return True @tvm.ir.register_op_attr("nn.max_pool2d", "target.arm_compute_lib") def max_pool2d(expr): """Check if the external ACL codegen for maxpool2d should be used.""" attrs, args = expr.attrs, expr.args if attrs.layout != "NHWC": return False typ = args[0].checked_type if typ.dtype not in ["float32", "uint8"]: return False return check_dilation(attrs) @tvm.ir.register_op_attr("nn.avg_pool2d", "target.arm_compute_lib") def avg_pool2d(expr, from_quantized_composite=False): """Check if the external ACL codegen for avgpool2d should be used.""" attrs, args = expr.attrs, expr.args typ = args[0].checked_type if from_quantized_composite: if typ.dtype != "int32": return False else: if typ.dtype not in ["float32"]: return False if attrs.layout != "NHWC": return False return check_dilation(attrs) @tvm.ir.register_op_attr("nn.global_max_pool2d", "target.arm_compute_lib") def global_max_pool2d(expr): """Check if the external ACL codegen for gloval_maxpool2d should be used.""" attrs, args = expr.attrs, expr.args typ = args[0].checked_type if typ.dtype not in ["float32", "uint8"]: return False if attrs.layout != "NHWC": return False return True @tvm.ir.register_op_attr("nn.global_avg_pool2d", "target.arm_compute_lib") def global_avg_pool2d(expr): """Check if the external ACL codegen for global_avgpool2d should be used.""" attrs, args = expr.attrs, expr.args typ = args[0].checked_type if typ.dtype not in ["float32"]: return False if attrs.layout != "NHWC": return False return True @tvm.ir.register_op_attr("maximum", "target.arm_compute_lib") def maximum(expr): """Check if the external ACL codegen for maximum should be used.""" args = expr.args type_a = args[0].checked_type type_b = args[0].checked_type return (type_a.dtype == "float32") and (type_b.dtype == "float32") @tvm.ir.register_op_attr("add", "target.arm_compute_lib") def add(expr): """Check if the external ACL codegen for add should be used.""" args = expr.args for typ in [args[0].checked_type, args[1].checked_type]: if typ.dtype != "float32": return False return True @tvm.ir.register_op_attr("qnn.add", "target.arm_compute_lib") def qnn_add(expr): """Check if the external ACL codegen for add should be used.""" args = expr.args for typ in [args[0].checked_type, args[1].checked_type]: if typ.dtype != "uint8": return False return True class OpAttrContext(object): """Temporarily changes the attr of an op.""" def __init__(self, op_name, attr_key, attr_value): """Saves the required info for RAII pattern usage. Parameters ---------- op_name : str The op name. attr_key : str The attribute name. attr_value : object The attribute value. """ self.op = relay.op.get(op_name) self.attr_key = attr_key self.attr_value = attr_value def __enter__(self): self.older_attr = self.op.get_attr(self.attr_key) self.op.reset_attr(self.attr_key) self.op.set_attr(self.attr_key, self.attr_value) return self def __exit__(self, ptype, value, trace): self.op.reset_attr(self.attr_key) if self.older_attr: self.op.set_attr(self.attr_key, self.older_attr)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/bnns.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """BNNS library supported operators. Is a part of Accelerate framework on macOS/iOS platforms. Apple provide several APIs to handle tensor processing. Particularly: * BNNS (basic neural ) * vDSP (1D and 2D tensor processing) """ import math import tvm.ir from tvm.relay import transform from tvm.relay.expr import const from tvm.relay.build_module import bind_params_by_name from .register import register_pattern_table, get_pattern_table from ...dataflow_pattern import wildcard, is_op, is_expr def partition_for_bnns(mod, params=None): """Partition the graph greedily offloading supported operators to BNNS. Parameters ---------- mod : Module The module to run passes on. params : Optional[Dict[str, NDArray]] Constant input parameters. Returns ------- ret : annotated and partitioned module. """ if params: mod["main"] = bind_params_by_name(mod["main"], params) seq = tvm.transform.Sequential( [ transform.InferType(), transform.FoldConstant(), transform.FoldScaleAxis(), transform.DynamicToStatic(), transform.AlterOpLayout(), # TODO(apeskov): WA. AlterOpLayout call lead to constants shape transformation # Some expand_dims op may appears after constants. It breaks BNNS fusing. # So we have to call FoldConstant right before bnns composite passes. transform.FoldConstant(), transform.MergeComposite(get_pattern_table("bnns")), transform.AnnotateTarget("bnns"), # If you no need in per layer performance statistic you can # uncomment next line # transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) return seq(mod) def _register_external_op_helper(op_name, supported=True): """The helper function to indicate that a given operator can be supported by BNNS. Parameters ---------- op_name : Str The name of supported operator that will be registered. Returns ------- f : callable A function that returns if the operator is supported by BNNS. """ @tvm.ir.register_op_attr(op_name, "target.bnns") def _func_wrapper(expr): return supported return _func_wrapper _register_external_op_helper("nn.batch_matmul") @tvm.ir.register_op_attr("nn.max_pool2d", "target.bnns") def max_pool2d_check(expr): """Check if the nn.max_pool2d can be executed in BNNS""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type rank = len(data_typ.shape) if rank < 3 or rank > 4 or data_typ.dtype != "float32": return False if attrs.layout != "NCHW": return False return True @tvm.ir.register_op_attr("nn.avg_pool2d", "target.bnns") def avg_pool2d_check(expr): """Check if the nn.avg_pool2d can be executed in BNNS""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type rank = len(data_typ.shape) if rank < 3 or rank > 4 or data_typ.dtype != "float32": return False if attrs.layout != "NCHW": return False return True @tvm.ir.register_op_attr("nn.global_max_pool2d", "target.bnns") def global_max_pool2d_check(expr): """Check if the nn.global_max_pool2d can be executed in BNNS""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type rank = len(data_typ.shape) if rank < 3 or rank > 4 or data_typ.dtype != "float32": return False if attrs.layout != "NCHW": return False return True @tvm.ir.register_op_attr("nn.global_avg_pool2d", "target.bnns") def global_avg_pool2d_check(expr): """Check if the nn.global_avg_pool2d can be executed in BNNS""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type rank = len(data_typ.shape) if rank < 3 or rank > 4 or data_typ.dtype != "float32": return False if attrs.layout != "NCHW": return False return True def dtype_is_supported(dtype): """Check if data type is supported by BNNS backend""" return dtype in ("", "float32") @tvm.ir.register_op_attr("nn.conv2d", "target.bnns") def conv2d_check(expr): """Check if the conv2d can be executed in BNNS""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type if len(data_typ.shape) != 4 or data_typ.dtype != "float32": return False if not isinstance(args[1], tvm.relay.expr.Constant): return False kernel_typ = args[1].checked_type if len(kernel_typ.shape) != 4 or kernel_typ.dtype != "float32": return False if attrs.data_layout != "NCHW": return False if not dtype_is_supported(attrs.out_dtype): return False return True def bias_check(expr): """Check is bias added through the correct dimension""" attrs, args = expr.attrs, expr.args if not isinstance(args[1], tvm.relay.expr.Constant): return False if expr.op.name == "nn.bias_add": return attrs.axis == 1 if expr.op.name == "add": b_shape = args[1].checked_type.shape if len(b_shape) == 4: return bool(b_shape[0] == 1 and b_shape[2] == 1 and b_shape[3] == 1) if len(b_shape) == 3: return bool(b_shape[1] == 1 and b_shape[2] == 1) return False @tvm.ir.register_op_attr("nn.dense", "target.bnns") def dense(expr): """Check if the dense can be used in BNNS.""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type if data_typ.dtype != "float32": return False if not isinstance(args[1], tvm.relay.expr.Constant): return False kernel_typ = args[1].checked_type if len(kernel_typ.shape) != 2 or kernel_typ.dtype != "float32": return False if attrs.out_dtype != "float32" and attrs.out_dtype != "": return False return True def make_conv_pattern(with_bias=True, activation="none"): """Make pattern for bnns.conv2d primitive""" data = wildcard() weight = wildcard() bias = wildcard() pat = is_op("nn.conv2d")(data, weight) if with_bias: pat = is_op("add")(pat, bias) | is_op("nn.bias_add")(pat, bias) if activation == "relu": pat = is_op("nn.relu")(pat) elif activation == "sigmoid": pat = is_op("sigmoid")(pat) return pat def check_conv(extract): """Check conv pattern is supported by BNNS.""" bias_is_ok = True call = extract while call.op.name != "nn.conv2d": if call.op.name in ("nn.bias_add", "add"): bias_is_ok &= bias_check(call) call = call.args[0] return conv2d_check(call) and bias_is_ok def make_dense_bias_pattern(): """Make pattern for bnns.dense primitive""" data = wildcard() weight = wildcard() bias = wildcard() d = is_op("nn.dense")(data, weight) return is_op("add")(d, bias) def make_dense_bias_gelu_pattern(): """Make pattern for bnns.dense primitive with fused bias and gelu activation""" dense_bias = make_dense_bias_pattern() const1 = is_expr(const(0.044715)) const2 = is_expr(const(math.sqrt(2 / math.pi))) gelu = is_op("power")(dense_bias, is_expr(const(3, dtype="float32"))) gelu = is_op("multiply")(gelu, const1) gelu = is_op("add")(gelu, dense_bias) gelu = is_op("multiply")(gelu, const2) gelu = is_op("tanh")(gelu) gelu = is_op("add")(gelu, is_expr(const(1, dtype="float32"))) gelu = is_op("multiply")(gelu, is_expr(const(0.5))) gelu = is_op("multiply")(gelu, dense_bias) return gelu def check_dense(extract): """Check dense pattern is supported by BNNS.""" call = extract while call.op.name != "nn.dense": call = call.args[0] return dense(call) @tvm.ir.register_op_attr("nn.instance_norm", "target.bnns") def instance_norm_check(expr): """Check if the nn.instance_norm can be executed in BNNS""" attrs, args = expr.attrs, expr.args data_typ = args[0].checked_type rank = len(data_typ.shape) if rank < 3 or rank > 4 or data_typ.dtype != "float32": return False if not isinstance(args[1], tvm.relay.expr.Constant) or not isinstance( args[2], tvm.relay.expr.Constant ): return False if attrs.axis == 0 and rank == 3 or attrs.axis == 1 and rank == 4: return True return False @register_pattern_table("bnns") def pattern_table(): """Get BNNS specific fusing patterns collection""" conv2d_bias_pat = ( "bnns.conv2d_bias", make_conv_pattern(with_bias=True), check_conv, ) conv2d_bias_relu_pat = ( "bnns.conv2d_bias_relu", make_conv_pattern(with_bias=True, activation="relu"), check_conv, ) conv2d_relu_pat = ( "bnns.conv2d_relu", make_conv_pattern(with_bias=False, activation="relu"), check_conv, ) conv2d_bias_sigmoid_pat = ( "bnns.conv2d_bias_sigmoid", make_conv_pattern(with_bias=True, activation="sigmoid"), check_conv, ) conv2d_sigmoid_pat = ( "bnns.conv2d_sigmoid", make_conv_pattern(with_bias=False, activation="sigmoid"), check_conv, ) dense_bias_gelu = ("bnns.dense_bias_gelu", make_dense_bias_gelu_pattern(), check_dense) dense_bias = ("bnns.dense_bias", make_dense_bias_pattern(), check_dense) bnns_patterns = [ conv2d_bias_relu_pat, conv2d_relu_pat, conv2d_bias_sigmoid_pat, conv2d_sigmoid_pat, conv2d_bias_pat, dense_bias_gelu, dense_bias, ] return bnns_patterns
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/clml.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """CLML Library supported operators.""" import tvm from tvm import relay from tvm._ffi import register_func from tvm.relay import transform from tvm.relay.build_module import bind_params_by_name from ...dataflow_pattern import wildcard, is_op, is_constant, is_tuple_get_item, is_tuple from .register import register_pattern_table from ..strategy.generic import is_depthwise_conv2d def is_clml_runtime_enabled(): """Check if the CLML graph runtime is present. Returns ------- ret: bool True if present, False if not. """ check_enabled = tvm.get_global_func("relay.op.is_clml_runtime_enabled", True) if check_enabled: return check_enabled() return False def partition_for_clml(mod, params=None): """Partition the graph greedily offloading supported operators to CLML Library. Parameters ---------- mod : Module The module to run passes on. params : Optional[Dict[str, NDArray]] Constant input parameters. Returns ------- ret : annotated and partitioned module. """ if params: mod["main"] = bind_params_by_name(mod["main"], params) seq = tvm.transform.Sequential( [ transform.InferType(), transform.FoldConstant(), transform.MergeComposite(clml_pattern_table()), transform.AnnotateTarget("clml", False), transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) result_mod = seq(mod) return result_mod @register_func("relay.ext.clml.optimize") def preprocess_module(mod): """ Pre-process a module containing functions ready for CLML codegen. For now we enforce OIHW kernel layout and fold the transforms away. Parameters ---------- mod : Module The module to run passes on. Returns ------- preprocessed_mod : The processed module. """ def convert_layout_conv2d(conv2d_function): def convert_conv(attrs, inputs, tinfos, desired_layouts): new_attrs = dict(attrs) data_info = tinfos[0] weight_info = tinfos[1] desired_data_layout, desired_kernel_layout = map(str, desired_layouts) new_attrs["data_layout"] = desired_data_layout new_attrs["kernel_layout"] = desired_kernel_layout if is_depthwise_conv2d( data_info.shape, attrs["data_layout"], weight_info.shape, attrs["kernel_layout"], attrs["groups"], ): dkl = desired_kernel_layout new_attrs["kernel_layout"] = dkl[1] + dkl[0] + dkl[2] + dkl[3] return conv2d_function(*inputs, **new_attrs) return convert_conv with OpAttrContext( "nn.conv2d", "FTVMConvertOpLayout", convert_layout_conv2d(tvm.relay.nn.conv2d) ): seq = tvm.transform.Sequential( [ transform.ConvertLayout({"nn.conv2d": ["NCHW", "OIHW"]}), transform.FoldConstant(), ] ) preprocessed_mod = seq(mod) return preprocessed_mod @register_pattern_table("clml") def clml_pattern_table(): """Get the CLML pattern table.""" def conv_pattern(): """Create a convolution pattern.""" pattern = is_op("nn.conv2d")(wildcard(), is_constant()) pattern = pattern.optional(lambda x: is_op("nn.bias_add")(x, is_constant())) pattern = pattern.optional(lambda x: is_op("add")(x, is_constant())) pattern = pattern.optional( lambda x: is_op("nn.batch_norm")( x, is_constant(), is_constant(), is_constant(), is_constant() ) ) pattern = pattern.optional(is_tuple_get_item) pattern = pattern.optional(is_op("nn.relu")) pattern = pattern.optional(is_op("clip")) return pattern def batch_norm_pattern(): """Create a batch norm pattern.""" pattern = is_op("nn.batch_norm")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant() ) pattern = is_tuple_get_item(pattern) return pattern def concat_pattern(): """Create a concat pattern. Returns ------- pattern : dataflow_pattern.AltPattern Denotes the concat pattern. """ pattern = is_tuple(None) pattern = is_op("concatenate")(pattern) return pattern def dense_pattern(): """Create a dense pattern.""" pattern = is_op("nn.dense")(wildcard(), is_constant()) pattern = pattern.optional(lambda x: is_op("add")(x, is_constant())) pattern = pattern.optional(lambda x: is_op("nn.bias_add")(x, is_constant())) return pattern def pad_pattern(): """Create a pad pattern.""" pattern = is_op("nn.pad")(wildcard(), wildcard()) return pattern def check_conv(extract): """Check conv pattern is supported by CLML.""" call = extract if isinstance(call, tvm.relay.expr.TupleGetItem): call = call.tuple_value elif call.op.name == "nn.relu": call = call.args[0] if isinstance(call, tvm.relay.expr.TupleGetItem): call = call.tuple_value elif call.op.name == "clip": if call.attrs["a_min"] != 0.0 or call.attrs["a_max"] != 6.0: return False call = call.args[0] if isinstance(call, tvm.relay.expr.TupleGetItem): call = call.tuple_value while call.op.name != "nn.conv2d": call = call.args[0] attrs, args = call.attrs, call.args if attrs.data_layout != "NCHW": return False data_typ = args[0].checked_type kernel_typ = args[1].checked_type is_depthwise = is_depthwise_conv2d( data_typ.shape, attrs["data_layout"], kernel_typ.shape, attrs["kernel_layout"], attrs["groups"], ) if attrs.groups != 1 and not is_depthwise: return False return True return [ ("clml.conv2d", conv_pattern(), check_conv), ("clml.dense", dense_pattern()), ("clml.pad", pad_pattern()), ("clml.concat", concat_pattern()), ("clml.batch_norm", batch_norm_pattern()), ] def _register_external_op_helper(op_name, supported=True): @tvm.ir.register_op_attr(op_name, "target.clml") def _func_wrapper(expr): return supported return _func_wrapper _register_external_op_helper("clip") _register_external_op_helper("nn.relu") _register_external_op_helper("nn.global_avg_pool2d") _register_external_op_helper("nn.global_max_pool2d") _register_external_op_helper("nn.avg_pool2d") _register_external_op_helper("nn.max_pool2d") _register_external_op_helper("nn.softmax") _register_external_op_helper("reshape") _register_external_op_helper("add") _register_external_op_helper("subtract") _register_external_op_helper("multiply") _register_external_op_helper("minimum") _register_external_op_helper("maximum") class OpAttrContext(object): """Temporarily changes the attr of an op.""" def __init__(self, op_name, attr_key, attr_value): """Saves the required info for RAII pattern usage. Parameters ---------- op_name : str The op name. attr_key : str The attribute name. attr_value : object The attribute value. """ self.op = relay.op.get(op_name) self.attr_key = attr_key self.attr_value = attr_value def __enter__(self): self.older_attr = self.op.get_attr(self.attr_key) self.op.reset_attr(self.attr_key) self.op.set_attr(self.attr_key, self.attr_value) return self def __exit__(self, ptype, value, trace): self.op.reset_attr(self.attr_key) if self.older_attr: self.op.set_attr(self.attr_key, self.older_attr)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/cmsisnn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Arm(R) CMSIS-NN supported operators for Cortex-M.""" import tvm.ir from tvm.target import Target from tvm.relay import transform from tvm.relay.build_module import bind_params_by_name from ...dataflow_pattern import is_constant, is_op, wildcard from .register import register_pattern_table tvm._ffi._init_api("relay.ext.cmsisnn.transform", __name__) def enabled(): return "cmsis-nn" in Target.list_kinds() def partition_for_cmsisnn(mod, params=None, mod_name="default", **opts): """Partition the graph greedily offloading supported operators on Cortex-M using CMSIS-NN Parameters ---------- mod : Module The module to run passes on. params : Optional[Dict[str, NDArray]] Constant input parameters. mod_name: str, optional The module name Returns ------- ret : Module annotated and partitioned module. """ if params: mod["main"] = bind_params_by_name(mod["main"], params) seq = tvm.transform.Sequential( [ transform.InferType(), transform.MergeComposite(pattern_table()), transform.AnnotateTarget("cmsis-nn"), transform.PartitionGraph(mod_name=mod_name), GenerateCMSISNNConstants(), CMSISNNFusePads(), ScalarToTensorConstants(), ExtractConstantsFromPartitionedFunction(), transform.InferType(), ] ) return seq(mod) @register_pattern_table("cmsis-nn") def pattern_table(): """Get the CMSIS-NN compiler pattern table.""" def qnn_softmax_pattern(): """Create pattern for quantized softmax""" pattern = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) pattern = is_op("nn.softmax")(pattern) pattern = is_op("qnn.quantize")(pattern, is_constant(), is_constant()) return pattern def check_qnn_softmax(pattern): """Check if softmax is supported by CMSIS-NN.""" dequantize_call = pattern.args[0].args[0] scale = pattern.args[1].data.numpy().item(0) zero_point = pattern.args[2].data.numpy().item(0) # check for dtypes of quantize and dequantize return ( (scale == 1.0 / 256 and zero_point == -128) and pattern.attrs.out_dtype == "int8" and dequantize_call.args[0].checked_type.dtype == "int8" ) def qnn_conv2d_pattern(with_pad): """Create pattern for qnn.conv2D with optional pad and/or optional fused relu.""" conv2d_input = wildcard() if with_pad: conv2d_input = is_op("nn.pad")(wildcard(), is_constant()) qnn_conv2d = is_op("qnn.conv2d")( conv2d_input, is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ) bias_add = is_op("nn.bias_add")(qnn_conv2d, is_constant()) req = is_op("qnn.requantize")( qnn_conv2d | bias_add, is_constant(), is_constant(), is_constant(), is_constant() ) clip_or_req = req.optional(is_op("clip")) return clip_or_req def check_qnn_conv2d(pattern): """Check if the Conv2D is supported by CMSIS-NN.""" if str(pattern.op.name) == "clip": relu = pattern requantize = relu.args[0] else: requantize = pattern requantize_input = requantize.args[0] bias_add = None if str(requantize_input.op.name) == "nn.bias_add": bias_add = requantize_input conv2d = bias_add.args[0] else: conv2d = requantize_input conv2d_input = conv2d.args[0] conv2d_weight = conv2d.args[1] # check if depthwise Conv2D kernel_layout = conv2d.attrs.kernel_layout pos_o = kernel_layout.index("O") groups = conv2d.attrs.groups is_depthwise = False if groups == int(conv2d_input.checked_type.shape[3]) and groups == int( conv2d_weight.checked_type.shape[pos_o] ): is_depthwise = True # check if dtypes are supported for the following entities # (input_dtype, weight_dtype, bias_dtype, out_dtype, pattern_dtype) are_dtypes_valid = False conv2d_input_dtype = conv2d_input.checked_type.dtype if bias_add: bias_dtype = bias_add.args[1].checked_type.dtype else: # this is only to enable to following check that validates all sorts of dtypes bias_dtype = "int32" if conv2d_input_dtype == "int8" else "int64" valid_dtypes = None if conv2d_input_dtype == "int8": valid_dtypes = ("int8", "int8", "int32", "int32", "int8") elif conv2d_input_dtype == "int16": valid_dtypes = ("int16", "int8", "int64", "int64", "int16") if ( conv2d_input_dtype, conv2d_weight.checked_type.dtype, bias_dtype, conv2d.attrs.out_dtype, pattern.checked_type.dtype, ) == valid_dtypes: are_dtypes_valid = True # input_zero_point should be 0 when int16 valid_input_zp = True if conv2d_input_dtype == "int16" and conv2d.args[2].data.numpy().item(0) != 0: valid_input_zp = False # kernel zero_point should be 0 kernel_zp = conv2d.args[3].data.numpy() kernel_zp = [kernel_zp] if kernel_zp.ndim == 0 else kernel_zp # combination of all checks to decide if pattern is eligible for partitioning ret = ( are_dtypes_valid and valid_input_zp and all([zp == 0 for zp in kernel_zp]) and (not is_depthwise or bias_add is not None) ) return ret def check_qnn_conv2d_pad(pattern): """Check if the Pad followed by Conv2D is supported by CMSIS-NN.""" if str(pattern.op.name) == "clip": relu = pattern requantize = relu.args[0] else: requantize = pattern requantize_input = requantize.args[0] if str(requantize_input.op.name) == "nn.bias_add": bias_add = requantize_input conv2d = bias_add.args[0] else: conv2d = requantize_input conv2d_input = conv2d.args[0] # check if sum of paddings from pad() and conv2d() satisfies CMSIS-NN constraints can_pad_be_fused = True if isinstance(conv2d_input, tvm.relay.expr.Call) and str(conv2d_input.op.name) == "nn.pad": pad_top, pad_left, pad_bottom, pad_right = GetEffectiveConv2DPadding( conv2d, conv2d_input ) # check if difference in the side paddings is 1 along each dimension pad_w_diff = int(pad_right - pad_left) pad_h_diff = int(pad_bottom - pad_top) can_pad_be_fused = pad_w_diff in [0, 1] and pad_h_diff in [0, 1] ret = check_qnn_conv2d(pattern) and can_pad_be_fused return ret def qnn_fully_connected_pattern(): """Create pattern for qnn.dense with optional Relu.""" qnn_fc = is_op("qnn.dense")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant() ) bias_add = is_op("nn.bias_add")(qnn_fc, is_constant()) req = is_op("qnn.requantize")( qnn_fc | bias_add, is_constant(), is_constant(), is_constant(), is_constant() ) clip_or_req = req.optional(is_op("clip")) return clip_or_req def check_qnn_fully_connected(pattern): """Check if the fully connected is supported by CMSIS-NN.""" if str(pattern.op.name) == "clip": relu = pattern requantize = relu.args[0] else: requantize = pattern requantize_input = requantize.args[0] bias_add = None bias_dtype = "int32" if str(requantize_input.op.name) == "nn.bias_add": bias_add = requantize_input fc = bias_add.args[0] bias_dtype = bias_add.args[1].checked_type.dtype else: fc = requantize_input fc_input = fc.args[0] fc_weight = fc.args[1] # kernel zero_point should be 0 kernel_zp = fc.args[3].data.numpy().item(0) return ( fc.attrs.out_dtype == "int32" and fc_input.checked_type.dtype == "int8" and fc_weight.checked_type.dtype == "int8" and pattern.checked_type.dtype == "int8" and bias_dtype == "int32" and kernel_zp == 0 ) def qnn_avg_pool2d_pattern(): """Matches average pooling with optional Relu""" pattern = is_op("cast")(wildcard()) pattern = is_op("nn.avg_pool2d")(pattern) pattern = is_op("cast")(pattern) pattern = pattern.optional(is_op("clip")) return pattern def check_qnn_avg_pool2d(pattern): """Check if avg pool2d is supported by CMSIS-NN.""" output = pattern if str(pattern.op.name) == "clip": pooling = pattern.args[0].args[0] else: pooling = pattern.args[0] input_op = pooling.args[0].args[0] return ( pooling.attrs.layout == "NHWC" and int(input_op.checked_type.shape[0]) == 1 and input_op.checked_type.dtype == "int8" and output.checked_type.dtype == "int8" ) def qnn_max_pool2d_pattern(): """Matches max pool2d with optional Relu""" pattern = is_op("nn.max_pool2d")(wildcard()) pattern = pattern.optional(is_op("clip")) return pattern def check_qnn_max_pool2d(pattern): """Check if max pool2d is supported by CMSIS-NN.""" output = pattern if str(pattern.op.name) == "clip": pooling = pattern.args[0] else: pooling = pattern input_op = pooling.args[0] return ( pooling.attrs.layout == "NHWC" and int(input_op.checked_type.shape[0]) == 1 and input_op.checked_type.dtype == "int8" and output.checked_type.dtype == "int8" ) def binary_op_pattern(op): """Matches QNN binary operation""" pattern = is_op(f"qnn.{op}")( wildcard(), wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ) return pattern.optional(is_op("clip")) def check_qnn_binary_op(pattern): """Check if binary op is supported by CMSIS-NN.""" binary_op = pattern if str(pattern.op.name) == "clip": binary_op = pattern.args[0] arg0 = binary_op.args[0] arg1 = binary_op.args[1] both_args_scalar = False if ( isinstance(arg0, tvm.relay.expr.Constant) and len(arg0.checked_type.shape) == 0 and isinstance(arg1, tvm.relay.expr.Constant) and len(arg1.checked_type.shape) == 0 ): both_args_scalar = True return ( arg0.checked_type.dtype == "int8" and arg1.checked_type.dtype == "int8" and not both_args_scalar ) return [ ("cmsis-nn.qnn_conv2d", qnn_conv2d_pattern(with_pad=True), check_qnn_conv2d_pad), ("cmsis-nn.qnn_conv2d", qnn_conv2d_pattern(with_pad=False), check_qnn_conv2d), ("cmsis-nn.qnn_fully_connected", qnn_fully_connected_pattern(), check_qnn_fully_connected), ("cmsis-nn.qnn_avg_pool2d", qnn_avg_pool2d_pattern(), check_qnn_avg_pool2d), ("cmsis-nn.qnn_max_pool2d", qnn_max_pool2d_pattern(), check_qnn_max_pool2d), ("cmsis-nn.qnn_mul", binary_op_pattern("mul"), check_qnn_binary_op), ("cmsis-nn.qnn_add", binary_op_pattern("add"), check_qnn_binary_op), ("cmsis-nn.qnn_softmax", qnn_softmax_pattern(), check_qnn_softmax), ]
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/coreml.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """CoreML codegen supported operators.""" import tvm.ir from tvm.contrib.target.coreml import _convert_map from ...expr import Constant def _register_coreml_op(op_name): """Register a function to check the given operator is supported by Core ML. Paramters --------- op_name : Str The name of operator that will be registered. """ def _check_supported(expr): attrs, args = expr.attrs, expr.args if op_name == "nn.conv2d": if not isinstance(args[1], Constant): return False if attrs["kernel_layout"] not in ["HWIO", "OIHW"]: return False return True tvm.ir.register_op_attr(op_name, "target.coremlcompiler", _check_supported) for op in _convert_map: _register_coreml_op(op)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/cublas.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """cuBLAS Relay integration.""" from typing import Callable, List, Tuple, Dict, Optional import tvm import tvm.ir from tvm import relay from tvm import te from tvm.relay import transform from tvm.contrib import cublas from ...dataflow_pattern import is_op, wildcard from .te_target import lower_composite, relay_to_runtime from .register import register_pattern_table tvm._ffi.register_func("relay.ext.cublas", relay_to_runtime(tvm.target.cuda())) def partition_for_cublas( mod: tvm.IRModule, params: Optional[Dict[str, tvm.runtime.NDArray]] = None ) -> tvm.IRModule: """Partition the graph to offload for cuBLAS. Parameters ---------- mod : tvm.IRModule The module to partition. params : Optional[Dict[str, tvm.runtime.NDArray]] Constant input parameters. Returns ------- tvm.IRModule The partitioned module. """ seq = tvm.transform.Sequential( [ transform.InferType(), transform.MergeComposite(pattern_table()), transform.AnnotateTarget("cublas"), transform.PartitionGraph(), transform.InferType(), ] ) return seq(mod) @register_pattern_table("cublas") def pattern_table() -> List[Tuple[str, relay.Pattern, Callable[[relay.Call], bool]]]: """Get the cuBLAS pattern table.""" def matmul_pattern() -> relay.Pattern: """Create pattern for matmul.""" return is_op("nn.matmul")(wildcard(), wildcard()) def batch_matmul_pattern() -> relay.Pattern: """Create pattern for batch_matmul.""" return is_op("nn.batch_matmul")(wildcard(), wildcard()) def dense_pattern() -> relay.Pattern: """Create pattern for dense.""" return is_op("nn.dense")(wildcard(), wildcard()) def check_matmul_like(matched: relay.Call) -> bool: """Check if matmul is supported by cuBLAS.""" # Input data types can't be mixed if matched.args[0].checked_type.dtype != matched.args[1].checked_type.dtype: return False in_dtype = matched.args[0].checked_type.dtype out_dtype = matched.checked_type.dtype # Only the following data type combinations are supported if (in_dtype, out_dtype) not in [ ("float32", "float32"), ("float16", "float16"), ("float16", "float32"), ("int8", "int32"), ("float64", "float64"), ("int8", "float32"), ]: return False # If inputs are int8, input column strides must be a multiple of 4 if in_dtype == "int8": if ( matched.args[0].checked_type.shape[-1] % 4 != 0 or matched.args[1].checked_type.shape[-1] % 4 != 0 ): return False return True return [ ("cublas.matmul", matmul_pattern(), check_matmul_like), ("cublas.batch_matmul", batch_matmul_pattern(), check_matmul_like), ("cublas.dense", dense_pattern(), check_matmul_like), ] @lower_composite("cublas.matmul") def _lower_matmul(op: relay.Call, inputs: List[te.Tensor]) -> te.Tensor: """Lower a matmul using cuBLAS.""" return cublas.matmul( inputs[0], inputs[1], transa=op.attrs["transpose_a"], transb=op.attrs["transpose_b"], dtype=op.checked_type.dtype, ) @lower_composite("cublas.batch_matmul") def _lower_batch_matmul(op: relay.Call, inputs: List[te.Tensor]) -> te.Tensor: """Lower a batch_matmul using cuBLAS.""" return cublas.batch_matmul( inputs[0], inputs[1], transa=op.attrs["transpose_a"], transb=op.attrs["transpose_b"], dtype=op.checked_type.dtype, ) @lower_composite("cublas.dense") def _lower_dense(op: relay.Call, inputs: List[te.Tensor]) -> te.Tensor: """Lower a dense using cuBLAS.""" return cublas.matmul( inputs[0], inputs[1], transa=False, transb=True, dtype=op.checked_type.dtype )
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/cudnn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """cuDNN Relay integration.""" from typing import Callable, List, Tuple import tvm import tvm.ir from tvm import relay from tvm import te from tvm.relay import transform from tvm.contrib import cudnn from ...dataflow_pattern import is_op, wildcard from .te_target import lower_composite, relay_to_runtime from .register import register_pattern_table tvm._ffi.register_func("relay.ext.cudnn", relay_to_runtime(tvm.target.cuda())) def partition_for_cudnn(mod: tvm.IRModule) -> tvm.IRModule: """Partition the graph to offload for cuDNN. Parameters ---------- mod : tvm.IRModule The module to partition. Returns ------- tvm.IRModule The partitioned module. """ seq = tvm.transform.Sequential( [ transform.InferType(), transform.MergeComposite(pattern_table()), transform.AnnotateTarget("cudnn"), transform.PartitionGraph(), transform.InferType(), ] ) return seq(mod) @register_pattern_table("cudnn") def pattern_table() -> List[Tuple[str, relay.Pattern, Callable[[relay.Call], bool]]]: """Get the cuDNN pattern table.""" def softmax_pattern() -> relay.Pattern: """Create pattern for softmax.""" return is_op("nn.softmax")(wildcard()) def log_softmax_pattern() -> relay.Pattern: """Create pattern for log_softmax.""" return is_op("nn.log_softmax")(wildcard()) def conv2d_pattern() -> relay.Pattern: """Create pattern for conv2d.""" return is_op("nn.conv2d")(wildcard(), wildcard()) def conv2d_bias_act_pattern() -> relay.Pattern: """Create pattern for fused conv2d+bias+activation.""" conv2d = is_op("nn.conv2d")(wildcard(), wildcard()) bias = is_op("nn.bias_add")(conv2d, wildcard()) return bias.optional(is_op("nn.relu")) def check_softmax(matched: relay.Call) -> bool: """Check if softmax is supported by cuDNN.""" if matched.args[0].checked_type.dtype not in ["float64", "float32", "float16"]: return False return True def check_log_softmax(matched: relay.Call) -> bool: """Check if log_softmax is supported by cuDNN.""" if matched.args[0].checked_type.dtype not in ["float64", "float32", "float16"]: return False if len(matched.args[0].checked_type.shape) != 2: return False if matched.attrs["axis"] not in (1, -1): return False return True def check_conv2d(matched: relay.Call) -> bool: if matched.args[0].checked_type.dtype not in ["float64", "float32", "float16"]: return False if matched.attrs["data_layout"] != "NCHW" or matched.attrs["kernel_layout"] != "OIHW": return False padding = matched.attrs["padding"] if padding[0] != padding[2] or padding[1] != padding[3]: return False return True def check_conv2d_bias_act(matched: relay.Call) -> bool: return True return [ ("cudnn.softmax", softmax_pattern(), check_softmax), ("cudnn.log_softmax", log_softmax_pattern(), check_log_softmax), ("cudnn.conv2d_bias_act", conv2d_bias_act_pattern(), check_conv2d_bias_act), ("cudnn.conv2d", conv2d_pattern(), check_conv2d), ] @lower_composite("cudnn.softmax") def _lower_softmax(op: relay.Call, inputs: List[te.Tensor]) -> te.Tensor: """Lower a softmax using cuDNN.""" return cudnn.softmax(inputs[0], axis=op.attrs["axis"]) @lower_composite("cudnn.log_softmax") def _lower_log_softmax(op: relay.Call, inputs: List[te.Tensor]) -> te.Tensor: """Lower a log_softmax using cuDNN.""" return cudnn.log_softmax(inputs[0], axis=op.attrs["axis"]) @lower_composite("cudnn.conv2d_bias_act") def _lower_conv2d_bias_act(op: relay.Call, inputs: List[te.Tensor]) -> te.Tensor: """Lower a fused conv2d+bias+activation using cuDNN.""" conv_dtype = op.checked_type.dtype if op.op.name == "nn.relu": activation_mode = 1 # Relu conv2d = op.args[0].args[0] else: activation_mode = 5 # Identity conv2d = op.args[0] conv_mode = 1 tensor_format = 0 algo = 1 pad = conv2d.attrs["padding"] strides = conv2d.attrs["strides"] dilation = conv2d.attrs["dilation"] groups = conv2d.attrs["groups"] oshape = cudnn.conv_output_shape( tensor_format, pad, strides, dilation, inputs[0].shape, inputs[1].shape, inputs[0].dtype, conv_dtype, groups, ) return te.extern( oshape, inputs, lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cudnn.conv2d+bias+act.forward", conv_mode, tensor_format, algo, pad[0], pad[1], strides[0], strides[1], dilation[0], dilation[1], activation_mode, 0, ins[0], ins[1], ins[2], outs[0], conv_dtype, groups, ), name="y", ) @lower_composite("cudnn.conv2d") def _lower_conv2d(op: relay.Call, inputs: List[te.Tensor]) -> te.Tensor: """Lower a conv2d using cuDNN.""" return cudnn.conv_forward( inputs[0], inputs[1], pad=op.attrs["padding"], stride=op.attrs["strides"], dilation=op.attrs["dilation"], conv_mode=1, tensor_format=0, algo=1, conv_dtype=op.checked_type.dtype, groups=op.attrs["groups"], )
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/cutlass.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Patterns supported CUTLASS.""" from functools import partial from tvm import relay from tvm.ir.transform import Sequential, PassContext from tvm.relay import transform from tvm.relay.build_module import bind_params_by_name from tvm.relay.op.contrib.register import register_pattern_table # type: ignore from ...dataflow_pattern import wildcard, is_op, is_constant def make_gelu_pattern(bias_out, out_dtype="float16"): mul = is_op("multiply")(bias_out, is_constant() | wildcard()) if out_dtype == "float16": erf = is_op("cast")(is_op("erf")(is_op("cast")(mul))) else: erf = is_op("erf")(mul) mul_half = is_op("multiply")(erf, is_constant() | wildcard()) add = is_op("add")(mul_half, is_constant() | wildcard()) return is_op("multiply")(add, bias_out) def make_gemm_pattern(with_bias=True, with_act=None, out_dtype="float16"): """Create a pattern for dense op followed by activations.""" data = wildcard() weight = wildcard() bias = wildcard() gemm = is_op("nn.dense")(data, weight) if with_bias: add_or_bias_add = is_op("add") | is_op("nn.bias_add") gemm_out = add_or_bias_add(gemm, bias) else: gemm_out = gemm if with_act is None: return gemm_out if isinstance(with_act, str) and with_act == "relu": return is_op("nn.relu")(gemm_out) assert isinstance(with_act, str) and with_act == "gelu" return make_gelu_pattern(gemm_out, out_dtype) def make_batch_matmul_pattern(): return is_op("nn.batch_matmul")(wildcard(), wildcard()) def make_conv2d_pattern(with_bias=False, with_act=None): """Create a pattern for dense op followed by activations.""" data = wildcard() weight = wildcard() bias = wildcard() conv2d = is_op("nn.conv2d")(data, weight) if with_bias: add_or_bias_add = is_op("add") | is_op("nn.bias_add") conv2d_out = add_or_bias_add(conv2d, bias) else: conv2d_out = conv2d if with_act is not None: if with_act == "relu": return is_op("nn.relu")(conv2d_out) if with_act == "sigmoid": return is_op("sigmoid")(conv2d_out) if with_act == "silu": return is_op("multiply")(conv2d_out, is_op("sigmoid")(conv2d_out)) if with_act == "hardswish": rhs = is_op("divide")( is_op("clip")(is_op("add")(conv2d_out, is_constant())), is_constant() ) return is_op("multiply")(conv2d_out, rhs) raise ValueError("Unknown activation %s." % with_act) return conv2d_out def make_conv2d_transpose_pattern(): return is_op("nn.conv2d_transpose")(wildcard(), wildcard()) def make_conv2d_backward_weight_pattern(): return is_op("nn.conv2d_backward_weight")(wildcard(), wildcard()) def make_residual_block_pattern(tensor_op_out, binary_op="add", with_act="relu"): """Add pattern for residual blocks.""" residual_input = wildcard() binary_out = is_op(binary_op)(tensor_op_out, residual_input) | is_op(binary_op)( residual_input, tensor_op_out ) if with_act is not None and with_act == "relu": return is_op("nn.relu")(binary_out) return binary_out def check_dtype(lhs, rhs): """Check if dtypes in the given workload are supported by CUTLASS.""" return ( (lhs.dtype == "float16" and rhs.dtype == "float16") or (lhs.dtype == "float32" and rhs.dtype == "float32") or (lhs.dtype in ["int8", "uint8"] and rhs.dtype in ["int8", "uint8"]) ) def get_root_call(call, root_op_name): if not isinstance(call, relay.Call): return None if str(call.op) == root_op_name: return call return get_root_call(call.args[0], root_op_name) def check_gemm(call): """Check if the given dense workload can be offloaded to CUTLASS.""" dense = get_root_call(call, "nn.dense") lhs = dense.args[0].checked_type rhs = dense.args[1].checked_type return check_dtype(lhs, rhs) def check_batch_matmul(call): """Check if the given batch_matmul workload can be offloaded to CUTLASS.""" batch_matmul = get_root_call(call, "nn.batch_matmul") lhs = batch_matmul.args[0].checked_type rhs = batch_matmul.args[1].checked_type transpose_a = batch_matmul.attrs.transpose_a transpose_b = batch_matmul.attrs.transpose_b return check_dtype(lhs, rhs) and not transpose_a and transpose_b def is_depthwise_conv2d(ic, oc, groups): return ic == oc == groups def check_conv2d_common(op_name, expected_kernel_layout, call): """Check if the given conv2d workload can be offloaded to CUTLASS.""" conv2d = get_root_call(call, op_name) data_layout = conv2d.attrs.data_layout kernel_layout = conv2d.attrs.kernel_layout data = conv2d.args[0].checked_type weight = conv2d.args[1].checked_type if ( data_layout != "NHWC" or kernel_layout != expected_kernel_layout or not check_dtype(data, weight) ): return False IC = data.shape[3] OC = weight.shape[0] return not is_depthwise_conv2d(IC, OC, conv2d.attrs.groups) def check_conv2d(call): return check_conv2d_common("nn.conv2d", "OHWI", call) def check_conv2d_transpose(call): # conv2d_transpose is implemented as dgrad, needs to swap the roles of C and K return check_conv2d_common("nn.conv2d_transpose", "IHWO", call) def check_conv2d_backward_weight(call): return check_conv2d_common("nn.conv2d_backward_weight", "NHWC", call) def check_conv2d_residual(call, binary_op): """Check if the given conv2d workload can be offloaded to CUTLASS.""" conv2d = get_root_call(call, "nn.conv2d") if not check_conv2d(call): return False residual_binop = get_root_call(call, binary_op) lhs = residual_binop.args[0] rhs = residual_binop.args[1] # residual_input is pattern-matched as a wildcard. Make sure it does not sit between # residual binary op and the root conv2d of this pattern. # If the root conv2d is the parent of both lhs and rhs, we should reject this pattern. if get_root_call(lhs, "nn.conv2d") == conv2d and get_root_call(rhs, "nn.conv2d") == conv2d: return False return all(x == y for (x, y) in zip(lhs.checked_type.shape, rhs.checked_type.shape)) @register_pattern_table("cutlass") def pattern_table(): """Returns list of triples describing the name, dataflow pattern and predicate for all the CUTLASS-supported operators.""" dense_pat = ("cutlass.dense", make_gemm_pattern(False, None), check_gemm) dense_bias_pat = ("cutlass.dense_bias", make_gemm_pattern(True, None), check_gemm) dense_bias_relu_pat = ("cutlass.dense_bias_relu", make_gemm_pattern(True, "relu"), check_gemm) dense_bias_gelu_fp16_pat = ( "cutlass.dense_bias_gelu_fp16", make_gemm_pattern(True, "gelu"), check_gemm, ) dense_bias_gelu_fp32_pat = ( "cutlass.dense_bias_gelu_fp32", make_gemm_pattern(True, "gelu", out_dtype="float32"), check_gemm, ) dense_patterns = [ dense_bias_gelu_fp16_pat, dense_bias_gelu_fp32_pat, dense_bias_relu_pat, dense_bias_pat, dense_pat, ("cutlass.batch_matmul", make_batch_matmul_pattern(), check_batch_matmul), ] conv2d_patterns = [ ( "cutlass.conv2d_bias_hardswish", make_conv2d_pattern(with_bias=True, with_act="hardswish"), check_conv2d, ), ( "cutlass.conv2d_bias_silu", make_conv2d_pattern(with_bias=True, with_act="silu"), check_conv2d, ), ( "cutlass.conv2d_bias_relu", make_conv2d_pattern(with_bias=True, with_act="relu"), check_conv2d, ), ( "cutlass.conv2d_bias_sigmoid", make_conv2d_pattern(with_bias=True, with_act="sigmoid"), check_conv2d, ), ("cutlass.conv2d_bias", make_conv2d_pattern(with_bias=True), check_conv2d), ("cutlass.conv2d", make_conv2d_pattern(), check_conv2d), ] # For now, no fusion for grad kernels conv2d_grad_patterns = [ ("cutlass.conv2d_transpose", make_conv2d_transpose_pattern(), check_conv2d_transpose), ( "cutlass.conv2d_backward_weight", make_conv2d_backward_weight_pattern(), check_conv2d_backward_weight, ), ] residual_block_patterns = [] for with_act, postfix in [("relu", "_relu"), (None, "")]: for name, pat, _ in conv2d_patterns[:-1]: for bin_op in ["add", "multiply"]: residual_block_patterns.append( ( name + "_residual_" + bin_op + postfix, make_residual_block_pattern(pat, bin_op, with_act=with_act), partial(check_conv2d_residual, binary_op=bin_op), ) ) return residual_block_patterns + dense_patterns + conv2d_patterns + conv2d_grad_patterns def partition_for_cutlass(mod, params=None): """Partition the input module into CUTLASS-supported subgraphs.""" if params is not None: mod["main"] = bind_params_by_name(mod["main"], params) remove_bn_pass = Sequential( [ transform.InferType(), transform.SimplifyInference(), transform.FoldConstant(), transform.FoldScaleAxis(), ] ) with PassContext(opt_level=3): mod = remove_bn_pass(mod) cutlass_patterns = relay.op.contrib.get_pattern_table("cutlass") seq = Sequential( [ transform.InferType(), transform.MergeComposite(cutlass_patterns), transform.AnnotateTarget(["cutlass"], include_non_call_ops=False), transform.PartitionGraph(bind_constants=False), ] ) return seq(mod)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/cvm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument import logging import tvm from ... import dataflow_pattern as dp from ...dataflow_pattern import wildcard, is_op, is_constant, is_expr, rewrite, DFPatternCallback from .register import register_pattern_table def _register_external_op_helper(op_name, supported=True): """The helper function to indicate that a given operator can be supported by CVMRuntime. Parameters ---------- op_name : Str The name of operator that will be registered. Returns ------- f : callable A function that returns if the operator is supported by DNNL. """ @tvm.ir.register_op_attr(op_name, "target.cvm") def _func_wrapper(expr: tvm.relay.expr.ExprWithOp): # DNNL does not support pooling with ceil_mode = True. if "pool" in op_name: attrs = dict(get_attrs(expr)) if "ceil_mode" in attrs.keys() and attrs["ceil_mode"]: return False return supported return _func_wrapper _register_external_op_helper("nn.conv2d") _register_external_op_helper("nn.dense") _register_external_op_helper("nn.max_pool2d") _register_external_op_helper("nn.relu") _register_external_op_helper("abs") _register_external_op_helper("clip") _register_external_op_helper("add") _register_external_op_helper("bias_add") _register_external_op_helper("multiply") def make_nn_pattern(op_name, with_bias=False): pat = op_name.replace("nn", "cvm") data, weight = wildcard(), wildcard() out = dp.is_op(op_name)(data, weight) if with_bias: bias = wildcard() bias_out = dp.is_op("add")(out, bias) bias_out = dp.is_op("nn.bias_add")(out, bias) | bias_out return [(pat, bias_out), (pat, out)] return [(pat, out)] def make_unary_pattern(op_name): pat = "cvm." + op_name data = wildcard() out = dp.is_op(op_name)(data) return [(pat, out)] def make_binary_pattern(op_name): pat = "cvm." + op_name A, B = wildcard(), wildcard() out = dp.is_op(op_name)(A, B) return [(pat, out)] @register_pattern_table("cvm") def pattern_table(): cvm_patterns = list() for op_name in ["nn.conv2d", "nn.dense"]: cvm_patterns.extend(make_nn_pattern( op_name, with_bias=True)) for op_name in ["nn.relu", "nn.max_pool2d"]: cvm_patterns.extend(make_nn_pattern(op_name)) for op_name in ["abs", "clip"]: cvm_patterns.extend(make_unary_pattern(op_name)) for op_name in ["add", "bias_add", "multiply"]: cvm_patterns.extend(make_binary_pattern(op_name)) return cvm_patterns def get_op_name(expr): """Get the operator name from an expression.""" if isinstance(expr, Op): return expr.name if isinstance(expr, Call): return get_op_name(expr.op) if isinstance(expr, TupleGetItem): return get_op_name(expr.tuple_value) if isinstance(expr, relay.Tuple): return get_op_name(expr.fields[0]) return "" def get_args(expr): """Get the arguments from an expression.""" if isinstance(expr, Call): return expr.args if isinstance(expr, TupleGetItem): return get_args(expr.tuple_value) if isinstance(expr, relay.Tuple): return [arg for args in map(get_args, expr.fields) for arg in args] return [] def get_attrs(expr): """Get the attributes from an expression.""" if isinstance(expr, Call): return expr.attrs if isinstance(expr, TupleGetItem): return get_attrs(expr.tuple_value) return {}
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/dnnl.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """DNNL library supported operators. There are two ways to registering a function for an op to indicate if it is supported by DNNL. - The first and simplest way is to use the helper so that users only need to provide the operator name and a boolean value to indicate if it is supported. For example: .. code-block:: python add = _register_external_op_helper("add") add = _register_external_op_helper("add", True) add = _register_external_op_helper("add", False) - The other way is to implement the function by themselves to check the attributes of the op and decide if it should be offloaded to DNNL. """ import logging from functools import reduce import tvm.ir from tvm.ir import Op from tvm import relay from tvm.relay import transform from tvm.relay.expr import GlobalVar from tvm.relay.expr_functor import ExprMutator, ExprVisitor from tvm.relay.expr import const from tvm.relay.analysis import analysis as _analysis from tvm.relay import expr as _expr from tvm.relay.expr import Call, TupleGetItem from ... import _ffi_api from ...dataflow_pattern import wildcard, is_op, is_constant, is_expr, rewrite, DFPatternCallback from .register import register_pattern_table logger = logging.getLogger("DNNL") supported_post_elts = ["nn.relu", "tanh", "sigmoid", "clip", "gelu", "swish", "mish", None] def _register_external_op_helper(op_name, supported=True): """The helper function to indicate that a given operator can be supported by DNNL. Parameters ---------- op_name : Str The name of operator that will be registered. Returns ------- f : callable A function that returns if the operator is supported by DNNL. """ @tvm.ir.register_op_attr(op_name, "target.dnnl") def _func_wrapper(expr): args = expr.args if any([x.checked_type.dtype == "int64" for x in args]): logger.info("DNNL does not support int64.") return False # DNNL does not support pooling with ceil_mode = True. if "pool" in op_name: attrs = dict(get_attrs(expr)) if "ceil_mode" in attrs.keys() and attrs["ceil_mode"]: return False return supported return _func_wrapper _register_external_op_helper("nn.batch_norm") _register_external_op_helper("nn.conv1d") _register_external_op_helper("nn.conv2d") _register_external_op_helper("nn.conv3d") _register_external_op_helper("nn.conv2d_transpose") _register_external_op_helper("nn.conv3d_transpose") _register_external_op_helper("nn.dense") _register_external_op_helper("nn.max_pool2d") _register_external_op_helper("nn.avg_pool2d") _register_external_op_helper("nn.global_avg_pool2d") _register_external_op_helper("nn.max_pool3d") _register_external_op_helper("nn.avg_pool3d") _register_external_op_helper("abs") _register_external_op_helper("clip") _register_external_op_helper("exp") _register_external_op_helper("log") _register_external_op_helper("sqrt") _register_external_op_helper("round") _register_external_op_helper("nn.relu") _register_external_op_helper("nn.leaky_relu") _register_external_op_helper("tanh") _register_external_op_helper("sigmoid") _register_external_op_helper("nn.softmax") _register_external_op_helper("add") _register_external_op_helper("multiply") _register_external_op_helper("nn.layer_norm") _register_external_op_helper("nn.batch_matmul") def append_eltwise_ops(op, eltwise): """Append element-wise post-ops to conv / conv_transpose / dense Parameters ---------- op : str The op name to be attached with element-wise post-op. eltwise : str The attached elementwise post-op name. Returns ------- pattern : CallPattern Call node sequence. """ if eltwise == "gelu": const1 = wildcard() const2 = wildcard() const3 = wildcard() div = is_op("divide")(op, const1) erf_val = is_op("erf")(div) added_erf_val = is_op("add")(erf_val, const2) mul_val = is_op("multiply")(op, added_erf_val) op = is_op("multiply")(mul_val, const3) elif eltwise == "swish": sig_out = is_op("sigmoid")(op) op = is_op("multiply")(op, sig_out) elif eltwise == "mish": const1 = wildcard() exp = is_op("exp")(op) add = is_op("add")(exp, const1) log = is_op("log")(add) tanh = is_op("tanh")(log) op = is_op("multiply")(op, tanh) elif eltwise: op = is_op(eltwise)(op) return op def make_conv_pattern(conv_name, with_bias=True, with_eltwise=None): """Create patterns related to conv and conv_transpose. Parameters ---------- with_bias : bool Whether attach `bias_add` to `conv / conv_transpose`. with_eltwise : str The attached elementwise post-op name. Returns ------- conv_out : CallPattern Call node sequence. """ if with_eltwise not in supported_post_elts: raise ValueError("Unsupported eltwise post-op: %s" % with_eltwise) data = wildcard() weight = wildcard() bias = wildcard() conv = is_op(conv_name)(data, weight) if with_bias: conv_out = is_op("add")(conv, bias) else: conv_out = conv return append_eltwise_ops(conv_out, with_eltwise) def make_conv_bias_sum_relu_pattern(conv_type, has_relu=True): """Create patterns with sum op. Parameters ---------- conv_type : str Should be nn.conv1d / nn.conv2d / nn.conv3d. has_relu : bool Whether attach relu. Returns ------- out : CallPattern Call node sequence. """ data1 = wildcard() weight = wildcard() bias = wildcard() data2 = wildcard() out = is_op(conv_type)(data1, weight) out = is_op("add")(out, bias) out = is_op("add")(out, data2) if has_relu: out = is_op("nn.relu")(out) return out def get_op_name(expr): """Get the operator name from an expression.""" if isinstance(expr, Op): return expr.name if isinstance(expr, Call): return get_op_name(expr.op) if isinstance(expr, TupleGetItem): return get_op_name(expr.tuple_value) if isinstance(expr, relay.Tuple): return get_op_name(expr.fields[0]) return "" def get_args(expr): """Get the arguments from an expression.""" if isinstance(expr, Call): return expr.args if isinstance(expr, TupleGetItem): return get_args(expr.tuple_value) if isinstance(expr, relay.Tuple): return [arg for args in map(get_args, expr.fields) for arg in args] return [] def get_attrs(expr): """Get the attributes from an expression.""" if isinstance(expr, Call): return expr.attrs if isinstance(expr, TupleGetItem): return get_attrs(expr.tuple_value) return {} def make_sum_pattren_predicate(checker): """Check whether the conv_bias_add_sum pattern is as expected.""" def predicate(expr): if get_op_name(expr) == "nn.relu": expr = expr.args[0] for e, op_name in zip([expr, expr.args[0]], ["sum", "bias_add"]): args = get_args(e) attrs = get_attrs(e.args[0]) if not checker(attrs, args, op_name): return False return True return predicate def make_bias_add_pattren_predicate(checker): """Check whether the conv_bias pattern is as expected.""" def predicate(expr): if get_op_name(expr) == "nn.relu": expr = expr.args[0] if get_op_name(expr) == "add": args = get_args(expr) attrs = get_attrs(expr.args[0]) if not checker(attrs, args, "bias_add"): return False return True return predicate def add_checker(attrs, args, op_name): """Check if add is aligned with elementwise_add and bias_add.""" if op_name == "sum": if not isinstance(args[0].op, tvm.ir.op.Op): return False if args[0].op.name != "add": return False if tuple(get_shape(args[0])) != tuple(get_shape(args[1])): return False if op_name == "bias_add": if attrs is None: return False if not isinstance(args[0].op, tvm.ir.op.Op): return False if args[0].op.name != "nn.conv2d": return False channel = dict(attrs)["channels"] const_shape = get_shape(args[1]) if channel != reduce(lambda x, y: x * y, const_shape): return False return True def make_dense_pattern(with_bias=True, with_eltwise=None): """Create patterns related to nn.dense. Parameters ---------- with_bias : bool Whether attach `bias_add` to `nn.dense`. with_eltwise : str The attached elementwise post-op name. Returns ------- dense_out : CallPattern Call node sequence. """ if with_eltwise not in supported_post_elts: raise ValueError("Unsupported eltwise post-op: %s" % with_eltwise) data = wildcard() weight = wildcard() bias = wildcard() dense = is_op("nn.dense")(data, weight) if with_bias: dense_out = is_op("add")(dense, bias) else: dense_out = dense return append_eltwise_ops(dense_out, with_eltwise) def make_dnnl_pattern(op_name, with_bias, with_eltwise): """Create dnnl patterns. Parameters ---------- op_name : str The first call node's op name. with_bias : bool Whether attach `bias_add` to `nn.dense`. with_eltwise : str The attached elementwise post-op name. Returns ------- pattern : Tuple(pattern_name, CallPattern) Created pattern name, along with its CallPattern. """ pat_name = op_name.replace("nn", "dnnl") if "_transpose" in op_name: pat_name = "dnnl.deconv" + op_name.split("_")[0][-2::] pat_name += "_bias" if with_bias else "" pat_name += ("_" + with_eltwise.split(".")[-1]) if with_eltwise else "" if "conv" in op_name: dnnl_pattern = ( pat_name, make_conv_pattern(op_name, with_bias, with_eltwise), make_bias_add_pattren_predicate(add_checker), ) elif op_name == "nn.dense": dnnl_pattern = (pat_name, make_dense_pattern(with_bias, with_eltwise)) else: logger.warning( "Currently, only conv1d, conv2d, conv2d_transpose, conv3d_transpose, " "dense op are supported, but got %s.", op_name, ) dnnl_pattern = () return dnnl_pattern def make_qnn_conv2d_pattern(): """Make qnn.conv2d based pattern supported by DNNL Returns ------- pattern : Tuple(pattern_name, CallPattern) Created pattern name, along with its CallPattern. """ data = wildcard() weight = is_constant() bias = is_constant() o_scl = is_constant() dst_zp = is_constant() act_scl = is_constant() sum_scl = is_constant() sum_src = wildcard() zero_zp = is_expr(const(0, dtype="int32")) pat = is_op("qnn.conv2d")(data, weight, zero_zp, zero_zp, is_constant(), is_constant()) pat = is_op("cast")(pat) pat = is_op("add")(pat, bias) | pat # optional bias pat = is_op("multiply")(pat, o_scl) pat = is_op("clip")(pat) # TBD, not only clip pat = is_op("multiply")(pat, act_scl) | pat # optional multiply. Ex: act_scl == 1 pat = is_op("add")(pat, sum_scl * is_op("cast")(sum_src)) | pat # optional sum pat = is_op("add")(pat, dst_zp) | pat # optional dst_zp, can be dst_zp == 0 pat = is_op("cast")(pat) return "dnnl.qnn.conv2d", pat def make_qnn_dense_pattern(): """Make qnn.dense based pattern supported by DNNL Returns ------- pattern : Tuple(pattern_name, CallPattern) Created pattern name, along with its CallPattern. """ data = wildcard() weight = is_constant() bias = is_constant() o_scl = is_constant() dst_zp = is_constant() act_scl = is_constant() sum_scl = is_constant() sum_src = wildcard() zero_zp = is_expr(const(0, dtype="int32")) pat = is_op("qnn.dense")(data, weight, zero_zp, zero_zp, is_constant(), is_constant()) pat = is_op("cast")(pat) pat = is_op("add")(pat, bias) | pat # optional bias pat = is_op("multiply")(pat, o_scl) pat = is_op("clip")(pat) # TBD, not only clip pat = is_op("multiply")(pat, act_scl) | pat # optional multiply. ex act_scl == 1 pat = is_op("add")(pat, sum_scl * is_op("cast")(sum_src)) | pat # optional sum pat = is_op("add")(pat, dst_zp) | pat # optional dst_zp, can be dst_zp == 0 pat = is_op("cast")(pat) return "dnnl.qnn.dense", pat @register_pattern_table("dnnl") def pattern_table(): """Create dnnl patterns. Returns ------- dnnl_patterns : List[dnnl_pattern] Created patterns. """ dnnl_patterns = list() dnnl_patterns.append(make_qnn_conv2d_pattern()) dnnl_patterns.append(make_qnn_dense_pattern()) dnnl_patterns.append( ( "dnnl.conv2d_bias_sum_relu", make_conv_bias_sum_relu_pattern("nn.conv2d"), make_sum_pattren_predicate(add_checker), ) ) dnnl_patterns.append( ( "dnnl.conv2d_bias_sum", make_conv_bias_sum_relu_pattern("nn.conv2d", False), make_sum_pattren_predicate(add_checker), ) ) elt_list = ["nn.relu", "tanh", "sigmoid", "clip", "gelu", "swish", "mish", None] for with_bias in [True, False]: for elt in elt_list: if not with_bias and not elt: continue for conv_name in [ "nn.conv1d", "nn.conv2d", "nn.conv3d", "nn.conv2d_transpose", "nn.conv3d_transpose", ]: dnnl_patterns.append(make_dnnl_pattern(conv_name, with_bias, elt)) dnnl_patterns.append(make_dnnl_pattern("nn.dense", with_bias, elt)) return dnnl_patterns def get_optimal_layout_for_conv( data_layout, kernel_layout, weight_shape, out_shape, paddings, strides, dilates, groups, dtype ): """Get the optimal layout of dnnl, given shape of conv2d. Parameters ---------- data_layout, kernel_layout,weight_shape, out_shape, paddings, strides, dilates, groups : String Input argument. Returns ------- layouts : string The result. """ return _ffi_api.get_optimal_layout_for_conv( data_layout, kernel_layout, weight_shape, out_shape, paddings, strides, dilates, groups, dtype, ) def get_optimal_layout_for_conv_transpose( data_layout, kernel_layout, weight_shape, out_shape, paddings, output_paddings, strides, dilates, groups, dtype, ): """Get the optimal layout of dnnl, given shape of tranposed conv2d. Parameters ---------- data_layout, kernel_layout, weight_shape, out_shape, paddings, output_paddings, strides, dilates, groups : Int, String Input argument. Returns ------- layouts : string The result. """ return _ffi_api.get_optimal_layout_for_conv_transpose( data_layout, kernel_layout, weight_shape, out_shape, paddings, output_paddings, strides, dilates, groups, dtype, ) def get_shape(tensor): """Get tensor's shape.""" if isinstance(tensor, relay.expr.Var): return tensor.type_annotation.concrete_shape if isinstance(tensor, relay.expr.Constant): return tensor.data.shape if isinstance(tensor, tvm.ir.tensor_type.TensorType): return tensor.concrete_shape if isinstance(tensor, tvm.ir.container.Array): return tensor[-1].shape if isinstance(tensor, relay.expr.Call): if tensor.op.name == "multiply": return tensor.type_args[0].shape return tensor.checked_type.shape raise TypeError("Unsupport data type: %s" % type(tensor)) def get_dtype(tensor): """Get tensor's dtype.""" if isinstance(tensor, relay.expr.Var): return tensor.type_annotation.dtype if isinstance(tensor, relay.expr.Constant): return tensor.data.dtype if isinstance(tensor, tvm.ir.tensor_type.TensorType): return tensor.dtype if isinstance(tensor, tvm.ir.container.Array): return tensor[-1].dtype if isinstance(tensor, relay.expr.Call): if tensor.op.name == "multiply": return tensor.type_args[0].dtype return tensor.checked_type.dtype raise TypeError("Unsupport data type: %s" % type(tensor)) def tag2layout(input_data, is_weight=False, conv_type="Conv1D"): """Transfer layout, denoted with `a, b, c, d, e`, into valid layout (NCHW / OIHW) of TVM.""" if "Conv1D" in conv_type: data_dic = {"a": "N", "b": "C", "c": "W"} weight_dic = {"a": "O", "b": "I", "c": "W", "d": "G"} elif "Conv2D" in conv_type: data_dic = {"a": "N", "b": "C", "c": "H", "d": "W"} weight_dic = {"a": "O", "b": "I", "c": "H", "d": "W"} if "e" in input_data: weight_dic = {"a": "G", "b": "O", "c": "I", "d": "H", "e": "W"} elif "Conv3D" in conv_type: data_dic = {"a": "N", "b": "C", "c": "D", "d": "H", "e": "W"} weight_dic = {"a": "O", "b": "I", "c": "D", "d": "H", "e": "W", "f": "G"} dic = weight_dic if is_weight else data_dic res = "" for i in input_data: if i.isupper(): i = i.lower() res += dic[i] dic[i] = dic[i].lower() elif i.islower(): res += dic[i] elif i.isdigit(): res += i else: raise ValueError("Unsupport layout format: %s" % input_data) return res def legalize_pad_avg_pool(attrs, inputs, types): """Legalize pad->avg_pool2d pattern. Fuse this pattern into one avg_pool2d with padding = (1, 1), and count_include_pad = True""" data = inputs[0] new_attrs = dict(attrs) if isinstance(data, relay.expr.Call) and data.op.name == "nn.pad": new_attrs["padding"] = (1, 1) new_attrs["count_include_pad"] = True return relay.nn.avg_pool2d(data.args[0], **new_attrs) return relay.nn.avg_pool2d(data, **attrs) def legalize_group_conv(attrs, inputs, types): """Legalize group conv / conv_transpose calculation. Alter weight layout from OIHW to GOIHW / IOHW to GIOHW""" groups = attrs.groups data, weight = inputs if groups == 1: if "Transpose" not in type(attrs).__name__: return relay.nn.conv2d(data, weight, **attrs) return relay.nn.conv2d_transpose(data, weight, **attrs) OC, IC, H, W = get_shape(weight) new_attrs = dict(attrs) weight = relay.reshape(weight, (groups, OC // groups, IC, H, W)) if "Transpose" not in type(attrs).__name__: new_attrs["kernel_layout"] = "GOIHW" return relay.nn.conv2d(data, weight, **new_attrs) new_attrs["kernel_layout"] = "GIOHW" return relay.nn.conv2d_transpose(data, weight, **new_attrs) def alter_conv(attrs, inputs, tinfos, out_type): """The convolution's layout auto-query func for dnnl.""" data, weight = inputs groups = str(attrs.groups) weight_shape = ",".join([str(x) for x in get_shape(weight)]) out_shape = ",".join([str(x) for x in get_shape(out_type)]) paddings = ",".join([str(x) for x in attrs.get_int_tuple("padding")]) strides = ",".join([str(x) for x in attrs.get_int_tuple("strides")]) dilates = ",".join([str(x) for x in attrs.get_int_tuple("dilation")]) dtype = get_dtype(weight) new_attrs = dict(attrs) conv_type = type(attrs).__name__.split("Attrs")[0] res = get_optimal_layout_for_conv( attrs["data_layout"], attrs["kernel_layout"], weight_shape, out_shape, paddings, strides, dilates, groups, dtype, ) src_df, weight_df, dst_df = res.split(",") new_attrs["data_layout"] = tag2layout(src_df, is_weight=False, conv_type=conv_type) new_attrs["kernel_layout"] = tag2layout(weight_df, is_weight=True, conv_type=conv_type) new_attrs["out_layout"] = tag2layout(dst_df, is_weight=False, conv_type=conv_type) if conv_type == "Conv1D": return relay.nn.conv1d(data, weight, **new_attrs) if conv_type == "Conv2D": return relay.nn.conv2d(data, weight, **new_attrs) return relay.nn.conv3d(data, weight, **new_attrs) def alter_conv_transpose(attrs, inputs, tinfos, out_type): """The transposed convolution's layout auto-query func for dnnl.""" data, weight = inputs weight_shape = ",".join([str(x) for x in get_shape(weight)]) out_shape = ",".join([str(x) for x in get_shape(out_type)]) paddings = ",".join([str(x) for x in attrs.get_int_tuple("padding")]) output_paddings = ",".join([str(x) for x in attrs.get_int_tuple("output_padding")]) strides = ",".join([str(x) for x in attrs.get_int_tuple("strides")]) dilates = ",".join([str(x) for x in attrs.get_int_tuple("dilation")]) groups = str(attrs.groups) dtype = get_dtype(weight) new_attrs = dict(attrs) conv_type = type(attrs).__name__.split("Attrs")[0] res = get_optimal_layout_for_conv_transpose( attrs["data_layout"], attrs["kernel_layout"], weight_shape, out_shape, paddings, output_paddings, strides, dilates, groups, dtype, ) src_df, weight_df, dst_df = res.split(",") new_attrs["data_layout"] = tag2layout(src_df, is_weight=False, conv_type=conv_type) new_attrs["kernel_layout"] = tag2layout(weight_df, is_weight=True, conv_type=conv_type) new_attrs["out_layout"] = tag2layout(dst_df, is_weight=False, conv_type=conv_type) if conv_type == "Conv1DTranspose": return relay.nn.conv1d_transpose(data, weight, **new_attrs) if conv_type == "Conv2DTranspose": return relay.nn.conv2d_transpose(data, weight, **new_attrs) return relay.nn.conv3d_transpose(data, weight, **new_attrs) class IsComputeIntensiveGraph(ExprVisitor): """ Visits the Graph recursively and checks if it contains compute heavy ops like convolutions and its transpose and dense. """ def __init__(self): ExprVisitor.__init__(self) self.is_compute_intensive = False def visit_call(self, call): compute_intensive_ops = set( [ "nn.conv1d", "nn.conv2d", "nn.conv2d_transpose", "nn.conv3d", "nn.conv3d_transpose", "nn.dense", "nn.layer_norm", "nn.batch_matmul", "nn.global_avg_pool2d", ] ) if isinstance(call.op, tvm.tir.op.Op): if str(call.op) in compute_intensive_ops: self.is_compute_intensive = True return super().visit_call(call) def is_graph_compute_intensive(self, subgraph) -> bool: """ This function recursively visits the graph and checks if it's compute intensive" """ self.visit(subgraph) return self.is_compute_intensive def is_valid_subgraph(body): """Final check on whether the subgraph is valid and should be offloaded to DNNL.""" return IsComputeIntensiveGraph().is_graph_compute_intensive(body) def prune_dnnl_subgraphs(mod): """ Removes invalid subgraphs, which does not contain compute intensive dnnl ops. """ class SubgraphRemover(ExprMutator): """ Reverts subgraphs in subgraphs_to_remove back to TVM instead of using an external codegen. """ def __init__(self, subgraphs_to_remove, mod, new_mod): ExprMutator.__init__(self) self.subgraphs_to_remove = subgraphs_to_remove self.mod = mod self.new_mod = new_mod def visit_call(self, call): if isinstance(call.op, GlobalVar): name = call.op.name_hint if name in self.subgraphs_to_remove: # "Inline" the subgraph back into new main function. func = self.mod[name] var_map = {} for arg, param in zip(call.args, func.params): var_map[param] = super().visit(arg) new_body = relay.bind(func.body, var_map) return new_body if name != "main": args = [] for arg in call.args: args.append(super().visit(arg)) return call.op(*args) return super().visit_call(call) subgraphs_to_remove = [] # If only one subgraph, do nothing. if len(mod.get_global_vars()) <= 2: return mod # Remove invalid subgraphs for subgraph in mod.get_global_vars(): name = subgraph.name_hint if not mod[name].attrs or mod[name].attrs["Compiler"] != "dnnl": continue if not is_valid_subgraph(mod[name].body): subgraphs_to_remove.append(name) # Create new pruned module new_mod = tvm.IRModule(mod.functions, mod.type_definitions) new_mod["main"] = SubgraphRemover(subgraphs_to_remove, mod, new_mod).visit(mod["main"]) new_mod = transform.RemoveUnusedFunctions()(new_mod) return new_mod class LayerNormRewrite(DFPatternCallback): """ A callback to rewrite the following operators into a single layer normalization operator. Pattern #1: 1 %4 = mean(%3, axis=[-1], keepdims=True) /* ty=Tensor[(1, 3136, 1), float32] */; 2 %5 = subtract(%3, %4) /* ty=Tensor[(1, 3136, 64), float32] */; 3 %6 = cast(%5, dtype="float32") /* ty=Tensor[(1, 3136, 64), float32] */; 4 %7 = power(%6, 2f /* ty=float32 */) /* ty=Tensor[(1, 3136, 64), float32] */; 5 %8 = mean(%7, axis=[-1], keepdims=True) /* ty=Tensor[(1, 3136, 1), float32] */; 6 %9 = add(%8, 1e-05f /* ty=float32 */) /* ty=Tensor[(1, 3136, 1), float32] */; 7 %10 = sqrt(%9) /* ty=Tensor[(1, 3136, 1), float32] */; 8 %11 = divide(%5, %10) /* ty=Tensor[(1, 3136, 64), float32] */; 9 %12 = multiply(%11, meta[relay.Constant][2] /* ty=Tensor[(64), float32] */) /* ty=Tensor[(1, 3136, 64), float32] */; 10 %13 = add(%12, meta[relay.Constant][3] /* ty=Tensor[(64), float32] */) /* ty=Tensor[(1, 3136, 64), float32] */; Pattern #2: 1 %0 = mean(%input, axis=[-1], keepdims=True); 2 %1 = variance(%input, %0, axis=[-1], keepdims=True); 3 %2 = add(%1, 1e-05f /* ty=float32 */) /* ty=Tensor[(1, 49, 1), float32] */; 4 %3 = subtract(%input, %0); 5 %4 = sqrt(%2) /* ty=Tensor[(1, 49, 1), float32] */; 6 %5 = divide(%3, %4); 7 %6 = multiply(%5, meta[relay.Constant][0] /* ty=Tensor[(64), float32] */) /* ty=Tensor[(1, 49, 64), float32] */; 8 %7 = add(%6, meta[relay.Constant][1] /* ty=Tensor[(64), float32] */) /* ty=Tensor[(1, 49, 64), float32] */ """ def __init__(self): super(LayerNormRewrite, self).__init__() self.data = wildcard() self.gamma = wildcard() self.beta = wildcard() mu = is_op("mean")(self.data) diff = is_op("subtract")(self.data, mu) cdiff = diff | is_op("cast")(diff) const_two = is_expr(relay.const(2)) | is_expr(relay.const(2.0)) p1 = is_op("power")(cdiff, const_two) mp1 = is_op("mean")(p1) | is_op("variance")(self.data, mu) eps = is_expr(relay.const(1e-5)) | is_expr(relay.const(1e-6)) added_eps = is_op("add")(mp1, eps) deno = is_op("sqrt")(added_eps) div_out = is_op("divide")(diff, deno) div_out2 = diff * is_op("rsqrt")(added_eps) weighted = is_op("multiply")(div_out | div_out2, self.gamma) added_bias = is_op("add")(weighted, self.beta) self.pattern = added_bias def callback(self, pre, post, node_map): data = node_map[self.data][0] gamma = node_map[self.gamma][0] beta = node_map[self.beta][0] return relay.op.nn.layer_norm(data=data, gamma=gamma, beta=beta) def rewrite_layer_norm(mod): """Rewrite the input graph to replace multiple operators with a TVM native layer normalization operator so that we can offload them to dnnl layer normalization byoc part. """ mod["main"] = rewrite(LayerNormRewrite(), mod["main"]) return mod class DenseReshapeBiasGeluRewrite(DFPatternCallback): """ A callback to reorder reshape operators when the patterns are as below: Pattern #1: 1 %62 = nn.dense(%61, meta[relay.Constant][13] /* ty=Tensor[(64, 64), float32] */, units=None, out_dtype="float32") /* ty=Tensor[(3136, 64), float32] */; 2 %63 = reshape(%62, newshape=[1, 3136, 64]) /* ty=Tensor[(1, 3136, 64), float32] */; 3 %64 = add(meta[relay.Constant][4] /* ty=Tensor[(64), float32] */, %63) /* ty=Tensor[(1, 3136, 64), float32] */; Pattern #2: 1 %76 = nn.dense(%75, meta[relay.Constant][18] /* ty=Tensor[(512, 64), float32] */, units=None, out_dtype="float32") /* ty=Tensor[(3136, 512), float32] */; 2 %77 = reshape(%76, newshape=[1, 3136, 512]) /* ty=Tensor[(1, 3136, 512), float32] */; 3 %78 = add(meta[relay.Constant][15] /* ty=Tensor[(512), float32] */, %77) /* ty=Tensor[(1, 3136, 512), float32] */; 4 %79 = divide(%78, 1.41421f /* ty=float32 */) /* ty=Tensor[(1, 3136, 512), float32] */; 5 %80 = erf(%79) /* ty=Tensor[(1, 3136, 512), float32] */; 6 %81 = add(%80, 1f /* ty=float32 */) /* ty=Tensor[(1, 3136, 512), float32] */; 7 %82 = multiply(%78, %81) /* ty=Tensor[(1, 3136, 512), float32] */; 8 %83 = multiply(%82, 0.5f /* ty=float32 */) /* ty=Tensor[(1, 3136, 512), float32] */; """ def __init__(self, has_gelu=True): super(DenseReshapeBiasGeluRewrite, self).__init__() self.data = wildcard() self.weight = wildcard() self.bias = wildcard() self.const1 = wildcard() self.const2 = wildcard() self.const3 = wildcard() self.attr_map = {} self.has_gelu = has_gelu den = is_op("nn.dense")(self.data, self.weight) re_den = is_op("reshape")(den) added = is_op("add")(self.bias, re_den) if self.has_gelu: divisor = is_op("divide")(added, self.const1) val_erf = is_op("erf")(divisor) added_erf = is_op("add")(val_erf, self.const2) mul1 = is_op("multiply")(added, added_erf) mul2 = is_op("multiply")(mul1, self.const3) self.pattern = mul2 else: self.pattern = added def get_attr(self, pre): """Recursively retrieve attributes from reshape operator.""" def visit_func(expr): if isinstance(expr, _expr.Call) and expr.op == relay.op.get("reshape"): new_attrs = {} for k in expr.attrs.keys(): new_attrs[k] = expr.attrs[k] self.attr_map["reshape"] = new_attrs _analysis.post_order_visit(pre, visit_func) def callback(self, pre, post, node_map): self.get_attr(pre) data = node_map[self.data][0] weight = node_map[self.weight][0] bias = node_map[self.bias][0] den = relay.op.nn.dense(data, weight) added = relay.op.add(bias, den) if not self.has_gelu: return relay.op.reshape(added, self.attr_map["reshape"]["newshape"]) const1 = node_map[self.const1][0] const2 = node_map[self.const2][0] const3 = node_map[self.const3][0] divisor = relay.op.divide(added, const1) val_erf = relay.op.erf(divisor) added_erf = relay.op.add(val_erf, const2) mul1 = relay.op.multiply(added, added_erf) mul2 = relay.op.multiply(mul1, const3) return relay.op.reshape(mul2, self.attr_map["reshape"]["newshape"]) def rewrite_dense_bias_gelu_reshape_last(mod): """Rewrite the input graph to reorder reshape operators so that we can perform dense_bias_gelu/dense_bias fusion and then offload them to byoc part. """ mod["main"] = rewrite( [DenseReshapeBiasGeluRewrite(), DenseReshapeBiasGeluRewrite(has_gelu=False)], mod["main"] ) return mod class ResNetV1Rewrite(DFPatternCallback): """ A callback to advance downsize operation when the patterns are as pattern1, and the result is written in pattern2: Pattern #1: %26 = nn.conv2d(%25, ty=Tensor[(64, 256, 1, 1)); %27 = add(%26, ty=Tensor[(64, 1, 1)); %28 = nn.relu(%27); %29 = nn.conv2d(%28, ty=Tensor[(64, 64, 3, 3)); %30 = add(%29, ty=Tensor[(64, 1, 1)); %31 = nn.relu(%30); %32 = nn.conv2d(%31, ty=Tensor[(256, 64, 1, 1)); %33 = add(%32, ty=Tensor[(256, 1, 1)); %34 = add(%33, %25); %35 = nn.relu(%34); %36 = nn.conv2d(%35, ty=Tensor[(128, 256, 1, 1), strides=[2, 2]); %37 = add(%36, ty=Tensor[(128, 1, 1)); %38 = nn.relu(%37); %39 = nn.conv2d(%38, ty=Tensor[(128, 128, 3, 3)); %40 = add(%39, ty=Tensor[(128, 1, 1)]); %41 = nn.relu(%40); %42 = nn.conv2d(%41, ty=Tensor[(512, 128, 1, 1)); %43 = nn.conv2d(%35, ty=Tensor[(512, 256, 1, 1), strides=[2, 2]); %44 = add(%42, ty=Tensor[(512, 1, 1)); %45 = add(%43, ty=Tensor[(512, 1, 1)); %46 = add(%44, %45); %47 = nn.relu(%46); Pattern #2: %26 = nn.conv2d(%25, ty=Tensor[(64, 256, 1, 1)); %27 = add(%26, ty=Tensor[(64, 1, 1)); %28 = nn.relu(%27); %29 = nn.conv2d(%28, ty=Tensor[(64, 64, 3, 3), strides=[2, 2]); %30 = add(%29, ty=Tensor[(64, 1, 1)); %31 = nn.relu(%30); %32 = nn.conv2d(%31, ty=Tensor[(256, 64, 1, 1)); %33 = add(%32, ty=Tensor[(256, 1, 1)); %34 = nn.max_pool2d(%25, pool_size=[1, 1], strides=[2, 2], padding=[0, 0, 0, 0]); %35 = add(%33, %34); %36 = nn.relu(%35); %37 = nn.conv2d(%36, ty=Tensor[(128, 256, 1, 1)); %38 = add(%37, ty=Tensor[(128, 1, 1)); %39 = nn.relu(%38); %40 = nn.conv2d(%39, ty=Tensor[(128, 128, 3, 3)); %41 = add(%40, ty=Tensor[(128, 1, 1)); %42 = nn.relu(%41); %43 = nn.conv2d(%42, ty=Tensor[(512, 128, 1, 1)); %44 = nn.conv2d(%36, ty=Tensor[(512, 256, 1, 1)); %45 = add(%43, ty=Tensor[(512, 1, 1)); %46 = add(%44, ty=Tensor[(512, 1, 1)); %47 = add(%45, %46); %48 = nn.relu(%47); """ def __init__(self): super(ResNetV1Rewrite, self).__init__() self.attr_lst = [] self.data = wildcard() self.w1, self.b1 = wildcard(), wildcard() self.w2, self.b2 = wildcard(), wildcard() self.w3, self.b3 = wildcard(), wildcard() self.w4, self.b4 = wildcard(), wildcard() self.w5, self.b5 = wildcard(), wildcard() self.w6, self.b6 = wildcard(), wildcard() self.w7, self.b7 = wildcard(), wildcard() conv1 = is_op("nn.conv2d")(self.data, self.w1).has_attr({"kernel_size": [1, 1]}) conv1 = is_op("add")(conv1, self.b1) conv1 = is_op("nn.relu")(conv1) conv2 = is_op("nn.conv2d")(conv1, self.w2).has_attr({"kernel_size": [3, 3]}) conv2 = is_op("add")(conv2, self.b2) conv2 = is_op("nn.relu")(conv2) conv3 = is_op("nn.conv2d")(conv2, self.w3).has_attr({"kernel_size": [1, 1]}) conv3 = is_op("add")(conv3, self.b3) conv3 = is_op("add")(conv3, self.data) conv3 = is_op("nn.relu")(conv3) left_conv4 = is_op("nn.conv2d")(conv3, self.w4).has_attr({"strides": [2, 2]}) left_conv4 = is_op("add")(left_conv4, self.b4) left_conv4 = is_op("nn.relu")(left_conv4) left_conv5 = is_op("nn.conv2d")(left_conv4, self.w5).has_attr({"kernel_size": [3, 3]}) left_conv5 = is_op("add")(left_conv5, self.b5) left_conv5 = is_op("nn.relu")(left_conv5) left_conv6 = is_op("nn.conv2d")(left_conv5, self.w6).has_attr({"kernel_size": [1, 1]}) left_conv6 = is_op("add")(left_conv6, self.b6) right_conv7 = is_op("nn.conv2d")(conv3, self.w7).has_attr({"strides": [2, 2]}) right_conv7 = is_op("add")(right_conv7, self.b7) out = is_op("add")(left_conv6, right_conv7) out = is_op("nn.relu")(out) self.pattern = out def get_attr(self, pre): """Recursively retrieve attributes from reshape operator.""" def visit_func(expr): if isinstance(expr, _expr.Call) and expr.op == relay.op.get("nn.conv2d"): self.attr_lst.append(expr.attrs) _analysis.post_order_visit(pre, visit_func) def callback(self, pre, post, node_map): self.get_attr(pre) data = node_map[self.data][0] w1, b1 = node_map[self.w1][0], node_map[self.b1][0] w2, b2 = node_map[self.w2][0], node_map[self.b2][0] w3, b3 = node_map[self.w3][0], node_map[self.b3][0] w4, b4 = node_map[self.w4][0], node_map[self.b4][0] w5, b5 = node_map[self.w5][0], node_map[self.b5][0] w6, b6 = node_map[self.w6][0], node_map[self.b6][0] w7, b7 = node_map[self.w7][0], node_map[self.b7][0] new_attrs = self.attr_lst[-7] conv1 = relay.op.nn.conv2d(data, w1, **new_attrs) conv1 = relay.op.add(conv1, b1) conv1 = relay.op.nn.relu(conv1) new_attrs = dict(self.attr_lst[-6]) new_attrs["strides"] = [2, 2] conv2 = relay.op.nn.conv2d(conv1, w2, **new_attrs) conv2 = relay.op.add(conv2, b2) conv2 = relay.op.nn.relu(conv2) new_attrs = self.attr_lst[-5] conv3 = relay.op.nn.conv2d(conv2, w3, **new_attrs) conv3 = relay.op.add(conv3, b3) max_pool = relay.op.nn.max_pool2d( data, pool_size=(1, 1), strides=(2, 2), layout=new_attrs["data_layout"] ) conv3 = relay.op.add(conv3, max_pool) conv3 = relay.op.nn.relu(conv3) new_attrs = dict(self.attr_lst[-4]) new_attrs["strides"] = [1, 1] left_conv4 = relay.op.nn.conv2d(conv3, w4, **new_attrs) left_conv4 = relay.op.add(left_conv4, b4) left_conv4 = relay.op.nn.relu(left_conv4) new_attrs = self.attr_lst[-3] left_conv5 = relay.op.nn.conv2d(left_conv4, w5, **new_attrs) left_conv5 = relay.op.add(left_conv5, b5) left_conv5 = relay.op.nn.relu(left_conv5) new_attrs = self.attr_lst[-2] left_conv6 = relay.op.nn.conv2d(left_conv5, w6, **new_attrs) left_conv6 = relay.op.add(left_conv6, b6) new_attrs = dict(self.attr_lst[-1]) new_attrs["strides"] = [1, 1] right_conv7 = relay.op.nn.conv2d(conv3, w7, **new_attrs) right_conv7 = relay.op.add(right_conv7, b7) out = relay.op.add(left_conv6, right_conv7) out = relay.op.nn.relu(out) self.attr_lst = [] return out def rewrite_resnetv1(mod): """Rewrite the the ResNetV1 downsize block to reduce the computation complexity.""" mod["main"] = rewrite(ResNetV1Rewrite(), mod["main"]) return mod class LegalizeQnnOpForDnnl(DFPatternCallback): """Legalize QNN based patterns to match DNNL original pattern: OP = qnn.dense | qnn.conv2d %1 = OP<int>(SRC, WGH) - OP<int>(src_zp, WGH) // qnn.conv2d %2 = %1 + orig_bias // bias %2 = (%1 - rq_in_zp) * rq_in_scl / rq_out_scl + rq_out_zp // qnn.requantize %3 = act(%2) // activation == clip %4 = ((%3 - sum_lh_zp) * sum_lh_scl + (SRC2 - sum_rh_zp) * sum_rh_scl) // qnn.add / sum_out_scl + sum_out_zp transform to DNNL compatible: %1 = OP<int>(SRC, WGH) %2 = cast(%1, dtype="float") %2 = (%1 + bias) * o_scl %3 = act(%2) * act_scl %4 = %3 + SRC2 * sum_scl %5 = %4 + dst_zp %6 = cast(%5, dtype="float") where: o_scl = rq_in_scl / rq_out_scl act_scl = sum_lhs_scl / sum_out_scl sum_scl = sum_rhs_scl / sum_out_scl bias = orig_bias - OP(src_zp, WGH) - rq_in_zp + rq_out_zp * rq_out_scl / rq_in_scl dst_zp = sum_out_zp - sum_lhs_zp * sum_lhs_scl / sum_out_scl - sum_rhs_zp * sum_rhs_scl / sum_out_scl """ def __init__(self): super(LegalizeQnnOpForDnnl, self).__init__() self.src = wildcard() self.wgh = wildcard() self.bias = wildcard() self.sum_src = wildcard() self.src_scl = is_constant() self.src_zp = is_constant() self.wgh_scl = is_constant() self.wgh_zp = is_expr(const(0)) self.rq_in_scl = is_constant() self.rq_in_zp = is_constant() self.rq_out_scl = is_constant() self.rq_out_zp = is_constant() self.sum_lhs_scl = is_constant() self.sum_lhs_zp = is_constant() self.sum_rhs_scl = is_constant() self.sum_rhs_zp = is_constant() self.sum_out_scl = is_constant() self.sum_out_zp = is_constant() self.root = (is_op("qnn.conv2d") | is_op("qnn.dense"))( self.src, self.wgh, self.src_zp, self.wgh_zp, self.src_scl, self.wgh_scl ) pat = is_op("add")(self.root, self.bias) | self.root # optional bias pat = is_op("qnn.requantize")( pat, self.rq_in_scl, self.rq_in_zp, self.rq_out_scl, self.rq_out_zp ) pat = is_op("clip")(pat) cast = is_op("cast")(pat) pat = is_op("qnn.add")( cast, self.sum_src, self.sum_lhs_scl, self.sum_lhs_zp, self.sum_rhs_scl, self.sum_rhs_zp, self.sum_out_scl, self.sum_out_zp, ) pat = is_op("clip")(pat) self.pattern = pat | cast def callback(self, pre, post, node_map): root = node_map[self.root][0] src = node_map[self.src][0] wgh = node_map[self.wgh][0] bias = node_map.get(self.bias, default=[relay.const(0, dtype="int32")])[0] src_zp = node_map[self.src_zp][0] rq_in_scl = node_map[self.rq_in_scl][0] rq_in_zp = node_map[self.rq_in_zp][0] rq_out_scl = node_map[self.rq_out_scl][0] rq_out_zp = node_map[self.rq_out_zp][0] final_dtype = node_map[self.pattern][0].checked_type.dtype if root.op == relay.op.get("qnn.conv2d"): dst_layout = root.attrs.out_layout dst_layout = root.attrs.data_layout if dst_layout == "" else dst_layout wgh_layout = root.attrs.kernel_layout else: # qnn.dense has no layout attributes. Assume that is plain dst_layout = "NC" wgh_layout = "OI" # TODO(@apeskov): dst_layout may ne blocked bias_rank = len(dst_layout) - dst_layout.index("C") sum_src = node_map[self.sum_src][0] if self.sum_src in node_map else None # Default values if qnn.sum is not present sum_lhs_scl = node_map[self.sum_lhs_scl][0] if sum_src else relay.const(1, dtype="float32") sum_lhs_zp = node_map[self.sum_lhs_zp][0] if sum_src else relay.const(0, dtype="int32") sum_rhs_scl = node_map[self.sum_rhs_scl][0] if sum_src else relay.const(0, dtype="float32") sum_rhs_zp = node_map[self.sum_rhs_zp][0] if sum_src else relay.const(0, dtype="int32") sum_out_scl = node_map[self.sum_out_scl][0] if sum_src else relay.const(1, dtype="float32") sum_out_zp = node_map[self.sum_out_zp][0] if sum_src else relay.const(0, dtype="int32") def cast_fp(op): return relay.op.cast(op, dtype="float32") # recalculate some factors o_scl = rq_in_scl / rq_out_scl act_scl = sum_lhs_scl / sum_out_scl sum_scl = sum_rhs_scl / sum_out_scl dst_zp = ( cast_fp(sum_out_zp) - cast_fp(sum_lhs_zp) * sum_lhs_scl / sum_out_scl - cast_fp(sum_rhs_zp) * sum_rhs_scl / sum_out_scl ) bias = self.squeeze_bias(bias, dst_layout) bias = ( cast_fp(bias) - cast_fp(self.fake_op(src_zp, wgh, wgh_layout)) - cast_fp(rq_in_zp) + cast_fp(rq_out_zp) * rq_out_scl / rq_in_scl ) bias = self.broadcast_to_rank(bias, bias_rank) zero_zp = relay.const(0, dtype="int32") one_scl = relay.const(1.0, dtype="float32") # construct new graph with proper post op ordering gr = tvm.relay.Call( root.op, [src, wgh, zero_zp, zero_zp, one_scl, one_scl], root.attrs, root.type_args, root.span, ) gr = relay.op.cast(gr, dtype="float32") gr = gr + bias gr = gr * o_scl gr = relay.op.clip(gr, 0, 255) * act_scl gr = gr + sum_scl * cast_fp(sum_src) if sum_src else gr gr = gr + dst_zp gr = relay.op.cast(gr, dtype=final_dtype) return gr @staticmethod def fake_op(zp, wgh, layout): """Fake operator implementation for zp broadcast input""" # Conv: reduce kernel {OC, IC, KH, KW} -> {OC} in case of group that is still correct # Dense: reduce kernel {OC, IC} -> {OC} wgh_int = relay.op.cast(wgh, dtype="int32") reduced_kernel = relay.op.sum( wgh_int, axis=[layout.index("O")], keepdims=False, exclude=True ) return zp * reduced_kernel @staticmethod def squeeze_bias(bias, layout): shape = transform.InferTypeLocal(bias).concrete_shape c_position = layout.index("C") - len(layout) + len(shape) squeeze_idxs = [i for i in range(len(shape)) if i != c_position] return relay.op.squeeze(bias, squeeze_idxs) @staticmethod def broadcast_to_rank(op, rank): """Scalar or 1D tensor are supported""" shape = transform.InferTypeLocal(op).concrete_shape if len(shape) == 0: return op if len(shape) == 1: return relay.op.expand_dims(op, 1, rank - 1) raise ValueError("Unexpected bias rank to broadcast. Only 0 and 1 are supported.") def legalize_qnn_for_dnnl(mod): """Transform qnn primitives to DNNL compatible form. Eliminate source zero point and apply strict sequence of post ops.""" mod["main"] = rewrite(LegalizeQnnOpForDnnl(), mod["main"]) seq = tvm.transform.Sequential( [ transform.InferType(), # transform.SimplifyInference(), # TODO: this pass decompose nn.layer_norm # transform.FoldScaleAxis(), # TODO: fail inside TVM in case of grouped convolutions. transform.FoldConstant(), ] ) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) return mod
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/ethosn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Arm(R) Ethos(TM)-N NPU supported operators.""" from enum import Enum from distutils.version import LooseVersion import tvm.ir from tvm.relay import transform from tvm.relay.build_module import bind_params_by_name from ...dataflow_pattern import is_constant, is_op, wildcard from . import _ethosn from .register import register_pattern_table class Available(Enum): UNAVAILABLE = 0 SW_ONLY = 1 SW_AND_HW = 2 def __bool__(self): return self != Available.UNAVAILABLE def ethosn_available(): """Return whether Ethos-N software and hardware support is available""" if not tvm.get_global_func("relay.ethos-n.query", True): print("skip because Ethos-N module is not available") return Available.UNAVAILABLE hw = tvm.get_global_func("relay.ethos-n.query")() return Available.SW_AND_HW if hw else Available.SW_ONLY def ethosn_api_version() -> str: """ Returns the semantic version of the driver stack api that is being used. Returns ------- str Semantic version string (e.g. 3.0.1). """ return tvm.get_global_func("relay.ethos-n.api.version")() def ConvertEquivalents() -> tvm.ir.IRModule: # pylint: disable=invalid-name """Converts operations into a numerically equivalent form that can be understood by the NPU codegen. Returns ------- Pass The module pass. """ return _ethosn.ConvertEquivalents() def InlineNonComputeIntensivePartitions() -> tvm.ir.IRModule: # pylint: disable=invalid-name """This pass checks whether functions partitioned for the NPU are considered non-compute intensive. If they are not, they will be unpartitioned and passed onto other backends to consider. A partitioned function is currently considered non-compute intensive if it contains no multiply accumulate operations. Returns ------- Pass The module pass. """ return _ethosn.InlineNonComputeIntensivePartitions() def is_inline_non_compute_intensive_partitions_enabled() -> bool: """ Determine whether to inline none-compute-intensive partitions. Returns ------- True if inlining should happen, False if not. """ compiler_attrs = tvm.get_global_func("relay.ext.ethos-n.get_compiler_attrs")() if not compiler_attrs: return False return compiler_attrs.inline_non_compute_intensive_partitions def partition_for_ethosn(mod, params=None, **opts): """Partition the graph greedily offloading supported operators to Arm Ethos-N NPU. Parameters ---------- mod : Module The module to run passes on. params : Optional[Dict[str, NDArray]] Constant input parameters. Returns ------- ret : annotated and partitioned module. """ api_version = ethosn_api_version() supported_api_versions = ["3.1.0"] if all(api_version != LooseVersion(exp_ver) for exp_ver in supported_api_versions): raise ValueError( f"Driver stack version {api_version} is unsupported. " f"Please use version in {supported_api_versions}." ) if params: mod["main"] = bind_params_by_name(mod["main"], params) passes = [ transform.InferType(), transform.MergeComposite(pattern_table()), transform.AnnotateTarget("ethos-n"), transform.MergeCompilerRegions(), transform.PartitionGraph(), ConvertEquivalents(), ] if is_inline_non_compute_intensive_partitions_enabled(): passes.append(InlineNonComputeIntensivePartitions()) return tvm.transform.Sequential(passes)(mod) @register_pattern_table("ethos-n") def pattern_table(): """Get the Ethos-N compiler pattern table.""" def qnn_conv_pattern(): pattern = is_op("nn.pad")(wildcard(), wildcard()) | wildcard() pattern = is_op("qnn.conv2d")( pattern, is_constant(), is_constant(), is_constant(), is_constant(), is_constant() ) pattern = is_op("nn.bias_add")(pattern, is_constant()) pattern = is_op("qnn.requantize")( pattern, is_constant(), is_constant(), is_constant(), is_constant() ) return pattern def qnn_fc_pattern(): pattern = is_op("qnn.dense")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant() ) pattern = is_op("nn.bias_add")(pattern, is_constant()) pattern = is_op("qnn.requantize")( pattern, is_constant(), is_constant(), is_constant(), is_constant() ) return pattern def qnn_avg_pool2d_pattern(): pattern = is_op("cast")(wildcard()) pattern = is_op("nn.avg_pool2d")(pattern) pattern = is_op("cast")(pattern) return pattern def qnn_sigmoid_pattern(): pattern = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) pattern = is_op("sigmoid")(pattern) pattern = is_op("qnn.quantize")(pattern, is_constant(), is_constant()) return pattern def qnn_mean_pattern(): pattern = is_op("cast")(wildcard()) pattern = is_op("mean")(pattern) pattern = is_op("qnn.requantize")( pattern, is_constant(), is_constant(), is_constant(), is_constant() ) return pattern def qnn_tanh_pattern(): pattern = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) pattern = is_op("tanh")(pattern) pattern = is_op("qnn.quantize")(pattern, is_constant(), is_constant()) return pattern def qnn_leaky_relu_pattern(): pattern = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) pattern = is_op("nn.leaky_relu")(pattern) pattern = is_op("qnn.quantize")(pattern, is_constant(), is_constant()) return pattern def qnn_requantize_pattern(): pattern = is_op("qnn.requantize")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant() ) return pattern def qnn_resize_pattern(): pattern = is_op("image.resize2d")(wildcard()).has_attr({"method": "nearest_neighbor"}) pattern = is_op("qnn.requantize")( pattern, is_constant(), is_constant(), is_constant(), is_constant() ) return pattern def qnn_mul_pattern(): """ Multiply is supported when one input is a constant of shape [1, ..., C], where C matches the number of channels of the other input. """ mul_op = is_op("qnn.mul") gen_mul_inputs = lambda x, y: mul_op( x, y, is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ) input_is_left = gen_mul_inputs(wildcard(), is_constant()) input_is_right = gen_mul_inputs(is_constant(), wildcard()) return input_is_left | input_is_right def qnn_add_pattern(has_constant_input=False): add_op = is_op("qnn.add") gen_add_inputs = lambda x, y: add_op( x, y, is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ) if has_constant_input: input_is_left = gen_add_inputs(wildcard(), is_constant()) input_is_right = gen_add_inputs(is_constant(), wildcard()) return input_is_left | input_is_right else: return gen_add_inputs(wildcard(), wildcard()) def qnn_conv2d_transpose_pattern(): pattern = is_op("qnn.conv2d_transpose")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant() ).has_attr({"data_layout": "NHWC"}) pattern = pattern.optional(lambda x: is_op("nn.bias_add")(x, is_constant())) pattern = is_op("qnn.requantize")( pattern, is_constant(), is_constant(), is_constant(), is_constant() ) return pattern def check_conv2d(extract): """Check if a conv2d is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.conv2d(extract) def check_fc(extract): """Check if a fully connected is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.fc(extract) def check_avg_pool2d(extract): """Check if a avg pool2d is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.avg_pool2d(extract) def check_mean(extract): """Check if mean is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.mean(extract) def check_conv2d_transpose(extract): """Check if conv2d_transpose is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.conv2d_transpose(extract) def check_sigmoid(extract): """Check if a sigmoid is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.sigmoid(extract) def check_tanh(extract): """Check if tanh is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.tanh(extract) def check_leaky_relu(extract): """Check if Leaky ReLU is supported.""" if not ethosn_available(): return False return _ethosn.leaky_relu(extract) def check_mul_to_reinterpret_quantize(extract): """Check if Mul is supported by converting to reinterpret quantize""" if not ethosn_available(): return False converted_extract = _ethosn.ConvertQnnMultiplyToReinterpretQuantize(extract) if converted_extract: return _ethosn.reinterpret_quantize(converted_extract) return False def check_mul_to_depthwise(extract): """Check if Mul is supported by converting to a depthwise operation.""" if not ethosn_available(): return False converted_extract = _ethosn.ConvertQnnMultiplyToDepthwise(extract) if converted_extract: return _ethosn.conv2d(converted_extract) return False def check_requantize(extract): """Check if requantize is supported.""" if not ethosn_available(): return False return _ethosn.requantize(extract) def check_resize(extract): """Check if resize (nearest neighbor) is supported.""" if not ethosn_available(): return False return _ethosn.resize(extract) def check_add(extract): """Check if an addition is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.addition(extract) def check_add_to_reinterpret_quantize(extract): """Check if addition can be converted to a reinterpret quantize operation.""" if not ethosn_available(): return False converted_extract = _ethosn.ConvertQnnAddToReinterpretQuantize(extract) if converted_extract: return _ethosn.reinterpret_quantize(converted_extract) return False def check_add_to_depthwise(extract): """Check if addition can be converted to a depthwise operation.""" if not ethosn_available(): return False converted_extract = _ethosn.ConvertQnnAddToDepthwise(extract) if converted_extract: return _ethosn.conv2d(converted_extract) return False return [ ( "ethos-n.qnn_mul_to_reinterpret_quantize", qnn_mul_pattern(), check_mul_to_reinterpret_quantize, ), ("ethos-n.qnn_mul_to_depthwise", qnn_mul_pattern(), check_mul_to_depthwise), ( "ethos-n.qnn_add_to_reinterpret_quantize", qnn_add_pattern(True), check_add_to_reinterpret_quantize, ), ("ethos-n.qnn_add_to_depthwise", qnn_add_pattern(True), check_add_to_depthwise), ("ethos-n.qnn_add", qnn_add_pattern(), check_add), ("ethos-n.qnn_conv2d", qnn_conv_pattern(), check_conv2d), ("ethos-n.qnn_conv2d_transpose", qnn_conv2d_transpose_pattern(), check_conv2d_transpose), ("ethos-n.qnn_avg_pool2d", qnn_avg_pool2d_pattern(), check_avg_pool2d), ("ethos-n.qnn_sigmoid", qnn_sigmoid_pattern(), check_sigmoid), ("ethos-n.qnn_fc", qnn_fc_pattern(), check_fc), ("ethos-n.qnn_mean", qnn_mean_pattern(), check_mean), ("ethos-n.qnn_tanh", qnn_tanh_pattern(), check_tanh), ("ethos-n.qnn_leaky_relu", qnn_leaky_relu_pattern(), check_leaky_relu), ("ethos-n.qnn_resize", qnn_resize_pattern(), check_resize), ("ethos-n.qnn_requantize", qnn_requantize_pattern(), check_requantize), ] @tvm.ir.register_op_attr("nn.max_pool2d", "target.ethos-n") def max_pool2d(expr): """Check if a max pool2d is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.max_pool2d(expr) @tvm.ir.register_op_attr("reshape", "target.ethos-n") def reshape(expr): """Check if a reshape is supported by Ethos-N.""" if not ethosn_available(): return False return _ethosn.reshape(expr) @tvm.ir.register_op_attr("qnn.concatenate", "target.ethos-n") def qnn_concatenate(expr): """Check if a concatenate is supported by Ethos-N.""" if not ethosn_available(): return False if not _ethosn.concatenate(expr): return False # Support library has some unenforced restrictions on qnn params args = expr.args min_range = 1e9 max_range = -1e9 qnn_params = [] for i in range(len(args[1].fields)): scale = args[1].fields[i].data.numpy() zero_point = args[2].fields[i].data.numpy() min_range = min(-1 * zero_point * scale, min_range) max_range = max((255 - zero_point) * scale, max_range) qnn_params.append((scale, zero_point)) scale = (max_range - min_range) / 255 zero_point = int(-min_range / scale) if (scale, zero_point) in qnn_params: return True return False @tvm.ir.register_op_attr("split", "target.ethos-n") def split(expr): """Check if a split is supported by Ethos-N.""" if not ethosn_available(): return False if ethosn_api_version() == LooseVersion("3.0.1"): return False if not _ethosn.split(expr): return False return True @tvm.ir.register_op_attr("nn.depth_to_space", "target.ethos-n") def depth_to_space(expr): """Check if a depth_to_space is supported by Ethos-N.""" if not ethosn_available(): return False if not _ethosn.depth_to_space(expr): return False return True @tvm.ir.register_op_attr("clip", "target.ethos-n") def clip(expr): """Check if a clip is supported by Ethos-N.""" if not ethosn_available(): return False if not _ethosn.relu(expr): return False return True
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/ethosu.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=ungrouped-imports, import-outside-toplevel """Arm(R) Ethos(TM)-U NPU supported operators.""" import functools from typing import Dict, List, Tuple, Callable, Optional import numpy as np # type: ignore import tvm # type: ignore from tvm import relay from tvm.relay.expr import Constant, Call # type: ignore from tvm.relay.op.contrib.register import register_pattern_table # type: ignore from tvm.relay.dataflow_pattern import wildcard, is_op, is_constant, is_tuple # type: ignore from tvm.relay.build_module import bind_params_by_name # type: ignore try: # As ethos-u-vela package is an optional TVM dependency, we want to lazy load it # and check whether it is installed or not. # # In order to show the appropriate error messages when we try to invoke code that # rely on imports from ethos-u-vela, we protect them with the decorator @requires_vela # implemented below. from ethosu.vela import api as vapi # type: ignore except ImportError: vapi = None def requires_vela(func): """Decorator to check whether we have the required dependency ethos-u-vela installed as a python package""" @functools.wraps(func) def wrapper(*args, **kwargs): if not vapi: raise ImportError( "The 'ethos-u-vela' python package is required for the Arm(R) Ethos(TM)-U NPU " "backend. Please install the dependency using your Python package manager." ) from None return func(*args, **kwargs) return wrapper class TensorParams: """ This class will parse a tvm Expr along with quantization scale and zero point to populate parameters that are required for the creation of tensors in Vela. """ @requires_vela def __init__(self, tensor, layout=None, scale=None, zero_point=None): self.tensor = tensor if isinstance(tensor, Constant): self.values = tensor.data.asnumpy() else: self.values = None self.dtype = tensor.checked_type.dtype self.shape = [int(i) for i in tensor.checked_type.shape] self.layout = layout if scale is not None and zero_point is not None: self.q_params = vapi.NpuQuantization( scale.data.asnumpy().astype("float32"), zero_point.data.asnumpy().astype(self.dtype) ) else: # put default values self.q_params = vapi.NpuQuantization(1.0, 0) def check_strides(strides: List[int], stride_range=None) -> bool: """This function checks whether strides are within the limits supported by the NPU""" if stride_range is None: stride_range = (1, 3) smin, smax = stride_range if not smax >= strides[0] >= smin: return False if not smax >= strides[1] >= smin: return False return True def check_valid_dtypes(tensor_params: List[TensorParams], supported_dtypes: List[type]) -> bool: """This function checks whether dtypes are supported by the NPU""" for tep in tensor_params: # Check for dtypes if np.dtype(tep.dtype) not in supported_dtypes: return False # Check for shape sizes if any(dimlen > 65536 for dimlen in tep.shape): return False return True def check_weights(weights: TensorParams, dilation: List[int]): """This function checks whether weight tensor is compatible with the NPU""" from tvm.relay.backend.contrib.ethosu.util import get_dim_value dilated_height_range = (1, 64) dilated_hxw_range = (1, 64 * 64) weights_limit = 127 * 65536 dilated_width = (weights.shape[get_dim_value(weights.layout, "W")] - 1) * dilation[0] + 1 dilated_height = (weights.shape[get_dim_value(weights.layout, "H")] - 1) * dilation[1] + 1 dh_min, dh_max = dilated_height_range if not dh_min <= dilated_height <= dh_max: return False dilated_hxw = dilated_height * dilated_width dhxw_min, dhxw_max = dilated_hxw_range if not dhxw_min <= dilated_hxw <= dhxw_max: return False # A saturation upper bound check for accumulators weights.values = weights.values - weights.q_params.zero_point axis = ( get_dim_value(weights.layout, "H"), get_dim_value(weights.layout, "W"), get_dim_value(weights.layout, "I"), ) sum_weights = np.amax(np.sum(np.absolute(weights.values), axis=axis)) return sum_weights <= weights_limit def check_bias(bias: TensorParams): """This function checks whether the bias values fit in 40 bits""" if bias and bias.dtype == np.dtype("int64"): valid = all(len(bin(bias_value)[2:]) <= 40 for bias_value in bias.values) return valid return True def check_batch_size(ifm: TensorParams): """This function checks for the number of batches vela currently supports""" return ifm.shape[0] == 1 def check_dilation(dilation: List[int], dilation_range=None): """This function checks whether dilation is within the limits supported by the NPU""" if dilation_range is None: dilation_range = (1, 2) dmin, dmax = dilation_range if not dmin <= dilation[0] <= dmax: return False if not dmin <= dilation[1] <= dmax: return False return True def check_padding(padding: List[int], bounds: List[int]): """This function checks whether padding is within the limits supported by the NPU""" if len(padding) != 4 or len(bounds) != 4: return False top, left, bottom, right = padding topb, leftb, bottomb, rightb = bounds return not (top > topb or left > leftb or bottom > bottomb or right > rightb) def check_pool_shape(pool_shape: tvm.ir.container.Array) -> bool: if len(pool_shape) != 2: return False if pool_shape[1] > 256: return False if pool_shape[0] * pool_shape[1] > 256 * 256: return False return True def check_dimensions(tensor: TensorParams): """This function checks that the tensor has no more than 4 dimensions""" return len(tensor.shape) <= 4 class QnnConv2DParams: """ This class will parse a Call to a ethosu.qnn_conv2d composite function and extract quantization information of all the associated tensors. """ composite_name = "ethos-u.qnn_conv2d" # The NPU only supports padding upto the numbers as follows padding_bounds = [31, 31, 32, 32] activation_map = {"clip": "CLIP"} @requires_vela def __init__(self, func_body: tvm.relay.Function): from tvm.relay.backend.contrib.ethosu.util import QConv2DArgs # type: ignore from tvm.relay.backend.contrib.ethosu.util import BiasAddArgs from tvm.relay.backend.contrib.ethosu.util import RequantArgs activation = None separate_padding = None if str(func_body.op) in self.activation_map.keys(): activation = func_body requantize_op = activation.args[0] else: requantize_op = func_body bias_add = requantize_op.args[0] qnn_conv2d = bias_add.args[0] if isinstance(qnn_conv2d.args[0], relay.Call) and str(qnn_conv2d.args[0].op) == "nn.pad": separate_padding = qnn_conv2d.args[0] data_layout = qnn_conv2d.attrs.data_layout self.kernel_layout = qnn_conv2d.attrs.kernel_layout # We consider the weights & biases as params as it should be a Constant self.weights = TensorParams( qnn_conv2d.args[QConv2DArgs.WEIGHTS.value], self.kernel_layout, qnn_conv2d.args[QConv2DArgs.WEIGHTS_SCALE.value], qnn_conv2d.args[QConv2DArgs.WEIGHTS_ZERO_POINT.value], ) self.biases = TensorParams( bias_add.args[BiasAddArgs.BIASES.value], data_layout, requantize_op.args[RequantArgs.IFM_SCALE.value], requantize_op.args[RequantArgs.IFM_ZERO_POINT.value], ) ifm_tensor = ( separate_padding.args[0] if separate_padding else qnn_conv2d.args[QConv2DArgs.IFM.value] ) self.ifm = TensorParams( ifm_tensor, data_layout, qnn_conv2d.args[QConv2DArgs.IFM_SCALE.value], qnn_conv2d.args[QConv2DArgs.IFM_ZERO_POINT.value], ) self.ofm = TensorParams( func_body, data_layout, requantize_op.args[RequantArgs.OFM_SCALE.value], requantize_op.args[RequantArgs.OFM_ZERO_POINT.value], ) attrs = qnn_conv2d.attrs pad_value = int(qnn_conv2d.args[QConv2DArgs.IFM_ZERO_POINT.value].data.asnumpy()) self.padding = self.extract_padding(attrs.padding, separate_padding, pad_value) self.strides = attrs.strides self.dilation = attrs.dilation self.activation = activation self.channels = attrs.channels # If groups are equal to channel, its a depthwise_conv2d self.groups = attrs.groups self.is_depthwise = False channels_axis = {"HWIO": 3, "HWOI": 2} if self.groups == self.weights.shape[channels_axis[self.kernel_layout]]: self.is_depthwise = True @staticmethod def extract_padding( operator_padding: Tuple[int, int, int, int], separate_padding: relay.Call, pad_value: int, ) -> Optional[Tuple[int, int, int, int]]: """ Convolution operations can sometimes have padding represented as a separate padding operation before the convolution operation itself. Here we can check whether these representations can be combined into a single padding attribute as part of the NPU convolution itself. If the padding specified by the separate nn.pad operation is not supported, None will be returned. This will cause the nn.pad to be offloaded separately. """ if separate_padding is None: return operator_padding if pad_value != int(separate_padding.args[1].data.asnumpy()): return None pad_width = separate_padding.attrs["pad_width"] if len(pad_width) != 4: return None if list(pad_width[0]) != [0, 0] or list(pad_width[3]) != [0, 0]: return None top, left, bottom, right = operator_padding return [ top + pad_width[1][0], left + pad_width[2][0], bottom + pad_width[1][1], right + pad_width[2][1], ] def is_valid(self) -> bool: """ This function checks whether QnnConv2D has compatible attributes with the NPU """ tensor_params = [self.weights, self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.uint8, np.int8]): return False if not check_weights(self.weights, self.dilation): return False if not check_bias(self.biases): return False if not check_strides(self.strides): return False if not check_batch_size(self.ifm): return False if not check_dilation(self.dilation): return False if not self.padding or not check_padding(self.padding, self.padding_bounds): return False legal_groups = [1, self.ofm.shape[3]] if self.groups not in legal_groups: return False # This should be a valid QnnDepthwiseConv2DParams, not QnnConv2DParams return not self.is_depthwise class QnnConv2DTransposeParams: """ This class will parse a Call to a ethosu.qnn_conv2d_transpose composite function and extract quantization information of all the associated tensors. """ composite_name = "ethos-u.qnn_conv2d_transpose" # The NPU only supports padding upto the numbers as follows padding_bounds = [31, 31, 32, 32] @requires_vela def __init__(self, func_body: tvm.relay.Function): from tvm.relay.backend.contrib.ethosu.util import QConv2DTransposeArgs # type: ignore from tvm.relay.backend.contrib.ethosu.util import BiasAddArgs from tvm.relay.backend.contrib.ethosu.util import RequantArgs requantize = func_body call = func_body.args[0] if str(call.op) == "nn.bias_add": bias_add = call call = call.args[0] else: bias_add = None qnn_conv2d_transpose = call data_layout = qnn_conv2d_transpose.attrs.data_layout self.kernel_layout = qnn_conv2d_transpose.attrs.kernel_layout self.weights = TensorParams( qnn_conv2d_transpose.args[QConv2DTransposeArgs.WEIGHTS.value], self.kernel_layout, qnn_conv2d_transpose.args[QConv2DTransposeArgs.WEIGHTS_SCALE.value], qnn_conv2d_transpose.args[QConv2DTransposeArgs.WEIGHTS_ZERO_POINT.value], ) self.biases = ( TensorParams( bias_add.args[BiasAddArgs.BIASES.value], data_layout, requantize.args[RequantArgs.IFM_SCALE.value], requantize.args[RequantArgs.IFM_ZERO_POINT.value], ) if bias_add else None ) self.ifm = TensorParams( qnn_conv2d_transpose.args[QConv2DTransposeArgs.IFM.value], data_layout, qnn_conv2d_transpose.args[QConv2DTransposeArgs.IFM_SCALE.value], qnn_conv2d_transpose.args[QConv2DTransposeArgs.IFM_ZERO_POINT.value], ) self.ofm = TensorParams( func_body, data_layout, requantize.args[RequantArgs.OFM_SCALE.value], requantize.args[RequantArgs.OFM_ZERO_POINT.value], ) attrs = qnn_conv2d_transpose.attrs self.strides = attrs.strides self.dilation = attrs.dilation self.padding = attrs.padding self.channels = attrs.channels self.groups = attrs.groups self.output_padding = attrs.output_padding kernel_size_map = { "IOHW": self.weights.shape[2:4], } self.kernel_shape = kernel_size_map[str(self.weights.layout)] # Different padding is used in the legalization from conv2d_transpose # to conv2d, so we to calculate it here to check that the new size fits # within the bounds of the NPU before offloading. pad_top = int(self.kernel_shape[0]) - 1 - int(self.padding[0]) pad_left = int(self.kernel_shape[1]) - 1 - int(self.padding[1]) pad_bottom = int(self.kernel_shape[0]) - 1 - int(self.padding[2]) pad_right = int(self.kernel_shape[1]) - 1 - int(self.padding[3]) if self.strides == [2, 2]: pad_bottom -= 1 pad_right -= 1 self.legalize_padding = [pad_top, pad_left, pad_bottom, pad_right] def is_valid(self) -> bool: """ This function checks whether QnnConv2D has compatible attributes with the NPU """ def check_compatible_output_size(ifm_shape, ofm_shape, padding, strides, kernel_shape): is_valid_padding = padding == [0, 0, 0, 0] if is_valid_padding: expected_height = ifm_shape[1] * strides[0] + (kernel_shape[0] - strides[0]) expected_width = ifm_shape[2] * strides[1] + (kernel_shape[1] - strides[1]) else: expected_height = ifm_shape[1] * strides[0] expected_width = ifm_shape[2] * strides[1] return ofm_shape[1] == expected_height and ofm_shape[2] == expected_width tensor_params = [self.weights, self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.int8]): return False if not check_weights(self.weights, self.dilation): return False if self.biases and not check_bias(self.biases): return False if not check_strides(self.strides, stride_range=(2, 2)): return False if not check_batch_size(self.ifm): return False if not check_dilation(self.dilation, dilation_range=(1, 1)): return False if not check_compatible_output_size( self.ifm.shape, self.ofm.shape, [int(x) for x in self.padding], self.strides, self.kernel_shape, ): return False if not check_padding(self.legalize_padding, self.padding_bounds): return False if self.kernel_shape[0] - 2 - int(self.padding[2]) < 0: return False if self.kernel_shape[1] - 2 - int(self.padding[3]) < 0: return False if self.groups != 1: return False if list(self.output_padding) != [0, 0]: return False return True class QnnDepthwiseConv2DParams(QnnConv2DParams): """ This class will parse a call to a ethosu.depthwise_conv2d composite function and extract the parameter information. """ composite_name = "ethos-u.depthwise_conv2d" # The hardware only supports padding upto the numbers as follows padding_bounds = [31, 31, 32, 32] def __init__(self, func_body: tvm.relay.expr.Call): QnnConv2DParams.__init__(self, func_body) def is_valid(self): """ Checks whether QnnDepthwiseConv2D + activation function has compatible attributes with HW """ tensor_params = [self.weights, self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.uint8, np.int8]): return False if not check_weights(self.weights, self.dilation): return False if not check_bias(self.biases): return False if not check_strides(self.strides): return False if not check_batch_size(self.ifm): return False if not check_dilation(self.dilation): return False if not self.padding or not check_padding(self.padding, self.padding_bounds): return False if self.weights.layout != "HWOI": return False # only depth multiplier of size 1 is supported if self.weights.shape[3] != 1: return False if not self.is_depthwise: return False return True def qnn_conv2d_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for qnn.conv2D with optional fused RELU activation. """ optional_pad = is_op("nn.pad")(wildcard(), is_constant()) qnn_conv2d = is_op("qnn.conv2d")( optional_pad | wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ).has_attr({"kernel_layout": "HWIO"}) bias_add = is_op("nn.bias_add")(qnn_conv2d, is_constant()) req = is_op("qnn.requantize")( bias_add, is_constant(), is_constant(), is_constant(), is_constant() ) clip_or_req = req.optional(is_op("clip")) return clip_or_req def qnn_depthwise_conv2d_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for depthwise qnn.conv2D with optional fused RELU activation. """ optional_pad = is_op("nn.pad")(wildcard(), is_constant()) qnn_conv2d = is_op("qnn.conv2d")( optional_pad | wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ).has_attr({"kernel_layout": "HWOI"}) bias_add = is_op("nn.bias_add")(qnn_conv2d, is_constant()) req = is_op("qnn.requantize")( bias_add, is_constant(), is_constant(), is_constant(), is_constant() ) clip_or_req = req.optional(is_op("clip")) return clip_or_req def qnn_conv2d_transpose_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for qnn.conv2d_transpose. """ qnn_conv2d_transpose = is_op("qnn.conv2d_transpose")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant() ).has_attr({"kernel_layout": "IOHW"}) optional_bias_add = ( is_op("nn.bias_add")(qnn_conv2d_transpose, is_constant()) | qnn_conv2d_transpose ) req = is_op("qnn.requantize")( optional_bias_add, is_constant(), is_constant(), is_constant(), is_constant() ) return req class MaxPool2DParams: """ This class will parse a call to a ethos-u.maxpool2d composite function and extract the parameter information. """ composite_name = "ethos-u.maxpool2d" # The hardware only supports padding upto the numbers as follows padding_bounds = [127, 127, 128, 128] def __init__(self, func_body: Call): clip = None if str(func_body.op) == "clip": clip = func_body pool_op = clip.args[0] else: pool_op = func_body attrs = pool_op.attrs self.ifm = TensorParams(pool_op.args[0], attrs.layout) self.ofm = TensorParams(pool_op, attrs.layout) self.pool_shape = attrs.pool_size self.strides = attrs.strides self.padding = attrs.padding self.activation = clip self.pooling_type = "MAX" def is_valid(self): """ This function checks whether MaxPool2D has compatible attributes with the NPU """ tensor_params = [self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.uint8, np.int8]): return False if self.ifm.dtype != self.ofm.dtype: return False if not check_strides(self.strides): return False if not check_batch_size(self.ifm): return False if not check_padding(self.padding, self.padding_bounds): return False if not check_pool_shape(self.pool_shape): return False return True def qnn_maxpool2d_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for nn.max_pool2d with optional fused RELU activation. """ pattern = is_op("nn.max_pool2d")(wildcard()) pattern = pattern.optional(is_op("clip")) return pattern class AvgPool2DParams: """ This class will parse a call to a ethos-u.avgpool2d composite function and extract the parameter information. """ composite_name = "ethos-u.avgpool2d" # The hardware only supports padding upto the numbers as follows padding_bounds = [3, 3, 4, 4] def __init__(self, func_body: Call): clip = None if str(func_body.op) == "clip": clip = func_body cast2 = clip.args[0] else: cast2 = func_body avgpool = cast2.args[0] cast1 = avgpool.args[0] attrs = avgpool.attrs self.ifm = TensorParams(cast1.args[0], attrs.layout) self.ofm = TensorParams(cast2, attrs.layout) self.pool_shape = attrs.pool_size self.strides = attrs.strides self.padding = attrs.padding self.count_include_pad = attrs.count_include_pad self.activation = clip self.pooling_type = "AVG" def is_valid(self): """ This function checks whether AvgPool2D has compatible attributes with the NPU """ tensor_params = [self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.uint8, np.int8]): return False if self.ifm.dtype != self.ofm.dtype: return False if not check_strides(self.strides): return False if not check_batch_size(self.ifm): return False if self.count_include_pad: return False if not check_padding(self.padding, self.padding_bounds): return False if not check_pool_shape(self.pool_shape): return False # Averge pool with padding only supports 1 <= pool_shape <= 8 if list(self.padding) != [0, 0, 0, 0] and ( self.pool_shape[0] > 8 or self.pool_shape[1] > 8 ): return False return True def qnn_avgpool2d_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for nn.avg_pool2d with optional fused RELU activation. """ pattern = is_op("cast")(wildcard()) pattern = is_op("nn.avg_pool2d")(pattern) pattern = is_op("cast")(pattern) pattern = pattern.optional(is_op("clip")) return pattern class BinaryElementwiseParams: """ This class will parse a call to a ethosu.binary_elementwise composite function and extract the parameter information. """ def __init__(self, func_body: Call, operator_type: str, is_quantized_operation: bool): from tvm.relay.backend.contrib.ethosu.util import BinaryElementwiseArgs from tvm.relay.backend.contrib.ethosu.util import RequantArgs current_call = func_body clip = None requantize = None if is_quantized_operation: if str(current_call.op) == "clip": clip = current_call current_call = clip.args[0] else: if str(current_call.op) == "qnn.requantize": requantize = current_call clip = current_call.args[0] current_call = clip.args[0] binary_op = current_call layout = "NHWC" if is_quantized_operation: self.ifm = TensorParams( binary_op.args[BinaryElementwiseArgs.IFM.value], layout, binary_op.args[BinaryElementwiseArgs.IFM_SCALE.value], binary_op.args[BinaryElementwiseArgs.IFM_ZERO_POINT.value], ) self.ifm2 = TensorParams( binary_op.args[BinaryElementwiseArgs.IFM2.value], layout, binary_op.args[BinaryElementwiseArgs.IFM2_SCALE.value], binary_op.args[BinaryElementwiseArgs.IFM2_ZERO_POINT.value], ) self.ofm = TensorParams( binary_op, layout, binary_op.args[BinaryElementwiseArgs.OFM_SCALE.value], binary_op.args[BinaryElementwiseArgs.OFM_ZERO_POINT.value], ) else: self.ifm = TensorParams( binary_op.args[BinaryElementwiseArgs.IFM.value], layout, requantize.args[RequantArgs.IFM_SCALE.value] if requantize else None, requantize.args[RequantArgs.IFM_ZERO_POINT.value] if requantize else None, ) self.ifm2 = TensorParams( binary_op.args[BinaryElementwiseArgs.IFM2.value], layout, requantize.args[RequantArgs.IFM_SCALE.value] if requantize else None, requantize.args[RequantArgs.IFM_ZERO_POINT.value] if requantize else None, ) self.ofm = TensorParams( func_body, layout, requantize.args[RequantArgs.OFM_SCALE.value] if requantize else None, requantize.args[RequantArgs.OFM_ZERO_POINT.value] if requantize else None, ) self.activation = clip self.operator_type = operator_type def can_broadcast(ifm, ifm2): if len(ifm.shape) < len(ifm2.shape): return False for m, n in zip(ifm.shape[::-1], ifm2.shape[::-1]): if m != n and m == 1: return False return True if can_broadcast(self.ifm, self.ifm2): self.reversed_operands = False self.valid_broadcast = True elif can_broadcast(self.ifm2, self.ifm): self.reversed_operands = True self.ifm, self.ifm2 = self.ifm2, self.ifm self.valid_broadcast = True else: self.valid_broadcast = False def is_valid(self): """ This function checks whether BinaryElementwise has compatible attributes with the NPU """ if np.dtype(self.ofm) == np.int32 and self.activation is not None: return False # Due to identity operator requiring ofm != int32 for now if np.dtype(self.ofm) == np.int32 and len(self.ofm.shape) < 4: return False if len(self.ifm.shape) > 4 or len(self.ifm2.shape) > 4: return False if len(self.ifm.shape) == 4 and self.ifm.shape[0] != 1: return False if len(self.ifm2.shape) == 4 and self.ifm2.shape[0] != 1: return False if not self.valid_broadcast: return False return True class AddParams(BinaryElementwiseParams): """ This class will parse a call to a ethosu.binary_elementwise Add composite function and extract the parameter information. """ composite_name = "ethos-u.add" def __init__(self, func_body: Call): BinaryElementwiseParams.__init__(self, func_body, "ADD", True) def is_valid(self): """ This function checks whether Add has compatible attributes with the NPU """ if not super().is_valid(): return False if not check_valid_dtypes( [self.ifm, self.ifm2, self.ofm], supported_dtypes=[np.uint8, np.int8, np.int32] ): return False return True def qnn_add_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for qnn.add with optional fused RELU activation. """ pattern = is_op("qnn.add")( wildcard(), wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ) pattern = pattern.optional(is_op("clip")) return pattern class SubParams(BinaryElementwiseParams): """ This class will parse a call to a ethosu.binary_elementwise Sub composite function and extract the parameter information. """ composite_name = "ethos-u.sub" def __init__(self, func_body: Call): BinaryElementwiseParams.__init__(self, func_body, "SUB", True) def is_valid(self): """ This function checks whether Sub has compatible attributes with the NPU """ if not super().is_valid(): return False if not check_valid_dtypes( [self.ifm, self.ifm2, self.ofm], supported_dtypes=[np.uint8, np.int8, np.int32] ): return False return True def qnn_subtract_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for qnn.subtract with optional fused RELU activation. """ pattern = is_op("qnn.subtract")( wildcard(), wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ) pattern = pattern.optional(is_op("clip")) return pattern class MulParams(BinaryElementwiseParams): """ This class will parse a call to a ethosu.binary_elementwise Mul composite function and extract the parameter information. """ composite_name = "ethos-u.mul" def __init__(self, func_body: Call): BinaryElementwiseParams.__init__(self, func_body, "MUL", True) def is_valid(self): """ This function checks whether Mul has compatible attributes with the NPU """ if not super().is_valid(): return False if not check_valid_dtypes( [self.ifm, self.ifm2, self.ofm], supported_dtypes=[np.uint8, np.int8, np.int32] ): return False return True def qnn_mul_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for qnn.mul with optional fused RELU activation. """ pattern = is_op("qnn.mul")( wildcard(), wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant(), ) pattern = pattern.optional(is_op("clip")) return pattern class MinParams(BinaryElementwiseParams): """ This class will parse a call to a ethosu.binary_elementwise Min composite function and extract the parameter information. """ composite_name = "ethos-u.min" def __init__(self, func_body: Call): BinaryElementwiseParams.__init__(self, func_body, "MIN", False) def is_valid(self): """ This function checks whether Min has compatible attributes with the NPU """ if not super().is_valid(): return False if self.ifm.dtype != self.ifm2.dtype: return False if not check_valid_dtypes( [self.ifm, self.ifm2, self.ofm], supported_dtypes=[np.uint8, np.int8] ): return False return True def minimum_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for minimum with optional fused RELU activation. """ minimum = is_op("minimum")(wildcard(), wildcard()) optional_min_clip = is_op("clip")(minimum) optional_min_clip = is_op("qnn.requantize")( optional_min_clip, is_constant(), is_constant(), is_constant(), is_constant() ) return minimum | optional_min_clip class MaxParams(BinaryElementwiseParams): """ This class will parse a call to a ethosu.binary_elementwise Max composite function and extract the parameter information. """ composite_name = "ethos-u.max" def __init__(self, func_body: Call): BinaryElementwiseParams.__init__(self, func_body, "MAX", False) def is_valid(self): """ This function checks whether Max has compatible attributes with the NPU """ if not super().is_valid(): return False if self.ifm.dtype != self.ifm2.dtype: return False if not check_valid_dtypes( [self.ifm, self.ifm2, self.ofm], supported_dtypes=[np.uint8, np.int8] ): return False return True def maximum_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for maximum with optional fused RELU activation. """ maximum = is_op("maximum")(wildcard(), wildcard()) optional_max_clip = is_op("clip")(maximum) optional_max_clip = is_op("qnn.requantize")( optional_max_clip, is_constant(), is_constant(), is_constant(), is_constant() ) return maximum | optional_max_clip class ShlParams(BinaryElementwiseParams): """ This class will parse a call to a ethosu.binary_elementwise Shl composite function and extract the parameter information. """ composite_name = "ethos-u.shl" def __init__(self, func_body: Call): BinaryElementwiseParams.__init__(self, func_body, "SHL", False) def is_valid(self): """ This function checks whether Shl has compatible attributes with the NPU """ if not super().is_valid(): return False if not check_valid_dtypes([self.ifm, self.ifm2, self.ofm], supported_dtypes=[np.int32]): return False return True def shl_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for left_shift with optional fused RELU activation. """ pattern = is_op("left_shift")(wildcard(), wildcard()) pattern = pattern.optional(is_op("clip")) return pattern class ReshapeParams: """ This class will parse a call to a ethosu.reshape composite function and extract the parameter information. """ composite_name = "ethos-u.reshape" def __init__(self, func_body: Call): self.new_shape = func_body.attrs.newshape self.ifm = TensorParams(func_body.args[0]) self.ofm = TensorParams(func_body) def is_valid(self): """ This function checks whether reshape has compatible attributes with the NPU """ if not check_dimensions(self.ifm) or not check_dimensions(self.ofm): return False if not check_valid_dtypes([self.ifm, self.ofm], supported_dtypes=[np.int8]): return False return True def reshape_pattern(): """Create pattern for reshape""" pattern = is_op("reshape")(wildcard()) return pattern class StridedSliceParams: """ This class will parse a call to a ethosu.strided_slice composite function and extract the parameter information. """ composite_name = "ethos-u.strided_slice" def __init__(self, func_body: Call): self.ifm = TensorParams(func_body.args[0]) self.ofm = TensorParams(func_body) attrs = func_body.attrs # The indices where we begin the slice self.begin = attrs.begin # The indices where we end the slice self.end = attrs.end self.strides = attrs.strides self.axes = attrs.axes self.slice_mode = attrs.slice_mode def is_valid(self): """ This function checks whether reshape has compatible attributes with the NPU """ if not check_dimensions(self.ifm) or not check_dimensions(self.ofm): return False if not check_valid_dtypes([self.ifm, self.ofm], supported_dtypes=[np.int8]): return False if len(self.begin) != len(self.end): return False for begin_idx, end_idx in zip(self.begin, self.end): if begin_idx > end_idx: return False # Only strides of 1 are supported if self.strides: if not all([i == 1 for i in self.strides]): return False return True def strided_slice_pattern(): """Create pattern for strided_slice""" pattern = is_op("strided_slice")(wildcard()) return pattern class AbsParams: """ This class will parse a call to a ethosu.unary_elementwise Abs composite function and extract the parameter information. """ composite_name = "ethos-u.abs" def __init__(self, func_body: Call): from tvm.relay.backend.contrib.ethosu.util import QuantizeArgs from tvm.relay.backend.contrib.ethosu.util import DequantizeArgs quantize = func_body abs_op = quantize.args[0] dequantize = abs_op.args[0] layout = "NHWC" self.ifm = TensorParams( dequantize.args[DequantizeArgs.IFM.value], layout, dequantize.args[DequantizeArgs.IFM_SCALE.value], dequantize.args[DequantizeArgs.IFM_ZERO_POINT.value], ) self.ofm = TensorParams( quantize, layout, quantize.args[QuantizeArgs.OFM_SCALE.value], quantize.args[QuantizeArgs.OFM_ZERO_POINT.value], ) self.operator_type = "ABS" self.activation = None def is_valid(self): """Checks whether Abs has compatible attributes with HW""" tensor_params = [self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.int8, np.uint8]): return False if self.ifm.dtype != self.ofm.dtype: return False if not check_dimensions(self.ifm): return False if len(self.ifm.shape) == 4 and self.ifm.shape[0] != 1: return False if self.ifm.shape != self.ofm.shape: return False return True def abs_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """Create pattern for abs""" pattern = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) pattern = is_op("abs")(pattern) pattern = is_op("qnn.quantize")(pattern, is_constant(), is_constant()) return pattern class LutActivationParams: """ A parent class for LUT based activation functions that extract the input and output tensors and check whether they are valid. """ def __init__(self, func_body: Call): from tvm.relay.backend.contrib.ethosu.util import QuantizeArgs from tvm.relay.backend.contrib.ethosu.util import DequantizeArgs layout = "NHWC" quantize = func_body activation = quantize.args[0] dequantize = activation.args[0] in_var = dequantize.args[0] self.ifm = TensorParams( in_var, layout=layout, scale=dequantize.args[DequantizeArgs.IFM_SCALE.value], zero_point=dequantize.args[DequantizeArgs.IFM_ZERO_POINT.value], ) self.ofm = TensorParams( quantize, layout=layout, scale=quantize.args[QuantizeArgs.OFM_SCALE.value], zero_point=quantize.args[QuantizeArgs.OFM_ZERO_POINT.value], ) def is_valid(self): """ This function checks whether activation has compatible attributes with the NPU """ if not check_valid_dtypes([self.ifm, self.ofm], supported_dtypes=[np.int8]): return False return True class TanhParams(LutActivationParams): composite_name = "ethos-u.tanh" def tanh_pattern(): """Create pattern for tanh""" dequant = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) tanh = is_op("tanh")(dequant) quant = is_op("qnn.quantize")(tanh, is_constant(), is_constant()) return quant class SigmoidParams(LutActivationParams): """ This class will parse a call to a ethos-u.sigmoid composite function and extract the parameter information. """ composite_name = "ethos-u.sigmoid" def sigmoid_pattern(): """Create pattern for sigmoid""" dequant = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) sigmoid = is_op("sigmoid")(dequant) quant = is_op("qnn.quantize")(sigmoid, is_constant(), is_constant()) return quant class LeakyReLUParams(LutActivationParams): """ This class will parse a call to ethos-u.leaky_relu composite function and extract the parameter information. """ composite_name = "ethos-u.leaky_relu" def __init__(self, func_body: Call): super().__init__(func_body) self.alpha = func_body.args[0].attrs.alpha def leaky_relu_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for leaky relu. """ dequantize = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) leaky_relu = is_op("nn.leaky_relu")(dequantize) return is_op("qnn.quantize")(leaky_relu, is_constant(), is_constant()) class MeanParams: """ This class will parse a call to ethosu.mean composite function and extract the parameter information. """ composite_name = "ethos-u.mean" def __init__(self, func_body: Call): from tvm.relay.backend.contrib.ethosu.util import RequantArgs requantize = func_body mean_op = requantize.args[0] attrs = mean_op.attrs cast = mean_op.args[0] layout = "NHWC" self.ifm = TensorParams( cast.args[0], layout, requantize.args[RequantArgs.IFM_SCALE.value], requantize.args[RequantArgs.IFM_ZERO_POINT.value], ) self.ofm = TensorParams( requantize, layout, requantize.args[RequantArgs.OFM_SCALE.value], requantize.args[RequantArgs.OFM_ZERO_POINT.value], ) ifm_shape = self.ifm.shape self.height = ifm_shape[0] if len(ifm_shape) in (2, 3) else ifm_shape[1] self.width = ifm_shape[1] if len(ifm_shape) in (2, 3) else ifm_shape[2] self.keepdims = attrs.keepdims self.axis = list(sorted(attrs.axis)) if attrs.exclude: self.axis = [i for i in range(len(self.ifm.shape)) if i not in self.axis] def is_valid(self) -> bool: """ Checks whether Mean has compatible attributes with HW. """ def check_axis(num_dims, axis): if num_dims in (2, 3): return axis in ([0], [1], [0, 1]) return axis in ([1], [2], [1, 2]) tensor_params = [self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.int8]): return False if self.ifm.dtype != self.ofm.dtype: return False if not len(self.ifm.shape) in [2, 3, 4]: return False if not check_axis(len(self.ifm.shape), self.axis): return False # MEAN has further restrictions on the input size, depending on legalization method. input_size = self.height * self.width if input_size > 65536: return False if ( self.ifm.q_params.scale_f32 != self.ofm.q_params.scale_f32 or self.ifm.q_params.zero_point != self.ofm.q_params.zero_point ) and input_size > 4096: return False if self.axis == [1, 2] and self.keepdims and self.ifm.dtype == "int8" and input_size > 256: return False # Large kernel height reshape only when axis is [1, 2] if self.axis != [1, 2] and self.height > 64: return False return True def mean_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for mean. """ pattern = is_op("cast")(wildcard()) pattern = is_op("mean")(pattern) pattern = is_op("qnn.requantize")( pattern, is_constant(), is_constant(), is_constant(), is_constant() ) return pattern class ConcatParams: """ This class will parse a call to a ethos-u.concat composite function and extract the parameter information. """ composite_name = "ethos-u.concat" def __init__(self, func_body): self.concat = func_body self.is_qnn_variant = self.concat.op.name == "qnn.concatenate" self.input_tensors = [TensorParams(tensor) for tensor in list(func_body.args[0])] self.axis = func_body.attrs.axis if self.is_qnn_variant: self.input_scales = [s.data.asnumpy() for s in list(func_body.args[1])] self.input_zero_points = [zp.data.asnumpy() for zp in list(func_body.args[2])] def is_valid(self): """Checks whether Concatenate has compatible attributes with the hardware""" if not check_valid_dtypes(self.input_tensors, supported_dtypes=[np.int8]): return False # Check that the scales and zero points of input tensors are the same if self.is_qnn_variant and not all(self.input_scales == self.input_scales[0]): return False if self.is_qnn_variant and not all(self.input_zero_points == self.input_zero_points[0]): return False input_dim = len(self.input_tensors[0].shape) for tensor in self.input_tensors: if len(tensor.shape) != input_dim: return False if self.axis is None: return False if self.axis < 0: return False if self.axis >= input_dim: return False output_shape = self.concat.checked_type.shape if len(output_shape) != input_dim: return False if len(output_shape) > 3 and output_shape[0] != 1: return False return True def concat_pattern(): """Create pattern for concat""" tensors = is_tuple(None) scales = is_tuple(None) zero_points = is_tuple(None) qnn_concat = is_op("qnn.concatenate")( tensors, scales, zero_points, is_constant(), is_constant() ) concat = is_op("concatenate")(tensors) return concat | qnn_concat class SplitParams: """ This class will parse a call to a ethos-u.split composite function and extract the parameter information. """ composite_name = "ethos-u.split" def __init__(self, func_body): self.split = func_body self.input = TensorParams(func_body.args[0]) self.axis = func_body.attrs.axis self.indices_or_sections = self.convert_indices_or_sections( func_body.attrs.indices_or_sections ) def convert_indices_or_sections(self, indices_or_sections): # split_v if isinstance(indices_or_sections, tvm.ir.container.Array): values = [i.value for i in indices_or_sections] # split else: values = indices_or_sections.value return values def is_valid(self): """Checks whether split has compatible attributes with the hardware""" if not check_valid_dtypes([self.input], supported_dtypes=[np.int8]): return False return True def split_pattern(): "Create the pattern for split" split = is_op("split")(wildcard()) return split class RequantizeParams: """ This class will parse a call to ethos-u.requantize composite function and extract the parameter information. """ composite_name = "ethos-u.requantize" def __init__(self, func_body: Call): from tvm.relay.backend.contrib.ethosu.util import RequantArgs layout = "NHWC" in_var = func_body.args[0] requantize = func_body self.ifm = TensorParams( in_var, layout=layout, scale=requantize.args[RequantArgs.IFM_SCALE.value], zero_point=requantize.args[RequantArgs.IFM_ZERO_POINT.value], ) self.ofm = TensorParams( requantize, layout=layout, scale=requantize.args[RequantArgs.OFM_SCALE.value], zero_point=requantize.args[RequantArgs.OFM_ZERO_POINT.value], ) attrs = requantize.attrs self.out_dtype = attrs.out_dtype def is_valid(self) -> bool: """ Checks whether qnn.requantize has compatible attributes with HW. """ tensor_params = [self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.int8]): return False if not check_dimensions(self.ifm) or not check_dimensions(self.ofm): return False if self.out_dtype and self.out_dtype != "int8": return False return True def requantize_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for qnn.requantize. """ return is_op("qnn.requantize")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant() ) class Resize2dParams: """ This class will parse a call to ethos-u.resize2d composite function and extract the parameter information. """ composite_name = "ethos-u.resize2d" def __init__(self, func_body: Call): layout = "NHWC" resize_2d = func_body in_var = func_body.args[0] if ( isinstance(resize_2d, tvm.relay.expr.Call) and isinstance(resize_2d.op, tvm.ir.Op) and resize_2d.op.name == "qnn.quantize" ): resize_2d = resize_2d.args[0] in_var = in_var.args[0].args[0] out_var = func_body self.ifm = TensorParams(in_var, layout=layout) self.ofm = TensorParams(out_var, layout=layout) attrs = resize_2d.attrs self.size = attrs.size self.method = attrs.method self.roi = attrs.roi self.coordinate_transformation_mode = attrs.coordinate_transformation_mode self.rounding_method = attrs.rounding_method self.out_dtype = attrs.out_dtype def is_valid(self) -> bool: """ Checks whether image.resize2d has compatible attributes with HW. """ def check_compatible_size(mode, method, upscale_size, ifm_size): """Checking the provided upscale_size is compatible with the NPU. The NPU only supports upsampling when the upsampling size is 2 * input_size, or when there is no upsampling to be done, so check that this is the case. In the special case of resize_bilinear with align_corners=True, the NPU only supports an upsampling size of 2 * input_size - 1.""" delta = 1 if mode == "align_corners" and method == "linear" else 0 upscale_size = np.array(upscale_size) ifm_size = np.array(ifm_size) ifm_upscaled = ifm_size * 2 - delta return (ifm_upscaled == upscale_size).all() or (ifm_size == upscale_size).all() tensor_params = [self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.int8]): return False if len(self.ifm.shape) != 4 or len(self.ofm.shape) != 4: return False if list(float(x) for x in self.roi) != [0.0] * 4: return False if self.method not in ("nearest_neighbor", "linear"): return False if self.coordinate_transformation_mode not in ("asymmetric", "align_corners"): return False if not check_compatible_size( self.coordinate_transformation_mode, self.method, self.size, self.ifm.shape[1:3], ): return False if self.rounding_method != "": return False if self.out_dtype and self.out_dtype != "int8": return False return True def resize2d_pattern() -> tvm.relay.dataflow_pattern.DFPattern: """ This function creates the pattern for image.resize2d. """ dequant = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) resize_2d = is_op("image.resize2d")(dequant).has_attr({"method": "linear"}) quant = is_op("qnn.quantize")(resize_2d, is_constant(), is_constant()) return quant | is_op("image.resize2d")(wildcard()).has_attr({"method": "nearest_neighbor"}) class ExpandDimsParams: """ This class will parse a call to a ethos-u.expand_dims composite function and extract the parameter information. """ composite_name = "ethos-u.expand_dims" def __init__(self, func_body): self.expand_dims = func_body self.input = TensorParams(func_body.args[0]) self.output = TensorParams(func_body) def is_valid(self): """Checks whether expand_dims has compatible attributes with the hardware.""" if not check_dimensions(self.input) or not check_dimensions(self.output): return False if not check_valid_dtypes([self.input, self.output], supported_dtypes=[np.int8]): return False return True def expand_dims_pattern(): """Create the pattern for expand_dims.""" return is_op("expand_dims")(wildcard()) class SqueezeParams: """ This class will parse a call to a ethos-u.squeeze composite function and extract the parameter information. """ composite_name = "ethos-u.squeeze" def __init__(self, func_body): self.squeeze = func_body self.input = TensorParams(func_body.args[0]) self.output = TensorParams(func_body) def is_valid(self): """Checks whether squeeze has compatible attributes with the hardware.""" if not check_dimensions(self.output): return False if not check_valid_dtypes([self.input, self.output], supported_dtypes=[np.int8]): return False return True def squeeze_pattern(): """Create the pattern for squeeze.""" return is_op("squeeze")(wildcard()) class FullyConnectedParams: """ This class will parse a call to an ethos-u.fully_connected composite function and extract the parameter information. """ composite_name = "ethos-u.fully_connected" @requires_vela def __init__(self, func_body): from tvm.relay.backend.contrib.ethosu.util import QDenseArgs # type: ignore from tvm.relay.backend.contrib.ethosu.util import BiasAddArgs from tvm.relay.backend.contrib.ethosu.util import RequantArgs self.activation = None if str(func_body.op) == "clip": self.activation = func_body requantize_op = self.activation.args[0] else: requantize_op = func_body call = requantize_op.args[0] if str(requantize_op.args[0].op) == "nn.bias_add": bias_add = call qnn_dense = call.args[0] else: bias_add = None qnn_dense = call # weights & biases are params as they should be constant self.weights = TensorParams( qnn_dense.args[QDenseArgs.WEIGHTS.value], None, qnn_dense.args[QDenseArgs.WEIGHTS_SCALE.value], qnn_dense.args[QDenseArgs.WEIGHTS_ZERO_POINT.value], ) self.biases = ( TensorParams( bias_add.args[BiasAddArgs.BIASES.value], None, requantize_op.args[RequantArgs.IFM_SCALE.value], requantize_op.args[RequantArgs.IFM_ZERO_POINT.value], ) if bias_add else None ) self.ifm = TensorParams( qnn_dense.args[QDenseArgs.IFM.value], None, qnn_dense.args[QDenseArgs.IFM_SCALE.value], qnn_dense.args[QDenseArgs.IFM_ZERO_POINT.value], ) self.ofm = TensorParams( func_body, None, requantize_op.args[RequantArgs.OFM_SCALE.value], requantize_op.args[RequantArgs.OFM_ZERO_POINT.value], ) def is_valid(self) -> bool: """ Checks whether Fully Connected has compatible attributes with HW """ def check_weights_fc(weights): """Checks whether weight tensor is compatible with HW""" weights_limit = 127 * 65536 # A saturation upper bound check for accumulators weights.values = weights.values - weights.q_params.zero_point axis = 1 sum_weights = np.amax(np.sum(np.absolute(weights.values), axis=axis)) if not sum_weights <= weights_limit: return False return True if not check_valid_dtypes([self.ifm, self.ofm], supported_dtypes=[np.int8]): return False if not check_weights_fc(self.weights): return False if not check_bias(self.biases): return False if not check_batch_size(self.ifm): return False # Check input shape if not len(self.ifm.shape) == 2: return False # Check output shape if not len(self.ofm.shape) == 2: return False return True def qnn_fc_pattern(): dense = is_op("qnn.dense")( wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant() ) optional_bias_add = is_op("nn.bias_add")(dense, is_constant()) req = is_op("qnn.requantize")( dense | optional_bias_add, is_constant(), is_constant(), is_constant(), is_constant() ) optional_clip = req.optional(is_op("clip")) return optional_clip class HardSwishParams: """ This class will parse a call to a ethos-u.hard_swish composite function and extract the parameter information. """ composite_name = "ethos-u.hard_swish" def __init__(self, func_body): from tvm.relay.backend.contrib.ethosu.util import QuantizeArgs from tvm.relay.backend.contrib.ethosu.util import DequantizeArgs quantize = func_body divide = quantize.args[0] multiply = divide.args[0] clip = multiply.args[1] add = clip.args[0] dequantize = add.args[0] self.ifm = TensorParams( dequantize.args[0], scale=dequantize.args[DequantizeArgs.IFM_SCALE.value], zero_point=dequantize.args[DequantizeArgs.IFM_ZERO_POINT.value], ) self.ofm = TensorParams( quantize, scale=quantize.args[QuantizeArgs.OFM_SCALE.value], zero_point=quantize.args[QuantizeArgs.OFM_ZERO_POINT.value], ) def is_valid(self): tensor_params = [self.ifm, self.ofm] if not check_valid_dtypes(tensor_params, supported_dtypes=[np.int8]): return False return True def hard_swish_pattern(): """Create the pattern for hard swish.""" dequantize = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant()) add = is_op("add")(dequantize, is_constant()) clip = is_op("clip")(add) multiply = is_op("multiply")(dequantize, clip) divide = is_op("divide")(multiply, is_constant()) quantize = is_op("qnn.quantize")(divide, is_constant(), is_constant()) return quantize @register_pattern_table("ethos-u") def pattern_table() -> List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Callable]]: return [ ( QnnConv2DParams.composite_name, qnn_conv2d_pattern(), lambda pat: QnnConv2DParams(pat).is_valid(), ), ( QnnDepthwiseConv2DParams.composite_name, qnn_depthwise_conv2d_pattern(), lambda pat: QnnDepthwiseConv2DParams(pat).is_valid(), ), ( QnnConv2DTransposeParams.composite_name, qnn_conv2d_transpose_pattern(), lambda pat: QnnConv2DTransposeParams(pat).is_valid(), ), ( FullyConnectedParams.composite_name, qnn_fc_pattern(), lambda pat: FullyConnectedParams(pat).is_valid(), ), ( MaxPool2DParams.composite_name, qnn_maxpool2d_pattern(), lambda pat: MaxPool2DParams(pat).is_valid(), ), ( AvgPool2DParams.composite_name, qnn_avgpool2d_pattern(), lambda pat: AvgPool2DParams(pat).is_valid(), ), ( AddParams.composite_name, qnn_add_pattern(), lambda pat: AddParams(pat).is_valid(), ), ( SubParams.composite_name, qnn_subtract_pattern(), lambda pat: SubParams(pat).is_valid(), ), ( MulParams.composite_name, qnn_mul_pattern(), lambda pat: MulParams(pat).is_valid(), ), ( MinParams.composite_name, minimum_pattern(), lambda pat: MinParams(pat).is_valid(), ), ( MaxParams.composite_name, maximum_pattern(), lambda pat: MaxParams(pat).is_valid(), ), ( ShlParams.composite_name, shl_pattern(), lambda pat: ShlParams(pat).is_valid(), ), ( ReshapeParams.composite_name, reshape_pattern(), lambda pat: ReshapeParams(pat).is_valid(), ), ( StridedSliceParams.composite_name, strided_slice_pattern(), lambda pat: StridedSliceParams(pat).is_valid(), ), ( AbsParams.composite_name, abs_pattern(), lambda pat: AbsParams(pat).is_valid(), ), (TanhParams.composite_name, tanh_pattern(), lambda pat: TanhParams(pat).is_valid()), ( MeanParams.composite_name, mean_pattern(), lambda pat: MeanParams(pat).is_valid(), ), ( LeakyReLUParams.composite_name, leaky_relu_pattern(), lambda pat: LeakyReLUParams(pat).is_valid(), ), (ConcatParams.composite_name, concat_pattern(), lambda pat: ConcatParams(pat).is_valid()), ( SigmoidParams.composite_name, sigmoid_pattern(), lambda pat: SigmoidParams(pat).is_valid(), ), ( SplitParams.composite_name, split_pattern(), lambda pat: SplitParams(pat).is_valid(), ), ( RequantizeParams.composite_name, requantize_pattern(), lambda pat: RequantizeParams(pat).is_valid(), ), ( Resize2dParams.composite_name, resize2d_pattern(), lambda pat: Resize2dParams(pat).is_valid(), ), ( ExpandDimsParams.composite_name, expand_dims_pattern(), lambda pat: ExpandDimsParams(pat).is_valid(), ), ( SqueezeParams.composite_name, squeeze_pattern(), lambda pat: SqueezeParams(pat).is_valid(), ), ( HardSwishParams.composite_name, hard_swish_pattern(), lambda pat: HardSwishParams(pat).is_valid(), ), ] # pylint: disable=unused-argument @requires_vela def partition_for_ethosu( mod: tvm.ir.IRModule, params: Optional[Dict[str, tvm.runtime.NDArray]] = None, mod_name: str = "default", **opts, ): """This helper function partition the relay graph as produced by the relay frontend for a given model into external functions to be presented to the codegen. Parameters ---------- mod : tvm.ir.IRModule The IRModule that gets generated from a relay frontend params : Optional[Dict[str, tvm.runtime.NDArray]] Constant input parameters. mod_name: str, optional The module name Returns ------- mod : IRModule The partitioned IRModule with external global functions """ from tvm.relay.backend.contrib.ethosu import preprocess if params: mod["main"] = bind_params_by_name(mod["main"], params) pattern = relay.op.contrib.get_pattern_table("ethos-u") mod = relay.transform.InferType()(mod) mod = relay.transform.MergeComposite(pattern)(mod) mod = relay.transform.AnnotateTarget("ethos-u")(mod) mod = relay.transform.MergeCompilerRegions()(mod) mod = relay.transform.InferType()(mod) mod = relay.transform.PartitionGraph(mod_name)(mod) mod = relay.transform.InferType()(mod) mod = preprocess.preprocess_ext_io()(mod) return mod
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/libtorch.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, no-else-return, E1102 """Torch codegen operators""" from tvm import relay from tvm.relay.op.annotation import compiler_begin, compiler_end def torchop(script_fn, *params): """Insert an Operation executed in the PyTorch JIT The operation includes backend annotation Currently, only tensors are supported. The shape inferrence assumes that input shapes (and not values) determine output shapes.""" return compiler_end( relay.op._make.torchop( [compiler_begin(p, "torch") for p in params], script_fn.save_to_buffer() ), "torch", )
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/register.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Register utilities for external codegen.""" _PATTERN_TABLES = {} def register_pattern_table(compiler, table=None): """Register a pattern table for an external compiler. Pattern tables are used to create composite functions. See the MergeComposite pass. Parameters ---------- compiler : str The name of compiler table : function, optional A function that returns the pattern table Returns ------- fregister : function Register function if value is not specified. """ def _register(t): """internal register function""" _PATTERN_TABLES[compiler] = t() return t return _register(table) if table is not None else _register def get_pattern_table(compiler): """Get the pattern table associated with a compiler (if it's registered).""" return _PATTERN_TABLES[compiler] if compiler in _PATTERN_TABLES else None
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/tachikoma.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Tachikoma library supported operators. From TVM's perspective, Tachikoma is an extension of DNNL. The code below is adapted from that of DNNL: There are two ways to registering a function for an op to indicate if it is supported by Tachikoma. - The first and simplest way is to use the helper so that users only need to provide the operator name and a boolean value to indicate if it is supported. For example: .. code-block:: python add = _register_external_op_helper("add") add = _register_external_op_helper("add", True) add = _register_external_op_helper("add", False) - The other way is to implement the function by themselves to check the attributes of the op and decide if it should be offloaded to Tachikoma. """ import logging from functools import reduce import tvm.ir from tvm.ir import Op from tvm import relay from tvm.relay import transform from tvm.relay.expr import GlobalVar from tvm.relay.expr_functor import ExprMutator, ExprVisitor from tvm.relay.expr import const from tvm.relay.analysis import analysis as _analysis from tvm.relay import expr as _expr from tvm.relay.expr import Call, TupleGetItem from ... import _ffi_api from ...dataflow_pattern import wildcard, is_op, is_constant, is_expr, rewrite, DFPatternCallback from .register import register_pattern_table logger = logging.getLogger("Tachikoma") supported_post_elts = ["nn.relu", "tanh", "sigmoid", "clip", "gelu", "swish", "mish", None] def _register_external_op_helper(op_name, supported=True): """The helper function to indicate that a given operator can be supported by Tachikoma. Parameters ---------- op_name : Str The name of operator that will be registered. Returns ------- f : callable A function that returns if the operator is supported by Tachikoma. """ @tvm.ir.register_op_attr(op_name, "target.tachikoma") def _func_wrapper(expr): args = expr.args if any([x.checked_type.dtype == "int64" for x in args]): logger.info("Tachikoma does not support int64.") return False # Tachikoma does not support pooling with ceil_mode = True. if "pool" in op_name: attrs = dict(get_attrs(expr)) if "ceil_mode" in attrs.keys() and attrs["ceil_mode"]: return False return supported return _func_wrapper _register_external_op_helper("nn.batch_norm") _register_external_op_helper("nn.conv1d") _register_external_op_helper("nn.conv2d") _register_external_op_helper("nn.conv3d") _register_external_op_helper("nn.conv2d_transpose") _register_external_op_helper("nn.conv3d_transpose") _register_external_op_helper("nn.dense") _register_external_op_helper("nn.max_pool2d") _register_external_op_helper("nn.avg_pool2d") _register_external_op_helper("nn.global_avg_pool2d") _register_external_op_helper("nn.max_pool3d") _register_external_op_helper("nn.avg_pool3d") _register_external_op_helper("abs") _register_external_op_helper("clip") _register_external_op_helper("exp") _register_external_op_helper("log") _register_external_op_helper("sqrt") _register_external_op_helper("round") _register_external_op_helper("nn.relu") _register_external_op_helper("nn.leaky_relu") _register_external_op_helper("tanh") _register_external_op_helper("sigmoid") _register_external_op_helper("nn.softmax") _register_external_op_helper("add") _register_external_op_helper("multiply") _register_external_op_helper("nn.layer_norm") _register_external_op_helper("nn.batch_matmul") def append_eltwise_ops(op, eltwise): """Append element-wise post-ops to conv / conv_transpose / dense Parameters ---------- op : str The op name to be attached with element-wise post-op. eltwise : str The attached elementwise post-op name. Returns ------- pattern : CallPattern Call node sequence. """ if eltwise == "gelu": const1 = wildcard() const2 = wildcard() const3 = wildcard() div = is_op("divide")(op, const1) erf_val = is_op("erf")(div) added_erf_val = is_op("add")(erf_val, const2) mul_val = is_op("multiply")(op, added_erf_val) op = is_op("multiply")(mul_val, const3) elif eltwise == "swish": sig_out = is_op("sigmoid")(op) op = is_op("multiply")(op, sig_out) elif eltwise == "mish": const1 = wildcard() exp = is_op("exp")(op) add = is_op("add")(exp, const1) log = is_op("log")(add) tanh = is_op("tanh")(log) op = is_op("multiply")(op, tanh) elif eltwise: op = is_op(eltwise)(op) return op def make_conv_pattern(conv_name, with_bias=True, with_eltwise=None): """Create patterns related to conv and conv_transpose. Parameters ---------- with_bias : bool Whether attach `bias_add` to `conv / conv_transpose`. with_eltwise : str The attached elementwise post-op name. Returns ------- conv_out : CallPattern Call node sequence. """ if with_eltwise not in supported_post_elts: raise ValueError("Unsupported eltwise post-op: %s" % with_eltwise) data = wildcard() weight = wildcard() bias = wildcard() conv = is_op(conv_name)(data, weight) if with_bias: conv_out = is_op("add")(conv, bias) else: conv_out = conv return append_eltwise_ops(conv_out, with_eltwise) def make_conv_bias_sum_relu_pattern(conv_type, has_relu=True): """Create patterns with sum op. Parameters ---------- conv_type : str Should be nn.conv1d / nn.conv2d / nn.conv3d. has_relu : bool Whether attach relu. Returns ------- out : CallPattern Call node sequence. """ data1 = wildcard() weight = wildcard() bias = wildcard() data2 = wildcard() out = is_op(conv_type)(data1, weight) out = is_op("add")(out, bias) out = is_op("add")(out, data2) if has_relu: out = is_op("nn.relu")(out) return out def get_op_name(expr): """Get the operator name from an expression.""" if isinstance(expr, Op): return expr.name if isinstance(expr, Call): return get_op_name(expr.op) if isinstance(expr, TupleGetItem): return get_op_name(expr.tuple_value) if isinstance(expr, relay.Tuple): return get_op_name(expr.fields[0]) return "" def get_args(expr): """Get the arguments from an expression.""" if isinstance(expr, Call): return expr.args if isinstance(expr, TupleGetItem): return get_args(expr.tuple_value) if isinstance(expr, relay.Tuple): return [arg for args in map(get_args, expr.fields) for arg in args] return [] def get_attrs(expr): """Get the attributes from an expression.""" if isinstance(expr, Call): return expr.attrs if isinstance(expr, TupleGetItem): return get_attrs(expr.tuple_value) return {} def make_sum_pattren_predicate(checker): """Check whether the conv_bias_add_sum pattern is as expected.""" def predicate(expr): if get_op_name(expr) == "nn.relu": expr = expr.args[0] for e, op_name in zip([expr, expr.args[0]], ["sum", "bias_add"]): args = get_args(e) attrs = get_attrs(e.args[0]) if not checker(attrs, args, op_name): return False return True return predicate def make_bias_add_pattren_predicate(checker): """Check whether the conv_bias pattern is as expected.""" def predicate(expr): if get_op_name(expr) == "nn.relu": expr = expr.args[0] if get_op_name(expr) == "add": args = get_args(expr) attrs = get_attrs(expr.args[0]) if not checker(attrs, args, "bias_add"): return False return True return predicate def add_checker(attrs, args, op_name): """Check if add is aligned with elementwise_add and bias_add.""" if op_name == "sum": if not isinstance(args[0].op, tvm.ir.op.Op): return False if args[0].op.name != "add": return False if tuple(get_shape(args[0])) != tuple(get_shape(args[1])): return False if op_name == "bias_add": if not isinstance(args[0].op, tvm.ir.op.Op): return False if args[0].op.name != "nn.conv2d": return False channel = dict(attrs)["channels"] const_shape = get_shape(args[1]) if channel != reduce(lambda x, y: x * y, const_shape): return False return True def make_dense_pattern(with_bias=True, with_eltwise=None): """Create patterns related to nn.dense. Parameters ---------- with_bias : bool Whether attach `bias_add` to `nn.dense`. with_eltwise : str The attached elementwise post-op name. Returns ------- dense_out : CallPattern Call node sequence. """ if with_eltwise not in supported_post_elts: raise ValueError("Unsupported eltwise post-op: %s" % with_eltwise) data = wildcard() weight = wildcard() bias = wildcard() dense = is_op("nn.dense")(data, weight) if with_bias: dense_out = is_op("add")(dense, bias) else: dense_out = dense return append_eltwise_ops(dense_out, with_eltwise) def make_tachikoma_pattern(op_name, with_bias, with_eltwise): """Create tachikoma patterns. Parameters ---------- op_name : str The first call node's op name. with_bias : bool Whether attach `bias_add` to `nn.dense`. with_eltwise : str The attached elementwise post-op name. Returns ------- pattern : Tuple(pattern_name, CallPattern) Created pattern name, along with its CallPattern. """ pat_name = op_name.replace("nn", "tachikoma") if "_transpose" in op_name: pat_name = "tachikoma.deconv" + op_name.split("_")[0][-2::] pat_name += "_bias" if with_bias else "" pat_name += ("_" + with_eltwise.split(".")[-1]) if with_eltwise else "" if "conv" in op_name: tachikoma_pattern = ( pat_name, make_conv_pattern(op_name, with_bias, with_eltwise), make_bias_add_pattren_predicate(add_checker), ) elif op_name == "nn.dense": tachikoma_pattern = (pat_name, make_dense_pattern(with_bias, with_eltwise)) else: logger.warning( "Currently, only conv1d, conv2d, conv2d_transpose, conv3d_transpose, " "dense op are supported, but got %s.", op_name, ) tachikoma_pattern = () return tachikoma_pattern def make_qnn_conv2d_pattern(): """Make qnn.conv2d based pattern supported by Tachikoma Returns ------- pattern : Tuple(pattern_name, CallPattern) Created pattern name, along with its CallPattern. """ data = wildcard() weight = is_constant() bias = is_constant() o_scl = is_constant() dst_zp = is_constant() act_scl = is_constant() sum_scl = is_constant() sum_src = wildcard() zero_zp = is_expr(const(0, dtype="int32")) pat = is_op("qnn.conv2d")(data, weight, zero_zp, zero_zp, is_constant(), is_constant()) pat = is_op("cast")(pat) pat = is_op("add")(pat, bias) | pat # optional bias pat = is_op("multiply")(pat, o_scl) pat = is_op("clip")(pat) # TBD, not only clip pat = is_op("multiply")(pat, act_scl) | pat # optional multiply. Ex: act_scl == 1 pat = is_op("add")(pat, sum_scl * is_op("cast")(sum_src)) | pat # optional sum pat = is_op("add")(pat, dst_zp) | pat # optional dst_zp, can be dst_zp == 0 pat = is_op("cast")(pat) return "tachikoma.qnn.conv2d", pat def make_qnn_dense_pattern(): """Make qnn.dense based pattern supported by Tachikoma Returns ------- pattern : Tuple(pattern_name, CallPattern) Created pattern name, along with its CallPattern. """ data = wildcard() weight = is_constant() bias = is_constant() o_scl = is_constant() dst_zp = is_constant() act_scl = is_constant() sum_scl = is_constant() sum_src = wildcard() zero_zp = is_expr(const(0, dtype="int32")) pat = is_op("qnn.dense")(data, weight, zero_zp, zero_zp, is_constant(), is_constant()) pat = is_op("cast")(pat) pat = is_op("add")(pat, bias) | pat # optional bias pat = is_op("multiply")(pat, o_scl) pat = is_op("clip")(pat) # TBD, not only clip pat = is_op("multiply")(pat, act_scl) | pat # optional multiply. ex act_scl == 1 pat = is_op("add")(pat, sum_scl * is_op("cast")(sum_src)) | pat # optional sum pat = is_op("add")(pat, dst_zp) | pat # optional dst_zp, can be dst_zp == 0 pat = is_op("cast")(pat) return "tachikoma.qnn.dense", pat @register_pattern_table("tachikoma") def pattern_table(): """Create tachikoma patterns. Returns ------- tachikoma_patterns : List[tachikoma_pattern] Created patterns. """ tachikoma_patterns = list() tachikoma_patterns.append(make_qnn_conv2d_pattern()) tachikoma_patterns.append(make_qnn_dense_pattern()) tachikoma_patterns.append( ( "tachikoma.conv2d_bias_sum_relu", make_conv_bias_sum_relu_pattern("nn.conv2d"), make_sum_pattren_predicate(add_checker), ) ) tachikoma_patterns.append( ( "tachikoma.conv2d_bias_sum", make_conv_bias_sum_relu_pattern("nn.conv2d", False), make_sum_pattren_predicate(add_checker), ) ) elt_list = ["nn.relu", "tanh", "sigmoid", "clip", "gelu", "swish", "mish", None] for with_bias in [True, False]: for elt in elt_list: if not with_bias and not elt: continue for conv_name in [ "nn.conv1d", "nn.conv2d", "nn.conv3d", "nn.conv2d_transpose", "nn.conv3d_transpose", ]: tachikoma_patterns.append(make_tachikoma_pattern(conv_name, with_bias, elt)) tachikoma_patterns.append(make_tachikoma_pattern("nn.dense", with_bias, elt)) return tachikoma_patterns def get_optimal_layout_for_conv( data_layout, kernel_layout, weight_shape, out_shape, paddings, strides, dilates, groups, dtype ): """Get the optimal layout of tachikoma, given shape of conv2d. Parameters ---------- data_layout, kernel_layout,weight_shape, out_shape, paddings, strides, dilates, groups : String Input argument. Returns ------- layouts : string The result. """ return _ffi_api.get_optimal_layout_for_conv( data_layout, kernel_layout, weight_shape, out_shape, paddings, strides, dilates, groups, dtype, ) def get_optimal_layout_for_conv_transpose( data_layout, kernel_layout, weight_shape, out_shape, paddings, output_paddings, strides, dilates, groups, dtype, ): """Get the optimal layout of tachikoma, given shape of tranposed conv2d. Parameters ---------- data_layout, kernel_layout, weight_shape, out_shape, paddings, output_paddings, strides, dilates, groups : Int, String Input argument. Returns ------- layouts : string The result. """ return _ffi_api.get_optimal_layout_for_conv_transpose( data_layout, kernel_layout, weight_shape, out_shape, paddings, output_paddings, strides, dilates, groups, dtype, ) def get_shape(tensor): """Get tensor's shape.""" if isinstance(tensor, relay.expr.Var): return tensor.type_annotation.concrete_shape if isinstance(tensor, relay.expr.Constant): return tensor.data.shape if isinstance(tensor, tvm.ir.tensor_type.TensorType): return tensor.concrete_shape if isinstance(tensor, tvm.ir.container.Array): return tensor[-1].shape if isinstance(tensor, relay.expr.Call): if tensor.op.name == "multiply": return tensor.type_args[0].shape return tensor.checked_type.shape raise TypeError("Unsupport data type: %s" % type(tensor)) def get_dtype(tensor): """Get tensor's dtype.""" if isinstance(tensor, relay.expr.Var): return tensor.type_annotation.dtype if isinstance(tensor, relay.expr.Constant): return tensor.data.dtype if isinstance(tensor, tvm.ir.tensor_type.TensorType): return tensor.dtype if isinstance(tensor, tvm.ir.container.Array): return tensor[-1].dtype if isinstance(tensor, relay.expr.Call): if tensor.op.name == "multiply": return tensor.type_args[0].dtype return tensor.checked_type.dtype raise TypeError("Unsupport data type: %s" % type(tensor)) def tag2layout(input_data, is_weight=False, conv_type="Conv1D"): """Transfer layout, denoted with `a, b, c, d, e`, into valid layout (NCHW / OIHW) of TVM.""" if "Conv1D" in conv_type: data_dic = {"a": "N", "b": "C", "c": "W"} weight_dic = {"a": "O", "b": "I", "c": "W", "d": "G"} elif "Conv2D" in conv_type: data_dic = {"a": "N", "b": "C", "c": "H", "d": "W"} weight_dic = {"a": "O", "b": "I", "c": "H", "d": "W"} if "e" in input_data: weight_dic = {"a": "G", "b": "O", "c": "I", "d": "H", "e": "W"} elif "Conv3D" in conv_type: data_dic = {"a": "N", "b": "C", "c": "D", "d": "H", "e": "W"} weight_dic = {"a": "O", "b": "I", "c": "D", "d": "H", "e": "W", "f": "G"} dic = weight_dic if is_weight else data_dic res = "" for i in input_data: if i.isupper(): i = i.lower() res += dic[i] dic[i] = dic[i].lower() elif i.islower(): res += dic[i] elif i.isdigit(): res += i else: raise ValueError("Unsupport layout format: %s" % input_data) return res def legalize_pad_avg_pool(attrs, inputs, types): """Legalize pad->avg_pool2d pattern. Fuse this pattern into one avg_pool2d with padding = (1, 1), and count_include_pad = True""" data = inputs[0] new_attrs = dict(attrs) if isinstance(data, relay.expr.Call) and data.op.name == "nn.pad": new_attrs["padding"] = (1, 1) new_attrs["count_include_pad"] = True return relay.nn.avg_pool2d(data.args[0], **new_attrs) return relay.nn.avg_pool2d(data, **attrs) def legalize_group_conv(attrs, inputs, types): """Legalize group conv / conv_transpose calculation. Alter weight layout from OIHW to GOIHW / IOHW to GIOHW""" groups = attrs.groups data, weight = inputs if groups == 1: if "Transpose" not in type(attrs).__name__: return relay.nn.conv2d(data, weight, **attrs) return relay.nn.conv2d_transpose(data, weight, **attrs) OC, IC, H, W = get_shape(weight) new_attrs = dict(attrs) weight = relay.reshape(weight, (groups, OC // groups, IC, H, W)) if "Transpose" not in type(attrs).__name__: new_attrs["kernel_layout"] = "GOIHW" return relay.nn.conv2d(data, weight, **new_attrs) new_attrs["kernel_layout"] = "GIOHW" return relay.nn.conv2d_transpose(data, weight, **new_attrs) def alter_conv(attrs, inputs, tinfos, out_type): """The convolution's layout auto-query func for tachikoma.""" data, weight = inputs groups = str(attrs.groups) weight_shape = ",".join([str(x) for x in get_shape(weight)]) out_shape = ",".join([str(x) for x in get_shape(out_type)]) paddings = ",".join([str(x) for x in attrs.get_int_tuple("padding")]) strides = ",".join([str(x) for x in attrs.get_int_tuple("strides")]) dilates = ",".join([str(x) for x in attrs.get_int_tuple("dilation")]) dtype = get_dtype(weight) new_attrs = dict(attrs) conv_type = type(attrs).__name__.split("Attrs")[0] res = get_optimal_layout_for_conv( attrs["data_layout"], attrs["kernel_layout"], weight_shape, out_shape, paddings, strides, dilates, groups, dtype, ) src_df, weight_df, dst_df = res.split(",") new_attrs["data_layout"] = tag2layout(src_df, is_weight=False, conv_type=conv_type) new_attrs["kernel_layout"] = tag2layout(weight_df, is_weight=True, conv_type=conv_type) new_attrs["out_layout"] = tag2layout(dst_df, is_weight=False, conv_type=conv_type) if conv_type == "Conv1D": return relay.nn.conv1d(data, weight, **new_attrs) if conv_type == "Conv2D": return relay.nn.conv2d(data, weight, **new_attrs) return relay.nn.conv3d(data, weight, **new_attrs) def alter_conv_transpose(attrs, inputs, tinfos, out_type): """The transposed convolution's layout auto-query func for tachikoma.""" data, weight = inputs weight_shape = ",".join([str(x) for x in get_shape(weight)]) out_shape = ",".join([str(x) for x in get_shape(out_type)]) paddings = ",".join([str(x) for x in attrs.get_int_tuple("padding")]) output_paddings = ",".join([str(x) for x in attrs.get_int_tuple("output_padding")]) strides = ",".join([str(x) for x in attrs.get_int_tuple("strides")]) dilates = ",".join([str(x) for x in attrs.get_int_tuple("dilation")]) groups = str(attrs.groups) dtype = get_dtype(weight) new_attrs = dict(attrs) conv_type = type(attrs).__name__.split("Attrs")[0] res = get_optimal_layout_for_conv_transpose( attrs["data_layout"], attrs["kernel_layout"], weight_shape, out_shape, paddings, output_paddings, strides, dilates, groups, dtype, ) src_df, weight_df, dst_df = res.split(",") new_attrs["data_layout"] = tag2layout(src_df, is_weight=False, conv_type=conv_type) new_attrs["kernel_layout"] = tag2layout(weight_df, is_weight=True, conv_type=conv_type) new_attrs["out_layout"] = tag2layout(dst_df, is_weight=False, conv_type=conv_type) if conv_type == "Conv1DTranspose": return relay.nn.conv1d_transpose(data, weight, **new_attrs) if conv_type == "Conv2DTranspose": return relay.nn.conv2d_transpose(data, weight, **new_attrs) return relay.nn.conv3d_transpose(data, weight, **new_attrs) class IsComputeIntensiveGraph(ExprVisitor): """ Visits the Graph recursively and checks if it contains compute heavy ops like convolutions and its transpose and dense. """ def __init__(self): ExprVisitor.__init__(self) self.is_compute_intensive = False def visit_call(self, call): compute_intensive_ops = set( [ "nn.conv1d", "nn.conv2d", "nn.conv2d_transpose", "nn.conv3d", "nn.conv3d_transpose", "nn.dense", "nn.layer_norm", "nn.batch_matmul", "nn.global_avg_pool2d", ] ) if isinstance(call.op, tvm.tir.op.Op): if str(call.op) in compute_intensive_ops: self.is_compute_intensive = True return super().visit_call(call) def is_graph_compute_intensive(self, subgraph) -> bool: """ This function recursively visits the graph and checks if it's compute intensive" """ self.visit(subgraph) return self.is_compute_intensive def is_valid_subgraph(body): """Final check on whether the subgraph is valid and should be offloaded to Tachikoma.""" return IsComputeIntensiveGraph().is_graph_compute_intensive(body) def prune_tachikoma_subgraphs(mod): """ Removes invalid subgraphs, which does not contain compute intensive tachikoma ops. """ class SubgraphRemover(ExprMutator): """ Reverts subgraphs in subgraphs_to_remove back to TVM instead of using an external codegen. """ def __init__(self, subgraphs_to_remove, mod, new_mod): ExprMutator.__init__(self) self.subgraphs_to_remove = subgraphs_to_remove self.mod = mod self.new_mod = new_mod def visit_call(self, call): if isinstance(call.op, GlobalVar): name = call.op.name_hint if name in self.subgraphs_to_remove: # "Inline" the subgraph back into new main function. func = self.mod[name] var_map = {} for arg, param in zip(call.args, func.params): var_map[param] = super().visit(arg) new_body = relay.bind(func.body, var_map) return new_body if name != "main": args = [] for arg in call.args: args.append(super().visit(arg)) return call.op(*args) return super().visit_call(call) subgraphs_to_remove = [] # If only one subgraph, do nothing. if len(mod.get_global_vars()) <= 2: return mod # Remove invalid subgraphs for subgraph in mod.get_global_vars(): name = subgraph.name_hint if not mod[name].attrs or mod[name].attrs["Compiler"] != "tachikoma": continue if not is_valid_subgraph(mod[name].body): subgraphs_to_remove.append(name) # Create new pruned module new_mod = tvm.IRModule(mod.functions, mod.type_definitions) new_mod["main"] = SubgraphRemover(subgraphs_to_remove, mod, new_mod).visit(mod["main"]) new_mod = transform.RemoveUnusedFunctions()(new_mod) return new_mod class LayerNormRewrite(DFPatternCallback): """ A callback to rewrite the following operators into a single layer normalization operator. Pattern #1: 1 %4 = mean(%3, axis=[-1], keepdims=True) /* ty=Tensor[(1, 3136, 1), float32] */; 2 %5 = subtract(%3, %4) /* ty=Tensor[(1, 3136, 64), float32] */; 3 %6 = cast(%5, dtype="float32") /* ty=Tensor[(1, 3136, 64), float32] */; 4 %7 = power(%6, 2f /* ty=float32 */) /* ty=Tensor[(1, 3136, 64), float32] */; 5 %8 = mean(%7, axis=[-1], keepdims=True) /* ty=Tensor[(1, 3136, 1), float32] */; 6 %9 = add(%8, 1e-05f /* ty=float32 */) /* ty=Tensor[(1, 3136, 1), float32] */; 7 %10 = sqrt(%9) /* ty=Tensor[(1, 3136, 1), float32] */; 8 %11 = divide(%5, %10) /* ty=Tensor[(1, 3136, 64), float32] */; 9 %12 = multiply(%11, meta[relay.Constant][2] /* ty=Tensor[(64), float32] */) /* ty=Tensor[(1, 3136, 64), float32] */; 10 %13 = add(%12, meta[relay.Constant][3] /* ty=Tensor[(64), float32] */) /* ty=Tensor[(1, 3136, 64), float32] */; Pattern #2: 1 %0 = mean(%input, axis=[-1], keepdims=True); 2 %1 = variance(%input, %0, axis=[-1], keepdims=True); 3 %2 = add(%1, 1e-05f /* ty=float32 */) /* ty=Tensor[(1, 49, 1), float32] */; 4 %3 = subtract(%input, %0); 5 %4 = sqrt(%2) /* ty=Tensor[(1, 49, 1), float32] */; 6 %5 = divide(%3, %4); 7 %6 = multiply(%5, meta[relay.Constant][0] /* ty=Tensor[(64), float32] */) /* ty=Tensor[(1, 49, 64), float32] */; 8 %7 = add(%6, meta[relay.Constant][1] /* ty=Tensor[(64), float32] */) /* ty=Tensor[(1, 49, 64), float32] */ """ def __init__(self): super(LayerNormRewrite, self).__init__() self.data = wildcard() self.gamma = wildcard() self.beta = wildcard() mu = is_op("mean")(self.data) diff = is_op("subtract")(self.data, mu) cdiff = diff | is_op("cast")(diff) const_two = is_expr(relay.const(2)) | is_expr(relay.const(2.0)) p1 = is_op("power")(cdiff, const_two) mp1 = is_op("mean")(p1) | is_op("variance")(self.data, mu) eps = is_expr(relay.const(1e-5)) | is_expr(relay.const(1e-6)) added_eps = is_op("add")(mp1, eps) deno = is_op("sqrt")(added_eps) div_out = is_op("divide")(diff, deno) div_out2 = diff * is_op("rsqrt")(added_eps) weighted = is_op("multiply")(div_out | div_out2, self.gamma) added_bias = is_op("add")(weighted, self.beta) self.pattern = added_bias def callback(self, pre, post, node_map): data = node_map[self.data][0] gamma = node_map[self.gamma][0] beta = node_map[self.beta][0] return relay.op.nn.layer_norm(data=data, gamma=gamma, beta=beta) def rewrite_layer_norm(mod): """Rewrite the input graph to replace multiple operators with a TVM native layer normalization operator so that we can offload them to tachikoma layer normalization byoc part. """ mod["main"] = rewrite(LayerNormRewrite(), mod["main"]) return mod class DenseReshapeBiasGeluRewrite(DFPatternCallback): """ A callback to reorder reshape operators when the patterns are as below: Pattern #1: 1 %62 = nn.dense(%61, meta[relay.Constant][13] /* ty=Tensor[(64, 64), float32] */, units=None, out_dtype="float32") /* ty=Tensor[(3136, 64), float32] */; 2 %63 = reshape(%62, newshape=[1, 3136, 64]) /* ty=Tensor[(1, 3136, 64), float32] */; 3 %64 = add(meta[relay.Constant][4] /* ty=Tensor[(64), float32] */, %63) /* ty=Tensor[(1, 3136, 64), float32] */; Pattern #2: 1 %76 = nn.dense(%75, meta[relay.Constant][18] /* ty=Tensor[(512, 64), float32] */, units=None, out_dtype="float32") /* ty=Tensor[(3136, 512), float32] */; 2 %77 = reshape(%76, newshape=[1, 3136, 512]) /* ty=Tensor[(1, 3136, 512), float32] */; 3 %78 = add(meta[relay.Constant][15] /* ty=Tensor[(512), float32] */, %77) /* ty=Tensor[(1, 3136, 512), float32] */; 4 %79 = divide(%78, 1.41421f /* ty=float32 */) /* ty=Tensor[(1, 3136, 512), float32] */; 5 %80 = erf(%79) /* ty=Tensor[(1, 3136, 512), float32] */; 6 %81 = add(%80, 1f /* ty=float32 */) /* ty=Tensor[(1, 3136, 512), float32] */; 7 %82 = multiply(%78, %81) /* ty=Tensor[(1, 3136, 512), float32] */; 8 %83 = multiply(%82, 0.5f /* ty=float32 */) /* ty=Tensor[(1, 3136, 512), float32] */; """ def __init__(self, has_gelu=True): super(DenseReshapeBiasGeluRewrite, self).__init__() self.data = wildcard() self.weight = wildcard() self.bias = wildcard() self.const1 = wildcard() self.const2 = wildcard() self.const3 = wildcard() self.attr_map = {} self.has_gelu = has_gelu den = is_op("nn.dense")(self.data, self.weight) re_den = is_op("reshape")(den) added = is_op("add")(self.bias, re_den) if self.has_gelu: divisor = is_op("divide")(added, self.const1) val_erf = is_op("erf")(divisor) added_erf = is_op("add")(val_erf, self.const2) mul1 = is_op("multiply")(added, added_erf) mul2 = is_op("multiply")(mul1, self.const3) self.pattern = mul2 else: self.pattern = added def get_attr(self, pre): """Recursively retrieve attributes from reshape operator.""" def visit_func(expr): if isinstance(expr, _expr.Call) and expr.op == relay.op.get("reshape"): new_attrs = {} for k in expr.attrs.keys(): new_attrs[k] = expr.attrs[k] self.attr_map["reshape"] = new_attrs _analysis.post_order_visit(pre, visit_func) def callback(self, pre, post, node_map): self.get_attr(pre) data = node_map[self.data][0] weight = node_map[self.weight][0] bias = node_map[self.bias][0] den = relay.op.nn.dense(data, weight) added = relay.op.add(bias, den) if not self.has_gelu: return relay.op.reshape(added, self.attr_map["reshape"]["newshape"]) const1 = node_map[self.const1][0] const2 = node_map[self.const2][0] const3 = node_map[self.const3][0] divisor = relay.op.divide(added, const1) val_erf = relay.op.erf(divisor) added_erf = relay.op.add(val_erf, const2) mul1 = relay.op.multiply(added, added_erf) mul2 = relay.op.multiply(mul1, const3) return relay.op.reshape(mul2, self.attr_map["reshape"]["newshape"]) def rewrite_dense_bias_gelu_reshape_last(mod): """Rewrite the input graph to reorder reshape operators so that we can perform dense_bias_gelu/dense_bias fusion and then offload them to byoc part. """ mod["main"] = rewrite( [DenseReshapeBiasGeluRewrite(), DenseReshapeBiasGeluRewrite(has_gelu=False)], mod["main"] ) return mod class ResNetV1Rewrite(DFPatternCallback): """ A callback to advance downsize operation when the patterns are as pattern1, and the result is written in pattern2: Pattern #1: %26 = nn.conv2d(%25, ty=Tensor[(64, 256, 1, 1)); %27 = add(%26, ty=Tensor[(64, 1, 1)); %28 = nn.relu(%27); %29 = nn.conv2d(%28, ty=Tensor[(64, 64, 3, 3)); %30 = add(%29, ty=Tensor[(64, 1, 1)); %31 = nn.relu(%30); %32 = nn.conv2d(%31, ty=Tensor[(256, 64, 1, 1)); %33 = add(%32, ty=Tensor[(256, 1, 1)); %34 = add(%33, %25); %35 = nn.relu(%34); %36 = nn.conv2d(%35, ty=Tensor[(128, 256, 1, 1), strides=[2, 2]); %37 = add(%36, ty=Tensor[(128, 1, 1)); %38 = nn.relu(%37); %39 = nn.conv2d(%38, ty=Tensor[(128, 128, 3, 3)); %40 = add(%39, ty=Tensor[(128, 1, 1)]); %41 = nn.relu(%40); %42 = nn.conv2d(%41, ty=Tensor[(512, 128, 1, 1)); %43 = nn.conv2d(%35, ty=Tensor[(512, 256, 1, 1), strides=[2, 2]); %44 = add(%42, ty=Tensor[(512, 1, 1)); %45 = add(%43, ty=Tensor[(512, 1, 1)); %46 = add(%44, %45); %47 = nn.relu(%46); Pattern #2: %26 = nn.conv2d(%25, ty=Tensor[(64, 256, 1, 1)); %27 = add(%26, ty=Tensor[(64, 1, 1)); %28 = nn.relu(%27); %29 = nn.conv2d(%28, ty=Tensor[(64, 64, 3, 3), strides=[2, 2]); %30 = add(%29, ty=Tensor[(64, 1, 1)); %31 = nn.relu(%30); %32 = nn.conv2d(%31, ty=Tensor[(256, 64, 1, 1)); %33 = add(%32, ty=Tensor[(256, 1, 1)); %34 = nn.max_pool2d(%25, pool_size=[1, 1], strides=[2, 2], padding=[0, 0, 0, 0]); %35 = add(%33, %34); %36 = nn.relu(%35); %37 = nn.conv2d(%36, ty=Tensor[(128, 256, 1, 1)); %38 = add(%37, ty=Tensor[(128, 1, 1)); %39 = nn.relu(%38); %40 = nn.conv2d(%39, ty=Tensor[(128, 128, 3, 3)); %41 = add(%40, ty=Tensor[(128, 1, 1)); %42 = nn.relu(%41); %43 = nn.conv2d(%42, ty=Tensor[(512, 128, 1, 1)); %44 = nn.conv2d(%36, ty=Tensor[(512, 256, 1, 1)); %45 = add(%43, ty=Tensor[(512, 1, 1)); %46 = add(%44, ty=Tensor[(512, 1, 1)); %47 = add(%45, %46); %48 = nn.relu(%47); """ def __init__(self): super(ResNetV1Rewrite, self).__init__() self.attr_lst = [] self.data = wildcard() self.w1, self.b1 = wildcard(), wildcard() self.w2, self.b2 = wildcard(), wildcard() self.w3, self.b3 = wildcard(), wildcard() self.w4, self.b4 = wildcard(), wildcard() self.w5, self.b5 = wildcard(), wildcard() self.w6, self.b6 = wildcard(), wildcard() self.w7, self.b7 = wildcard(), wildcard() conv1 = is_op("nn.conv2d")(self.data, self.w1).has_attr({"kernel_size": [1, 1]}) conv1 = is_op("add")(conv1, self.b1) conv1 = is_op("nn.relu")(conv1) conv2 = is_op("nn.conv2d")(conv1, self.w2).has_attr({"kernel_size": [3, 3]}) conv2 = is_op("add")(conv2, self.b2) conv2 = is_op("nn.relu")(conv2) conv3 = is_op("nn.conv2d")(conv2, self.w3).has_attr({"kernel_size": [1, 1]}) conv3 = is_op("add")(conv3, self.b3) conv3 = is_op("add")(conv3, self.data) conv3 = is_op("nn.relu")(conv3) left_conv4 = is_op("nn.conv2d")(conv3, self.w4).has_attr({"strides": [2, 2]}) left_conv4 = is_op("add")(left_conv4, self.b4) left_conv4 = is_op("nn.relu")(left_conv4) left_conv5 = is_op("nn.conv2d")(left_conv4, self.w5).has_attr({"kernel_size": [3, 3]}) left_conv5 = is_op("add")(left_conv5, self.b5) left_conv5 = is_op("nn.relu")(left_conv5) left_conv6 = is_op("nn.conv2d")(left_conv5, self.w6).has_attr({"kernel_size": [1, 1]}) left_conv6 = is_op("add")(left_conv6, self.b6) right_conv7 = is_op("nn.conv2d")(conv3, self.w7).has_attr({"strides": [2, 2]}) right_conv7 = is_op("add")(right_conv7, self.b7) out = is_op("add")(left_conv6, right_conv7) out = is_op("nn.relu")(out) self.pattern = out def get_attr(self, pre): """Recursively retrieve attributes from reshape operator.""" def visit_func(expr): if isinstance(expr, _expr.Call) and expr.op == relay.op.get("nn.conv2d"): self.attr_lst.append(expr.attrs) _analysis.post_order_visit(pre, visit_func) def callback(self, pre, post, node_map): self.get_attr(pre) data = node_map[self.data][0] w1, b1 = node_map[self.w1][0], node_map[self.b1][0] w2, b2 = node_map[self.w2][0], node_map[self.b2][0] w3, b3 = node_map[self.w3][0], node_map[self.b3][0] w4, b4 = node_map[self.w4][0], node_map[self.b4][0] w5, b5 = node_map[self.w5][0], node_map[self.b5][0] w6, b6 = node_map[self.w6][0], node_map[self.b6][0] w7, b7 = node_map[self.w7][0], node_map[self.b7][0] new_attrs = self.attr_lst[-7] conv1 = relay.op.nn.conv2d(data, w1, **new_attrs) conv1 = relay.op.add(conv1, b1) conv1 = relay.op.nn.relu(conv1) new_attrs = dict(self.attr_lst[-6]) new_attrs["strides"] = [2, 2] conv2 = relay.op.nn.conv2d(conv1, w2, **new_attrs) conv2 = relay.op.add(conv2, b2) conv2 = relay.op.nn.relu(conv2) new_attrs = self.attr_lst[-5] conv3 = relay.op.nn.conv2d(conv2, w3, **new_attrs) conv3 = relay.op.add(conv3, b3) max_pool = relay.op.nn.max_pool2d( data, pool_size=(1, 1), strides=(2, 2), layout=new_attrs["data_layout"] ) conv3 = relay.op.add(conv3, max_pool) conv3 = relay.op.nn.relu(conv3) new_attrs = dict(self.attr_lst[-4]) new_attrs["strides"] = [1, 1] left_conv4 = relay.op.nn.conv2d(conv3, w4, **new_attrs) left_conv4 = relay.op.add(left_conv4, b4) left_conv4 = relay.op.nn.relu(left_conv4) new_attrs = self.attr_lst[-3] left_conv5 = relay.op.nn.conv2d(left_conv4, w5, **new_attrs) left_conv5 = relay.op.add(left_conv5, b5) left_conv5 = relay.op.nn.relu(left_conv5) new_attrs = self.attr_lst[-2] left_conv6 = relay.op.nn.conv2d(left_conv5, w6, **new_attrs) left_conv6 = relay.op.add(left_conv6, b6) new_attrs = dict(self.attr_lst[-1]) new_attrs["strides"] = [1, 1] right_conv7 = relay.op.nn.conv2d(conv3, w7, **new_attrs) right_conv7 = relay.op.add(right_conv7, b7) out = relay.op.add(left_conv6, right_conv7) out = relay.op.nn.relu(out) self.attr_lst = [] return out def rewrite_resnetv1(mod): """Rewrite the the ResNetV1 downsize block to reduce the computation complexity.""" mod["main"] = rewrite(ResNetV1Rewrite(), mod["main"]) return mod class LegalizeQnnOpForTachikoma(DFPatternCallback): """Legalize QNN based patterns to match Tachikoma original pattern: OP = qnn.dense | qnn.conv2d %1 = OP<int>(SRC, WGH) - OP<int>(src_zp, WGH) // qnn.conv2d %2 = %1 + orig_bias // bias %2 = (%1 - rq_in_zp) * rq_in_scl / rq_out_scl + rq_out_zp // qnn.requantize %3 = act(%2) // activation == clip %4 = ((%3 - sum_lh_zp) * sum_lh_scl + (SRC2 - sum_rh_zp) * sum_rh_scl) // qnn.add / sum_out_scl + sum_out_zp transform to Tachikoma compatible: %1 = OP<int>(SRC, WGH) %2 = cast(%1, dtype="float") %2 = (%1 + bias) * o_scl %3 = act(%2) * act_scl %4 = %3 + SRC2 * sum_scl %5 = %4 + dst_zp %6 = cast(%5, dtype="float") where: o_scl = rq_in_scl / rq_out_scl act_scl = sum_lhs_scl / sum_out_scl sum_scl = sum_rhs_scl / sum_out_scl bias = orig_bias - OP(src_zp, WGH) - rq_in_zp + rq_out_zp * rq_out_scl / rq_in_scl dst_zp = sum_out_zp - sum_lhs_zp * sum_lhs_scl / sum_out_scl - sum_rhs_zp * sum_rhs_scl / sum_out_scl """ def __init__(self): super(LegalizeQnnOpForTachikoma, self).__init__() self.src = wildcard() self.wgh = wildcard() self.bias = wildcard() self.sum_src = wildcard() self.src_scl = is_constant() self.src_zp = is_constant() self.wgh_scl = is_constant() self.wgh_zp = is_expr(const(0)) self.rq_in_scl = is_constant() self.rq_in_zp = is_constant() self.rq_out_scl = is_constant() self.rq_out_zp = is_constant() self.sum_lhs_scl = is_constant() self.sum_lhs_zp = is_constant() self.sum_rhs_scl = is_constant() self.sum_rhs_zp = is_constant() self.sum_out_scl = is_constant() self.sum_out_zp = is_constant() self.root = (is_op("qnn.conv2d") | is_op("qnn.dense"))( self.src, self.wgh, self.src_zp, self.wgh_zp, self.src_scl, self.wgh_scl ) pat = is_op("add")(self.root, self.bias) | self.root # optional bias pat = is_op("qnn.requantize")( pat, self.rq_in_scl, self.rq_in_zp, self.rq_out_scl, self.rq_out_zp ) pat = is_op("clip")(pat) cast = is_op("cast")(pat) pat = is_op("qnn.add")( cast, self.sum_src, self.sum_lhs_scl, self.sum_lhs_zp, self.sum_rhs_scl, self.sum_rhs_zp, self.sum_out_scl, self.sum_out_zp, ) pat = is_op("clip")(pat) self.pattern = pat | cast def callback(self, pre, post, node_map): root = node_map[self.root][0] src = node_map[self.src][0] wgh = node_map[self.wgh][0] bias = node_map.get(self.bias, default=[relay.const(0, dtype="int32")])[0] src_zp = node_map[self.src_zp][0] rq_in_scl = node_map[self.rq_in_scl][0] rq_in_zp = node_map[self.rq_in_zp][0] rq_out_scl = node_map[self.rq_out_scl][0] rq_out_zp = node_map[self.rq_out_zp][0] final_dtype = node_map[self.pattern][0].checked_type.dtype if root.op == relay.op.get("qnn.conv2d"): dst_layout = root.attrs.out_layout dst_layout = root.attrs.data_layout if dst_layout == "" else dst_layout wgh_layout = root.attrs.kernel_layout else: # qnn.dense has no layout attributes. Assume that is plain dst_layout = "NC" wgh_layout = "OI" # TODO(@liaopeiyuan): dst_layout may be blocked bias_rank = len(dst_layout) - dst_layout.index("C") sum_src = node_map[self.sum_src][0] if self.sum_src in node_map else None # Default values if qnn.sum is not present sum_lhs_scl = node_map[self.sum_lhs_scl][0] if sum_src else relay.const(1, dtype="float32") sum_lhs_zp = node_map[self.sum_lhs_zp][0] if sum_src else relay.const(0, dtype="int32") sum_rhs_scl = node_map[self.sum_rhs_scl][0] if sum_src else relay.const(0, dtype="float32") sum_rhs_zp = node_map[self.sum_rhs_zp][0] if sum_src else relay.const(0, dtype="int32") sum_out_scl = node_map[self.sum_out_scl][0] if sum_src else relay.const(1, dtype="float32") sum_out_zp = node_map[self.sum_out_zp][0] if sum_src else relay.const(0, dtype="int32") def cast_fp(op): return relay.op.cast(op, dtype="float32") def cast_to_constant(fn): res = relay.create_executor( kind="vm", mod=tvm.IRModule.from_expr(fn) ).evaluate()() return relay.Constant(res) # recalculate some factors o_scl = rq_in_scl / rq_out_scl act_scl = sum_lhs_scl / sum_out_scl sum_scl = sum_rhs_scl / sum_out_scl dst_zp = ( cast_fp(sum_out_zp) - cast_fp(sum_lhs_zp) * sum_lhs_scl / sum_out_scl - cast_fp(sum_rhs_zp) * sum_rhs_scl / sum_out_scl ) bias = self.squeeze_bias(bias, dst_layout) bias = ( cast_fp(bias) - cast_fp(self.fake_op(src_zp, wgh, wgh_layout)) - cast_fp(rq_in_zp) + cast_fp(rq_out_zp) * rq_out_scl / rq_in_scl ) bias = self.broadcast_to_rank(bias, bias_rank) o_scl = self.broadcast_to_rank(o_scl, bias_rank) act_scl = self.broadcast_to_rank(act_scl, bias_rank) sum_scl = self.broadcast_to_rank(sum_scl, bias_rank) zero_zp = relay.const(0, dtype="int32") one_scl = relay.const(1.0, dtype="float32") # construct new graph with proper post op ordering gr = tvm.relay.Call( root.op, [src, wgh, zero_zp, zero_zp, one_scl, one_scl], root.attrs, root.type_args, root.span, ) gr = relay.op.cast(gr, dtype="float32") gr = gr + bias gr = gr * o_scl gr = relay.op.clip(gr, 0, 255) * act_scl gr = gr + sum_scl * cast_fp(sum_src) if sum_src else gr gr = gr + dst_zp gr = relay.op.cast(gr, dtype=final_dtype) return gr @staticmethod def fake_op(zp, wgh, layout): """Fake operator implementation for zp broadcast input""" # Conv: reduce kernel {OC, IC, KH, KW} -> {OC} in case of group that is still correct # Dense: reduce kernel {OC, IC} -> {OC} wgh_int = relay.op.cast(wgh, dtype="int32") reduced_kernel = relay.op.sum( wgh_int, axis=[layout.index("O")], keepdims=False, exclude=True ) return zp * reduced_kernel @staticmethod def squeeze_bias(bias, layout): shape = transform.InferTypeLocal(bias).concrete_shape c_position = layout.index("C") - len(layout) + len(shape) squeeze_idxs = [i for i in range(len(shape)) if i != c_position] return relay.op.squeeze(bias, squeeze_idxs) @staticmethod def broadcast_to_rank(op, rank): """Scalar or 1D tensor are supported""" shape = transform.InferTypeLocal(op).concrete_shape if len(shape) == 0: return op if len(shape) == 1: return relay.op.expand_dims(op, 1, rank - 1) raise ValueError("Unexpected bias rank to broadcast. Only 0 and 1 are supported.") def legalize_qnn_for_tachikoma(mod): """Transform qnn primitives to Tachikoma compatible form. Eliminate source zero point and apply strict sequence of post ops.""" mod["main"] = rewrite(LegalizeQnnOpForTachikoma(), mod["main"]) seq = tvm.transform.Sequential( [ transform.InferType(), # transform.SimplifyInference(), # TODO: this pass decompose nn.layer_norm # transform.FoldScaleAxis(), # TODO: fail inside TVM in case of grouped convolutions. transform.FoldConstant(), ] ) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) return mod
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/te_target.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Support a Relay partitioning target using Tensor Expressions.""" from typing import Callable, List, Dict import tvm import tvm.ir from tvm import relay from tvm import te _LowerFunc = Callable[[relay.Call, List[te.Tensor]], te.Tensor] _LOWER_MAP: Dict[str, _LowerFunc] = {} def lower_composite(comp_name: str) -> Callable[[_LowerFunc], _LowerFunc]: """Register a lowering function for a given composite function name.""" def _register(f: _LowerFunc) -> _LowerFunc: _LOWER_MAP[comp_name] = f return f return _register def relay_to_runtime(target: tvm.target.Target) -> Callable[[relay.Function], tvm.runtime.Module]: """Create a Relay to runtime module lowering function using Tensor Expressions for lowering.""" def _relay_to_runtime(partition: relay.Function) -> tvm.runtime.Module: """Compile Relay functions to a runtime module using Tensor Expressions.""" assert isinstance(partition, relay.Function) assert isinstance(partition.body, relay.Call) assert isinstance(partition.body.op, relay.Function) global_name = str(partition.attrs.global_symbol) comp_func = partition.body.op comp_name = comp_func.attrs["Composite"] assert comp_name in _LOWER_MAP assert isinstance(comp_func.body, relay.Call) op = comp_func.body inputs = [] for i, param in enumerate(comp_func.params): inputs.append( te.placeholder( param.checked_type.shape, name=f"input_{i}", dtype=param.checked_type.dtype, ) ) output = _LOWER_MAP[comp_name](op, inputs) prim_func = te.create_prim_func(inputs + [output]) return tvm.build(prim_func, target=target, name=global_name) return _relay_to_runtime
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/tensorrt.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, logging-format-interpolation """TensorRT supported operators.""" import logging from typing import Tuple, List, Dict, Union, Optional, Any, Callable import numpy as np # type: ignore import tvm from tvm import relay from tvm.ir import Op from tvm.relay import transform from tvm.relay.build_module import bind_params_by_name from tvm.relay.dataflow_pattern import is_op, wildcard, is_constant, is_tuple, is_tuple_get_item from tvm.relay.expr import Call, Constant, TupleGetItem from tvm.relay.expr_functor import ExprMutator, ExprVisitor from tvm.relay.op.contrib.register import register_pattern_table logger = logging.getLogger("TensorRT") def is_tensorrt_compiler_enabled() -> bool: return tvm.get_global_func("relay.ext.tensorrt.is_runtime_enabled", True) is not None def is_tensorrt_runtime_enabled() -> bool: """Check if the TensorRT graph executor is present. Returns ------- ret: bool True if present, False if not. """ check_enabled = tvm.get_global_func("relay.ext.tensorrt.is_runtime_enabled", True) if check_enabled: return check_enabled() return False def get_tensorrt_target() -> tvm.target.Target: """Returns the current Target, which must be of kind "tensorrt".""" target = tvm.target.Target.current() if target is None or target.kind.name != "tensorrt": # Create the default target. return tvm.target.Target("tensorrt") return target def get_tensorrt_version() -> Tuple[int, int, int]: """Returns the version of TensorRT to assume during compilation. In order of preference this is taken from: - The current "tensorrt" target's "tensorrt_version" attribute string. - The version linked to the TVM runtime. - (6, 0, 1) Returns ------- ret: Tuple[int, int, int] TensorRT version as a tuple of (major, minor, patch). """ # cf logic in tensorrt/codegen.cc::SaveGlobalAttributes # First check for version in target. target = get_tensorrt_target() version = target.attrs["tensorrt_version"] if len(version) == 3: return int(version[0]), int(version[1]), int(version[2]) assert len(version) == 0 # Next, ask runtime for its version. if is_tensorrt_runtime_enabled(): get_version = tvm.get_global_func("relay.ext.tensorrt.get_version") version = get_version() assert len(version) == 3 return int(version[0]), int(version[1]), int(version[2]) # Finally, use default. logger.warning( "TVM was not built against TensorRT and no version was provided in the 'tensorrt' target." "Defaulting to 6.0.1." ) return (6, 0, 1) def get_tensorrt_use_implicit_batch_mode() -> bool: """Returns the "use_implicit_batch" attribute of the current "tensorrt" target.""" target = get_tensorrt_target() return target.attrs["use_implicit_batch"] def get_tensorrt_remove_no_mac_subgraphs() -> bool: """Returns the "remove_no_mac_subgraphs" attribute of the current "tensorrt" target.""" target = get_tensorrt_target() return target.attrs["remove_no_mac_subgraphs"] def get_tensorrt_use_fp16() -> bool: """Returns the "use_fp16" attribute of the current "tensorrt" target.""" target = get_tensorrt_target() return target.attrs["use_fp16"] def partition_for_tensorrt( mod: tvm.IRModule, params: Optional[Dict[str, tvm.nd.NDArray]] = None, # CAUTION: Can't use default Target("tensorrt") here since the target kind is only available # if is_tensorrt_compiler_enabled() == True. target: Optional[tvm.target.Target] = None, ) -> tvm.IRModule: """Partition all functions in mod to greedily offload supported operators to TensorRT. Parameters ---------- mod : tvm.IRModule The module to partition. target : tvm.target.Target A target of kind "tensorrt" describing additional partitioning and compilation options. params : Optional[Dict[str, tvm.nd.NDArray]] Constant input parameters. Returns ------- partitioned_mod : tvm.IRModule The partitioned module. """ assert is_tensorrt_compiler_enabled(), "Can only partition for TensorRT if it is enabled" if params: mod["main"] = bind_params_by_name(mod["main"], params) if target is None: # Use a default target. The get_tensorrt_target() function will similarly create an # equivalent default target when compilation continues after partitioning. target = tvm.target.Target("tensorrt") seq = tvm.transform.Sequential( [ transform.InferType(), RemoveDropoutPass(), transform.RemoveUnusedFunctions(), transform.ConvertLayout( { "nn.conv1d": ["NCW", "default"], "nn.conv2d": ["NCHW", "default"], "nn.conv3d": ["NCDHW", "default"], "nn.conv2d_transpose": ["NCHW", "default"], } ), transform.FoldConstant(), transform.MergeComposite(pattern_table()), transform.AnnotateTarget("tensorrt"), transform.MergeCompilerRegions(), transform.PartitionGraph(), transform.InferType(), ] ) with target: mod = seq(mod) mod = prune_tensorrt_subgraphs(mod) return mod def is_supported_trt_type(typ: Union[tvm.ir.TensorType, tvm.ir.TupleType], op_name: str) -> bool: """Check whether a type is supported by TensorRT.""" supported_dtypes = ["float32"] if get_tensorrt_use_fp16(): supported_dtypes.append("float16") if isinstance(typ, tvm.ir.TensorType): if typ.dtype not in supported_dtypes: logger.info(f"{op_name}: Only {supported_dtypes} tensor dtypes are supported.") return False dims = typ.shape if get_tensorrt_use_implicit_batch_mode(): # The first dimension can be Any. dims = dims[1:] for dim in dims: if isinstance(dim, tvm.tir.expr.Any): logger.info(f"{op_name}: Only statically known tensor shapes are supported.") return False elif isinstance(typ, tvm.ir.TupleType): for field_type in typ.fields: if not is_supported_trt_type(field_type, op_name): return False else: logger.info(f"{op_name}: Type {typ} is not supported.") return False return True def get_op_name(expr: relay.expr.Expr) -> str: """Get the operator name from an expression.""" if isinstance(expr, Op): return expr.name if isinstance(expr, Call): return get_op_name(expr.op) if isinstance(expr, TupleGetItem): return get_op_name(expr.tuple_value) if isinstance(expr, relay.Tuple): return get_op_name(expr.fields[0]) return "" def get_args(expr: relay.expr.Expr) -> List[relay.expr.Expr]: """Get the arguments from an expression.""" if isinstance(expr, Call): return expr.args if isinstance(expr, TupleGetItem): return get_args(expr.tuple_value) if isinstance(expr, relay.Tuple): return [arg for args in map(get_args, expr.fields) for arg in args] return [] def get_attrs(expr: relay.expr.Expr) -> Any: """Get the attributes from an expression.""" if isinstance(expr, Call): return expr.attrs if isinstance(expr, TupleGetItem): return get_attrs(expr.tuple_value) return {} CheckFunc = Callable[[Any, List[relay.expr.Expr], str], bool] def make_predicate(checker: CheckFunc) -> Callable[[relay.expr.Expr], bool]: """Returns the pattern predicate which performs the standard checks, then invokes the more primitive checker.""" def predicate(expr: relay.expr.Expr) -> bool: op_name = get_op_name(expr) attrs = get_attrs(expr) args = get_args(expr) if not all([is_supported_trt_type(arg.checked_type, op_name) for arg in args]): return False if not checker(attrs, args, op_name): return False logger.info(f"{op_name}: Predicate passes") return True return predicate standard_predicate = make_predicate(lambda attrs, args, op_name: True) def make_trt_version_checker(version: Tuple[int, int, int]) -> CheckFunc: """Helper for ops which require a minimum TRT version""" def checker(attrs: Any, args: List[relay.expr.Expr], op_name: str) -> bool: if get_tensorrt_version() < version: logger.info( f"{op_name}: requires TensorRT version {'.'.join(map(str, version))} or higher." ) return False return True return checker def make_and_checker(*checkers: CheckFunc) -> CheckFunc: def checker(attrs: Any, args: List[relay.expr.Expr], op_name: str) -> bool: return all([c(attrs, args, op_name) for c in checkers]) return checker def multiply_checker(attrs: Any, args: List[relay.expr.Expr], op_name: str) -> bool: """Helper for multiply operations.""" shapes = [ [int(x) if not isinstance(x, tvm.tir.expr.Any) else -1 for x in arg.checked_type.shape] for arg in args ] # TODO(mbs): Follow up # Batched multiply operations don't work in implicit batch mode. The following shapes # have been excluded because they occur in PT MaskRCNN model. The long term solution is # to switch to explicit batch mode after performance regressions are solved. if all([list(map(int, shape)) in [[300, 64, 7, 7], [300, 1, 1, 1]] for shape in shapes]): logger.info(f"{op_name}: Excluding since problematic in implicit batch mode") return False return True def reduce_checker(attrs: Any, args: List[relay.expr.Expr], op_name: str) -> bool: """Helper for reduce operations.""" if get_tensorrt_use_implicit_batch_mode() and (not attrs.axis or len(attrs.axis) == 0): logger.info(f"{op_name}: cannot reduce to scalar.") return False if attrs.exclude: logger.info(f"{op_name}: exclude not supported.") return False if get_tensorrt_use_implicit_batch_mode() and any([x == 0 for x in map(int, attrs.axis)]): logger.info(f"{op_name}: can't modify batch dimension.") return False return True def add_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if add is supported by TensorRT.""" shapes = [ [int(x) if not isinstance(x, tvm.tir.expr.Any) else -1 for x in arg.checked_type.shape] for arg in args ] # Scalars require explicit batch mode. if get_tensorrt_use_implicit_batch_mode() and any([len(shape) < 1 for shape in shapes]): logger.info(f"{op_name}: Scalars not supported in implicit batch mode") return False if ( not get_tensorrt_use_implicit_batch_mode() and (isinstance(args[0], Constant) or isinstance(args[1], Constant)) and len(shapes[0]) > 0 and len(shapes[1]) > 0 and shapes[0][0] == shapes[1][0] and shapes[0][0] != 1 and (len(shapes[0]) > 3 or len(shapes[1]) > 3) ): logger.info(f"{op_name}: bug in TRT with adding batched constants.") return False return True def batch_norm_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.batch_norm is supported by TensorRT.""" if len(args[0].checked_type.shape) == 5 and get_tensorrt_version() < (6, 0, 1): logger.info(f"{op_name}: TensorRT 6.0.1 or higher is required for rank 5 inputs.") return False if len(args[0].checked_type.shape) > 5: logger.info(f"{op_name}: Input rank must be 5 or less.") return False if int(attrs.axis) not in (1, 3): logger.info(f"{op_name}: axis is {int(attrs.axis)} but must be 1 or 3.") return False return True def softmax_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.softmax is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode() and int(attrs.axis) == 0: logger.info(f"{op_name}: can't modify batch dimension.") return False return True def conv1d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.conv1d is supported by TensorRT.""" if not isinstance(args[1], Constant): logger.info(f"{op_name}: kernel argument must be constant.") return False if attrs.data_layout != "NCW": logger.info(f"{op_name}: data_layout is {attrs.data_layout} but must be NCW.") return False if attrs.kernel_layout != "OIW": logger.info(f"{op_name}: kernel_layout is {attrs.kernel_layout} but must be OIW.") return False return True def conv2d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.conv2d is supported by TensorRT.""" assert len(args) == 2 if not isinstance(args[1], Constant): logger.info(f"{op_name}: kernel argument must be constant.") return False if attrs.data_layout != "NCHW": logger.info(f"{op_name}: data_layout is {attrs.data_layout} but must be NCHW.") return False if attrs.kernel_layout != "OIHW": logger.info(f"{op_name}: kernel_layout is {attrs.kernel_layout} but must be OIHW.") return False if attrs.out_layout and attrs.out_layout != "NCHW": logger.info(f"{op_name}: out_layout is {attrs.out_layout} but must be NCHW.") return False return True def dense_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if dense is supported by TensorRT.""" if not isinstance(args[1], Constant): logger.info(f"{op_name}: weight must be constant") return False input_rank = len(args[0].checked_type.shape) weight_rank = len(args[1].checked_type.shape) if input_rank not in (2, 3, 4): logger.info(f"{op_name}: input has rank {input_rank} but must be 2, 3 or 4.") return False if weight_rank != 2: logger.info(f"{op_name}: weight has rank {weight_rank} but must be 2.") return False return True def batch_matmul_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if dense is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode() and len(args[0].checked_type.shape) != len( args[1].checked_type.shape ): logger.info(f"{op_name}: requires use_implict_batch=False.") return False return True def layer_norm_checker(attrs: Any, args: List[relay.expr.Expr], op_name: str) -> bool: """Check if dense is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode() and int(attrs.axis) == 0: logger.info(f"{op_name}: requires use_implict_batch=False.") return False return True def bias_add_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.bias_add is supported by TensorRT.""" input_rank = len(args[0].checked_type.shape) if input_rank not in (2, 3, 4): logger.info(f"{op_name}: input rank is {input_rank} but must be 2, 3 or 4.") return False return True def max_pool_2d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.max_pool2d is supported by TensorRT.""" if attrs.layout != "NCHW": logger.info(f"{op_name}: layout is {attrs.layout} but must be NCHW.") return False if attrs.ceil_mode and get_tensorrt_version() < (5, 1, 5): logger.info(f"{op_name}: ceil_mode=True requires TensorRT 5.1.5 or greater.") return False return True def avg_pool_2d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.avg_pool2d is supported by TensorRT.""" if attrs.layout != "NCHW": logger.info(f"{op_name}: layout is {attrs.layout} but must be NCHW.") return False if ( attrs.count_include_pad and len(attrs.padding) == 4 and ( int(attrs.padding[0]) != int(attrs.padding[2]) or int(attrs.padding[1]) != int(attrs.padding[3]) ) ): logger.info( f"{op_name}: inclusive-counted blended or average " "pooling is not supported in combination with asymmetric padding" ) return False if attrs.ceil_mode and get_tensorrt_version() < (5, 1, 5): logger.info(f"{op_name}: ceil_mode=True requires TensorRT 5.1.5 or greater.") return False return True def global_max_pool_2d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.global_max_pool2d is supported by TensorRT.""" if attrs.layout != "NCHW": logger.info(f"{op_name}: layout is {attrs.layout} but must be NCHW.") return False return True def global_avg_pool_2d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.global_avg_pool2d is supported by TensorRT.""" if attrs.layout != "NCHW": logger.info(f"{op_name}: layout is {attrs.layout} but must be NCHW.") return False return True def expand_dims_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if expand_dims is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode() and int(attrs.axis) == 0: logger.info(f"{op_name}: can't modify batch dimension.") return False return True def squeeze_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if squeeze is supported by TensorRT.""" if not attrs.axis: logger.info(f"{op_name}: must explicitly set axis.") return False if get_tensorrt_use_implicit_batch_mode() and any([axis == 0 for axis in map(int, attrs.axis)]): logger.info(f"{op_name}: can't modify batch dimension.") return False return True def concatenate_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if concatenate is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode(): if int(attrs.axis) == 0: logger.info(f"{op_name}: can't modify batch dimension.") return False if not isinstance(args[0], relay.Tuple): logger.info("f{op_name}: concatenate must be applied to a literal tuple") return False for tuple_input in args[0].fields: if isinstance(tuple_input, Constant): logger.info(f"{op_name}: can't concatenate tensors with constants.") return False return True def split_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if split is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode() and int(attrs.axis) == 0: logger.info(f"{op_name}: can't modify batch dimension.") return False return True def conv2d_transpose_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.conv2d_transpose is supported by TensorRT.""" if attrs.data_layout != "NCHW": logger.info(f"{op_name}: data_layout is {attrs.data_layout} but must be NCHW.") return False if attrs.kernel_layout != "OIHW": logger.info(f"{op_name}: kernel_layout is {attrs.kernel_layout} but must be OIHW.") return False if attrs.out_layout and attrs.out_layout != "NCHW": logger.info(f"{op_name}: out_layout is {attrs.out_layout} but must be NCHW.") return False if attrs.dilation and any([rate != 1 for rate in map(int, attrs.dilation)]): logger.info(f"{op_name}: dilation rate must be 1.") return False return True def transpose_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if transpose is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode() and int(attrs.axes[0]) != 0: logger.info(f"{op_name}: can't modify batch dimension.") return False return True def layout_transform_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if layout_transform is supported by TensorRT.""" if (attrs.src_layout, attrs.dst_layout) not in [ ("NCHW", "NHWC"), ("NHWC", "NCHW"), ("NDHWC", "NCDHW"), ("NCDHW", "NDHWC"), ]: logger.info(f"{op_name}: {attrs.src_layout} to {attrs.dst_layout} is not supported.") return False return True def reshape_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if reshape is supported by TensorRT.""" if any([x < -1 for x in map(int, attrs.newshape)]): logger.info(f"{op_name}: new shape dims must be explicit.") return False if get_tensorrt_use_implicit_batch_mode(): shape = args[0].checked_type.shape new_shape = attrs.newshape if len(new_shape) == 0 or len(shape) == 0: logger.info(f"{op_name}: Can't reshape to or from scalar.") return False dynamic_reshape = any([isinstance(x, tvm.tir.expr.Any) for x in shape]) if dynamic_reshape: # Make sure that the batch dim is unmodified. if int(new_shape[0]) < 0: for shape_val, new_shape_val in zip(shape[1:], new_shape[1:]): if not ( isinstance(shape_val, (int, tvm.tir.expr.IntImm)) and isinstance(new_shape_val, (int, tvm.tir.expr.IntImm)) and int(shape_val) == int(new_shape_val) ): logger.info(f"{op_name}: can't modify batch dimension") return False elif int(new_shape[0]) > 0: # Currently we only allow dim[0] to be Any, so this branch will always be False if not ( isinstance(shape[0], (int, tvm.tir.expr.IntImm)) and isinstance(new_shape[0], (int, tvm.tir.expr.IntImm)) and int(shape[0]) == int(new_shape[0]) ): logger.info(f"{op_name}: can't modify batch dimension") return False else: shape = list(map(int, shape)) new_shape = list(map(int, new_shape)) # TRT cannot modify batch dimension. original_volume = np.prod(shape) # First, resolve 0. for i, value in enumerate(new_shape): if value == 0: new_shape[i] = shape[i] # Resolve -1. for i, value in enumerate(new_shape): if value == -1: new_shape[i] = original_volume // np.prod([x for x in new_shape if x != -1]) # Remove batch dimension and see if volumes match if shape[0] != new_shape[0]: logger.info(f"{op_name}: can't modify batch dimension.") return False return True def pad_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.pad is supported by TensorRT.""" pad_value = args[1] if not isinstance(pad_value, relay.Constant): logger.info(f"{op_name}: pad argument must be constant") return False pad_value = pad_value.data.numpy().item() if attrs.pad_mode != "constant": logger.info(f"{op_name}: pad mode is {attrs.pad_mode} but must be constant.") return False if pad_value > 0.0: logger.info(f"{op_name}: pad value is {pad_value} but must be 0.0.") return False if len(attrs.pad_width) not in [4, 5]: logger.info(f"{op_name}: can only pad 4D or 5D inputs") return False if any([x != 0 for x in attrs.pad_width[0]]) or any([x != 0 for x in attrs.pad_width[1]]): logger.info(f"{op_name}: can't pad batch or channel dimensions.") return False if len(attrs.pad_width) == 5 and any([x != 0 for x in attrs.pad_width[2]]): logger.info(f"{op_name}: can only pad last two dimensions for 5D inputs.") return False return True def strided_slice_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if strided_slice is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode(): batch_dim_begin_modified = attrs.begin[0] is not None and int(attrs.begin[0]) != 0 batch_dim_end_modified = ( attrs.end[0] is not None and int(attrs.end[0]) != -1 and int(attrs.end[0]) != int(args[0].checked_type.shape[0]) ) if batch_dim_begin_modified or batch_dim_end_modified: logger.info(f"{op_name}: can't modify batch dimension.") return False if any([x is not None and x <= 0 for x in attrs.strides]): logger.info(f"{op_name}: stride must be positive") return False for i in range(0, len(args[0].checked_type.shape)): begin = int(attrs.begin[i]) if attrs.slice_mode == "end": end = ( int(attrs.end[i]) if attrs.end[i] is not None and int(attrs.end[i]) != -1 else args[0].checked_type.shape[i] ) size = int(end) - int(begin) elif attrs.slice_mode == "size": size = ( int(attrs.end[i]) if attrs.end[i] is not None and int(attrs.end[i]) != -1 else args[0].checked_type.shape[i] - begin ) else: logger.warning(f"{op_name}: unknown slice mode encountered") size = 1 if int(size) < 1: logger.info(f"{op_name}: size of slice must be at least 1") return False return True def adaptive_max_pool2d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.adaptive_max_pool2d is supported by TensorRT.""" if len(attrs.output_size) == 0 or any([size != 1 for size in map(int, attrs.output_size)]): logger.info(f"{op_name}: output size must be (1, 1).") return False return True def adaptive_avg_pool2d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.adaptive_avg_pool2d is supported by TensorRT.""" if len(attrs.output_size) == 0 or any([size != 1 for size in map(int, attrs.output_size)]): logger.info(f"{op_name}: output size must be (1, 1).") return False return True def conv3d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.conv3d is supported by TensorRT.""" if not isinstance(args[1], Constant): logger.info(f"{op_name}: kernel argument must be constant.") return False if attrs.data_layout != "NCDHW": logger.info(f"{op_name}: data_layout is {attrs.data_layout} but must be NCDHW.") return False if attrs.kernel_layout != "OIDHW": logger.info(f"{op_name}: kernel_layout is {attrs.kernel_layout} but must be OIDHW.") return False if attrs.out_layout and attrs.out_layout != "NCDHW": logger.info(f"{op_name}: out_layout is {attrs.out_layout} but must be NCDHW.") return False return True def max_pool_3d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.max_pool3d is supported by TensorRT.""" if attrs.layout != "NCDHW": logger.info(f"{op_name}: layout is {attrs.layout} but must be NCDHW.") return False return True def avg_pool_3d_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.avg_pool3d is supported by TensorRT.""" if attrs.layout != "NCDHW": logger.info(f"{op_name}: layout is {attrs.layout} but must be NCDHW.") return False return True def conv3d_transpose_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if nn.conv3d_transpose is supported by TensorRT.""" if attrs.data_layout != "NCDHW": logger.info(f"{op_name}: data_layout is {attrs.data_layout} but must be NCDHW.") return False if attrs.kernel_layout != "OIDHW": logger.info(f"{op_name}: kernel_layout is {attrs.kernel_layout} but must be OIDHW.") return False if attrs.out_layout and attrs.out_layout != "NCDHW": logger.info(f"{op_name}: out_layout is {attrs.out_layout} but must be NCDHW.") return False if attrs.dilation and any([rate != 1 for rate in map(int, attrs.dilation)]): logger.info(f"{op_name}: dilation rate must be 1.") return False if attrs.output_padding and any([x != 0 for x in map(int, attrs.output_padding)]): logger.info(f"{op_name}: output padding is not supported.") return False return True def unary_op_pattern(op: relay.expr.Expr) -> relay.dataflow_pattern.DFPattern: """Matches unary operation""" return is_op(op)(wildcard()) def unary_op_pattern_with_any_tuple(op: relay.expr.Expr) -> relay.dataflow_pattern.DFPattern: """Matches unary operation with literal tuple argument""" return is_op(op)(is_tuple(None)) def binary_op_pattern(op: relay.expr.Expr) -> relay.dataflow_pattern.DFPattern: """Matches binary operation""" return is_op(op)(wildcard(), wildcard()) def binary_op_pattern_with_const(op: relay.expr.Expr) -> relay.dataflow_pattern.DFPattern: """Matches binary operation with rhs arg a constant""" return is_op(op)(wildcard(), is_constant()) def proj_five_op_pattern_with_const(op: relay.expr.Expr) -> relay.dataflow_pattern.DFPattern: return is_tuple_get_item( is_op(op)(wildcard(), is_constant(), is_constant(), is_constant(), is_constant()), 0 ) @register_pattern_table("tensorrt") def pattern_table() -> List[ Tuple[str, relay.dataflow_pattern.DFPattern, Callable[[relay.expr.Call], bool]] ]: """Get the Tensorrt compiler pattern table for supported ops.""" return [ ( "tensorrt.nn.conv3d", binary_op_pattern_with_const("nn.conv3d"), make_predicate(make_and_checker(make_trt_version_checker((6, 0, 1)), conv3d_checker)), ), ( "tensorrt.nn.conv2d", binary_op_pattern_with_const("nn.conv2d"), make_predicate(conv2d_checker), ), ( "tensorrt.nn.conv1d", binary_op_pattern_with_const("nn.conv1d"), make_predicate(conv1d_checker), ), ( "tensorrt.nn.conv2d_transpose", binary_op_pattern("nn.conv2d_transpose"), make_predicate(conv2d_transpose_checker), ), ("tensorrt.squeeze", binary_op_pattern("squeeze"), make_predicate(squeeze_checker)), ("tensorrt.add", binary_op_pattern("add"), make_predicate(add_checker)), ( "tensorrt.nn.dense", binary_op_pattern_with_const("nn.dense"), make_predicate(dense_checker), ), ( "tensorrt.nn.bias_add", binary_op_pattern("nn.bias_add"), make_predicate(bias_add_checker), ), ( "tensorrt.nn.batch_matmul", binary_op_pattern("nn.batch_matmul"), make_predicate(batch_matmul_checker), ), ("tensorrt.divide", binary_op_pattern("divide"), standard_predicate), ("tensorrt.multiply", binary_op_pattern("multiply"), make_predicate(multiply_checker)), ("tensorrt.subtract", binary_op_pattern("subtract"), standard_predicate), ("tensorrt.power", binary_op_pattern("power"), standard_predicate), ("tensorrt.maximum", binary_op_pattern("maximum"), standard_predicate), ("tensorrt.minimum", binary_op_pattern("minimum"), standard_predicate), ("tensorrt.nn.relu", unary_op_pattern("nn.relu"), standard_predicate), ( "tensorrt.nn.leaky_relu", unary_op_pattern("nn.leaky_relu"), make_predicate(make_trt_version_checker((5, 1, 5))), ), ("tensorrt.nn.pad", unary_op_pattern("nn.pad"), standard_predicate), ("tensorrt.sigmoid", unary_op_pattern("sigmoid"), standard_predicate), ("tensorrt.tanh", unary_op_pattern("tanh"), standard_predicate), ("tensorrt.exp", unary_op_pattern("exp"), standard_predicate), ("tensorrt.log", unary_op_pattern("log"), standard_predicate), ("tensorrt.sqrt", unary_op_pattern("sqrt"), standard_predicate), ("tensorrt.abs", unary_op_pattern("abs"), standard_predicate), ("tensorrt.negative", unary_op_pattern("negative"), standard_predicate), ("tensorrt.nn.batch_flatten", unary_op_pattern("nn.batch_flatten"), standard_predicate), ("tensorrt.clip", unary_op_pattern("clip"), standard_predicate), ( "tensorrt.sin", unary_op_pattern("sin"), make_predicate(make_trt_version_checker((5, 1, 5))), ), ( "tensorrt.cos", unary_op_pattern("cos"), make_predicate(make_trt_version_checker((5, 1, 5))), ), ( "tensorrt.atan", unary_op_pattern("atan"), make_predicate(make_trt_version_checker((5, 1, 5))), ), ( "tensorrt.ceil", unary_op_pattern("ceil"), make_predicate(make_trt_version_checker((5, 1, 5))), ), ("tensorrt.floor", unary_op_pattern("floor"), standard_predicate), ( "tensorrt.erf", unary_op_pattern("erf"), make_predicate(make_trt_version_checker((7, 0, 0))), ), ("tensorrt.sum", unary_op_pattern("sum"), make_predicate(reduce_checker)), ("tensorrt.prod", unary_op_pattern("prod"), make_predicate(reduce_checker)), ("tensorrt.max", unary_op_pattern("max"), make_predicate(reduce_checker)), ("tensorrt.min", unary_op_pattern("min"), make_predicate(reduce_checker)), ("tensorrt.max", unary_op_pattern("max"), make_predicate(reduce_checker)), ("tensorrt.mean", unary_op_pattern("mean"), make_predicate(reduce_checker)), ( "tensorrt.concatenate", unary_op_pattern_with_any_tuple("concatenate"), make_predicate(concatenate_checker), ), ( "tensorrt.expand_dims", unary_op_pattern("expand_dims"), make_predicate(expand_dims_checker), ), ( "tensorrt.layout_transform", unary_op_pattern("layout_transform"), make_predicate(layout_transform_checker), ), ("tensorrt.transpose", unary_op_pattern("transpose"), make_predicate(transpose_checker)), ("tensorrt.reshape", unary_op_pattern("reshape"), make_predicate(reshape_checker)), ("tensorrt.split", unary_op_pattern("split"), make_predicate(split_checker)), ("tensorrt.nn.pad", unary_op_pattern("nn.pad"), make_predicate(pad_checker)), ( "tensorrt.strided_slice", unary_op_pattern("strided_slice"), make_predicate( make_and_checker(make_trt_version_checker((5, 1, 5)), strided_slice_checker) ), ), ( "tensorrt.nn.adaptive_avg_pool2d", unary_op_pattern("nn.adaptive_avg_pool2d"), make_predicate(adaptive_avg_pool2d_checker), ), ( "tensorrt.nn.adaptive_max_pool2d", unary_op_pattern("nn.adaptive_max_pool2d"), make_predicate(adaptive_max_pool2d_checker), ), ( "tensorrt.nn.max_pool3d", unary_op_pattern("nn.max_pool3d"), make_predicate( make_and_checker(make_trt_version_checker((6, 0, 1)), max_pool_3d_checker) ), ), ( "tensorrt.nn.avg_pool3d", unary_op_pattern("nn.avg_pool3d"), make_predicate( make_and_checker(make_trt_version_checker((6, 0, 1)), avg_pool_3d_checker) ), ), ( "tensorrt.nn.conv3d_transpose", unary_op_pattern("nn.conv3d_transpose"), make_predicate( make_and_checker(make_trt_version_checker((6, 0, 1)), conv3d_transpose_checker) ), ), ("tensorrt.nn.softmax", unary_op_pattern("nn.softmax"), make_predicate(softmax_checker)), ( "tensorrt.nn.layer_norm", unary_op_pattern("nn.layer_norm"), make_predicate(layer_norm_checker), ), ( "tensorrt.nn.max_pool2d", unary_op_pattern("nn.max_pool2d"), make_predicate(max_pool_2d_checker), ), ( "tensorrt.nn.avg_pool2d", unary_op_pattern("nn.avg_pool2d"), make_predicate(avg_pool_2d_checker), ), ( "tensorrt.nn.global_max_pool2d", unary_op_pattern("nn.global_max_pool2d"), make_predicate(global_max_pool_2d_checker), ), ( "tensorrt.nn.global_avg_pool2d", unary_op_pattern("nn.global_avg_pool2d"), make_predicate(global_avg_pool_2d_checker), ), ( "tensorrt.nn.batch_norm", proj_five_op_pattern_with_const("nn.batch_norm"), make_predicate(batch_norm_checker), ), ] class IsComputeIntensiveGraph(ExprVisitor): """ Visits the Graph recursively and checks if it contains compute heavy ops like convolutions and its transpose, dense and batch mat-mul. """ def __init__(self) -> None: ExprVisitor.__init__(self) self.is_compute_intensive = False def visit_call(self, call: relay.expr.Call) -> None: compute_intensive_ops = { "nn.conv1d", "nn.conv2d", "nn.conv2d_transpose", "nn.conv3d", "nn.conv3d_transpose", "nn.dense", "nn.batch_matmul", "sum", "prod", "max", "min", "mean", } if isinstance(call.op, tvm.tir.op.Op): if str(call.op) in compute_intensive_ops: self.is_compute_intensive = True return super().visit_call(call) def is_graph_compute_intensive(self, subgraph: relay.expr.Expr) -> bool: """ This function recursively visits the graph and checks if it's compute intensive" """ self.visit(subgraph) return self.is_compute_intensive def is_valid_subgraph(params: List[relay.expr.Var], body: relay.expr.Expr) -> bool: """Final check on whether the subgraph is valid and should be offloaded to TensorRT.""" # Remove invalid subgraphs for implicit batch mode. if get_tensorrt_use_implicit_batch_mode(): input_batch_sizes = [] for var in params: # In implicit batch mode, all inputs must have same batch size # TODO: (codeislife99) : Fix different dynamic batch size inputs if isinstance(var.checked_type, relay.TupleType): for tupe_type in var.checked_type.fields: # Scalar inputs not allowed if len(tupe_type.shape) == 0: logger.info("tensorrt: scalar inputs not supported") return False if not isinstance(tupe_type.shape[0], tvm.tir.expr.Any): input_batch_sizes.append(int(tupe_type.shape[0])) else: # Scalar inputs not allowed if len(var.checked_type.shape) == 0: logger.info("tensorrt: scalar inputs not supported") return False if not isinstance(var.checked_type.shape[0], tvm.tir.expr.Any): input_batch_sizes.append(int(var.checked_type.shape[0])) if len(input_batch_sizes) > 1 and len(set(input_batch_sizes)) != 1: logger.info("tensorrt: inputs have different batch sizes: %s", input_batch_sizes) return False if get_tensorrt_remove_no_mac_subgraphs(): if not IsComputeIntensiveGraph().is_graph_compute_intensive(body): logger.info("tensorrt: not a compute-intensize sub-graph") return False return True def prune_tensorrt_subgraphs(mod: tvm.IRModule) -> tvm.IRModule: """ Un-partition those partitions which: - have no multiply-accumulates (if remove_no_mac_subgraphs is True) - can't actually be supported by TensorRT now that we see the whole partition.""" global_vars_to_inline = [ gv for gv in mod.get_global_vars() if mod[gv].attrs and mod[gv].attrs["Compiler"] == "tensorrt" and not is_valid_subgraph(mod[gv].params, mod[gv].body) ] return relay.transform.InlineCompilerFunctionsBoundTo(global_vars_to_inline)(mod) class RemoveDropout(ExprMutator): """ Removes all nn.dropout from an expr. """ def visit_tuple_getitem(self, op: TupleGetItem) -> relay.expr.Expr: visit = super().visit_tuple_getitem(op) if visit.index != 0: return visit if ( isinstance(visit.tuple_value, Call) and isinstance(visit.tuple_value.op, Op) and visit.tuple_value.op.name == "nn.dropout" and visit.index == 0 ): return visit.tuple_value.args[0] return visit @transform.function_pass(opt_level=0) class RemoveDropoutPass: def transform_function( self, func: relay.function.Function, mod: tvm.IRModule, _: tvm.transform.PassContext ) -> relay.function.Function: return RemoveDropout().visit(func)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/contrib/vitis_ai.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, no-else-return, E1102 """Vitis-AI codegen annotation of supported operators""" import warnings import numpy as np from tvm import relay import tvm._ffi from tvm.relay import transform from tvm.relay.expr import Tuple, TupleGetItem from tvm.relay.build_module import bind_params_by_name from tvm.relay.op.annotation import compiler_begin, compiler_end # Placeholder for PyXIR module pyxir = None def enabled(): """Return whether Vitis-AI support is available""" if not tvm.get_global_func("relay.ext.vitis_ai.available", True): print("Skip because Vitis-AI codegen is not available.") return False return True @transform.function_pass(opt_level=0) class VitisAIAnnotationPass: """Responsible for annotating Relay expressions for Vitis-AI DPU accelerators Parameters ---------- compiler : str The compiler name used for annotations (`vitis_ai`). dpu_target : str The Vitis AI DPU target identifier. params : dict A dictionary containing the module's parameters. """ def __init__(self, compiler, dpu_target, params): global pyxir try: if pyxir is None: pyxir = __import__("pyxir") __import__("pyxir.frontend.tvm") except ImportError: # add "from None" to silence # "During handling of the above exception, another exception occurred" raise ImportError( "The pyxir package is required for the Vitis AI backend. " "Please install it first. " "Help: (https://tvm.apache.org/docs/deploy/vitis_ai.html) " ) from None self.compiler = compiler self.dpu_target = dpu_target self.params = params def transform_function(self, func, mod, ctx): """Transform function for annotating Relay module""" annotator = self class Annotator(tvm.relay.ExprMutator): """Annotator for Vitis-AI DPU accelerators""" def visit_tuple(self, tup): """Add compiler_begin and compiler_end annotations to Tuple""" field_list = [] cond = int(hash(tup)) for field in tup.fields: if cond in annotator.relay_ids: field_list.append(compiler_begin(super().visit(field), annotator.compiler)) else: field_list.append(super().visit(field)) if cond in annotator.relay_ids: return compiler_end(Tuple(field_list), annotator.compiler) else: return Tuple(field_list) def visit_tuple_getitem(self, op): """Add compiler_begin and compiler_end annotations to TupleGetItem""" if int(hash(op.tuple_value)) in annotator.relay_ids: tuple_value = compiler_begin(super().visit(op.tuple_value), annotator.compiler) return compiler_end(TupleGetItem(tuple_value, op.index), annotator.compiler) else: tuple_value = super().visit(op.tuple_value) return TupleGetItem(tuple_value, op.index) def visit_call(self, call): """Add compiler_begin and compiler_end annotations to the Call expr""" if int(hash(call)) in annotator.relay_ids: new_args = [] for arg in call.args: ann = compiler_begin(super().visit(arg), annotator.compiler) new_args.append(ann) new_call = relay.Call(call.op, new_args, call.attrs, call.type_args) return compiler_end(new_call, annotator.compiler) else: return super().visit_call(call) xgraph = pyxir.frontend.tvm.from_relay(mod, self.params, postprocessing=None) xgraph = pyxir.partition(xgraph, targets=[self.dpu_target]) layers = xgraph.get_layers() relay_ids = [ list(np.array(layer.attrs["relay_id"]).flatten()) for layer in layers if layer.target == self.dpu_target ] self.relay_ids = [item for sublist in relay_ids for item in sublist] return Annotator().visit(func) def annotation(mod, params, target): """DEPRECATED Annotate Relay expression for offloading operators to Vitis AI DPU accelerators NOTE: This function does the same as the next one (`partition_for_vitis_ai`) but is still here for backward compatibility""" # We need type information for supporting models that contain operations that don't # have a Relay to XLayer translation warnings.warn( "tvm.relay.op.contrib.vitis_ai.annotation() is being deprecated." " Please use tvm.relay.op.contrib.vitis_ai.partition_for_vitis_ai() instead. " " Check out https://tvm.apache.org/docs/deploy/vitis_ai.html for documentation. " ) mod = relay.transform.InferType()(mod) mod = VitisAIAnnotationPass("vitis_ai", target, params)(mod) return mod def partition_for_vitis_ai(mod, params=None, dpu=None, **opts): """Partition the Relay expression for offloading operators to Vitis AI DPU Parameters ---------- mod : Module The module to run passes on. params : Optional[Dict[str, NDArray]] Constant input parameters. dpu : str The DPU identifier (e.g. DPUCZDX8G-zcu104, DPUCADF8H) Returns ------- ret : Module """ if dpu is None: raise ValueError("Please pass Vitis AI DPU identifier to the partitioning function") if params: mod["main"] = bind_params_by_name(mod["main"], params) desired_layouts_in_partition = { "nn.conv2d": ["NHWC", "default"], "nn.upsampling": ["NHWC"], "image.resize2d": ["NHWC"], } desired_layouts_in_main = { "nn.conv2d": ["NCHW", "default"], "nn.upsampling": ["NCHW"], "image.resize2d": ["NCHW"], } seq = tvm.transform.Sequential( [ transform.RemoveUnusedFunctions(), transform.ConvertLayout(desired_layouts_in_partition), transform.FoldConstant(), transform.InferType(), VitisAIAnnotationPass("vitis_ai", dpu, params), transform.MergeCompilerRegions(), transform.PartitionGraph(), transform.RemoveUnusedFunctions(), transform.ConvertLayout(desired_layouts_in_main), transform.FoldConstant(), ] ) with tvm.transform.PassContext(opt_level=3): return seq(mod)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/dyn/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import, redefined-builtin, invalid-name """The Relay namespace containing dynamic ops.""" from . import _algorithm from . import _transform from . import _tensor from . import image
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/dyn/_algorithm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. "Definition of classic algorithms" # pylint: disable=invalid-name,unused-argument from __future__ import absolute_import from tvm.te.hybrid import script from tvm.runtime import convert from .. import strategy from .. import op as _reg from ..op import OpPattern, register_pattern from ..op import register_strategy # topk register_strategy("dyn.topk", strategy.topk_strategy) register_pattern("dyn.topk", OpPattern.OPAQUE) @script def _topk_shape_func_input_data(data, k, axis): ndim = len(data.shape) val_out = output_tensor((ndim,), "int64") indices_out = output_tensor((ndim,), "int64") for i in const_range(ndim): if i != axis: val_out[i] = int64(data.shape[i]) indices_out[i] = int64(data.shape[i]) else: if k[0] < 1: val_out[i] = int64(data.shape[i]) indices_out[i] = int64(data.shape[i]) else: val_out[i] = int64(k[0]) indices_out[i] = int64(k[0]) return val_out, indices_out @_reg.register_shape_func("dyn.topk", True) def topk_shape_func(attrs, inputs, _): """ Shape func for topk. """ axis = attrs.axis if axis < 0: axis += len(inputs[0].shape) val_out, indices_out = _topk_shape_func_input_data(inputs[0], inputs[1], convert(axis)) ret_type = attrs.ret_type if ret_type == "both": ret = [val_out, indices_out] elif ret_type == "values": ret = [val_out] else: ret = [indices_out] return ret
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/dyn/_make.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Constructor APIs""" import tvm._ffi tvm._ffi._init_api("relay.op.dyn._make", __name__)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/dyn/_tensor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument, len-as-condition """Backend compiler related feature registration for dynamic ops""" from tvm import topi from ..op import register_shape_func, register_compute from ..op import register_broadcast_schedule from ..op import register_pattern, OpPattern from .._tensor import full_shape_func, no_data_full_shape_func # ones @register_compute("dyn.ones") def ones_compute(attrs, inputs, output_type): assert len(inputs) == 1 return [topi.full(output_type.shape, output_type.dtype, 1.0)] register_broadcast_schedule("dyn.ones") register_pattern("dyn.ones", OpPattern.ELEMWISE) @register_compute("dyn.zeros") def zeros_compute(attrs, inputs, output_type): assert len(inputs) == 1 return [topi.full(output_type.shape, output_type.dtype, 0.0)] register_broadcast_schedule("dyn.zeros") register_pattern("dyn.zeros", OpPattern.ELEMWISE) register_shape_func("dyn.broadcast_to", True, full_shape_func) register_shape_func("dyn.ones", True, no_data_full_shape_func) register_shape_func("dyn.zeros", True, no_data_full_shape_func) register_shape_func("dyn.full", True, full_shape_func)
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/dyn/_transform.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Backend compiler related feature registration""" # pylint: disable=invalid-name,unused-argument, len-as-condition, too-many-nested-blocks, too-many-local-variables, too-many-arguments from __future__ import absolute_import from tvm.runtime import convert from tvm.te.hybrid import script from .. import op as _reg _reg.register_broadcast_schedule("dyn.broadcast_to") _reg.register_injective_schedule("dyn.reshape") _reg.register_injective_schedule("dyn.expand_dims") _reg.register_injective_schedule("dyn.squeeze") _reg.register_broadcast_schedule("dyn.tile") _reg.register_injective_schedule("dyn.one_hot") _reg.register_injective_schedule("dyn.full") _reg.register_injective_schedule("dyn.strided_slice") _reg.register_injective_schedule("dyn.sparse_to_dense") @script def _reshape_shape_func_input_data(data_shape, newshape, ndim, allowzero): out = output_tensor((ndim,), "int64") src_idx = 0 dst_idx = 0 infer_idx = -1 copy = False skip = 0 for i in const_range(len(newshape)): if skip > 0: skip -= 1 elif newshape[i] > 0: out[dst_idx] = int64(newshape[i]) src_idx += 1 dst_idx += 1 elif newshape[i] == 0: if allowzero: out[dst_idx] = int64(newshape[i]) else: out[dst_idx] = data_shape[src_idx] src_idx += 1 dst_idx += 1 elif newshape[i] == -1: assert infer_idx < 0, "One and only one dim can be inferred" out[dst_idx] = int64(1) infer_idx = i src_idx += 1 dst_idx += 1 elif newshape[i] == -2: assert False, "Value -2 is not valid in newshape argument of dynamic reshape" elif newshape[i] == -3: assert data_shape.shape[0] - src_idx > 1, "Not enough dims in input shape for -3" out[dst_idx] = data_shape[src_idx] * data_shape[src_idx + 1] src_idx += 2 dst_idx += 1 elif newshape[i] == -4: assert False, "Value -4 is not valid in newshape argument of dynamic reshape" else: assert False, "Invalid special values in new shape" if len(data_shape.shape) > 0: # if data is not constant, we can then handle -1 and -2 if copy: for i in range(src_idx, data_shape.shape[0]): out[dst_idx] = data_shape[i] dst_idx += 1 if infer_idx >= 0: old_size = int64(1) for i in const_range(data_shape.shape[0]): old_size *= data_shape[i] new_size = int64(1) for i in const_range(out.shape[0]): new_size *= out[i] out[infer_idx] = old_size // new_size return out @_reg.register_shape_func("dyn.reshape", [False, True]) def dynamic_reshape_shape_func(attrs, inputs, out_ndims): allowzero = attrs.allowzero return [_reshape_shape_func_input_data(*inputs, out_ndims[0], convert(allowzero))] @script def _expand_dims_shape_func_input_data(data, axis, ndims, num_newaxis): out = output_tensor((ndims,), "int64") for i in const_range(ndims): if i < axis: # We multiply by a check (i < len(data.shape)) to avoid # a constant folding mechanism leading to an overflow out[i] = int64(data.shape[i * (i < len(data.shape))]) elif i - num_newaxis < axis: out[i] = int64(1) else: out[i] = int64( # We can't use axis in indices as it is not constant but we can # use negative indices (kind of, have to manually do it) data.shape[ (i - num_newaxis) * (i - num_newaxis >= 0) + (i - num_newaxis + len(data.shape)) * (i - num_newaxis < 0) ] ) return out @_reg.register_shape_func("dyn.expand_dims", [True, True]) def dynamic_expand_dims_shape_func(attrs, inputs, out_ndims): return [ _expand_dims_shape_func_input_data( inputs[0], inputs[1], out_ndims[0], convert(attrs.num_newaxis), ) ] @script def _tile_shape_func(data, reps, ndim, tndim, rndim): out = output_tensor((tndim,), "int64") if ndim == rndim: for i in const_range(tndim): out[i] = int64(data.shape[i] * reps[i]) elif ndim > rndim: ngap = ndim - rndim for i in const_range(ndim): if i < ngap: out[i] = int64(data.shape[i]) else: out[i] = int64(data.shape[i] * reps[i - ngap]) else: rgap = rndim - ndim for i in const_range(rndim): if i < rgap: out[i] = int64(reps[i]) else: out[i] = int64(reps[i] * data.shape[i - rgap]) return out @_reg.register_shape_func("dyn.tile", True) def tile_shape_func(attrs, inputs, _): """ Shape function for dyn.tile op. """ reps = inputs[1] ndim = len(inputs[0].shape) rndim = inputs[1].shape[0].value tndim = ndim if ndim > rndim else rndim return [_tile_shape_func(inputs[0], reps, convert(ndim), convert(tndim), convert(rndim))] @script def _onehot_shape_func(dshape, k, axis): ndim = len(dshape) + 1 out = output_tensor((ndim,), "int64") for i in const_range(axis): out[i] = int64(dshape[i]) out[axis] = int64(k[(0)]) for j in const_range(axis + 1, ndim): out[j] = int64(dshape[j - 1]) return out @_reg.register_shape_func("dyn.one_hot", True) def one_hot_shape_func(attrs, inputs, _): """ Shape function for dyn.one_hot op. """ axis = len(inputs[0].shape) if attrs.axis == -1 else attrs.axis return [_onehot_shape_func(inputs[0].shape, inputs[3], convert(axis))] @script def _strided_slice_shape_func_input_data(data_shape, begin, end, strides, slice_mode): ndim = len(data_shape) out = output_tensor((ndim,), "int64") for i in const_range(ndim): dim_size = int64(data_shape[i]) cbegin = int64(0) cend = dim_size cstride = int64(1) if strides.shape[0] > i: cstride = int64(strides[i]) if begin.shape[0] > i: cbegin = int64(begin[i]) elif cstride < 0: cbegin = dim_size if end.shape[0] <= i: if cstride < 0: cend = int64(0) elif slice_mode != 0: cstride = int64(1) if end[i] < 0: cend = dim_size else: cend = cbegin + int64(end[i]) else: if end[i] > data_shape[i]: cend = dim_size else: cend = int64(end[i]) assert cstride != 0, "Strides can't be zero." if cbegin < 0: cbegin += dim_size if cend < 0: cend += dim_size if cstride < 0: if cend < 0: cend = int64(-1) if cbegin > dim_size - 1: cbegin = dim_size - 1 slice_range = cbegin - cend step = -cstride else: slice_range = cend - cbegin step = cstride out[i] = int64(ceil_div(slice_range, step)) return out @_reg.register_shape_func("dyn.strided_slice", [False, True, True, True]) def strided_slice_shape_func(attrs, inputs, _): """ Shape func for strided_slice """ slice_mode = convert(0 if attrs.slice_mode == "end" else 1) return [_strided_slice_shape_func_input_data(*inputs, slice_mode)] @script def _sparse_to_dense_shape_func(output_shape, ndim): out = output_tensor((ndim,), "int64") for i in const_range(ndim): out[i] = int64(output_shape[i]) return out @_reg.register_shape_func("dyn.sparse_to_dense", True) def sparse_to_dense_shape_func(attrs, inputs, out_ndims): return [_sparse_to_dense_shape_func(inputs[3], out_ndims[0])] @script def _squeeze_shape_func_input_data(data, axis, ndims): out = output_tensor((ndims,), "int64") out_i = 0 for i in const_range(data.shape[0]): not_in_axis = True for j in const_range(axis.shape[0]): if i == axis[j]: not_in_axis = False if not_in_axis: out[out_i] = int64(data[i]) out_i += 1 return out @_reg.register_shape_func("dyn.squeeze", [False, True]) def dynamic_squeeze_shape_func(attrs, inputs, out_ndims): return [_squeeze_shape_func_input_data(inputs[0], inputs[1], out_ndims[0])]
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/dyn/image/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import, redefined-builtin, invalid-name """The Relay namespace containing dynamic image ops.""" from . import _image
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/dyn/image/_image.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Backend compiler related feature registration""" from __future__ import absolute_import import tvm.topi from tvm.runtime import convert from tvm.te.hybrid import script from tvm.topi.utils import nchw_pack_layout, nchw_xc_layout from ... import op as reg # resize @reg.register_compute("dyn.image.resize2d") def compute_resize2d(attrs, inputs, out_type): """ Compute function calls into topi """ layout = attrs.layout method = attrs.method coord_trans = attrs.coordinate_transformation_mode rounding_method = attrs.rounding_method cubic_alpha = attrs.cubic_alpha cubic_exclude = attrs.cubic_exclude extrapolation_value = attrs.extrapolation_value out_dtype = attrs.out_dtype return [ tvm.topi.image.resize2d( inputs[0], inputs[2], inputs[1], layout, method, coord_trans, rounding_method, cubic_alpha, cubic_exclude, extrapolation_value, out_dtype, out_type.shape, ) ] reg.register_injective_schedule("dyn.image.resize2d") @script def _resize2d_shape_func(dshape, size, ndim, height_axis, width_axis): out = output_tensor((ndim,), "int64") for i in const_range(ndim): out[i] = int64(dshape[i]) out[height_axis] = int64(size[0]) out[width_axis] = int64(size[1]) return out @reg.register_shape_func("dyn.image.resize2d", True) def resize2d_shape_func(attrs, inputs, _): """ Shape function for dyn.image.resize op. """ layout = attrs.layout if nchw_pack_layout(layout) or nchw_xc_layout(layout): out = [ _resize2d_shape_func( inputs[0].shape, inputs[1], convert(len(inputs[0].shape)), convert(2), convert(3) ) ] else: height_axis = width_axis = 1 for i, letter in enumerate(layout): if letter == "H": height_axis = i if letter == "W": width_axis = i out = [ _resize2d_shape_func( inputs[0].shape, inputs[1], convert(len(inputs[0].shape)), convert(height_axis), convert(width_axis), ) ] return out
https://github.com/zk-ml/tachikoma
python/tvm/relay/op/dyn/image/_make.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Constructor APIs""" import tvm._ffi tvm._ffi._init_api("relay.op.dyn.image._make", __name__)
https://github.com/zk-ml/tachikoma