file_path
stringlengths
7
180
content
stringlengths
0
811k
repo
stringclasses
11 values
python/tvm/topi/arm_cpu/injective.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable """Schedule for pooling operators""" import numpy as np import tvm from tvm import te from ..utils import is_empty_shape def schedule_injective_from_existing(sch, out): """Schedule for injective op from existing schedule. Parameters ---------- sch: Schedule The schedule to update. out: Tensor The tensor representing the injective op. Returns ------- sch: Schedule The updated schedule. """ if len(sch[out].op.axis) >= 4: fused = sch[out].fuse(sch[out].op.axis[0], sch[out].op.axis[1], sch[out].op.axis[2]) sch[out].parallel(fused) elif len(sch[out].op.axis) >= 3: fused = sch[out].fuse(sch[out].op.axis[0], sch[out].op.axis[1]) sch[out].parallel(fused) elif len(sch[out].op.axis) >= 2: sch[out].parallel(sch[out].op.axis[0]) return sch def schedule_injective(outs): """ARM CPU schedule for injective op. Parameters ---------- outs: Array of Tensor The computation graph description of injective in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) x = outs[0] if list(s[x].op.axis): # do not vectorize for broadcast (io, ii) = s[x].split(list(s[x].op.axis)[-1], 16 // np.dtype(x.dtype).itemsize) s[x].vectorize(ii) tvm.te.schedule.AutoInlineInjective(s) if not is_empty_shape(x.shape): schedule_injective_from_existing(s, x) return s def schedule_concatenate(outs): """Schedule for concatenate op. Parameters ---------- outs: Array of Tensor The computation graph description of concatenate in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) x = outs[0] tvm.te.schedule.AutoInlineInjective(s) if len(s[x].op.axis) >= 4: fused = s[x].fuse(s[x].op.axis[0], s[x].op.axis[1], s[x].op.axis[2]) s[x].parallel(fused) elif len(s[x].op.axis) >= 3: fused = s[x].fuse(s[x].op.axis[0], s[x].op.axis[1]) s[x].parallel(fused) elif len(s[x].op.axis) >= 2: s[x].parallel(s[x].op.axis[0]) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Schedules specialized for cortex-m DSP instructions."""
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License.
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/conv1d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-value-for-parameter """Direct implementation of conv1d.""" from tvm import autotvm from tvm.autotvm.task import deserialize_args from tvm import te from tvm.topi.utils import simplify, traverse_inline from tvm.topi.nn.pad import pad from tvm.topi.nn.utils import get_pad_tuple1d from tvm.tir.expr import Mul from .micro_kernel.gemm import ( intrin_gemm_MxKxN, gemm_MxKxN_impl, ) def conv1d_nwc_dsp(*args, **kwargs): """Defines the v7e-m DSP instructions of conv1d on NWC layout.""" assert not kwargs, "Do not support kwargs in template function call" args = deserialize_args(args) data, kernel = args[:2] layout = args[-2] cfg = autotvm.get_config() args = [cfg] + args assert layout == "NWC" conv = conv1d_nwc_dsp_compute(*args) sched = conv1d_nwc_dsp_schedule(cfg, [data, kernel, conv]) return sched, [data, kernel, conv] conv1d_nwc_dsp.template_key = "dsp" conv1d_nwc_dsp.default_data_layout = "NWC" conv1d_nwc_dsp.default_kernel_layout = "WOI" def conv1d_nwc_dsp_compute(cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute function for v7e-m DSP instructions of conv1d on NWC layout.""" if isinstance(strides, (tuple, list)): strides = strides[0] if isinstance(dilation, (tuple, list)): dilation = dilation[0] batch_size, data_width, in_channels = data.shape kernel_size, out_channels, _ = kernel.shape # Compute the output shape dilated_kernel_size = (kernel_size - 1) * dilation + 1 pad_left, pad_right = get_pad_tuple1d(padding, (dilated_kernel_size,)) out_channels = simplify(out_channels) out_width = simplify((data_width - dilated_kernel_size + pad_left + pad_right) // strides + 1) # Apply padding pad_before = [0, pad_left, 0] pad_after = [0, pad_right, 0] padded_data = pad(data, pad_before, pad_after, name="padded_data") # Compute graph rc = te.reduce_axis((0, in_channels), name="rc") rw = te.reduce_axis((0, kernel_size), name="rw") conv = te.compute( (batch_size, out_width, out_channels), lambda b, w, c: te.sum( padded_data[b, w * strides + rw * dilation, rc].astype(out_dtype) * kernel[rw, c, rc].astype(out_dtype), axis=[rw, rc], ), name="conv1d", tag="conv1d_nwc", ) ########################### # Config Space Definition # ########################### n, ow, co = ( cfg.axis(batch_size.value), cfg.axis(out_width.value), cfg.axis(out_channels.value), ) kw, ci = ( cfg.reduce_axis(kernel_size.value), cfg.reduce_axis(in_channels.value), ) owo, owi = cfg.define_split("tile_ow", ow, policy="factors", num_outputs=2) cio, cii = cfg.define_split( "tile_ci", ci, policy="factors", num_outputs=2, # TODO: check case with in_channels.value % 4 != 0 with AutoTVM filter=None if cfg.is_fallback else lambda x: x.size[-1] % 4 == 0, ) coo, coi = cfg.define_split("tile_co", co, policy="factors", num_outputs=2) cfg.define_reorder( "reorder_0_simd", [n, owo, owi, coo, coi, kw, cio, cii], policy="candidate", candidate=[ [n, kw, owo, coo, cio, owi, coi, cii], [n, kw, coo, owo, cio, owi, coi, cii], [n, kw, owo, coo, cio, owi, coi, cii], [n, kw, coo, owo, cio, owi, coi, cii], ], ) cfg.define_knob("auto_unroll_max_step", [0, 2, 4, 8, 16, 32]) cfg.define_knob("unroll_explicit", [0, 1]) if cfg.is_fallback: cfg.fallback_split("tile_ow", [-1, out_width.value]) cfg.fallback_split("tile_ci", [-1, in_channels.value]) cfg.fallback_split("tile_co", [-1, out_channels.value]) return conv def conv1d_nwc_dsp_schedule(cfg, outs): """Schedule function for v7e-m DSP instructions of conv1d on NWC layout.""" sched = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv1d_nwc" not in op.tag: return # extract tensors output = op.output(0) conv = op data_vec = conv.input_tensors[0] source_index_w = output.op.body[0].source[0].a.value.indices[1].a stride_w = source_index_w.b.value if isinstance(source_index_w, Mul) else 1 # tile reduction axes n, ow, co = sched[conv].op.axis kw, ci = sched[conv].op.reduce_axis M = cfg["tile_ow"].size[-1] K = cfg["tile_ci"].size[-1] N = cfg["tile_co"].size[-1] owo, owi = cfg["tile_ow"].apply(sched, conv, ow) cio, cii = cfg["tile_ci"].apply(sched, conv, ci) coo, coi = cfg["tile_co"].apply(sched, conv, co) cfg["reorder_0_simd"].apply(sched, conv, [n, owo, owi, coo, coi, kw, cio, cii]) gemm, uniq_id = intrin_gemm_MxKxN(M, K, N, data_vec.dtype, output.dtype, stride_w) sched[output].tensorize(owi, gemm) sched[output].pragma(n, "import_c", gemm_MxKxN_impl(M, K, N, uniq_id)) # this is the scope to attach global config inside this kernel kernel_scope = n # tune unroll sched[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) sched[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) traverse_inline(sched, outs[-1].op, _callback) return sched
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-value-for-parameter """Direct implementation of conv2d.""" from tvm import autotvm from tvm.autotvm.task import deserialize_args from tvm import te from tvm.topi.utils import simplify, traverse_inline from tvm.topi.nn.pad import pad from tvm.topi.nn.utils import get_pad_tuple from tvm.tir.expr import Mul from .micro_kernel.gemm import ( intrin_gemm_MxKxN, gemm_MxKxN_impl, ) def conv2d_nhwc_dsp(*args, **kwargs): """Defines the v7e-m DSP instructions of conv2d.""" assert not kwargs, "Do not support kwargs in template function call" args = deserialize_args(args) data, kernel = args[:2] layout = args[-2] cfg = autotvm.get_config() args = [cfg] + args assert layout == "NHWC" conv = conv2d_nhwc_dsp_compute(*args) sched = conv2d_nhwc_dsp_schedule(cfg, [data, kernel, conv]) return sched, [data, kernel, conv] conv2d_nhwc_dsp.template_key = "dsp" conv2d_nhwc_dsp.default_data_layout = "NHWC" conv2d_nhwc_dsp.default_kernel_layout = "HWOI" def conv2d_nhwc_dsp_compute(cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute function for v7e-m DSP instructions of conv2d.""" assert isinstance(strides, int) or len(strides) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(strides, int): stride_h = stride_w = strides else: stride_h, stride_w = strides if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation batch_size, in_height, in_width, in_channels = data.shape kernel_h, kernel_w, out_channels, _ = kernel.shape # compute the output shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_top, pad_left, pad_down, pad_right = get_pad_tuple( padding, (dilated_kernel_h, dilated_kernel_w) ) out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1) out_width = simplify((in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1) pad_before = [0, pad_top, pad_left, 0] pad_after = [0, pad_down, pad_right, 0] padded_data = pad(data, pad_before, pad_after, name="padded_data") rc = te.reduce_axis((0, in_channels), name="rc") ry = te.reduce_axis((0, kernel_h), name="ry") rx = te.reduce_axis((0, kernel_w), name="rx") conv = te.compute( (batch_size, out_height, out_width, out_channels), lambda nn, yy, xx, ff: te.sum( padded_data[ nn, yy * stride_h + ry * dilation_h, xx * stride_w + rx * dilation_w, rc ].astype(out_dtype) * kernel[ry, rx, ff, rc].astype(out_dtype), axis=[ry, rx, rc], ), name="conv2d", tag="conv2d_nhwc", ) ########################### # Config Space Definition # ########################### n, oh, ow, co = ( cfg.axis(batch_size.value), cfg.axis(out_height.value), cfg.axis(out_width.value), cfg.axis(out_channels.value), ) kh, kw, ci = ( cfg.reduce_axis(kernel_h.value), cfg.reduce_axis(kernel_w.value), cfg.reduce_axis(in_channels.value), ) owo, owi = cfg.define_split("tile_ow", ow, policy="factors", num_outputs=2) cio, cii = cfg.define_split( "tile_ci", ci, policy="factors", num_outputs=2, # TODO: check case with in_channels.value % 4 != 0 with AutoTVM filter=None if cfg.is_fallback else lambda x: x.size[-1] % 4 == 0, ) coo, coi = cfg.define_split("tile_co", co, policy="factors", num_outputs=2) cfg.define_reorder( "reorder_0_simd", [n, oh, owo, owi, coo, coi, kh, kw, cio, cii], policy="candidate", candidate=[ [n, oh, kh, kw, owo, coo, cio, owi, coi, cii], [n, oh, kh, kw, coo, owo, cio, owi, coi, cii], [n, kh, kw, oh, owo, coo, cio, owi, coi, cii], [n, kh, kw, oh, coo, owo, cio, owi, coi, cii], ], ) cfg.define_knob("auto_unroll_max_step", [0, 2, 4, 8, 16, 32]) cfg.define_knob("unroll_explicit", [0, 1]) if cfg.is_fallback: cfg.fallback_split("tile_ow", [-1, out_width.value]) cfg.fallback_split("tile_ci", [-1, in_channels.value]) cfg.fallback_split("tile_co", [-1, out_channels.value]) return conv def conv2d_nhwc_dsp_schedule(cfg, outs): """Schedule function for v7e-m DSP instructions of conv2d.""" sched = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nhwc" not in op.tag: return # extract tensors output = op.output(0) conv = op data_vec = conv.input_tensors[0] kernel = conv.input_tensors[1] # pylint: disable=unused-variable last = outs[0] # pylint: disable=unused-variable source_index_w = output.op.body[0].source[0].a.value.indices[2].a stride_w = source_index_w.b.value if isinstance(source_index_w, Mul) else 1 # tile reduction axes n, oh, ow, co = sched[conv].op.axis kh, kw, ci = sched[conv].op.reduce_axis M = cfg["tile_ow"].size[-1] K = cfg["tile_ci"].size[-1] N = cfg["tile_co"].size[-1] owo, owi = cfg["tile_ow"].apply(sched, conv, ow) cio, cii = cfg["tile_ci"].apply(sched, conv, ci) coo, coi = cfg["tile_co"].apply(sched, conv, co) cfg["reorder_0_simd"].apply(sched, conv, [n, oh, owo, owi, coo, coi, kh, kw, cio, cii]) gemm, uniq_id = intrin_gemm_MxKxN(M, K, N, data_vec.dtype, output.dtype, stride_w) sched[output].tensorize(owi, gemm) sched[output].pragma(n, "import_c", gemm_MxKxN_impl(M, K, N, uniq_id)) # this is the scope to attach global config inside this kernel kernel_scope = n # tune unroll sched[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) sched[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) traverse_inline(sched, outs[-1].op, _callback) return sched
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/dense.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-value-for-parameter """Direct implementation of dense.""" from tvm import te from tvm.topi.utils import traverse_inline, get_const_tuple from .micro_kernel.gemm import ( intrin_gemm_MxKxN, gemm_MxKxN_impl, ) from .... import tag def dense_dsp_compute(cfg, data, weight, bias=None, out_dtype=None): """Defines the v7e-m DSP instructions of dense.""" M, K = get_const_tuple(data.shape) N, _ = get_const_tuple(weight.shape) cfg.define_split("tile_x", M, policy="factors", num_outputs=2) cfg.define_split("tile_y", N, policy="factors", num_outputs=2) cfg.define_split("tile_k", K, policy="factors", num_outputs=2) k = te.reduce_axis((0, K), "k") C = te.compute( (M, N), lambda x, y: te.sum( data[x, k].astype(out_dtype) * weight[y, k].astype(out_dtype), axis=k, ), name="dense", tag="dense_dsp", ) if bias is not None: C = te.compute((M, N), lambda i, j: C[i, j] + bias[j].astype(out_dtype), tag=tag.BROADCAST) return C def dense_dsp_schedule(cfg, outs): """Schedule function for v7e-m DSP instructions of dense.""" sched = te.create_schedule([x.op for x in outs]) def _callback(op): if "dense" not in op.tag: return output = op.output(0) dense = op data = dense.input_tensors[0] M = cfg["tile_x"].size[-1] N = cfg["tile_y"].size[-1] K = cfg["tile_k"].size[-1] x, y = sched[dense].op.axis k = sched[dense].op.reduce_axis[0] x_o, x_i = cfg["tile_x"].apply(sched, dense, x) y_o, y_i = cfg["tile_y"].apply(sched, dense, y) k_o, k_i = cfg["tile_k"].apply(sched, dense, k) sched[dense].reorder(x_o, y_o, k_o, x_i, y_i, k_i) gemm, uniq_id = intrin_gemm_MxKxN(M, K, N, data.dtype, output.dtype, stride_w=1) sched[output].tensorize(x_i, gemm) sched[output].pragma(x_o, "import_c", gemm_MxKxN_impl(M, K, N, uniq_id)) traverse_inline(sched, outs[-1].op, _callback) return sched
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/depthwise_conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ARM Cortex-M DSP schedule for depthwise_conv2d""" import random import string from tvm import te, topi from tvm.topi.utils import traverse_inline from tvm.topi.nn.pad import pad from .micro_kernel.multi_channel_convolve import ( intrin_multi_channel_convolve, multi_channel_convolve_impl, ) from .micro_kernel.common import num_simd_lanes_per_word def depthwise_conv2d_nhwc_dsp_compute(_cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute function for v7e-m DSP instructions of DepthwiseConv2D. Has a lot of requirements for use - if not all apply, the fallback implementation will be used instead.""" assert isinstance(strides, int) or len(strides) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(strides, int): stride_h = stride_w = strides else: stride_h, stride_w = strides # We do not support dilation currently. It would be possible, but it would require # modifying the way the kernel is packed. Gnarly. if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation assert dilation_h == dilation_w == 1 batch_size, height, width, channels = data.shape kernel_h, kernel_w, _, _ = kernel.shape simd_lanes = num_simd_lanes_per_word(data.dtype) # We don't support different numbers of input and output channels. assert channels == kernel.shape[2] assert kernel.shape[3] == 1 # We take in int8 as our dtype, but we spit out int32. This is because we cannot # round until we compute activations. assert out_dtype == "int32" # Padding the data requires COPYING THE ENTIRE INPUT TENSOR, which # is slow and bad. We should really implement a strip mining # routine to avoid this, but TVM has terrible support for that. if padding == "SAME": # This assumption makes the logic easier. Could be removed with work. assert height % stride_h == width % stride_w == 0 output_h = height // stride_h output_w = width // stride_w # This padding behavior is consistent with other TVM depthwise_conv2d schedules. However it # differs from the TensorFlow, which only pads the bottom right if stride > 1. This probably # brings down accuracy slightly for models imported from TFLite. pad_down = 1 if stride_h == 1 else 0 pad_right = 1 if stride_w == 1 else 0 padded_data = pad( data, [0, kernel_h // 2, kernel_w // 2, 0], [0, pad_down, pad_right, 0], name="padded_data", ) elif padding == "VALID": assert height > kernel_h and width > kernel_w output_h = (height - kernel_h) // stride_h + 1 output_w = (width - kernel_w) // stride_w + 1 padded_data = data elif isinstance(padding, tuple): if len(padding) == 2: pad_up, pad_down = padding[0] pad_left, pad_right = padding[1] else: pad_up, pad_left, pad_down, pad_right = padding output_h = (height - kernel_h + pad_up + pad_down) // stride_h + 1 output_w = (width - kernel_w + pad_left + pad_right) // stride_w + 1 padded_data = pad( data, [0, pad_up, pad_left, 0], [0, pad_down, pad_right, 0], name="padded_data", ) else: raise RuntimeError() _, padded_h, padded_w, _ = padded_data.shape kh_i = te.reduce_axis((0, kernel_h), name="kh_i") kw_i = te.reduce_axis((0, kernel_w), name="kw_i") reshaped_kernel = topi.reshape(kernel, (channels // simd_lanes, kernel_h, kernel_w, simd_lanes)) return te.compute( (batch_size, output_h, output_w, channels), lambda h, i, j, k: te.sum( padded_data[h, (i * stride_h) + kh_i, (j * stride_w) + kw_i, k].astype("int32") * reshaped_kernel[k // simd_lanes, kh_i, kw_i, k % simd_lanes].astype("int32"), axis=(kh_i, kw_i), ), name="depthwise_conv2d", tag=f"depthwise_conv2d_nhwc_{padded_h}_{padded_w}_dsp", ) def depthwise_conv2d_nhwc_dsp_schedule(_cfg, outs): """Schedule function for v7e-m DSP instructions of conv2d.""" schedule = te.create_schedule([x.op for x in outs]) def _callback(operator): if "depthwise_conv2d_nhwc" not in operator.tag: return # extract tensors output = operator.output(0) padded_data = output.op.input_tensors[0] reshaped_kernel = output.op.input_tensors[1] in_dtype = padded_data.dtype _, padded_h, padded_w, channels = padded_data.shape _, kernel_h, kernel_w, _ = reshaped_kernel.shape suffix = "".join(random.choices(string.ascii_uppercase, k=8)) b_ax, y_ax, x_ax, c_ax = schedule[output].op.axis ky_ax, kx_ax = schedule[output].op.reduce_axis simd_lanes = num_simd_lanes_per_word(in_dtype) c_ax_o, c_ax_i = schedule[output].split(c_ax, factor=simd_lanes) schedule[output].reorder(b_ax, c_ax_o, y_ax, x_ax, ky_ax, kx_ax, c_ax_i) multi_channel_convolve = intrin_multi_channel_convolve( in_dtype, padded_h, padded_w, channels, kernel_h, kernel_w, suffix ) schedule[output].tensorize(ky_ax, multi_channel_convolve) schedule[output].pragma( b_ax, "import_c", multi_channel_convolve_impl( in_dtype, padded_h, padded_w, channels, kernel_h, kernel_w, suffix ), ) traverse_inline(schedule, outs[-1].op, _callback) return schedule
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/micro_kernel/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License.
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/micro_kernel/avg_pool.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-value-for-parameter """Defines sum intrinsics for sum operation with v7e-m DSP instructions.""" import random import string import tvm from tvm import te from . import common def intrin_sum(shape, in_dtype, out_dtype, reset=False): """Defines a v7e-m DSP-accelerated sum operation.""" UNIQ_ID_LEN = 8 uniq_id = "".join(random.choices(string.ascii_uppercase, k=UNIQ_ID_LEN)) func_prefix = "sum16" assert in_dtype == "int16" assert out_dtype == "int16" width = shape[-1] x = te.placeholder(shape, name="x", dtype=in_dtype) k = te.reduce_axis((0, width), name="rc") def get_slice(indices, k): s = list(indices) s[-1] = s[-1] + k return tuple(s) z = te.compute( (1,) * len(shape), lambda *i: te.sum(x[get_slice(i, k)], axis=[k]).astype(out_dtype) ) def _intrin_func(ins, outs): aa = ins[0] cc = outs[0] def _body(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( cc.dtype, f"{func_prefix}_{width}_{uniq_id}", aa.access_ptr("r"), cc.access_ptr("w"), aa.elem_offset, 1 if reset else 0, ) ) return ib.get() def _reduce_reset(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern(cc.dtype, f"{func_prefix}_reset_{uniq_id}", cc.access_ptr("w")) ) return ib.get() def _reduce_update(): return _body() return _body(), _reduce_reset(), _reduce_update() binds = { t: tvm.tir.decl_buffer( t.shape, t.dtype, t.op.name, strides=[te.var(f"{t.op.name}_s_{i}") for i in range(0, len(t.shape))], offset_factor=1, ) for t in [x, z] } intrin_decl = te.decl_tensor_intrin(z.op, _intrin_func, binds=binds) return intrin_decl, uniq_id def sum_impl(N, uniq_id): """Emit C code for sum impl.""" cc_code = ( common.common_includes + f""" #ifdef __cplusplus extern "C" #endif // __cplusplus __STATIC_FORCEINLINE int32_t sum16_reset_{uniq_id}( int16_t *res) {{ *res = (int16_t)0; return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t sum16_{N}_{uniq_id}( int16_t *arr, int16_t *res16, long arr_offset, int reset) {{ int n; int32_t *p32; int32_t res = reset ? 0 : *res16; if ( arr_offset % 4 != 0 ) {{ res += *arr; p32 = (int32_t *)(&arr[1]); n = {N} - 1; }} else {{ p32 = (int32_t *)arr; n = {N}; }} for ( int i = 0; i < n / 2; ++ i ) {{ res = __SMLAD(*p32, 0x00010001, res); ++ p32; }} if ( n % 2 != 0 ) res += *(int16_t *)p32; *res16 = res; return 0; }} """ ) return cc_code
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/micro_kernel/common.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-value-for-parameter """Defines common C code for all microkernel operations.""" common_includes = """ #include <stdint.h> #include <stdlib.h> #include <string.h> #include <arm_nnsupportfunctions.h> #include <tvm/runtime/crt/error_codes.h> """ MICRO_WORD_LENGTH_BITS = 32 def num_simd_lanes_per_word(dtype: str) -> int: """Takes a dtype, and returns how many of that dtype fit into a single microcontroller word. >>> num_simd_lanes_per_word("int8") 4 >>> num_simd_lanes_per_word("int16") 2 """ assert dtype.startswith("int") dtype_width = int(dtype[3:]) return MICRO_WORD_LENGTH_BITS // dtype_width
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/micro_kernel/gemm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-value-for-parameter """Defines gemm intrinsics for matrix multiplication with v7e-m DSP instructions.""" import random import string import tvm from tvm import te from . import common ########################## # MxKxN MatMul Intrinsic # ########################## # NOTE this is transposed matmul (A * B^T) def intrin_gemm_MxKxN(M, K, N, in_dtype, out_dtype, stride_w=1): """Defines a v7e-m DSP-accelerated transposed matmul.""" # we generate a unique ID for every intrinsic definition, to prevent name # collisions in the generated source (e.g., if there are multiple operators # in the same module that use the same intrinsic) # # TODO(weberlo, areusch): to cut down on memory usage, we should cache each intrinsic # instantiation and include it only once, eliminating the need for unique # IDs UNIQ_ID_LEN = 8 uniq_id = "".join(random.choices(string.ascii_uppercase, k=UNIQ_ID_LEN)) if isinstance(M, tvm.tir.IntImm): M = M.value if isinstance(K, tvm.tir.IntImm): K = K.value if isinstance(N, tvm.tir.IntImm): N = N.value # TODO(weberlo, areusch): support more dtypes? assert in_dtype in ("int8", "int16") assert out_dtype == "int32" A = te.placeholder((M * stride_w - (stride_w - 1), K), name="a", dtype=in_dtype) B = te.placeholder((N, K), name="b", dtype=in_dtype) k = te.reduce_axis((0, K), name="k") C = te.compute( (M, N), lambda i, j: te.sum( A[i * stride_w, k].astype(out_dtype) * B[j, k].astype(out_dtype), axis=k ), name="c", ) A_buf = tvm.tir.decl_buffer( A.shape, A.dtype, name="A", offset_factor=1, strides=[te.var("A_s"), 1] ) B_buf = tvm.tir.decl_buffer( B.shape, B.dtype, name="B", offset_factor=1, strides=[te.var("B_s"), 1] ) C_buf = tvm.tir.decl_buffer( C.shape, C.dtype, name="C", offset_factor=1, strides=[te.var("C_s"), 1] ) def intrin_func(ins, outs): aa, bb = ins cc = outs[0] gemm_func_prefix = "gemm" if in_dtype == "int8" else "gemm16" def _reduce_update(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( "int32", f"{gemm_func_prefix}_{M}x{K}x{N}_update_{uniq_id}", aa.access_ptr("r"), bb.access_ptr("r"), cc.access_ptr("w"), aa.strides[0] * stride_w, bb.strides[0], cc.strides[0], ) ) return ib.get() def _reduce_reset(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( "int32", f"gemm_{M}x{K}x{N}_reset_{uniq_id}", cc.access_ptr("w"), cc.strides[0] ) ) return ib.get() def _body(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( "int32", f"{gemm_func_prefix}_{M}x{K}x{N}_body_{uniq_id}", aa.access_ptr("r"), bb.access_ptr("r"), cc.access_ptr("w"), aa.strides[0] * stride_w, bb.strides[0], cc.strides[0], ) ) return ib.get() return _body(), _reduce_reset(), _reduce_update() intrin_decl = te.decl_tensor_intrin(C.op, intrin_func, binds={A: A_buf, B: B_buf, C: C_buf}) return intrin_decl, uniq_id def gemm_MxKxN_impl(M, K, N, uniq_id): """Emit C code for gemm impl.""" # TODO(weberlo, areusch): are there any SIMD tricks to zero out arrays quickly? # aa_pad_size = M * K bb_pad_size = N * K # code reference: CMSIS-NN paper (https://arxiv.org/abs/1801.06601) cc_code = ( common.common_includes + f""" #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm_{M}x{N}_body_rest_{uniq_id}( int K, int8_t *aa, int8_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ int k_base = (K / 4) * 4; switch ( K % 4 ) {{ case 1: for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int8_t *a_ptr = &aa[i * A_stride + k_base]; int8_t *b_ptr = &bb[j * B_stride + k_base]; cc[i * C_stride + j] = (int32_t) a_ptr[0] * (int32_t) b_ptr[0]; }} }} break; case 2: for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int8_t *a_ptr = &aa[i * A_stride + k_base]; int8_t *b_ptr = &bb[j * B_stride + k_base]; cc[i * C_stride + j] = (int32_t) a_ptr[0] * (int32_t) b_ptr[0] + (int32_t) a_ptr[1] * (int32_t) b_ptr[1]; }} }} break; case 3: for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int8_t *a_ptr = &aa[i * A_stride + k_base]; int8_t *b_ptr = &bb[j * B_stride + k_base]; cc[i * C_stride + j] = (int32_t) a_ptr[0] * (int32_t) b_ptr[0] + (int32_t) a_ptr[1] * (int32_t) b_ptr[1] + (int32_t) a_ptr[2] * (int32_t) b_ptr[2]; }} }} break; }} return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm_{M}x{K}x{N}_body_loop_{uniq_id}( int8_t *aa, int8_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int32_t sum = 0; for (int l = 0; l < {K}; l++) {{ sum += (int32_t) aa[i*A_stride + l] * (int32_t) bb[j*B_stride + l]; }} // NOTE: this is the line where `*_body` differs from `*_update`. here // we're *setting* the result, instead of accumulating, because we know // the `i` and `j` itervars span their entire respective axes. cc[i*C_stride + j] = sum; }} }} return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm_{M}x{K}x{N}_body_{uniq_id}( int8_t *aa, int8_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ int16_t bb_pad[{bb_pad_size}]; int32_t retcode = 0; if ( {M} < 2 && {N} < 2 ) {{ retcode = gemm_{M}x{K}x{N}_body_loop_{uniq_id}(aa, bb, cc, A_stride, B_stride, C_stride); goto out; }} for (int i = 0; i < {N}; i++) for (int j = 0; j < {K} / 4; j++) read_and_pad(&bb[i*B_stride + j*4], (int32_t*) &bb_pad[i*{K} + j*4], (int32_t*) &bb_pad[i*{K} + j*4 + 2]); for (int i = 0; i < {M}; i++) {{ int16_t aa_pad_line[{K}]; for (int l = 0; l < {K} / 4; l++) read_and_pad(&aa[i*A_stride + l*4], (int32_t*) &aa_pad_line[l*4], (int32_t*) &aa_pad_line[l*4 + 2]); for (int j = 0; j < {N}; j++) {{ int32_t *aa_ptr = (int32_t *) aa_pad_line; int32_t *bb_ptr = (int32_t *) &bb_pad[j*{K}]; int32_t sum = 0; for (int l = 0; l < 2 * ({K} / 4); l++) {{ sum = __SMLAD(*aa_ptr, *bb_ptr, sum); ++ aa_ptr; ++ bb_ptr; }} // NOTE: this is the line where `*_body` differs from `*_update`. here // we're *setting* the result, instead of accumulating, because we know // the `i` and `j` itervars span their entire respective axes. cc[i*C_stride + j] = sum; }} }} if ( {K} % 4 != 0 ) gemm_{M}x{N}_body_rest_{uniq_id}({K}, aa, bb, cc, A_stride, B_stride, C_stride); out: return retcode; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm_{M}x{N}_update_rest_{uniq_id}( int K, int8_t *aa, int8_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ int k_base = (K / 4) * 4; switch ( K % 4 ) {{ case 1: for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int8_t *a_ptr = &aa[i * A_stride + k_base]; int8_t *b_ptr = &bb[j * B_stride + k_base]; cc[i * C_stride + j] += (int32_t) a_ptr[0] * (int32_t) b_ptr[0]; }} }} break; case 2: for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int8_t *a_ptr = &aa[i * A_stride + k_base]; int8_t *b_ptr = &bb[j * B_stride + k_base]; cc[i * C_stride + j] += (int32_t) a_ptr[0] * (int32_t) b_ptr[0] + (int32_t) a_ptr[1] * (int32_t) b_ptr[1]; }} }} break; case 3: for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int8_t *a_ptr = &aa[i * A_stride + k_base]; int8_t *b_ptr = &bb[j * B_stride + k_base]; cc[i * C_stride + j] += (int32_t) a_ptr[0] * (int32_t) b_ptr[0] + (int32_t) a_ptr[1] * (int32_t) b_ptr[1] + (int32_t) a_ptr[2] * (int32_t) b_ptr[2]; }} }} break; }} return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm_{M}x{K}x{N}_update_loop_{uniq_id}( int8_t *aa, int8_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int32_t sum = 0; for (int l = 0; l < {K}; l++) {{ sum += (int32_t) aa[i*A_stride + l] * (int32_t) bb[j*B_stride + l]; }} cc[i*C_stride + j] += sum; }} }} return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm_{M}x{K}x{N}_update_{uniq_id}( int8_t *aa, int8_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ int16_t bb_pad[{bb_pad_size}]; int32_t retcode = 0; if ( {M} < 2 && {N} < 2 ) {{ retcode = gemm_{M}x{K}x{N}_update_loop_{uniq_id}(aa, bb, cc, A_stride, B_stride, C_stride); goto out; }} for (int i = 0; i < {N}; i++) for (int j = 0; j < {K} / 4; j++) read_and_pad(&bb[i*B_stride + j*4], (int32_t*) &bb_pad[i*{K} + j*4], (int32_t*) &bb_pad[i*{K} + j*4 + 2]); for (int i = 0; i < {M}; i++) {{ int16_t aa_pad_line[{K}]; for (int l = 0; l < {K} / 4; l++) read_and_pad(&aa[i*A_stride + l*4], (int32_t*) &aa_pad_line[l*4], (int32_t*) &aa_pad_line[l*4 + 2]); for (int j = 0; j < {N}; j++) {{ int32_t *aa_ptr = (int32_t *) aa_pad_line; int32_t *bb_ptr = (int32_t *) &bb_pad[j*{K}]; int32_t sum = 0; for (int l = 0; l < 2 * ({K} / 4); l++) {{ sum = __SMLAD(*aa_ptr, *bb_ptr, sum); ++ aa_ptr; ++ bb_ptr; }} cc[i*C_stride + j] += sum; }} }} if ( {K} % 4 != 0 ) gemm_{M}x{N}_update_rest_{uniq_id}({K}, aa, bb, cc, A_stride, B_stride, C_stride); out: return retcode; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm16_{M}x{N}_body_rest_{uniq_id}( int K, int16_t *aa, int16_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ int k_base = (K / 2) * 2; for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int16_t *a_ptr = &aa[i * A_stride + k_base]; int16_t *b_ptr = &bb[j * B_stride + k_base]; cc[i * C_stride + j] = (int32_t) a_ptr[0] * (int32_t) b_ptr[0]; }} }} return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm16_{M}x{K}x{N}_body_loop_{uniq_id}( int16_t *aa, int16_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int32_t sum = 0; for (int l = 0; l < {K}; l++) {{ sum += (int32_t) aa[i*A_stride + l] * (int32_t) bb[j*B_stride + l]; }} // NOTE: this is the line where `*_body` differs from `*_update`. here // we're *setting* the result, instead of accumulating, because we know // the `i` and `j` itervars span their entire respective axes. cc[i*C_stride + j] = sum; }} }} return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm16_{M}x{K}x{N}_body_{uniq_id}( int16_t *aa, int16_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ int32_t retcode = 0; if ( {M} < 2 && {N} < 2 ) {{ retcode = gemm16_{M}x{K}x{N}_body_loop_{uniq_id}(aa, bb, cc, A_stride, B_stride, C_stride); goto out; }} if(((uint32_t)aa & 0x3) != 0 || ((uint32_t)bb & 0x3) != 0){{ retcode = kTvmErrorFunctionCallInvalidArg; goto out; }} for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int32_t *aa_ptr = (int32_t *) &aa[i*A_stride]; int32_t *bb_ptr = (int32_t *) &bb[j*B_stride]; int32_t sum = 0; for (int l = 0; l < {K} / 2; l++) {{ sum = __SMLAD(*aa_ptr, *bb_ptr, sum); ++ aa_ptr; ++ bb_ptr; }} // NOTE: this is the line where `*_body` differs from `*_update`. here // we're *setting* the result, instead of accumulating, because we know // the `i` and `j` itervars span their entire respective axes. cc[i*C_stride + j] = sum; }} }} if ( {K} % 2 != 0 ) gemm16_{M}x{N}_body_rest_{uniq_id}({K}, aa, bb, cc, A_stride, B_stride, C_stride); out: return retcode; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm16_{M}x{N}_update_rest_{uniq_id}( int K, int16_t *aa, int16_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ int k_base = (K / 2) * 2; for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int16_t *a_ptr = &aa[i * A_stride + k_base]; int16_t *b_ptr = &bb[j * B_stride + k_base]; cc[i * C_stride + j] += (int32_t) a_ptr[0] * (int32_t) b_ptr[0]; }} }} return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm16_{M}x{K}x{N}_update_loop_{uniq_id}( int16_t *aa, int16_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int32_t sum = 0; for (int l = 0; l < {K}; l++) {{ sum += (int32_t) aa[i*A_stride + l] * (int32_t) bb[j*B_stride + l]; }} cc[i*C_stride + j] += sum; }} }} return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm16_{M}x{K}x{N}_update_{uniq_id}( int16_t *aa, int16_t *bb, int32_t *cc, int A_stride, int B_stride, int C_stride) {{ int32_t retcode = 0; if ( {M} < 2 && {N} < 2 ) {{ retcode = gemm16_{M}x{K}x{N}_update_loop_{uniq_id}(aa, bb, cc, A_stride, B_stride, C_stride); goto out; }} for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ int32_t *aa_ptr = (int32_t *) &aa[i*A_stride]; int32_t *bb_ptr = (int32_t *) &bb[j*B_stride]; int32_t sum = 0; for (int l = 0; l < {K} / 2; l++) {{ sum = __SMLAD(*aa_ptr, *bb_ptr, sum); ++ aa_ptr; ++ bb_ptr; }} cc[i*C_stride + j] += sum; }} }} if ( {K} % 2 != 0 ) gemm16_{M}x{N}_update_rest_{uniq_id}({K}, aa, bb, cc, A_stride, B_stride, C_stride); out: return retcode; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t gemm_{M}x{K}x{N}_reset_{uniq_id}(int32_t *cc, int C_stride) {{ for (int i = 0; i < {M}; i++) {{ for (int j = 0; j < {N}; j++) {{ cc[i*C_stride + j] = 0; }} }} return 0; }} """ ) return cc_code
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/micro_kernel/max_pool.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-value-for-parameter """Defines max intrinsics for elemwise max operation with v7e-m DSP instructions.""" import random import string import tvm from tvm import te from . import common def intrin_max(shape, in_dtype, out_dtype): """Defines a v7e-m DSP-accelerated max pool.""" UNIQ_ID_LEN = 8 uniq_id = "".join(random.choices(string.ascii_uppercase, k=UNIQ_ID_LEN)) func_prefix = "max8" assert in_dtype == "int8" assert out_dtype == "int8" x = te.placeholder(shape, name="x", dtype=in_dtype) k = te.reduce_axis((0, 1), name="rc") z = te.compute(shape, lambda *i: tvm.tir.max(x[i], axis=[k]).astype(out_dtype)) def _intrin_func(ins, outs): aa = ins[0] cc = outs[0] def _body(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( cc.dtype, f"{func_prefix}_{uniq_id}", aa.access_ptr("r"), cc.access_ptr("w"), cc.strides[0], ) ) return ib.get() def _reduce_reset(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( cc.dtype, f"{func_prefix}_reset_{uniq_id}", cc.access_ptr("w"), cc.strides[0] ) ) return ib.get() def _reduce_update(): return _body() return _body(), _reduce_reset(), _reduce_update() binds = { t: tvm.tir.decl_buffer( t.shape, t.dtype, t.op.name, strides=[te.var(f"{t.op.name}_s_{i}") for i in range(0, len(t.shape))], offset_factor=1, ) for t in [x, z] } intrin_decl = te.decl_tensor_intrin(z.op, _intrin_func, binds=binds) return intrin_decl, uniq_id def max_impl(uniq_id): """Emit C code for pool impl.""" cc_code = ( common.common_includes + f""" #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t max8_reset_{uniq_id}( int8_t *res, int N) {{ memset(res, (int8_t)-128, N * sizeof(*res)); return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t max8_loop_{uniq_id}( int8_t *arg, int8_t *res, int N) {{ for ( int i = 0; i < N; ++ i ) if ( arg[i] > res[i] ) res[i] = arg[i]; return 0; }} #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t max8_{uniq_id}( int8_t *arg, int8_t *res, int N) {{ int32_t *parg32, *pres32; int una_arg = (int32_t)arg & 0x3, una_res = (int32_t)res & 0x3; int32_t retcode = 0; if ( N < 4 || ((una_arg || una_res) && una_arg != una_res) ) {{ retcode = max8_loop_{uniq_id}(arg, res, N); goto out; }} if ( una_arg ) {{ int n = (4 - una_arg); if ( n > N || (N - n) < 4 ) n = N; retcode = max8_loop_{uniq_id}(arg, res, n); N -= n; if ( N == 0 ) goto out; arg += n; res += n; }} parg32 = (int32_t *)arg; pres32 = (int32_t *)res; for ( int i = 0; i < N / 4; ++ i ) {{ int32_t arg32 = *parg32 ++; int32_t res32 = *pres32; __SSUB8(arg32, res32); res32 = __SEL(arg32, res32); *pres32 ++ = res32; }} if ( N & 0x3 ) {{ retcode = max8_loop_{uniq_id}((int8_t *)parg32, (int8_t *)pres32, N & 0x3); goto out; }} out: return retcode; }} """ ) return cc_code
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/micro_kernel/multi_channel_convolve.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This is a special intrinsic used for depthwise convolution using Cortex-M DSP instructions (v7e-m). It takes as inputs an int8 HWC data tensor and an int8 CHWc kernel. This intrinsic "lays" the kernel on top of the data tensors starting from a given pointer, performs signed sixteen-bit multiplies on each pair of values, and sums all the products in an int32 accumlator. This process is repeated four times giving four int32 outputs - one per channel.""" import textwrap from tvm import te, tir from .common import num_simd_lanes_per_word def _get_func_name(in_dtype, tensor_w, channels, kernel_h, kernel_w, suffix): """Gets the C function name of the tensorized function.""" return f"kernel_convolve_{in_dtype}_w{tensor_w}_c{channels}_kh{kernel_h}_kw{kernel_w}_{suffix}" def intrin_multi_channel_convolve( in_dtype, _tensor_h, tensor_w, channels, kernel_h, kernel_w, suffix ): """Defines a v7e-m DSP-accelerated multi-channel convolution. Works on two channels if in_dtype==int16, and four channels if in_dtype==int8.""" simd_lanes = num_simd_lanes_per_word(in_dtype) overlap_dims = (kernel_h, kernel_w, simd_lanes) data_slice = te.placeholder(overlap_dims, name="data_slice", dtype=in_dtype) kernel_slice = te.placeholder(overlap_dims, name="kernel_slice", dtype=in_dtype) kh_i = te.reduce_axis((0, kernel_h), name="kh_i") kw_i = te.reduce_axis((0, kernel_w), name="kw_i") output_slice = te.compute( (simd_lanes,), lambda k: te.sum( data_slice[kh_i, kw_i, k].astype("int32") * kernel_slice[kh_i, kw_i, k].astype("int32"), axis=(kh_i, kw_i), ), name="c", ) data_buf = tir.decl_buffer( data_slice.shape, data_slice.dtype, name="data", offset_factor=1, strides=[tensor_w * channels, channels, 1], ) kernel_buf = tir.decl_buffer( kernel_slice.shape, kernel_slice.dtype, name="kernel", offset_factor=1, strides=[kernel_w * simd_lanes, simd_lanes, 1], ) output_buf = tir.decl_buffer( output_slice.shape, output_slice.dtype, name="output", offset_factor=1, strides=[1] ) def intrin_func(ins, outs): builder = tir.ir_builder.create() builder.emit( tir.call_extern( "int32", _get_func_name(in_dtype, tensor_w, channels, kernel_h, kernel_w, suffix), outs[0].access_ptr("w"), ins[0].access_ptr("r"), ins[1].access_ptr("r"), ) ) return builder.get() return te.decl_tensor_intrin( output_slice.op, intrin_func, binds={data_slice: data_buf, kernel_slice: kernel_buf, output_slice: output_buf}, ) def multi_channel_convolve_impl(in_dtype, *args) -> str: """Generates C code for a fast multi-channel convolution function for ARM Cortex-M. This is done by calling a sub-function depending on the input data type, as since v7e-m has no quad multiply accumulate instruction, the int8 and int16 cases work differently.""" if in_dtype == "int8": return _quad_int8_channel_convolve_impl(*args) if in_dtype == "int16": return _dual_int16_channel_convolve_impl(*args) raise NotImplementedError(f"No Cortex-M {in_dtype} depthwise_conv2d implementation exists!") def _quad_int8_channel_convolve_impl(_tensor_h, tensor_w, channels, kernel_h, kernel_w, suffix): return textwrap.dedent( ( f""" #include <stdint.h> #include <arm_nnsupportfunctions.h> // __SXTB16(_ROR(X, Y)) is combined into one assembly instruction #define TVMGEN_QUAD_INT8_CHANNEL_REARRANGE_SUM_DSP( \ arranged_kernel, \ tensor_c3210, \ sum_c0, sum_c1, sum_c2, sum_c3) {{ \ \ uint32_t kernel_c3210 = *arranged_kernel++; \ \ uint32_t tensor_c20 = __SXTB16(tensor_c3210); \ uint32_t kernel_c20 = __SXTB16(kernel_c3210); \ sum_c0 = __builtin_arm_smlabb(tensor_c20, kernel_c20, sum_c0); \ sum_c2 = __builtin_arm_smlatt(tensor_c20, kernel_c20, sum_c2); \ \ uint32_t tensor_c31 = __SXTB16(__ROR(tensor_c3210, 8)); \ uint32_t kernel_c31 = __SXTB16(__ROR(kernel_c3210, 8)); \ sum_c1 = __builtin_arm_smlabb(tensor_c31, kernel_c31, sum_c1); \ sum_c3 = __builtin_arm_smlatt(tensor_c31, kernel_c31, sum_c3); \ }} /* We do four channels at once to get this speed boost. */ #ifdef __cplusplus extern "C" #endif int32_t {_get_func_name("int8", tensor_w, channels, kernel_h, kernel_w, suffix)}( uint32_t *out, uint32_t *tensor, uint32_t *kernel) {{ uint32_t sum_c0 = 0; uint32_t sum_c1 = 0; uint32_t sum_c2 = 0; uint32_t sum_c3 = 0; #pragma GCC unroll 3 for (int i = 0; i < {kernel_h}; i++) {{ #pragma GCC unroll 3 for (int j = 0; j < {kernel_w}; j++) {{ TVMGEN_QUAD_INT8_CHANNEL_REARRANGE_SUM_DSP( kernel, *(tensor + j * {channels // 4} + i * {tensor_w * (channels // 4)}), sum_c0, sum_c1, sum_c2, sum_c3) }} }} out[0] = sum_c0; out[1] = sum_c1; out[2] = sum_c2; out[3] = sum_c3; return 0; }} #undef TVMGEN_QUAD_INT8_CHANNEL_REARRANGE_SUM_DSP """ ) ) def _dual_int16_channel_convolve_impl(_tensor_h, tensor_w, channels, kernel_h, kernel_w, suffix): return textwrap.dedent( ( f""" #include <stdint.h> /* We do four channels at once to get this speed boost. */ #ifdef __cplusplus extern "C" #endif int32_t {_get_func_name("int16", tensor_w, channels, kernel_h, kernel_w, suffix)}( uint32_t *out, uint32_t *tensor, uint32_t *kernel) {{ uint32_t sum_c0 = 0; uint32_t sum_c1 = 0; #pragma GCC unroll 3 for (int i = 0; i < {kernel_h}; i++) {{ #pragma GCC unroll 3 for (int j = 0; j < {kernel_w}; j++) {{ uint32_t tensor_c10 = *(tensor + j * {channels // 2} + i * {tensor_w * (channels // 2)}); uint32_t kernel_c10 = *kernel++; sum_c0 = __builtin_arm_smlabb(tensor_c10, kernel_c10, sum_c0); sum_c1 = __builtin_arm_smlatt(tensor_c10, kernel_c10, sum_c1); }} }} out[0] = sum_c0; out[1] = sum_c1; return 0; }} #undef TVMGEN_DUAL_INT16_CHANNEL_REARRANGE_SUM """ ) )
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/micro_kernel/tensordot.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Computes a "jumpy tensordot" operator, which can be used to tensorize many common operators including regular conv2d, depthwise conv2d, and grouped conv2d provided the data and kernel layouts are the optimal ones. When groups=1, the optimal data layout is NHWC and kernel layout is OHWI. When this is a depthwise convolution, the optimal data layout is NCHW and kernel layout is OIHW.""" import textwrap from tvm import te, tir from .common import num_simd_lanes_per_word def _get_func_name(in_dtype, tensor_h, jump, tensor_w, suffix): """Gets the C function name of the tensordot function.""" return f"tensordot_{in_dtype}_h{tensor_h}_j{jump}_w{tensor_w}_{suffix}" def make_intrin_tensordot(slices, strides, tensordot_params): """Helper function for constructing tensordot intrinsic. We can't construct the whole thing here (as multiple schedules use tensordot and each must build the intrinstic differently) but we can build part here to simplify the code.""" # in_dtype, tensor_h, jump, tensor_w, suffix = tensordot_params data, kernel, output = slices data_strides, kernel_strides = strides data_buf = tir.decl_buffer( data.shape, data.dtype, name="data", offset_factor=1, strides=data_strides ) kernel_buf = tir.decl_buffer( kernel.shape, kernel.dtype, name="kernel", offset_factor=1, strides=kernel_strides, ) output_buf = tir.decl_buffer( output.shape, output.dtype, name="output", offset_factor=1, strides=[1] ) def intrin_func(ins, outs): builder = tir.ir_builder.create() builder.emit( tir.call_extern( "int32", _get_func_name(*tensordot_params), outs[0].access_ptr("w"), ins[0].access_ptr("r"), ins[1].access_ptr("r"), ) ) return builder.get() return te.decl_tensor_intrin( output.op, intrin_func, binds={data: data_buf, kernel: kernel_buf, output: output_buf}, ) def tensordot_impl(in_dtype: str, tensor_h: int, jump: int, tensor_w: int, suffix: str) -> str: """Generates C code for taking the dot products of two `tensor_h` * `tensor_w` tensors. Also has a `jump` argument that advances the pointer of one tensor by that many words after each row. The `jump` and `tensor_w` values must be word-aligned for the input data type, as non-word-aligned memory access is slow on the Cortex-M series. Depending on the input datatype, the code may contain DSP instructions for Arm v7e-m. C code contains DSP instructions for Arm v7e-m. See the below pseudocode for reference: tensordot(out_ptr, dat_ptr, ker_ptr) { sum = 0; for (i = 0; i < tensor_h; i++) { for (j = 0; j < tensor_w; j++) { sum += (*dat_ptr++) * (*ker_ptr++); } dat_ptr += jump; } *out_ptr = sum; } """ simd_lanes = num_simd_lanes_per_word(in_dtype) assert tensor_w % simd_lanes == 0 assert jump % simd_lanes == 0 if in_dtype == "int8": inner_loop = """ uint32_t tensor_c20 = __SXTB16(tensor_batch); uint32_t kernel_c20 = __SXTB16(kernel_batch); sum = __SMLAD(tensor_c20, kernel_c20, sum); uint32_t tensor_c31 = __SXTB16(__ROR(tensor_batch, 8)); uint32_t kernel_c31 = __SXTB16(__ROR(kernel_batch, 8)); sum = __SMLAD(tensor_c31, kernel_c31, sum);""" elif in_dtype == "int16": inner_loop = """ sum = __SMLAD(tensor_batch, kernel_batch, sum);""" elif in_dtype == "int32": inner_loop = """ // Compiles to a single MAC instruction sum += tensor_batch * kernel_batch;""" else: raise ValueError(f"No tensordot implementation exists for dtype '{in_dtype}'!") function_name = _get_func_name(in_dtype, tensor_h, jump, tensor_w, suffix) return textwrap.dedent( ( f""" #include <stdint.h> #include <arm_nnsupportfunctions.h> #ifdef __cplusplus extern "C" #endif __STATIC_FORCEINLINE int32_t {function_name}( uint32_t *out, uint32_t *tensor, uint32_t *kernel) {{ uint32_t sum = 0; #pragma GCC unroll {tensor_h} for (int i = 0; i < {tensor_h}; i++) {{ #pragma GCC unroll {tensor_w // simd_lanes} for (int j = 0; j < {tensor_w // simd_lanes}; j++) {{ uint32_t tensor_batch = *tensor++; uint32_t kernel_batch = *kernel++; {inner_loop.strip()} }} tensor += {jump // simd_lanes}; }} out[0] = sum; return 0; }} """ ) )
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/pool.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-value-for-parameter """Direct implementation of pool.""" import logging import tvm from tvm import te from tvm.topi.utils import traverse_inline from .micro_kernel.max_pool import ( intrin_max, max_impl, ) from .micro_kernel.avg_pool import ( intrin_sum, sum_impl, ) logger = logging.getLogger("topi") def schedule_maxpool_1d_nwc(s, op): """Schedule function for v7e-m DSP instructions of maxpool 1d NWC layout.""" output = op.output(0) data_vec = op.input_tensors[0] channels = data_vec.shape[-1] if isinstance(channels, tvm.tir.IntImm): channels = channels.value n, w, c = s[op].op.axis (k,) = s[op].op.reduce_axis s[op].reorder(n, w, k, c) max_val, uniq_id = intrin_max((1, 1, channels), data_vec.dtype, output.dtype) s[op].tensorize(c, max_val) s[output].pragma(n, "import_c", max_impl(uniq_id)) def schedule_maxpool_2d_nhwc(s, op): """Schedule function for v7e-m DSP instructions of maxpool 2d NHWC layout.""" output = op.output(0) data_vec = op.input_tensors[0] channels = data_vec.shape[-1] if isinstance(channels, tvm.tir.IntImm): channels = channels.value n, h, w, c = s[op].op.axis ko, ki = s[op].op.reduce_axis s[op].reorder(n, h, w, ko, ki, c) max_val, uniq_id = intrin_max((1, 1, 1, channels), data_vec.dtype, output.dtype) s[op].tensorize(c, max_val) s[output].pragma(n, "import_c", max_impl(uniq_id)) def schedule_avgpool_1d_ncw(s, op): """Schedule function for v7e-m DSP instructions of avgpool 1d NCW layout.""" output = op.output(0) data_vec = op.input_tensors[0] n, _, _ = s[op].op.axis (k,) = s[op].op.reduce_axis pool_w = k.dom.extent.value summary, uniq_id = intrin_sum((1, 1, pool_w), data_vec.dtype, output.dtype, reset=True) s[op].tensorize(k, summary) s[output].pragma(n, "import_c", sum_impl(pool_w, uniq_id)) def schedule_avgpool_2d_nchw(s, op): """Schedule function for v7e-m DSP instructions of avgpool 2d NCHW layout.""" output = op.output(0) data_vec = op.input_tensors[0] n, _, _, _ = s[op].op.axis _, ki = s[op].op.reduce_axis pool_w = ki.dom.extent.value summary, uniq_id = intrin_sum((1, 1, 1, pool_w), data_vec.dtype, output.dtype) s[op].tensorize(ki, summary) s[output].pragma(n, "import_c", sum_impl(pool_w, uniq_id)) def pool_dsp_schedule(outs, layout): """Schedule function for v7e-m DSP instructions of pooling.""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "pool_max" in op.tag: in_dtype = op.input_tensors[0].dtype if in_dtype != "int8": logger.warning("Does not have micro-kernel for %s maxpool.", in_dtype) elif layout == "NWC": schedule_maxpool_1d_nwc(s, op) elif layout == "NHWC": schedule_maxpool_2d_nhwc(s, op) elif "pool_sum" in op.tag: in_dtype = op.input_tensors[0].dtype if in_dtype != "int16": logger.warning("Does not have micro-kernel for %s avgpool.", in_dtype) elif layout == "NCW": schedule_avgpool_1d_ncw(s, op) elif layout == "NCHW": schedule_avgpool_2d_nchw(s, op) traverse_inline(s, outs[-1].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/mprofile/dsp/tensordot_conv2ds.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Implementations of several conv2d variations, all tensorized using tensordot and optimized for Cortex-M DSP. Currently contains a standard conv2d and depthwise conv2d implementation, but could be extended to add a grouped conv2d operator. Due to the way we tensorize, this schedule ONLY works when the data and kernel layouts are NCHWxc and OIHWxi respectively, where x is the number of input channels divided by the number of groups.""" import random import string from typing import Callable, Tuple, Union import tvm from tvm import te from tvm.tir import indexdiv, indexmod from tvm.topi.utils import traverse_inline from tvm.topi.nn.pad import pad from .micro_kernel.tensordot import ( make_intrin_tensordot, tensordot_impl, ) def _unpack_2d_argument(argument: Union[int, Tuple]) -> Tuple: if isinstance(argument, int): return (argument, argument) assert len(argument) == 2 return argument def _check_no_dilation(dilation: Union[int, Tuple]) -> None: """Takes a dilation argument as an integer or tuple, and makes sure both dimensions are 1. Dilation prevents us from using DSP instructions, so this schedule can't work (aside from the niche case where dilation_h == stride_h and dilation_w == stride_w, which is rare enough we probably don't need to support it).""" dilation_h, dilation_w = _unpack_2d_argument(dilation) assert dilation_h == dilation_w == 1 def _unpack_padding(padding: Tuple) -> Tuple: assert isinstance(padding, tuple) if len(padding) == 2: (pad_up, pad_down), (pad_left, pad_right) = padding else: pad_up, pad_left, pad_down, pad_right = padding return pad_up, pad_left, pad_down, pad_right def _pad_if_needed(data: te.tensor.Tensor, layout: str, padding: Tuple) -> te.tensor.Tensor: """Performs padding on a te.tensor.Tensor object if necessary. If padding = (0, 0, 0, 0), the input tensor is returned unmodified. We only care about tuples here - "VALID" and "SAME" padding will be converted by the importer TFLite importer if present.""" pad_up, pad_left, pad_down, pad_right = padding if not any(padding): return data # We want to pad the "H" and "W" columns, and their position depends on the layout pad_before, pad_after = [0, 0, 0, 0], [0, 0, 0, 0] pad_before[layout.index("H")] = pad_up pad_before[layout.index("W")] = pad_left pad_after[layout.index("H")] = pad_down pad_after[layout.index("W")] = pad_right return pad(data, pad_before, pad_after, name="padded_data") def _compute_output_dim( data_dim: int, kernel_dim: int, pad_before: int, pad_after: int, stride: int ) -> int: """Computes an output dimension of a convolution, given the data dimension, kernel dimension, padding, and stride along that axis. Note that when stride > 1, this division will often not be perfectly even.""" return (data_dim + pad_before + pad_after - kernel_dim) // stride + 1 def _wrap_te_compute( shape: Tuple, fcompute: Callable[[int, int, int, int], tvm.ir.PrimExpr], desired_out_layout: str, current_out_layout: str = "NHWC", **kwargs, ) -> te.tensor.Tensor: """Wrapper over te.compute that allows the output layout to be easily changed.""" assert current_out_layout.isalpha() and desired_out_layout.isalpha() assert sorted(current_out_layout) == sorted(desired_out_layout) forward_order = (current_out_layout.index(c) for c in desired_out_layout) reverse_order = (desired_out_layout.index(c) for c in current_out_layout) return te.compute( tuple(shape[i] for i in forward_order), lambda *args: fcompute(*(args[i] for i in reverse_order)), **kwargs, ) def _get_suffix() -> str: """Returns a random eight-character string to append to C function names. Prevents accidental re-definition of functions if the same operator appears twice in a Relay graph.""" return "".join(random.choices(string.ascii_uppercase, k=8)) def conv2d_nhwc_ohwi_dsp_compute( _cfg, data, kernel, strides, padding, dilation, out_layout, out_dtype ): """Standard conv2d schedule that can be tensorized using tensordot.""" stride_h, stride_w = _unpack_2d_argument(strides) pad_up, pad_left, pad_down, pad_right = _unpack_padding(padding) _check_no_dilation(dilation) batch_size, data_h, data_w, in_channels = data.shape output_channels, kernel_h, kernel_w, _ = kernel.shape assert kernel.shape[3] == in_channels output_h = _compute_output_dim(data_h, kernel_h, pad_up, pad_down, stride_h) output_w = _compute_output_dim(data_w, kernel_w, pad_left, pad_right, stride_w) kh_i = te.reduce_axis((0, kernel_h), name="kh_i") kw_i = te.reduce_axis((0, kernel_w), name="kw_i") kc_i = te.reduce_axis((0, in_channels), name="rc") padded_data = _pad_if_needed(data, "NHWC", (pad_up, pad_left, pad_down, pad_right)) return _wrap_te_compute( (batch_size, output_h, output_w, output_channels), lambda n, y, x, c: te.sum( padded_data[n, y * stride_h + kh_i, x * stride_w + kw_i, kc_i].astype(out_dtype) * kernel[c, kh_i, kw_i, kc_i].astype(out_dtype), axis=(kh_i, kw_i, kc_i), ), out_layout, name="conv2d", tag="conv2d_nhwc_ohwi_dsp", ) def _make_conv2d_tensorization(padded_data, kernel): _, _, padded_w, in_channels = padded_data.shape _, kernel_h, kernel_w, _ = kernel.shape in_dtype = padded_data.dtype suffix = _get_suffix() assert in_dtype == kernel.dtype data_slice = te.placeholder((kernel_h, kernel_w, in_channels), name="a", dtype=in_dtype) kernel_slice = te.placeholder((kernel_h, kernel_w, in_channels), name="b", dtype=in_dtype) kh_i = te.reduce_axis((0, kernel_h), name="kh_i") kw_i = te.reduce_axis((0, kernel_w), name="kw_i") kc_i = te.reduce_axis((0, in_channels), name="kc_i") output_slice = te.compute( (1,), lambda k: te.sum( data_slice[kh_i, kw_i, kc_i].astype("int32") * kernel_slice[kh_i, kw_i, kc_i].astype("int32"), axis=[kh_i, kw_i, kc_i], ), name="c", ) # TVM has a really strange bug where the outer reduction axis (kh_i) having length 1 causes the # decl_buffer strides check to fail. height_stride is a dark magic workaround for this. height_stride = in_channels * padded_w if kernel_h > 1 else in_channels jump = (padded_w - kernel_w) * in_channels tensordot_params = (in_dtype, kernel_h, jump, kernel_w * in_channels, suffix) intrin_tensordot = make_intrin_tensordot( (data_slice, kernel_slice, output_slice), ([height_stride, in_channels, 1], [kernel_w * in_channels, in_channels, 1]), tensordot_params, ) tensordot_code = tensordot_impl(*tensordot_params) return (intrin_tensordot, tensordot_code) def depthwise_conv2d_nchw_oihw_dsp_compute( _cfg, data, kernel, strides, padding, dilation, out_layout, out_dtype ): """Depthwise conv2d schedule that can be tensorized using tensordot.""" stride_h, stride_w = _unpack_2d_argument(strides) pad_up, pad_left, pad_down, pad_right = _unpack_padding(padding) _check_no_dilation(dilation) batch_size, in_channels, data_h, data_w = data.shape _, c_mul, kernel_h, kernel_w = kernel.shape output_channels = in_channels * c_mul assert kernel.shape[0] == in_channels output_h = _compute_output_dim(data_h, kernel_h, pad_up, pad_down, stride_h) output_w = _compute_output_dim(data_w, kernel_w, pad_left, pad_right, stride_w) kh_i = te.reduce_axis((0, kernel_h), name="kh_i") kw_i = te.reduce_axis((0, kernel_w), name="kw_i") padded_data = _pad_if_needed(data, "NCHW", (pad_up, pad_left, pad_down, pad_right)) return _wrap_te_compute( (batch_size, output_h, output_w, output_channels), lambda n, y, x, c: te.sum( padded_data[ n, indexdiv(c, c_mul), y * stride_h + kh_i, x * stride_w + kw_i, ].astype(out_dtype) * kernel[indexdiv(c, c_mul), indexmod(c, c_mul), kh_i, kw_i].astype(out_dtype), axis=(kh_i, kw_i), ), out_layout, name="depthwise_conv2d", tag="depthwise_conv2d_nchw_oihw_dsp", ) def _make_depthwise_conv2d_tensorization(padded_data, kernel): _, _, _, padded_w = padded_data.shape _, _, kernel_h, kernel_w = kernel.shape in_dtype = padded_data.dtype suffix = _get_suffix() assert in_dtype == kernel.dtype data_slice = te.placeholder((kernel_h, kernel_w), name="a", dtype=in_dtype) kernel_slice = te.placeholder((kernel_h, kernel_w), name="b", dtype=in_dtype) kh_i = te.reduce_axis((0, kernel_h), name="kh_i") kw_i = te.reduce_axis((0, kernel_w), name="kw_i") output_slice = te.compute( (1,), lambda k: te.sum( data_slice[kh_i, kw_i].astype("int32") * kernel_slice[kh_i, kw_i].astype("int32"), axis=[kh_i, kw_i], ), name="c", ) jump = padded_w - kernel_w tensordot_params = (in_dtype, kernel_h, jump, kernel_w, suffix) intrin_tensordot = make_intrin_tensordot( (data_slice, kernel_slice, output_slice), ([padded_w, 1], [kernel_w, 1]), tensordot_params, ) tensordot_code = tensordot_impl(*tensordot_params) return (intrin_tensordot, tensordot_code) def tensordot_conv2ds_schedule(_cfg, outs): """Schedule function using v7e-m DSP instructions for all the conv2d operators in this file. We use one schedule function for them all, because they are tensorized with the same kernel.""" schedule = te.create_schedule([x.op for x in outs]) def _callback(operator): if "conv2d" in operator.tag: output = operator.output(0) padded_data = output.op.input_tensors[0] kernel = output.op.input_tensors[1] if operator.tag == "conv2d_nhwc_ohwi_dsp": b_ax, y_ax, x_ax, co_ax = schedule[output].op.axis kh_ax, kw_ax, ci_ax = schedule[output].op.reduce_axis schedule[output].reorder(b_ax, y_ax, x_ax, co_ax, kh_ax, kw_ax, ci_ax) intrin, code = _make_conv2d_tensorization(padded_data, kernel) elif operator.tag == "depthwise_conv2d_nchw_oihw_dsp": b_ax, y_ax, x_ax, co_ax = schedule[output].op.axis kh_ax, kw_ax = schedule[output].op.reduce_axis schedule[output].reorder(b_ax, co_ax, y_ax, x_ax, kh_ax, kw_ax) intrin, code = _make_depthwise_conv2d_tensorization(padded_data, kernel) else: raise ValueError(f"Cannot tensorize {operator.tag} with tensordot!") schedule[output].tensorize(kh_ax, intrin) schedule[output].pragma(b_ax, "import_c", code) traverse_inline(schedule, outs[-1].op, _callback) return schedule
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/pooling.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable """Schedule for pooling operators""" from .mprofile.dsp.pool import pool_dsp_schedule def schedule_pool(outs, layout): """Create schedule for avgpool/maxpool with dsp""" return pool_dsp_schedule(outs, layout)
https://github.com/zk-ml/tachikoma
python/tvm/topi/arm_cpu/tensor_intrin.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument,no-member """Conv2D int8 schedule on ARM""" import tvm from tvm import te from tvm.ir import register_intrin_lowering def gemm_4x4_int8_int8_int32(M, N, K, unroll, in_type): """ Int8 4x4 matrix multiplication and accumulation using a sequence of umull -> uadalp -> umull2 -> uadalp instructions. This function takes two arrays of int8 data type A[4][K] and B[4][K], and produces a 4x4 matrix which is equal to A*B'. The pseudo code is as follows. .. code-block:: c void gemm_4x4_int8_int8_int32(int8 A[4][K], int8 B[4][K], int32 C[4][4]){ for (int i = 0; i < 4; i++){ for (int j = 0; j < 4; j++){ for (int k = 0; k < K; k++){ C[i][j] += A[i][k] * B[j][k] } } } Notes: * The tiling strategy is picked to maximize register usage. Parameters ---------- M : int rows of the matrix A N : int columns of the matrix B K : int columns of matrix A unroll : bool Unroll the loop accumulation if True in_type : str, {'uint8', 'int8'} Returns ------- intrin : TensorIntrin The ARM uint8/int8 TensorIntrin that can be used in tensorizing schedule """ assert in_type in ["uint8", "int8"] A = te.placeholder((K // 16, te.var("m"), 16), dtype=in_type, name="A") B = te.placeholder((K // 16, te.var("n"), 16), dtype=in_type, name="B") dtype_vec = in_type + "x16" idxm = tvm.tir.indexmod k = te.reduce_axis((0, K), "k") C = te.compute( (te.var("m"), te.var("n")), lambda x, y: te.sum( A[k // 16, x, idxm(k, 16)].astype("int32") * B[k // 16, y, idxm(k, 16)].astype("int32"), axis=k, ), name="C", ) a_buffer = tvm.tir.decl_buffer( A.shape, dtype=in_type, name="a_buffer", offset_factor=1, strides=[te.var("sa_1"), te.var("sa_2"), 1], ) b_buffer = tvm.tir.decl_buffer( B.shape, dtype=in_type, name="b_buffer", offset_factor=1, strides=[te.var("sb_1"), te.var("sb_2"), 1], ) c_buffer = tvm.tir.decl_buffer( C.shape, dtype="int32", name="c_buffer", offset_factor=1, strides=[te.var("sc"), 1] ) # Intrinsics used in the following algorithm umull_intrin = "llvm.aarch64.neon.umull" if in_type == "uint8" else "llvm.aarch64.neon.smull" uaddlp_intrin = "llvm.aarch64.neon.uaddlp" if in_type == "uint8" else "llvm.aarch64.neon.saddlp" addp_intrin = "llvm.aarch64.neon.addp" def uadalp(a, b): """Add pair and accumulate Parameters: ---------- a: int16x8 vector b: int16x8 vector Returns: -------- return a int32x4 vector Pseudocode: ---------- a += (b0+b1, b2+b3, b4+b5, b6+b7) """ return a + tvm.tir.call_llvm_pure_intrin( "int32x4", uaddlp_intrin, tvm.tir.const(1, "uint32"), b ) def umull(a, b): """Multiply long (higher part) Parameters: ---------- a: int8x16 vector b: int8x16 vector Returns: -------- return a int16x8 vector Pseudocode: ---------- c = (a0*b0, a1*b1, a2*b2, a3*b3, a4*b4, a5*b5, a6*b6, a7*b7) """ a_high = tvm.tir.call_intrin("int8x8", "tir.vectorhigh", a) b_high = tvm.tir.call_intrin("int8x8", "tir.vectorhigh", b) c = tvm.tir.call_llvm_pure_intrin( "int16x8", umull_intrin, tvm.tir.const(2, "uint32"), a_high, b_high ) return c def umull2(a, b): """Multiply long (lower part) Parameters: ---------- a: int8x16 vector b: int8x16 vector Returns: -------- return a int16x8 vector Pseudocode: ---------- c = (a8*b8, a9*b9, a10*b10, a11*b11, a12*b12, a13*b13, a14*b14, a15*b15) """ a_low = tvm.tir.call_intrin("int8x8", "tir.vectorlow", a) b_low = tvm.tir.call_intrin("int8x8", "tir.vectorlow", b) c = tvm.tir.call_llvm_pure_intrin( "int16x8", umull_intrin, tvm.tir.const(2, "uint32"), a_low, b_low ) return c def addp(a, b): """Add two vectors in pairs Parameters: ---------- a: int32x4 vector b: int32x4 vector Returns: -------- return a int32x4 vector Pseudocode: ---------- c = (a0+a1, a2+a3, b0+b1, b0+b3) """ return tvm.tir.call_llvm_pure_intrin( "int32x4", addp_intrin, tvm.tir.const(2, "uint32"), a, b ) def accumulation_loop(M, N, ins, acc, tile_idx): """Internal tile accumulation. This function takes two arrays of int8 data type A[tile_idx][4][16] and B[tile_idx][4][16], produces a 4x4 matrix which is equal to A*B' and accumulates into C[4][4] The pseudo code is as follows. .. code-block:: c void gemm_4x4_int8_int8_int32(int8 A[tile_idx][4][K], int8 B[tile_idx][4][K], int32 C[4][4]){ for (int i = 0; i < 4; i++){ for (int j = 0; j < 4; j++){ for (int k = 0; k < 16; k++){ C[i][j] += A[tile_idx][i][k] * B[tile_idx][j][k] } } } Notes: * The tiling strategy is picked to maximize register usage. Parameters: ---------- M : int Number of total rows of the output matrix N : int Number of total columns of the output matrix ins : list of tvm.tir.buffer Input buffers acc : tvm.tir.ir_builder.BufferVar Bank of register accumulators tiled_idx : int Index of a sub-tile of A and B in A[tile_idx][:][:] and B[tile_idx][:][:]. Please note that 0 <= tile_idx <= K//16 """ a0 = ins[0].vload([tile_idx, 0, 0], dtype_vec) a1 = tvm.tir.const(0, "int8x16") if M > 1: a1 = ins[0].vload([tile_idx, 1, 0], dtype_vec) a2 = tvm.tir.const(0, "int8x16") if M > 2: a2 = ins[0].vload([tile_idx, 2, 0], dtype_vec) a3 = tvm.tir.const(0, "int8x16") if M > 3: a3 = ins[0].vload([tile_idx, 3, 0], dtype_vec) b0 = ins[1].vload([tile_idx, 0, 0], dtype_vec) b1 = tvm.tir.const(0, "int8x16") if N > 1: b1 = ins[1].vload([tile_idx, 1, 0], dtype_vec) b2 = tvm.tir.const(0, "int8x16") if N > 2: b2 = ins[1].vload([tile_idx, 2, 0], dtype_vec) b3 = tvm.tir.const(0, "int8x16") if N > 3: b3 = ins[1].vload([tile_idx, 3, 0], dtype_vec) # First half # Lower part of a0 * {b0,b1,b2,b3} d00 = umull(a0, b0) d01 = umull(a0, b1) d02 = umull(a0, b2) d03 = umull(a0, b3) # Lower part of a1 * {b0,b1,b2,b3} d10 = umull(a1, b0) d11 = umull(a1, b1) d12 = umull(a1, b2) d13 = umull(a1, b3) # Accumulate acc[0] = uadalp(acc[0], d00) acc[1] = uadalp(acc[1], d01) acc[2] = uadalp(acc[2], d02) acc[3] = uadalp(acc[3], d03) acc[4] = uadalp(acc[4], d10) acc[5] = uadalp(acc[5], d11) acc[6] = uadalp(acc[6], d12) acc[7] = uadalp(acc[7], d13) # Higher part of a0 * {b0,b1,b2,b3} d00 = umull2(a0, b0) d01 = umull2(a0, b1) d02 = umull2(a0, b2) d03 = umull2(a0, b3) # Higher part of a1 * {b0,b1,b2,b3} d10 = umull2(a1, b0) d11 = umull2(a1, b1) d12 = umull2(a1, b2) d13 = umull2(a1, b3) # Accumulate again acc[0] = uadalp(acc[0], d00) acc[1] = uadalp(acc[1], d01) acc[2] = uadalp(acc[2], d02) acc[3] = uadalp(acc[3], d03) acc[4] = uadalp(acc[4], d10) acc[5] = uadalp(acc[5], d11) acc[6] = uadalp(acc[6], d12) acc[7] = uadalp(acc[7], d13) # Second half # Lower part of a2 * {b0,b1,b2,b3} d00 = umull(a2, b0) d01 = umull(a2, b1) d02 = umull(a2, b2) d03 = umull(a2, b3) # Lower part of a3 * {b0,b1,b2,b3} d10 = umull(a3, b0) d11 = umull(a3, b1) d12 = umull(a3, b2) d13 = umull(a3, b3) # Accumulate acc[8] = uadalp(acc[8], d00) acc[9] = uadalp(acc[9], d01) acc[10] = uadalp(acc[10], d02) acc[11] = uadalp(acc[11], d03) acc[12] = uadalp(acc[12], d10) acc[13] = uadalp(acc[13], d11) acc[14] = uadalp(acc[14], d12) acc[15] = uadalp(acc[15], d13) # Higher part of a2 * {b0,b1,b2,b3} d00 = umull2(a2, b0) d01 = umull2(a2, b1) d02 = umull2(a2, b2) d03 = umull2(a2, b3) # Lower part of a3 * {b0,b1,b2,b3} d10 = umull2(a3, b0) d11 = umull2(a3, b1) d12 = umull2(a3, b2) d13 = umull2(a3, b3) # Accumulate acc[8] = uadalp(acc[8], d00) acc[9] = uadalp(acc[9], d01) acc[10] = uadalp(acc[10], d02) acc[11] = uadalp(acc[11], d03) acc[12] = uadalp(acc[12], d10) acc[13] = uadalp(acc[13], d11) acc[14] = uadalp(acc[14], d12) acc[15] = uadalp(acc[15], d13) def _intrin_func(ins, outs): def _instr(): ib = tvm.tir.ir_builder.create() # Allocate a local buffer (possibly translates to registers) acc = ib.allocate("int32x4", 16, name="accs", scope="local") m = outs[0].shape[0] n = outs[0].shape[1] # Initialization for i in range(0, 16): acc[i] = tvm.tir.const(0, "int32x4") if unroll: for i in range(0, int(K // 16)): accumulation_loop(M, N, ins, acc, i) else: with ib.for_range(0, K // 16, name="i") as i: accumulation_loop(M, N, ins, acc, i) # Final accumulations # acc[4*r + c] contains the partial accumulations of element C[r][c] # # In particular: # acc[4*r] contains the partial sums of a[r,0:K].*b[0,0:K] -> (a,b,c,d) # acc[4*r+1] contains the partial sums of a[r, 0:K].*b[1,0:K] -> (e,f,g,h) # acc[4*r+2] contains the partial sums of a[r, 0:K].*b[2,0:K] -> (i,j,k,l) # acc[4*r+3] contains the partial sums of a[r, 0:K].*b[3,0:K] -> (m,n,o,p) # # Please note that 0<= r, c < 4 acc[0] = addp(acc[0], acc[1]) # (a+b, c+d, e+f, g+h) acc[1] = addp(acc[2], acc[3]) # (i+j, k+l, m+n, o+p) acc[0] = addp(acc[0], acc[1]) # (a+b+c+d, e+f+g+h, i+j+k+l, m+n+o+p) acc[4] = addp(acc[4], acc[5]) # (a+b, c+d, e+f, g+h) acc[5] = addp(acc[6], acc[7]) # (i+j, k+l, m+n, o+p) acc[4] = addp(acc[4], acc[5]) # (a+b+c+d, e+f+g+h, i+j+k+l, m+n+o+p) acc[8] = addp(acc[8], acc[9]) # (a+b, c+d, e+f, g+h) acc[9] = addp(acc[10], acc[11]) # (i+j, k+l, m+n, o+p) acc[8] = addp(acc[8], acc[9]) # (a+b+c+d, e+f+g+h, i+j+k+l, m+n+o+p) acc[12] = addp(acc[12], acc[13]) # (a+b, c+d, e+f, g+h) acc[13] = addp(acc[14], acc[15]) # (i+j, k+l, m+n, o+p) acc[12] = addp(acc[12], acc[13]) # (a+b+c+d, e+f+g+h, i+j+k+l, m+n+o+p) # Store the result if N > 3: out_0 = acc[0] out_1 = acc[4] out_2 = acc[8] out_3 = acc[12] elif N > 2: out_0 = tvm.tir.call_intrin("int32x3", "tir.reinterpret", acc[0]) out_1 = tvm.tir.call_intrin("int32x3", "tir.reinterpret", acc[4]) out_2 = tvm.tir.call_intrin("int32x3", "tir.reinterpret", acc[8]) out_3 = tvm.tir.call_intrin("int32x3", "tir.reinterpret", acc[12]) elif N > 1: out_0 = tvm.tir.call_intrin("int32x2", "tir.reinterpret", acc[0]) out_1 = tvm.tir.call_intrin("int32x2", "tir.reinterpret", acc[4]) out_2 = tvm.tir.call_intrin("int32x2", "tir.reinterpret", acc[8]) out_3 = tvm.tir.call_intrin("int32x2", "tir.reinterpret", acc[12]) else: out_0 = tvm.tir.call_intrin("int32", "tir.reinterpret", acc[0]) out_1 = tvm.tir.call_intrin("int32", "tir.reinterpret", acc[4]) out_2 = tvm.tir.call_intrin("int32", "tir.reinterpret", acc[8]) out_3 = tvm.tir.call_intrin("int32", "tir.reinterpret", acc[12]) ib.emit(outs[0].vstore([0, 0], out_0)) if M > 1: ib.emit(outs[0].vstore([1, 0], out_1)) if M > 2: ib.emit(outs[0].vstore([2, 0], out_2)) if M > 3: ib.emit(outs[0].vstore([3, 0], out_3)) return ib.get() # body, reset, update return _instr() buffer_params = {"offset_factor": 1} return te.decl_tensor_intrin( C.op, _intrin_func, binds={A: a_buffer, B: b_buffer, C: c_buffer}, default_buffer_params=buffer_params, ) def dot_int8_int8_int32_neon_82(int32_lanes, dtype="uint"): """ Int8 dot product by every 4 elements using ARM v8.2 udot. This function takes two arrays of int8 datatype -- data[4] and kernel[int32_lanes][4] -- and computes a dot product of data[4] with every 4 elements of kernels, resulting in output[int32_lanes] of uint32 datatype. The pseudo code is as follows. .. code-block:: c void dot_int8_int8_int32(int8 data[4], int8 kernel[16][4], int32 output[16]){ for (int i = 0; i < int32_lanes; i++){ out[i] = 0; for (int k = 0; k < 4; k++){ out[i] += data[k] * kernel[i][k] } } } Physically, the kernel array sits in a vector register and the data[4] is broadcasted to another vector register. This function returns a TensorIntrin that can be used to tensorize a schedule. Parameters ---------- int32_lanes : int How many int32/uint32 to produce dtype : str, optional, {"uint", "int"} Whether it works on unsigned int or signed int Returns ------- intrin : TensorIntrin The ARM uint8 TensorIntrin that can be used in tensorizing schedule """ num_int8_elements = 4 # 4 int8 elements in int32 data = te.placeholder((num_int8_elements,), dtype="%s8" % dtype, name="data") kernel = te.placeholder((int32_lanes, num_int8_elements), dtype="%s8" % dtype, name="kernel") k = te.reduce_axis((0, num_int8_elements), name="k") C = te.compute( (int32_lanes,), lambda i: te.sum( data[k].astype("%s32" % dtype) * kernel[i, k].astype("%s32" % dtype), axis=k ), name="C", ) a_buffer = tvm.tir.decl_buffer( data.shape, dtype="%s8" % dtype, name="a_buffer", offset_factor=1, strides=[1] ) b_buffer = tvm.tir.decl_buffer( kernel.shape, dtype="%s8" % dtype, name="b_buffer", offset_factor=1, strides=[te.var("s"), 1], ) def _intrin_func(ins, outs): def _instr(index): ib = tvm.tir.ir_builder.create() if index == 1: ib.emit(outs[0].vstore(0, tvm.tir.const(0, "%s32x%d" % (dtype, int32_lanes)))) return ib.get() dtype_a = "%s8x%d" % (dtype, num_int8_elements) dtype_b = "%s8x%d" % (dtype, int32_lanes * num_int8_elements) dtype_c = "%s32x%d" % (dtype, int32_lanes) a_int8 = ins[0].vload([0], dtype_a) re_int32 = tvm.tir.call_intrin("%s32" % dtype, "tir.reinterpret", a_int8) # broadcast a vec_ai32 = re_int32.astype(dtype_c) vec_a = tvm.tir.call_intrin(dtype_b, "tir.reinterpret", vec_ai32) vec_b = ins[1].vload([0, 0], dtype_b) vec_c = outs[0].vload([0], dtype_c) inst = "udot" if dtype == "uint" else "sdot" inst = "llvm.aarch64.neon.%s.v%di32.v%di8" % ( inst, int32_lanes, int32_lanes * num_int8_elements, ) vdot = tvm.tir.call_llvm_pure_intrin( dtype_c, inst, tvm.tir.const(3, "uint32"), vec_c, vec_a, vec_b ) ib.emit(outs[0].vstore(0, vdot)) return ib.get() # body, reset, update return _instr(0), _instr(1), _instr(2) buffer_params = {"offset_factor": 1} return te.decl_tensor_intrin( C.op, _intrin_func, binds={data: a_buffer, kernel: b_buffer}, default_buffer_params=buffer_params, ) def dot_int8_int8_int32_neon(): """ Int8 dot product using vmlal instructions .. code-block:: c void dot_int8_int8_int32(int8 data[4], int8 kernel[4][4], int32 output[4]){ for (int i = 0; i < 4; i++){ out[i] = 0; for (int k = 0; k < 4; k++){ out[i] += data[k] * kernel[i][k] } } } We use the smull and saddlp instructions to compute the dot product. smull : int8x16 -> int8x16 -> int16x8 elementwise multiplication saddlp: int16x8 -> int32x4 pairwise addition of elements Data is broadcast across the register int8 elements | data | data | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | smull int8 elements | kernel[i] | kernel[i+1] | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | = int16 elements | data * kernel[i] | data * kernel[i+1] | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | saddlp = int32 elements | partial sum(data * kernel[i]) | partial sum(data * kernel[i+1]) | | 0 | 1 | 2 | 3 | We apply the above kernel twice and use addp to compute the second set of pairwise additions int32 elements (narrowed for so they fit on a line) | psum d*k[i] | psum d*k[i+1] | | psum d*k[i+2] | psum d*k[i+3] | | 0 | 1 | 2 | 3 | addp | 4 | 5 | 6 | 7 | = |sum d*ki |sum d*ki1|sum d*ki2|sum d*ki3| | 0 | 1 | 2 | 3 | """ int32_lanes = 4 # 4 int32 lanes = 128 num_int8_elements = 4 # 4 int8 elements in int32 data = te.placeholder((num_int8_elements,), dtype="int8", name="data") kernel = te.placeholder((int32_lanes, num_int8_elements), dtype="int8", name="kernel") k = te.reduce_axis((0, num_int8_elements), name="k") C = te.compute( (int32_lanes,), lambda i: te.sum(data[k].astype("int32") * kernel[i, k].astype("int32"), axis=k), name="C", ) a_buffer = tvm.tir.decl_buffer( data.shape, dtype="int8", name="a_buffer", offset_factor=1, strides=[1] ) b_buffer = tvm.tir.decl_buffer( kernel.shape, dtype="int8", name="b_buffer", offset_factor=1, strides=[te.var("ldw"), 1] ) def _intrin_func(ins, outs): def _instr(index): int_8xl = "int8x8" int_32xl = "int32x4" ib = tvm.tir.ir_builder.create() if index == 1: ib.emit(outs[0].vstore(0, tvm.tir.const(0, int_32xl))) return ib.get() # this broadcasts data to the vector size a_int8 = ins[0].vload([0], "int8x4") re_int32 = tvm.tir.call_intrin("int32", "tir.reinterpret", a_int8) vec_ai32 = re_int32.astype("int32x2") vec_a = tvm.tir.call_intrin(int_8xl, "tir.reinterpret", vec_ai32) vec_b = ins[1].vload([0, 0], "int8x16") def pairwise_add_mul(extract_half): vec_b_half = tvm.tir.call_intrin("int8x8", extract_half, vec_b) multiply = tvm.tir.call_llvm_pure_intrin( "int16x8", "llvm.aarch64.neon.smull.v8i16", # saturating pairwise multiplication tvm.tir.const(2, "uint32"), vec_a, vec_b_half, ) pairwise_reduction = tvm.tir.call_llvm_pure_intrin( "int32x4", "llvm.aarch64.neon.saddlp.v4i32.v8i16", tvm.tir.const(1, "uint32"), multiply, ) return pairwise_reduction pair_1 = pairwise_add_mul("tir.vectorlow") pair_2 = pairwise_add_mul("tir.vectorhigh") quad_reduction = tvm.tir.call_llvm_pure_intrin( "int32x4", "llvm.aarch64.neon.addp.v4i32", tvm.tir.const(2, "uint32"), pair_1, pair_2, ) if index == 0: ib.emit(outs[0].vstore(0, quad_reduction)) else: ib.emit(outs[0].vstore(0, quad_reduction + outs[0].vload([0], int_32xl))) return ib.get() # body, reset, update return _instr(0), _instr(1), _instr(2) buffer_params = {"offset_factor": 1} return te.decl_tensor_intrin( C.op, _intrin_func, binds={data: a_buffer, kernel: b_buffer}, default_buffer_params=buffer_params, ) def select_word(vec, lane, dtype_vec): """ Utility function used to select a int8x4 word within a int8x16 vector and replicate 4 times. The pseudo-code for this operation is: v = [x0, ..., x15] vsub(lane) = v[4*lane:4*lane+3] replicated_v(lane) = [vsub(lane), vsub(lane), vsub(lane), vsub(lane)] Note that 0<=lane<4 Parameters ---------- vec : tvm.tir.Expr int8x16 vector expression lane : int vector lane we want to replicate dtype_vec : str vector data type (e.g., int8x16) Returns ---------- output : tvm.tir.Expr replicated vector """ # Reinterpret vec_a as 4 int32 words vec_int32 = tvm.tir.call_intrin("int32x4", "tir.reinterpret", vec) # Broadcast the lane-th word vec_int32_shuffled = tvm.tir.Shuffle([vec_int32], [lane, lane, lane, lane]) # Convert back to uint8x16 vec_int8_broadcast = tvm.tir.call_intrin(dtype_vec, "tir.reinterpret", vec_int32_shuffled) return vec_int8_broadcast def gemm_acc_4x4_int8_int8_int32(dtype): """ Int8 4x4 matrix multiplication and accumulation using sdot/udot instructions. This function takes two arrays of int8 datatype -- A[4][4] and B[4][4] and produces a 4x4 matrix which is equal to A*B'. The pseudo code is as follows. .. code-block:: c void gemm_acc_4x4_int8_int8_int32(int8 A[4][4], int8 B[4][4], int32 C[4][4]){ for (int i = 0; i < 4; i++){ for (int j = 0; j < 4; j++){ for (int k = 0; k < 4; k++){ C[i][j] += A[i][k] * B[j][k] } } } Notes: * The tiling strategy is picked to maximize register usage. Parameters ---------- dtype : str, {"uint8", "int8"} Whether it works on unsigned int or signed int Returns ------- intrin : TensorIntrin The Arm TensorIntrin that can be used in tensorizing schedule """ assert dtype in ["uint8", "int8"] # This needs to be a variable number of "rows" since TVM # "thinks" I only need to compute one row because of # padding A = te.placeholder((te.var("rows"), 4), dtype, name="A") B = te.placeholder((4, 4), dtype, name="B") dtype_vec = dtype + "x16" k = te.reduce_axis((0, 4), name="k") C = te.compute( (te.var("rows"), 4), lambda i, j: te.sum(A[i, k].astype("int32") * B[j, k].astype("int32"), axis=k), name="C", ) aa_buffer = tvm.tir.decl_buffer( A.shape, dtype, name="aa_buffer", offset_factor=1, strides=[te.var("sa"), 1] ) bb_buffer = tvm.tir.decl_buffer( B.shape, dtype, name="bb_buffer", offset_factor=1, strides=[te.var("sb"), 1] ) cc_buffer = tvm.tir.decl_buffer( C.shape, dtype="int32", name="cc_buffer", offset_factor=1, strides=[te.var("sc"), 1] ) llvm_intrin = "llvm.aarch64.neon.sdot" if dtype == "int8" else "llvm.aarch64.neon.udot" def _intrin_func(ins, outs): def _instr(index): ib = tvm.tir.ir_builder.create() if index == 1: for i in range(0, 4): ib.emit(outs[0].vstore([i, 0], tvm.tir.const(0, "int32x4"))) return ib.get() # Load all the elements of tile A. # vec_a = [a, b, c, d, # e, f, g, h, # l, m, n, o, # p, q, r, s]; vec_a = ins[0].vload([0, 0], dtype_vec) # Replicate 4 times the i-th row of A. For instance, # vec_a[0] = [a, b, c, d, # a, b, c, d, # a, b, c, d, # a, b, c, d,]; vec_aa = [select_word(vec_a, i, dtype_vec) for i in range(0, 4)] # Load all the elements of B. Remember that B # is transposed: # vec_b = [0, 4, 8, 12, # 1, 5, 9, 13, # 2, 6, 10, 14, # 3, 7, 11, 15,]; vec_b = ins[1].vload([0, 0], dtype_vec) # Execute the dot product for i in range(0, 4): vec_c = outs[0].vload([i, 0], "int32x4") # Compute the product between the i-th row of A # and all the rows of B. Remember that sdot/udot # subdive the input vectors in 16 elements # and then take the dot product among each group. # The result is stored in a int32x4 register # # For instance, for i=0, we have: # sdot(vec_aa[0], vec_b) = [a*0+b*4+c*8+d*12, # a*1+b*5+c*9+d*13, # a*2+b*6+c*10+d*14, # a*3+b*7+c*11+d*15] vdot = tvm.tir.call_llvm_intrin( "int32x4", llvm_intrin, tvm.tir.const(3, "uint32"), vec_c, vec_b, vec_aa[i], ) # Store the result ib.emit(outs[0].vstore([i, 0], vdot)) return ib.get() # body, reset, update return _instr(0), _instr(1), _instr(2) buffer_params = {"offset_factor": 1} return te.decl_tensor_intrin( C.op, _intrin_func, binds={A: aa_buffer, B: bb_buffer, C: cc_buffer}, default_buffer_params=buffer_params, ) def gemm_acc_nx16_int8_int8_int32(dtype, rows): """ Int8 nx16 matrix multiplication and accumulation using sdot/udot instructions This function takes two arrays of int8 datatype -- A[n][4] and B[4][16] and produces a rowsx16 matrix which is equal to A*B' The pseudo code is as follows. .. code-block:: c void mmla_nx16_int8_int8_int32(int8 A[n][16], int8 B[4][16][4], int32 output[n][16]){ for (int i = 0; i < n; i++){ for (int j = 0; j < 16; j++){ for (int k = 0; k < 16; k++){ out[i][j] += A[i][k] * B[k//4][j][k%4] } } } } Notes: * The tile size of B is 16x4. Since the reduction variable k moves between 0 and 16 we need 4 tiles of B to compute a single row of the output. The first 4 values of k will be fetched from B[0][j][k], the second batch of 4 from B[1][j][k] and so on * The tiling strategy is picked to maximize register usage. Parameters ---------- dtype : str, {"uint8", "int8"} Whether it works on unsigned int or signed int rows : int Number of the output rows "n" Returns ------- intrin : TensorIntrin The Arm TensorIntrin that can be used in tensorizing schedule """ assert dtype in ["uint8", "int8"] A = te.placeholder((rows, 16), dtype, name="A") B = te.placeholder((4, 16, 4), dtype, name="B") dtype_vec = dtype + "x16" idxm = tvm.tir.indexmod k = te.reduce_axis((0, 16), name="k") C = te.compute( (rows, 16), lambda i, j: te.sum( A[i, k].astype("int32") * B[k // 4, j, idxm(k, 4)].astype("int32"), axis=k ), name="C", ) aa_buffer = tvm.tir.decl_buffer( A.shape, dtype, name="aa_buffer", offset_factor=1, strides=[te.var("sa"), 1] ) bb_buffer = tvm.tir.decl_buffer( B.shape, dtype, name="bb_buffer", offset_factor=1, strides=[te.var("sb0"), te.var("sb1"), 1], ) cc_buffer = tvm.tir.decl_buffer( C.shape, dtype="int32", name="cc_buffer", offset_factor=1, strides=[te.var("sc"), 1] ) llvm_intrin = "llvm.aarch64.neon.sdot" if dtype == "int8" else "llvm.aarch64.neon.udot" def _intrin_func(ins, outs): def _instr(index): ib = tvm.tir.ir_builder.create() if index == 1: for i in range(0, rows): ib.emit(outs[0].vstore([i, 0], tvm.tir.const(0, "int32x16"))) return ib.get() # Iterate on the number of rows of the output for k in range(0, rows): # Load 16 elements of A # vec_a = [a, b, c, d, e, f, g, h, l, m, n, o, p, q, r, s]; vec_a = ins[0].vload([k, 0], dtype_vec) # Iterate over each of the 4 rowsx4 tiles of the output for j in range(0, 4): # Accumulate over each of the 4 (16x4) tiles contained in B for i in range(0, 4): # Replicate a single 4-element group of A (A[k, i:i+4]) vec_aa = select_word(vec_a, i, dtype_vec) # Load 4 rows (each rows with 4 elements) from B (B[i:i+4, j:j+4]) # vec_b = [0, 16, 32, 48, # 1, 17, 33, 49, # 2, 18, 34, 50, # 3, 19, 35, 51,]; vec_b = ins[1].vload([i, 4 * j, 0], dtype_vec) # Accumulate in the correct part of the output vec_c = outs[0].vload([k, 4 * j], "int32x4") # Compute the dot product between the rowsx4 tile # from A and the 4x4 tile from B # # For instance, for i=0, we have: # sdot(vec_aa[0], vec_b) = [a*0+b*16+c*32+d*48, # a*1+b*17+c*33+d*49, # a*2+b*18+c*34+d*50, # a*3+b*19+c*35+d*51] vdot = tvm.tir.call_llvm_intrin( "int32x4", llvm_intrin, tvm.tir.const(3, "uint32"), vec_c, vec_b, vec_aa, ) ib.emit(outs[0].vstore([k, 4 * j], vdot)) return ib.get() # body, reset, update return _instr(0), _instr(1), _instr(2) buffer_params = {"offset_factor": 1} return te.decl_tensor_intrin( C.op, _intrin_func, binds={A: aa_buffer, B: bb_buffer, C: cc_buffer}, default_buffer_params=buffer_params, ) def smlal_int16_int32(): """ Intrinsic to be used in order to load two int16x8 vectors and multiply them together through a pair of smlal/smlal2 instructions. The pseudo-code for the algorithm is as follows: vec_a = vload(A, "int16x8") vec_b = vload(B, "int16x8") vec_c[0:4] += vec_a[0:4]*vec_b[0:4] // -> smlal instruction vec_c[4:8] += vec_a[4:8]*vec_b[4:8] // -> smlal2 instruction So we load a single int16x8 vector and we accumulate its lower (0:4) and higher part separately. """ int16_lanes = 8 A = te.placeholder((int16_lanes,), dtype="int16", name="A") B = te.placeholder((int16_lanes, 1), dtype="int16", name="B") C = te.compute( (int16_lanes,), lambda i: A[i].astype("int32") * B[i, 0].astype("int32"), name="C", ) a_buffer = tvm.tir.decl_buffer( A.shape, dtype="int16", name="a_buffer", offset_factor=1, strides=[1] ) b_buffer = tvm.tir.decl_buffer( B.shape, dtype="int16", name="b_buffer", offset_factor=1, strides=[te.var("sb"), 1], ) c_buffer = tvm.tir.decl_buffer( C.shape, dtype="int32", name="c_buffer", offset_factor=1, strides=[1], ) def _intrin_func(ins, outs): def _instr(index): ib = tvm.tir.ir_builder.create() if index == 1: ib.emit(outs[0].vstore(0, tvm.tir.const(0, "int32x8"))) return ib.get() vec_a = ins[0].vload([0], "int16x8") vec_b = ins[1].vload([0, 0], "int16x8") inst = "llvm.aarch64.neon.smull" # Higher part of the vector vec_c_h = outs[0].vload([4], "int32x4") vec_a_h = tvm.tir.call_intrin("int16x4", "tir.vectorhigh", vec_a) vec_b_h = tvm.tir.call_intrin("int16x4", "tir.vectorhigh", vec_b) vmull_h = tvm.tir.call_llvm_pure_intrin( "int32x4", inst, tvm.tir.const(2, "uint32"), vec_a_h, vec_b_h ) vec_out_h = vec_c_h + vmull_h # Lower part of the vector vec_c_l = outs[0].vload([0], "int32x4") vec_a_l = tvm.tir.call_intrin("int16x4", "tir.vectorlow", vec_a) vec_b_l = tvm.tir.call_intrin("int16x4", "tir.vectorlow", vec_b) vmull_l = tvm.tir.call_llvm_pure_intrin( "int32x4", inst, tvm.tir.const(2, "uint32"), vec_a_l, vec_b_l ) vec_out_l = vec_c_l + vmull_l # Combine higher and lower part in a single int32x8 vector to store # (this will require two different store instructions, since the # length of a NEON vector is fixed at 128 vec_out = tvm.tir.call_intrin("int32x8", "tir.vectorcombine", vec_out_l, vec_out_h) ib.emit(outs[0].vstore(0, vec_out)) return ib.get() # body, reset, update return _instr(0), _instr(1), _instr(2) buffer_params = {"offset_factor": 1} return te.decl_tensor_intrin( C.op, _intrin_func, binds={A: a_buffer, B: b_buffer, C: c_buffer}, default_buffer_params=buffer_params, ) def gemm_acc_2x2_int8_int8_int32(dtype): """ Int8 2x2 matrix multiplication using smmla/ummla instructions This function takes two arrays of int8 datatype -- A[2][8] and B[2][8] and produces a 2x2 matrix which is equal to A*B' The pseudo code is as follows. .. code-block:: c void mmla_2x2_int8_int8_int32(int8 A[2][8], int8 B[2][8], int32 C[2][2]){ for (int i = 0; i < 2; i++){ for (int j = 0; j < 2; j++){ for (int k = 0; k < 8; k++){ C[i][j] += A[i][k] * B[j][k] } } } Parameters ---------- dtype : str, {"uint8", "int8"} Whether it works on unsigned int or signed int Returns ------- intrin : TensorIntrin The Arm TensorIntrin that can be used in tensorizing schedule """ assert dtype in ["uint8", "int8"] A = te.placeholder((2, 8), dtype, name="A") B = te.placeholder((2, 8), dtype, name="B") dtype_vec = dtype + "x16" k = te.reduce_axis((0, 8), name="k") C = te.compute( (2, 2), lambda i, j: te.sum(A[i, k].astype("int32") * B[j, k].astype("int32"), axis=k), name="C", ) aa_buffer = tvm.tir.decl_buffer( A.shape, dtype, name="aa_buffer", offset_factor=1, strides=[te.var("sa"), 1] ) bb_buffer = tvm.tir.decl_buffer( B.shape, dtype, name="bb_buffer", offset_factor=1, strides=[te.var("sb"), 1] ) cc_buffer = tvm.tir.decl_buffer( C.shape, dtype="int32", name="cc_buffer", offset_factor=1, strides=[te.var("sc"), 1] ) llvm_intrin = "llvm.aarch64.neon.smmla" if dtype == "int8" else "llvm.aarch64.neon.ummla" def _intrin_func(ins, outs): def _instr(index): ib = tvm.tir.ir_builder.create() if index == 1: ib.emit(outs[0].vstore([0, 0], tvm.tir.const(0, "int32x4"))) return ib.get() # Load in vec_a the two rows of A # vec_a = [a, b, c, d, e, f, g, h; # i, j, k, l, m, n, o, p,] vec_a = ins[0].vload([0, 0], dtype_vec) # Load in vec_b the two rows of B # vec_b = [0, 2, 4, 6, 8, 10, 12, 14; # 1, 3, 5, 7, 9, 11, 13, 14,] vec_b = ins[1].vload([0, 0], dtype_vec) # Execute the matrix multiplication via (s/u)mmla: # vec_c = [a*0 + b*2 + c*4 + d*6 +e*8 + f*10 + g*12 + h*14; # a*1 + b*3 + c*5 + d*7 +e*9 + f*11 + g*13 + h*15; # i*0 + j*2 + k*4 + l*6 +m*8 + n*10 + o*12 + p*14; # i*1 + j*3 + k*5 + l*7 +m*9 + n*11 + o*13 + p*15] vec_c = outs[0].vload([0, 0], "int32x4") vmmla = tvm.tir.call_llvm_intrin( "int32x4", llvm_intrin, tvm.tir.const(3, "uint32"), vec_c, vec_a, vec_b, ) # Store the result ib.emit(outs[0].vstore([0, 0], vmmla)) return ib.get() # body, reset, update return _instr(0), _instr(1), _instr(2) buffer_params = {"offset_factor": 1} return te.decl_tensor_intrin( C.op, _intrin_func, binds={A: aa_buffer, B: bb_buffer, C: cc_buffer}, default_buffer_params=buffer_params, ) def _q_multiply_shift_arm(op): """ Implementation of q_multiply_shift_arm through arm intrinsics sqrdmulh and srshl when q == 31. Please note that this is introducing a small round-up error for some corner cases. This is because we are rounding twice instead than only once. I.e.: * original q_multiply_shift: round(x*y*2^-s) * arm q_multiply_shift: round(round(x*y)*2^-s) """ x = op.args[0] y = op.args[1] q = op.args[2] s = op.args[3] # Don't use this intrinsic if we don't have a int32x4 vector # or if we are not multiplying q31 numbers if x.dtype != "int32x4" or q.value != 31: return op # Case 1, shift is negative sqrdmulh = tvm.tir.call_llvm_intrin( op.dtype, "llvm.aarch64.neon.sqrdmulh", tvm.tir.const(2, "uint32"), x, y ) fixup = (sqrdmulh & (-s)) >> 31 fixed_up_x = sqrdmulh + fixup out_1 = tvm.tir.call_llvm_intrin( op.dtype, "llvm.aarch64.neon.srshl", tvm.tir.const(2, "uint32"), sqrdmulh, s ) # Case 2, shift is positive x = x * (1 << (s)) out_2 = tvm.tir.call_llvm_intrin( op.dtype, "llvm.aarch64.neon.sqrdmulh", tvm.tir.const(2, "uint32"), x, y ) # Select depending on the shift return tvm.tir.Select(s < 0, out_1, out_2) register_intrin_lowering( "tir.q_multiply_shift", target="llvm.aarch64", f=_q_multiply_shift_arm, level=99 )
https://github.com/zk-ml/tachikoma
python/tvm/topi/bifrost/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=redefined-builtin, wildcard-import """ARM Mali GPU specific declaration and schedules.""" from __future__ import absolute_import as _abs from .gemm import * from .conv2d import * from .dense import * from .depthwise_conv2d import *
https://github.com/zk-ml/tachikoma
python/tvm/topi/bifrost/conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument,no-else-return """conv2d schedule on ARM Mali (Bifrost) GPU""" import tvm from tvm import te from tvm import relay from tvm import autotvm from .gemm import decl_winograd_gemm, schedule_gemm from .transforms import tile_and_bind, tile_and_bind3d from ..utils import traverse_inline, get_const_int, get_const_tuple from .. import nn from ..nn.winograd_util import winograd_transform_matrices # reuse some compute declarations from ARM CPU from ..arm_cpu.conv2d_spatial_pack import conv2d_spatial_pack_nchw @autotvm.register_topi_compute("conv2d_nchw_spatial_pack.bifrost") def conv2d_nchw_spatial_pack(cfg, data, kernel, strides, padding, dilation, out_dtype): """TOPI compute callback for conv2d Parameters ---------- cfg: ConfigEntity The config for this template data : tvm.te.Tensor 4-D with shape [batch, in_channel, in_height, in_width] kernel : tvm.te.Tensor 4-D with shape [num_filter, in_channel, filter_height, filter_width] or pre-packed 5-D with shape [num_filter_chunk, in_channel, filter_height, filter_width, num_filter_block] strides : list of two ints [stride_height, stride_width] padding : list of two ints [pad_height, pad_width] dilation : list of two ints [dilation_height, dilation_width] out_dtype: str The output type. This is used for mixed precision. Returns ------- output : tvm.te.Tensor 4-D with shape [batch, out_channel, out_height, out_width] """ return conv2d_spatial_pack_nchw( cfg, data, kernel, strides, padding, dilation, out_dtype, num_tile=3 ) @autotvm.register_topi_schedule("conv2d_nchw_spatial_pack.bifrost") def schedule_conv2d_nchw_spatial_pack(cfg, outs): """TOPI schedule callback for conv2d Parameters ---------- cfg: ConfigEntity The configuration of this template outs: Array of Tensor The computation graph description of convolution2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv2d """ s = te.create_schedule([x.op for x in outs]) def _callback(op): # schedule conv2d if "spatial_conv2d_output" in op.tag: output = op.output(0) conv = op.input_tensors[0] data_vec = conv.op.input_tensors[0] data_pad = data_vec.op.input_tensors[0] s[data_pad].compute_inline() kernel_vec = conv.op.input_tensors[1] if kernel_vec.op.name == "kernel_vec": kernel = kernel_vec.op.input_tensors[0] else: kernel = kernel_vec if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() _schedule_spatial_pack(cfg, s, output, conv, data_vec, kernel_vec) traverse_inline(s, outs[0].op, _callback) return s def _schedule_spatial_pack(cfg, s, output, conv, data_vec, kernel_vec): """schedule the spatial packing for conv2d""" data = s[data_vec].op.input_tensors[0] max_unroll = 16 vec_size = [1, 2, 4, 8, 16] # get tunable parameters (they are defined in compute) BC, TC, VC = cfg["tile_co"].size BH, TH, VH = cfg["tile_oh"].size BW, TW, VW = cfg["tile_ow"].size # schedule padding if isinstance(data.op, tvm.te.ComputeOp) and "pad" in data.op.tag: data_pad = data s[data_pad].compute_inline() # schedule data packing if isinstance(data_vec.op, te.tensor.ComputeOp) and data_vec.op.name == "data_vec_undilated": _, h, w, ci, _, _, vh, vw = s[data_vec].op.axis else: _, h, w, ci, vh, vw = s[data_vec].op.axis tile_and_bind3d(s, data_vec, h, w, ci, 1) if vh.dom.extent.value < max_unroll: s[data_vec].unroll(vh) if vw.dom.extent.value < max_unroll: s[data_vec].unroll(vw) if isinstance(kernel_vec.op, tvm.te.ComputeOp) and kernel_vec.name == "kernel_vec": if not autotvm.GLOBAL_SCOPE.in_tuning: max_threads = tvm.target.Target.current(allow_none=False).max_num_threads co, ci, kh, kw, vc = s[kernel_vec].op.axis fused = s[kernel_vec].fuse(co, ci, kh, kw, vc) fused, vec = s[kernel_vec].split(fused, VC) bb, tt = s[kernel_vec].split(fused, max_threads) s[kernel_vec].bind(bb, te.thread_axis("blockIdx.x")) s[kernel_vec].bind(tt, te.thread_axis("threadIdx.x")) if VC in vec_size: s[kernel_vec].vectorize(vec) # schedule convolution n, c, h, w, vh, vw, vc = s[conv].op.axis kc, kh, kw = s[conv].op.reduce_axis cfg["reorder_0"].apply(s, conv, [n, c, h, w, kc, kh, kw, vh, vw, vc]) tile_and_bind3d(s, conv, c, h, w, TC, TH, TW) cfg["ann_reduce"].apply( s, conv, [kh, kw], axis_lens=[get_const_int(kernel_vec.shape[2]), get_const_int(kernel_vec.shape[3])], max_unroll=max_unroll, ) cfg["ann_spatial"].apply( s, conv, [vh, vw, vc], axis_lens=[VH, VW, VC], max_unroll=max_unroll, vec_size=vec_size, cfg=cfg, ) # schedule output if output.op not in s.outputs: # has bias s[output].compute_inline() output = s.outputs[0] _, co, oh, ow = s[output].op.axis tile_and_bind3d(s, output, co, oh, ow, TC, TH, TW) return s @autotvm.register_topi_compute("conv2d_nchw_winograd.bifrost") def conv2d_nchw_winograd(cfg, data, kernel, strides, padding, dilation, out_dtype): """Use Winograd as the convolution method""" return _decl_winograd(cfg, data, kernel, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("conv2d_nchw_winograd.bifrost") def schedule_conv2d_nchw_winograd(cfg, outs): s = te.create_schedule([x.op for x in outs]) def _callback(op): if "winograd_conv2d_output" in op.tag: _schedule_winograd(cfg, s, op) traverse_inline(s, outs[0].op, _callback) return s def _decl_winograd_kernel_transform(kernel, tile_size, G): """Declare a Winograd kernel transform This exists separately to allow for precomputation The precomputation will most often happen on CPU Parameters ---------- kernel : tvm.te.Tensor The kernel to transform tile_size : int The size of the tile to use for the Winograd filter Returns ------- U : tvm.te.Tensor Transformed kernel """ CO, CI, KH, KW = [get_const_int(x) for x in kernel.shape] # Only support 32 bit floats out_dtype = "float32" alpha = G.shape[0] K = CO C = CI def upround(x, align): return (x + align - 1) // align * align ALIGN = 16 K_round = upround(K, ALIGN) # Padded Kernel [K_round, C, KH, KW] # Pad the number of kernels to multiple of ALIGN padded_kernel = te.compute( (K_round, C, KH, KW), lambda k, c, h, w: tvm.tir.if_then_else( k < K, kernel[k][c][h][w], tvm.tir.const(0, out_dtype) ), name="padded_kernel", ) # U [alpha, alpha, K_round, C] # Perform the kernel transform r_kh = te.reduce_axis((0, KH), "r_kh") r_kw = te.reduce_axis((0, KW), "r_kw") U = te.compute( (alpha, alpha, K_round, C), lambda eps, nu, k, c: te.sum( padded_kernel[k][c][r_kh][r_kw] * G[eps][r_kh] * G[nu][r_kw], axis=[r_kh, r_kw] ), name="U", ) return U def _decl_winograd(cfg, data, kernel, strides, padding, dilation, out_dtype, tile_size=2): """Declare a winograd convolution - only tile_size=2 is currently supported""" N, CI, IH, IW = get_const_tuple(data.shape) if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation if int(kernel.shape[2]) == 3: if dilation_h != 1 or dilation_w != 1: kernel = nn.dilate(kernel, (1, 1, dilation_h, dilation_w)) pre_computed = False CO, _, KH, KW = get_const_tuple(kernel.shape) else: assert (dilation_h, dilation_w) == (1, 1), "Does not support dilation" pre_computed = True H_CAT, W_CAT, CO, CI = get_const_tuple(kernel.shape) KH, KW = H_CAT - tile_size + 1, W_CAT - tile_size + 1 HSTR, WSTR = strides if isinstance(strides, (tuple, list)) else (strides, strides) pt, pl, pb, pr = nn.get_pad_tuple(padding, (KH, KW)) assert KH == 3 and KW == 3 and HSTR == 1 and WSTR == 1 data_pad = nn.pad(data, (0, 0, pt, pl), (0, 0, pb, pr), name="data_pad") r = KW m = tile_size alpha = m + r - 1 A, B, G = winograd_transform_matrices(m, r, out_dtype) K = CO C = CI H = (IH + pt + pb - 3) // HSTR + 1 W = (IW + pl + pr - 3) // WSTR + 1 nH, nW = (H + m - 1) // m, (W + m - 1) // m P = N * nH * nW def upround(x, align): return (x + align - 1) // align * align ALIGN = 16 P_round = upround(P, ALIGN) K_round = upround(K, ALIGN) # CONFIG cfg.define_knob("data_transform_wgx", [1, 2, 4, 8, 16, 32, 64]) cfg.define_knob("data_transform_wgy", [1, 2, 4, 8, 16, 32, 64]) # Pack input tile input_tile = te.compute((N, C, H + 2, W + 2), lambda n, c, h, w: data_pad[n][c][h][w], name="d") if autotvm.GLOBAL_SCOPE.in_tuning: VC = cfg["tile_k"].size[-1] kvshape = (KH + tile_size - 1, KW + tile_size - 1, tvm.tir.indexdiv(CO, VC), CI, VC) U = tvm.te.placeholder(kvshape, kernel.dtype, name="U") else: if pre_computed: U = kernel else: U = _decl_winograd_kernel_transform(kernel, tile_size, G) # V [alpha * alpha, C, P_round) # Perform the image transform r_eps = te.reduce_axis((0, alpha), "r_eps") r_nu = te.reduce_axis((0, alpha), "r_nu") V = te.compute( (alpha * alpha, C, P_round), lambda epsnu, c, b: te.sum( input_tile[b // (nH * nW)][c][b // nW % nH * m + r_eps][b % nW * m + r_nu] * B[r_eps][epsnu // alpha] * B[r_nu][epsnu % alpha], axis=[r_eps, r_nu], ), name="V", ) # Winograd GEMM is a wrapper around batched GEMM to convert U to a 3D Tensor _, M = decl_winograd_gemm(cfg, U, V) # Y [K, P, m, m] # Winograd output transform r_eps = te.reduce_axis((0, alpha), "r_eps") r_nu = te.reduce_axis((0, alpha), "r_nu") Y = te.compute( (K, P, m, m), lambda k, b, vh, vw: te.sum( M[r_eps * alpha + r_nu][k][b] * A[r_eps][vh] * A[r_nu][vw], axis=[r_eps, r_nu] ), name="Y", ) # Output [N, K, H, W] # Unpack back to NCHW format # The last term ensures alignment is not lost to bound inference output = te.compute( (N, K, H, W), lambda n, k, h, w: Y[k][n * nH * nW + (h // m) * nW + w // m][h % m][w % m] + tvm.tir.const(0, out_dtype) * M[(alpha * alpha) - 1][K_round - 1][P_round - 1], name="output", tag="winograd_conv2d_output", ) return output def _schedule_winograd(cfg, s, op): """Schedule Winograd convolution for Bifrost""" # Get ops and tensors output = op.output(0) Y = op.input_tensors[0] M, A = s[Y].op.input_tensors U_3D, V = s[M].op.input_tensors U = s[U_3D].op.input_tensors[0] d, B = s[V].op.input_tensors data_pad = s[d].op.input_tensors[0] if isinstance(U.op, tvm.te.ComputeOp): padded_kernel, G = s[U].op.input_tensors kernel = s[padded_kernel].op.input_tensors[0] s[G].compute_inline() eps, _, _, _ = s[U].op.axis y, _, _, _ = s[padded_kernel].op.axis if not autotvm.GLOBAL_SCOPE.in_tuning: # Pad kernel y, x, ky, kx = s[padded_kernel].op.axis s[padded_kernel].unroll(ky) s[padded_kernel].unroll(kx) tile_and_bind(s, padded_kernel, y, x, 1, 8) # Transform kernel eps, nu, k, c = s[U].op.axis s[U].reorder(k, c, eps, nu) r_kh, r_kw = s[U].op.reduce_axis _ = [s[U].unroll(x) for x in [eps, nu, r_kh, r_kw]] yo, xo, yi, xi = tile_and_bind(s, U, k, c, 1, 4) # Dilation if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() # Pad data s[data_pad].compute_inline() # Pack data n, c, h, w = s[d].op.axis w, wi = s[d].split(w, 4) s[d].unroll(wi) b = s[d].fuse(n, c) tile_and_bind3d(s, d, b, h, w, 1, 4, 2) # Transform data bIL_d = s.cache_read(d, "local", [V]) s[B].compute_inline() epsnu, c, b = s[V].op.axis r_eps, r_nu = s[V].op.reduce_axis s[V].reorder(b, c, epsnu, r_nu, r_eps) _ = [s[V].unroll(x) for x in [epsnu, r_eps, r_nu]] yo, xo, yi, xi = tile_and_bind( s, V, b, c, cfg["data_transform_wgy"].val, cfg["data_transform_wgx"].val ) s[bIL_d].compute_at(s[V], xi) n, c, h, w = s[bIL_d].op.axis s[bIL_d].unroll(h) s[bIL_d].vectorize(w) # Batched GEMM # Inline the 4D -> 3D tensor transform on the kernel s[U_3D].compute_inline() U_transform, V_transform = schedule_gemm( cfg, s, U_3D, V, M, batched=True, schedule_transforms=True ) # Inverse transform CR_M = s.cache_read(M, "local", [Y]) CW_Y = s.cache_write(Y, "local") s[A].compute_inline() k, b, vh, vw = s[Y].op.axis fused = s[Y].fuse(vh, vw) s[Y].vectorize(fused) yo, xo, yi, xi = tile_and_bind(s, Y, k, b, 1, 4) s[CR_M].compute_at(s[Y], xi) k, b, epsnu = s[CR_M].op.axis s[CR_M].unroll(k) s[CW_Y].compute_at(s[Y], xi) k, b, vh, vw = s[CW_Y].op.axis r_eps, r_nu = s[CW_Y].op.reduce_axis _ = [s[CW_Y].unroll(x) for x in [vh, vw, r_eps, r_nu]] # Schedule output and fusion if output.op not in s.outputs: s[output].compute_inline() output = s.outputs[0] _, k, h, w = s[output].op.axis tile_and_bind3d(s, output, k, h, w, 1, 2, 2) ##### REGISTER ALTER OP LAYOUT ##### @nn.conv2d_alter_layout.register("bifrost") def _alter_conv2d_layout(attrs, inputs, tinfos, out_type): target = tvm.target.Target.current(allow_none=False) dispatch_ctx = autotvm.task.DispatchContext.current _, outs = relay.backend.te_compiler.select_implementation( relay.op.get("nn.conv2d"), attrs, tinfos, out_type, target ) workload = autotvm.task.get_workload(outs) if workload is None: # The best implementation is not an AutoTVM template, # we then assume it's not necessary to alter this op. return None cfg = dispatch_ctx.query(target, workload) if cfg.is_fallback: # if is fallback, clear query cache and return None autotvm.task.clear_fallback_cache(target, workload) return None topi_tmpl = workload[0] new_attrs = {k: attrs[k] for k in attrs.keys()} strides = attrs.get_int_tuple("strides") padding = attrs.get_int_tuple("padding") dilation = attrs.get_int_tuple("dilation") data_layout = attrs["data_layout"] kernel_layout = attrs["kernel_layout"] data, kernel = tinfos out_dtype = out_type.dtype idxd = tvm.tir.indexdiv if topi_tmpl == "conv2d_nchw_spatial_pack.bifrost": assert data_layout == "NCHW" and kernel_layout == "OIHW" N, CI, H, W = get_const_tuple(data.shape) CO, _, KH, KW = get_const_tuple(kernel.shape) VC = cfg["tile_co"].size[-1] new_attrs["kernel_layout"] = "OIHW%do" % VC new_data = data new_kernel = te.placeholder((idxd(CO, VC), CI, KH, KW, VC), dtype=kernel.dtype) new_workload = autotvm.task.args_to_workload( [new_data, new_kernel, strides, padding, dilation, out_dtype], "conv2d_nchw_spatial_pack.bifrost", ) dispatch_ctx.update(target, new_workload, cfg) return relay.nn.conv2d(*inputs, **new_attrs) if topi_tmpl == "conv2d_nchw_winograd.bifrost": assert data_layout == "NCHW" and kernel_layout == "OIHW" N, CI, H, W = get_const_tuple(data.shape) CO, _, KH, KW = get_const_tuple(kernel.shape) tile_size = 2 weight_expr = inputs[1] weight_expr = relay.nn.contrib_conv2d_winograd_weight_transform( weight_expr, tile_size=tile_size ) weight_expr = relay.reshape( weight_expr, newshape=(KH + tile_size - 1, KW + tile_size - 1, CO, CI) ) new_attrs["tile_size"] = tile_size new_data = data new_kernel = te.placeholder((KH + tile_size - 1, KW + tile_size - 1, CO, CI), kernel.dtype) new_workload = autotvm.task.args_to_workload( [new_data, new_kernel, strides, padding, dilation, out_dtype], "conv2d_nchw_winograd.bifrost", ) dispatch_ctx.update(target, new_workload, cfg) return relay.nn.contrib_conv2d_winograd_without_weight_transform( inputs[0], weight_expr, **new_attrs ) return None
https://github.com/zk-ml/tachikoma
python/tvm/topi/bifrost/dense.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable """dense schedule on ARM Mali Biforst GPU""" from tvm import te from tvm import autotvm from .. import nn from ..utils import traverse_inline @autotvm.register_topi_compute("dense.bifrost") def dense(_, data, weight, bias=None, out_dtype=None): """Dense operator on Biforst""" return nn.dense(data, weight, bias, out_dtype) @autotvm.register_topi_schedule("dense.bifrost") def schedule_dense(cfg, outs): """Schedule for dense operator. Parameters ---------- cfg: ConfigEntity The config entity for this template outs: Array of Tensor The computation graph description of dense in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for dense. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "dense": vec_size = [1, 2, 4, 8, 16] max_unroll = 32 dense_out = op.output(0) output = outs[0] y, x = s[output].op.axis c = s[dense_out].op.reduce_axis[0] ##### space definition begin ##### cfg.define_split("tile_y", y, num_outputs=3) cfg.define_split("tile_x", x, num_outputs=3) cfg.define_split("c_unroll", c, num_outputs=2, max_factor=64) # fallback support if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log("mali", "rk3399", "dense.bifrost") cfg.fallback_with_reference_log(ref_log) ##### space definition end ##### if dense_out.op in s.outputs: dense_out = s.cache_write(output, "local") by, ty, yi = cfg["tile_y"].apply(s, output, y) bx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) if cfg["tile_y"].size[-1] < max_unroll: s[output].unroll(yi) if cfg["tile_x"].size[-1] in vec_size: s[output].vectorize(xi) s[dense_out].compute_at(s[output], tx) k = s[dense_out].op.reduce_axis[0] y, x = s[dense_out].op.axis k, k_unroll = cfg["c_unroll"].apply(s, dense_out, k) s[dense_out].reorder(k, k_unroll, y, x) s[dense_out].unroll(k_unroll) if cfg["tile_y"].size[-1] < max_unroll: s[dense_out].unroll(y) if cfg["tile_x"].size[-1] in vec_size: s[dense_out].vectorize(x) traverse_inline(s, outs[0].op, _callback) return s def fuse_and_bind(s, tensor, axis=None, num_thread=None): """fuse all the axis and bind to GPU threads""" axis = axis or s[tensor].op.axis fused = s[tensor].fuse(*axis) bx, tx = s[tensor].split(fused, num_thread) s[tensor].bind(bx, te.thread_axis("blockIdx.x")) s[tensor].bind(tx, te.thread_axis("threadIdx.x")) return bx, tx
https://github.com/zk-ml/tachikoma
python/tvm/topi/bifrost/depthwise_conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """depthwise_conv2d schedule on ARM Mali GPU""" from __future__ import absolute_import as _abs import tvm from tvm import te from .. import utils from .. import tag def schedule_depthwise_conv2d_nchw(outs): """Schedule for depthwise_conv2d nchw forward. Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for depthwise_conv2d nchw. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule(pad_data, kernel, conv): raw_data = s[pad_data].op.input_tensors[0] if conv.op not in s.outputs: # has bias or relu output = outs[0] else: # no bias or relu output = conv def tile_and_bind3d(tensor, z, y, x, z_factor=2, y_factor=None, x_factor=None): """tile and bind 3d""" y_factor = y_factor or z_factor x_factor = x_factor or y_factor zo, zi = s[tensor].split(z, z_factor) yo, yi = s[tensor].split(y, y_factor) xo, xi = s[tensor].split(x, x_factor) s[tensor].bind(zo, te.thread_axis("blockIdx.z")) s[tensor].bind(zi, te.thread_axis("threadIdx.z")) s[tensor].bind(yo, te.thread_axis("blockIdx.y")) s[tensor].bind(yi, te.thread_axis("threadIdx.y")) s[tensor].bind(xo, te.thread_axis("blockIdx.x")) s[tensor].bind(xi, te.thread_axis("threadIdx.x")) return zo, zi, yo, yi, xo, xi # set tunable parameters VH = 1 VW = 1 num_thread = 4 while utils.get_const_int(conv.shape[3]) % (VW * 2) == 0 and VW * 2 <= 4: VW = VW * 2 while utils.get_const_int(conv.shape[2]) % (VH * 2) == 0 and VH * 2 <= 2: VH = VH * 2 if raw_data.dtype == "float16": if utils.get_const_int(conv.shape[3]) % (VW * 2) == 0: VW *= 2 num_thread *= 2 else: num_thread *= 2 # schedule padding _, c, y, x = s[pad_data].op.axis tile_and_bind3d(pad_data, c, y, x, num_thread, 1, 1) # schedule conv di, dj = s[conv].op.reduce_axis s[conv].unroll(di) s[conv].unroll(dj) _, c, y, x = s[output].op.axis y, x, yi, xi = s[output].tile(y, x, VH, VW) s[output].unroll(yi) s[output].vectorize(xi) _, _, _, _, _, ji = tile_and_bind3d(output, c, y, x, num_thread, 1, 1) if conv.op not in s.outputs: _, c, y, x = s[conv].op.axis y, x, yi, xi = s[conv].tile(y, x, VH, VW) s[conv].unroll(yi) s[conv].vectorize(xi) s[conv].compute_at(s[output], ji) def traverse(op): """Internal traverse function""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_broadcast(op.tag): if op not in s.outputs: s[op].compute_inline() for tensor in op.input_tensors: if tensor.op.input_tensors: traverse(tensor.op) # schedule depthwise_conv2d if op.tag == "depthwise_conv2d_nchw": pad_data = op.input_tensors[0] kernel = op.input_tensors[1] if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() conv = op.output(0) _schedule(pad_data, kernel, conv) traverse(outs[0].op) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/bifrost/gemm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """GEMM schedules for Mali Bifrost""" from tvm import te from .transforms import tile_and_bind, tile_and_bind3d, interleave_transpose, transpose_interleave from .. import utils def decl_gemm(cfg, A, B): """Declare a single GEMM computation for Mali Bifrost GPUs Parameters ---------- cfg : Config Schedule configuration A : tvm.te.Tensor 2D Tensor, shape [n, k] B : tvm.te.Tensor 2D Tensor, shape [k, m] Returns ------- C : tvm.te.Tensor 2D Tensor, shape [n, m] """ cfg.define_knob("work_group_x", [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 64]) cfg.define_knob("work_group_y", [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 64]) cfg.define_knob("unroll_k_factor", [1, 2, 4]) cfg.define_knob("A_interleave", [1, 4, 8, 16, 24, 32, 48, 64]) cfg.define_knob("B_interleave", [1, 4, 8, 16, 32]) cfg.define_knob("split_k_factor", [1, 4, 16]) # Mutual k axis must be of equal extent assert utils.get_const_int(A.shape[1]) == utils.get_const_int(B.shape[0]) n = A.shape[0] m = B.shape[1] k_size = utils.get_const_int(A.shape[1]) unroll_gemm = cfg["split_k_factor"].val if unroll_gemm == 1: # No unrolling case must have the same set of tensors to keep scheduling consistent # Create identity tensors to take the place of A_unrolled, B_unrolled and R A_unrolled = te.compute((n, k_size), lambda i, j: A[i, j], name="A_unrolled") B_unrolled = te.compute((k_size, m), lambda i, j: B[i, j], name="B_unrolled") # Declare standard GEMM k = te.reduce_axis((0, A.shape[1]), name="k") C = te.compute( (n, m), lambda i, j: te.sum(A_unrolled[i, k] * B_unrolled[k, j], axis=k), name="C" ) R = te.compute((n, m), lambda i, j: C[i, j], name="R") else: unrolled_k_size = k_size // unroll_gemm # Unroll the two input matrices along the shared k axis A_unrolled = te.compute( (unroll_gemm, n, unrolled_k_size), lambda b, i, j: A[i][unrolled_k_size * b + j], name="A_unrolled", ) B_unrolled = te.compute( (unroll_gemm, unrolled_k_size, m), lambda b, i, j: B[unrolled_k_size * b + i][j], name="B_unrolled", ) # Declare a batched GEMM k = te.reduce_axis((0, unrolled_k_size), name="k") C = te.compute( (unroll_gemm, n, m), lambda b, i, j: te.sum(A_unrolled[b][i][k] * B_unrolled[b][k][j], axis=k), name="C", ) # Then declare a reduction to reduce the sub matrices k = te.reduce_axis((0, unroll_gemm), name="k") R = te.compute((n, m), lambda i, j: te.sum(C[k][i][j], axis=k), name="R") return R def decl_batched_gemm(cfg, A, B): """Declare a batched GEMM computation for Mali Bifrost GPUs Parameters ---------- cfg : Config Schedule configuration A : tvm.te.Tensor 3D Tensor, shape [b, n, k] B : tvm.te.Tensor 3D Tensor, shape [b, k, m] Returns ------- C : tvm.te.Tensor 3D Tensor, shape [b, n, m] """ # Mutual b and k axis must be of equal extent assert utils.get_const_int(A.shape[2]) == utils.get_const_int(B.shape[1]) assert utils.get_const_int(A.shape[0]) == utils.get_const_int(B.shape[0]) cfg.define_knob("work_group_x", [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 64]) cfg.define_knob("work_group_y", [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 64]) cfg.define_knob("unroll_k_factor", [1, 2, 4]) cfg.define_knob("A_interleave", [1, 4, 8, 16, 32, 64]) cfg.define_knob("B_interleave", [1, 4, 8, 16, 32]) n = A.shape[1] m = B.shape[2] k_size = utils.get_const_int(A.shape[2]) b_size = utils.get_const_int(A.shape[0]) # Declare a batched GEMM k = te.reduce_axis((0, k_size), name="k") C = te.compute( (b_size, n, m), lambda b, i, j: te.sum(A[b][i][k] * B[b][k][j], axis=k), name="C" ) return C def decl_winograd_gemm(cfg, A, B): """Declare a winograd GEMM for Mali Bifrost GPUs Winograd uses batched GEMM, however the input tensors are 4D This wraps decl_batched_gemm to provide it with 3D tensors Parameters ---------- cfg : Config Schedule configuration A : tvm.te.Tensor 4D Tensor, shape [a, a, n, k] B : tvm.te.Tensor 4D Tensor, shape [a * a, k, m] Returns ------- """ alpha = utils.get_const_int(A.shape[0]) n = utils.get_const_int(A.shape[2]) k = utils.get_const_int(A.shape[3]) A_3D = te.compute( (alpha * alpha, n, k), lambda b, i, j: A[b // alpha][b % alpha][i][j], name="A_3D" ) C = decl_batched_gemm(cfg, A_3D, B) return A_3D, C def schedule_gemm(cfg, s, A, B, C, batched=False, schedule_transforms=True): """Schedule GEMM, single and batched Parameters ---------- cfg : Config Schedule configuration s : tvm.te.schedule.Schedule Operator schedule A : tvm.te.Tensor 2D/3D Tensor, shape [n, k]/[b, n, k] B : tvm.te.Tensor 2D/3D Tensor, shape [k, m]/[b, k, m] C : tvm.te.Tensor 2D/3D Tensor, shape [n, m]/[b, n, m] batched : bool Whether the GEMM is batched Returns ------- """ block_size_x = 4 block_size_y = 4 warp_size_x = 2 warp_size_y = 2 work_group_x = cfg["work_group_x"].val work_group_y = cfg["work_group_y"].val k_unroll = cfg["unroll_k_factor"].val if not batched: y_index, x_index = (0, 1) else: y_index, x_index = (1, 2) trans_inter, A_transposed_interleaved = transpose_interleave( s, A, cfg["A_interleave"].val, y_index, x_index, [C], batched=batched ) inter_trans, B_interleaved_transposed = interleave_transpose( s, B, cfg["B_interleave"].val, y_index, x_index, [C], batched=batched ) if schedule_transforms: # Schedule A y, x = s[trans_inter].op.axis y, x, yi, xi = s[trans_inter].tile(y, x, 1, 8) s[trans_inter].unroll(yi) s[trans_inter].unroll(xi) tile_and_bind(s, trans_inter, y, x, 1, 4) # Schedule B y, x = s[inter_trans].op.axis xo, xi = s[inter_trans].split(x, 4) s[inter_trans].vectorize(xi) tile_and_bind(s, inter_trans, y, xo, 4, 4) # Schedule C CR_A = s.cache_read(A_transposed_interleaved, "local", [C]) CR_B = s.cache_read(B_interleaved_transposed, "local", [C]) CW_C = s.cache_write(C, "local") if not batched: y, x = s[C].op.axis else: z, y, x = s[C].op.axis y, x, yt, xt = s[C].tile(y, x, block_size_y, block_size_x) s[C].unroll(yt) s[C].vectorize(xt) # Tile the global work space to generate 'square' warps -> 2x2 for warp size of 4 y, x, wy, wx = s[C].tile(y, x, warp_size_y, warp_size_x) x = s[C].fuse(x, wy, wx) if not batched: yo, xo, yi, xi = tile_and_bind(s, C, y, x, work_group_y, work_group_x) else: # For batched GEMM bind batch to z axis zo, yo, xo, zi, yi, xi = tile_and_bind3d(s, C, z, y, x, 1, work_group_y, work_group_x) s[CW_C].compute_at(s[C], xi) if not batched: y, x = s[CW_C].op.axis else: _, y, x = s[CW_C].op.axis y, x, yt, xt = s[CW_C].tile(y, x, block_size_y, block_size_x) k = s[CW_C].op.reduce_axis[0] s[CW_C].reorder(k, yt, xt) ko, ki = s[CW_C].split(k, k_unroll) s[CW_C].unroll(ki) s[CW_C].unroll(yt) s[CW_C].unroll(xt) if not batched: i, j = s[CR_A].op.axis else: _, i, j = s[CR_A].op.axis s[CR_A].reorder(j, i) s[CR_A].compute_at(s[CW_C], ki) s[CR_A].unroll(j) s[CR_A].vectorize(i) if not batched: i, j = s[CR_B].op.axis else: _, i, j = s[CR_B].op.axis s[CR_B].compute_at(s[CW_C], ki) s[CR_B].unroll(i) s[CR_B].vectorize(j) return trans_inter, inter_trans def schedule_unrollable_gemm(cfg, s, A, B, C, R): """Schedule a GEMM that can be unrolled by a constant factor along its inner dimension Parameters ---------- cfg : Config Schedule configuration s : tvm.te.schedule.Schedule Operator schedule A : tvm.te.Tensor 2D/3D Tensor, shape [n, k]/[b, n, k] B : tvm.te.Tensor 2D/3D Tensor, shape [k, m]/[b, k, m] C : tvm.te.Tensor 2D/3D Tensor, shape [n, m]/[b, n, m] R : tvm.te.Tensor 2D Tensor, shape [n, m] """ # If the GEMM is 2D, no unrolling has taken place # Use non-batched GEMM schedule and inline identity matrices A, B and R if len(C.op.axis) == 2: s[A].compute_inline() s[B].compute_inline() schedule_gemm(cfg, s, A, B, C) s[R].compute_inline() # GEMM is 3D, use batched GEMM schedule, inline A and B and schedule R else: s[A].compute_inline() s[B].compute_inline() schedule_gemm(cfg, s, A, B, C, batched=True) CR_C = s.cache_read(C, "local", [R]) y, x = s[R].op.axis xo, xi = s[R].split(x, 4) k = s[R].op.reduce_axis[0] s[R].reorder(k, xi) ko, ki = s[R].split(k, 4) s[R].unroll(xi) s[R].unroll(ki) tile_and_bind(s, R, y, xo, 1, 2) s[CR_C].compute_at(s[R], ko) _, y, x = s[CR_C].op.axis s[CR_C].unroll(y) s[CR_C].vectorize(x) def get_unrollable_gemm_ops(R): """Get all GEMM operators from the final reduction This is a helper function to more easily get all the GEMM operations from an operator Parameters ---------- R : tvm.te.Tensor Reduced tensor, final stage of GEMM Returns ------- A_unrolled : tvm.te.Tensor Matrix A unrolled along k B_unrolled: tvm.te.Tensor Matrix B unrolled along k C : tvm.te.Tensor Result of batched GEMM R : tvm.te.Tensor Reduction of C, result of unrollable GEMM """ C = R.op.input_tensors[0] A_unrolled, B_unrolled = C.op.input_tensors return A_unrolled, B_unrolled, C, R
https://github.com/zk-ml/tachikoma
python/tvm/topi/bifrost/transforms.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """Utility scheduling functions for the Bifrost schedules""" from __future__ import absolute_import as _abs import tvm from tvm import te def fuse_and_bind(s, tensor, axis=None, num_thread=None): """Fuse all the axis and bind to GPU threads""" axis = axis or s[tensor].op.axis fused = s[tensor].fuse(*axis) max_threads = tvm.target.Target.current(allow_none=False).max_num_threads bx, tx = s[tensor].split(fused, num_thread or max_threads) s[tensor].bind(bx, te.thread_axis("blockIdx.x")) s[tensor].bind(tx, te.thread_axis("threadIdx.x")) return bx, tx def tile_and_bind(s, tensor, y, x, y_factor, x_factor=None): """Tile and bind to GPU threads""" x_factor = x_factor or y_factor yo, xo, yi, xi = s[tensor].tile(y, x, y_factor, x_factor) s[tensor].bind(xo, te.thread_axis("blockIdx.x")) s[tensor].bind(xi, te.thread_axis("threadIdx.x")) s[tensor].bind(yo, te.thread_axis("blockIdx.y")) s[tensor].bind(yi, te.thread_axis("threadIdx.y")) return yo, xo, yi, xi def tile_and_bind3d(s, tensor, z, y, x, z_factor=2, y_factor=None, x_factor=None): """Tile and bind 3d""" y_factor = y_factor or z_factor x_factor = x_factor or y_factor zo, zi = s[tensor].split(z, z_factor) yo, yi = s[tensor].split(y, y_factor) xo, xi = s[tensor].split(x, x_factor) s[tensor].bind(zo, te.thread_axis("blockIdx.z")) s[tensor].bind(zi, te.thread_axis("threadIdx.z")) s[tensor].bind(yo, te.thread_axis("blockIdx.y")) s[tensor].bind(yi, te.thread_axis("threadIdx.y")) s[tensor].bind(xo, te.thread_axis("blockIdx.x")) s[tensor].bind(xi, te.thread_axis("threadIdx.x")) return zo, yo, xo, zi, yi, xi def pack_tensor(s, tensor, factor, readers): """Do transform X[n, m] -> X[n / factor, m, factor]""" tmp = s.cache_read(tensor, "global", readers) y, x = s[tmp].op.axis yo, yi = s[tmp].split(y, factor) s[tmp].reorder(yo, x, yi) s[tmp].compute_inline() return s.cache_write(tmp, "global"), tmp def transpose(s, tensor, y_index, x_index, readers): """Do transform X[n, m] -> X[m, n]""" tmp = s.cache_read(tensor, "global", readers) y, x = s[tmp].op.axis[y_index], s[tmp].op.axis[x_index] s[tmp].reorder(x, y) s[tmp].compute_inline() A_transpose = s.cache_write(tmp, "global") CR_A = s.cache_read(tensor, "local", [A_transpose]) CW_A_transpose = s.cache_write(A_transpose, "local") y, x = s[A_transpose].op.axis[y_index], s[A_transpose].op.axis[x_index] yo, xo, yi, xi = s[A_transpose].tile(y, x, 4, 4) s[A_transpose].unroll(yi) s[A_transpose].vectorize(xi) _, _, _, xi = tile_and_bind(s, A_transpose, yo, xo, 32, 2) s[CW_A_transpose].compute_at(s[A_transpose], xi) y, x = s[CW_A_transpose].op.axis[y_index], s[CW_A_transpose].op.axis[x_index] s[CW_A_transpose].unroll(x) s[CW_A_transpose].unroll(y) s[CR_A].compute_at(s[A_transpose], xi) y, x = s[CR_A].op.axis[y_index], s[CR_A].op.axis[x_index] s[CR_A].unroll(y) s[CR_A].vectorize(x) return tmp def interleave_transpose(s, tensor, width, y_index, x_index, readers, batched=False): """Interleave the tensor, then transpose it""" tmp = s.cache_read(tensor, "global", readers) y, x = s[tmp].op.axis[y_index], s[tmp].op.axis[x_index] xo, xi = s[tmp].split(x, width) s[tmp].reorder(xo, y, xi) s[tmp].fuse(y, xi) if batched: z = s[tmp].op.axis[0] s[tmp].fuse(z, xo) s[tmp].compute_inline() return s.cache_write(tmp, "global"), tmp def transpose_interleave(s, tensor, width, y_index, x_index, readers, batched=False): """Transpose the tensor, then interleave it""" tmp = s.cache_read(tensor, "global", readers) y, x = s[tmp].op.axis[y_index], s[tmp].op.axis[x_index] yo, yi = s[tmp].split(y, width) s[tmp].reorder(yo, x, yi) s[tmp].fuse(x, yi) if batched: z = s[tmp].op.axis[0] s[tmp].fuse(z, yo) s[tmp].compute_inline() return s.cache_write(tmp, "global"), tmp
https://github.com/zk-ml/tachikoma
python/tvm/topi/broadcast.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Broadcast operators""" from __future__ import absolute_import as _abs from . import cpp as _cpp def broadcast_to(data, shape): """Broadcast the src to the target shape We follows the numpy broadcasting rule. See also https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html Parameters ---------- data : tvm.te.Tensor The input data shape : list or tuple The target shape to be broadcasted. Returns ------- ret : tvm.te.Tensor """ return _cpp.broadcast_to(data, shape) def add(lhs, rhs): """Addition with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.add(lhs, rhs) def subtract(lhs, rhs): """Subtraction with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.subtract(lhs, rhs) def multiply(lhs, rhs): """Multiplication with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.multiply(lhs, rhs) def divide(lhs, rhs): """Division with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.divide(lhs, rhs) def floor_divide(lhs, rhs): """Floor division with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.floor_divide(lhs, rhs) def mod(lhs, rhs): """Modulus with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.mod(lhs, rhs) def floor_mod(lhs, rhs): """Floor modulus with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.floor_mod(lhs, rhs) def maximum(lhs, rhs): """Take element-wise maximum of two tensors with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.maximum(lhs, rhs) def minimum(lhs, rhs): """Take element-wise maximum of two tensors with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.minimum(lhs, rhs) def power(lhs, rhs): """Power with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.power(lhs, rhs) def left_shift(lhs, rhs): """Left shift with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.left_shift(lhs, rhs) def right_shift(lhs, rhs): """Right shift with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.right_shift(lhs, rhs) def greater(lhs, rhs): """Compute (lhs>rhs) with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.greater(lhs, rhs) def less(lhs, rhs): """Compute (lhs<rhs) with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.less(lhs, rhs) def equal(lhs, rhs): """Compute (lhs==rhs) with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.equal(lhs, rhs) def not_equal(lhs, rhs): """Compute (lhs!=rhs) with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.not_equal(lhs, rhs) def greater_equal(lhs, rhs): """Compute (lhs>=rhs) with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.greater_equal(lhs, rhs) def less_equal(lhs, rhs): """Compute (lhs<=rhs) with auto-broadcasting Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.less_equal(lhs, rhs) def logical_and(lhs, rhs): """Compute element-wise logical and of data. Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.logical_and(lhs, rhs) def logical_or(lhs, rhs): """Compute element-wise logical or of data. Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.logical_or(lhs, rhs) def logical_xor(lhs, rhs): """Compute element-wise logical xor of data. Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.logical_xor(lhs, rhs) def bitwise_and(lhs, rhs): """Compute element-wise bitwise and of data. Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.bitwise_and(lhs, rhs) def bitwise_or(lhs, rhs): """Compute element-wise bitwise or of data. Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.bitwise_or(lhs, rhs) def bitwise_xor(lhs, rhs): """Compute element-wise bitwise xor of data. Parameters ---------- lhs : tvm.te.Tensor or Expr The left operand rhs : tvm.te.Tensor or Expr The right operand Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if both operands are Expr. Otherwise returns Tensor. """ return _cpp.bitwise_xor(lhs, rhs) def logical_not(data): """Compute element-wise logical not of data. Parameters ---------- data : tvm.te.Tensor or Expr Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if the operand are Expr. Otherwise returns Tensor. """ return _cpp.logical_not(data) def bitwise_not(data): """Compute element-wise bitwise not of data. Parameters ---------- data : tvm.te.Tensor or Expr Returns ------- ret : tvm.te.Tensor or Expr Returns Expr if the operand are Expr. Otherwise returns Tensor. """ return _cpp.bitwise_not(data)
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for C++ TOPI ops and schedules""" from .impl import * # pylint: disable=wildcard-import from . import cuda from . import nn from . import vision from . import x86 from . import generic from . import rocm from . import utils
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/cuda.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for CUDA TOPI ops and schedules""" import tvm._ffi tvm._ffi._init_api("topi.cuda", "tvm.topi.cpp.cuda")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/generic.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for generic TOPI ops and schedules""" import tvm._ffi tvm._ffi._init_api("topi.generic", "tvm.topi.cpp.generic")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/impl.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Load Lib for C++ TOPI ops and schedules""" import tvm._ffi tvm._ffi._init_api("topi", "tvm.topi.cpp")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/nn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for NN TOPI ops and schedules""" import tvm._ffi tvm._ffi._init_api("topi.nn", "tvm.topi.cpp.nn")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/rocm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for Rocm TOPI ops and schedules""" import tvm._ffi tvm._ffi._init_api("topi.rocm", "tvm.topi.cpp.rocm")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for TOPI utility functions""" import tvm._ffi tvm._ffi._init_api("topi.utils", "tvm.topi.cpp.utils")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/vision/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for vision TOPI ops and schedules""" import tvm._ffi from . import yolo tvm._ffi._init_api("topi.vision", "tvm.topi.cpp.vision")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/vision/yolo.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for Yolo TOPI ops and schedules""" import tvm._ffi tvm._ffi._init_api("topi.vision.yolo", "tvm.topi.cpp.vision.yolo")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cpp/x86.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI for x86 TOPI ops and schedules""" import tvm._ffi tvm._ffi._init_api("topi.x86", "tvm.topi.cpp.x86")
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=redefined-builtin, wildcard-import """CUDA specific declaration and schedules.""" from .conv1d import * from .conv1d_transpose_ncw import * from .conv2d import * from .conv2d_hwcn import * from .conv2d_int8 import * from .conv2d_winograd import * from .conv2d_nhwc_winograd import * from .depthwise_conv2d import * from .group_conv2d_nchw import * from . import conv2d_alter_op from .conv2d_transpose import * from .conv3d_transpose_ncdhw import * from .deformable_conv2d import * from .conv3d import * from .conv3d_winograd import * from . import conv3d_alter_op from .reduction import schedule_reduce from .softmax import * from .injective import schedule_injective, schedule_elemwise, schedule_broadcast from .dense import * from .pooling import * from .nn import schedule_lrn from .batch_matmul import * from .batch_matmul_tensorcore import * from .vision import * from .ssd import * from .nms import get_valid_counts, non_max_suppression, all_class_non_max_suppression from .rcnn import * from .scatter import * from .sort import * from .conv2d_nhwc_tensorcore import * from .conv3d_ndhwc_tensorcore import * from .dense_tensorcore import * from .conv2d_hwnc_tensorcore import * from .correlation import * from .sparse import * from . import tensorcore_alter_op from .argwhere import * from .scan import * from .sparse_reshape import * from .transform import * from .unique import * from .searchsorted import * from .stft import *
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/argwhere.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=too-many-arguments, invalid-name """Argwhere operator""" import logging import tvm from tvm import te from .injective import schedule_injective_from_existing from .scan import exclusive_scan from .. import tag from ..utils import ceil_div, prod from ..transform import reshape from ..broadcast import not_equal from ..math import cast logger = logging.getLogger("topi") fdiv = tvm.tir.floordiv fmod = tvm.tir.floormod def compact_nonzero_indices_ir(condition, write_indices, out, do_write_func): """Copy nonzero indices to the corresponding write locations. Parameters ---------- condition : Buffer The input condition. write_indices : Buffer The result of exclusive scan on a boolean array, where True indicates that the condition is non zero at that position. out : Buffer The output buffer to copy indices to. do_write_func : a function A callback that accepts an output buffer, a dst index to write to, and a src index. Returns ------- stmt : Stmt The result IR statement. """ ib = tvm.tir.ir_builder.create() size_1d = prod(condition.shape) condition = ib.buffer_ptr(condition) write_indices = ib.buffer_ptr(write_indices) out = ib.buffer_ptr(out) nthread_tx = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_bx = ceil_div(size_1d, nthread_tx) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) with ib.new_scope(): idx = bx * nthread_tx + tx with ib.if_scope(idx < size_1d): with ib.if_scope(condition[idx] != 0): do_write_func(out, write_indices[idx], idx) return ib.get() def argwhere_common(output_shape, condition, do_write_func): """A common compute used by argwhere of various ranks. Parameters ---------- output_shape : list of int or tvm.tir.Any Tensor with output shape info. condition : tvm.te.Tensor The input condition. do_write_func : a function A callback that accepts an output buffer, a dst index to write to, and a src index. Returns ------- out : tvm.te.Tensor Indices of non-zero elements. """ flags = not_equal(condition, tvm.tir.const(0)) flags_1d = reshape(flags, (prod(flags.shape),)) write_indices = exclusive_scan(cast(flags_1d, dtype="int32")) condition_buf = tvm.tir.decl_buffer( condition.shape, condition.dtype, "data_buf", data_alignment=8 ) write_indices_buf = tvm.tir.decl_buffer( write_indices.shape, write_indices.dtype, "write_indices_buf", data_alignment=8 ) out_buf = tvm.tir.decl_buffer(output_shape, "int32", "out_buf", data_alignment=8) out = te.extern( [output_shape], [condition, write_indices], lambda ins, outs: compact_nonzero_indices_ir(ins[0], ins[1], outs[0], do_write_func), dtype=["int32"], in_buffers=[condition_buf, write_indices_buf], out_buffers=[out_buf], name="argwhere", tag="argwhere_gpu", ) return out def argwhere_1d(output_shape, condition): """Compute for argwhere 1D Parameters ---------- condition : list of int or tvm.tir.Any The output shape out : tvm.te.Tensor Tensor with boolean values. Returns ------- stmt : Stmt The result IR statement. """ def do_write(out, write_index, idx): out[write_index] = idx return argwhere_common(output_shape, condition, do_write) def argwhere_2d(output_shape, condition): """Compute for argwhere 2D Parameters ---------- condition : list of int or tvm.tir.Any The output shape out : tvm.te.Tensor Tensor with boolean values. Returns ------- stmt : Stmt The result IR statement. """ def do_write(out, write_index, idx): a1 = condition.shape[1] out[write_index * 2] = tvm.tir.floordiv(idx, a1) out[write_index * 2 + 1] = tvm.tir.floormod(idx, a1) return argwhere_common(output_shape, condition, do_write) def argwhere_3d(output_shape, condition): """Compute for argwhere 3D Parameters ---------- condition : list of int or tvm.tir.Any The output shape out : tvm.te.Tensor Tensor with boolean values. Returns ------- stmt : Stmt The result IR statement. """ def do_write(out, write_index, idx): _, a1, a2 = condition.shape s1 = a1 * a2 out[write_index * 3] = fdiv(idx, s1) out[write_index * 3 + 1] = fdiv(fmod(idx, s1), a2) out[write_index * 3 + 2] = fmod(idx, a2) return argwhere_common(output_shape, condition, do_write) def argwhere_4d(output_shape, condition): """Compute for argwhere 4D Parameters ---------- condition : list of int or tvm.tir.Any The output shape out : tvm.te.Tensor Tensor with boolean values. Returns ------- stmt : Stmt The result IR statement. """ def do_write(out, write_index, idx): _, a1, a2, a3 = condition.shape s1 = a2 * a3 s2 = a1 * s1 out[write_index * 4] = fdiv(idx, s2) out[write_index * 4 + 1] = fdiv(fmod(idx, s2), s1) out[write_index * 4 + 2] = fdiv(fmod(idx, s1), a3) out[write_index * 4 + 3] = fmod(idx, a3) return argwhere_common(output_shape, condition, do_write) def argwhere_5d(output_shape, condition): """Compute for argwhere 5D Parameters ---------- condition : list of int or tvm.tir.Any The output shape out : tvm.te.Tensor Tensor with boolean values. Returns ------- stmt : Stmt The result IR statement. """ def do_write(out, write_index, idx): _, a1, a2, a3, a4 = condition.shape s1 = a3 * a4 s2 = a2 * s1 s3 = a1 * s2 out[write_index * 5] = fdiv(idx, s3) out[write_index * 5 + 1] = fdiv(fmod(idx, s3), s2) out[write_index * 5 + 2] = fdiv(fmod(idx, s2), s1) out[write_index * 5 + 3] = fdiv(fmod(idx, s1), a4) out[write_index * 5 + 4] = fmod(idx, a4) return argwhere_common(output_shape, condition, do_write) def argwhere(output_shape, condition): """Find the indices of elements of a tensor that are non-zero. Parameters ---------- output_shape : tvm.te.Tensor Tensor with output shape info. condition : tvm.te.Tensor Tensor with boolean values. Returns ------- out : tvm.te.Tensor Indices of non-zero elements. """ if len(condition.shape) == 1: return argwhere_1d(output_shape.shape, condition) if len(condition.shape) == 2: return argwhere_2d(output_shape.shape, condition) if len(condition.shape) == 3: return argwhere_3d(output_shape.shape, condition) if len(condition.shape) == 4: return argwhere_4d(output_shape.shape, condition) if len(condition.shape) == 5: return argwhere_5d(output_shape.shape, condition) raise ValueError("Argwhere does not support rank higher than 5") def schedule_argwhere(outs): """Schedule for argwhere on cuda. Parameters ---------- outs: Array of Tensor The computation graph description of argwhere in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for argwhere """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) scheduled_ops = [] def traverse(op): if tag.is_injective(op.tag): schedule_injective_from_existing(s, op.output(0)) for tensor in op.input_tensors: if tensor.op.input_tensors and tensor.op not in scheduled_ops: traverse(tensor.op) scheduled_ops.append(op) for out in outs: traverse(out.op) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/batch_matmul.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,too-many-locals,unused-variable,unused-argument """cuda batch_matmul operators""" import tvm from tvm import autotvm from tvm import te from tvm.contrib import cublas from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity from .. import nn, generic from ..utils import traverse_inline, get_const_tuple, get_max_power2_factor from .tensor_intrin import dp4a @autotvm.register_topi_compute("batch_matmul.cuda") def batch_matmul(cfg, x, y, out_shape=None, out_dtype=None, transpose_a=False, transpose_b=True): """Compute batch matrix multiplication of `tensor_a` and `tensor_b`. Both `tensor_a` and `tensor_b` can be transposed. For legacy reason, we use NT format (transpose_a=False, transpose_b=True) by default. Parameters ---------- cfg : ConfigSpace Autotvm tuning space config file. tensor_a : tvm.te.Tensor 3-D with shape [batch, M, K] or [batch, K, M]. tensor_b : tvm.te.Tensor 3-D with shape [batch, K, N] or [batch, N, K]. out_shape : List[Optional] Explicit intended output shape of the computation. Can be useful in cases with dynamic input shapes. out_dtype : Optional[str] Specifies the output data type for mixed precision batch matmul. transpose_a : Optional[bool] = False Whether the first tensor is in transposed format. transpose_b : Optional[bool] = True Whether the second tensor is in transposed format. Returns ------- output : tvm.te.Tensor 3-D with shape [batch, M, N] """ return nn.batch_matmul( x, y, oshape=out_shape, out_dtype=out_dtype, transpose_a=transpose_a, transpose_b=transpose_b, ) @autotvm.register_topi_schedule("batch_matmul.cuda") def schedule_batch_matmul(cfg, outs): """Schedule for batch_matmul Parameters ---------- outs: Array of Tensor The computation graph description of batch_matmul in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule(cfg, op): C = op.output(0) A, B = s[C].op.input_tensors if len(B.op.input_tensors) == 1 and B.op.input_tensors[0] == A: s[B].compute_inline() _, M, N = get_const_tuple(C.shape) AA = s.cache_read(A, "shared", [C]) AL = s.cache_read(AA, "local", [C]) BB = s.cache_read(B, "shared", [C]) BL = s.cache_read(BB, "local", [C]) CC = s.cache_write(C, "local") if op not in s.outputs: s[C].compute_inline() C = s.outputs[0].output(0) b, y, x = s[C].op.axis (k,) = s[CC].op.reduce_axis cfg.define_split("tile_y", y, num_outputs=3) cfg.define_split("tile_x", x, num_outputs=3) cfg.define_split("tile_k", k, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [8, 16, 32, 64]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: # llvm-based backends cannot do non-explicit unrolling cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) if cfg.is_fallback: y_bn = get_max_power2_factor(M, 64) x_bn = get_max_power2_factor(N, 64) y_nthreads = min(y_bn, 8) x_nthreads = min(x_bn, 8) cfg["tile_x"] = SplitEntity([-1, x_nthreads, x_bn // x_nthreads]) cfg["tile_y"] = SplitEntity([-1, y_nthreads, y_bn // y_nthreads]) cfg["tile_k"] = SplitEntity([-1, 8]) cfg["auto_unroll_max_step"] = OtherOptionEntity(16) by, ty, yi = cfg["tile_y"].apply(s, C, y) bx, tx, xi = cfg["tile_x"].apply(s, C, x) thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") s[C].reorder(b, by, bx, ty, tx, yi, xi) s[C].bind(b, te.thread_axis("blockIdx.z")) s[C].bind(by, te.thread_axis("blockIdx.y")) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(ty, thread_y) s[C].bind(tx, thread_x) s[C].pragma(yi, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[C].pragma(yi, "unroll_explicit", cfg["unroll_explicit"].val) s[CC].compute_at(s[C], tx) _, yi, xi = s[CC].op.axis ko, ki = cfg["tile_k"].apply(s, CC, k) s[CC].reorder(ko, ki, yi, xi) s[CC].pragma(ki, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[CC].pragma(ki, "unroll_explicit", cfg["unroll_explicit"].val) s[AA].compute_at(s[CC], ko) s[AL].compute_at(s[CC], ki) s[BB].compute_at(s[CC], ko) s[BL].compute_at(s[CC], ki) _, y, k = s[AA].op.axis ty, yi = s[AA].split(y, nparts=cfg["tile_y"].size[1]) tx, ki = s[AA].split(k, nparts=cfg["tile_x"].size[1]) s[AA].reorder(ty, tx, yi, ki) s[AA].bind(ty, thread_y) s[AA].bind(tx, thread_x) s[AA].pragma(yi, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[AA].pragma(yi, "unroll_explicit", cfg["unroll_explicit"].val) _, x, k = s[BB].op.axis ty, xi = s[BB].split(x, nparts=cfg["tile_y"].size[1]) tx, ki = s[BB].split(k, nparts=cfg["tile_x"].size[1]) s[BB].bind(ty, thread_y) s[BB].bind(tx, thread_x) s[BB].reorder(ty, tx, xi, ki) s[BB].pragma(xi, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[BB].pragma(xi, "unroll_explicit", cfg["unroll_explicit"].val) def _callback(op): if "batch_matmul" in op.tag: _schedule(cfg, op) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("batch_matmul_cublas.cuda") def batch_matmul_cublas( cfg, x, y, out_shape=None, out_dtype=None, transpose_a=False, transpose_b=True ): """Compute batch matrix multiplication of `x` and `y`. Both `x` and `y` can be transposed. For legacy reason, we use NT format (transpose_a=False, transpose_b=True) by default. Parameters ---------- cfg : ConfigSpace Autotvm tuning space config file. x : tvm.te.Tensor 3-D with shape [batch, M, K] or [batch, K, M]. y : tvm.te.Tensor 3-D with shape [batch, K, N] or [batch, N, K]. out_shape : List[Optional] Explicit intended output shape of the computation. Can be useful in cases with dynamic input shapes. out_dtype : Optional[str] Specifies the output data type for mixed precision batch matmul. transpose_a : Optional[bool] = False Whether the first tensor is in transposed format. transpose_b : Optional[bool] = True Whether the second tensor is in transposed format. Returns ------- output : tvm.te.Tensor 3-D with shape [batch, M, N] """ if transpose_a: b, k, m = get_const_tuple(x.shape) else: b, m, k = get_const_tuple(x.shape) if transpose_b: b, n, k = get_const_tuple(y.shape) else: b, k, n = get_const_tuple(y.shape) if all([isinstance(s, int) for s in [b, m, n, k]]): cfg.add_flop(b * m * k * n * 2) return cublas.batch_matmul(x, y, transa=transpose_a, transb=transpose_b, dtype=out_dtype) @autotvm.register_topi_schedule("batch_matmul_cublas.cuda") def schedule_batch_matmul_cublas(_, outs): """Schedule batch_matmul operator using CUBLAS""" return generic.schedule_extern(outs) @autotvm.register_topi_compute("batch_matmul_int8.cuda") def batch_matmul_int8( cfg, x, y, out_shape=None, out_dtype=None, transpose_a=False, transpose_b=True ): """Batch Matmul operator for int8 on CUDA. Parameters ---------- cfg : ConfigSpace Autotvm tuning space config file. x : tvm.te.Tensor 3-D with shape [batch, M, K] or [batch, K, M]. y : tvm.te.Tensor 3-D with shape [batch, K, N] or [batch, N, K]. out_shape : List[Optional] Explicit intended output shape of the computation. Can be useful in cases with dynamic input shapes. out_dtype : Optional[str] Specifies the output data type for mixed precision batch matmul. transpose_a : Optional[bool] = False Whether the first tensor is in transposed format. transpose_b : Optional[bool] = True Whether the second tensor is in transposed format. Returns ------- output : tvm.te.Tensor 3-D with shape [batch, M, N] """ del out_shape # TODO(jcf94): Deal with different transpose combinations assert not transpose_a and transpose_b if out_dtype is None: out_dtype = x.dtype x_shape = get_const_tuple(x.shape) y_shape = get_const_tuple(y.shape) assert len(x_shape) == 3 and len(y_shape) == 3, "only support 3-dim batch_matmul" XB, M, XK = x.shape YB, N, YK = y.shape assert XB == YB or XB == 1 or YB == 1, "batch dimension doesn't match" assert XK == YK, "shapes of x and y is inconsistent" nB = tvm.te.max(XB, YB) nK = ((XK + 3) // 4) * 4 reduce_k = te.reduce_axis((0, nK), name="k") # pad for _dp4a vectorize pad_x = te.compute( (XB, M, nK), lambda b, i, j: tvm.te.if_then_else( j >= XK, tvm.runtime.convert(0).astype(x.dtype), x[b, i, j] ), ) pad_y = te.compute( (YB, N, nK), lambda b, i, j: tvm.te.if_then_else( j >= YK, tvm.runtime.convert(0).astype(y.dtype), y[b, i, j] ), ) out = te.compute( (nB, M, N), lambda b, i, j: te.sum( pad_x[b if XB != 1 else 0, i, reduce_k].astype(out_dtype) * pad_y[b if YB != 1 else 0, j, reduce_k].astype(out_dtype), axis=[reduce_k], ), tag="batch_matmul_int8", ) cfg.add_flop(XB * M * N * nK * 2) return out @autotvm.register_topi_schedule("batch_matmul_int8.cuda") def schedule_batch_matmul_int8(cfg, outs): """Batch Matmul schedule for int8 on CUDA""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if "batch_matmul_int8" in op.tag: _schedule_batch_matmul_int8(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_batch_matmul_int8(cfg, s, output): input_x, input_y = s[output].op.input_tensors if len(input_y.op.input_tensors) == 1 and input_y.op.input_tensors[0] == input_x: s[input_y].compute_inline() B, M, K = get_const_tuple(input_x.shape) _, N, _ = get_const_tuple(input_y.shape) k_factor = 4 assert K % k_factor == 0, "Input dimension must divide {}".format(k_factor) if K % 16 == 0: k_factor = 16 cfg.define_split("tile_f", B, num_outputs=4) cfg.define_split("tile_m", M, num_outputs=4) cfg.define_split("tile_n", N, num_outputs=4) cfg.define_split("tile_k", K // k_factor, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 256, 512, 1024]) batch_matmul_op = s.outputs[0] s[input_x].compute_inline() s[input_y].compute_inline() x_cache = s.cache_read(input_x, "shared", [batch_matmul_op]) y_cache = s.cache_read(input_y, "shared", [batch_matmul_op]) batch_matmul_cache = s.cache_write(batch_matmul_op.output(0), "local") # tile reduce axis ko = batch_matmul_cache.op.reduce_axis[0] ko, ki = s[batch_matmul_cache].split(ko, factor=4) ko, kt = cfg["tile_k"].apply(s, batch_matmul_cache, ko) # dp4a tensorize target = tvm.target.Target.current(allow_none=False) do_tensorize = "+dotprod" in target.mattr or target.supports_integer_dot_product if do_tensorize: dtypes = (input_x.dtype, input_y.dtype) s[batch_matmul_cache].tensorize(ki, dp4a("shared", "shared", "local", dtypes)) # tile axis f, m, n = batch_matmul_op.axis kernel_scope, f = s[batch_matmul_op].split(f, nparts=1) bf, vf, tf, fi = cfg["tile_f"].apply(s, batch_matmul_op, f) bm, vm, tm, mi = cfg["tile_m"].apply(s, batch_matmul_op, m) bn, vn, tn, ni = cfg["tile_n"].apply(s, batch_matmul_op, n) s[batch_matmul_op].reorder(bf, bm, bn, vf, vm, vn, tf, tm, tn, fi, mi, ni) # bind axis s[batch_matmul_op].bind(bf, tvm.te.thread_axis("blockIdx.z")) s[batch_matmul_op].bind(bm, tvm.te.thread_axis("blockIdx.y")) s[batch_matmul_op].bind(bn, tvm.te.thread_axis("blockIdx.x")) s[batch_matmul_op].bind(vf, tvm.te.thread_axis("vthread")) s[batch_matmul_op].bind(vm, tvm.te.thread_axis("vthread")) s[batch_matmul_op].bind(vn, tvm.te.thread_axis("vthread")) s[batch_matmul_op].bind(tf, tvm.te.thread_axis("threadIdx.z")) s[batch_matmul_op].bind(tm, tvm.te.thread_axis("threadIdx.y")) s[batch_matmul_op].bind(tn, tvm.te.thread_axis("threadIdx.x")) # cache compute at s[batch_matmul_cache].compute_at(s[batch_matmul_op], tn) fo, mo, no = batch_matmul_cache.op.axis[:3] s[batch_matmul_cache].reorder(ko, kt, fo, mo, no, ki) # for load in [splited_x_op, splited_y_op] for load in [x_cache, y_cache]: s[load].compute_at(s[batch_matmul_cache], ko) outer, inner = s[load].split(s[load].op.axis[-1], factor=k_factor) s[load].vectorize(inner) fused = s[load].op.axis[:-1] + [outer] fused = s[load].fuse(*fused) fused, tx = s[load].split(fused, factor=cfg["tile_n"].size[2]) fused, ty = s[load].split(fused, factor=cfg["tile_m"].size[2]) fused, tz = s[load].split(fused, factor=cfg["tile_f"].size[2]) s[load].bind(tz, tvm.te.thread_axis("threadIdx.z")) s[load].bind(ty, tvm.te.thread_axis("threadIdx.y")) s[load].bind(tx, tvm.te.thread_axis("threadIdx.x")) # max unroll s[batch_matmul_op].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[batch_matmul_op].pragma(kernel_scope, "unroll_explicit", False) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/batch_matmul_tensorcore.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,too-many-locals,unused-variable,unused-argument """cuda batch_matmul operators""" import tvm from tvm import autotvm from tvm import te from ..utils import traverse_inline, get_const_tuple from .tensor_intrin import ( intrin_wmma_load_matrix_A, intrin_wmma_load_matrix_W, intrin_wmma_store_matrix, intrin_wmma_gemm, ) @autotvm.register_topi_compute("batch_matmul_tensorcore.cuda") def batch_matmul_tensorcore( cfg, x, y, out_shape=None, out_dtype=None, transpose_a=False, transpose_b=True ): """batch matmul tensorcore operator on cuda""" # TODO(jcf94): Deal with different transpose combinations assert not transpose_a and transpose_b # TODO(liuxin.ai): Deal with out_shape for broadcast del out_shape return batch_matmul_tensorcore_cuda(x, y, out_dtype) @autotvm.register_topi_schedule("batch_matmul_tensorcore.cuda") def schedule_batch_matmul_tensorcore(cfg, outs): """Schedule for batch_matmul operator using Tensorcore Parameters ---------- outs: Array of Tensor The computation graph description of batch_matmul in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule(cfg, s, C): A, B = s[C].op.input_tensors if len(B.op.input_tensors) == 1 and B.op.input_tensors[0] == A: s[B].compute_inline() batch, m_dim, k_dim = get_const_tuple(A.shape) batch, n_dim, k_dim = get_const_tuple(B.shape) data_dtype = A.dtype out_dtype = C.dtype # Explicit memory access AS = s.cache_read(A, "shared", [C]) BS = s.cache_read(B, "shared", [C]) AF = s.cache_read(AS, "wmma.matrix_a", [C]) BF = s.cache_read(BS, "wmma.matrix_b", [C]) CF = s.cache_write(C, "wmma.accumulator") CS = s.cache_read(CF, "shared", [C]) # fallback support target = tvm.target.Target.current() if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log( target.kind.name, target.model, "batch_matmul_tensorcore.cuda" ) cfg.fallback_with_reference_log(ref_log) # Deal with op fusion, such as bias/relu and slice after padding if C.op not in s.outputs and "injective" in s.outputs[0].tag: s[C].compute_inline() C = s.outputs[0].output(0) # create tuning space cfg.define_knob("block_row_warps", [1, 2, 4]) cfg.define_knob("block_col_warps", [1, 2, 4]) cfg.define_knob("warp_row_tiles", [1, 2, 4]) cfg.define_knob("warp_col_tiles", [1, 2, 4]) cfg.define_knob("chunk", [1, 2, 4, 8]) cfg.define_knob("offset", [0, 8]) cfg.define_knob("offsetCS", [0, 8]) cfg.define_knob("vec", [1, 2, 4, 8]) # Ensure that the default parameters are applicable when autotvm is not in use if data_dtype in ["float16", "uint8", "int8"]: if m_dim % 32 == 0 and n_dim % 8 == 0: cfg.define_knob("wmma_m", [32, 16, 8]) elif m_dim % 16 == 0 and n_dim % 16 == 0: cfg.define_knob("wmma_m", [16, 8, 32]) elif m_dim % 8 == 0 and n_dim % 32 == 0: cfg.define_knob("wmma_m", [8, 16, 32]) wmma_k = 16 wmma_m = cfg["wmma_m"].val if wmma_m == 16: wmma_n = 16 elif wmma_m == 8: wmma_n = 32 elif wmma_m == 32: wmma_n = 8 elif data_dtype in ["int4", "uint4"]: wmma_m = wmma_n = 8 wmma_k = 32 else: raise ValueError("data dtype %s is not yet supported" % data_dtype) warp_size = 32 block_row_warps = cfg["block_row_warps"].val block_col_warps = cfg["block_col_warps"].val warp_row_tiles = cfg["warp_row_tiles"].val warp_col_tiles = cfg["warp_col_tiles"].val chunk = cfg["chunk"].val offset = cfg["offset"].val offsetCS = cfg["offsetCS"].val vec = cfg["vec"].val # Define the stride of intrin functions AS_align = chunk * wmma_k + offset BS_align = chunk * wmma_k + offset CS_align = warp_col_tiles * block_col_warps * wmma_n + offsetCS AS_stride = [AS_align, 1] BS_stride = [BS_align, 1] AF_stride = [wmma_k, 1] BF_stride = [wmma_k, 1] CF_stride = [warp_col_tiles * wmma_n, 1] CS_stride = [CS_align, 1] block_x = te.thread_axis("blockIdx.x") block_y = te.thread_axis("blockIdx.y") block_z = te.thread_axis("blockIdx.z") thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") # Schedule for dense computation block_factor_m = wmma_m * warp_row_tiles * block_row_warps block_factor_n = wmma_n * warp_col_tiles * block_col_warps b, m, n = C.op.axis block_i, bc = s[C].split(m, factor=block_factor_m) block_j, oc = s[C].split(n, factor=block_factor_n) s[C].reorder(b, block_i, block_j, bc, oc) t = s[C].fuse(bc, oc) t, vi = s[C].split(t, factor=vec) t, tx = s[C].split(t, factor=warp_size) t, ty = s[C].split(t, factor=block_row_warps) t, tz = s[C].split(t, factor=block_col_warps) s[C].bind(block_i, block_x) s[C].bind(block_j, block_y) s[C].bind(b, block_z) s[C].bind(tz, thread_z) s[C].bind(ty, thread_y) s[C].bind(tx, thread_x) s[C].vectorize(vi) # Schedule for wmma store s[CS].compute_at(s[C], block_j) bs, bb, oo = CS.op.axis s[CS].storage_align(bb, CS_align - 1, CS_align) bb, bbi = s[CS].split(bb, factor=wmma_m) oo, ooi = s[CS].split(oo, factor=wmma_n) bb, bbii = s[CS].split(bb, factor=warp_row_tiles) oo, ooii = s[CS].split(oo, factor=warp_col_tiles) s[CS].reorder(bs, bb, oo, bbii, ooii, bbi, ooi) s[CS].bind(bb, thread_z) s[CS].bind(oo, thread_y) # Schedule for wmma computation s[CF].compute_at(s[CS], oo) bs, warp_i, warp_j = CF.op.axis warp_i, _ii = s[CF].split(warp_i, factor=wmma_m) warp_j, _jj = s[CF].split(warp_j, factor=wmma_n) (k,) = CF.op.reduce_axis k, _k = s[CF].split(k, factor=wmma_k) ko, ki = s[CF].split(k, factor=chunk) s[CF].reorder(bs, ko, ki, warp_i, warp_j, _ii, _jj, _k) # Schedule for wmma_matrix_a load s[AF].compute_at(s[CF], ki) bs, b, i = AF.op.axis b, b_ii = s[AF].split(b, factor=wmma_m) i, i_jj = s[AF].split(i, factor=wmma_k) s[AF].reorder(bs, b, i, b_ii, i_jj) # Schedule for wmma_matrix_b load s[BF].compute_at(s[CF], ki) bs, o, i = BF.op.axis o, o_ii = s[BF].split(o, factor=wmma_n) i, i_ii = s[BF].split(i, factor=wmma_k) s[BF].reorder(bs, o, i, o_ii, i_ii) # Schedule for A's(B's) shared memory load def shared_schedule(stage, strides): s[stage].compute_at(s[CF], ko) bs, xo, yo = stage.op.axis s[stage].storage_align(xo, strides - 1, strides) t = s[stage].fuse(xo, yo) t, vi = s[stage].split(t, factor=vec) t, tx = s[stage].split(t, factor=warp_size) t, ty = s[stage].split(t, factor=block_row_warps) _, tz = s[stage].split(t, factor=block_col_warps) s[stage].bind(ty, thread_y) s[stage].bind(tz, thread_z) s[stage].bind(tx, thread_x) s[stage].vectorize(vi) shared_schedule(AS, AS_align) shared_schedule(BS, BS_align) shape = (wmma_m, wmma_n, wmma_k) AL_gemm = te.placeholder((wmma_m, wmma_k), name="AL_gemm", dtype=data_dtype) BL_gemm = te.placeholder((wmma_n, wmma_k), name="BL_gemm", dtype=data_dtype) k_gemm = te.reduce_axis((0, wmma_k), name="k_gemm") CL_compute = te.compute( (wmma_m, wmma_n), lambda ii, jj: te.sum( AL_gemm[ii, k_gemm].astype(out_dtype) * BL_gemm[jj, k_gemm].astype(out_dtype), axis=k_gemm, ), name="CL_compute", ) # lower the computation loops down to TensorCore hardware intrinsics # by mapping the dense tensorcore to tensor intrinsics s[AF].tensorize( b_ii, intrin_wmma_load_matrix_A( AF_stride, AS_stride, shape, "row_major", (wmma_m, wmma_k), (wmma_m, wmma_k), data_dtype, ), ) s[BF].tensorize( o_ii, intrin_wmma_load_matrix_W( BF_stride, BS_stride, shape, "col_major", (wmma_n, wmma_k), (wmma_n, wmma_k), data_dtype, ), ) s[CF].tensorize( _ii, intrin_wmma_gemm(AL_gemm, BL_gemm, CL_compute, AF_stride, BF_stride, CF_stride, shape), ) s[CS].tensorize( bbi, intrin_wmma_store_matrix( CS_stride, CF_stride, shape, out_dtype, (wmma_m, wmma_n), (wmma_m, wmma_n) ), ) def _callback(op): if "batch_matmul_tensorcore" in op.tag: _schedule(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def batch_matmul_tensorcore_cuda(x, y, out_dtype=None): """Computes batch matrix multiplication of `x` and `y` when `x` and `y` are data in batch. Parameters ---------- x : tvm.te.Tensor 3-D with shape [batch, M, K] y : tvm.te.Tensor 3-D with shape [batch, N, K] Returns ------- output : tvm.te.Tensor 3-D with shape [batch, M, N] """ assert len(x.shape) == 3 and len(y.shape) == 3, "only support 3-dim batch_matmul" x_shape = get_const_tuple(x.shape) y_shape = get_const_tuple(y.shape) assert x_shape[0] == y_shape[0], "batch dimension doesn't match" assert x_shape[2] == y_shape[2], "shapes of x and y is inconsistent" batch, M, K = x.shape N = y.shape[1] if out_dtype is None: out_dtype = x.dtype assert x.dtype == y.dtype assert x.dtype in ["float16", "uint8", "int8", "uint4", "int4"] if x.dtype in ["float16", "uint8", "int8"]: assert ( (M % 8 == 0 and K % 16 == 0 and N % 32 == 0) or (M % 16 == 0 and K % 16 == 0 and N % 16 == 0) or (M % 32 == 0 and K % 16 == 0 and N % 8 == 0) ), "The shape of (M, K, N) must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32)" else: assert ( M % 8 == 0 and K % 32 == 0 and N % 8 == 0 ), "The shape of (M, K, N) must be multiple of (8, 32, 8)" k = te.reduce_axis((0, K), name="k") return te.compute( (batch, M, N), lambda b, i, j: te.sum(x[b, i, k].astype(out_dtype) * y[b, j, k].astype(out_dtype), axis=k), tag="batch_matmul_tensorcore", )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv1d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Compute definition for conv1d with cuda backend""" import tvm from tvm import te from tvm import autotvm from .. import nn from ..utils import traverse_inline, get_const_tuple @autotvm.register_topi_compute("conv1d_ncw.cuda") def conv1d_ncw(cfg, data, kernel, strides, padding, dilation, out_dtype="float32"): return nn.conv1d_ncw(data, kernel, strides, padding, dilation, out_dtype) def _schedule_conv1d_ncw(cfg, outs): """TOPI schedule callback of conv1d ncw for cuda gpu Parameters ---------- cfg : ConfigEntity the config for this template. outs : Array of Tensor The computation graph description of conv1d in the format of an array of tensors. Returns ------- s : Schedule The computation schedule for conv1d. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "conv1d_ncw" or op.tag == "group_conv1d_ncw": pad_data = op.input_tensors[0] kernel = op.input_tensors[1] conv = op.output(0) ##### space definition begin ##### n, f, x = s[conv].op.axis rc = s[conv].op.reduce_axis[0] cfg.define_split("tile_n", cfg.axis(n), num_outputs=4) cfg.define_split("tile_f", cfg.axis(f), num_outputs=4) cfg.define_split("tile_x", cfg.axis(x), num_outputs=4) cfg.define_split("tile_rc", cfg.axis(rc), num_outputs=3) cfg.define_knob("auto_unroll_max_step", [64, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) ##### space definition end ##### if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv # create cache stage s[pad_data].set_scope("shared") AA = pad_data WW = s.cache_read(kernel, "shared", [OL]) # tile and bind spatial axes n, f, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bn, vn, tn, ni = cfg["tile_n"].apply(s, output, n) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].reorder(bn, bf, bx, vn, vf, vx, tn, tf, tx, ni, fi, xi) s[output].bind(bn, te.thread_axis("blockIdx.z")) s[output].bind(bf, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vn, te.thread_axis("vthread")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[OL].compute_at(s[output], tx) # number of threads n_tz = cfg["tile_n"].size[2] * cfg["tile_f"].size[2] n_tx = cfg["tile_x"].size[2] # tile reduction axes n, f, x = s[OL].op.axis rc, rx = s[OL].op.reduce_axis rco, rcm, rci = cfg["tile_rc"].apply(s, OL, rc) s[OL].reorder(rco, rcm, rx, rci, n, f, x) s[AA].compute_at(s[OL], rx) s[WW].compute_at(s[OL], rx) # cooperative fetching for load in [AA, WW]: n, f, x = s[load].op.axis fused = s[load].fuse(f, x) tz, fused = s[load].split(fused, nparts=n_tz) tx, fused = s[load].split(fused, nparts=n_tx) s[load].bind(tz, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) N, CO, OW = get_const_tuple(output.shape) _, CI, KW = get_const_tuple(kernel.shape) cfg.add_flop(2 * N * OW * CO * KW * CI) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_schedule("conv1d_ncw.cuda") def schedule_conv1d_ncw(cfg, outs): return _schedule_conv1d_ncw(cfg, outs) @autotvm.register_topi_compute("group_conv1d_ncw.cuda") def group_conv1d_ncw(cfg, data, kernel, strides, padding, dilation, groups, out_dtype="float32"): return nn.group_conv1d_ncw(data, kernel, strides, padding, dilation, groups, out_dtype) @autotvm.register_topi_schedule("group_conv1d_ncw.cuda") def schedule_group_conv1d_ncw(cfg, outs): return _schedule_conv1d_ncw(cfg, outs) @autotvm.register_topi_compute("conv1d_nwc.cuda") def conv1d_nwc(cfg, data, kernel, strides, padding, dilation, out_dtype="float32"): return nn.conv1d_nwc(data, kernel, strides, padding, dilation, out_dtype) def _schedule_conv1d_nwc(cfg, outs): """TOPI schedule callback of conv1d nwc for cuda gpu Parameters ---------- cfg : ConfigEntity the config for this template. outs : Array of Tensor The computation graph description of conv1d in the format of an array of tensors. Returns ------- s : Schedule The computation schedule for conv1d. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "conv1d_nwc" or op.tag == "group_conv1d_nwc": pad_data = op.input_tensors[0] kernel = op.input_tensors[1] conv = op.output(0) ##### space definition begin ##### n, x, f = s[conv].op.axis rc = s[conv].op.reduce_axis[0] cfg.define_split("tile_n", cfg.axis(n), num_outputs=4) cfg.define_split("tile_x", cfg.axis(x), num_outputs=4) cfg.define_split("tile_f", cfg.axis(f), num_outputs=4) cfg.define_split("tile_rc", cfg.axis(rc), num_outputs=3) cfg.define_knob("auto_unroll_max_step", [64, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) ##### space definition end ##### if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv # create cache stage s[pad_data].set_scope("shared") AA = pad_data WW = s.cache_read(kernel, "shared", [OL]) # tile and bind spatial axes n, f, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bn, vn, tn, ni = cfg["tile_n"].apply(s, output, n) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) s[output].reorder(bn, bx, bf, vn, vx, vf, tn, tx, tf, ni, xi, fi) s[output].bind(bn, te.thread_axis("blockIdx.z")) s[output].bind(bx, te.thread_axis("blockIdx.y")) s[output].bind(bf, te.thread_axis("blockIdx.x")) s[output].bind(vn, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(tf, te.thread_axis("threadIdx.x")) s[OL].compute_at(s[output], tf) # number of threads n_tz = cfg["tile_n"].size[2] * cfg["tile_x"].size[2] n_tx = cfg["tile_f"].size[2] # tile reduction axes n, x, f = s[OL].op.axis rc, rx = s[OL].op.reduce_axis rco, rcm, rci = cfg["tile_rc"].apply(s, OL, rc) s[OL].reorder(rco, rcm, rx, rci, n, x, f) s[AA].compute_at(s[OL], rx) s[WW].compute_at(s[OL], rx) # cooperative fetching for load in [AA, WW]: n, x, f = s[load].op.axis fused = s[load].fuse(x, f) tz, fused = s[load].split(fused, nparts=n_tz) tx, fused = s[load].split(fused, nparts=n_tx) s[load].bind(tz, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) N, OW, CO = get_const_tuple(output.shape) KW, CI, _ = get_const_tuple(kernel.shape) cfg.add_flop(2 * N * OW * CO * KW * CI) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_schedule("conv1d_nwc.cuda") def schedule_conv1d_nwc(cfg, outs): return _schedule_conv1d_nwc(cfg, outs) @autotvm.register_topi_compute("group_conv1d_nwc.cuda") def group_conv1d_nwc(cfg, data, kernel, strides, padding, dilation, groups, out_dtype="float32"): return nn.group_conv1d_nwc(data, kernel, strides, padding, dilation, groups, out_dtype) @autotvm.register_topi_schedule("group_conv1d_nwc.cuda") def schedule_group_conv1d_nwc(cfg, outs): return _schedule_conv1d_nwc(cfg, outs)
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv1d_transpose_ncw.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Conv1d transpose template for cuda backend""" import tvm from tvm import te from tvm import autotvm from .. import nn from ..utils import get_const_tuple, traverse_inline @autotvm.task.register_topi_compute("conv1d_transpose_nchw.cuda") def conv1d_transpose_ncw(cfg, data, kernel, stride, padding, out_dtype, output_padding): """Transposed 1D convolution ncw forward operator. Parameters ---------- cfg: ConfigEntity The config for this template Input : tvm.te.Tensor 3-D with shape [batch, in_channel, inp_width] Filter : tvm.te.Tensor 3-D with shape [in_channel, num_filter, kernel_size] stride : tuple of one int The spatial stride along width padding : int, tuple, or string int: padding size tuple of 2 ints: (pad_left, pad_right) for left and right padding string: ['VALID', 'SAME'] out_dtype: str The output type. This is used in mixed precision output_padding : ints Used to disambiguate the output shape. Returns ------- Output : tvm.te.Tensor u 3-D with shape [batch, out_channel, out_width] """ if isinstance(stride, (tuple, list)): stride = stride[0] if isinstance(output_padding, (tuple, list)): output_padding = output_padding[0] assert output_padding < stride cfg.stride = stride cfg.output_padding = output_padding batch, inp_channels, inp_width = get_const_tuple(data.shape) _, out_channels, kernel_size = get_const_tuple(kernel.shape) pad_left, pad_right = nn.get_pad_tuple1d(padding, kernel_size) out_width = (inp_width - 1) * stride + kernel_size - pad_left - pad_right + output_padding pad_left = kernel_size - 1 - pad_left pad_right = kernel_size - 1 - pad_right + output_padding padded_width = pad_left + inp_width + pad_right padded_data = te.compute( (batch, inp_channels, padded_width), lambda n, c, x: tvm.tir.if_then_else( tvm.tir.all(x >= pad_left, x < pad_left + inp_width), data[n, c, x - pad_left], tvm.tir.const(0.0, "float32"), ), name="data_pad", ) padded_kernel = te.compute( (inp_channels, out_channels, kernel_size + stride - 1), lambda ci, co, k: tvm.tir.if_then_else( tvm.tir.all(k < kernel_size), kernel[ci, co, kernel_size - k - 1], tvm.tir.const(0.0, "float32"), ), name="kernel_pad", ) ci = te.reduce_axis((0, inp_channels), name="ci") k = te.reduce_axis((0, tvm.tir.indexdiv(kernel_size + stride - 1, stride)), name="k") border = pad_left * (stride - 1) # Skip multiplication by 0 values in the input data inserted when stride is greater then 1. # During multiplication of kernel by padded data: # Kernel indices are: 0, 1 * stride, 2 * stride, ..., ceil(kernel_size / stride) plus # data offset mod stride data_out = te.compute( (batch, out_channels, out_width), lambda b, co, w: te.sum( padded_data[b, ci, tvm.tir.indexdiv(border + w + stride - 1, stride) + k].astype( out_dtype ) * padded_kernel[ ci, co, k * stride + tvm.tir.indexmod(stride - w - border, stride) ].astype(out_dtype), axis=[ci, k], ), tag="conv1d_transpose_ncw", ) return data_out @autotvm.task.register_topi_schedule("conv1d_transpose_nchw.cuda") def schedule_conv1d_transpose_ncw(cfg, outs): """TOPI Schedule callback for conv1d_transpose operator. Parameters ---------- cfg: ConfigEntity The parameters for this template outs: Array of Tensor The computation graph description of conv1d transpose in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv1d transpose. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "conv1d_transpose_ncw": padded_data = op.input_tensors[0] padded_kernel = op.input_tensors[1] conv = op.output(0) ##### space definition begin ##### n, f, x = s[conv].op.axis rc = s[conv].op.reduce_axis[0] cfg.define_split("tile_n", cfg.axis(n if isinstance(n, int) else 1), num_outputs=4) cfg.define_split("tile_f", cfg.axis(f), num_outputs=4) cfg.define_split("tile_x", cfg.axis(x), num_outputs=4) cfg.define_split("tile_rc", cfg.axis(rc), num_outputs=3) cfg.define_knob("auto_unroll_max_step", [64, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) ##### space definition end ##### if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv s[padded_kernel].compute_inline() s[padded_data].compute_inline() # tile and bind spatial axes n, f, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bn, vn, tn, ni = cfg["tile_n"].apply(s, output, n) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].reorder(bn, bf, bx, vn, vf, vx, tn, tf, tx, ni, fi, xi) s[output].bind(bn, te.thread_axis("blockIdx.z")) s[output].bind(bf, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vn, te.thread_axis("vthread")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[OL].compute_at(s[output], tx) # tile reduction axes n, f, x = s[OL].op.axis rc, rx = s[OL].op.reduce_axis rco, rcm, rci = cfg["tile_rc"].apply(s, OL, rc) s[OL].reorder(rco, rcm, rx, rci, n, f, x) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Compute definition for conv2d with cuda backend""" from tvm import te from tvm import autotvm from tvm.autotvm.task.space import OtherOptionEntity from tvm.contrib import cudnn from .. import nn, generic from ..nn.utils import get_pad_tuple from ..utils import get_const_tuple, traverse_inline from .conv2d_direct import schedule_direct_cuda @autotvm.register_topi_compute("conv2d_nchw.cuda") def conv2d_nchw(cfg, data, kernel, strides, padding, dilation, out_dtype="float32"): """Compute conv2d with NCHW layout""" return nn.conv2d_nchw(data, kernel, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("conv2d_nchw.cuda") def schedule_conv2d_nchw(cfg, outs): """Create the schedule for conv2d_nchw""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "conv2d_nchw": schedule_direct_cuda(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("conv2d_cudnn.cuda") def conv2d_cudnn( cfg, data, kernel, strides, padding, dilation, groups=1, layout="NCHW", out_dtype="float32" ): """Compute conv2d using CuDNN library""" if layout == "NCHW": tensor_format = 0 # CUDNN_TENSOR_NCHW N, _, H, W = get_const_tuple(data.shape) elif layout == "NHWC": tensor_format = 1 # CUDNN_TENSOR_NHWC N, H, W, _ = get_const_tuple(data.shape) else: raise ValueError("Unsupported layout %s in cudnn" % layout) CO, CI, KH, KW = get_const_tuple(kernel.shape) # handle dilation stride_h, stride_w = (strides, strides) if isinstance(strides, int) else strides dilation_h, dilation_w = (dilation, dilation) if isinstance(dilation, int) else dilation KH_dilated = (KH - 1) * dilation_h + 1 KW_dilated = (KW - 1) * dilation_h + 1 pt, pl, pb, pr = get_pad_tuple(padding, (KH_dilated, KW_dilated)) if (pt != pb) or (pl != pr): raise ValueError("Cudnn doesn't support asymmetric padding.") OH = (H + pt + pb - KH) // stride_h + 1 OW = (W + pl + pr - KW) // stride_w + 1 if isinstance(N, int): cfg.add_flop( groups * 2 * N * OH * OW * CO * CI * ((KH - 1) * dilation_h + 1) * ((KW - 1) * dilation_w + 1) ) if data.dtype == "int8" or kernel.dtype == "int8": if layout == "NCHW": raise ValueError("NCHW layout do not support int8 in cudnn") dtype = "int32" else: dtype = data.dtype cfg.define_knob("algo", range(cudnn.algo_to_index("fwd", "CUDNN_CONVOLUTION_FWD_ALGO_COUNT"))) if cfg.is_fallback: if cudnn.exists(): # Let CUDNN choose the best algo, based on benchmarks run # on the local machine. In the future, this should be # based on parameters stored in the Target. cfg["algo"] = OtherOptionEntity(-1) else: cfg["algo"] = OtherOptionEntity(0) return cudnn.conv_forward( data, kernel, [pt, pl], # cudnn padding pt, pl on both sides of input [stride_h, stride_w], [dilation_h, dilation_w], conv_mode=1, tensor_format=tensor_format, algo=cfg["algo"].val, conv_dtype=dtype, groups=groups, ) @autotvm.register_topi_schedule("conv2d_cudnn.cuda") def schedule_conv2d_cudnn(cfg, outs): """Create the schedule for conv2d_cudnn""" return generic.schedule_extern(outs) def conv2d_backward_weight_cudnn( dy, x, kernel_size, padding, stride, dilation, groups, layout, output_dtype ): """Compute conv2d wgrad using CuDNN library""" assert layout in ["NCHW", "NHWC"] if dy.dtype == "float16": # cuDNN does not seem to support other combination. assert output_dtype == "float16", "Only supports fp16 output for cuDNN fp16 wgrad." conv_dtype = "float32" # Accumulation is always fp32 return cudnn.conv_backward_filter( dy, x, kernel_size, padding, stride, dilation, conv_mode=1, tensor_format=0 if layout == "NCHW" else 1, conv_dtype=conv_dtype, groups=groups, )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_alter_op.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """Conv2D alter op and legalize functions for cuda backend""" import logging import tvm from tvm import autotvm, relay, te from .. import nn from ..nn import conv2d_legalize from ..utils import get_const_tuple, is_target from .conv2d_winograd import _infer_tile_size from .tensorcore_alter_op import pad_to_tensorcore logger = logging.getLogger("topi") @nn.conv2d_alter_layout.register(["cuda", "gpu"]) def _alter_conv2d_layout(attrs, inputs, tinfos, out_type): target = tvm.target.Target.current(allow_none=False) if not is_target(["vulkan", "rocm", "cuda"]): return None dispatch_ctx = autotvm.task.DispatchContext.current new_attrs = {k: attrs[k] for k in attrs.keys()} strides = attrs.get_int_tuple("strides") padding = attrs.get_int_tuple("padding") dilation = attrs.get_int_tuple("dilation") groups = attrs.get_int("groups") data_layout = attrs["data_layout"] kernel_layout = attrs["kernel_layout"] data, kernel = tinfos out_dtype = out_type.dtype impl, outs = relay.backend.te_compiler.select_implementation( relay.op.get("nn.conv2d"), attrs, tinfos, out_type, target ) workload = autotvm.task.get_workload(outs) if workload is None: # The best implementation is not an AutoTVM template. # It may be from the auto-scheduler if impl.name.find("winograd") != -1: if dilation != (1, 1): logger.warning("Does not support weight pre-transform for dilated convolution.") return None if data_layout == "NHWC" and kernel_layout == "HWIO": N, H, W, CI = get_const_tuple(data.shape) KH, KW, _, CO = get_const_tuple(kernel.shape) # Pre-compute weight transformation in winograd tile_size = _infer_tile_size(tinfos[0], tinfos[1], layout="NHWC") # HWIO -> OIHW kernel_transform = relay.transpose(inputs[1], axes=[3, 2, 0, 1]) # alpha, alpha, CO, CI weight = relay.nn.contrib_conv2d_winograd_weight_transform( kernel_transform, tile_size=tile_size ) new_attrs["tile_size"] = tile_size new_attrs["channels"] = CO return relay.nn.contrib_conv2d_winograd_without_weight_transform( inputs[0], weight, **new_attrs ) elif data_layout == "NCHW" and kernel_layout == "OIHW": N, CI, H, W = get_const_tuple(data.shape) CO, _, KH, KW = get_const_tuple(kernel.shape) # Pre-compute weight transformation in winograd tile_size = _infer_tile_size(tinfos[0], tinfos[1], layout="NCHW") # alpha, alpha, CO, CI weight = relay.nn.contrib_conv2d_winograd_weight_transform( inputs[1], tile_size=tile_size ) # alpha, alpha, CI, CO weight = relay.transpose(weight, axes=[0, 1, 3, 2]) new_attrs["tile_size"] = tile_size new_attrs["channels"] = CO return relay.nn.contrib_conv2d_winograd_without_weight_transform( inputs[0], weight, **new_attrs ) return None cfg = dispatch_ctx.query(target, workload) if cfg.is_fallback: # if is fallback, clear query cache and return None autotvm.task.clear_fallback_cache(target, workload) do_new_layout = False if is_target(["vulkan", "rocm"]): do_new_layout = "+dotprod" in target.mattr or target.supports_integer_dot_product if not do_new_layout: return None topi_tmpl = workload[0] if topi_tmpl == "conv2d_NCHWc_int8.cuda": assert data_layout == "NCHW" and kernel_layout == "OIHW" N, CI, H, W = get_const_tuple(data.shape) CO, _, KH, KW = get_const_tuple(kernel.shape) assert CO % 4 == 0, "Number of output channels should be multiple of 4" new_layout = "NCHW4c" new_attrs["channels"] = CO new_attrs["data_layout"] = new_layout new_attrs["out_layout"] = new_layout new_attrs["kernel_layout"] = "OIHW4o4i" ic_block_factor = oc_block_factor = 4 # Store the same config for the altered operator (workload) new_data = te.placeholder( (N, CI // ic_block_factor, H, W, ic_block_factor), dtype=data.dtype ) new_kernel = te.placeholder( ( CO // oc_block_factor, CI // ic_block_factor, KH, KW, oc_block_factor, ic_block_factor, ), dtype=kernel.dtype, ) new_workload = autotvm.task.args_to_workload( [new_data, new_kernel, strides, padding, dilation, new_layout, out_dtype], "conv2d_NCHWc_int8.cuda", ) dispatch_ctx.update(target, new_workload, cfg) return relay.nn.conv2d(*inputs, **new_attrs) if topi_tmpl == "conv2d_nchw_winograd.cuda": if dilation != (1, 1): logger.warning("Does not support weight pre-transform for dilated convolution.") return None assert data_layout == "NCHW" and kernel_layout == "OIHW" N, CI, H, W = get_const_tuple(data.shape) CO, _, KH, KW = get_const_tuple(kernel.shape) # pre-compute weight transformation in winograd tile_size = _infer_tile_size(tinfos[0], tinfos[1]) weight = relay.nn.contrib_conv2d_winograd_weight_transform(inputs[1], tile_size=tile_size) weight = relay.transpose(weight, axes=[0, 1, 3, 2]) new_attrs["tile_size"] = tile_size new_attrs["channels"] = CO # Store the same config for the altered operator (workload) new_data = data new_weight = te.placeholder( (KH + tile_size - 1, KW + tile_size - 1, CI, CO), dtype=kernel.dtype ) new_workload = autotvm.task.args_to_workload( [new_data, new_weight, strides, padding, dilation, out_dtype], "conv2d_nchw_winograd_without_weight_transform.cuda", ) dispatch_ctx.update(target, new_workload, cfg) return relay.nn.contrib_conv2d_winograd_without_weight_transform( inputs[0], weight, **new_attrs ) if topi_tmpl in ("conv2d_nhwc_winograd_direct.cuda", "conv2d_nhwc_winograd_tensorcore.cuda"): if dilation != (1, 1): logger.warning("Does not support weight pre-transform for dilated convolution.") return None assert data_layout == "NHWC" and kernel_layout == "HWIO" N, H, W, CI = get_const_tuple(data.shape) KH, KW, _, CO = get_const_tuple(kernel.shape) # Pre-compute weight transformation in winograd tile_size = _infer_tile_size(data, kernel, layout="NHWC") kernel_transform = relay.transpose(inputs[1], axes=[3, 2, 0, 1]) weight = relay.nn.contrib_conv2d_winograd_weight_transform( kernel_transform, tile_size=tile_size ) weight = relay.transpose(weight, axes=[0, 1, 3, 2]) new_attrs["tile_size"] = tile_size new_attrs["channels"] = CO # Store the same config for the altered operator (workload) new_data = data new_weight = te.placeholder( (KH + tile_size - 1, KW + tile_size - 1, CI, CO), dtype=kernel.dtype ) if topi_tmpl == "conv2d_nhwc_winograd_direct.cuda": new_workload = autotvm.task.args_to_workload( [new_data, new_weight, strides, padding, dilation, out_dtype], "conv2d_nhwc_winograd_direct_without_weight_transform.cuda", ) elif topi_tmpl == "conv2d_nhwc_winograd_tensorcore.cuda": new_workload = autotvm.task.args_to_workload( [new_data, new_weight, strides, padding, dilation, out_dtype], "conv2d_nhwc_winograd_tensorcore_without_weight_transform.cuda", ) dispatch_ctx.update(target, new_workload, cfg) return relay.nn.contrib_conv2d_winograd_without_weight_transform( inputs[0], weight, **new_attrs ) if topi_tmpl == "group_conv2d_NCHWc_int8.cuda": assert data_layout == "NCHW" and kernel_layout == "OIHW" N, CI, H, W = get_const_tuple(data.shape) CO, _, KH, KW = get_const_tuple(kernel.shape) new_layout = "NCHW4c" new_attrs["channels"] = CO new_attrs["data_layout"] = new_layout new_attrs["out_layout"] = new_layout new_attrs["kernel_layout"] = "OIHW4o4i" ic_block_factor = oc_block_factor = 4 # Store the same config for the altered operator (workload) new_data = te.placeholder( (N, CI // ic_block_factor, H, W, ic_block_factor), dtype=data.dtype ) new_kernel = te.placeholder( ( CO // oc_block_factor, CI // ic_block_factor // groups, KH, KW, oc_block_factor, ic_block_factor, ), dtype=kernel.dtype, ) new_workload = autotvm.task.args_to_workload( [new_data, new_kernel, strides, padding, dilation, groups, out_dtype], "group_conv2d_NCHWc_int8.cuda", ) dispatch_ctx.update(target, new_workload, cfg) return relay.nn.conv2d(*inputs, **new_attrs) if topi_tmpl == "conv2d_HWNCnc_tensorcore.cuda": assert data_layout == "HWNC" and kernel_layout == "HWOI" assert float(tvm.cuda(0).compute_version) >= 7.5 H, W, N, CI = get_const_tuple(data.shape) KH, KW, CO, _ = get_const_tuple(kernel.shape) if ( kernel.dtype in ["int4", "uint4"] and (CI % 32 != 0 or CO % 8 != 0) or kernel.dtype in ["int8", "uint8"] and (CI % 16 != 0 or CO % 32 != 0) ): return relay.nn.conv2d(*inputs, **new_attrs) new_attrs["channels"] = CO if kernel.dtype in ["int4", "uint4"]: new_attrs["kernel_layout"] = "HWOI8o32i" ic_block_factor = 32 oc_block_factor = 8 else: new_attrs["kernel_layout"] = "HWOI32o16i" ic_block_factor = 16 oc_block_factor = 32 new_kernel = te.placeholder( ( KH, KW, CO // oc_block_factor, CI // ic_block_factor, oc_block_factor, ic_block_factor, ), dtype=kernel.dtype, ) new_workload = autotvm.task.args_to_workload( [data, new_kernel, strides, padding, dilation, out_dtype], "conv2d_HWNCnc_tensorcore.cuda", ) dispatch_ctx.update(target, new_workload, cfg) return relay.nn.conv2d(*inputs, **new_attrs) return None def _pad_conv2d_HWNC(db, di, do, data, kernel, out_channel, new_attrs, output_tensor): # Pad batch size if db != 0: data = relay.nn.pad(data, pad_width=((0, 0), (0, 0), (0, db), (0, 0))) # Pad input channel if di != 0: data = relay.nn.pad(data, pad_width=((0, 0), (0, 0), (0, 0), (0, di))) kernel = relay.nn.pad(kernel, pad_width=((0, 0), (0, 0), (0, 0), (0, di))) # Pad output channel if do != 0: kernel = relay.nn.pad(kernel, pad_width=((0, 0), (0, 0), (0, do), (0, 0))) if do != 0: new_out_channel = out_channel + do new_attrs["channels"] = new_out_channel out = relay.nn.conv2d(data, kernel, **new_attrs) if db != 0 or do != 0: original_out_shape = [x.value for x in output_tensor.shape] out = relay.strided_slice(out, begin=[0, 0, 0, 0], end=original_out_shape) return out def _pad_conv2d_NHWC(db, di, do, data, kernel, out_channel, new_attrs, output_tensor): # Pad batch size if db != 0: data = relay.nn.pad(data, pad_width=((0, db), (0, 0), (0, 0), (0, 0))) # Pad input channel if di != 0: data = relay.nn.pad(data, pad_width=((0, 0), (0, 0), (0, 0), (0, di))) kernel = relay.nn.pad(kernel, pad_width=((0, 0), (0, 0), (0, di), (0, 0))) # Pad output channel if do != 0: kernel = relay.nn.pad(kernel, pad_width=((0, 0), (0, 0), (0, 0), (0, do))) if do != 0: new_out_channel = out_channel + do new_attrs["channels"] = new_out_channel out = relay.nn.conv2d(data, kernel, **new_attrs) if db != 0 or do != 0: original_out_shape = [x.value for x in output_tensor.shape] out = relay.strided_slice(out, begin=[0, 0, 0, 0], end=original_out_shape) return out @conv2d_legalize.register(["cuda", "gpu"]) def _conv2d_legalize(attrs, inputs, arg_types): """Legalizes Conv2D op. Parameters ---------- attrs : tvm.ir.Attrs Attributes of current convolution inputs : list of tvm.relay.Expr The args of the Relay expr to be legalized types : list of types List of input and output types Returns ------- result : tvm.relay.Expr The legalized expr """ if not is_target(["vulkan", "rocm", "cuda"]): return None # Dilation not supported yet. Return None if dilation is not (1, 1) dilation = attrs.get_int_tuple("dilation") if not (dilation[0] == 1 and dilation[1] == 1): return None # No legalization for depthwise convolutions yet. groups = attrs.get_int("groups") if groups != 1: return None # Collect the input tensors. data_tensor, kernel_tensor = arg_types[0], arg_types[1] data_dtype = data_tensor.dtype # Collect the output tensor. output_tensor = arg_types[2] # Collect the input exprs. data, kernel = inputs # Get the conv attrs new_attrs = {k: attrs[k] for k in attrs.keys()} # Get data layout. Return None if not NCHW data_layout = attrs["data_layout"] kernel_layout = attrs["kernel_layout"] # Pad input and output channels to use int8 schedule. if data_dtype in ["int8", "uint8"]: if data_layout == "NCHW" and kernel_layout == "OIHW": oc_modified = False in_channel = data_tensor.shape[1].value out_channel = kernel_tensor.shape[0].value # Pad input channel if in_channel % 4 != 0: new_in_channel = ((in_channel + 4) // 4) * 4 diff = new_in_channel - in_channel pad_width = ((0, 0), (0, diff), (0, 0), (0, 0)) data = relay.nn.pad(data, pad_width=pad_width) kernel = relay.nn.pad(kernel, pad_width=pad_width) # Pad output channel new_out_channel = out_channel if out_channel % 4 != 0: new_out_channel = ((out_channel + 4) // 4) * 4 diff = new_out_channel - out_channel kernel = relay.nn.pad(kernel, pad_width=((0, diff), (0, 0), (0, 0), (0, 0))) oc_modified = True if oc_modified: new_attrs["channels"] = new_out_channel out = tvm.relay.nn.conv2d(data, kernel, **new_attrs) original_out_shape = [x.value for x in output_tensor.shape] out = relay.strided_slice(out, begin=[0, 0, 0, 0], end=original_out_shape) else: out = relay.nn.conv2d(data, kernel, **new_attrs) return out if data_layout == "NHWC" and kernel_layout == "HWIO": batch = data_tensor.shape[0].value in_channel = data_tensor.shape[3].value out_channel = kernel_tensor.shape[3].value if ( (batch % 8 == 0 and in_channel % 16 == 0 and out_channel % 32 == 0) or (batch % 16 == 0 and in_channel % 16 == 0 and out_channel % 16 == 0) or (batch % 32 == 0 and in_channel % 16 == 0 and out_channel % 8 == 0) ): # no need to pad return None candidates = [(16, 16, 16), (32, 16, 8), (8, 16, 32)] (db, di, do), extra_flops = pad_to_tensorcore( batch, in_channel, out_channel, candidates ) if extra_flops > 2: logger.info("conv2d pad_to_tensorcore skipped, extra_flops %s", extra_flops) return None logger.info("conv2d pad_to_tensorcore, extra_flops %s", extra_flops) return _pad_conv2d_NHWC(db, di, do, data, kernel, out_channel, new_attrs, output_tensor) if data_layout == "HWNC" and kernel_layout == "HWOI": batch = data_tensor.shape[2].value in_channel = data_tensor.shape[3].value out_channel = kernel_tensor.shape[2].value if batch % 8 == 0 and in_channel % 16 == 0 and out_channel % 32 == 0: return None candidates = [(8, 16, 32)] (db, di, do), extra_flops = pad_to_tensorcore( batch, in_channel, out_channel, candidates ) if extra_flops > 2: logger.info("conv2d pad_to_tensorcore skipped, extra_flops %s", extra_flops) return None logger.info("conv2d pad_to_tensorcore, extra_flops %s", extra_flops) return _pad_conv2d_HWNC(db, di, do, data, kernel, out_channel, new_attrs, output_tensor) elif data_dtype in ["float16"]: if data_layout == "NHWC" and kernel_layout == "HWIO": if isinstance(data_tensor.shape[0], tvm.tir.expr.Any): # Skip legalize when the batch size is dynamic return None batch = data_tensor.shape[0].value in_channel = data_tensor.shape[3].value out_channel = kernel_tensor.shape[3].value if ( (batch % 8 == 0 and in_channel % 16 == 0 and out_channel % 32 == 0) or (batch % 16 == 0 and in_channel % 16 == 0 and out_channel % 16 == 0) or (batch % 32 == 0 and in_channel % 16 == 0 and out_channel % 8 == 0) ): # no need to pad return None candidates = [(16, 16, 16), (32, 16, 8), (8, 16, 32)] (db, di, do), extra_flops = pad_to_tensorcore( batch, in_channel, out_channel, candidates ) if extra_flops > 2: logger.info("conv2d pad_to_tensorcore skipped, extra_flops %s", extra_flops) return None logger.info("conv2d pad_to_tensorcore, extra_flops %s", extra_flops) return _pad_conv2d_NHWC(db, di, do, data, kernel, out_channel, new_attrs, output_tensor) elif data_dtype in ["int4", "uint4"]: if data_layout == "NHWC" and kernel_layout == "HWIO": batch = data_tensor.shape[0].value in_channel = data_tensor.shape[3].value out_channel = kernel_tensor.shape[3].value if ( (batch % 8 == 0 and in_channel % 16 == 0 and out_channel % 32 == 0) or (batch % 16 == 0 and in_channel % 16 == 0 and out_channel % 16 == 0) or (batch % 32 == 0 and in_channel % 16 == 0 and out_channel % 8 == 0) ): # no need to pad return None candidates = [(16, 16, 16), (32, 16, 8), (8, 16, 32)] (db, di, do), extra_flops = pad_to_tensorcore( batch, in_channel, out_channel, candidates ) if extra_flops > 2: logger.info("conv2d pad_to_tensorcore skipped, extra_flops %s", extra_flops) return None logger.info("conv2d pad_to_tensorcore, extra_flops %s", extra_flops) return _pad_conv2d_NHWC(db, di, do, data, kernel, out_channel, new_attrs, output_tensor) if data_layout == "HWNC" and kernel_layout == "HWOI": batch = data_tensor.shape[2].value in_channel = data_tensor.shape[3].value out_channel = kernel_tensor.shape[2].value if batch % 8 == 0 and in_channel % 32 == 0 and out_channel % 8 == 0: return None candidates = [(8, 32, 8)] (db, di, do), extra_flops = pad_to_tensorcore( batch, in_channel, out_channel, candidates ) if extra_flops > 2: logger.info("conv2d pad_to_tensorcore skipped, extra_flops %s", extra_flops) return None logger.info("conv2d pad_to_tensorcore, extra_flops %s", extra_flops) return _pad_conv2d_HWNC(db, di, do, data, kernel, out_channel, new_attrs, output_tensor) return None
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_direct.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """The templates for cuda conv2d operators""" import tvm from tvm import te from tvm import autotvm from ..utils import get_const_tuple def schedule_direct_cuda(cfg, s, conv): """schedule optimized for batch size = 1""" ##### space definition begin ##### n, f, y, x = s[conv].op.axis rc, ry, rx = s[conv].op.reduce_axis cfg.define_split("tile_f", f, num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_split("tile_ry", ry, num_outputs=2) cfg.define_split("tile_rx", rx, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) # fallback support if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log( target.kind.name, target.model, "conv2d_nchw.cuda" ) cfg.fallback_with_reference_log(ref_log) ##### space definition end ##### pad_data, kernel = s[conv].op.input_tensors s[pad_data].compute_inline() if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv # create cache stage AA = s.cache_read(pad_data, "shared", [OL]) WW = s.cache_read(kernel, "shared", [OL]) # tile and bind spatial axes n, f, y, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) bf = s[output].fuse(n, bf) s[output].bind(bf, te.thread_axis("blockIdx.z")) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tf, te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[output].reorder(bf, by, bx, vf, vy, vx, tf, ty, tx, fi, yi, xi) s[OL].compute_at(s[output], tx) # tile reduction axes n, f, y, x = s[OL].op.axis rc, ry, rx = s[OL].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, OL, rc) ryo, ryi = cfg["tile_ry"].apply(s, OL, ry) rxo, rxi = cfg["tile_rx"].apply(s, OL, rx) s[OL].reorder(rco, ryo, rxo, rci, ryi, rxi, n, f, y, x) s[AA].compute_at(s[OL], rxo) s[WW].compute_at(s[OL], rxo) # cooperative fetching for load in [AA, WW]: n, f, y, x = s[load].op.axis fused = s[load].fuse(n, f, y, x) tz, fused = s[load].split(fused, nparts=cfg["tile_f"].size[2]) ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2]) tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) # unroll s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) N, CO, OH, OW = get_const_tuple(output.shape) _, KH, KW, CI = get_const_tuple(kernel.shape) if isinstance(N, int): cfg.add_flop(2 * N * OH * OW * CO * CI * KH * KW)
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_hwcn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-locals, too-many-statements, unused-argument """Schedule for conv2d_hwcn with auto fusion""" import tvm from tvm import te from tvm import autotvm from tvm.autotvm.task.space import SplitEntity from .. import nn, tag @autotvm.register_topi_compute("conv2d_hwcn.cuda") def conv2d_hwcn(cfg, data, kernel, strides, padding, dilation, out_dtype="float32"): """Compute conv2d with HWCN layout on CUDA""" return nn.conv2d_hwcn(data, kernel, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("conv2d_hwcn.cuda") def schedule_conv2d_hwcn(cfg, outs): """Schedule for conv2d_hwcn and any element-wise operations. Parameters ---------- outs: Array of Tensor The computation graph description of conv2d_hwcn in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv2d_hwcn. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs sch = te.create_schedule([x.op for x in outs]) def schedule(Apad, W, B): """Schedule conv2d_hwcn""" sch[Apad].compute_inline() AA = sch.cache_read(Apad, "shared", [B]) WW = sch.cache_read(W, "shared", [B]) AL = sch.cache_read(AA, "local", [B]) WL = sch.cache_read(WW, "local", [B]) if B.op in sch.outputs: Out = B BL = sch.cache_write(Out, "local") else: Out = sch.outputs[0].output(0) sch[B].set_scope("local") BL = B hi, wi, fi, ni = sch[Out].op.axis # Create tuning space n_thread_cand = [1, 2, 4, 8, 16, 32] vthread_cand = [1, 2, 4, 8] cfg.define_split( "tile_fi", fi, num_outputs=4, filter=lambda x: (x.size[1] in vthread_cand and x.size[2] in n_thread_cand), ) cfg.define_split( "tile_ni", ni, num_outputs=4, filter=lambda x: (x.size[1] in vthread_cand and x.size[2] in n_thread_cand), ) if cfg.is_fallback: cfg["tile_fi"] = SplitEntity([-1, 2, 8, 4]) cfg["tile_ni"] = SplitEntity([-1, 2, 8, 4]) # Scheduling step = 8 bz = sch[Out].fuse(hi, wi) by, tyz, ty, fi = cfg["tile_fi"].apply(sch, Out, fi) bx, txz, tx, ni = cfg["tile_ni"].apply(sch, Out, ni) sch[Out].reorder(bz, by, bx, tyz, txz, ty, tx, fi, ni) sch[Out].bind(bz, te.thread_axis("blockIdx.z")) sch[Out].bind(by, te.thread_axis("blockIdx.y")) sch[Out].bind(bx, te.thread_axis("blockIdx.x")) sch[Out].bind(tyz, te.thread_axis("vthread")) sch[Out].bind(txz, te.thread_axis("vthread")) sch[Out].bind(ty, te.thread_axis("threadIdx.y")) sch[Out].bind(tx, te.thread_axis("threadIdx.x")) # Schedule BL local write sch[BL].compute_at(sch[Out], tx) yi, xi, fi, ni = sch[BL].op.axis ry, rx, rc = sch[BL].op.reduce_axis rco, rci = sch[BL].split(rc, factor=step) sch[BL].reorder(rco, ry, rx, rci, fi, ni) fuse_index = sch[BL].fuse(ry, rx) fuse_index = sch[BL].fuse(fuse_index, rco) rx = fuse_index sch[AA].compute_at(sch[BL], rx) sch[WW].compute_at(sch[BL], rx) sch[AL].compute_at(sch[BL], rci) sch[WL].compute_at(sch[BL], rci) # Schedule for A's shared memory load yi, xi, ci, ni = sch[AA].op.axis ty, ci = sch[AA].split(ci, nparts=cfg["tile_fi"].size[2]) tx, ni = sch[AA].split(ni, nparts=cfg["tile_ni"].size[2]) _, ni = sch[AA].split(ni, factor=4) sch[AA].reorder(ty, tx, yi, xi, ci, ni) sch[AA].bind(ty, te.thread_axis("threadIdx.y")) sch[AA].bind(tx, te.thread_axis("threadIdx.x")) sch[AA].vectorize(ni) # Schedule for W's shared memory load yi, xi, ci, fi = sch[WW].op.axis ty, ci = sch[WW].split(ci, nparts=cfg["tile_fi"].size[2]) tx, fi = sch[WW].split(fi, nparts=cfg["tile_ni"].size[2]) _, fi = sch[WW].split(fi, factor=4) sch[WW].reorder(ty, tx, yi, xi, ci, fi) sch[WW].bind(ty, te.thread_axis("threadIdx.y")) sch[WW].bind(tx, te.thread_axis("threadIdx.x")) sch[WW].vectorize(fi) scheduled_ops = [] def traverse(operator): """Traverse operators from computation graph""" if tag.is_broadcast(operator.tag): if operator not in sch.outputs: sch[operator].compute_inline() for tensor in operator.input_tensors: if isinstance(tensor.op, te.tensor.ComputeOp) and tensor.op not in scheduled_ops: traverse(tensor.op) elif operator.tag == "conv2d_hwcn": Apad = operator.input_tensors[0] W = operator.input_tensors[1] if isinstance(W.op, tvm.te.ComputeOp) and "dilate" in W.op.tag: sch[W].compute_inline() B = operator.output(0) schedule(Apad, W, B) else: raise RuntimeError("Unsupported operator: %s" % operator.tag) scheduled_ops.append(operator) traverse(outs[0].op) return sch
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_hwnc_tensorcore.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-locals, too-many-function-args # pylint: disable=too-many-statements, unused-argument, too-many-arguments """Tensorcore template for cuda backend""" import tvm from tvm import te from tvm import autotvm from tvm.target import Target from tvm.topi.cuda.injective import schedule_injective_from_existing from ..utils import get_const_tuple, traverse_inline, simplify, tag from ..nn.pad import pad from ..nn.utils import get_pad_tuple from .tensor_intrin import intrin_wmma_load_matrix_A from .tensor_intrin import intrin_wmma_load_matrix_W from .tensor_intrin import intrin_wmma_store_matrix from .tensor_intrin import intrin_wmma_gemm def unpack_HWNCnc_to_hwnc(packed_out, out_dtype): """Unpack conv2d_hwnc output from layout hwncnc to hwnc Parameters ----------- packed_out : tvm.te.Tensor The output tensor of conv2d_hwnc. out_dtype : str The output dtype. Returns ------- unpacked_out : tvm.te.Tensor The unpacked output tensor in hwnc layout. """ H, W, N, O, wmma_m, wmma_n = get_const_tuple(packed_out.shape) idxmod = tvm.tir.indexmod idxdiv = tvm.tir.indexdiv oshape = (H, W, N * wmma_m, O * wmma_n) unpacked_out = te.compute( oshape, lambda h, w, n, o: packed_out[ h, w, idxdiv(n, wmma_m), idxdiv(o, wmma_n), idxmod(n, wmma_m), idxmod(o, wmma_n) ].astype(out_dtype), name="output_unpack", tag=tag.INJECTIVE + ",unpack_hwncc", ) return unpacked_out def conv2d_hwnc_tensorcore(data, kernel, strides, padding, dilation, in_dtype, out_dtype="int32"): """ "Compute conv2d with tensorcore for HWNC layout with int8/int4""" assert data.dtype in ("int4", "uint4", "int8", "uint8") assert kernel.dtype in ("int4", "uint4", "int8", "uint8") packed_out = hwnc_tensorcore_cuda(data, kernel, strides, padding, dilation, out_dtype) return unpack_HWNCnc_to_hwnc(packed_out, out_dtype) @autotvm.register_topi_compute("conv2d_HWNCnc_tensorcore.cuda") def hwnc_tensorcore_cuda(cfg, Input, Filter, stride, padding, dilation, out_dtype="int32"): """Compute declaration for tensorcore""" assert isinstance(stride, int) or len(stride) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation in_dtype = Input.dtype if in_dtype in ["int4", "uint4"]: wmma_n = wmma_m = 8 wmma_k = 32 else: wmma_m = 8 wmma_n = 32 wmma_k = 16 pre_computed = len(Filter.shape) == 6 in_height, in_width, batch, in_channels = get_const_tuple(Input.shape) if pre_computed: kernel_h, kernel_w, oc_chunk, _, oc_block_factor, _ = get_const_tuple(Filter.shape) num_filter = oc_block_factor * oc_chunk else: kernel_h, kernel_w, num_filter, _ = get_const_tuple(Filter.shape) if in_dtype in ["int4", "uint4"]: assert batch % 8 == 0 and in_channels % 32 == 0 and num_filter % 8 == 0 else: assert batch % 8 == 0 and in_channels % 16 == 0 and num_filter % 32 == 0, ( "The shape of (batch, in_channels, num_filter) " "must be multiple of (8, 16, 32) for int8, " "and (8, 32, 8) for int4" ) # compute the output shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_top, pad_left, pad_down, pad_right = get_pad_tuple( padding, (dilated_kernel_h, dilated_kernel_w) ) out_channels = num_filter out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1) out_width = simplify((in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1) cfg.add_flop( 2 * batch * out_height * out_width * out_channels * in_channels * kernel_h * kernel_w ) # Input feature map: (H, W, N, IC, n, ic) data_shape = (in_height, in_width, batch // wmma_m, in_channels // wmma_k, wmma_m, wmma_k) # Kernel: (H, W, OC, IC, oc, ic) kernel_shape = ( kernel_h, kernel_w, out_channels // wmma_n, in_channels // wmma_k, wmma_n, wmma_k, ) # Reduction axes kh = te.reduce_axis((0, kernel_h), name="kh") kw = te.reduce_axis((0, kernel_w), name="kw") ic = te.reduce_axis((0, in_channels // wmma_k), name="ic") ii = te.reduce_axis((0, wmma_k), name="ii") if pre_computed: packed_kernel = Filter else: packed_kernel = te.compute( kernel_shape, lambda kh, kw, o, i, oo, ii: Filter[kh, kw, o * wmma_n + oo, i * wmma_k + ii], name="packed_kernel", ) packed_data = te.compute( data_shape, lambda h, w, n, i, nn, ii: Input[h, w, n * wmma_m + nn, i * wmma_k + ii] ) pad_before = [pad_top, pad_left, 0, 0, 0, 0] pad_after = [pad_down, pad_right, 0, 0, 0, 0] pad_data = pad(packed_data, pad_before, pad_after, name="pad_data") Conv = te.compute( (out_height, out_width, batch // wmma_m, out_channels // wmma_n, wmma_m, wmma_n), lambda h, w, n, o, nn, oo: te.sum( ( pad_data[h * stride_h + kh, w * stride_w + kw, n, ic, nn, ii].astype("int32") * packed_kernel[kh, kw, o, ic, oo, ii].astype("int32") ), axis=[ic, kh, kw, ii], ), name="Conv", tag="conv2d_HWNCnc_tensorcore", ) return Conv def schedule_hwnc_tensorcore_cuda(cfg, s, Conv): """Schedule tensorcore template""" pad_data, packed_kernel = s[Conv].op.input_tensors ic, kh, kw, ii = s[Conv].op.reduce_axis packed_data = s[pad_data].op.input_tensors[0] block_x = te.thread_axis("blockIdx.x") block_y = te.thread_axis("blockIdx.y") block_z = te.thread_axis("blockIdx.z") thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") # Designate the memory hierarchy AS = s.cache_read(pad_data, "shared", [Conv]) WS = s.cache_read(packed_kernel, "shared", [Conv]) AF = s.cache_read(AS, "wmma.matrix_a", [Conv]) WF = s.cache_read(WS, "wmma.matrix_b", [Conv]) ConvF = s.cache_write(Conv, "wmma.accumulator") if Conv.op in s.outputs: output = Conv ConvS = s.cache_read(ConvF, "shared", [Conv]) OL = ConvS else: output = s.outputs[0].output(0) s[Conv].set_scope("shared") OL = Conv out_dtype = Conv.dtype if isinstance(packed_kernel.op, te.tensor.ComputeOp) and packed_kernel.name == "packed_kernel": if autotvm.GLOBAL_SCOPE.in_tuning: s[packed_kernel].pragma(s[packed_kernel].op.axis[0], "debug_skip_region") else: with Target("cuda"): schedule_injective_from_existing(s, packed_kernel) if isinstance(pad_data.op, te.tensor.ComputeOp) and "pad" in pad_data.op.tag: s[pad_data].compute_inline() data = pad_data.op.input_tensors[0] if autotvm.GLOBAL_SCOPE.in_tuning: # skip this part during tuning to make recrods accurate # this part will be pre-computed during NNVM's pre-compute optimization pass s[pad_data].pragma(s[pad_data].op.axis[0], "debug_skip_region") else: data = pad_data s[data].compute_inline() data_dtype = data.dtype kernel_dtype = packed_kernel.dtype # Schedule for autotvm cfg.define_knob("block_row_warps", [1, 2, 4]) cfg.define_knob("block_col_warps", [1, 2, 4]) cfg.define_knob("warp_row_tiles", [1, 2, 4, 8, 16]) cfg.define_knob("warp_col_tiles", [1, 2, 4, 8, 16]) cfg.define_knob("chunk", [1, 2, 4, 8]) cfg.define_knob("split_block_k_nums", [1, 2, 4, 8, 16, 32]) cfg.define_knob("vector_ws", [1, 8]) cfg.define_knob("vector_as", [1, 8, 16]) block_row_warps = cfg["block_row_warps"].val block_col_warps = cfg["block_col_warps"].val warp_row_tiles = cfg["warp_row_tiles"].val warp_col_tiles = cfg["warp_col_tiles"].val chunk = cfg["chunk"].val vector_as = cfg["vector_as"].val vector_ws = cfg["vector_ws"].val split_block_k_nums = cfg["split_block_k_nums"].val s[packed_data].compute_inline() if data_dtype in ["int4", "uint4"]: wmma_m = wmma_n = 8 wmma_k = 32 else: wmma_m = 8 wmma_n = 32 wmma_k = 16 warp_size = 32 # Schedule for output if len(s[output].op.axis) == 4: ( hc, wc, nc, oc, ) = output.op.axis nc, nnc = s[output].split(nc, factor=wmma_m) oc, ooc = s[output].split(oc, factor=wmma_n) else: hc, wc, nc, oc, nnc, ooc = output.op.axis kernel_scope, hc = s[output].split(hc, nparts=1) block_k = s[output].fuse(hc, wc) block_k, split_block_k = s[output].split(block_k, factor=split_block_k_nums) nc, nci = s[output].split(nc, factor=warp_row_tiles) block_i, nc = s[output].split(nc, factor=block_row_warps) oc, oci = s[output].split(oc, factor=warp_col_tiles) block_j, oc = s[output].split(oc, factor=block_col_warps) s[output].reorder(block_k, split_block_k, block_i, block_j, nc, oc, nci, oci, nnc, ooc) t = s[output].fuse(nnc, ooc) _, tx = s[output].split(t, factor=warp_size) s[output].bind(block_k, block_z) s[output].bind(block_i, block_x) s[output].bind(block_j, block_y) s[output].bind(tx, thread_x) s[output].bind(nc, thread_y) s[output].bind(oc, thread_z) # Schedule wmma store s[OL].compute_at(s[output], block_j) hc, wc, nc, oc, nnc, ooc = OL.op.axis oc, oci = s[OL].split(oc, factor=warp_col_tiles) _, oc = s[OL].split(oc, factor=block_col_warps) nc, nci = s[OL].split(nc, factor=warp_row_tiles) _, nc = s[OL].split(nc, factor=block_row_warps) s[OL].reorder(nc, oc, nci, oci, nnc, ooc) s[OL].bind(nc, thread_y) s[OL].bind(oc, thread_z) # Schedule local computation s[ConvF].compute_at(s[OL], oc) _, _, n, o, nnf, oof = ConvF.op.axis ko, ki = s[ConvF].split(ic, factor=chunk) s[ConvF].reorder(ko, kh, ki, kw, n, o, nnf, oof, ii) cfg.define_reorder("reorder_inner", [ko, kh], policy="all") cfg["reorder_inner"].apply(s, ConvF, [ko, kh]) cfg["reorder_inner"].apply(s, ConvF, [ki, kw]) # Move intermediate computation into each output compute tile s[AF].compute_at(s[ConvF], kw) s[WF].compute_at(s[ConvF], kw) # Schedule for A's share memory s[AS].compute_at(s[ConvF], ko) _, _, n, _, nn, ii = AS.op.axis tx, xo = s[AS].split(n, nparts=block_row_warps) ty, _ = s[AS].split(xo, nparts=block_col_warps) t = s[AS].fuse(nn, ii) to, ti = s[AS].split(t, nparts=warp_size) ti, _t = s[AS].split(ti, factor=vector_as) s[AS].bind(tx, thread_y) s[AS].bind(ty, thread_z) s[AS].bind(to, thread_x) s[AS].vectorize(_t) # Schedule for W's share memory s[WS].compute_at(s[ConvF], kw) kh, kw, ic, o, ii, oo = WS.op.axis tx, xo = s[WS].split(o, nparts=block_row_warps) ty, _ = s[WS].split(xo, nparts=block_col_warps) t = s[WS].fuse(ii, oo) to, ti = s[WS].split(t, nparts=warp_size) ti, _t = s[WS].split(ti, factor=vector_ws) s[WS].bind(tx, thread_y) s[WS].bind(ty, thread_z) s[WS].bind(to, thread_x) s[WS].vectorize(ti) # double buffer cfg.define_knob("AS_double_buffer", [0, 1]) cfg.define_knob("WS_double_buffer", [0, 1]) if cfg["AS_double_buffer"].val: s[AS].double_buffer() if cfg["WS_double_buffer"].val: s[WS].double_buffer() # unroll cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", False) shape = (wmma_m, wmma_n, wmma_k) AS_shape = (wmma_m, wmma_k) AL_shape = (wmma_m, wmma_k) WS_shape = (wmma_n, wmma_k) WL_shape = (wmma_n, wmma_k) CL_shape = (wmma_m, wmma_n) CS_shape = (wmma_m, wmma_n) AL_gemm = te.placeholder(AL_shape, name="A", dtype=data_dtype) WL_gemm = te.placeholder(WL_shape, name="B", dtype=kernel_dtype) k_gemm = te.reduce_axis((0, wmma_k), name="k") CL_compute = te.compute( CL_shape, lambda ii, jj: te.sum( (AL_gemm[ii, k_gemm].astype("int32") * WL_gemm[jj, k_gemm].astype("int32")), axis=k_gemm ), name="C", ) AL_strides = [wmma_k, 1] AS_strides = [wmma_k, 1] WL_strides = [wmma_k, 1] WS_strides = [wmma_k, 1] CL_strides = [wmma_n, 1] CS_strides = [wmma_n, 1] s[AF].tensorize( AF.op.axis[-2], intrin_wmma_load_matrix_A( AL_strides, AS_strides, shape, "row_major", AS_shape, AL_shape, data_dtype ), ) s[WF].tensorize( WF.op.axis[-2], intrin_wmma_load_matrix_W( WL_strides, WS_strides, shape, "col_major", WS_shape, WL_shape, kernel_dtype ), ) s[OL].tensorize( nnc, intrin_wmma_store_matrix(CS_strides, CL_strides, shape, out_dtype, CL_shape, CS_shape) ) s[ConvF].tensorize( nnf, intrin_wmma_gemm(AL_gemm, WL_gemm, CL_compute, AL_strides, WL_strides, CL_strides, shape), ) return s @autotvm.register_topi_schedule("conv2d_HWNCnc_tensorcore.cuda") def schedule_conv2d_hwnc_tensorcore(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_HWNCnc_tensorcore" in op.tag: schedule_hwnc_tensorcore_cuda(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_int8.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name # pylint: disable=no-value-for-parameter """Int8 conv2d in NCHWc layout""" import tvm from tvm import te from tvm import autotvm from .injective import schedule_injective_from_existing from .tensor_intrin import dp4a from ..nn.pad import pad from ..nn.conv2d import unpack_NCHWc_to_nchw from ..nn.utils import get_pad_tuple from ..utils import get_const_tuple, traverse_inline def conv2d_nchw_int8(data, kernel, strides, padding, dilation, out_dtype="int32"): """Compute conv2d internally using conv2d_nchwc layout for int8 dtype""" assert data.dtype in ("int8", "uint8") assert kernel.dtype in ("int8", "uint8") assert data.dtype == kernel.dtype packed_out = conv2d_NCHWc_int8(data, kernel, strides, padding, dilation, "NCHW", out_dtype) return unpack_NCHWc_to_nchw(packed_out, out_dtype) def schedule_conv2d_nchw_int8(outs): """Create schedule for tensors""" return schedule_conv2d_NCHWc_int8(outs) @autotvm.register_topi_compute("conv2d_NCHWc_int8.cuda") def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, dilation, layout, out_dtype): """Convolution operator in NCHW[x]c layout for int8. Parameters ---------- cfg: ConfigEntity The config for this template data : tvm.te.Tensor 4-D with shape [batch, in_channel, in_height, in_width] or 5-D with shape [batch, in_channel_chunk, in_height, in_width, in_channel_block] kernel : tvm.te.Tensor 4-D with shape [num_filter, in_channel, filter_height, filter_width] or 6-D with shape [num_filter_chunk, in_channel_chunk, filter_height, filter_width, num_filter_block, in_channel_block] stride : int or a list/tuple of two ints stride size, or [stride_height, stride_width] padding: int or a list/tuple of two ints padding size, or [pad_height, pad_width] dilation: int or a list/tuple of two ints dilation size, or [dilation_height, dilation_width] layout : str layout of data out_dtype : str The output type. This is used for mixed precision. Returns ------- output : tvm.te.Tensor 5-D with shape [batch, out_channel_chunk, out_height, out_width, out_channel_block] """ assert layout in ["NCHW", "NCHW4c"] ic_block_factor = 4 oc_block_factor = 4 pre_computed = len(kernel.shape) == 6 if not pre_computed: batch, channels, height, width = get_const_tuple(data.shape) assert ( channels % ic_block_factor == 0 ), "Number of input channels should be multiple of {}".format(ic_block_factor) packed_data = te.compute( (batch, channels // ic_block_factor, height, width, ic_block_factor), lambda n, c, h, w, vc: data[n, c * ic_block_factor + vc, h, w], name="packed_data", ) out_channels, in_channels, kernel_h, kernel_w = get_const_tuple(kernel.shape) assert ( out_channels % oc_block_factor == 0 ), "Number of output channels should be multiple of {}".format(oc_block_factor) packed_kernel = te.compute( ( out_channels // oc_block_factor, in_channels // ic_block_factor, kernel_h, kernel_w, oc_block_factor, ic_block_factor, ), lambda oc_chunk, ic_chunk, kh, kw, oc_block, ic_block: kernel[ oc_chunk * oc_block_factor + oc_block, ic_chunk * ic_block_factor + ic_block, kh, kw ], name="packed_kernel", ) else: packed_data = data packed_kernel = kernel batch, ic_chunk, in_height, in_width, ic_block = get_const_tuple(packed_data.shape) oc_chunk, ic_chunk, kernel_h, kernel_w, oc_block, ic_block = get_const_tuple( packed_kernel.shape ) if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation pad_top, pad_left, pad_down, pad_right = get_pad_tuple(padding, (kernel_h, kernel_w)) # compute graph pad_before = [0, 0, pad_top, pad_left, 0] pad_after = [0, 0, pad_down, pad_right, 0] pad_data = pad(packed_data, pad_before, pad_after, name="pad_data") # compute the output shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 out_height = (in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1 out_width = (in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1 oshape = (batch, oc_chunk, out_height, out_width, oc_block) icc = te.reduce_axis((0, ic_chunk), name="ic_chunk") icb = te.reduce_axis((0, ic_block), name="ic_block") kh = te.reduce_axis((0, kernel_h), name="kh") kw = te.reduce_axis((0, kernel_w), name="kw") packed_kernel_dtype = packed_kernel.dtype packed_dtype = "int32" if packed_kernel_dtype == "int8" else "uint32" conv = te.compute( oshape, lambda n, oc_chunk, oh, ow, oc_block: te.sum( pad_data[ n, icc, oh * stride_h + kh * dilation_h, ow * stride_w + kw * dilation_w, icb ].astype(packed_dtype) * packed_kernel[oc_chunk, icc, kh, kw, oc_block, icb].astype(packed_dtype), axis=[icc, kh, kw, icb], ), ) output = te.compute( oshape, lambda n, oc_chunk, oh, ow, oc_block: conv[n, oc_chunk, oh, ow, oc_block].astype(out_dtype), tag="conv2d_NCHWc_int8", ) # num flop num_flop = ( batch * oc_chunk * oc_block * out_height * out_width * ic_chunk * ic_block * kernel_h * kernel_w * 2 ) cfg.add_flop(num_flop) return output @autotvm.register_topi_schedule("conv2d_NCHWc_int8.cuda") def schedule_conv2d_NCHWc_int8(cfg, outs): """Schedule conv2d int8 NCHWc template""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "conv2d_NCHWc_int8": _schedule_conv2d_NCHWc_int8(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_conv2d_NCHWc_int8(cfg, s, output): conv = output.op.input_tensors[0] packed_data, packed_kernel = conv.op.input_tensors if isinstance(packed_data.op, tvm.te.ComputeOp) and "pad" in packed_data.op.tag: pad_data = packed_data packed_data = pad_data.op.input_tensors[0] else: pad_data = packed_data if autotvm.GLOBAL_SCOPE.in_tuning: # skip this part during tuning to make recrods accurate # this part will be pre-computed during NNVM's pre-compute optimization pass s[packed_data].pragma(s[packed_data].op.axis[0], "debug_skip_region") s[packed_kernel].pragma(s[packed_kernel].op.axis[0], "debug_skip_region") else: if isinstance(packed_kernel.op, tvm.te.ComputeOp) and packed_kernel.name == "packed_kernel": # data and kernel are not pre-computed, schedule layout transform here schedule_injective_from_existing(s, packed_data) schedule_injective_from_existing(s, packed_kernel) if pad_data != packed_data: s[pad_data].compute_inline() # create cache stage AA = s.cache_read(pad_data, "shared", [conv]) WW = s.cache_read(packed_kernel, "shared", [conv]) s[conv].set_scope("local") # handle bias if output.op not in s.outputs: s[output].compute_inline() output = s.outputs[0].output(0) # tile and bind spatial axes if len(s[output].op.axis) == 5: n, f, y, x, c = s[output].op.axis else: # For task extraction of auto-tuning, the expected output is 4D. Since auto-tuning tasks # are created from scratch, therefore the real auto-tuning will still happen on 5D output. n, f, y, x = s[output].op.axis cfg.define_split("tile_n", cfg.axis(n), num_outputs=4) cfg.define_split("tile_f", cfg.axis(f), num_outputs=4) cfg.define_split("tile_y", cfg.axis(y), num_outputs=4) cfg.define_split("tile_x", cfg.axis(x), num_outputs=4) # this is the scope to attach global config inside this kernel kernel_scope, n = s[output].split(n, nparts=1) bn, vn, tn, ni = cfg["tile_n"].apply(s, output, n) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].reorder(bn, bf, by, bx, vn, vf, vy, vx, tn, tf, ty, tx, ni, fi, yi, xi) s[output].bind(bn, te.thread_axis("blockIdx.z")) s[output].bind(bf, te.thread_axis("blockIdx.y")) s[output].bind(s[output].fuse(by, bx), te.thread_axis("blockIdx.x")) s[output].bind(vn, te.thread_axis("vthread")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) cfg.define_knob("fuse_yx", [0, 1]) # fuse ty,tx or tn,tf if cfg["fuse_yx"].val: s[output].bind(tn, te.thread_axis("threadIdx.z")) s[output].bind(tf, te.thread_axis("threadIdx.y")) tyx = s[output].fuse(ty, tx) s[output].bind(tyx, te.thread_axis("threadIdx.x")) s[conv].compute_at(s[output], tyx) # number of threads n_tz = cfg["tile_n"].size[2] n_ty = cfg["tile_f"].size[2] n_tx = cfg["tile_y"].size[2] * cfg["tile_x"].size[2] else: s[output].bind(s[output].fuse(tn, tf), te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[conv].compute_at(s[output], tx) # number of threads n_tz = cfg["tile_n"].size[2] * cfg["tile_f"].size[2] n_ty = cfg["tile_y"].size[2] n_tx = cfg["tile_x"].size[2] # tile and bind reduction axes n, f, y, x, c = s[conv].op.axis rc, ry, rx, rc_block = s[conv].op.reduce_axis cfg.define_split("tile_rc", cfg.axis(rc), num_outputs=2) cfg.define_split("tile_ry", cfg.axis(ry), num_outputs=2) cfg.define_split("tile_rx", cfg.axis(rx), num_outputs=2) rco, rci = cfg["tile_rc"].apply(s, conv, rc) ryo, ryi = cfg["tile_ry"].apply(s, conv, ry) rxo, rxi = cfg["tile_rx"].apply(s, conv, rx) s[conv].reorder(rco, ryo, rxo, rci, ryi, rxi, n, f, y, x, c, rc_block) cfg.define_reorder("reorder_inner", [rco, ryo, rxo], policy="all") cfg["reorder_inner"].apply(s, conv, [rco, ryo, rxo]) cfg["reorder_inner"].apply(s, conv, [rci, ryi, rxi]) _, rc_block = s[conv].split(rc_block, factor=4) target = tvm.target.Target.current(allow_none=False) do_tensorize = "+dotprod" in target.mattr or target.supports_integer_dot_product if do_tensorize: dtypes = (pad_data.dtype, packed_kernel.dtype) s[conv].tensorize(rc_block, dp4a("shared", "shared", "local", dtypes)) cache_loc = [rco, ryo, rxo][cfg["reorder_inner"].perm[-1]] s[AA].compute_at(s[conv], cache_loc) s[WW].compute_at(s[conv], cache_loc) # cooperative fetching for load in [AA, WW]: c = s[load].op.axis[-1] c_outer, c = s[load].split(c, factor=4) s[load].vectorize(c) fused = s[load].op.axis[:-1] + [c_outer] fused = s[load].fuse(*fused) fused, tx = s[load].split(fused, factor=n_tx) fused, ty = s[load].split(fused, factor=n_ty) fused, tz = s[load].split(fused, factor=n_tz) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) # double buffer cfg.define_knob("AA_double_buffer", [0, 1]) cfg.define_knob("WW_double_buffer", [0, 1]) if cfg["AA_double_buffer"].val: s[AA].double_buffer() if cfg["WW_double_buffer"].val: s[WW].double_buffer() # unroll cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", False) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_nhwc_tensorcore.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-locals, too-many-function-args # pylint: disable=too-many-statements, unused-argument, too-many-arguments """Tensorcore template for cuda backend""" import numpy as np import tvm from tvm import te from tvm import autotvm from ..utils import get_const_tuple, traverse_inline, simplify from ..nn.pad import pad from ..nn.utils import get_pad_tuple from .tensor_intrin import intrin_wmma_load_matrix_A from .tensor_intrin import intrin_wmma_load_matrix_W from .tensor_intrin import intrin_wmma_store_matrix from .tensor_intrin import intrin_wmma_gemm def nhwc_tensorcore_cuda(cfg, Input, Filter, stride, padding, dilation, out_dtype): """Compute declaration for tensorcore""" assert isinstance(stride, int) or len(stride) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation batch, in_height, in_width, in_channel = get_const_tuple(Input.shape) kernel_h, kernel_w, _, num_filter = get_const_tuple(Filter.shape) assert ( (batch % 16 == 0 and in_channel % 16 == 0 and num_filter % 16 == 0) or (batch % 8 == 0 and in_channel % 16 == 0 and num_filter % 32 == 0) or (batch % 32 == 0 and in_channel % 16 == 0 and num_filter % 8 == 0) ), ( "The shape of (batch, in_channel, num_filter) " "must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) for now" ) # compute the output shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_top, pad_left, pad_down, pad_right = get_pad_tuple( padding, (dilated_kernel_h, dilated_kernel_w) ) out_channel = num_filter out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1) out_width = simplify((in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1) pad_before = [0, pad_top, pad_left, 0] pad_after = [0, pad_down, pad_right, 0] PaddedInput = pad(Input, pad_before, pad_after, name="PaddedInput") rc = te.reduce_axis((0, in_channel), name="rc") ry = te.reduce_axis((0, kernel_h), name="ry") rx = te.reduce_axis((0, kernel_w), name="rx") # convert data type of input feature maps and weights # TODO: add checking here, datatype casting may cause precision loss TransPaddedInput = te.compute( PaddedInput.shape, lambda n, h, w, c: PaddedInput[n, h, w, c].astype("float16") ) TransFilter = te.compute(Filter.shape, lambda h, w, i, o: Filter[h, w, i, o].astype("float16")) Output = te.compute( (batch, out_height, out_width, out_channel), lambda nn, yy, xx, ff: te.sum( TransPaddedInput[ nn, yy * stride_h + ry * dilation_h, xx * stride_w + rx * dilation_w, rc ].astype(out_dtype) * TransFilter[ry, rx, rc, ff].astype(out_dtype), axis=[ry, rx, rc], ), name="Conv2dOutput", tag="conv2d_nhwc_tensorcore", ) return Output def schedule_nhwc_tensorcore_cuda(cfg, s, Conv): """Schedule tensorcore template""" kh, kw, ic = s[Conv].op.reduce_axis out_dtype = Conv.dtype trans_paddata, kernel = s[Conv].op.input_tensors in_dtype = trans_paddata.dtype batch, _, _, _ = get_const_tuple(Conv.shape) _, _, _, out_channels = get_const_tuple(kernel.shape) paddata = s[trans_paddata].op.input_tensors # inline the pad and dtype transform s[trans_paddata].compute_inline() s[kernel].compute_inline() s[paddata[0]].compute_inline() # Designate the memory hierarchy AS = s.cache_read(trans_paddata, "shared", [Conv]) WS = s.cache_read(kernel, "shared", [Conv]) AF = s.cache_read(AS, "wmma.matrix_a", [Conv]) WF = s.cache_read(WS, "wmma.matrix_b", [Conv]) ConvF = s.cache_write(Conv, "wmma.accumulator") if Conv.op in s.outputs: output = Conv ConvS = s.cache_read(ConvF, "shared", [Conv]) OL = ConvS else: output = s.outputs[0].output(0) s[Conv].set_scope("shared") OL = Conv # Schedule for autotvm cfg.define_knob("block_row_warps", [1, 2, 4]) cfg.define_knob("block_col_warps", [1, 2, 4]) cfg.define_knob("warp_row_tiles", [1, 2, 4]) cfg.define_knob("warp_col_tiles", [1, 2, 4]) cfg.define_knob("chunk", [1, 2, 4, 8]) cfg.define_knob("offset", [0, 8]) cfg.define_knob("vector_width", [1, 2, 4, 8]) if batch % 16 == 0 and out_channels % 16 == 0: cfg.define_knob("wmma_m", [16, 8, 32]) elif batch % 8 == 0 and out_channels % 32 == 0: cfg.define_knob("wmma_m", [8, 16, 32]) elif batch % 32 == 0 and out_channels % 8 == 0: cfg.define_knob("wmma_m", [32, 16, 8]) # fallback support target = tvm.target.Target.current() if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log( target.kind.name, target.model, "conv2d_nhwc_tensorcore.cuda" ) cfg.fallback_with_reference_log(ref_log) block_row_warps = cfg["block_row_warps"].val block_col_warps = cfg["block_col_warps"].val warp_row_tiles = cfg["warp_row_tiles"].val warp_col_tiles = cfg["warp_col_tiles"].val chunk = cfg["chunk"].val offset = cfg["offset"].val wmma_m = cfg["wmma_m"].val vector_width = cfg["vector_width"].val wmma_k = 16 if wmma_m == 16: wmma_n = 16 elif wmma_m == 8: wmma_n = 32 elif wmma_m == 32: wmma_n = 8 warp_size = 32 block_x = te.thread_axis("blockIdx.x") block_y = te.thread_axis("blockIdx.y") block_z = te.thread_axis("blockIdx.z") thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") # Define the intrin strides def get_strides(extents): return [np.prod(extents[i:]).tolist() for i in range(len(extents))] AS_align = chunk * wmma_k + offset WS_align = warp_col_tiles * block_col_warps * wmma_n + offset block_factor_n = wmma_m * warp_row_tiles * block_row_warps block_factor_o = wmma_n * warp_col_tiles * block_col_warps CS_align = block_factor_o + offset AS_strides = get_strides([1, 1, AS_align, 1]) AL_strides = get_strides([1, 1, wmma_k, 1]) WS_strides = get_strides([WS_align, 1]) WL_strides = get_strides([wmma_n * warp_col_tiles, 1]) CL_strides = get_strides([1, 1, wmma_n * warp_col_tiles, 1]) CS_strides = get_strides([1, 1, CS_align, 1]) # Schedule for output nc, hc, wc, oc = output.op.axis block_k = s[output].fuse(hc, wc) s[output].bind(block_k, block_z) block_i, nc = s[output].split(nc, factor=block_factor_n) block_j, oc = s[output].split(oc, factor=block_factor_o) s[output].reorder(block_k, block_i, block_j, nc, oc) t = s[output].fuse(nc, oc) t, ti = s[output].split(t, factor=vector_width) t, tx = s[output].split(t, factor=warp_size) t, ty = s[output].split(t, factor=block_row_warps) t, tz = s[output].split(t, factor=block_col_warps) s[output].bind(block_i, block_x) s[output].bind(block_j, block_y) s[output].bind(tz, thread_z) s[output].bind(ty, thread_y) s[output].bind(tx, thread_x) s[output].vectorize(ti) # Schedule wmma store s[OL].compute_at(s[output], block_j) nc, hc, wc, oc = OL.op.axis s[OL].reorder(hc, wc, nc, oc) s[OL].storage_align(wc, CS_align - 1, CS_align) oc, ooc = s[OL].split(oc, factor=wmma_n) oc, oci = s[OL].split(oc, factor=warp_col_tiles) _, oc = s[OL].split(oc, factor=block_col_warps) nc, nnc = s[OL].split(nc, factor=wmma_m) nc, nci = s[OL].split(nc, factor=warp_row_tiles) _, nc = s[OL].split(nc, factor=block_row_warps) s[OL].reorder(nc, oc, nci, oci, nnc, ooc) s[OL].bind(nc, thread_y) s[OL].bind(oc, thread_z) # Schedule wmma computation s[ConvF].compute_at(s[OL], oc) n, h, w, o = ConvF.op.axis n, nnf = s[ConvF].split(n, factor=wmma_m) o, oof = s[ConvF].split(o, factor=wmma_n) ic, ii = s[ConvF].split(ic, factor=wmma_k) ko, ki = s[ConvF].split(ic, factor=chunk) s[ConvF].reorder(kh, kw, ko, ki, n, o, nnf, oof, ii) s[AF].compute_at(s[ConvF], ki) s[WF].compute_at(s[ConvF], ki) # Schedule wmma load n, h, w, i = AF.op.axis n, nn = s[AF].split(n, factor=wmma_m) i, ii = s[AF].split(i, factor=wmma_k) s[AF].reorder(n, i, nn, ii) kh, kw, i, o = WF.op.axis i, ii = s[WF].split(i, factor=wmma_k) o, oo = s[WF].split(o, factor=wmma_n) s[WF].reorder(o, i, oo) s[WF].reorder(i, o, ii, oo) s[WS].compute_at(s[ConvF], ko) s[AS].compute_at(s[ConvF], ko) # Schedule for data's share memory n, h, w, i = AS.op.axis s[AS].reorder(h, w, n, i) s[AS].storage_align(w, AS_align - 1, AS_align) t = s[AS].fuse(n, i) t, ti = s[AS].split(t, factor=vector_width) t, tx = s[AS].split(t, factor=warp_size) t, ty = s[AS].split(t, factor=block_row_warps) _, tz = s[AS].split(t, factor=block_col_warps) s[AS].bind(ty, thread_y) s[AS].bind(tz, thread_z) s[AS].bind(tx, thread_x) s[AS].vectorize(ti) # Schedule for kernel's share memory kh, kw, ic, o = WS.op.axis t = s[WS].fuse(ic, o) s[WS].storage_align(ic, WS_align - 1, WS_align) t, ti = s[WS].split(t, factor=vector_width) t, tx = s[WS].split(t, factor=warp_size) t, ty = s[WS].split(t, factor=block_row_warps) _, tz = s[WS].split(t, factor=block_col_warps) s[WS].bind(ty, thread_y) s[WS].bind(tz, thread_z) s[WS].bind(tx, thread_x) s[WS].vectorize(ti) shape = (wmma_m, wmma_n, wmma_k) # tensorize the wmma process AS_shape = (wmma_m, 1, 1, wmma_k) AL_shape = (wmma_m, 1, 1, wmma_k) WS_shape = (wmma_k, wmma_n) WL_shape = (wmma_k, wmma_n) CL_shape = (wmma_m, 1, 1, wmma_n) CS_shape = (wmma_m, 1, 1, wmma_n) AL_gemm = te.placeholder(AL_shape, name="A", dtype=in_dtype) WL_gemm = te.placeholder(WL_shape, name="B", dtype=in_dtype) k_gemm = te.reduce_axis((0, wmma_k), name="k") CL_compute = te.compute( CL_shape, lambda ii, t0, t1, jj: te.sum( AL_gemm[ii, t0, t1, k_gemm].astype(out_dtype) * WL_gemm[k_gemm, jj].astype(out_dtype), axis=k_gemm, ), name="C", ) s[AF].tensorize( nn, intrin_wmma_load_matrix_A( AL_strides, AS_strides, shape, "row_major", AS_shape, AL_shape, in_dtype ), ) s[WF].tensorize( ii, intrin_wmma_load_matrix_W( WL_strides, WS_strides, shape, "row_major", WS_shape, WL_shape, in_dtype ), ) s[OL].tensorize( nnc, intrin_wmma_store_matrix(CS_strides, CL_strides, shape, out_dtype, CL_shape, CS_shape) ) s[ConvF].tensorize( nnf, intrin_wmma_gemm(AL_gemm, WL_gemm, CL_compute, AL_strides, WL_strides, CL_strides, shape), ) N, OH, OW, CO = get_const_tuple(output.shape) KH, KW, CI, _ = get_const_tuple(kernel.shape) cfg.add_flop(2 * N * OH * OW * CO * CI * KH * KW) @autotvm.register_topi_compute("conv2d_nhwc_tensorcore.cuda") def conv2d_nhwc_tensorcore(cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute conv2d with tensorcore for NCHW layout""" return nhwc_tensorcore_cuda(cfg, data, kernel, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("conv2d_nhwc_tensorcore.cuda") def schedule_conv2d_nhwc_tensorcore(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nhwc_tensorcore" in op.tag: schedule_nhwc_tensorcore_cuda(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_nhwc_winograd.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-statements """Winograd template for cuda backend""" import tvm from tvm import autotvm, te from .. import nn from ..nn.winograd_util import winograd_transform_matrices from ..utils import get_const_int, get_const_tuple, traverse_inline from .tensor_intrin import ( intrin_wmma_gemm, intrin_wmma_load_matrix_A, intrin_wmma_load_matrix_W, intrin_wmma_store_matrix, ) def _infer_tile_size(data, kernel): """Compute the tile size""" N, H, W, CI = get_const_tuple(data.shape) if H % 8 == 0: return 4 return 2 def schedule_bgemm_tensorcore(cfg, s, bgemm, data_pack, kernel_pack): """Schedule for bgemm tensorcore""" A = data_pack B = kernel_pack C = bgemm _, _, P, out_dim = get_const_tuple(C.shape) out_dtype = C.dtype # Explicit memory access AS = s.cache_read(A, "shared", [C]) BS = s.cache_read(B, "shared", [C]) AF = s.cache_read(AS, "wmma.matrix_a", [C]) BF = s.cache_read(BS, "wmma.matrix_b", [C]) CF = s.cache_write(C, "wmma.accumulator") CS = s.cache_read(CF, "shared", [C]) # Create tuning space cfg.define_knob("block_row_warps", [1, 2, 4]) cfg.define_knob("block_col_warps", [1, 2, 4]) cfg.define_knob("warp_row_tiles", [1, 2, 4, 8]) cfg.define_knob("warp_col_tiles", [1, 2, 4, 8]) cfg.define_knob("chunk", [1, 2, 4, 8]) cfg.define_knob("offset", [0, 1, 2, 4, 8]) cfg.define_knob("offsetCS", [0, 1, 2, 4, 8]) cfg.define_knob("vec", [1, 2, 4, 8]) # Ensure that the default parameters are applicable when autotvm is not in use if P % 16 == 0 and out_dim % 16 == 0: cfg.define_knob("wmma_m", [16, 8, 32]) elif P % 32 == 0 and out_dim % 8 == 0: cfg.define_knob("wmma_m", [32, 16, 8]) elif P % 8 == 0 and out_dim % 32 == 0: cfg.define_knob("wmma_m", [8, 16, 32]) warp_size = 32 wmma_k = 16 block_row_warps = cfg["block_row_warps"].val block_col_warps = cfg["block_col_warps"].val warp_row_tiles = cfg["warp_row_tiles"].val warp_col_tiles = cfg["warp_col_tiles"].val chunk = cfg["chunk"].val offsetAB = cfg["offset"].val offsetCS = cfg["offsetCS"].val wmma_m = cfg["wmma_m"].val vec = cfg["vec"].val if wmma_m == 16: wmma_n = 16 elif wmma_m == 8: wmma_n = 32 elif wmma_m == 32: wmma_n = 8 # Define the stride of intrin functions AS_align = chunk * wmma_k + offsetAB BS_align = warp_col_tiles * block_col_warps * wmma_n + offsetAB CS_align = warp_col_tiles * block_col_warps * wmma_n + offsetCS AS_stride = [AS_align, 1] BS_stride = [BS_align, 1] AF_stride = [wmma_k, 1] BF_stride = [wmma_n * warp_col_tiles, 1] CF_stride = [warp_col_tiles * wmma_n, 1] CS_stride = [CS_align, 1] block_x = te.thread_axis("blockIdx.x") block_y = te.thread_axis("blockIdx.y") block_z = te.thread_axis("blockIdx.z") thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") # Schedule for computation block_factor_b = wmma_m * warp_row_tiles * block_row_warps block_factor_o = wmma_n * warp_col_tiles * block_col_warps alpha_1, alpha_2, b, o = C.op.axis block_k = s[C].fuse(alpha_1, alpha_2) block_i, bc = s[C].split(b, factor=block_factor_b) block_j, oc = s[C].split(o, factor=block_factor_o) s[C].reorder(block_k, block_i, block_j, bc, oc) t = s[C].fuse(bc, oc) t, vi = s[C].split(t, factor=vec) t, tx = s[C].split(t, factor=warp_size) t, ty = s[C].split(t, factor=block_row_warps) t, tz = s[C].split(t, factor=block_col_warps) s[C].bind(block_k, block_z) s[C].bind(block_i, block_x) s[C].bind(block_j, block_y) s[C].bind(tz, thread_z) s[C].bind(ty, thread_y) s[C].bind(tx, thread_x) s[C].vectorize(vi) # Schedule for wmma store s[CS].compute_at(s[C], block_j) _, _, bb, oo = CS.op.axis s[CS].storage_align(bb, CS_align - 1, CS_align) bb, bbi = s[CS].split(bb, factor=wmma_m) oo, ooi = s[CS].split(oo, factor=wmma_n) bb, bbii = s[CS].split(bb, factor=warp_row_tiles) oo, ooii = s[CS].split(oo, factor=warp_col_tiles) s[CS].reorder(bb, oo, bbii, ooii, bbi, ooi) # Schedule for wmma computation s[CF].compute_at(s[CS], oo) _, _, warp_i, warp_j = CF.op.axis warp_i, _ii = s[CF].split(warp_i, factor=wmma_m) warp_j, _jj = s[CF].split(warp_j, factor=wmma_n) (k,) = CF.op.reduce_axis k, _k = s[CF].split(k, factor=wmma_k) ko, ki = s[CF].split(k, factor=chunk) s[CF].reorder(ko, ki, warp_i, warp_j, _ii, _jj, _k) # Schedule for wmma_matrix_a load s[AF].compute_at(s[CF], ki) _, _, b, i = AF.op.axis b, b_ii = s[AF].split(b, factor=wmma_m) i, i_jj = s[AF].split(i, factor=wmma_k) s[AF].reorder(b, i, b_ii, i_jj) # Schedule for wmma_matrix_b load s[BF].compute_at(s[CF], ki) _, _, i, o = BF.op.axis o, o_ii = s[BF].split(o, factor=wmma_n) i, i_ii = s[BF].split(i, factor=wmma_k) s[BF].reorder(i, o, i_ii, o_ii) # Schedule for A's(B's) shared memory load def shared_schedule(stage, strides): s[stage].compute_at(s[CF], ko) _, _, xo, yo = stage.op.axis s[stage].storage_align(xo, strides - 1, strides) t = s[stage].fuse(xo, yo) t, vi = s[stage].split(t, factor=vec) t, tx = s[stage].split(t, factor=warp_size) t, ty = s[stage].split(t, factor=block_row_warps) _, tz = s[stage].split(t, factor=block_col_warps) s[stage].bind(ty, thread_y) s[stage].bind(tz, thread_z) s[stage].bind(tx, thread_x) s[stage].vectorize(vi) shared_schedule(AS, AS_align) shared_schedule(BS, BS_align) shape = (wmma_m, wmma_n, wmma_k) in_dtype = "float16" AL_gemm = te.placeholder((wmma_m, wmma_k), name="AL_gemm", dtype=in_dtype) BL_gemm = te.placeholder((wmma_k, wmma_n), name="BL_gemm", dtype=in_dtype) k_gemm = te.reduce_axis((0, wmma_k), name="k_gemm") CL_compute = te.compute( (wmma_m, wmma_n), lambda ii, jj: te.sum( AL_gemm[ii, k_gemm].astype(out_dtype) * BL_gemm[k_gemm, jj].astype(out_dtype), axis=k_gemm, ), name="CL_compute", ) # Lower the computation loops down to TensorCore hardware intrinsics # by mapping the tensorcore to tensor intrinsics s[AF].tensorize( b_ii, intrin_wmma_load_matrix_A( AF_stride, AS_stride, shape, "row_major", (wmma_m, wmma_k), (wmma_m, wmma_k), "float16" ), ) s[BF].tensorize( i_ii, intrin_wmma_load_matrix_W( BF_stride, BS_stride, shape, "row_major", (wmma_k, wmma_n), (wmma_k, wmma_n), "float16" ), ) s[CF].tensorize( _ii, intrin_wmma_gemm(AL_gemm, BL_gemm, CL_compute, AF_stride, BF_stride, CF_stride, shape) ) s[CS].tensorize( bbi, intrin_wmma_store_matrix( CS_stride, CF_stride, shape, out_dtype, (wmma_m, wmma_n), (wmma_m, wmma_n) ), ) def schedule_bgemm_direct(cfg, s, bgemm, data_pack, kernel_pack): """Schedule for bgemm direct""" b1, b2, y, x = s[bgemm].op.axis rc = s[bgemm].op.reduce_axis[0] alpha = get_const_int(b1.dom.extent) # Create tuning space cfg.define_split( "tile_b", cfg.axis(alpha * alpha), num_outputs=4, filter=lambda x: x.size[-3:] == [1, 1, 1] ) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_knob("offset_bgemm", [0, 1, 2, 4, 8]) cfg.define_knob("vector_bgemm", [1, 2, 4, 8]) offset_bgemm = cfg["offset_bgemm"].val vector_bgemm = cfg["vector_bgemm"].val C = bgemm A0, B0 = kernel_pack, data_pack # Designate the memory hierarchy OL = s.cache_write(C, "local") AA = s.cache_read(A0, "shared", [OL]) BB = s.cache_read(B0, "shared", [OL]) # Tile and bind spatial axes b = s[bgemm].fuse(b1, b2) bgemm_scope, b = s[bgemm].split(b, nparts=1) bz, vz, tz, zi = cfg["tile_b"].apply(s, C, b) by, vy, ty, yi = cfg["tile_y"].apply(s, C, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, C, x) s[C].bind(bz, te.thread_axis("blockIdx.z")) s[C].bind(by, te.thread_axis("blockIdx.y")) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(vz, te.thread_axis("vthread")) s[C].bind(vy, te.thread_axis("vthread")) s[C].bind(vx, te.thread_axis("vthread")) s[C].bind(tz, te.thread_axis("threadIdx.z")) s[C].bind(ty, te.thread_axis("threadIdx.y")) s[C].bind(tx, te.thread_axis("threadIdx.x")) s[C].reorder(bgemm_scope, bz, by, bx, vz, vy, vx, tz, ty, tx, zi, yi, xi) # Tile reduction axes s[OL].compute_at(s[C], tx) b1, b2, y, x = s[OL].op.axis b = s[OL].fuse(b1, b2) (rc,) = s[OL].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, OL, rc) s[OL].reorder(rco, b, y, x, rci) s[AA].compute_at(s[OL], rco) _, _, k, n = s[AA].op.axis AA_align = offset_bgemm + cfg["tile_x"].size[1] * cfg["tile_x"].size[2] * cfg["tile_x"].size[3] s[AA].storage_align(k, AA_align - 1, AA_align) s[BB].compute_at(s[OL], rco) _, _, m, k = s[BB].op.axis BB_align = offset_bgemm + cfg["tile_rc"].size[1] s[BB].storage_align(m, BB_align - 1, BB_align) # Schedule for A and B shared memory load for load in [AA, BB]: fused = s[load].fuse(*list(s[load].op.axis)) fused, ti = s[load].split(fused, factor=vector_bgemm) fused, tx = s[load].split(fused, cfg["tile_x"].size[2]) fused, ty = s[load].split(fused, cfg["tile_y"].size[2]) fused, tz = s[load].split(fused, cfg["tile_b"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[load].vectorize(ti) def nhwc_winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, use_tensorcore, pre_computed ): """Compute declaration for winograd""" tile_size = _infer_tile_size(data, kernel) N, H, W, CI = get_const_tuple(data.shape) if isinstance(N, tvm.tir.Any): N = tvm.te.size_var("n") if not isinstance(H, int) or not isinstance(W, int): raise RuntimeError( "cuda winograd nhwc conv2d doesn't support dynamic \ input height or width." ) if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation HSTR, WSTR = (strides, strides) if isinstance(strides, int) else strides if not pre_computed: # Kernel tensor is raw tensor, do strict check if dilation_h != 1 or dilation_w != 1: kernel = nn.dilate(kernel, (dilation_h, dilation_w, 1, 1)) KH, KW, CI, CO = get_const_tuple(kernel.shape) alpha = KW + tile_size - 1 assert HSTR == 1 and WSTR == 1 and KH == KW else: # Kernel tensor is pre-transfomred. This op is created by conv2d_alter_op. # Dilation is not supported alpha, _, CI, CO = get_const_tuple(kernel.shape) KH = KW = alpha + 1 - tile_size assert HSTR == 1 and WSTR == 1 and dilation_h == 1 and dilation_w == 1 pt, pl, pb, pr = nn.get_pad_tuple(padding, (KH, KW)) data_pad = nn.pad( data, (0, pt, pl, 0), (0, pb, pr, 0), name="data_pad", attrs={"schedule_rule": "None"}, ) r = KW m = tile_size H = (H + pt + pb - KH) // HSTR + 1 W = (W + pl + pr - KW) // WSTR + 1 nH, nW = (H + m - 1) // m, (W + m - 1) // m P = N * nH * nW if isinstance(N, int) else nH * nW # Determine whether the shape is available with tensorcore shape_judge = ( (P % 16 == 0 and CI % 16 == 0 and CO % 16 == 0) or (P % 8 == 0 and CI % 16 == 0 and CO % 32 == 0) or (P % 32 == 0 and CI % 16 == 0 and CO % 8 == 0) ) if shape_judge and use_tensorcore: trans_type = "float16" else: trans_type = data.dtype # Compute transform matrix A, _, _ = winograd_transform_matrices(m, r, out_dtype) _, B, G = winograd_transform_matrices(m, r, data.dtype) # Transform kernel if not pre_computed: # Check if we are currently tuning, if so we want to avoid counting # prepacking in time costs. Just use a placeholder with the packed shape instead. if autotvm.GLOBAL_SCOPE.in_tuning: kernel_pack = te.placeholder( (alpha, alpha, CI, CO), dtype=kernel.dtype, name="kernel_pack" ) else: r_kh = te.reduce_axis((0, KH), name="r_kh") r_kw = te.reduce_axis((0, KW), name="r_kw") kernel_pack = te.compute( (alpha, alpha, CI, CO), lambda eps, nu, ci, co: te.sum( (kernel[r_kh][r_kw][ci][co]) * G[eps][r_kh] * G[nu][r_kw], axis=[r_kh, r_kw] ), name="kernel_pack", ) else: kernel_pack = kernel idxdiv = tvm.tir.indexdiv idxmod = tvm.tir.indexmod # Pack input tile input_tile = te.compute( (P, CI, alpha, alpha), lambda p, c, eps, nu: data_pad[ idxdiv(p, (nH * nW)), idxmod(idxdiv(p, nW), nH) * m + eps, idxmod(p, nW) * m + nu, c ], name="d", attrs={"schedule_rule": "None"}, ) # Transform data r_a = te.reduce_axis((0, alpha), "r_a") r_b = te.reduce_axis((0, alpha), "r_b") data_pack = te.compute( (alpha, alpha, P, CI), lambda eps, nu, p, ci: te.sum( input_tile[p][ci][r_a][r_b] * B[r_a][eps] * B[r_b][nu], axis=[r_a, r_b] ), name="data_pack", ) # Convert data type of input feature maps and weights for tensorcore Transdata = te.compute( data_pack.shape, lambda eps, nu, p, ci: data_pack[eps, nu, p, ci].astype(trans_type) ) TransFilter = te.compute( kernel_pack.shape, lambda eps, nu, ci, co: kernel_pack[eps, nu, ci, co].astype(trans_type) ) # Do batch gemm ci = te.reduce_axis((0, CI), name="ci") bgemm = te.compute( (alpha, alpha, P, CO), lambda eps, nu, p, co: te.sum( (Transdata[eps][nu][p][ci]).astype(out_dtype) * (TransFilter[eps][nu][ci][co]).astype(out_dtype), axis=[ci], ), name="bgemm", ) # Inverse transform r_a = te.reduce_axis((0, alpha), "r_a") r_b = te.reduce_axis((0, alpha), "r_b") inverse = te.compute( (P, CO, m, m), lambda p, co, vh, vw: te.sum( bgemm[r_a][r_b][p][co] * A[r_a][vh] * A[r_b][vw], axis=[r_a, r_b] ), name="inverse", ) # Output output = te.compute( (N, H, W, CO), lambda n, h, w, co: inverse[ n * nH * nW + idxdiv(h, m) * nW + idxdiv(w, m), co, idxmod(h, m), idxmod(w, m) ], name="output", tag="conv2d_nhwc_winograd", ) if isinstance(N, int): cfg.add_flop(2 * N * CO * H * W * CI * KH * KW) return output def data_weight_transform(s, data_trans, input_tile, thread_num_trans, offset_trans, trans_tag): """Schedule for data or kernel transform""" kernel_align = thread_num_trans + offset_trans indata_s = s.cache_read(input_tile, "shared", [data_trans]) data_l = s.cache_write(data_trans, "local") # Schedule for data or kernel transform eps, nu, p, c = s[data_trans].op.axis block_x, thread_x = s[data_trans].split(c, thread_num_trans) block_x = s[data_trans].fuse(p, block_x) s[data_trans].reorder(block_x, thread_x, eps, nu) s[data_trans].bind(thread_x, te.thread_axis("threadIdx.x")) s[data_trans].bind(block_x, te.thread_axis("blockIdx.x")) s[data_l].compute_at(s[data_trans], thread_x) eps_l, nu_l, p_l, c_l = s[data_l].op.axis r_a, r_b = s[data_l].op.reduce_axis block_x_l, thread_x_l = s[data_l].split(c_l, thread_num_trans) block_x_l = s[data_l].fuse(p_l, block_x_l) s[data_l].reorder(block_x_l, thread_x_l, eps_l, nu_l, r_a, r_b) for axis in [eps_l, nu_l, r_a, r_b]: s[data_l].unroll(axis) # Schedule for share memory load s[indata_s].compute_at(s[data_l], block_x_l) if trans_tag == "data": p_is, c_is, eps_is, nu_is = s[indata_s].op.axis data_align = ( get_const_int(eps_is.dom.extent) * get_const_int(nu_is.dom.extent) + offset_trans ) s[indata_s].storage_align(c_is, data_align - 1, data_align) block_x_is, thread_x_is = s[indata_s].split(c_is, thread_num_trans) s[indata_s].bind(thread_x_is, te.thread_axis("threadIdx.x")) else: eps_is, nu_is, ci_is, co_is = s[indata_s].op.axis s[indata_s].storage_align(nu_is, kernel_align - 1, kernel_align) block_x_is, thread_x_is = s[indata_s].split(co_is, thread_num_trans) s[indata_s].reorder(ci_is, block_x_is, eps_is, nu_is, thread_x_is) s[indata_s].bind(thread_x_is, te.thread_axis("threadIdx.x")) def schedule_nhwc_winograd_cuda(cfg, s, output, use_tensorcore, pre_computed): """Schedule winograd template""" # Get stages inverse = s[output].op.input_tensors[0] bgemm, A = s[inverse].op.input_tensors Transdata, TransFilter = s[bgemm].op.input_tensors data_pack = s[Transdata].op.input_tensors[0] kernel_pack = s[TransFilter].op.input_tensors[0] s[Transdata].compute_inline() s[TransFilter].compute_inline() input_tile, B = s[data_pack].op.input_tensors pad_data = s[input_tile].op.input_tensors[0] # Define the stride of intrin functions cfg.define_knob("thread_num_inverse", [1, 32, 64, 128, 256]) cfg.define_knob("thread_num_data", [1, 32, 64, 128, 256]) cfg.define_knob("thread_num_kernel", [1, 32, 64, 128, 256]) cfg.define_knob("offset_inverse", [0, 2, 4]) cfg.define_knob("offset_data", [0, 1, 2, 4]) cfg.define_knob("offset_kernel", [0, 1, 2, 4]) cfg.define_knob("inverse_in_vector", [1, 2, 4]) thread_num_data = cfg["thread_num_data"].val thread_num_kernel = cfg["thread_num_kernel"].val thread_num_inverse = cfg["thread_num_inverse"].val offset_data = cfg["offset_data"].val offset_kernel = cfg["offset_kernel"].val offset_inverse = cfg["offset_inverse"].val inverse_in_vector = cfg["inverse_in_vector"].val # Data transform s[B].compute_inline() data_weight_transform(s, data_pack, input_tile, thread_num_data, offset_data, trans_tag="data") s[input_tile].compute_inline() s[pad_data].compute_inline() # Kernel transform if not pre_computed and not autotvm.GLOBAL_SCOPE.in_tuning: kernel, G = s[kernel_pack].op.input_tensors s[G].compute_inline() data_weight_transform( s, kernel_pack, kernel, thread_num_kernel, offset_kernel, trans_tag="kernel" ) else: kernel = kernel_pack if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() b1, b2, y, x = s[bgemm].op.axis alpha = get_const_int(b1.dom.extent) _, _, P, CI = get_const_tuple(Transdata.shape) _, _, _, CO = get_const_tuple(TransFilter.shape) # Determine whether the shape is available with tensorcore shape_judge = ( (P % 16 == 0 and CI % 16 == 0 and CO % 16 == 0) or (P % 8 == 0 and CI % 16 == 0 and CO % 32 == 0) or (P % 32 == 0 and CI % 16 == 0 and CO % 8 == 0) ) if shape_judge and use_tensorcore: schedule_bgemm_tensorcore(cfg, s, bgemm, Transdata, TransFilter) else: schedule_bgemm_direct(cfg, s, bgemm, Transdata, TransFilter) # Schedule inverse, output and fusion if output.op in s.outputs: OL = None else: OL = output s[OL].set_scope("local") output = s.outputs[0] s[A].compute_inline() inverse_s = s.cache_read(bgemm, "shared", [inverse]) m = alpha - 3 + 1 offset_inverse_in = offset_inverse vector_width_inverse_in = inverse_in_vector # Schedule for output n, h, w, co = s[output].op.axis ho, wo, hi, wi = s[output].tile(h, w, m, m) s[output].reorder(n, ho, wo, co, hi, wi) fused = s[output].fuse(n, ho, wo) block_x_s, thread_x_s = s[output].split(co, thread_num_inverse) block_x_s = s[output].fuse(fused, block_x_s) s[output].reorder(block_x_s, thread_x_s, hi, wi) if OL is not None: s[OL].compute_inline() # Schedule for inverse s[inverse].compute_at(s[output], thread_x_s) p_inv, co_inv, eps_inv, nu_inv = s[inverse].op.axis block_x_inv, thread_x_inv = s[inverse].split(co_inv, thread_num_inverse) r_a, r_b = s[inverse].op.reduce_axis for axis in [eps_inv, nu_inv, r_a, r_b]: s[inverse].unroll(axis) # Schedule for share memory load s[inverse_s].compute_at(s[output], block_x_s) eps_inv_s, nu_inv_s, p_inv_s, co_inv_s = s[inverse_s].op.axis inverse_in_align = offset_inverse_in + thread_num_inverse s[inverse_s].storage_align(p_inv_s, inverse_in_align - 1, inverse_in_align) block_x_inv_s, thread_x_inv_s = s[inverse_s].split(co_inv_s, thread_num_inverse) block_x_inv_s = s[inverse_s].fuse(p_inv_s, block_x_inv_s) s[inverse_s].reorder(block_x_inv_s, eps_inv_s, nu_inv_s, thread_x_inv_s) t = s[inverse_s].fuse(eps_inv_s, nu_inv_s, thread_x_inv_s) t, ti = s[inverse_s].split(t, factor=vector_width_inverse_in) t, tx = s[inverse_s].split(t, factor=thread_num_inverse) s[inverse_s].bind(tx, te.thread_axis("threadIdx.x")) s[inverse_s].vectorize(ti) s[output].bind(thread_x_s, te.thread_axis("threadIdx.x")) s[output].bind(block_x_s, te.thread_axis("blockIdx.x")) return s @autotvm.register_topi_compute("conv2d_nhwc_winograd_direct.cuda") def conv2d_nhwc_winograd_direct(cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute conv2d with winograd for NHWC layout""" return nhwc_winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, use_tensorcore=False, pre_computed=False, ) @autotvm.register_topi_schedule("conv2d_nhwc_winograd_direct.cuda") def schedule_conv2d_nhwc_winograd_direct(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nhwc_winograd" in op.tag: schedule_nhwc_winograd_cuda( cfg, s, op.output(0), use_tensorcore=False, pre_computed=False ) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("conv2d_nhwc_winograd_tensorcore.cuda") def conv2d_nhwc_winograd_tensorcore(cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute conv2d with winograd for NHWC layout""" return nhwc_winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, use_tensorcore=True, pre_computed=False, ) @autotvm.register_topi_schedule("conv2d_nhwc_winograd_tensorcore.cuda") def schedule_conv2d_nhwc_winograd_tensorcore(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nhwc_winograd" in op.tag: schedule_nhwc_winograd_cuda( cfg, s, op.output(0), use_tensorcore=True, pre_computed=False ) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("conv2d_nhwc_winograd_direct_without_weight_transform.cuda") def conv2d_nhwc_winograd_direct_without_weight_transform( cfg, data, kernel, strides, padding, dilation, out_dtype ): """Compute conv2d with winograd for NHWC layout""" return nhwc_winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, use_tensorcore=False, pre_computed=True, ) @autotvm.register_topi_schedule("conv2d_nhwc_winograd_direct_without_weight_transform.cuda") def schedule_conv2d_nhwc_winograd_direct_without_weight_transform(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nhwc_winograd" in op.tag: schedule_nhwc_winograd_cuda( cfg, s, op.output(0), use_tensorcore=False, pre_computed=True ) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("conv2d_nhwc_winograd_tensorcore_without_weight_transform.cuda") def conv2d_nhwc_winograd_tensorcore_without_weight_transform( cfg, data, kernel, strides, padding, dilation, out_dtype ): """Compute conv2d with winograd for NHWC layout""" return nhwc_winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, use_tensorcore=True, pre_computed=True, ) @autotvm.register_topi_schedule("conv2d_nhwc_winograd_tensorcore_without_weight_transform.cuda") def schedule_conv2d_nhwc_winograd_tensorcore_without_weight_transform(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nhwc_winograd" in op.tag: schedule_nhwc_winograd_cuda( cfg, s, op.output(0), use_tensorcore=True, pre_computed=True ) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_transpose.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Conv2d transpose template for cuda backend""" import tvm from tvm import te from tvm.contrib import cudnn from tvm import autotvm from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity from .. import nn from ..utils import get_const_tuple, traverse_inline @autotvm.register_topi_compute("conv2d_transpose_nchw.cuda") def conv2d_transpose_nchw(cfg, data, kernel, stride, padding, out_dtype, output_padding, groups=1): """Transposed 2D convolution nchw forward operator. Parameters ---------- cfg: ConfigEntity The config for this template Input : tvm.te.Tensor 4-D with shape [batch, in_channel, in_height, in_width] Filter : tvm.te.Tensor 4-D with shape [in_channel, num_filter, filter_height, filter_width] strides : tuple of two ints The spatial stride along height and width padding : int or str Padding size, or ['VALID', 'SAME'] out_dtype: str The output type. This is used in mixed precision output_padding : tuple of two ints Used to disambiguate output shape. groups : int number of groups Returns ------- Output : tvm.te.Tensor 4-D with shape [batch, out_channel, out_height, out_width] """ batch, inp_channels, inp_height, inp_width = get_const_tuple(data.shape) _, out_channels, kernel_height, kernel_width = get_const_tuple(kernel.shape) stride_height, stride_width = stride outpad_height, outpad_width = output_padding assert outpad_height < stride_height and outpad_width < stride_width assert ( inp_channels % groups == 0 ), f"input channels {inp_channels} must divide group size {groups}" cfg.stride = stride pad_top, pad_left, pad_bottom, pad_right = nn.get_pad_tuple( padding, (kernel_height, kernel_width) ) out_width = (inp_width - 1) * stride_width + kernel_width - pad_left - pad_right + outpad_width pad_left = kernel_width - 1 - pad_left pad_right = kernel_width - 1 - pad_right + outpad_width dilated_width = stride_width * (inp_width - 1) + 1 out_height = ( (inp_height - 1) * stride_height + kernel_height - pad_top - pad_bottom + outpad_height ) pad_top = kernel_height - 1 - pad_top pad_bottom = kernel_height - 1 - pad_bottom + outpad_height dilated_height = stride_height * (inp_height - 1) + 1 # compute pad data = te.compute( ( batch, inp_channels, pad_top + dilated_height + pad_bottom, pad_left + dilated_width + pad_right, ), lambda n, c, y, x: tvm.tir.if_then_else( tvm.tir.all( x >= pad_left, x < pad_left + dilated_width, tvm.tir.indexmod(x - pad_left, stride_width).equal(0), y >= pad_top, y < pad_top + dilated_height, tvm.tir.indexmod(y - pad_top, stride_height).equal(0), ), data[ n, c, tvm.tir.indexdiv(y - pad_top, stride_height), tvm.tir.indexdiv(x - pad_left, stride_width), ], tvm.tir.const(0.0, data.dtype), ), name="data_pad", ) # compute transposed conv dc = te.reduce_axis((0, inp_channels // groups), name="dc") dh = te.reduce_axis((0, kernel_height), name="dh") dw = te.reduce_axis((0, kernel_width), name="dw") data_out = te.compute( (batch, out_channels * groups, out_height, out_width), lambda b, c, h, w: te.sum( data[b, c // out_channels * (inp_channels // groups) + dc, h + dh, w + dw].astype( out_dtype ) * kernel[ c // out_channels * (inp_channels // groups) + dc, c % out_channels, kernel_height - 1 - dh, kernel_width - 1 - dw, ].astype(out_dtype), axis=[dc, dh, dw], ), tag="conv2d_transpose_nchw", ) return data_out @autotvm.register_topi_schedule("conv2d_transpose_nchw.cuda") def schedule_conv2d_transpose_nchw(cfg, outs): """TOPI Schedule callback for conv2d transpose operator. Parameters ---------- cfg: ConfigEntity The parameters for this template outs: Array of Tensor The computation graph description of conv2d transpose in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv2d transpose. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _fallback_schedule(N, F, Y, X): # pylint: disable=unused-argument # split N (batch dimension) if N > 1: cfg["tile_n"] = SplitEntity([-1, 1, 1, 4]) else: cfg["tile_n"] = SplitEntity([1, 1, 1, 1]) # split F (output channel dimension) if F > 1: cfg["tile_f"] = SplitEntity([-1, 1, 4, 1]) # split Y (height dimension) y_split_factor = 1 for candidate in range(5, 17): if Y % candidate == 0: y_split_factor = candidate break cfg["tile_y"] = SplitEntity([-1, 1, 1, y_split_factor]) # split X (width dimension) x_split_factor = 1 for candidate in range(5, 17): if X % candidate == 0: x_split_factor = candidate break cfg["tile_x"] = SplitEntity([-1, x_split_factor, 1, 1]) # split RC (input channel dimension, which is a reduction axis) cfg["tile_rc"] = SplitEntity([-1, 1, 16]) # other configurations cfg["fuse_yx"] = OtherOptionEntity(False) cfg["unroll_explicit"] = OtherOptionEntity(True) cfg["auto_unroll_max_step"] = OtherOptionEntity(1500) def _callback(op): if op.tag == "conv2d_transpose_nchw": pad_data = op.input_tensors[0] kernel = op.input_tensors[1] conv = op.output(0) ##### space definition begin ##### n, f, y, x = s[conv].op.axis rc = s[conv].op.reduce_axis[0] # TODO(@kevinthesun): Support tuning/optimization for dynamic shape. bs = pad_data.shape[0] n_tuning_axis = n if isinstance(bs, tvm.tir.IntImm) else 1 cfg.define_split("tile_n", cfg.axis(n_tuning_axis), num_outputs=4) cfg.define_split("tile_f", cfg.axis(f), num_outputs=4) cfg.define_split("tile_y", cfg.axis(y), num_outputs=4) cfg.define_split("tile_x", cfg.axis(x), num_outputs=4) cfg.define_split("tile_rc", cfg.axis(rc), num_outputs=3) cfg.define_knob("auto_unroll_max_step", [64, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) if cfg.is_fallback: N, F, Y, X = get_const_tuple(conv.shape) if not isinstance(N, int): N = 1 _fallback_schedule(N, F, Y, X) ##### space definition end ##### if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv # create cache stage s[pad_data].set_scope("shared") AA = pad_data WW = s.cache_read(kernel, "shared", [OL]) # tile and bind spatial axes n, f, y, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bn, vn, tn, ni = cfg["tile_n"].apply(s, output, n) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].reorder(bn, bf, by, bx, vn, vf, vy, vx, tn, tf, ty, tx, ni, fi, yi, xi) s[output].bind(bn, te.thread_axis("blockIdx.z")) s[output].bind(bf, te.thread_axis("blockIdx.y")) s[output].bind(s[output].fuse(by, bx), te.thread_axis("blockIdx.x")) s[output].bind(vn, te.thread_axis("vthread")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) cfg.define_knob("fuse_yx", [0, 1]) # fuse ty,tx or tn,tf if cfg["fuse_yx"].val: s[output].bind(tn, te.thread_axis("threadIdx.z")) s[output].bind(tf, te.thread_axis("threadIdx.y")) tyx = s[output].fuse(ty, tx) s[output].bind(s[output].fuse(ty, tx), te.thread_axis("threadIdx.x")) s[OL].compute_at(s[output], tyx) # number of threads n_tz = cfg["tile_n"].size[2] n_ty = cfg["tile_f"].size[2] n_tx = cfg["tile_y"].size[2] * cfg["tile_x"].size[2] else: s[output].bind(s[output].fuse(tn, tf), te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[OL].compute_at(s[output], tx) # number of threads n_tz = cfg["tile_n"].size[2] * cfg["tile_f"].size[2] n_ty = cfg["tile_y"].size[2] n_tx = cfg["tile_x"].size[2] # tile reduction axes n, f, y, x = s[OL].op.axis rc, ry, rx = s[OL].op.reduce_axis rco, rcm, rci = cfg["tile_rc"].apply(s, OL, rc) s[OL].reorder(rco, rcm, ry, rx, rci, n, f, y, x) s[AA].compute_at(s[OL], rx) s[WW].compute_at(s[OL], rx) # cooperative fetching for load in [AA, WW]: n, f, y, x = s[load].op.axis fused = s[load].fuse(f, y, x) tz, fused = s[load].split(fused, nparts=n_tz) ty, fused = s[load].split(fused, nparts=n_ty) tx, fused = s[load].split(fused, nparts=n_tx) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) traverse_inline(s, outs[0].op, _callback) return s def conv2d_transpose_cudnn( x, w, stride, padding, out_dtype, output_padding=(0, 0), layout="NCHW", groups=1 ): """Compute conv2d_tranpose using cudnn dgrad kernel""" tensor_format = 0 if layout == "NCHW" else 1 return cudnn.conv_backward_data( x, w, padding, stride, (1, 1), 1, tensor_format, out_dtype, groups=groups, output_padding=output_padding, )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv2d_winograd.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """Winograd template for cuda backend""" import logging import tvm from tvm import autotvm, te from .. import nn from ..nn.conv2d import ( _conv2d_winograd_nchw_impl, _conv2d_winograd_nhwc_impl, conv2d_winograd_nchw, conv2d_winograd_nhwc, ) from ..nn.winograd_util import winograd_transform_matrices from ..utils import get_const_int, get_const_tuple, traverse_inline logger = logging.getLogger("conv2d_winograd") def _infer_tile_size(data, kernel, layout="NCHW"): if layout == "NCHW": N, CI, H, W = get_const_tuple(data.shape) else: assert layout == "NHWC" N, H, W, CI = get_const_tuple(data.shape) if H % 8 == 0: return 4 return 2 def winograd_cuda(cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed): """Compute declaration for winograd""" tile_size = _infer_tile_size(data, kernel) N, CI, H, W = get_const_tuple(data.shape) if isinstance(N, tvm.tir.Any): N = tvm.te.size_var("n") if not isinstance(H, int) or not isinstance(W, int): raise RuntimeError( "cuda winograd conv2d doesn't support dynamic input\ height or width." ) if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation HSTR, WSTR = (strides, strides) if isinstance(strides, int) else strides if not pre_computed: # kernel tensor is raw tensor, do strict check if dilation_h != 1 or dilation_w != 1: kernel = nn.dilate(kernel, (1, 1, dilation_h, dilation_w)) CO, CI, KH, KW = get_const_tuple(kernel.shape) alpha = KW + tile_size - 1 assert HSTR == 1 and WSTR == 1 and KH == KW else: # kernel tensor is pre-transfomred. this op is created by alter op layout. # dilation is not supported alpha, _, CI, CO = get_const_tuple(kernel.shape) KH = KW = alpha + 1 - tile_size assert HSTR == 1 and WSTR == 1 and dilation_h == 1 and dilation_w == 1 pt, pl, pb, pr = nn.get_pad_tuple(padding, (KH, KW)) data_pad = nn.pad( data, (0, 0, pt, pl), (0, 0, pb, pr), name="data_pad", ) r = KW m = tile_size A, B, G = winograd_transform_matrices(m, r, out_dtype) H = (H + pt + pb - KH) // HSTR + 1 W = (W + pl + pr - KW) // WSTR + 1 nH, nW = (H + m - 1) // m, (W + m - 1) // m P = N * nH * nW if isinstance(N, int) else nH * nW # transform kernel if not pre_computed: r_kh = te.reduce_axis((0, KH), name="r_kh") r_kw = te.reduce_axis((0, KW), name="r_kw") kernel_pack = te.compute( (alpha, alpha, CI, CO), lambda eps, nu, ci, co: te.sum( kernel[co][ci][r_kh][r_kw] * G[eps][r_kh] * G[nu][r_kw], axis=[r_kh, r_kw] ), name="kernel_pack", ) else: kernel_pack = kernel idxdiv = tvm.tir.indexdiv idxmod = tvm.tir.indexmod # pack input tile input_tile = te.compute( (CI, P, alpha, alpha), lambda c, p, eps, nu: data_pad[idxdiv(p, (nH * nW))][c][ idxmod(idxdiv(p, nW), nH) * m + eps ][idxmod(p, nW) * m + nu], name="d", ) # transform data r_a = te.reduce_axis((0, alpha), "r_a") r_b = te.reduce_axis((0, alpha), "r_a") data_pack = te.compute( (alpha, alpha, CI, P), lambda eps, nu, ci, p: te.sum( input_tile[ci][p][r_a][r_b] * B[r_a][eps] * B[r_b][nu], axis=[r_a, r_b] ), name="data_pack", ) # do batch gemm ci = te.reduce_axis((0, CI), name="ci") bgemm = te.compute( (alpha, alpha, CO, P), lambda eps, nu, co, p: te.sum( kernel_pack[eps][nu][ci][co] * data_pack[eps][nu][ci][p], axis=[ci] ), name="bgemm", ) # inverse transform r_a = te.reduce_axis((0, alpha), "r_a") r_b = te.reduce_axis((0, alpha), "r_a") inverse = te.compute( (CO, P, m, m), lambda co, p, vh, vw: te.sum( bgemm[r_a][r_b][co][p] * A[r_a][vh] * A[r_b][vw], axis=[r_a, r_b] ), name="inverse", ) # output output = te.compute( (N, CO, H, W), lambda n, co, h, w: inverse[ co, n * nH * nW + idxdiv(h, m) * nW + idxdiv(w, m), idxmod(h, m), idxmod(w, m) ], name="output", tag="conv2d_nchw_winograd", ) if isinstance(N, int): cfg.add_flop(2 * N * CO * H * W * CI * KH * KW) return output def schedule_winograd_cuda(cfg, s, output, pre_computed): """Schedule winograd template""" # get stages inverse = s[output].op.input_tensors[0] bgemm, A = s[inverse].op.input_tensors kernel_pack, data_pack = s[bgemm].op.input_tensors input_tile, B = s[data_pack].op.input_tensors pad_data = s[input_tile].op.input_tensors[0] # data transform s[B].compute_inline() data_l = s.cache_write(data_pack, "local") eps, nu, c, p = s[data_l].op.axis r_a, r_b = s[data_l].op.reduce_axis for axis in [eps, nu, r_a, r_b]: s[data_l].unroll(axis) eps, nu, c, p = s[data_pack].op.axis p, pi = s[data_pack].split(p, 1) fused = s[data_pack].fuse(c, p) bb, tt = s[data_pack].split(fused, 128) s[data_pack].reorder(bb, tt, pi, eps, nu) s[data_pack].bind(bb, te.thread_axis("blockIdx.x")) s[data_pack].bind(tt, te.thread_axis("threadIdx.x")) s[data_l].compute_at(s[data_pack], pi) s[input_tile].compute_at(s[data_pack], pi) s[pad_data].compute_inline() # transform kernel if not pre_computed: kernel, G = s[kernel_pack].op.input_tensors eps, nu, ci, co = s[kernel_pack].op.axis if autotvm.GLOBAL_SCOPE.in_tuning: # skip this part during tuning to make recrods accurate # this part will be pre-computed during pre-compute optimization pass s[G].pragma(s[G].op.axis[0], "debug_skip_region") s[kernel_pack].pragma(eps, "debug_skip_region") else: s[G].compute_inline() r_a, r_b = s[kernel_pack].op.reduce_axis for axis in [eps, nu, r_a, r_b]: s[kernel_pack].unroll(axis) fused = s[kernel_pack].fuse(ci, co) bb, tt = s[kernel_pack].split(fused, 128) s[kernel_pack].reorder(bb, tt, eps, nu, r_a, r_b) s[kernel_pack].bind(bb, te.thread_axis("blockIdx.x")) s[kernel_pack].bind(tt, te.thread_axis("threadIdx.x")) else: kernel = kernel_pack if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() ##### space definition begin ##### b1, b2, y, x = s[bgemm].op.axis rc = s[bgemm].op.reduce_axis[0] alpha = get_const_int(b1.dom.extent) cfg.define_split( "tile_b", cfg.axis(alpha * alpha), num_outputs=4, filter=lambda x: x.size[-3:] == [1, 1, 1] ) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 128, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) ##### space definition end ##### # batch gemm C = bgemm A0, B0 = kernel_pack, data_pack OL = s.cache_write(C, "local") AA = s.cache_read(A0, "shared", [OL]) BB = s.cache_read(B0, "shared", [OL]) b = s[bgemm].fuse(b1, b2) # tile and bind spatial axes bgemm_scope, b = s[bgemm].split(b, nparts=1) bz, vz, tz, zi = cfg["tile_b"].apply(s, C, b) by, vy, ty, yi = cfg["tile_y"].apply(s, C, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, C, x) s[C].bind(bz, te.thread_axis("blockIdx.z")) s[C].bind(by, te.thread_axis("blockIdx.y")) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(vz, te.thread_axis("vthread")) s[C].bind(vy, te.thread_axis("vthread")) s[C].bind(vx, te.thread_axis("vthread")) s[C].bind(tz, te.thread_axis("threadIdx.z")) s[C].bind(ty, te.thread_axis("threadIdx.y")) s[C].bind(tx, te.thread_axis("threadIdx.x")) s[C].reorder(bgemm_scope, bz, by, bx, vz, vy, vx, tz, ty, tx, zi, yi, xi) # tile reduction axes s[OL].compute_at(s[C], tx) b1, b2, y, x = s[OL].op.axis b = s[OL].fuse(b1, b2) (rc,) = s[OL].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, OL, rc) s[OL].reorder(rco, rci, b, y, x) s[AA].compute_at(s[OL], rco) s[BB].compute_at(s[OL], rco) # cooperative fetching for load in [AA, BB]: fused = s[load].fuse(*list(s[load].op.axis)) fused, tx = s[load].split(fused, cfg["tile_x"].size[2]) fused, ty = s[load].split(fused, cfg["tile_y"].size[2]) fused, tz = s[load].split(fused, cfg["tile_b"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[C].pragma(bgemm_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[C].pragma(bgemm_scope, "unroll_explicit", cfg["unroll_explicit"].val) # schedule inverse, output and fusion if output.op in s.outputs: OL = None else: OL = output s[OL].set_scope("local") output = s.outputs[0] m = alpha - 3 + 1 n, co, h, w = s[output].op.axis ho, wo, hi, wi = s[output].tile(h, w, m, m) inverse_scope, n = s[output].split(n, nparts=1) fused = s[output].fuse(n, co, ho, wo) bb, tt = s[output].split(fused, 128) s[output].bind(bb, te.thread_axis("blockIdx.x")) s[output].bind(tt, te.thread_axis("threadIdx.x")) if OL is not None: s[OL].compute_at(s[output], tt) s[A].compute_inline() co, p, vh, vw = s[inverse].op.axis r_a, r_b = s[inverse].op.reduce_axis for axis in [vh, vw, r_a, r_b]: s[inverse].unroll(axis) s[inverse].compute_at(s[output], tt) return s @autotvm.register_topi_compute("conv2d_nchw_winograd.cuda") def conv2d_nchw_winograd(cfg, data, kernel, strides, padding, dilation, out_dtype): return winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed=False ) @autotvm.register_topi_schedule("conv2d_nchw_winograd.cuda") def schedule_conv2d_nchw_winograd(cfg, outs): s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nchw_winograd" in op.tag: schedule_winograd_cuda(cfg, s, op.output(0), pre_computed=False) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("conv2d_nchw_winograd_without_weight_transform.cuda") def conv2d_nchw_winograd_without_weight_transform( cfg, data, kernel, strides, padding, dilation, out_dtype ): return winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed=True ) @autotvm.register_topi_schedule("conv2d_nchw_winograd_without_weight_transform.cuda") def schedule_conv2d_nchw_winograd_without_weight_transform(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv2d_nchw_winograd" in op.tag: schedule_winograd_cuda(cfg, s, op.output(0), pre_computed=True) traverse_inline(s, outs[0].op, _callback) return s @conv2d_winograd_nhwc.register(["cuda", "gpu"]) def conv2d_winograd_nhwc_cuda( data, weight, strides, padding, dilation, out_dtype, pre_computed=False, auto_scheduler_rewritten_layout="", meta_schedule_original_shape=None, ): """Conv2D Winograd in NHWC layout. This is a clean version to be used by the auto-scheduler for both CPU and GPU. """ tile_size = _infer_tile_size(data, weight, layout="NHWC") return _conv2d_winograd_nhwc_impl( data, weight, strides, padding, dilation, out_dtype, tile_size, pre_computed ) @conv2d_winograd_nchw.register(["cuda", "gpu"]) def conv2d_winograd_nchw_cuda( data, weight, strides, padding, dilation, out_dtype, pre_computed=False, auto_scheduler_rewritten_layout="", meta_schedule_original_shape=None, ): """Conv2D Winograd in NCHW layout. This is a clean version to be used by the auto-scheduler for both CPU and GPU. """ tile_size = _infer_tile_size(data, weight, layout="NCHW") return _conv2d_winograd_nchw_impl( data, weight, strides, padding, dilation, out_dtype, tile_size, pre_computed )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv3d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Compute definition for conv3d with cuda backend""" from tvm import te from tvm import autotvm from tvm.contrib import cudnn from .. import nn, generic from ..utils import get_const_tuple, traverse_inline from .conv3d_direct import schedule_direct_conv3d_cuda @autotvm.register_topi_compute("conv3d_ncdhw.cuda") def conv3d_ncdhw(cfg, data, kernel, strides, padding, dilation, groups, out_dtype="float32"): """Conv3D operator in NCDHW layout for cuda backend. Parameters ---------- cfg: ConfigEntity The config for this template data : tvm.te.Tensor 5-D with shape [batch, in_channel, in_depth, in_height, in_width] kernel : tvm.te.Tensor 5-D with shape [num_filter, in_channel, filter_depth, filter_height, filter_width] strides : int or a list/tuple of three ints stride size, or [stride_depth, stride_height, stride_width] padding : int or a list/tuple of three ints padding size, or [pad_depth, pad_height, pad_width] dilation: int or a list/tuple of three ints dilation size, or [dilation_depth, dilation_height, dilation_width] groups: int Number of groups out_dtype: str The output type. This is used for mixed precision. Returns ------- output : tvm.te.Tensor 5-D with shape [batch, out_channel, out_depth, out_height, out_width] """ return nn.conv3d_ncdhw(data, kernel, strides, padding, dilation, groups, out_dtype) @autotvm.register_topi_schedule("conv3d_ncdhw.cuda") def schedule_conv3d_ncdhw(cfg, outs): """TOPI schedule callback of conv3d for cuda gpu Parameters ---------- cfg: ConfigEntity The config for this template outs: Array of Tensor The computation graph description of conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv2d. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv3d_ncdhw" in op.tag: schedule_direct_conv3d_cuda(cfg, s, op.output(0), "NCDHW", "conv3d_ncdhw.cuda") traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("conv3d_ndhwc.cuda") def conv3d_ndhwc(cfg, data, kernel, strides, padding, dilation, groups, out_dtype="float32"): """Conv3d operator in NDHWC layout for cuda backend. Parameters ---------- Input : tvm.te.Tensor 5-D with shape [batch, in_depth, in_height, in_width, in_channel] Filter : tvm.te.Tensor 5-D with shape [filter_depth, filter_height, filter_width, in_channel, num_filter] stride : int or a list/tuple of three ints Stride size, or [stride_depth, stride_height, stride_width] padding : int or str Padding size, or ['VALID', 'SAME'] dilation: int or a list/tuple of three ints dilation size, or [dilation_depth, dilation_height, dilation_width] groups: int Number of groups Returns ------- Output : tvm.te.Tensor 5-D with shape [batch, out_depth, out_height, out_width, out_channel] """ return nn.conv3d_ndhwc(data, kernel, strides, padding, dilation, groups, out_dtype) @autotvm.register_topi_schedule("conv3d_ndhwc.cuda") def schedule_conv3d_ndhwc(cfg, outs): """TOPI schedule callback of conv3d for cuda gpu Parameters ---------- cfg: ConfigEntity The config for this template outs: Array of Tensor The computation graph description of conv3d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv2d. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv3d_ndhwc" in op.tag: schedule_direct_conv3d_cuda(cfg, s, op.output(0), "NDHWC", "conv3d_ndhwc.cuda") traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("conv3d_cudnn.cuda") def conv3d_cudnn( cfg, data, kernel, strides, padding, dilation, groups, layout="NCDHW", out_dtype="float32" ): """Conv3D operator for cuda backend. Parameters ---------- cfg: ConfigEntity The config for this template data : tvm.te.Tensor 5-D with shape [batch, in_channel, in_depth, in_height, in_width] kernel : tvm.te.Tensor 5-D with shape [num_filter, in_channel, filter_depth, filter_height, filter_width] strides : int or a list/tuple of three ints stride size, or [stride_depth, stride_height, stride_width] padding : int or a list/tuple of three ints padding size, or [pad_depth, pad_height, pad_width] dilation: int or a list/tuple of three ints dilation size, or [dilation_depth, dilation_height, dilation_width] layout : str layout of data out_dtype: str The output type. This is used for mixed precision. Returns ------- output : tvm.te.Tensor 5-D with shape [batch, out_channel, out_depth, out_height, out_width] """ if layout == "NCDHW": tensor_format = 0 # CUDNN_TENSOR_NCHW N, _, D, H, W = get_const_tuple(data.shape) elif layout == "NDHWC": tensor_format = 1 # CUDNN_TENSOR_NHWC N, D, H, W, _ = get_const_tuple(data.shape) else: raise ValueError("Unsupported layout %s in cudnn" % layout) CO, CI, KD, KH, KW = get_const_tuple(kernel.shape) assert groups == 1, "conv3d_cudnn does not support groups" # handle dilation stride_d, stride_h, stride_w = ( (strides, strides, strides) if isinstance(strides, int) else strides ) pad_d, pad_h, pad_w = (padding, padding, padding) if isinstance(padding, int) else padding dilation_d, dilation_h, dilation_w = ( (dilation, dilation, dilation) if isinstance(dilation, int) else dilation ) OD = (D + 2 * pad_d - KD) // stride_d + 1 OH = (H + 2 * pad_h - KH) // stride_h + 1 OW = (W + 2 * pad_w - KW) // stride_w + 1 if isinstance(N, int): cfg.add_flop( 2 * N * OD * OH * OW * CO * CI * ((KD - 1) * dilation_d + 1) * ((KH - 1) * dilation_h + 1) * ((KW - 1) * dilation_w + 1) ) cfg.define_knob("algo", range(cudnn.algo_to_index("fwd", "CUDNN_CONVOLUTION_FWD_ALGO_COUNT"))) if cfg.is_fallback: if cudnn.exists(): # Let CUDNN choose the best algo, based on benchmarks run # on the local machine. In the future, this should be # based on parameters stored in the Target. cfg["algo"] = OtherOptionEntity(-1) else: cfg["algo"] = OtherOptionEntity(0) return cudnn.conv_forward( data, kernel, [pad_d, pad_h, pad_w], [stride_d, stride_h, stride_w], [dilation_d, dilation_h, dilation_w], conv_mode=1, tensor_format=tensor_format, algo=cfg["algo"].val, conv_dtype=dtype, ) @autotvm.register_topi_schedule("conv3d_cudnn.cuda") def schedule_conv3d_cudnn(_, outs): """TOPI schedule callback of conv3d for cuda gpu Parameters ---------- cfg: ConfigEntity The config for this template outs: Array of Tensor The computation graph description of conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv2d. """ return generic.schedule_extern(outs)
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv3d_alter_op.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """Conv3D alter op and legalize functions for cuda backend""" import logging import tvm from tvm import te from tvm import relay from tvm import autotvm from .. import nn from ..utils import get_const_tuple from .conv3d_winograd import _infer_tile_size logger = logging.getLogger("topi") @nn.conv3d_alter_layout.register(["cuda", "gpu"]) def _alter_conv3d_layout(attrs, inputs, tinfos, out_type): target = tvm.target.Target.current(allow_none=False) dispatch_ctx = autotvm.task.DispatchContext.current _, outs = relay.backend.te_compiler.select_implementation( relay.op.get("nn.conv3d"), attrs, tinfos, out_type, target ) workload = autotvm.task.get_workload(outs) if workload is None: # The best implementation is not an AutoTVM template, # we then assume it's not necessary to alter this op. return None cfg = dispatch_ctx.query(target, workload) if cfg.is_fallback: # if is fallback, clear query cache and return None autotvm.task.clear_fallback_cache(target, workload) return None topi_tmpl = workload[0] new_attrs = {k: attrs[k] for k in attrs.keys()} strides = attrs.get_int_tuple("strides") padding = attrs.get_int_tuple("padding") dilation = attrs.get_int_tuple("dilation") groups = attrs.get_int("groups") data_layout = attrs["data_layout"] kernel_layout = attrs["kernel_layout"] data, kernel = tinfos out_dtype = out_type.dtype if topi_tmpl == "conv3d_ncdhw_winograd.cuda": if dilation != (1, 1, 1): logger.warning("Does not support weight pre-transform for dilated 3D convolution.") return None assert data_layout == "NCDHW" and kernel_layout == "OIDHW" N, CI, D, H, W = get_const_tuple(data.shape) CO, _, KD, KH, KW = get_const_tuple(kernel.shape) # Pre-compute weight transformation in winograd tile_size = _infer_tile_size(tinfos[0], tinfos[1]) weight = relay.nn.contrib_conv3d_winograd_weight_transform(inputs[1], tile_size=tile_size) new_attrs["tile_size"] = tile_size new_attrs["channels"] = CO # Store the same config for the altered operators (workload) new_data = data # Check if depth is transformed or not if 2 < KD < 8 and KD == KH: new_weight = te.placeholder( (KD + tile_size - 1, KH + tile_size - 1, KW + tile_size - 1, CO, CI), dtype=kernel.dtype, ) else: new_weight = te.placeholder( (KH + tile_size - 1, KW + tile_size - 1, KD, CO, CI), dtype=kernel.dtype ) new_workload = autotvm.task.args_to_workload( [new_data, new_weight, strides, padding, dilation, out_dtype], "conv3d_ncdhw_winograd_without_weight_transform.cuda", ) dispatch_ctx.update(target, new_workload, cfg) return relay.nn.contrib_conv3d_winograd_without_weight_transform( inputs[0], weight, **new_attrs ) return None
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv3d_direct.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """The templates for cuda conv3d operators""" import tvm from tvm import te from tvm import autotvm from ..utils import get_const_tuple def schedule_direct_conv3d_cuda(cfg, s, conv, layout, workload_name): """schedule optimized for batch size = 1""" ##### space definition begin ##### if layout == "NCDHW": n, f, d, y, x = s[conv].op.axis elif layout == "NDHWC": n, d, y, x, f = s[conv].op.axis else: raise ValueError("not support this layout {} yet".format(layout)) rc, rd, ry, rx = s[conv].op.reduce_axis cfg.define_split("tile_f", f, num_outputs=4) cfg.define_split("tile_d", d, num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_split("tile_rd", ry, num_outputs=2) cfg.define_split("tile_ry", ry, num_outputs=2) cfg.define_split("tile_rx", rx, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) # fallback support if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log(target.kind.name, target.model, workload_name) cfg.fallback_with_reference_log(ref_log) ##### space definition end ##### pad_data, kernel = s[conv].op.input_tensors s[pad_data].compute_inline() if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv # create cache stage AA = s.cache_read(pad_data, "shared", [OL]) WW = s.cache_read(kernel, "shared", [OL]) # tile and bind spatial axes n, f, d, y, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) bd, vd, td, di = cfg["tile_d"].apply(s, output, d) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) bf = s[output].fuse(n, bf) s[output].reorder(bf, bd, by, bx, vf, vd, vy, vx, tf, td, ty, tx, fi, di, yi, xi) s[output].bind(bf, te.thread_axis("blockIdx.z")) s[output].bind(s[output].fuse(bd, by), te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vd, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(s[output].fuse(td, tf), te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[OL].compute_at(s[output], tx) # tile reduction axes n, f, d, y, x = s[OL].op.axis rc, rd, ry, rx = s[OL].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, OL, rc) rdo, rdi = cfg["tile_rd"].apply(s, OL, rd) ryo, ryi = cfg["tile_ry"].apply(s, OL, ry) rxo, rxi = cfg["tile_rx"].apply(s, OL, rx) s[OL].reorder(rco, rdo, ryo, rxo, rci, rdi, ryi, rxi, n, f, d, y, x) s[AA].compute_at(s[OL], rxo) s[WW].compute_at(s[OL], rxo) # cooperative fetching for load in [AA, WW]: n, f, d, y, x = s[load].op.axis fused = s[load].fuse(n, f, d, y, x) tz, fused = s[load].split(fused, nparts=cfg["tile_f"].size[2]) td, fused = s[load].split(fused, nparts=cfg["tile_d"].size[2]) ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2]) tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(s[load].fuse(td, ty), te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) # unroll s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) N, CO, OD, OH, OW = get_const_tuple(output.shape) _, KD, KH, KW, CI = get_const_tuple(kernel.shape) cfg.add_flop(2 * N * OD * OH * OW * CO * CI * KD * KH * KW)
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv3d_ndhwc_tensorcore.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-locals, too-many-function-args # pylint: disable=too-many-statements, unused-argument, too-many-arguments """Tensorcore template for cuda backend""" import numpy as np import tvm from tvm import te from tvm import autotvm from ..utils import get_const_tuple, traverse_inline, simplify from ..nn.pad import pad from ..nn.utils import get_pad_tuple3d from .tensor_intrin import intrin_wmma_load_matrix_A from .tensor_intrin import intrin_wmma_load_matrix_W from .tensor_intrin import intrin_wmma_store_matrix from .tensor_intrin import intrin_wmma_gemm def ndhwc_tensorcore_cuda(cfg, Input, Filter, stride, padding, dilation, out_dtype): """Compute declaration for conv3d tensorcore function""" assert isinstance(stride, int) or len(stride) == 3 assert isinstance(dilation, int) or len(dilation) == 3 if isinstance(stride, int): stride_d = stride_h = stride_w = stride else: stride_d, stride_h, stride_w = stride if isinstance(dilation, int): dilation_d = dilation_h = dilation_w = dilation else: dilation_d, dilation_h, dilation_w = dilation batch, in_depth, in_height, in_width, in_channel = get_const_tuple(Input.shape) kernel_d, kernel_h, kernel_w, _, num_filter = get_const_tuple(Filter.shape) assert ( (batch % 16 == 0 and in_channel % 16 == 0 and num_filter % 16 == 0) or (batch % 8 == 0 and in_channel % 16 == 0 and num_filter % 32 == 0) or (batch % 32 == 0 and in_channel % 16 == 0 and num_filter % 8 == 0) ), ( "The shape of (batch, in_channel, num_filter) " "must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) for now" ) # compute the output shape dilated_kernel_d = (kernel_d - 1) * dilation_d + 1 dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_front, pad_top, pad_left, pad_back, pad_down, pad_right = get_pad_tuple3d( padding, (dilated_kernel_d, dilated_kernel_h, dilated_kernel_w) ) out_channel = num_filter out_depth = simplify((in_depth - dilated_kernel_d + pad_front + pad_back) // stride_d + 1) out_height = simplify((in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1) out_width = simplify((in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1) pad_before = [0, pad_front, pad_top, pad_left, 0] pad_after = [0, pad_back, pad_down, pad_right, 0] PaddedInput = pad(Input, pad_before, pad_after, name="PaddedInput") rc = te.reduce_axis((0, in_channel), name="rc") rz = te.reduce_axis((0, kernel_d), name="rz") ry = te.reduce_axis((0, kernel_h), name="ry") rx = te.reduce_axis((0, kernel_w), name="rx") # convert data type of input feature maps and weights # TODO: add checking here, datatype casting may cause precision loss TransPaddedInput = te.compute( PaddedInput.shape, lambda n, d, h, w, c: PaddedInput[n, d, h, w, c].astype("float16") ) TransFilter = te.compute( Filter.shape, lambda d, h, w, i, o: Filter[d, h, w, i, o].astype("float16") ) Output = te.compute( (batch, out_depth, out_height, out_width, out_channel), lambda nn, zz, yy, xx, ff: te.sum( TransPaddedInput[ nn, zz * stride_d + rz * dilation_d, yy * stride_h + ry * dilation_h, xx * stride_w + rx * dilation_w, rc, ].astype(out_dtype) * TransFilter[rz, ry, rx, rc, ff].astype(out_dtype), axis=[rz, ry, rx, rc], ), name="Conv3dOutput", tag="conv3d_ndhwc_tensorcore", ) return Output def schedule_ndhwc_tensorcore_cuda(cfg, s, Conv): """Schedule tensorcore template""" kd, kh, kw, ic = s[Conv].op.reduce_axis out_dtype = Conv.dtype trans_paddata, kernel = s[Conv].op.input_tensors in_dtype = trans_paddata.dtype batch, _, _, _, _ = get_const_tuple(Conv.shape) _, _, _, _, out_channels = get_const_tuple(kernel.shape) paddata = s[trans_paddata].op.input_tensors # inline the pad and dtype transform s[trans_paddata].compute_inline() s[kernel].compute_inline() s[paddata[0]].compute_inline() # Designate the memory hierarchy AS = s.cache_read(trans_paddata, "shared", [Conv]) WS = s.cache_read(kernel, "shared", [Conv]) AF = s.cache_read(AS, "wmma.matrix_a", [Conv]) WF = s.cache_read(WS, "wmma.matrix_b", [Conv]) ConvF = s.cache_write(Conv, "wmma.accumulator") if Conv.op in s.outputs: output = Conv ConvS = s.cache_read(ConvF, "shared", [Conv]) OL = ConvS else: output = s.outputs[0].output(0) s[Conv].set_scope("shared") OL = Conv # Schedule for autotvm cfg.define_knob("block_row_warps", [1, 2, 4]) cfg.define_knob("block_col_warps", [1, 2, 4]) cfg.define_knob("warp_row_tiles", [1, 2, 4]) cfg.define_knob("warp_col_tiles", [1, 2, 4]) cfg.define_knob("chunk", [1, 2, 4, 8]) cfg.define_knob("offset", [0, 8]) cfg.define_knob("vector_width", [1, 2, 4, 8]) if batch % 16 == 0 and out_channels % 16 == 0: cfg.define_knob("wmma_m", [16, 8, 32]) elif batch % 8 == 0 and out_channels % 32 == 0: cfg.define_knob("wmma_m", [8, 16, 32]) elif batch % 32 == 0 and out_channels % 8 == 0: cfg.define_knob("wmma_m", [32, 16, 8]) # fallback support target = tvm.target.Target.current() if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log( target.kind.name, target.model, "conv3d_ndhwc_tensorcore.cuda" ) cfg.fallback_with_reference_log(ref_log) block_row_warps = cfg["block_row_warps"].val block_col_warps = cfg["block_col_warps"].val warp_row_tiles = cfg["warp_row_tiles"].val warp_col_tiles = cfg["warp_col_tiles"].val chunk = cfg["chunk"].val offset = cfg["offset"].val wmma_m = cfg["wmma_m"].val vector_width = cfg["vector_width"].val wmma_k = 16 if wmma_m == 16: wmma_n = 16 elif wmma_m == 8: wmma_n = 32 elif wmma_m == 32: wmma_n = 8 warp_size = 32 block_x = te.thread_axis("blockIdx.x") block_y = te.thread_axis("blockIdx.y") block_z = te.thread_axis("blockIdx.z") thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") # Define the intrin strides def get_strides(extents): return [np.prod(extents[i:]).tolist() for i in range(len(extents))] AS_align = chunk * wmma_k + offset WS_align = warp_col_tiles * block_col_warps * wmma_n + offset block_factor_n = wmma_m * warp_row_tiles * block_row_warps block_factor_o = wmma_n * warp_col_tiles * block_col_warps CS_align = block_factor_o + offset AS_strides = get_strides([1, 1, 1, AS_align, 1]) AL_strides = get_strides([1, 1, 1, wmma_k, 1]) WS_strides = get_strides([WS_align, 1]) WL_strides = get_strides([wmma_n * warp_col_tiles, 1]) CL_strides = get_strides([1, 1, 1, wmma_n * warp_col_tiles, 1]) CS_strides = get_strides([1, 1, 1, CS_align, 1]) # Schedule for output nc, dc, hc, wc, oc = output.op.axis block_k = s[output].fuse(dc, hc, wc) s[output].bind(block_k, block_z) block_i, nc = s[output].split(nc, factor=block_factor_n) block_j, oc = s[output].split(oc, factor=block_factor_o) s[output].reorder(block_k, block_i, block_j, nc, oc) t = s[output].fuse(nc, oc) t, ti = s[output].split(t, factor=vector_width) t, tx = s[output].split(t, factor=warp_size) t, ty = s[output].split(t, factor=block_row_warps) t, tz = s[output].split(t, factor=block_col_warps) s[output].bind(block_i, block_x) s[output].bind(block_j, block_y) s[output].bind(tz, thread_z) s[output].bind(ty, thread_y) s[output].bind(tx, thread_x) s[output].vectorize(ti) # Schedule wmma store s[OL].compute_at(s[output], block_j) nc, dc, hc, wc, oc = OL.op.axis s[OL].reorder(dc, hc, wc, nc, oc) s[OL].storage_align(wc, CS_align - 1, CS_align) oc, ooc = s[OL].split(oc, factor=wmma_n) oc, oci = s[OL].split(oc, factor=warp_col_tiles) _, oc = s[OL].split(oc, factor=block_col_warps) nc, nnc = s[OL].split(nc, factor=wmma_m) nc, nci = s[OL].split(nc, factor=warp_row_tiles) _, nc = s[OL].split(nc, factor=block_row_warps) s[OL].reorder(nc, oc, nci, oci, nnc, ooc) s[OL].bind(nc, thread_y) s[OL].bind(oc, thread_z) # Schedule wmma computation s[ConvF].compute_at(s[OL], oc) n, d, h, w, o = ConvF.op.axis n, nnf = s[ConvF].split(n, factor=wmma_m) o, oof = s[ConvF].split(o, factor=wmma_n) ic, ii = s[ConvF].split(ic, factor=wmma_k) ko, ki = s[ConvF].split(ic, factor=chunk) s[ConvF].reorder(kd, kh, kw, ko, ki, n, o, nnf, oof, ii) s[AF].compute_at(s[ConvF], ki) s[WF].compute_at(s[ConvF], ki) # Schedule wmma load n, d, h, w, i = AF.op.axis n, nn = s[AF].split(n, factor=wmma_m) i, ii = s[AF].split(i, factor=wmma_k) s[AF].reorder(n, i, nn, ii) kd, kh, kw, i, o = WF.op.axis i, ii = s[WF].split(i, factor=wmma_k) o, oo = s[WF].split(o, factor=wmma_n) s[WF].reorder(o, i, oo) s[WF].reorder(i, o, ii, oo) s[WS].compute_at(s[ConvF], ko) s[AS].compute_at(s[ConvF], ko) # Schedule for data's share memory n, d, h, w, i = AS.op.axis s[AS].reorder(d, h, w, n, i) s[AS].storage_align(w, AS_align - 1, AS_align) t = s[AS].fuse(n, i) t, ti = s[AS].split(t, factor=vector_width) t, tx = s[AS].split(t, factor=warp_size) t, ty = s[AS].split(t, factor=block_row_warps) _, tz = s[AS].split(t, factor=block_col_warps) s[AS].bind(ty, thread_y) s[AS].bind(tz, thread_z) s[AS].bind(tx, thread_x) s[AS].vectorize(ti) # Schedule for kernel's share memory kd, kh, kw, ic, o = WS.op.axis t = s[WS].fuse(ic, o) s[WS].storage_align(ic, WS_align - 1, WS_align) t, ti = s[WS].split(t, factor=vector_width) t, tx = s[WS].split(t, factor=warp_size) t, ty = s[WS].split(t, factor=block_row_warps) _, tz = s[WS].split(t, factor=block_col_warps) s[WS].bind(ty, thread_y) s[WS].bind(tz, thread_z) s[WS].bind(tx, thread_x) s[WS].vectorize(ti) shape = (wmma_m, wmma_n, wmma_k) # tensorize the wmma process AS_shape = (wmma_m, 1, 1, 1, wmma_k) AL_shape = (wmma_m, 1, 1, 1, wmma_k) WS_shape = (wmma_k, wmma_n) WL_shape = (wmma_k, wmma_n) CL_shape = (wmma_m, 1, 1, 1, wmma_n) CS_shape = (wmma_m, 1, 1, 1, wmma_n) AL_gemm = te.placeholder(AL_shape, name="A", dtype=in_dtype) WL_gemm = te.placeholder(WL_shape, name="B", dtype=in_dtype) k_gemm = te.reduce_axis((0, wmma_k), name="k") CL_compute = te.compute( CL_shape, lambda ii, t0, t1, t2, jj: te.sum( AL_gemm[ii, t0, t1, t2, k_gemm].astype(out_dtype) * WL_gemm[k_gemm, jj].astype(out_dtype), axis=k_gemm, ), name="C", ) s[AF].tensorize( nn, intrin_wmma_load_matrix_A( AL_strides, AS_strides, shape, "row_major", AS_shape, AL_shape, in_dtype ), ) s[WF].tensorize( ii, intrin_wmma_load_matrix_W( WL_strides, WS_strides, shape, "row_major", WS_shape, WL_shape, in_dtype ), ) s[OL].tensorize( nnc, intrin_wmma_store_matrix(CS_strides, CL_strides, shape, out_dtype, CL_shape, CS_shape) ) s[ConvF].tensorize( nnf, intrin_wmma_gemm(AL_gemm, WL_gemm, CL_compute, AL_strides, WL_strides, CL_strides, shape), ) N, OD, OH, OW, CO = get_const_tuple(output.shape) KD, KH, KW, CI, _ = get_const_tuple(kernel.shape) cfg.add_flop(2 * N * OD * OH * OW * CO * CI * KD * KH * KW) @autotvm.register_topi_compute("conv3d_ndhwc_tensorcore.cuda") def conv3d_ndhwc_tensorcore(cfg, data, kernel, strides, padding, dilation, groups, out_dtype): """Compute conv3d with tensorcore for NDHWC layout""" assert groups == 1, "tensorcore conv3d does not support groups" return ndhwc_tensorcore_cuda(cfg, data, kernel, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("conv3d_ndhwc_tensorcore.cuda") def schedule_conv3d_ndhwc_tensorcore(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv3d_ndhwc_tensorcore" in op.tag: schedule_ndhwc_tensorcore_cuda(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv3d_transpose_ncdhw.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Conv3d transpose template for cuda backend""" import tvm from tvm import te from tvm import autotvm from .. import nn from ..utils import get_const_tuple, traverse_inline from .conv3d_direct import schedule_direct_conv3d_cuda @autotvm.register_topi_compute("conv3d_transpose_ncdhw.cuda") def conv3d_transpose_ncdhw(cfg, data, kernel, stride, padding, out_dtype, output_padding): """Transposed 3D convolution ncdhw forward operator. Parameters ---------- cfg: ConfigEntity The config for this template Input : tvm.te.Tensor 5-D with shape [batch, in_channel, in_depth, in_height, in_width] Filter : tvm.te.Tensor 5-D with shape [in_channel, num_filter, filter_depth, filter_height, filter_width] strides : int or a list/tuple of three ints The spatial stride along height and width padding : int or str Padding size, or ['VALID', 'SAME'] out_dtype: str The output type. This is used in mixed precision output_padding : tuple of three ints Used to disambiguate output shape Returns ------- Output : tvm.te.Tensor 5-D with shape [batch, out_channel, out_depth, out_height, out_width] """ batch, inp_channels, inp_depth, inp_height, inp_width = get_const_tuple(data.shape) _, out_channels, kernel_depth, kernel_height, kernel_width = get_const_tuple(kernel.shape) stride_depth, stride_height, stride_width = stride outpad_depth, outpad_height, outpad_width = output_padding assert ( outpad_height < stride_height and outpad_width < stride_width and outpad_depth < stride_depth ) cfg.stride = stride pad_front, pad_top, pad_left, pad_back, pad_bottom, pad_right = nn.get_pad_tuple3d( padding, (kernel_depth, kernel_height, kernel_width) ) out_depth = (inp_depth - 1) * stride_depth + kernel_depth - pad_front - pad_back + outpad_depth pad_front = kernel_depth - 1 - pad_front pad_back = kernel_depth - 1 - pad_back dilated_depth = stride_depth * (inp_depth - 1) + 1 out_width = (inp_width - 1) * stride_width + kernel_width - pad_left - pad_right + outpad_width pad_left = kernel_width - 1 - pad_left pad_right = kernel_width - 1 - pad_right dilated_width = stride_width * (inp_width - 1) + 1 out_height = ( (inp_height - 1) * stride_height + kernel_height - pad_top - pad_bottom + outpad_height ) pad_top = kernel_height - 1 - pad_top pad_bottom = kernel_height - 1 - pad_bottom dilated_height = stride_height * (inp_height - 1) + 1 # compute pad data = te.compute( ( batch, inp_channels, pad_front + dilated_depth + pad_back, pad_top + dilated_height + pad_bottom, pad_left + dilated_width + pad_right, ), lambda n, c, d, y, x: tvm.tir.if_then_else( tvm.tir.all( x >= pad_left, x < pad_left + dilated_width, tvm.tir.indexmod(x - pad_left, stride_width).equal(0), y >= pad_top, y < pad_top + dilated_height, tvm.tir.indexmod(y - pad_top, stride_height).equal(0), d >= pad_front, d < pad_front + dilated_depth, tvm.tir.indexmod(d - pad_front, stride_depth).equal(0), ), data[ n, c, tvm.tir.indexdiv(d - pad_front, stride_depth), tvm.tir.indexdiv(y - pad_top, stride_height), tvm.tir.indexdiv(x - pad_left, stride_width), ], tvm.tir.const(0.0, "float32"), ), name="data_pad", ) # compute transposed conv dc = te.reduce_axis((0, inp_channels), name="dc") dd = te.reduce_axis((0, kernel_depth), name="dd") dh = te.reduce_axis((0, kernel_height), name="dh") dw = te.reduce_axis((0, kernel_width), name="dw") data_out = te.compute( (batch, out_channels, out_depth, out_height, out_width), lambda b, c, d, h, w: te.sum( data[b, dc, d + dd, h + dh, w + dw].astype(out_dtype) * kernel[ dc, c, kernel_depth - 1 - dd, kernel_height - 1 - dh, kernel_width - 1 - dw ].astype(out_dtype), axis=[dc, dd, dh, dw], ), tag="conv3d_transpose_ncdhw", ) return data_out @autotvm.register_topi_schedule("conv3d_transpose_ncdhw.cuda") def schedule_conv3d_transpose_ncdhw(cfg, outs): """TOPI Schedule callback for conv3d transpose operator. Parameters ---------- cfg: ConfigEntity The parameters for this template outs: Array of Tensor The computation graph description of conv3d transpose in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv3d transpose. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "conv3d_transpose_ncdhw": schedule_direct_conv3d_cuda( cfg, s, op.output(0), "NCDHW", "conv3d_transpose_ncdhw.cuda" ) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/conv3d_winograd.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """Winograd template for cuda backend""" import logging import tvm from tvm import te from tvm import autotvm from .. import nn from ..utils import get_const_int, get_const_tuple, traverse_inline, simplify from ..nn.winograd_util import winograd_transform_matrices logger = logging.getLogger("conv3d_winograd") def _infer_tile_size(data, kernel): N, CI, D, H, W = get_const_tuple(data.shape) if H % 8 == 0: return 4 return 2 def winograd_cuda(cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed): """Compute declaration for winograd""" tile_size = _infer_tile_size(data, kernel) N, CI, D, H, W = get_const_tuple(data.shape) if isinstance(dilation, int): dilation_d = dilation_h = dilation_w = dilation else: dilation_d, dilation_h, dilation_w = dilation DSTR, HSTR, WSTR = (strides, strides, strides) if isinstance(strides, int) else strides if not pre_computed: # kernel tensor is raw tensor, do strict check if dilation_d != 1 or dilation_h != 1 or dilation_w != 1: kernel = nn.dilate(kernel, (1, 1, dilation_d, dilation_h, dilation_w)) CO, CI, KD, KH, KW = get_const_tuple(kernel.shape) alpha = KW + tile_size - 1 assert DSTR == 1 and HSTR == 1 and WSTR == 1 and KD == KH and KH == KW else: # kernel tensor is pre-transformed. this op is created by alter op layout. # dilation is not supported alpha, _, _, CO, CI = get_const_tuple(kernel.shape) KD = KH = KW = alpha + 1 - tile_size assert ( DSTR == 1 and HSTR == 1 and WSTR == 1 and dilation_d == 1 and dilation_h == 1 and dilation_w == 1 ) pf, pt, pl, pb, pd, pr = nn.get_pad_tuple3d(padding, (KD, KH, KW)) data_pad = nn.pad(data, (0, 0, pf, pt, pl), (0, 0, pb, pd, pr), name="data_pad") r = KW m = tile_size A, B, G = winograd_transform_matrices(m, r, out_dtype) D = (D + pf + pb - KD) // DSTR + 1 H = (H + pt + pd - KH) // HSTR + 1 W = (W + pl + pr - KW) // WSTR + 1 nD, nH, nW = (D + m - 1) // m, (H + m - 1) // m, (W + m - 1) // m P = N * nD * nH * nW # transform kernel if not pre_computed: # Check if we are currently tuning, if so we want to avoid counting # prepacking in time costs. Just use a placeholder with the packed shape instead. if autotvm.GLOBAL_SCOPE.in_tuning: kernel_pack = te.placeholder( (alpha, alpha, alpha, CO, CI), dtype=kernel.dtype, name="kernel_pack" ) else: r_kd = te.reduce_axis((0, KD), name="r_kd") r_kh = te.reduce_axis((0, KH), name="r_kh") r_kw = te.reduce_axis((0, KW), name="r_kw") kernel_pack = te.compute( (alpha, alpha, alpha, CO, CI), lambda omg, eps, nu, co, ci: te.sum( kernel[co][ci][r_kd][r_kh][r_kw] * G[omg][r_kd] * G[eps][r_kh] * G[nu][r_kw], axis=[r_kd, r_kh, r_kw], ), name="kernel_pack", ) else: kernel_pack = kernel idxdiv = tvm.tir.indexdiv idxmod = tvm.tir.indexmod # pack input tile input_tile = te.compute( (CI, P, alpha, alpha, alpha), lambda c, p, omg, eps, nu: data_pad[idxdiv(p, (nD * nH * nW))][c][ idxmod(idxdiv(p, nH * nW), nD) * m + omg ][idxmod(idxdiv(p, nW), nH) * m + eps][idxmod(p, nW) * m + nu], name="d", ) # transform data r_a = te.reduce_axis((0, alpha), "r_a") r_b = te.reduce_axis((0, alpha), "r_b") r_c = te.reduce_axis((0, alpha), "r_c") data_pack = te.compute( (alpha, alpha, alpha, CI, P), lambda omg, eps, nu, ci, p: te.sum( input_tile[ci][p][r_a][r_b][r_c] * B[r_a][omg] * B[r_b][eps] * B[r_c][nu], axis=[r_a, r_b, r_c], ), name="data_pack", ) # do batch gemm ci = te.reduce_axis((0, CI), name="ci") bgemm = te.compute( (alpha, alpha, alpha, CO, P), lambda omg, eps, nu, co, p: te.sum( kernel_pack[omg][eps][nu][co][ci] * data_pack[omg][eps][nu][ci][p], axis=[ci] ), name="bgemm", ) # inverse transform r_a = te.reduce_axis((0, alpha), "r_a") r_b = te.reduce_axis((0, alpha), "r_b") r_c = te.reduce_axis((0, alpha), "r_c") inverse = te.compute( (CO, P, m, m, m), lambda co, p, vd, vh, vw: te.sum( bgemm[r_a][r_b][r_c][co][p] * A[r_a][vd] * A[r_b][vh] * A[r_c][vw], axis=[r_a, r_b, r_c] ), name="inverse", ) # output output = te.compute( (N, CO, D, H, W), lambda n, co, d, h, w: inverse[ co, n * nD * nH * nW + idxdiv(d, m) * nH * nW + idxdiv(h, m) * nW + idxdiv(w, m), idxmod(d, m), idxmod(h, m), idxmod(w, m), ], name="output", tag="conv3d_ncdhw_winograd", ) cfg.add_flop(2 * N * CO * D * H * W * CI * KD * KH * KW) return output def winograd_without_depth_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed ): """Compute declaration for winograd without transforming depth""" tile_size = _infer_tile_size(data, kernel) N, CI, D, H, W = get_const_tuple(data.shape) if isinstance(dilation, int): dilation_d = dilation_h = dilation_w = dilation else: dilation_d, dilation_h, dilation_w = dilation DSTR, HSTR, WSTR = (strides, strides, strides) if isinstance(strides, int) else strides if not pre_computed: # kernel tensor is raw tensor, do strict check if dilation_d != 1 or dilation_h != 1 or dilation_w != 1: kernel = nn.dilate(kernel, (1, 1, dilation_d, dilation_h, dilation_w)) CO, CI, KD, KH, KW = get_const_tuple(kernel.shape) alpha = KW + tile_size - 1 assert HSTR == 1 and WSTR == 1 and KH == KW else: # kernel tensor is pre-transfomred. this op is created by alter op layout. # dilation is not supported alpha, _, KD, CO, CI = get_const_tuple(kernel.shape) KH = KW = alpha + 1 - tile_size assert HSTR == 1 and WSTR == 1 and dilation_h == 1 and dilation_w == 1 pf, pt, pl, pb, pd, pr = nn.get_pad_tuple3d(padding, (KD, KH, KW)) data_pad = nn.pad(data, (0, 0, pf, pt, pl), (0, 0, pb, pd, pr), name="data_pad") out_depth = simplify((D - KD + pf + pb) // DSTR + 1) D += pf + pb r = KW m = tile_size A, B, G = winograd_transform_matrices(m, r, out_dtype) H = (H + pt + pd - KH) // HSTR + 1 W = (W + pl + pr - KW) // WSTR + 1 nH, nW = (H + m - 1) // m, (W + m - 1) // m P = N * nH * nW # transform kernel if not pre_computed: # During autotuning dont count kernel packing as a time cost # as it will later be removed via alter_op_layout. if autotvm.GLOBAL_SCOPE.in_tuning: kernel_pack = te.placeholder( (alpha, alpha, KD, CO, CI), dtype=kernel.dtype, name="kernel_pack" ) else: r_kh = te.reduce_axis((0, KH), name="r_kh") r_kw = te.reduce_axis((0, KW), name="r_kw") kernel_pack = te.compute( (alpha, alpha, KD, CO, CI), lambda eps, nu, d, co, ci: te.sum( kernel[co][ci][d][r_kh][r_kw] * G[eps][r_kh] * G[nu][r_kw], axis=[r_kh, r_kw] ), name="kernel_pack", ) else: kernel_pack = kernel idxdiv = tvm.tir.indexdiv idxmod = tvm.tir.indexmod # pack input tile input_tile = te.compute( (CI, D, P, alpha, alpha), lambda c, d, p, eps, nu: data_pad[idxdiv(p, (nH * nW))][c][d][ idxmod(idxdiv(p, nW), nH) * m + eps ][idxmod(p, nW) * m + nu], name="d", ) # transform data r_a = te.reduce_axis((0, alpha), "r_a") r_b = te.reduce_axis((0, alpha), "r_b") data_pack = te.compute( (alpha, alpha, CI, D, P), lambda eps, nu, ci, d, p: te.sum( input_tile[ci][d][p][r_a][r_b] * B[r_a][eps] * B[r_b][nu], axis=[r_a, r_b] ), name="data_pack", ) # do batch gemm ci = te.reduce_axis((0, CI), name="ci") rz = te.reduce_axis((0, KD), name="rz") bgemm = te.compute( (alpha, alpha, CO, out_depth, P), lambda eps, nu, co, d, p: te.sum( kernel_pack[eps][nu][rz][co][ci] * data_pack[eps][nu][ci][d * DSTR + rz][p], axis=[ci, rz], ), name="bgemm", ) # inverse transform r_a = te.reduce_axis((0, alpha), "r_a") r_b = te.reduce_axis((0, alpha), "r_b") inverse = te.compute( (CO, out_depth, P, m, m), lambda co, d, p, vh, vw: te.sum( bgemm[r_a][r_b][co][d][p] * A[r_a][vh] * A[r_b][vw], axis=[r_a, r_b] ), name="inverse", ) # output output = te.compute( (N, CO, out_depth, H, W), lambda n, co, d, h, w: inverse[ co, d, n * nH * nW + idxdiv(h, m) * nW + idxdiv(w, m), idxmod(h, m), idxmod(w, m) ], name="output", tag="conv3d_ncdhw_winograd_without_depth", ) cfg.add_flop(2 * N * CO * D * H * W * CI * KD * KH * KW) return output def schedule_winograd_cuda(cfg, s, output, pre_computed): """Schedule winograd template""" # get stages inverse = s[output].op.input_tensors[0] bgemm, A = s[inverse].op.input_tensors kernel_pack, data_pack = s[bgemm].op.input_tensors input_tile, B = s[data_pack].op.input_tensors pad_data = s[input_tile].op.input_tensors[0] # data transform s[B].compute_inline() data_l = s.cache_write(data_pack, "local") omg, eps, nu, c, p = s[data_l].op.axis r_a, r_b, r_c = s[data_l].op.reduce_axis # TODO unrolling by omg, eps, nu may improve performance but # in some cases causes extremely long build times due to imperfect tiling. for axis in [r_a, r_b, r_c]: s[data_l].unroll(axis) omg, eps, nu, c, p = s[data_pack].op.axis p, pi = s[data_pack].split(p, 1) fused = s[data_pack].fuse(c, p) bb, tt = s[data_pack].split(fused, 128) s[data_pack].reorder(bb, tt, pi, omg, eps, nu) s[data_pack].bind(bb, te.thread_axis("blockIdx.x")) s[data_pack].bind(tt, te.thread_axis("threadIdx.x")) s[data_l].compute_at(s[data_pack], pi) s[input_tile].compute_at(s[data_pack], pi) s[pad_data].compute_inline() # transform kernel if not pre_computed and not autotvm.GLOBAL_SCOPE.in_tuning: kernel, G = s[kernel_pack].op.input_tensors omg, eps, nu, co, ci = s[kernel_pack].op.axis s[G].compute_inline() r_a, r_b, r_c = s[kernel_pack].op.reduce_axis # Could add additional unrolling by omg, eps, nu in the future. for axis in [r_a, r_b, r_c]: s[kernel_pack].unroll(axis) fused = s[kernel_pack].fuse(co, ci) bb, tt = s[kernel_pack].split(fused, 128) s[kernel_pack].reorder(bb, tt, omg, eps, nu, r_a, r_b, r_c) s[kernel_pack].bind(bb, te.thread_axis("blockIdx.x")) s[kernel_pack].bind(tt, te.thread_axis("threadIdx.x")) else: kernel = kernel_pack if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() ##### space definition begin ##### b1, b2, b3, y, x = s[bgemm].op.axis rc = s[bgemm].op.reduce_axis[0] alpha = get_const_int(b1.dom.extent) cfg.define_split( "tile_b", cfg.axis(alpha * alpha * alpha), num_outputs=4, filter=lambda x: x.size[-3:] == [1, 1, 1], ) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 128, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) ##### space definition end ##### # batch gemm C = bgemm A0, B0 = kernel_pack, data_pack OL = s.cache_write(C, "local") AA = s.cache_read(A0, "shared", [OL]) BB = s.cache_read(B0, "shared", [OL]) b = s[bgemm].fuse(b1, b2, b3) # tile and bind spatial axes bgemm_scope, b = s[bgemm].split(b, nparts=1) bz, vz, tz, zi = cfg["tile_b"].apply(s, C, b) by, vy, ty, yi = cfg["tile_y"].apply(s, C, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, C, x) s[C].bind(bz, te.thread_axis("blockIdx.z")) s[C].bind(by, te.thread_axis("blockIdx.y")) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(vz, te.thread_axis("vthread")) s[C].bind(vy, te.thread_axis("vthread")) s[C].bind(vx, te.thread_axis("vthread")) s[C].bind(tz, te.thread_axis("threadIdx.z")) s[C].bind(ty, te.thread_axis("threadIdx.y")) s[C].bind(tx, te.thread_axis("threadIdx.x")) s[C].reorder(bgemm_scope, bz, by, bx, vz, vy, vx, tz, ty, tx, zi, yi, xi) # tile reduction axes s[OL].compute_at(s[C], tx) b1, b2, b3, y, x = s[OL].op.axis b = s[OL].fuse(b1, b2, b3) (rc,) = s[OL].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, OL, rc) s[OL].reorder(rco, rci, b, y, x) s[AA].compute_at(s[OL], rco) s[BB].compute_at(s[OL], rco) # cooperative fetching for load in [AA, BB]: fused = s[load].fuse(*list(s[load].op.axis)) fused, tx = s[load].split(fused, cfg["tile_x"].size[2]) fused, ty = s[load].split(fused, cfg["tile_y"].size[2]) fused, tz = s[load].split(fused, cfg["tile_b"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[C].pragma(bgemm_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[C].pragma(bgemm_scope, "unroll_explicit", cfg["unroll_explicit"].val) # schedule inverse, output and fusion if output.op in s.outputs: OL = None else: OL = output s[OL].set_scope("local") output = s.outputs[0] m = alpha - 3 + 1 n, co, d, h, w = s[output].op.axis do, di = s[output].split(d, m) ho, hi = s[output].split(h, m) wo, wi = s[output].split(w, m) s[output].reorder(n, co, do, ho, wo, di, hi, wi) inverse_scope, n = s[output].split(n, nparts=1) fused = s[output].fuse(n, co, do, ho, wo) bb, tt = s[output].split(fused, 128) s[output].bind(bb, te.thread_axis("blockIdx.x")) s[output].bind(tt, te.thread_axis("threadIdx.x")) if OL is not None: s[OL].compute_at(s[output], tt) s[A].compute_inline() co, p, vd, vh, vw = s[inverse].op.axis r_a, r_b, r_c = s[inverse].op.reduce_axis # Could add additional unrolling of vd, vh, vw, in the future for axis in [r_a, r_b, r_c]: s[inverse].unroll(axis) s[inverse].compute_at(s[output], tt) return s def schedule_winograd_no_depth_cuda(cfg, s, output, pre_computed): """Schedule winograd template""" # get stages inverse = s[output].op.input_tensors[0] bgemm, A = s[inverse].op.input_tensors kernel_pack, data_pack = s[bgemm].op.input_tensors input_tile, B = s[data_pack].op.input_tensors pad_data = s[input_tile].op.input_tensors[0] # data transform s[B].compute_inline() data_l = s.cache_write(data_pack, "local") eps, nu, c, d, p = s[data_l].op.axis r_a, r_b = s[data_l].op.reduce_axis for axis in [eps, nu, r_a, r_b]: s[data_l].unroll(axis) eps, nu, c, d, p = s[data_pack].op.axis p, pi = s[data_pack].split(p, 1) fused = s[data_pack].fuse(c, d, p) bb, tt = s[data_pack].split(fused, 128) s[data_pack].reorder(bb, tt, pi, eps, nu) s[data_pack].bind(bb, te.thread_axis("blockIdx.x")) s[data_pack].bind(tt, te.thread_axis("threadIdx.x")) s[data_l].compute_at(s[data_pack], pi) s[input_tile].compute_at(s[data_pack], pi) s[pad_data].compute_inline() # transform kernel if not pre_computed and not autotvm.GLOBAL_SCOPE.in_tuning: kernel, G = s[kernel_pack].op.input_tensors eps, nu, kd, co, ci = s[kernel_pack].op.axis s[G].compute_inline() r_a, r_b = s[kernel_pack].op.reduce_axis for axis in [eps, nu, r_a, r_b]: s[kernel_pack].unroll(axis) fused = s[kernel_pack].fuse(kd, co, ci) bb, tt = s[kernel_pack].split(fused, 128) s[kernel_pack].reorder(bb, tt, eps, nu, r_a, r_b) s[kernel_pack].bind(bb, te.thread_axis("blockIdx.x")) s[kernel_pack].bind(tt, te.thread_axis("threadIdx.x")) else: kernel = kernel_pack if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() ##### space definition begin ##### b1, b2, z, y, x = s[bgemm].op.axis # Combine channel and depth axes. rc = s[bgemm].op.reduce_axis[0] rz = s[bgemm].op.reduce_axis[1] alpha = get_const_int(b1.dom.extent) cfg.define_split( "tile_b", cfg.axis(alpha * alpha), num_outputs=4, filter=lambda x: x.size[-3:] == [1, 1, 1] ) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_split("tile_rz", rz, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 128, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) ##### space definition end ##### # batch gemm C = bgemm A0, B0 = kernel_pack, data_pack OL = s.cache_write(C, "local") AA = s.cache_read(A0, "shared", [OL]) BB = s.cache_read(B0, "shared", [OL]) b = s[bgemm].fuse(b1, b2) # Allow two different tiling strategies as both seem # to work best in different cases. cfg.define_knob("unroll_axis", [0, 1]) # tile and bind spatial axes bgemm_scope, b = s[bgemm].split(b, nparts=1) bz, vz, tz, zi = cfg["tile_b"].apply(s, C, b) by, vy, ty, yi = cfg["tile_y"].apply(s, C, z) if cfg["unroll_axis"].val: bx, vx, tx, xi = cfg["tile_x"].apply(s, C, y) else: bx, vx, tx, xi = cfg["tile_x"].apply(s, C, x) s[C].bind(bz, te.thread_axis("blockIdx.z")) s[C].bind(by, te.thread_axis("blockIdx.y")) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(vz, te.thread_axis("vthread")) s[C].bind(vy, te.thread_axis("vthread")) s[C].bind(vx, te.thread_axis("vthread")) s[C].bind(tz, te.thread_axis("threadIdx.z")) s[C].bind(ty, te.thread_axis("threadIdx.y")) s[C].bind(tx, te.thread_axis("threadIdx.x")) s[C].reorder(bgemm_scope, bz, by, bx, vz, vy, vx, tz, ty, tx, zi, yi, xi) if cfg["unroll_axis"].val: s[C].unroll(x) else: s[C].unroll(y) # tile reduction axes s[OL].compute_at(s[C], tx) b1, b2, y1, y2, x = s[OL].op.axis y = s[OL].fuse(y1, y2) b = s[OL].fuse(b1, b2) rc, rz = s[OL].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, OL, rc) rzo, rzi = cfg["tile_rz"].apply(s, OL, rz) s[OL].reorder(rco, rzo, rci, rzi, b, y, x) s[AA].compute_at(s[OL], rco) s[BB].compute_at(s[OL], rco) # cooperative fetching for load in [AA, BB]: fused = s[load].fuse(*list(s[load].op.axis)) fused, tx = s[load].split(fused, cfg["tile_x"].size[2]) fused, ty = s[load].split(fused, cfg["tile_y"].size[2]) fused, tz = s[load].split(fused, cfg["tile_b"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[C].pragma(bgemm_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[C].pragma(bgemm_scope, "unroll_explicit", cfg["unroll_explicit"].val) # schedule inverse, output and fusion if output.op in s.outputs: OL = None else: OL = output s[OL].set_scope("local") output = s.outputs[0] m = alpha - 3 + 1 n, co, d, h, w = s[output].op.axis do, di = s[output].split(d, m) ho, hi = s[output].split(h, m) wo, wi = s[output].split(w, m) s[output].reorder(n, co, do, ho, wo, di, hi, wi) inverse_scope, n = s[output].split(n, nparts=1) fused = s[output].fuse(n, co, do, ho, wo) bb, tt = s[output].split(fused, 128) s[output].bind(bb, te.thread_axis("blockIdx.x")) s[output].bind(tt, te.thread_axis("threadIdx.x")) if OL is not None: s[OL].compute_at(s[output], tt) s[A].compute_inline() co, d, p, vh, vw = s[inverse].op.axis r_a, r_b = s[inverse].op.reduce_axis for axis in [vh, vw, r_a, r_b]: s[inverse].unroll(axis) s[inverse].compute_at(s[output], tt) return s @autotvm.register_topi_compute("conv3d_ncdhw_winograd.cuda") def conv3d_ncdhw_winograd(cfg, data, kernel, strides, padding, dilation, groups, out_dtype): """Conv3d NCDHW using winograd optimization""" assert groups == 1, "conv3d_ncdhw_winograd only supports a single group" CO, CI, KD, KH, KW = get_const_tuple(kernel.shape) # Check if we can transform depth. if 2 < KD < 8 and KD == KH: return winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed=False ) return winograd_without_depth_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed=False ) @autotvm.register_topi_schedule("conv3d_ncdhw_winograd.cuda") def schedule_conv3d_ncdhw_winograd(cfg, outs): """Dispatch to schedule approriate for conv3d winograd algorithm used.""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv3d_ncdhw_winograd_without_depth" in op.tag: schedule_winograd_no_depth_cuda(cfg, s, op.output(0), pre_computed=False) elif "conv3d_ncdhw_winograd" in op.tag: schedule_winograd_cuda(cfg, s, op.output(0), pre_computed=False) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("conv3d_ncdhw_winograd_without_weight_transform.cuda") def conv3d_ncdhw_winograd_without_weight_transform( cfg, data, kernel, strides, padding, dilation, groups, out_dtype ): """Conv3d NCDHW winograd without weight transform.""" assert ( groups == 1 ), "conv3d_ncdhw_winograd_without_weight_transform does not support more than one group" A, B, C, _, _ = get_const_tuple(kernel.shape) # Check if we can transform depth. if A == B == C: return winograd_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed=True ) return winograd_without_depth_cuda( cfg, data, kernel, strides, padding, dilation, out_dtype, pre_computed=True ) @autotvm.register_topi_schedule("conv3d_ncdhw_winograd_without_weight_transform.cuda") def schedule_conv3d_ncdhw_winograd_without_weight_transform(cfg, outs): """TOPI schedule callback""" s = te.create_schedule([x.op for x in outs]) def _callback(op): if "conv3d_ncdhw_winograd_without_depth" in op.tag: schedule_winograd_no_depth_cuda(cfg, s, op.output(0), pre_computed=True) elif "conv3d_ncdhw_winograd" in op.tag: schedule_winograd_cuda(cfg, s, op.output(0), pre_computed=True) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/correlation.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Correlation operators on CUDA""" import tvm from tvm import te from tvm import autotvm from .. import nn from ..utils import traverse_inline @autotvm.register_topi_compute("correlation_nchw.cuda") def correlation_nchw( cfg, data1, data2, kernel_size, max_displacement, stride1, stride2, padding, is_multiply ): """Correlation operator in NCHW layout. Parameters ---------- data1 : tvm.te.Tensor 4-D with shape [batch, channel, height, width] data2 : tvm.te.Tensor 4-D with shape [batch, channel, height, width] kernel_size: int Kernel size for correlation, must be an odd number max_displacement: int Max displacement of Correlation stride1: int Stride for data1 stride2: int Stride for data2 within the neightborhood centered around data1 padding : int or a list/tuple of 2 or 4 ints Padding size, or [pad_height, pad_width] for 2 ints, or [pad_top, pad_left, pad_bottom, pad_right] for 4 ints is_multiply: bocorrelation operation type is either multiplication or substraction Returns ------- Output : tvm.te.Tensor 4-D with shape [batch, out_channel, out_height, out_width] """ # pylint: disable=unused-argument return nn.correlation_nchw( data1, data2, kernel_size, max_displacement, stride1, stride2, padding, is_multiply ) def _schedule_correlation_nchw(cfg, s, correlation): """Schedule correlation_nchw direct template""" # pylint: disable=invalid-name ##### space definition begin ##### n, f, y, x = s[correlation].op.axis rc, ry, rx = s[correlation].op.reduce_axis cfg.define_split("tile_f", f, num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_split("tile_ry", ry, num_outputs=2) cfg.define_split("tile_rx", rx, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) ##### space definition end ##### padded_data1, padded_data2 = s[correlation].op.input_tensors s[padded_data1].compute_inline() s[padded_data2].compute_inline() # create cache stage s[correlation].set_scope("local") AA = s.cache_read(padded_data1, "shared", [correlation]) BB = s.cache_read(padded_data2, "shared", [correlation]) output = s.outputs[0].output(0) # tile and bind spatial axes n, f, y, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) bf = s[output].fuse(n, bf) s[output].bind(bf, te.thread_axis("blockIdx.z")) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tf, te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[output].reorder(bf, by, bx, vf, vy, vx, tf, ty, tx, fi, yi, xi) s[correlation].compute_at(s[output], tx) # tile reduction axes n, f, y, x = s[correlation].op.axis rc, ry, rx = s[correlation].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, correlation, rc) ryo, ryi = cfg["tile_ry"].apply(s, correlation, ry) rxo, rxi = cfg["tile_rx"].apply(s, correlation, rx) s[correlation].reorder(rco, ryo, rxo, rci, ryi, rxi, n, f, y, x) s[AA].compute_at(s[correlation], rxo) s[BB].compute_at(s[correlation], rxo) # cooperative fetching for load in [AA, BB]: n, f, y, x = s[load].op.axis fused = s[load].fuse(n, f, y, x) tz, fused = s[load].split(fused, nparts=cfg["tile_f"].size[2]) ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2]) tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) # unroll s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) @autotvm.register_topi_schedule("correlation_nchw.cuda") def schedule_correlation_nchw(cfg, outs): """schedule of correlation_nchw for cuda gpu Parameters ---------- cfg: ConfigEntity The config for this template outs: Array of Tensor The computation graph description of correlation in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for correlation. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "correlation_nchw": _schedule_correlation_nchw(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/deformable_conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-argument """Schedule template of deformable conv2d with cuda backend""" import tvm from tvm import te from tvm import autotvm from .. import nn from ..utils import traverse_inline @autotvm.register_topi_compute("deformable_conv2d_nchw.cuda") def deformable_conv2d_nchw( cfg, data, offset, kernel, strides, padding, dilation, deformable_groups, groups, out_dtype ): """Deformable Conv2d.""" return nn.deformable_conv2d_nchw( data, offset, kernel, strides, padding, dilation, deformable_groups, groups, out_dtype ) @autotvm.register_topi_schedule("deformable_conv2d_nchw.cuda") def schedule_deformable_conv2d_nchw(cfg, outs): """TOPI schedule callback of deformable conv2d for cuda gpu Parameters ---------- cfg: ConfigEntity The config for this template outs: Array of Tensor The computation graph description of conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for conv2d. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "deformable_conv2d_nchw": _schedule_direct_cuda(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_direct_cuda(cfg, s, conv): """Schedule template of deformable conv2d""" n, f, y, x = s[conv].op.axis rc, ry, rx = s[conv].op.reduce_axis cfg.define_split("tile_f", f, num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_split("tile_ry", ry, num_outputs=2) cfg.define_split("tile_rx", rx, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) data_deform, kernel = s[conv].op.input_tensors s[data_deform].compute_inline() if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv # create cache stage AA = s.cache_read(data_deform, "shared", [OL]) WW = s.cache_read(kernel, "shared", [OL]) # tile and bind spatial axes n, f, y, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) bf = s[output].fuse(n, bf) s[output].bind(bf, te.thread_axis("blockIdx.z")) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tf, te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[output].reorder(bf, by, bx, vf, vy, vx, tf, ty, tx, fi, yi, xi) s[OL].compute_at(s[output], tx) # tile reduction axes n, f, y, x = s[OL].op.axis rc, ry, rx = s[OL].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, OL, rc) ryo, ryi = cfg["tile_ry"].apply(s, OL, ry) rxo, rxi = cfg["tile_rx"].apply(s, OL, rx) s[OL].reorder(rco, ryo, rxo, rci, ryi, rxi, n, f, y, x) cfg.define_reorder("reorder_inner", [rco, ryo, rxo], "all") cfg["reorder_inner"].apply(s, OL, [rco, ryo, rxo]) cfg["reorder_inner"].apply(s, OL, [rci, ryi, rxi]) cache_loc = [rco, ryo, rxo][cfg["reorder_inner"].perm[-1]] s[AA].compute_at(s[OL], cache_loc) s[WW].compute_at(s[OL], cache_loc) # cooperative fetching for load in [AA, WW]: fused = s[load].fuse(*s[load].op.axis) tz, fused = s[load].split(fused, nparts=cfg["tile_f"].size[2]) ty, fused = s[load].split(fused, nparts=cfg["tile_y"].size[2]) tx, fused = s[load].split(fused, nparts=cfg["tile_x"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) # unroll s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val)
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/dense.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Schedule for dense operator""" import logging import tvm from tvm import te import tvm.autotvm as autotvm from tvm.contrib import cublas from .tensor_intrin import dp4a from .. import tag from .. import generic from ..utils import traverse_inline, get_const_tuple logger = logging.getLogger("topi") def _matmul_cublas_common( cfg, tensor_a, tensor_b, bias=None, out_dtype=None, transpose_a=False, transpose_b=False, ): assert len(tensor_a.shape) == 2 and len(tensor_b.shape) == 2, "only support 2-dim matmul" if bias is not None: assert len(bias.shape) == 1 if out_dtype is None: out_dtype = tensor_a.dtype if out_dtype not in [tensor_a.dtype, "int32"]: assert out_dtype == tensor_a.dtype, "Mixed precision other than int8 + int32 not supported." batch, in_dim = get_const_tuple(tensor_a.shape) out_dim, _ = get_const_tuple(tensor_b.shape) matmul = cublas.matmul(tensor_a, tensor_b, transpose_a, transpose_b, dtype=out_dtype) if all(isinstance(d, int) for d in [batch, in_dim, out_dim]): cfg.add_flop(batch * in_dim * out_dim * 2) if bias is not None: matmul = te.compute( (batch, out_dim), lambda i, j: matmul[i, j] + bias[j], tag=tag.BROADCAST ) return matmul @autotvm.register_topi_compute("matmul_cublas.cuda") def matmul_cublas( cfg, tensor_a, tensor_b, bias=None, out_dtype=None, transpose_a=False, transpose_b=False, ): """Matmul operator on CUDA with CUBLAS""" return _matmul_cublas_common(cfg, tensor_a, tensor_b, bias, out_dtype, transpose_a, transpose_b) @autotvm.register_topi_schedule("matmul_cublas.cuda") def schedule_matmul_cublas(_, outs): """Schedule matmul operator using CUBLAS""" return generic.schedule_extern(outs) @autotvm.register_topi_compute("dense_cublas.cuda") def dense_cublas(cfg, data, weight, bias=None, out_dtype=None): """Dense operator on CUDA with CUBLAS. This is an alias of matmul_nt operator.""" return _matmul_cublas_common(cfg, data, weight, bias, out_dtype, False, True) @autotvm.register_topi_schedule("dense_cublas.cuda") def schedule_dense_cublas(_, outs): """Schedule dense operator using CUBLAS""" return generic.schedule_extern(outs) @autotvm.register_topi_compute("dense_int8.cuda") def dense_int8(cfg, data, weight, bias=None, out_dtype=None): """Dense operator for int8 on CUDA""" if out_dtype is None: out_dtype = data.dtype batch, in_dim = get_const_tuple(data.shape) out_dim, _ = get_const_tuple(weight.shape) k = te.reduce_axis((0, in_dim), name="k") matmul = te.compute( (batch, out_dim), lambda i, j: te.sum( data[i, k].astype(out_dtype) * weight[j, k].astype(out_dtype), axis=[k] ), tag="dense_int8", ) cfg.add_flop(batch * in_dim * out_dim * 2) if bias is not None: matmul = te.compute( (batch, out_dim), lambda i, j: matmul[i, j] + bias[j].astype(out_dtype), tag=tag.BROADCAST, ) cfg.add_flop(batch * out_dim) return matmul @autotvm.register_topi_schedule("dense_int8.cuda") def schedule_dense_int8(cfg, outs): """Dense schedule for int8 on CUDA""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if "dense_int8" in op.tag: _schedule_dense_int8(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_dense_int8(cfg, s, output): data, weight = s[output].op.input_tensors if len(weight.op.input_tensors) == 1 and weight.op.input_tensors[0] == data: s[weight].compute_inline() batch, in_dim = get_const_tuple(data.shape) out_dim, _ = get_const_tuple(weight.shape) in_dim_factor = 4 assert in_dim % in_dim_factor == 0, "Input dimension must divide {}".format(in_dim_factor) if in_dim % 16 == 0: in_dim_factor = 16 # create tuning space cfg.define_split("tile_y", batch, num_outputs=4) cfg.define_split("tile_x", out_dim, num_outputs=4) cfg.define_split("tile_k", in_dim // in_dim_factor, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) # create cache stage AA = s.cache_read(data, "shared", [output]) WW = s.cache_read(weight, "shared", [output]) CC = s.cache_write(output, "local") # handle bias if output.op not in s.outputs: s[output].compute_inline() output = s.outputs[0].output(0) n, x = s[output].op.axis # this is the scope to attach global config inside this kernel kernel_scope, n = s[output].split(n, nparts=1) ko = CC.op.reduce_axis[0] ko, ki = s[CC].split(ko, factor=4) ko, kt = cfg["tile_k"].apply(s, CC, ko) target = tvm.target.Target.current(allow_none=False) do_tensorize = "+dotprod" in target.mattr or target.supports_integer_dot_product if do_tensorize: dtypes = (data.dtype, weight.dtype) s[CC].tensorize(ki, dp4a("shared", "shared", "local", dtypes)) by, vy, ty, yi = cfg["tile_y"].apply(s, output, n) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].reorder(by, bx, vy, vx, ty, tx, yi, xi) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) n_ty = cfg["tile_y"].size[2] n_tx = cfg["tile_x"].size[2] s[CC].compute_at(s[output], tx) yo, xo = CC.op.axis[:2] s[CC].reorder(ko, kt, yo, xo, ki) for load in [AA, WW]: s[load].compute_at(s[CC], ko) outer, inner = s[load].split(s[load].op.axis[-1], factor=in_dim_factor) s[load].vectorize(inner) fused = s[load].op.axis[:-1] + [outer] fused = s[load].fuse(*fused) fused, tx = s[load].split(fused, factor=n_tx) fused, ty = s[load].split(fused, factor=n_ty) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", False) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/dense_tensorcore.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-locals, too-many-statements, unused-argument """Compute and Schedule definition for dense tensorcore with cuda backend""" from __future__ import absolute_import as _abs import tvm from tvm import te import tvm.autotvm as autotvm from .. import tag from ..utils import traverse_inline, get_const_tuple from .tensor_intrin import ( intrin_wmma_load_matrix_A, intrin_wmma_load_matrix_W, intrin_wmma_store_matrix, intrin_wmma_gemm, ) @autotvm.register_topi_compute("dense_tensorcore.cuda") def dense_tensorcore(cfg, data, weight, bias=None, out_dtype=None): """Dense tensorcore operator on CUDA""" matmul = dense_tensorcore_cuda(data, weight, bias, out_dtype) return matmul @autotvm.register_topi_schedule("dense_tensorcore.cuda") def schedule_dense_tensorcore(cfg, outs): """Schedule dense operator using Tensorcore""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "dense_tensorcore": _schedule_dense_tensorcore(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def dense_tensorcore_cuda(data, weight, bias=None, out_dtype=None): """Dense tensorcore operator on CUDA""" assert len(data.shape) == 2 and len(weight.shape) == 2, "only support 2-dim dense" if bias is not None: assert len(bias.shape) == 1 if out_dtype is None: out_dtype = data.dtype batch, in_dim = get_const_tuple(data.shape) out_dim, _ = get_const_tuple(weight.shape) assert data.dtype == weight.dtype assert data.dtype in ["float16", "int8", "uint8", "int4", "uint4"] if data.dtype in ["float16", "int8", "uint8"]: assert ( (batch % 8 == 0 and in_dim % 16 == 0 and out_dim % 32 == 0) or (batch % 16 == 0 and in_dim % 16 == 0 and out_dim % 16 == 0) or (batch % 32 == 0 and in_dim % 16 == 0 and out_dim % 8 == 0) ), ( "The shape of (batch, in_dim, out_dim) " "must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) for now" ) else: assert ( batch % 8 == 0 and in_dim % 32 == 0 and out_dim % 8 == 0 ), "The shape of (batch, in_dim, out_dim) must be multiple of (8, 32, 8)" k = te.reduce_axis((0, in_dim), name="k") matmul = te.compute( (batch, out_dim), lambda i, j: te.sum(data[i, k].astype(out_dtype) * weight[j, k].astype(out_dtype), axis=k), name="T_dense", tag="dense_tensorcore", ) if bias is not None: matmul = te.compute( (batch, out_dim), lambda i, j: matmul[i, j] + bias[j].astype(out_dtype), tag=tag.BROADCAST, ) return matmul def _schedule_dense_tensorcore(cfg, s, C): """Schedule dense operator using Tensorcore""" A, B = s[C].op.input_tensors if len(B.op.input_tensors) == 1 and B.op.input_tensors[0] == A: s[B].compute_inline() batch, out_dim = get_const_tuple(C.shape) data_dtype = A.dtype out_dtype = C.dtype # Explicit memory access AS = s.cache_read(A, "shared", [C]) BS = s.cache_read(B, "shared", [C]) AF = s.cache_read(AS, "wmma.matrix_a", [C]) BF = s.cache_read(BS, "wmma.matrix_b", [C]) CF = s.cache_write(C, "wmma.accumulator") CS = s.cache_read(CF, "shared", [C]) # fallback support target = tvm.target.Target.current() if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log( target.kind.name, target.model, "dense_tensorcore.cuda" ) cfg.fallback_with_reference_log(ref_log) # Deal with op fusion, such as bias and relu if C.op not in s.outputs: s[C].compute_inline() C = s.outputs[0].output(0) # create tuning space cfg.define_knob("block_row_warps", [1, 2, 4]) cfg.define_knob("block_col_warps", [1, 2, 4]) cfg.define_knob("warp_row_tiles", [1, 2, 4]) cfg.define_knob("warp_col_tiles", [1, 2, 4]) cfg.define_knob("chunk", [1, 2, 4, 8]) cfg.define_knob("offset", [0, 8]) cfg.define_knob("offsetCS", [0, 8]) cfg.define_knob("vec", [1, 2, 4, 8]) if data_dtype in ["float16", "int8", "uint8"]: # Ensure that the default parameters are applicable when autotvm is not in use if batch % 32 == 0 and out_dim % 8 == 0: cfg.define_knob("wmma_m", [32, 16, 8]) elif batch % 16 == 0 and out_dim % 16 == 0: cfg.define_knob("wmma_m", [16, 8, 32]) elif batch % 8 == 0 and out_dim % 32 == 0: cfg.define_knob("wmma_m", [8, 16, 32]) wmma_k = 16 wmma_m = cfg["wmma_m"].val if wmma_m == 16: wmma_n = 16 elif wmma_m == 8: wmma_n = 32 elif wmma_m == 32: wmma_n = 8 elif data_dtype in ["int4", "uint4"]: wmma_m = wmma_n = 8 wmma_k = 32 else: raise ValueError("data dtype %s is not yet supported" % data_dtype) warp_size = 32 block_row_warps = cfg["block_row_warps"].val block_col_warps = cfg["block_col_warps"].val warp_row_tiles = cfg["warp_row_tiles"].val warp_col_tiles = cfg["warp_col_tiles"].val chunk = cfg["chunk"].val offset = cfg["offset"].val offsetCS = cfg["offsetCS"].val vec = cfg["vec"].val # Define the stride of intrin functions AS_align = chunk * wmma_k + offset BS_align = chunk * wmma_k + offset CS_align = warp_col_tiles * block_col_warps * wmma_n + offsetCS AS_stride = [AS_align, 1] BS_stride = [BS_align, 1] AF_stride = [wmma_k, 1] BF_stride = [wmma_k, 1] CF_stride = [warp_col_tiles * wmma_n, 1] CS_stride = [CS_align, 1] block_x = te.thread_axis("blockIdx.x") block_y = te.thread_axis("blockIdx.y") thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") # Schedule for dense computation block_factor_b = wmma_m * warp_row_tiles * block_row_warps block_factor_o = wmma_n * warp_col_tiles * block_col_warps b, o = C.op.axis block_i, bc = s[C].split(b, factor=block_factor_b) block_j, oc = s[C].split(o, factor=block_factor_o) s[C].reorder(block_i, block_j, bc, oc) t = s[C].fuse(bc, oc) t, vi = s[C].split(t, factor=vec) t, tx = s[C].split(t, factor=warp_size) t, ty = s[C].split(t, factor=block_row_warps) t, tz = s[C].split(t, factor=block_col_warps) s[C].bind(block_i, block_x) s[C].bind(block_j, block_y) s[C].bind(tz, thread_z) s[C].bind(ty, thread_y) s[C].bind(tx, thread_x) s[C].vectorize(vi) # Schedule for wmma store s[CS].compute_at(s[C], block_j) bb, oo = CS.op.axis s[CS].storage_align(bb, CS_align - 1, CS_align) bb, bbi = s[CS].split(bb, factor=wmma_m) oo, ooi = s[CS].split(oo, factor=wmma_n) bb, bbii = s[CS].split(bb, factor=warp_row_tiles) oo, ooii = s[CS].split(oo, factor=warp_col_tiles) s[CS].reorder(bb, oo, bbii, ooii, bbi, ooi) s[CS].bind(bb, thread_y) s[CS].bind(oo, thread_z) # Schedule for wmma computation s[CF].compute_at(s[CS], oo) warp_i, warp_j = CF.op.axis warp_i, _ii = s[CF].split(warp_i, factor=wmma_m) warp_j, _jj = s[CF].split(warp_j, factor=wmma_n) (k,) = CF.op.reduce_axis k, _k = s[CF].split(k, factor=wmma_k) ko, ki = s[CF].split(k, factor=chunk) s[CF].reorder(ko, ki, warp_i, warp_j, _ii, _jj, _k) # Schedule for wmma_matrix_a load s[AF].compute_at(s[CF], ki) b, i = AF.op.axis b, b_ii = s[AF].split(b, factor=wmma_m) i, i_jj = s[AF].split(i, factor=wmma_k) s[AF].reorder(b, i, b_ii, i_jj) # Schedule for wmma_matrix_b load s[BF].compute_at(s[CF], ki) o, i = BF.op.axis o, o_ii = s[BF].split(o, factor=wmma_n) i, i_ii = s[BF].split(i, factor=wmma_k) s[BF].reorder(o, i, o_ii, i_ii) # Schedule for A's(B's) shared memory load def shared_schedule(stage, strides): s[stage].compute_at(s[CF], ko) xo, yo = stage.op.axis s[stage].storage_align(xo, strides - 1, strides) t = s[stage].fuse(xo, yo) t, vi = s[stage].split(t, factor=vec) t, tx = s[stage].split(t, factor=warp_size) t, ty = s[stage].split(t, factor=block_row_warps) _, tz = s[stage].split(t, factor=block_col_warps) s[stage].bind(ty, thread_y) s[stage].bind(tz, thread_z) s[stage].bind(tx, thread_x) s[stage].vectorize(vi) shared_schedule(AS, AS_align) shared_schedule(BS, BS_align) shape = (wmma_m, wmma_n, wmma_k) AL_gemm = te.placeholder((wmma_m, wmma_k), name="AL_gemm", dtype=data_dtype) BL_gemm = te.placeholder((wmma_n, wmma_k), name="BL_gemm", dtype=data_dtype) k_gemm = te.reduce_axis((0, wmma_k), name="k_gemm") CL_compute = te.compute( (wmma_m, wmma_n), lambda ii, jj: te.sum( AL_gemm[ii, k_gemm].astype(out_dtype) * BL_gemm[jj, k_gemm].astype(out_dtype), axis=k_gemm, ), name="CL_compute", ) # lower the computation loops down to TensorCore hardware intrinsics # by mapping the dense tensorcore to tensor intrinsics s[AF].tensorize( b_ii, intrin_wmma_load_matrix_A( AF_stride, AS_stride, shape, "row_major", (wmma_m, wmma_k), (wmma_m, wmma_k), data_dtype ), ) s[BF].tensorize( o_ii, intrin_wmma_load_matrix_W( BF_stride, BS_stride, shape, "col_major", (wmma_n, wmma_k), (wmma_n, wmma_k), data_dtype ), ) s[CF].tensorize( _ii, intrin_wmma_gemm(AL_gemm, BL_gemm, CL_compute, AF_stride, BF_stride, CF_stride, shape) ) s[CS].tensorize( bbi, intrin_wmma_store_matrix( CS_stride, CF_stride, shape, out_dtype, (wmma_m, wmma_n), (wmma_m, wmma_n) ), )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/depthwise_conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Schedule for depthwise_conv2d with auto fusion""" import tvm from tvm import te from tvm import autotvm from ..utils import traverse_inline from .. import tag from .. import nn # register original implementation of depthwise_conv2d_nchw since we don't need to change this part @autotvm.register_topi_compute("depthwise_conv2d_nchw.cuda") def depthwise_conv2d_nchw(cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute depthwise_conv2d with NCHW layout.""" return nn.depthwise_conv2d_nchw(data, kernel, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("depthwise_conv2d_nchw.cuda") def schedule_depthwise_conv2d_nchw(cfg, outs): """Schedule for depthwise_conv2d nchw forward. Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for depthwise_conv2d nchw. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "depthwise_conv2d_nchw": pad_data = op.input_tensors[0] kernel = op.input_tensors[1] conv = op.output(0) ##### space definition begin ##### n, f, y, x = s[conv].op.axis cfg.define_split("tile_f", f, num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_knob("auto_unroll_max_step", [0, 256, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) # fallback support if cfg.is_fallback: ref_log = autotvm.tophub.load_reference_log( target.kind.name, target.model, "depthwise_conv2d_nchw.cuda" ) cfg.fallback_with_reference_log(ref_log) # TODO(lmzheng): A bug here, set unroll_explicit to False as workaround cfg["unroll_explicit"].val = 0 ##### space definition end ##### s[pad_data].compute_inline() if isinstance(kernel.op, tvm.te.ComputeOp) and "dilate" in kernel.op.tag: s[kernel].compute_inline() if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv # create cache stage AA = s.cache_read(pad_data, "shared", [OL]) WW = s.cache_read(kernel, "shared", [OL]) AL = s.cache_read(AA, "local", [OL]) WL = s.cache_read(WW, "local", [OL]) # tile and bind spatial axes n, f, y, x = s[output].op.axis bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) kernel_scope, n = s[output].split(n, nparts=1) bf = s[output].fuse(n, bf) s[output].bind(bf, te.thread_axis("blockIdx.z")) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(tf, te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[output].reorder(bf, by, bx, vf, vy, vx, tf, ty, tx, fi, yi, xi) s[OL].compute_at(s[output], tx) # cooperative fetching s[AA].compute_at(s[output], bx) s[WW].compute_at(s[output], bx) s[AL].compute_at(s[output], tx) s[WL].compute_at(s[output], tx) for load in [AA, WW]: fused = s[load].fuse(*list(s[load].op.axis)) fused, tx = s[load].split(fused, cfg["tile_x"].size[2]) fused, ty = s[load].split(fused, cfg["tile_y"].size[2]) fused, tz = s[load].split(fused, cfg["tile_f"].size[2]) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) traverse_inline(s, outs[0].op, _callback) return s def schedule_depthwise_conv2d_nhwc(outs): """Schedule for depthwise_conv2d nhwc forward. Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for depthwise_conv2d nhwc. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule(temp, Filter, DepthwiseConv2d): s[temp].compute_inline() FS = s.cache_read(Filter, "shared", [DepthwiseConv2d]) if DepthwiseConv2d.op in s.outputs: Output = DepthwiseConv2d CL = s.cache_write(DepthwiseConv2d, "local") else: Output = outs[0].op.output(0) s[DepthwiseConv2d].set_scope("local") block_x = te.thread_axis("blockIdx.x") thread_x = te.thread_axis("threadIdx.x") b, h, w, c = s[Output].op.axis # make sure the size of our parallelism is not larger than the number of threads num_thread = min( tvm.arith.Analyzer().simplify(temp.shape[3]).value, tvm.target.Target.current().max_num_threads, ) xoc, xic = s[Output].split(c, factor=num_thread) s[Output].reorder(xoc, b, h, w, xic) xo, yo, _, _ = s[Output].tile(h, w, x_factor=2, y_factor=2) fused = s[Output].fuse(yo, xo) fused = s[Output].fuse(fused, b) fused = s[Output].fuse(fused, xoc) s[Output].bind(fused, block_x) s[Output].bind(xic, thread_x) if DepthwiseConv2d.op in s.outputs: s[CL].compute_at(s[Output], xic) else: s[DepthwiseConv2d].compute_at(s[Output], xic) _, _, ci, fi = s[FS].op.axis s[FS].compute_at(s[Output], fused) fused = s[FS].fuse(fi, ci) s[FS].bind(fused, thread_x) scheduled_ops = [] def traverse(OP): """Internal traverse function""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_broadcast(OP.tag): if OP not in s.outputs: s[OP].compute_inline() for tensor in OP.input_tensors: if isinstance(tensor.op, te.tensor.ComputeOp) and tensor.op not in scheduled_ops: traverse(tensor.op) # schedule depthwise_conv2d if OP.tag == "depthwise_conv2d_nhwc": PaddedInput = OP.input_tensors[0] Filter = OP.input_tensors[1] if isinstance(Filter.op, tvm.te.ComputeOp) and "dilate" in Filter.op.tag: s[Filter].compute_inline() DepthwiseConv2d = OP.output(0) _schedule(PaddedInput, Filter, DepthwiseConv2d) scheduled_ops.append(OP) traverse(outs[0].op) return s def schedule_depthwise_conv2d_backward_input_nhwc(outs): """Schedule for depthwise_conv2d nhwc backward wrt input. Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d backward wrt input in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for depthwise_conv2d backward wrt input with layout nhwc. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule(Padded_out_grad, In_grad): s[Padded_out_grad].compute_inline() block_x = te.thread_axis("blockIdx.x") thread_x = te.thread_axis("threadIdx.x") _, h, w, c = In_grad.op.axis fused_hwc = s[In_grad].fuse(h, w, c) xoc, xic = s[In_grad].split(fused_hwc, factor=128) s[In_grad].bind(xoc, block_x) s[In_grad].bind(xic, thread_x) def traverse(OP): # inline all one-to-one-mapping operators except the last stage (output) if OP.tag == "depthwise_conv2d_backward_input_nhwc": Padded_out_grad = OP.input_tensors[0] Dilated_out_grad = Padded_out_grad.op.input_tensors[0] s[Dilated_out_grad].compute_inline() In_grad = OP.output(0) _schedule(Padded_out_grad, In_grad) else: raise ValueError("Depthwise conv backward wrt input for non-NHWC is not supported.") traverse(outs[0].op) return s def schedule_depthwise_conv2d_backward_weight_nhwc(outs): """Schedule for depthwise_conv2d nhwc backward wrt weight. Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d backward wrt weight in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for depthwise_conv2d backward wrt weight with layout nhwc. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule(Weight_grad): block_x = te.thread_axis("blockIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_x = te.thread_axis("threadIdx.x") db, dh, dw = Weight_grad.op.reduce_axis fused_dbdhdw = s[Weight_grad].fuse(db, dh, dw) _, ki = s[Weight_grad].split(fused_dbdhdw, factor=8) BF = s.rfactor(Weight_grad, ki) fused_fwcm = s[Weight_grad].fuse(*s[Weight_grad].op.axis) xo, xi = s[Weight_grad].split(fused_fwcm, factor=32) s[Weight_grad].bind(xi, thread_x) s[Weight_grad].bind(xo, block_x) s[Weight_grad].bind(s[Weight_grad].op.reduce_axis[0], thread_y) s[BF].compute_at(s[Weight_grad], s[Weight_grad].op.reduce_axis[0]) def traverse(OP): # inline all one-to-one-mapping operators except the last stage (output) if OP.tag == "depthwise_conv2d_backward_weight_nhwc": Padded_in = OP.input_tensors[1] s[Padded_in].compute_inline() Weight_grad = OP.output(0) _schedule(Weight_grad) else: raise ValueError("Depthwise conv backward wrt weight for non-NHWC is not supported.") traverse(outs[0].op) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/group_conv2d_nchw.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name # pylint: disable=no-value-for-parameter """The template for cuda group_conv2d_nchw""" import tvm from tvm import te from tvm import autotvm from .injective import schedule_injective_from_existing from .tensor_intrin import dp4a from ..nn.pad import pad from ..nn.conv2d import unpack_NCHWc_to_nchw from ..nn.utils import get_pad_tuple from ..utils import traverse_inline, get_const_tuple, get_const_int from .. import nn def group_conv2d_nchw_int8(data, kernel, strides, padding, dilation, groups, out_dtype="float32"): """Compute group_conv2d internally using group_conv2d_nchwc layout for int8 dtype""" assert data.dtype in ("int8", "uint8") assert kernel.dtype in ("int8", "uint8") assert data.dtype == kernel.dtype packed_out = group_conv2d_NCHWc_int8( data, kernel, strides, padding, dilation, groups, out_dtype ) return unpack_NCHWc_to_nchw(packed_out, out_dtype) def schedule_group_conv2d_nchw_int8(outs): """Create schedule for tensors""" return schedule_group_conv2d_NCHWc_int8(outs) @autotvm.register_topi_compute("group_conv2d_nchw.cuda") def group_conv2d_nchw(_, data, kernel, stride, padding, dilation, groups, out_dtype="float32"): return nn.group_conv2d_nchw(data, kernel, stride, padding, dilation, groups, out_dtype) @autotvm.register_topi_schedule("group_conv2d_nchw.cuda") def schedule_group_conv2d_nchw(cfg, outs): """TOPI schedule callback of group conv2d for cuda gpu Parameters ---------- cfg: ConfigEntity The config for this template outs: Array of Tensor The computation graph description of conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for group conv2d. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "group_conv2d_nchw": _schedule_group_conv2d_nchw_direct(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_group_conv2d_nchw_direct(cfg, s, conv): """Schedule group conv2d NCHW direct template""" workload = conv.op.attrs["workload"] groups = get_const_int(workload[6]) num_filters = get_const_int(conv.shape[1]) ##### space definition begin ##### n, f, y, x = s[conv].op.axis rc, ry, rx = s[conv].op.reduce_axis cfg.define_split("tile_n", n, num_outputs=4) cfg.define_split("tile_g", cfg.axis(groups), num_outputs=2) cfg.define_split("tile_f", cfg.axis(num_filters // groups), num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) cfg.define_split("tile_rc", rc, num_outputs=2) cfg.define_split("tile_ry", ry, num_outputs=2) cfg.define_split("tile_rx", rx, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) target = tvm.target.Target.current() if target.kind.name in ["nvptx", "rocm"]: cfg.define_knob("unroll_explicit", [1]) else: cfg.define_knob("unroll_explicit", [0, 1]) pad_data, kernel = s[conv].op.input_tensors s[pad_data].compute_inline() if conv.op in s.outputs: output = conv OL = s.cache_write(conv, "local") else: output = s.outputs[0].output(0) s[conv].set_scope("local") OL = conv # create cache stage AA = s.cache_read(pad_data, "shared", [OL]) WW = s.cache_read(kernel, "shared", [OL]) # tile and bind spatial axes n, f, y, x = s[output].op.axis kernel_scope, n = s[output].split(n, nparts=1) g, f = s[output].split(f, nparts=groups) bn, vn, tn, ni = cfg["tile_n"].apply(s, output, n) bg, vg = cfg["tile_g"].apply(s, output, g) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].reorder(bn, bg, bf, by, bx, vn, vg, vf, vy, vx, tn, tf, ty, tx, ni, fi, yi, xi) s[output].bind(bn, te.thread_axis("blockIdx.z")) s[output].bind(s[output].fuse(bg, bf), te.thread_axis("blockIdx.y")) s[output].bind(s[output].fuse(by, bx), te.thread_axis("blockIdx.x")) s[output].bind(vn, te.thread_axis("vthread")) s[output].bind(vg, te.thread_axis("vthread")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) cfg.define_knob("fuse_yx", [0, 1]) # fuse ty,tx or tn,tf if cfg["fuse_yx"].val: s[output].bind(tn, te.thread_axis("threadIdx.z")) s[output].bind(tf, te.thread_axis("threadIdx.y")) tyx = s[output].fuse(ty, tx) s[output].bind(tyx, te.thread_axis("threadIdx.x")) s[OL].compute_at(s[output], tyx) # number of threads n_tz = cfg["tile_n"].size[2] n_ty = cfg["tile_f"].size[2] n_tx = cfg["tile_y"].size[2] * cfg["tile_x"].size[2] else: s[output].bind(s[output].fuse(tn, tf), te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[OL].compute_at(s[output], tx) # number of threads n_tz = cfg["tile_n"].size[2] * cfg["tile_f"].size[2] n_ty = cfg["tile_y"].size[2] n_tx = cfg["tile_x"].size[2] # tile reduction axes n, f, y, x = s[OL].op.axis rc, ry, rx = s[OL].op.reduce_axis rco, rci = cfg["tile_rc"].apply(s, OL, rc) ryo, ryi = cfg["tile_rx"].apply(s, OL, ry) rxo, rxi = cfg["tile_ry"].apply(s, OL, rx) s[OL].reorder(rco, ryo, rxo, rci, ryi, rxi, n, f, y, x) s[AA].compute_at(s[OL], rxo) s[WW].compute_at(s[OL], rxo) # cooperative fetching for load in [AA, WW]: n, f, y, x = s[load].op.axis fused = s[load].fuse(n, f, y, x) fused, tx = s[load].split(fused, factor=n_tx) fused, ty = s[load].split(fused, factor=n_ty) fused, tz = s[load].split(fused, factor=n_tz) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) # unroll s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", cfg["unroll_explicit"].val) N, CO, OH, OW = get_const_tuple(output.shape) _, CI_div_groups, KH, KW = get_const_tuple(kernel.shape) cfg.add_flop(2 * N * OH * OW * CO * CI_div_groups * KH * KW) @autotvm.register_topi_compute("group_conv2d_NCHWc_int8.cuda") def group_conv2d_NCHWc_int8( cfg, data, kernel, stride, padding, dilation, groups, out_dtype="float32" ): """Group convolution operator for 'group_conv2d_NCHWc_int8'. Parameters ---------- data : tvm.te.Tensor 4-D with shape [batch, in_channel, in_height, in_width] or 5-D with shape [batch, in_channel_chunk, in_height, in_width, in_channel_block] kernel : tvm.te.Tensor 4-D with shape [num_filter, in_channel // groups, filter_height, filter_width] or 6-D with shape [num_filter_chunk, in_channel_chunk // groups, filter_height, filter_width, num_filter_block, in_channel_block] stride : int or a list/tuple of two ints Stride size, or [stride_height, stride_width] padding : int or str Padding size, or ['VALID', 'SAME'] dilation : int or a list/tuple of two ints dilation size, or [dilation_height, dilation_width] groups : int number of groups out_dtype : str The output type. This is used for mixed precision. Returns ------- Output : tvm.te.Tensor 5-D with shape [batch, out_channel, out_height, out_width, out_channel_block] """ ic_block_factor = 4 oc_block_factor = 4 pre_computed = len(kernel.shape) == 6 if not pre_computed: batch, channels, height, width = get_const_tuple(data.shape) out_channels, in_channels, kernel_h, kernel_w = get_const_tuple(kernel.shape) assert channels % groups == 0, "input channels must divide group size" assert out_channels % groups == 0, "output channels must divide group size" assert ( channels % ic_block_factor == 0 ), "Number of input channels per group must divide {}".format(ic_block_factor) assert ( out_channels % oc_block_factor == 0 ), "Number of output channels per group must divide {}".format(oc_block_factor) packed_data = te.compute( (batch, channels // ic_block_factor, height, width, ic_block_factor), lambda n, c, h, w, vc: data[n, c * ic_block_factor + vc, h, w], name="packed_data", ) packed_kernel = te.compute( ( out_channels // oc_block_factor, in_channels // ic_block_factor, kernel_h, kernel_w, oc_block_factor, ic_block_factor, ), lambda oc_chunk, ic_chunk, kh, kw, oc_block, ic_block: kernel[ oc_chunk * oc_block_factor + oc_block, ic_chunk * ic_block_factor + ic_block, kh, kw ], name="packed_kernel", ) else: packed_data = data packed_kernel = kernel batch, ic_chunk, in_height, in_width, _ = get_const_tuple(packed_data.shape) oc_chunk, _, kernel_h, kernel_w, oc_block, ic_block = get_const_tuple(packed_kernel.shape) # TODO(kumasento): these assertions ensure that the number of groups # should be smaller or equal to the number of blocks, so that each # group will have at least one block. # Shall we pad the channels to avoid raising assertions? assert ( groups <= oc_chunk ), "Number of groups {} should be less than " "output channel chunk size {}".format( groups, oc_chunk ) assert ( groups <= ic_chunk ), "Number of groups {} should be less than " "input channel chunk size {}".format( groups, ic_chunk ) if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation # pad the input data pad_top, pad_left, pad_down, pad_right = get_pad_tuple(padding, (kernel_h, kernel_w)) pad_before = [0, 0, pad_top, pad_left, 0] pad_after = [0, 0, pad_down, pad_right, 0] pad_data = pad(packed_data, pad_before, pad_after, name="pad_data") # compute the output shape out_height = (in_height - (kernel_h - 1) * dilation_h - 1 + pad_top + pad_down) // stride_h + 1 out_width = (in_width - (kernel_w - 1) * dilation_w - 1 + pad_left + pad_right) // stride_w + 1 oshape = (batch, oc_chunk, out_height, out_width, oc_block) icc = te.reduce_axis((0, ic_chunk // groups), name="ic_chunk") icb = te.reduce_axis((0, ic_block_factor), name="ic_block") kh = te.reduce_axis((0, kernel_h), name="kh") kw = te.reduce_axis((0, kernel_w), name="kw") # NOTE(kumasento): explanation of this snippet - # oc_chunk//groups and ic_chunk//groups give you the number of blocks, # i.e., chunk, per group. # occ is the ID of the output channel block, so that occ//(oc_chunk//groups) # produces the ID of the group. # Multiplying that result with ic_chunk//groups resulting in the ID # of the beginning block of the corresponding input group. # Adding the block offset (icc) will give you the exact block ID. # # Compared with a normal convolution, group convolution only sums # input channels from the group that an output channel resides in. conv = te.compute( oshape, lambda n, occ, oh, ow, ocb: te.sum( pad_data[ n, occ // (oc_chunk // groups) * (ic_chunk // groups) + icc, oh * stride_h + kh * dilation_h, ow * stride_w + kw * dilation_w, icb, ].astype("int32") * packed_kernel[occ, icc, kh, kw, ocb, icb].astype("int32"), axis=[icc, kh, kw, icb], ), ) # Type conversion output = te.compute( oshape, lambda *index: conv(*index).astype(out_dtype), tag="group_conv2d_NCHWc_int8" ) num_flop = ( batch * oc_chunk * oc_block * out_height * out_width * ic_chunk * ic_block * kernel_h * kernel_w * 2 // groups ) cfg.add_flop(num_flop) return output @autotvm.register_topi_schedule("group_conv2d_NCHWc_int8.cuda") def schedule_group_conv2d_NCHWc_int8(cfg, outs): """TOPI schedule callback of group conv2d for cuda gpu Parameters ---------- cfg: ConfigEntity The config for this template outs: Array of Tensor The computation graph description of conv2d in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for group conv2d. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "group_conv2d_NCHWc_int8": _schedule_group_conv2d_NCHWc_int8(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_group_conv2d_NCHWc_int8(cfg, s, output): """Schedule group conv2d int8 NCHWc template""" workload = output.op.attrs["workload"] groups = get_const_int(workload[6]) conv = output.op.input_tensors[0] packed_data, packed_kernel = conv.op.input_tensors if isinstance(packed_data.op, tvm.te.ComputeOp) and "pad" in packed_data.op.tag: pad_data = packed_data packed_data = pad_data.op.input_tensors[0] else: pad_data = packed_data if autotvm.GLOBAL_SCOPE.in_tuning: # skip this part during tuning to make records accurate # this part will be pre-computed during NNVM's pre-compute optimization pass s[packed_data].pragma(s[packed_data].op.axis[0], "debug_skip_region") s[packed_kernel].pragma(s[packed_kernel].op.axis[0], "debug_skip_region") else: if isinstance(packed_kernel.op, tvm.te.ComputeOp) and packed_kernel.name == "packed_kernel": # data and kernel are not pre-computed, schedule layout transform here schedule_injective_from_existing(s, packed_data) schedule_injective_from_existing(s, packed_kernel) if pad_data != packed_data: s[pad_data].compute_inline() # create cache stage AA = s.cache_read(pad_data, "shared", [conv]) WW = s.cache_read(packed_kernel, "shared", [conv]) s[conv].set_scope("local") # handle bias if output.op not in s.outputs: s[output].compute_inline() output = s.outputs[0].output(0) oc_chunk = get_const_int(output.shape[1]) # tile and bind spatial axes if len(s[output].op.axis) == 5: n, f, y, x, c = s[output].op.axis else: # For task extraction of auto-tuning, the expected output is 4D. Since auto-tuning tasks # are created from scratch, therefore the real auto-tuning will still happen on 5D output. n, f, y, x = s[output].op.axis cfg.define_split("tile_n", n, num_outputs=4) cfg.define_split("tile_g", cfg.axis(groups), num_outputs=2) cfg.define_split("tile_f", cfg.axis(oc_chunk // groups), num_outputs=4) cfg.define_split("tile_y", y, num_outputs=4) cfg.define_split("tile_x", x, num_outputs=4) # this is the scope to attach global config inside this kernel kernel_scope, n = s[output].split(n, nparts=1) g, f = s[output].split(f, nparts=groups) s[output].bind(n, te.thread_axis("blockIdx.z")) bn, vn, tn, ni = cfg["tile_n"].apply(s, output, n) bg, vg = cfg["tile_g"].apply(s, output, g) bf, vf, tf, fi = cfg["tile_f"].apply(s, output, f) by, vy, ty, yi = cfg["tile_y"].apply(s, output, y) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].reorder(bn, bg, bf, by, bx, vn, vg, vf, vy, vx, tn, tf, ty, tx, ni, fi, yi, xi) s[output].bind(bn, te.thread_axis("blockIdx.z")) s[output].bind(s[output].fuse(bg, bf), te.thread_axis("blockIdx.y")) s[output].bind(s[output].fuse(by, bx), te.thread_axis("blockIdx.x")) s[output].bind(vn, te.thread_axis("vthread")) s[output].bind(vg, te.thread_axis("vthread")) s[output].bind(vf, te.thread_axis("vthread")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) cfg.define_knob("fuse_yx", [0, 1]) # fuse ty,tx or tn,tf if cfg["fuse_yx"].val: s[output].bind(tn, te.thread_axis("threadIdx.z")) s[output].bind(tf, te.thread_axis("threadIdx.y")) tyx = s[output].fuse(ty, tx) s[output].bind(tyx, te.thread_axis("threadIdx.x")) s[conv].compute_at(s[output], tyx) # number of threads n_tz = cfg["tile_n"].size[2] n_ty = cfg["tile_f"].size[2] n_tx = cfg["tile_y"].size[2] * cfg["tile_x"].size[2] else: s[output].bind(tn, te.thread_axis("threadIdx.z")) s[output].bind(s[output].fuse(tn, tf), te.thread_axis("threadIdx.z")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) s[conv].compute_at(s[output], tx) # number of threads n_tz = cfg["tile_n"].size[2] * cfg["tile_f"].size[2] n_ty = cfg["tile_y"].size[2] n_tx = cfg["tile_x"].size[2] # tile and bind reduction axes n, f, y, x, c = s[conv].op.axis rc, ry, rx, rc_block = s[conv].op.reduce_axis cfg.define_split("tile_rc", cfg.axis(rc), num_outputs=2) cfg.define_split("tile_ry", cfg.axis(ry), num_outputs=2) cfg.define_split("tile_rx", cfg.axis(rx), num_outputs=2) rco, rci = cfg["tile_rc"].apply(s, conv, rc) ryo, ryi = cfg["tile_ry"].apply(s, conv, ry) rxo, rxi = cfg["tile_rx"].apply(s, conv, rx) s[conv].reorder(rco, ryo, rxo, rci, ryi, rxi, n, f, y, x, c, rc_block) _, rc_block = s[conv].split(rc_block, factor=4) target = tvm.target.Target.current(allow_none=False) do_tensorize = "+dotprod" in target.mattr or target.supports_integer_dot_product if do_tensorize: dtypes = (pad_data.dtype, packed_kernel.dtype) s[conv].tensorize(rc_block, dp4a("shared", "shared", "local", dtypes)) s[AA].compute_at(s[conv], rxo) s[WW].compute_at(s[conv], rxo) # cooperative fetching for load in [AA, WW]: c = s[load].op.axis[-1] c_outer, c = s[load].split(c, factor=4) s[load].vectorize(c) fused = s[load].op.axis[:-1] + [c_outer] fused = s[load].fuse(*fused) fused, tx = s[load].split(fused, factor=n_tx) fused, ty = s[load].split(fused, factor=n_ty) fused, tz = s[load].split(fused, factor=n_tz) s[load].bind(tz, te.thread_axis("threadIdx.z")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[load].bind(tx, te.thread_axis("threadIdx.x")) # double buffer cfg.define_knob("AA_double_buffer", [0, 1]) cfg.define_knob("WW_double_buffer", [0, 1]) if cfg["AA_double_buffer"].val: s[AA].double_buffer() if cfg["WW_double_buffer"].val: s[WW].double_buffer() # unroll cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", False) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/injective.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable, """Schedule for composition of injective operator""" import numpy as np import tvm from tvm import te from .. import utils def schedule_injective_from_existing(sch, out): """Schedule for injective op from existing schedule. Parameters ---------- sch: Schedule The schedule to update. out: Tensor The tensor representing the injective op. Returns ------- sch: Schedule The updated schedule. """ def find_nearest_small_factor(num, target): """Find the nearest factor of the given number that is smaller than the target.""" for i in range(target, 0, -1): if num % i == 0: return i # Unreachable because i=1 must hold. return -1 fused = sch[out].fuse(*sch[out].op.axis) num_thread = tvm.target.Target.current(allow_none=False).max_num_threads max_block = 256 # Vectorize on fp16 data type to enable half2 for better memory bandwidth utilization. vector_width = 2 if out.dtype == "float16" else 1 is_dynamic_output = False for dim in out.shape: if not isinstance(dim, tvm.tir.IntImm): is_dynamic_output = True break out_len = utils.prod(out.shape) try: const_size = utils.get_const_int(out_len) # Adjust block and thread to make sure they are dividable so that vectorize can be # correctly applied. if vector_width > 1 and const_size % vector_width == 0: remain_total_size = const_size // vector_width cand_sizes = [] for max_size in [num_thread, max_block]: cand_sizes.append( max_size if remain_total_size % max_size == 0 else find_nearest_small_factor(remain_total_size, max_size) ) remain_total_size //= cand_sizes[-1] # If the product of candidate dividable (block * thread) is too small, # then the performance may be worse even half2 is enabled. Note that 0.7 # is just a heuristic ratio and may not be optimal for all workloads. if np.prod(cand_sizes) / (max_block * num_thread) >= 0.7: num_thread, max_block = cand_sizes need_block_split = const_size > max_block * num_thread * vector_width except ValueError: need_block_split = False const_size = 0 if vector_width > 1: fused, v = sch[out].split(fused, vector_width) sch[out].vectorize(v) if need_block_split: xo, xi = sch[out].split(fused, factor=num_thread * max_block) bx, tx = sch[out].split(xi, factor=num_thread) sch[out].reorder(bx, tx, xo) sch[out].bind(bx, te.thread_axis("blockIdx.x")) sch[out].bind(tx, te.thread_axis("threadIdx.x")) else: # Use less threads for dynamic shape ops to avoid runtime error. if is_dynamic_output: num_thread //= 2 if const_size != 0 and const_size < num_thread: bx, tx = sch[out].split(fused, factor=const_size) else: bx, tx = sch[out].split(fused, factor=num_thread) sch[out].bind(tx, te.thread_axis("threadIdx.x")) sch[out].bind(bx, te.thread_axis("blockIdx.x")) return sch def schedule_injective(outs): """Schedule for injective op. Parameters ---------- outs: Array of Tensor The computation graph description of injective in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) tvm.te.schedule.AutoInlineInjective(s) for out in outs: if not utils.is_empty_shape(out.shape): schedule_injective_from_existing(s, out) return s schedule_elemwise = schedule_injective schedule_broadcast = schedule_injective
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/nms.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-member, too-many-locals, too-many-arguments, too-many-statements, singleton-comparison # pylint: disable=bad-continuation, unused-argument """Non-maximum suppression operator""" import tvm from tvm import te from tvm.contrib import nvcc from tvm.contrib.thrust import can_use_thrust, can_use_rocthrust from tvm.ir import register_intrin_lowering from tvm.tir import if_then_else from .sort import argsort, argsort_thrust from .scan import exclusive_scan from ..utils import ceil_div from ..math import cast from ..transform import reshape from ..vision.nms_util import ( calculate_overlap, binary_search, collect_selected_indices, collect_selected_indices_and_scores, run_all_class_nms, ) def cuda_atomic_add_rule(op): if op.dtype == "float32": return tvm.tir.call_pure_extern("float32", "atomicAdd", op.args[0], op.args[1]) if op.dtype == "float64": return tvm.tir.call_pure_extern("float64", "atomicAdd", op.args[0], op.args[1]) if op.dtype == "int32": return tvm.tir.call_pure_extern("int32", "atomicAdd", op.args[0], op.args[1]) raise RuntimeError("only support int32, float32 and float64") def opencl_atomic_add_rule(op): if op.dtype == "int32": return tvm.tir.call_pure_extern("int32", "atomic_add", op.args[0], op.args[1]) raise RuntimeError("only support int32") register_intrin_lowering("tir.atomic_add", target="cuda", f=cuda_atomic_add_rule, level=99) register_intrin_lowering("tir.atomic_add", target="opencl", f=opencl_atomic_add_rule, level=99) def atomic_add(x, y): return tvm.tir.call_intrin(y.dtype, "tir.atomic_add", x, y) def get_valid_boxes_ir(data, valid_boxes, score_threshold, id_index, score_index): """Low level IR to identify bounding boxes given a score threshold. Parameters ---------- data : Buffer Input data. 3-D Buffer with shape [batch_size, num_anchors, elem_length]. score_threshold : Buffer or float32 Lower limit of score for valid bounding boxes. id_index : optional, int index of the class categories, -1 to disable. score_index: optional, int Index of the scores/confidence of boxes. Returns ------- valid_boxes: Buffer 2D Buffer indicating valid boxes with shape [batch_size, num_anchors]. """ batch_size = data.shape[0] num_anchors = data.shape[1] elem_length = data.shape[2] ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) valid_boxes = ib.buffer_ptr(valid_boxes) if isinstance(score_threshold, float): score_threshold = tvm.tir.FloatImm("float32", score_threshold) id_index = tvm.tir.IntImm("int32", id_index) score_index = tvm.tir.IntImm("int32", score_index) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(num_anchors, max_threads) nthread_by = batch_size tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) ib.scope_attr(by, "thread_extent", nthread_by) tid = bx * max_threads + tx with ib.if_scope(tid < num_anchors): i = by j = tid score = data[(i * num_anchors + j) * elem_length + score_index] with ib.if_scope( tvm.tir.all( score > score_threshold, tvm.tir.any( id_index < 0, data[(i * num_anchors + j) * elem_length + id_index] >= 0 ), ) ): valid_boxes[i * num_anchors + j] = 1 with ib.else_scope(): valid_boxes[i * num_anchors + j] = 0 return ib.get() def get_valid_counts_ir(data, valid_indices, valid_boxes, out, out_indices): """Low level IR to get valid count of bounding boxes given a score threshold. Also prepares to move valid boxes to the top of input data. Parameters ---------- data : Buffer Input data. 3-D Buffer with shape [batch_size, num_anchors, elem_length]. valid_indices: Buffer 2D Buffer of flag indicating valid data with shape [batch_size, num_anchors]. Returns ------- out : Buffer Sorted valid boxes out_indices : Buffer Incidices of valid boxes in original data """ batch_size = data.shape[0] num_anchors = data.shape[1] elem_length = data.shape[2] ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) valid_indices = ib.buffer_ptr(valid_indices) valid_boxes = ib.buffer_ptr(valid_boxes) out = ib.buffer_ptr(out) out_indices = ib.buffer_ptr(out_indices) one = tvm.tir.const(1, dtype=out.dtype) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = num_anchors // max_threads + 1 nthread_by = batch_size with ib.new_scope(): tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) ib.scope_attr(by, "thread_extent", nthread_by) tid = bx * max_threads + tx with ib.if_scope(tid < num_anchors): i = by j = tid with ib.for_range(0, elem_length) as k: out[(i * num_anchors + j) * elem_length + k] = -one out_indices[i * num_anchors + j] = -1 with ib.new_scope(): tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) ib.scope_attr(by, "thread_extent", nthread_by) tid = bx * max_threads + tx with ib.if_scope(tid < num_anchors): i = by j = tid with ib.if_scope(valid_boxes[i, tid] > 0): with ib.for_range(0, elem_length) as k: out[(i * num_anchors + valid_indices[i, tid]) * elem_length + k] = data[ (i * num_anchors + j) * elem_length + k ] out_indices[i * num_anchors + valid_indices[i, tid]] = j return ib.get() def get_valid_counts(data, score_threshold=0, id_index=0, score_index=1): """Get valid count of bounding boxes given a score threshold. Also moves valid boxes to the top of input data. Parameters ---------- data : tvm.te.Tensor Input data. 3-D tensor with shape [batch_size, num_anchors, elem_length]. score_threshold : optional, tvm.te.Tensor or float Lower limit of score for valid bounding boxes. id_index : optional, int index of the class categories, -1 to disable. score_index: optional, int Index of the scores/confidence of boxes. Returns ------- valid_count : tvm.te.Tensor 1-D tensor for valid number of boxes. out_tensor : tvm.te.Tensor Rearranged data tensor. """ batch_size = data.shape[0] num_anchors = data.shape[1] data_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "data_buf", data_alignment=8) valid_boxes_buf = tvm.tir.decl_buffer( (batch_size, num_anchors), "int32", "valid_boxes_buf", data_alignment=8 ) valid_boxes = te.extern( [(batch_size, num_anchors)], [data], lambda ins, outs: get_valid_boxes_ir( ins[0], outs[0], score_threshold, id_index, score_index ), dtype=["int32"], in_buffers=[data_buf], out_buffers=[valid_boxes_buf], name="get_valid_boxes", tag="get_valid_boxes_gpu", ) valid_indices_buf = tvm.tir.decl_buffer( (batch_size, num_anchors), "int32", "valid_indices_buf", data_alignment=8 ) valid_indices, valid_count = exclusive_scan(valid_boxes, axis=1, return_reduction=True) out_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "out_buf", data_alignment=8) out_indices_buf = tvm.tir.decl_buffer( (batch_size, num_anchors), "int32", "out_buf", data_alignment=8 ) out, out_indices = te.extern( [data.shape, (batch_size, num_anchors)], [data, valid_indices, valid_boxes], lambda ins, outs: get_valid_counts_ir(ins[0], ins[1], ins[2], outs[0], outs[1]), dtype=["int32", data.dtype], in_buffers=[data_buf, valid_indices_buf, valid_boxes_buf], out_buffers=[out_buf, out_indices_buf], name="get_valid_counts", tag="get_valid_counts_gpu", ) return [valid_count, out, out_indices] def _nms_loop( ib, batch_size, top_k, iou_threshold, max_output_size, valid_count, on_new_valid_box_func, on_new_invalidated_box_func, needs_bbox_check_func, calc_overlap_func, out_scores, num_valid_boxes, ): max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) with ib.new_scope(): nthread_by = batch_size nthread_tx = max_threads # Some cuda architectures have smaller limit of 32K for cudaDevAttrMaxRegistersPerBlock # vs 64K for most GPUs. Since this kernel uses many registers (around 35), the limit will # be exceeded with 1024 threads. target = tvm.target.Target.current(allow_none=False) if target.kind.name == "cuda": if nvcc.get_target_compute_version(target) in ["3.2", "5.3", "6.2"]: nthread_tx = 512 by = te.thread_axis("blockIdx.y") tx = te.thread_axis("threadIdx.x") ib.scope_attr(by, "thread_extent", nthread_by) ib.scope_attr(tx, "thread_extent", nthread_tx) num_valid_boxes_local = ib.allocate( "int32", (1,), name="num_valid_boxes_local", scope="local" ) num_valid_boxes_local[0] = 0 def nms_inner_loop(ib, i, j, nkeep): # The box j is valid, invalidate other boxes that overlap with j above iou_threshold on_new_valid_box_func(ib, tx, num_valid_boxes_local[0], i, j) num_valid_boxes_local[0] += 1 num_iter_per_thread = ceil_div(nkeep - (j + 1), nthread_tx) with ib.for_range(0, num_iter_per_thread, name="_k") as _k: k = j + 1 + _k * nthread_tx + tx with ib.if_scope( tvm.tir.all( k < nkeep, out_scores[i, k] > 0, # is the box k still valid? needs_bbox_check_func(i, j, k), ) ): iou = calc_overlap_func(i, j, k) with ib.if_scope(iou >= iou_threshold): # invalidate the box k out_scores[i, k] = -1.0 on_new_invalidated_box_func(i, k) ib.emit(tvm.tir.Call(None, "tir.tvm_storage_sync", tvm.runtime.convert(["shared"]))) i = by nkeep = if_then_else(tvm.tir.all(top_k > 0, top_k < valid_count[i]), top_k, valid_count[i]) max_output_size = if_then_else(max_output_size > 0, max_output_size, nkeep) with ib.if_scope(tvm.tir.all(iou_threshold > 0, valid_count[i] > 0)): # Apply nms # No need to do more iteration if we have already reached max_output_size boxes box_idx = ib.allocate("int32", (1,), name="box_idx", scope="local") box_idx[0] = 0 with ib.while_loop( tvm.tir.all(box_idx[0] < nkeep, num_valid_boxes_local[0] < max_output_size) ): # Proceed to the inner loop if the box with id box_idx is still valid with ib.if_scope(out_scores[i, box_idx[0]] > -1.0): nms_inner_loop(ib, i, box_idx[0], nkeep) box_idx[0] += 1 with ib.if_scope(tx + 0 == 0): num_valid_boxes[i] = num_valid_boxes_local[0] with ib.else_scope(): num_valid_boxes[i] = 0 return ib.get() def nms_ir( data, sorted_index, valid_count, indices, out_bboxes, out_scores, out_class_ids, out_features, box_indices, num_valid_boxes, max_output_size, iou_threshold, force_suppress, top_k, coord_start, id_index, score_index, return_indices, ): """Low level IR routing for transform location in multibox_detection operator. Parameters ---------- data : Buffer Buffer of output boxes with class and score. sorted_index : Buffer Buffer of output box indexes sorted by score. valid_count : Buffer Buffer of number of valid output boxes. indices : Buffer indices in original tensor, with shape [batch_size, num_anchors], represents the index of box in original data. It could be the third output out_indices of get_valid_counts. The values in the second dimension are like the output of arange(num_anchors) if get_valid_counts is not used before non_max_suppression. out_bboxes : Buffer Output buffer, to be filled with sorted box coordinates. out_scores : Buffer Output buffer, to be filled with sorted scores. out_class_ids : Buffer Output buffer, to be filled with sorted class ids. box_indices : Buffer A indices tensor mapping sorted indices to original indices This is the first output of NMS when return_indices=True. num_valid_boxes : Buffer Record the number of boxes that have survived IOU tests. This is the second output of NMS when return_indices=True. max_output_size : int Max number of output valid boxes for each instance. By default all valid boxes are returned. iou_threshold : float Overlapping(IoU) threshold to suppress object with smaller score. force_suppress : boolean Whether to suppress all detections regardless of class_id. top_k : int Keep maximum top k detections before nms, -1 for no limit. coord_start : int Start index of the consecutive 4 coordinates. id_index : int index of the class categories, -1 to disable. score_index : optional, int Index of the scores/confidence of boxes. return_indices : boolean Whether to return box indices in input data. Returns ------- stmt : Stmt The result IR statement. """ batch_size = data.shape[0] num_anchors = data.shape[1] box_data_length = data.shape[2] num_features = out_features.shape[2] ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) sorted_index = ib.buffer_ptr(sorted_index) valid_count = ib.buffer_ptr(valid_count) indices = ib.buffer_ptr(indices) # outputs out_bboxes = ib.buffer_ptr(out_bboxes) out_scores = ib.buffer_ptr(out_scores) out_class_ids = ib.buffer_ptr(out_class_ids) out_features = ib.buffer_ptr(out_features) box_indices = ib.buffer_ptr(box_indices) num_valid_boxes = ib.buffer_ptr(num_valid_boxes) if isinstance(iou_threshold, float): iou_threshold = tvm.tir.FloatImm("float32", iou_threshold) top_k = tvm.tir.IntImm("int32", top_k) coord_start = tvm.tir.IntImm("int32", coord_start) id_index = tvm.tir.IntImm("int32", id_index) score_index = tvm.tir.IntImm("int32", score_index) force_suppress = tvm.tir.IntImm("int32", 1 if force_suppress else 0) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(num_anchors, max_threads) nthread_by = batch_size tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(by, "thread_extent", nthread_by) ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) i = by base_src_idx = i * num_anchors * box_data_length base_bbox_idx = i * num_anchors * 4 base_features_idx = i * num_anchors * num_features with ib.if_scope(tvm.tir.all(iou_threshold > 0, valid_count[i] > 0)): # Reorder output nkeep = if_then_else( tvm.tir.all(top_k > 0, top_k < valid_count[i]), top_k, valid_count[i] ) j = bx * max_threads + tx with ib.if_scope(j < nkeep): src_idx = base_src_idx + sorted_index[i * num_anchors + j] * box_data_length with ib.for_range(0, 4, kind="unroll") as k: out_bboxes[(base_bbox_idx + j * 4 + k)] = data[src_idx + coord_start + k] with ib.for_range(0, num_features, kind="unroll") as k: out_features[(base_features_idx + j * num_features + k)] = data[ src_idx + coord_start + 4 + k ] out_scores[i * num_anchors + j] = data[src_idx + score_index] if id_index >= 0: out_class_ids[i * num_anchors + j] = data[src_idx + id_index] with ib.else_scope(): # Indices > nkeep are discarded # Only needed for return_indices = False case if return_indices is False: with ib.if_scope(j < num_anchors): with ib.for_range(0, 4, kind="unroll") as k: out_bboxes[(base_bbox_idx + j * 4 + k)] = -1.0 with ib.for_range(0, num_features, kind="unroll") as k: out_features[(base_features_idx + j * num_features + k)] = -1.0 out_scores[i, j] = -1.0 if id_index >= 0: out_class_ids[i, j] = -1.0 if return_indices: with ib.if_scope(j < num_anchors): box_indices[i * num_anchors + j] = -1 with ib.else_scope(): # Need to copy all boxes if not using return_indices bounds = valid_count[i] if return_indices else num_anchors with ib.if_scope(j < bounds): src_offset = base_src_idx + j * box_data_length with ib.for_range(0, 4, kind="unroll") as k: out_bboxes[base_bbox_idx + j * 4 + k] = data[src_offset + coord_start + k] with ib.for_range(0, num_features, kind="unroll") as k: out_features[(base_features_idx + j * num_features + k)] = data[ src_offset + coord_start + 4 + k ] out_scores[i * num_anchors + j] = data[src_offset + score_index] if id_index >= 0: out_class_ids[i * num_anchors + j] = data[src_offset + id_index] box_indices[i * num_anchors + j] = j if isinstance(max_output_size, int): max_output_size = tvm.tir.const(max_output_size) def calc_overlap(i, j, k): offset_j = j * 4 offset_k = k * 4 base_bbox_idx = i * num_anchors * 4 return calculate_overlap( out_bboxes, base_bbox_idx + offset_j, base_bbox_idx + offset_k, ) def on_new_valid_box(ib, tid, num_current_valid_box, i, j): # When return_indices is False, no need to populate box_indices if return_indices: with ib.if_scope(tid + 0 == 0): orig_idx = sorted_index[i * num_anchors + j] box_indices[i, num_current_valid_box] = indices[i, orig_idx] def on_new_invalidated_box(i, k): if return_indices is False and id_index >= 0: out_class_ids[i, k] = -1.0 def needs_bbox_check(i, j, k): return tvm.tir.any( force_suppress > 0, id_index < 0, out_class_ids[i, k] == out_class_ids[i, j], ) return _nms_loop( ib, batch_size, top_k, iou_threshold, max_output_size, valid_count, on_new_valid_box, on_new_invalidated_box, needs_bbox_check, calc_overlap, out_scores, num_valid_boxes, ) def _fetch_score_ir(data, score, axis): """ Fetch score from data. This routine is required for dynamic shape nms. """ batch_size = data.shape[0] num_anchors = data.shape[1] elem_length = data.shape[2] ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) score = ib.buffer_ptr(score) with ib.if_scope(num_anchors > 0): max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = batch_size * num_anchors // max_threads + 1 tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < batch_size * num_anchors): score[tid] = data[tid * elem_length + axis] return ib.get() def _dispatch_sort(scores, ret_type="indices"): target = tvm.target.Target.current() if target and ( can_use_thrust(target, "tvm.contrib.thrust.sort") or can_use_rocthrust(target, "tvm.contrib.thrust.sort") ): return argsort_thrust(scores, axis=1, is_ascend=False, dtype="int32", ret_type=ret_type) return argsort(scores, axis=1, is_ascend=False, dtype="int32", ret_type=ret_type) def _get_sorted_indices(data, data_buf, score_index, score_shape): """Extract a 1D score tensor from the packed input and do argsort on it.""" score_buf = tvm.tir.decl_buffer(score_shape, data.dtype, "score_buf", data_alignment=8) score_tensor = te.extern( [score_shape], [data], lambda ins, outs: _fetch_score_ir( ins[0], outs[0], score_index, ), dtype=[data.dtype], in_buffers=[data_buf], out_buffers=[score_buf], name="fetch_score", tag="fetch_score", ) return _dispatch_sort(score_tensor) def _run_nms( data, data_buf, sort_tensor, valid_count, indices, max_output_size, iou_threshold, force_suppress, top_k, coord_start, id_index, score_index, return_indices, ): """Run NMS using sorted scores.""" sort_tensor_buf = tvm.tir.decl_buffer( sort_tensor.shape, sort_tensor.dtype, "sort_tensor_buf", data_alignment=8 ) valid_count_dtype = "int32" valid_count_buf = tvm.tir.decl_buffer( valid_count.shape, valid_count_dtype, "valid_count_buf", data_alignment=4 ) indices_buf = tvm.tir.decl_buffer(indices.shape, indices.dtype, "indices_buf", data_alignment=8) batch_size = data.shape[0] num_anchors = data.shape[1] # Number of extra features per box beyond coords, score, and id. num_features = data.shape[2] - 6 if id_index >= 0 else data.shape[2] - 5 # output shapes bbox_shape = (batch_size, num_anchors, 4) score_shape = (batch_size, num_anchors) class_id_shape = score_shape out_features_shape = (batch_size, num_anchors, num_features) box_indices_shape = score_shape num_valid_boxes_shape = (batch_size, 1) return te.extern( [ bbox_shape, score_shape, class_id_shape, out_features_shape, box_indices_shape, num_valid_boxes_shape, ], [data, sort_tensor, valid_count, indices], lambda ins, outs: nms_ir( ins[0], ins[1], ins[2], ins[3], outs[0], # sorted bbox outs[1], # sorted scores outs[2], # sorted class ids outs[3], # sorted box feats outs[4], # box_indices outs[5], # num_valid_boxes max_output_size, iou_threshold, force_suppress, top_k, coord_start, id_index, score_index, return_indices, ), dtype=[data.dtype, "float32", "float32", "float32", "int32", "int32"], in_buffers=[data_buf, sort_tensor_buf, valid_count_buf, indices_buf], name="nms", tag="nms", ) def _concatenate_outputs( out_bboxes, out_scores, out_class_ids, out_features, out_shape, coord_start, score_index, id_index, ): """Pack the results from NMS into a single 5D or 6D tensor.""" batch_size = out_bboxes.shape[0] num_anchors = out_bboxes.shape[1] num_features = out_features.shape[2] def ir(out_bboxes, out_scores, out_class_ids, out): ib = tvm.tir.ir_builder.create() out_bboxes = ib.buffer_ptr(out_bboxes) out_scores = ib.buffer_ptr(out_scores) out_class_ids = ib.buffer_ptr(out_class_ids) out = ib.buffer_ptr(out) with ib.if_scope(num_anchors > 0): max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = ceil_div(num_anchors, nthread_tx) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) ib.scope_attr(by, "thread_extent", batch_size) tid = bx * nthread_tx + tx i = by with ib.if_scope(tid < num_anchors): with ib.for_range(0, 4, kind="unroll") as j: out[i, tid, coord_start + j] = out_bboxes[i, tid, j] with ib.for_range(0, num_features, kind="unroll") as j: out[i, tid, coord_start + 4 + j] = out_features[i, tid, j] out[i, tid, score_index] = out_scores[i, tid] if id_index >= 0: out[i, tid, id_index] = out_class_ids[i, tid] return ib.get() return te.extern( [out_shape], [out_bboxes, out_scores, out_class_ids], lambda ins, outs: ir(ins[0], ins[1], ins[2], outs[0]), dtype=["float32"], name="nms_output_concat", tag="nms_output_concat", ) def non_max_suppression( data, valid_count, indices, max_output_size=-1, iou_threshold=0.5, force_suppress=False, top_k=-1, coord_start=2, score_index=1, id_index=0, return_indices=True, invalid_to_bottom=False, ): """Non-maximum suppression operator for object detection. Parameters ---------- data : tvm.te.Tensor 3-D tensor with shape [batch_size, num_anchors, elem_length]. The last dimension should be in format of [class_id, score, box_left, box_top, box_right, box_bottom]. It could be the second output out_tensor of get_valid_counts. valid_count : tvm.te.Tensor 1-D tensor for valid number of boxes. It could be the output valid_count of get_valid_counts. indices : tvm.te.Tensor 2-D tensor with shape [batch_size, num_anchors], represents the index of box in original data. It could be the third output out_indices of get_valid_counts. The values in the second dimension are like the output of arange(num_anchors) if get_valid_counts is not used before non_max_suppression. max_output_size : optional, tvm.te.Tensor or int Max number of output valid boxes for each instance. By default all valid boxes are returned. iou_threshold : optional, tvm.te.Tensor or float Non-maximum suppression threshold. force_suppress : optional, boolean Whether to suppress all detections regardless of class_id. top_k : optional, int Keep maximum top k detections before nms, -1 for no limit. coord_start : required, int Start index of the consecutive 4 coordinates. score_index : optional, int Index of the scores/confidence of boxes. id_index : optional, int index of the class categories, -1 to disable. return_indices : boolean Whether to return box indices in input data. invalid_to_bottom : optional, boolean Whether to move all valid bounding boxes to the top. Returns ------- out : tvm.te.Tensor 3-D tensor with shape [batch_size, num_anchors, elem_length]. Example -------- .. code-block:: python # An example to use nms dshape = (1, 5, 6) data = te.placeholder(dshape, name="data") valid_count = te.placeholder((dshape[0],), dtype="int32", name="valid_count") iou_threshold = 0.7 force_suppress = True top_k = -1 out = non_max_suppression(data=data, valid_count=valid_count, iou_threshold=iou_threshold, force_suppress=force_supress, top_k=top_k, return_indices=False) np_data = np.random.uniform(dshape) np_valid_count = np.array([4]) s = topi.generic.schedule_nms(out) f = tvm.build(s, [data, valid_count, out], "cuda") dev = tvm.cuda(0) tvm_data = tvm.nd.array(np_data, dev) tvm_valid_count = tvm.nd.array(np_valid_count, dev) tvm_out = tvm.nd.array(np.zeros(dshape, dtype=data.dtype), dev) f(tvm_data, tvm_valid_count, tvm_out) """ data_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "data_buf", data_alignment=8) sort_tensor = _get_sorted_indices(data, data_buf, score_index, (data.shape[0], data.shape[1])) out_bboxes, out_scores, out_class_ids, out_features, box_indices, num_valid_boxes = _run_nms( data, data_buf, sort_tensor, valid_count, indices, max_output_size, iou_threshold, force_suppress, top_k, coord_start, id_index, score_index, return_indices, ) if return_indices: return [box_indices, num_valid_boxes] return _concatenate_outputs( out_bboxes, out_scores, out_class_ids, out_features, data.shape, coord_start, score_index, id_index, ) def _get_valid_box_count(scores, score_threshold): batch_classes, num_boxes = scores.shape def searchsorted_ir(scores, valid_count): ib = tvm.tir.ir_builder.create() scores = ib.buffer_ptr(scores) valid_count = ib.buffer_ptr(valid_count) bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) with ib.new_scope(): ib.scope_attr(bx, "thread_extent", ceil_div(batch_classes, max_threads)) ib.scope_attr(tx, "thread_extent", max_threads) tid = bx * max_threads + tx with ib.if_scope(tid < batch_classes): binary_search(ib, tid, num_boxes, scores, score_threshold, valid_count) return ib.get() scores_buf = tvm.tir.decl_buffer(scores.shape, scores.dtype, "scores_buf", data_alignment=8) return te.extern( [(batch_classes,)], [scores], lambda ins, outs: searchsorted_ir(ins[0], outs[0]), dtype=["int32"], in_buffers=[scores_buf], name="searchsorted", tag="searchsorted", ) def _collect_selected_indices_ir(num_class, selected_indices, num_detections, row_offsets, out): batch_classes, num_boxes = selected_indices.shape ib = tvm.tir.ir_builder.create() selected_indices = ib.buffer_ptr(selected_indices) num_detections = ib.buffer_ptr(num_detections) row_offsets = ib.buffer_ptr(row_offsets) out = ib.buffer_ptr(out) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = ceil_div(num_boxes, nthread_tx) nthread_by = batch_classes tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) ib.scope_attr(by, "thread_extent", nthread_by) with ib.new_scope(): idx = bx * nthread_tx + tx idy = cast(by, "int64") batch_id = idy // num_class class_id = idy % num_class with ib.if_scope(idx < num_detections[idy]): out[row_offsets[idy] + idx, 0] = batch_id out[row_offsets[idy] + idx, 1] = class_id out[row_offsets[idy] + idx, 2] = cast(selected_indices[idy, idx], "int64") return ib.get() def _collect_selected_indices_and_scores_ir( selected_indices, selected_scores, num_detections, row_offsets, num_total_detections, collected_indices, collected_scores, ): batch_size, num_class = row_offsets.shape num_boxes = selected_indices.shape[1] ib = tvm.tir.ir_builder.create() selected_indices = ib.buffer_ptr(selected_indices) selected_scores = ib.buffer_ptr(selected_scores) num_detections = ib.buffer_ptr(num_detections) row_offsets = ib.buffer_ptr(row_offsets) num_total_detections = ib.buffer_ptr(num_total_detections) collected_indices = ib.buffer_ptr(collected_indices) collected_scores = ib.buffer_ptr(collected_scores) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = ceil_div(num_boxes, nthread_tx) nthread_by = batch_size * num_class tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) ib.scope_attr(by, "thread_extent", nthread_by) zero = cast(0, "int64") with ib.new_scope(): idx = bx * nthread_tx + tx idy = cast(by, "int64") batch_id = idy // num_class class_id = idy % num_class with ib.if_scope(idx < num_detections[batch_id, class_id]): offset = row_offsets[batch_id, class_id] + idx collected_indices[batch_id, offset, 0] = class_id collected_indices[batch_id, offset, 1] = cast(selected_indices[idy, idx], "int64") collected_scores[batch_id, offset] = selected_scores[idy, idx] with ib.else_scope(): with ib.if_scope(idx < num_boxes): offset = ( num_total_detections[batch_id] + class_id * num_boxes - row_offsets[batch_id, class_id] + idx - num_detections[batch_id, class_id] ) collected_indices[batch_id, offset, 0] = zero collected_indices[batch_id, offset, 1] = zero collected_scores[batch_id, offset] = 0.0 return ib.get() def all_class_non_max_suppression( boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, output_format="onnx", ): """Non-maximum suppression operator for object detection, corresponding to ONNX NonMaxSuppression and TensorFlow combined_non_max_suppression. NMS is performed for each class separately. Parameters ---------- boxes : tvm.te.Tensor 3-D tensor with shape (batch_size, num_boxes, 4) scores: tvm.te.Tensor 3-D tensor with shape (batch_size, num_classes, num_boxes) max_output_boxes_per_class : int or tvm.te.Tensor, optional The maxinum number of output selected boxes per class iou_threshold : float or tvm.te.Tensor, optionaIl IoU test threshold score_threshold : float or tvm.te.Tensor, optional Score threshold to filter out low score boxes early output_format : str, optional "onnx" or "tensorflow", see below Returns ------- out : list of tvm.te.Tensor If `output_format` is "onnx", the output is two tensors. The first is `indices` of size `(batch_size * num_class* num_boxes , 3)` and the second is a scalar tensor `num_total_detection` of shape `(1,)` representing the total number of selected boxes. The three values in `indices` encode batch, class, and box indices. Rows of `indices` are ordered such that selected boxes from batch 0, class 0 come first, in descending of scores, followed by boxes from batch 0, class 1 etc. Out of `batch_size * num_class* num_boxes` rows of indices, only the first `num_total_detection` rows are valid. If `output_format` is "tensorflow", the output is three tensors, the first is `indices` of size `(batch_size, num_class * num_boxes , 2)`, the second is `scores` of size `(batch_size, num_class * num_boxes)`, and the third is `num_total_detection` of size `(batch_size,)` representing the total number of selected boxes per batch. The two values in `indices` encode class and box indices. Of num_class * num_boxes boxes in `indices` at batch b, only the first `num_total_detection[b]` entries are valid. The second axis of `indices` and `scores` are sorted within each class by box scores, but not across classes. So the box indices and scores for the class 0 come first in a sorted order, followed by the class 1 etc. """ batch, num_class, num_boxes = scores.shape scores = reshape(scores, (batch * num_class, num_boxes)) sorted_scores, sorted_indices = _dispatch_sort(scores, ret_type="both") valid_count = _get_valid_box_count(sorted_scores, score_threshold) selected_indices, selected_scores, num_detections = run_all_class_nms( boxes, sorted_scores, sorted_indices, valid_count, max_output_boxes_per_class, iou_threshold, _nms_loop, return_scores=(output_format == "tensorflow"), ) if output_format == "onnx": row_offsets, num_total_detections = exclusive_scan( num_detections, return_reduction=True, output_dtype="int64" ) selected_indices = collect_selected_indices( num_class, selected_indices, num_detections, row_offsets, _collect_selected_indices_ir ) return [selected_indices, num_total_detections] num_detections_per_batch = reshape(num_detections, (batch, num_class)) row_offsets, num_total_detections = exclusive_scan( num_detections_per_batch, return_reduction=True, output_dtype="int64", axis=1 ) selected_indices, selected_scores = collect_selected_indices_and_scores( selected_indices, selected_scores, num_detections_per_batch, row_offsets, num_total_detections, _collect_selected_indices_and_scores_ir, ) return [selected_indices, selected_scores, num_total_detections]
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/nn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """scheduler functions for cuda backend""" from __future__ import absolute_import as _abs import tvm from tvm import te from ..utils import traverse_inline def schedule_lrn(outs): """Schedule for LRN Parameters ---------- outs: Array of Tensor The computation graph description of LRN in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) def _callback(op): if "sqr_sum" in op.tag: pad = op.input_tensors[0] s[pad].compute_inline() fused_axis = s[outs[0]].fuse(*s[outs[0]].op.axis) bx, tx = s[outs[0]].split(fused_axis, factor=max_threads) s[outs[0]].bind(bx, te.thread_axis("blockIdx.x")) s[outs[0]].bind(tx, te.thread_axis("threadIdx.x")) s[op].compute_at(s[outs[0]], tx) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/pooling.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable, unused-argument """Schedule for pooling operators""" import tvm from tvm import te from .. import tag from ..utils import traverse_inline from .reduction import _schedule_reduce from .injective import schedule_injective_from_existing def schedule_adaptive_pool(outs, layout="NCHW"): """Schedule for adaptive_pool. Parameters ---------- outs: Array of Tensor The computation graph description of adaptive_pool in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for adaptive_pool. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule_non_global(Pool): if Pool.op in s.outputs: Out = Pool OL = s.cache_write(Pool, "local") else: Out = outs[0].op.output(0) s[Pool].set_scope("local") max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) fused_axis = s[Out].fuse(*s[Out].op.axis) bx, tx = s[Out].split(fused_axis, factor=max_threads) s[Out].bind(bx, te.thread_axis("blockIdx.x")) s[Out].bind(tx, te.thread_axis("threadIdx.x")) if Pool.op in s.outputs: s[OL].compute_at(s[Out], tx) else: s[Pool].compute_at(s[Out], tx) scheduled_ops = [] def traverse(OP): """Internal traverse function""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_injective(OP.tag): if OP not in s.outputs: s[OP].compute_inline() for tensor in OP.input_tensors: if isinstance(tensor.op, te.tensor.ComputeOp) and tensor.op not in scheduled_ops: traverse(tensor.op) # schedule global_pool elif OP.tag.startswith("adaptive_pool"): Pool = OP.output(0) oshape = Pool.shape if (layout == "NCHW" and oshape[2] == 1 and oshape[3] == 1) or ( layout == "NHWC" and oshape[1] == 1 and oshape[2] == 1 ): _schedule_reduce(OP, s) if OP != outs[0].op: # the final division for adaptive pool or fused elemwise ops schedule_injective_from_existing(s, outs[0]) else: _schedule_non_global(Pool) else: raise RuntimeError("Unsupported operator: %s" % OP.tag) scheduled_ops.append(OP) traverse(outs[0].op) return s def schedule_pool(outs, layout): """Schedule for pool. Parameters ---------- outs: Array of Tensor The computation graph description of pool in the format of an array of tensors. layout: str Data layout. Returns ------- s: Schedule The computation schedule for pool. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule(PaddedInput, Pool): if isinstance(PaddedInput.op, tvm.te.ComputeOp): s[PaddedInput].compute_inline() num_thread = tvm.target.Target.current(allow_none=False).max_num_threads if Pool.op in s.outputs: Out = Pool OL = s.cache_write(Pool, "local") else: Out = outs[0].op.output(0) s[Pool].set_scope("local") fused = s[Out].fuse(*s[Out].op.axis) bx, tx = s[Out].split(fused, factor=num_thread) s[Out].bind(bx, te.thread_axis("blockIdx.x")) s[Out].bind(tx, te.thread_axis("threadIdx.x")) if Pool.op in s.outputs: s[OL].compute_at(s[Out], tx) else: s[Pool].compute_at(s[Out], tx) scheduled_ops = [] def traverse(OP): """Internal traverse function""" # inline all one-to-one-mapping operators except the last stage (output) if tag.is_injective(OP.tag): if OP not in s.outputs: s[OP].compute_inline() for tensor in OP.input_tensors: if isinstance(tensor.op, te.tensor.ComputeOp) and tensor.op not in scheduled_ops: traverse(tensor.op) # schedule pool elif OP.tag.startswith("pool"): PaddedInput = OP.input_tensors[0] Pool = OP.output(0) _schedule(PaddedInput, Pool) else: raise RuntimeError("Unsupported operator: %s" % OP.tag) scheduled_ops.append(OP) traverse(outs[0].op) return s def schedule_pool_grad(outs): """Schedule for pool_grad on CUDA Parameters ---------- outs: Array of Tensor The computation graph description of pool_grad in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for pool_grad. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _schedule_pool_grad(op): if op in s.outputs: out = op else: out = outs[0].op.output(0) fused = s[out].fuse(*s[out].op.axis) num_thread = tvm.target.Target.current(allow_none=False).max_num_threads bx, tx = s[out].split(fused, factor=num_thread) s[out].bind(bx, te.thread_axis("blockIdx.x")) s[out].bind(tx, te.thread_axis("threadIdx.x")) if tag.COMM_REDUCE_IDX in op.input_tensors[0].op.tag: max_pool_index = op.input_tensors[0] s[max_pool_index].compute_at(s[out], tx) pool_input = max_pool_index.op.input_tensors[0] if isinstance(pool_input.op, tvm.te.ComputeOp): # handle padding s[pool_input].compute_inline() if op not in s.outputs: s[op].compute_at(s[out], tx) def _callback(op): if op.tag.startswith("pool_grad"): _schedule_pool_grad(op) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/rcnn/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import """Faster R-CNN and Mask R-CNN operators""" from .proposal import proposal
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/rcnn/proposal.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, singleton-comparison, bad-continuation """Proposal operator""" import math import tvm from tvm import te from ...vision.rcnn import generate_anchor, reg_bbox, reg_iou from ...utils import get_const_tuple, get_const_int def predict_bbox_ir( cls_prob_buf, bbox_pred_buf, im_info_buf, out_buf, scales, ratios, feature_stride, rpn_min_size, iou_loss, ): """Predict bounding boxes based on anchors, scores and deltas. Parameters ---------- cls_prob_buf : tvm.te.schedule.Buffer 4-D with shape [batch, 2 * num_anchors, height, width] bbox_pred_buf : tvm.te.schedule.Buffer 4-D with shape [batch, 4 * num_anchors, height, width] im_info_buf : tvm.te.schedule.Buffer 2-D with shape [batch, 3] out_buf : tvm.te.schedule.Buffer 3-D with shape [batch, num_bbox, 5] The last dimension is in format of [w_start, h_start, w_end, h_end, score] scales : list/tuple of float Scales of anchor windows. ratios : list/tuple of float Ratios of anchor windows. feature_stride : int The size of the receptive field each unit in the convolution layer of the rpn, for example the product of all stride's prior to this layer. rpn_min_size : int Minimum height or width in proposal. iou_loss : bool Usage of IoU loss. Returns ------- stmt : Stmt The result IR statement. """ batch, num_anchors, height, width = get_const_tuple(cls_prob_buf.shape) num_anchors //= 2 max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = (batch * height * width) // max_threads + 1 tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") tid = bx * max_threads + tx ib = tvm.tir.ir_builder.create() ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) p_score = ib.buffer_ptr(cls_prob_buf) p_delta = ib.buffer_ptr(bbox_pred_buf) p_im_info = ib.buffer_ptr(im_info_buf) p_out = ib.buffer_ptr(out_buf) idxm = tvm.tir.indexmod idxd = tvm.tir.indexdiv with ib.if_scope(tid < batch * height * width): w = idxm(tid, width) h = idxm(idxd(tid, width), height) b = idxd(idxd(tid, width), height) for k in range(num_anchors): out_index = tid * num_anchors + k ratio = ratios[k // len(scales)] scale = scales[k % len(scales)] anchor = generate_anchor(ratio, scale, feature_stride) im_height = p_im_info[b * 3] im_width = p_im_info[b * 3 + 1] x1 = anchor[0] + w * feature_stride y1 = anchor[1] + h * feature_stride x2 = anchor[2] + w * feature_stride y2 = anchor[3] + h * feature_stride delta = [ p_delta[((((b * num_anchors + k) * 4 + i) * height + h) * width + w)] for i in range(4) ] regression_func = reg_iou if iou_loss else reg_bbox pred_x1, pred_y1, pred_x2, pred_y2 = regression_func(x1, y1, x2, y2, *delta) pred_x1 = tvm.te.max(tvm.te.min(pred_x1, im_width - 1.0), 0.0) pred_y1 = tvm.te.max(tvm.te.min(pred_y1, im_height - 1.0), 0.0) pred_x2 = tvm.te.max(tvm.te.min(pred_x2, im_width - 1.0), 0.0) pred_y2 = tvm.te.max(tvm.te.min(pred_y2, im_height - 1.0), 0.0) real_height = (im_height / feature_stride).astype("int32") real_width = (im_width / feature_stride).astype("int32") bbox_w = pred_x2 - pred_x1 + 1.0 bbox_h = pred_y2 - pred_y1 + 1.0 min_size = p_im_info[b * 3 + 2] * rpn_min_size pred_score = p_score[((b * num_anchors * 2 + num_anchors + k) * height + h) * width + w] pred_score = tvm.tir.Select( tvm.tir.any(h >= real_height, w >= real_width), -1.0, pred_score ) p_out[out_index * 5 + 0] = pred_x1 p_out[out_index * 5 + 1] = pred_y1 p_out[out_index * 5 + 2] = pred_x2 p_out[out_index * 5 + 3] = pred_y2 p_out[out_index * 5 + 4] = pred_score with ib.if_scope(tvm.tir.any(bbox_w < min_size, bbox_h < min_size)): p_out[out_index * 5 + 0] -= min_size / 2.0 p_out[out_index * 5 + 1] -= min_size / 2.0 p_out[out_index * 5 + 2] += min_size / 2.0 p_out[out_index * 5 + 3] += min_size / 2.0 p_out[out_index * 5 + 4] = -1.0 return ib.get() def argsort_ir(data_buf, out_index_buf): """Batched odd-even transposition sort. Parameters ---------- data_buf : tvm.te.schedule.Buffer 2-D with shape [batch, num_bbox] out_index_buf : tvm.te.schedule.Buffer 2-D with shape [batch, num_bbox]. Indices of data in sorted order. Returns ------- stmt : Stmt The result IR statement. """ batch, num_bbox = get_const_tuple(data_buf.shape) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) ib = tvm.tir.ir_builder.create() p_data = ib.buffer_ptr(data_buf) index_out = ib.buffer_ptr(out_index_buf) nthread_tx = max_threads nthread_bx = (num_bbox + 1) // 2 // max_threads + 1 tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("vthread") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "virtual_thread", nthread_bx) tid = bx * nthread_tx + tx temp_data = ib.allocate("float32", (1,), name="temp_data", scope="local") temp_index = ib.allocate("int32", (1,), name="temp_index", scope="local") idxm = tvm.tir.indexmod with ib.for_range(0, batch, kind="unroll") as b: start = b * num_bbox for i in range(2): bbox_id = tid * 2 + i with ib.if_scope(bbox_id < num_bbox): index_out[start + bbox_id] = bbox_id with ib.for_range(0, num_bbox) as k: offset = start + 2 * tid + idxm(k, 2) with ib.if_scope( tvm.tir.all(offset + 1 < num_bbox, p_data[offset] < p_data[offset + 1]) ): temp_data[0] = p_data[offset] p_data[offset] = p_data[offset + 1] p_data[offset + 1] = temp_data[0] temp_index[0] = index_out[offset] index_out[offset] = index_out[offset + 1] index_out[offset + 1] = temp_index[0] ib.emit(tvm.tir.Call(None, "tir.tvm_storage_sync", tvm.runtime.convert(["shared"]))) return ib.get() def nms_ir(sorted_bbox_buf, out_buf, nms_threshold): """Non-maximum suppression. Parameters ---------- sorted_bbox_buf : tvm.te.schedule.Buffer 3-D with shape [batch, num_bbox, 5]. The last dimension is in format of [w_start, h_start, w_end, h_end, score]. out_buf : tvm.te.schedule.Buffer 2-D with shape [batch, num_bbox]. Boolean mask of whether a bounding box should be removed. nms_threshold : float Non-maximum suppression threshold. Returns ------- stmt : Stmt The result IR statement. """ def calculate_overlap(out_tensor, box_a_idx, box_b_idx): """Calculate overlap of two boxes.""" w = tvm.te.max( 0.0, tvm.te.min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2]) - tvm.te.max(out_tensor[box_a_idx], out_tensor[box_b_idx]) + 1.0, ) h = tvm.te.max( 0.0, tvm.te.min(out_tensor[box_a_idx + 3], out_tensor[box_b_idx + 3]) - tvm.te.max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]) + 1.0, ) i = w * h u = ( (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx] + 1.0) * (out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1] + 1.0) + (out_tensor[box_b_idx + 2] - out_tensor[box_b_idx] + 1.0) * (out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1] + 1.0) - i ) return i / u batch, num_bbox = get_const_tuple(out_buf.shape) max_threads = int(math.sqrt(tvm.target.Target.current(allow_none=False).max_num_threads)) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib = tvm.tir.ir_builder.create() p_data = ib.buffer_ptr(sorted_bbox_buf) p_out = ib.buffer_ptr(out_buf) nthread_tx = max_threads nthread_bx = num_bbox // max_threads + 1 ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) i = bx * max_threads + tx with ib.for_range(0, batch, kind="unroll", name="n") as b: base_idx = b * num_bbox with ib.if_scope(i < num_bbox): p_out[base_idx + i] = False with ib.for_range(0, num_bbox - 1) as l: with ib.if_scope(tvm.tir.all(i < num_bbox, i > l, p_out[base_idx + l] == False)): iou = calculate_overlap(p_data, (base_idx + l) * 5, (base_idx + i) * 5) with ib.if_scope(iou > nms_threshold): p_out[base_idx + i] = True ib.emit(tvm.tir.Call(None, "tir.tvm_storage_sync", tvm.runtime.convert(["shared"]))) return ib.get() def prepare_output_ir(sorted_bbox_buf, remove_mask_buf, out_buf): """Copy output after applying nms to continuous memory. Parameters ---------- sorted_bbox_buf : tvm.te.schedule.Buffer 3-D with shape [batch, num_bbox, 5]. The last dimension is in format of [w_start, h_start, w_end, h_end, score]. remove_mask_buf : tvm.te.schedule.Buffer 2-D with shape [batch, num_bbox]. Boolean mask of whether a bounding box should be removed. out_buf : tvm.te.schedule.Buffer 2-D with shape [batch * rpn_post_nms_top_n, 5]. The last dimension is in format of [batch_index, w_start, h_start, w_end, h_end]. Returns ------- stmt : Stmt The result IR statement. """ batch, num_bbox, _ = get_const_tuple(sorted_bbox_buf.shape) rpn_post_nms_top_n = get_const_int(out_buf.shape[0]) // batch nthread_tx = batch tx = te.thread_axis("threadIdx.x") ib = tvm.tir.ir_builder.create() ib.scope_attr(tx, "thread_extent", nthread_tx) i = ib.allocate("int32", (1,), "i", scope="local") i[0] = 0 p_sorted_bbox = ib.buffer_ptr(sorted_bbox_buf) p_remove = ib.buffer_ptr(remove_mask_buf) p_out = ib.buffer_ptr(out_buf) b = tx nkeep = ib.allocate("int32", (1,), "nkeep", scope="local") nkeep[0] = 0 # number of bbox after nms with ib.for_range(0, num_bbox) as j: with ib.if_scope(p_remove[b * num_bbox + j] == False): nkeep[0] += 1 with ib.if_scope(nkeep[0] > 0): with ib.for_range( 0, te.ceil(tvm.tir.const(rpn_post_nms_top_n, "float32") / nkeep[0]).astype("int32") ): with ib.for_range(0, num_bbox) as j: offset_j = (b * num_bbox + j) * 5 offset_i = (b * rpn_post_nms_top_n + i[0]) * 5 with ib.if_scope( tvm.tir.all(i[0] < rpn_post_nms_top_n, p_remove[(b * num_bbox + j)] == False) ): p_out[offset_i] = tvm.tir.Cast("float32", b) with ib.for_range(0, 4, kind="unroll") as k: p_out[offset_i + k + 1] = p_sorted_bbox[offset_j + k] i[0] = i[0] + 1 body = ib.get() return body def proposal( cls_prob, bbox_pred, im_info, scales, ratios, feature_stride, threshold, rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_min_size, iou_loss, ): """Proposal operator. Parameters ---------- cls_prob : tvm.te.Tensor 4-D with shape [batch, 2 * num_anchors, height, width] bbox_pred : tvm.te.Tensor 4-D with shape [batch, 4 * num_anchors, height, width] im_info : tvm.te.Tensor 2-D with shape [batch, 3] scales : list/tuple of float Scales of anchor windows. ratios : list/tuple of float Ratios of anchor windows. feature_stride : int The size of the receptive field each unit in the convolution layer of the rpn, for example the product of all stride's prior to this layer. threshold : float Non-maximum suppression threshold. rpn_pre_nms_top_n : int Number of top scoring boxes to apply NMS. -1 to use all boxes. rpn_post_nms_top_n : int Number of top scoring boxes to keep after applying NMS to RPN proposals. rpn_min_size : int Minimum height or width in proposal. iou_loss : bool Usage of IoU loss. Returns ------- out : tvm.te.Tensor 2-D tensor with shape [batch * rpn_post_nms_top_n, 5]. The last dimension is in format of [batch_index, w_start, h_start, w_end, h_end]. """ batch, _, height, width = get_const_tuple(cls_prob.shape) num_anchors = len(scales) * len(ratios) num_bbox = height * width * num_anchors rpn_pre_nms_top_n = min(rpn_pre_nms_top_n, num_bbox) if rpn_pre_nms_top_n > 0 else num_bbox bbox = te.extern( (batch, num_bbox, 5), [cls_prob, bbox_pred, im_info], lambda ins, outs: predict_bbox_ir( ins[0], ins[1], ins[2], outs[0], scales, ratios, feature_stride, rpn_min_size, iou_loss ), dtype=bbox_pred.dtype, ) score = te.compute((batch, num_bbox), lambda b, i: bbox[b, i, 4], tag="bbox_score") sorted_index = te.extern( [score.shape], [score], lambda ins, outs: argsort_ir(ins[0], outs[0]), dtype="int32" ) sorted_bbox = te.compute( (batch, rpn_pre_nms_top_n, 5), lambda b, i, j: bbox[b, sorted_index[b, i], j], tag="sorted_bbox", ) nms_remove_mask = te.extern( (batch, rpn_pre_nms_top_n), [sorted_bbox], lambda ins, outs: nms_ir(ins[0], outs[0], threshold), dtype="bool", ) nms_out = te.extern( (batch * rpn_post_nms_top_n, 5), [sorted_bbox, nms_remove_mask], lambda ins, outs: prepare_output_ir(ins[0], ins[1], outs[0]), dtype=sorted_bbox.dtype, ) return nms_out
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/reduction.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,too-many-locals,len-as-condition """Schedule for reduce operators""" from __future__ import absolute_import as _abs from operator import mul from functools import reduce import tvm from tvm import te from .. import tag from .injective import schedule_injective_from_existing def _schedule_reduce(op, sch, is_idx_reduce=False): if is_idx_reduce: data_out = op.input_tensors[0] else: data_in = op.input_tensors[0] data_out = op.output(0) if not sch[data_out].op.reduce_axis: return schedule_injective_from_existing(sch, op.output(0)) if len(sch[data_out].op.axis) > 0: all_reduce = False num_thread = 32 target = tvm.target.Target.current() if target and (target.kind.name == "opencl" or target.kind.name == "metal"): # without it, CL_INVALID_WORK_GROUP_SIZE occurred when running test_topi_reduce.py # don't know why num_thread = 16 block_x = te.thread_axis("blockIdx.x") thread_x = te.thread_axis((0, num_thread), "threadIdx.x") thread_y = te.thread_axis((0, num_thread), "threadIdx.y") else: all_reduce = True num_thread = tvm.target.Target.current(allow_none=False).max_num_threads thread_x = te.thread_axis((0, num_thread), "threadIdx.x") # Fuse and refactor the reduce axis fused_reduce = sch[data_out].fuse( *[sch[data_out].op.reduce_axis[i] for i in range(len(sch[data_out].op.reduce_axis))] ) ko, ki = sch[data_out].split(fused_reduce, factor=num_thread) if is_idx_reduce: data_out_rf, _ = sch.rfactor(data_out, ki) else: data_out_rf = sch.rfactor(data_out, ki) tx = sch[data_out].op.reduce_axis[0] sch[data_out].bind(tx, thread_x) sch[data_out_rf].compute_at(sch[data_out], tx) if is_idx_reduce: real_output = op.output(0) temp_idx_input = data_out.op.output(0) temp_val_input = data_out.op.output(1) else: real_output = data_out if not all_reduce: # Fuse and split the axis fused_outer = sch[real_output].fuse( *[sch[real_output].op.axis[i] for i in range(len(sch[real_output].op.axis))] ) bx, outer_in = sch[real_output].split(fused_outer, factor=num_thread) # Bind the axes to threads and blocks sch[real_output].bind(outer_in, thread_y) sch[real_output].bind(bx, block_x) if is_idx_reduce: sch[temp_idx_input].compute_at(sch[real_output], outer_in) sch[temp_val_input].compute_at(sch[real_output], outer_in) sch[real_output].set_store_predicate( tvm.tir.all( thread_x.equal(0), block_x * num_thread + thread_y < reduce(mul, real_output.shape) ) ) else: if is_idx_reduce: spatial_axis = sch[real_output].fuse(*(sch[real_output].op.axis)) sch[real_output].bind(spatial_axis, te.thread_axis("blockIdx.x")) sch[temp_idx_input].compute_at(sch[real_output], spatial_axis) sch[temp_val_input].compute_at(sch[real_output], spatial_axis) sch[real_output].set_store_predicate(thread_x.equal(0)) return sch def _enable_auto_inline(sch): def is_scheduled(stage): # auto inline requires the attach type is AttachType.kGroupRoot conds = [ len(stage.relations) == 0, stage.attach_type == 1, stage.all_iter_vars == stage.leaf_iter_vars, ] if not all(conds): return True return False for s in sch.stages: if not s.is_output and isinstance(s.op, tvm.te.ComputeOp): if is_scheduled(s) or len(s.op.reduce_axis) != 0: return False return True def schedule_reduce_impl(outs, schedule_reduce_stage, schedule_injective_stage): """Schedule for inject->reduce->bcast ops. Traverse over the stages in the schedule and schedule separate stages depending on the position of the stage. Injecteve post-ops of reduction will be scheduled using injection schedule, injective pre-ops of reduction will be inlined, reduction stage will be scheduled using reduction schedule Parameters ---------- outs: Array of Tensor The computation graph description of reduce in the format of an array of tensors. schedule_reduce_stage: Function responsible for scheduling the reduction stage schedule_injective_stage: Function responsible for scheduling the standalone injection stage Returns ------- sch: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs sch = te.create_schedule([x.op for x in outs]) scheduled_ops = [] enable_auto_inline = _enable_auto_inline(sch) def traverse_before_reduce(operator): """Internal traverse function""" if isinstance(operator, tvm.te.PlaceholderOp): return if tag.is_injective(operator.tag): sch[operator].compute_inline() for tensor in operator.input_tensors: if tensor.op not in scheduled_ops: traverse_before_reduce(tensor.op) else: raise RuntimeError("Unsupported operator: %s" % operator.tag) scheduled_ops.append(operator) def traverse_after_reduce(operator): """Internal traverse function""" if tag.is_broadcast(operator.tag): if operator not in scheduled_ops: schedule_injective_stage(sch, operator.output(0)) for tensor in operator.input_tensors: if tensor.op not in scheduled_ops: if enable_auto_inline: traverse_before_reduce(tensor.op) else: traverse_after_reduce(tensor.op) elif operator.tag == "comm_reduce": if operator not in scheduled_ops: schedule_reduce_stage(operator, sch, is_idx_reduce=False) for tensor in operator.input_tensors: if tensor.op not in scheduled_ops: traverse_before_reduce(tensor.op) elif operator.tag == "comm_reduce_idx": if operator not in scheduled_ops: schedule_reduce_stage(operator, sch, is_idx_reduce=True) input_tensors = operator.input_tensors[0].op.input_tensors for tensor in input_tensors: if tensor.op not in scheduled_ops: traverse_before_reduce(tensor.op) elif isinstance(operator, tvm.te.PlaceholderOp): pass else: raise RuntimeError("Unsupported operator: %s" % operator.tag) scheduled_ops.append(operator) for out in outs: traverse_after_reduce(out.op) return sch def schedule_reduce(outs): return schedule_reduce_impl(outs, _schedule_reduce, schedule_injective_from_existing)
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/scan.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-locals, too-many-statements "Scan related operators" from typing import Callable, Optional, Union import tvm from tvm import te from tvm.contrib.thrust import can_use_rocthrust, can_use_thrust from .. import tag from ..math import cast, ceil_log2 from ..transform import expand_dims, reshape, squeeze, transpose from ..utils import ceil_div, get_const_int, prod, swap from .injective import schedule_injective_from_existing def _get_thrust_func_name(tvmop): tvmop_to_thrust_func_name = {tvm.tir.generic.add: "tvm.contrib.thrust.sum_scan"} assert tvmop in tvmop_to_thrust_func_name, "{} not supported by thrust".format(tvmop) return tvmop_to_thrust_func_name[tvmop] def exclusive_scan_ir(data, output, reduction=None, binop=tvm.tir.generic.add, identity_value=0): """Low level IR to do exclusive sum scan along rows of 2D input. Parameters ---------- data : Buffer Input N-D Buffer. Scan is done over the innermost axis. output: Buffer A buffer to store the output scan, of the same shape as data reduction: Buffer, optional (N-1)-D Buffer, to store the sum of each scan axis. binop: function, optional A binary associative op to use for scan. The function takes two TIR expressions and produce a new TIR expression. By default it uses tvm.tir.generic.add to compute prefix sum. identity_value: int or float A value for the binary operation which provides the identity property. E.g. if * is your operator and i is the identity_value then a * i = a for all a in the domain of your operation. """ batch_size = prod(data.shape[:-1]) scan_axis_size = data.shape[-1] ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) output = ib.buffer_ptr(output) out_dtype = output.dtype if reduction is not None: reduction = ib.buffer_ptr(reduction) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) with ib.if_scope(scan_axis_size == 0): with ib.new_scope(): bx = te.thread_axis("blockIdx.x") ib.scope_attr(bx, "thread_extent", batch_size) with ib.if_scope(bx < batch_size): if reduction is not None: reduction[bx] = cast(identity_value, out_dtype) with ib.else_scope(): with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(scan_axis_size, max_threads) nthread_by = batch_size tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) ib.scope_attr(by, "thread_extent", nthread_by) tid = bx * nthread_tx + tx with ib.if_scope(tid < scan_axis_size): output[by * scan_axis_size + tid] = cast(data[by * scan_axis_size + tid], out_dtype) nthread_tx = max_threads nthread_bx = ceil_div(scan_axis_size, max_threads) nthread_by = batch_size # The following algorithm performs parallel exclusive scan # Up Sweep of exclusive scan lim = ceil_log2(scan_axis_size) with ib.for_range(0, cast(lim, "int64"), dtype="int64") as l2_width: width = 2 << l2_width with ib.new_scope(): tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr( bx, "thread_extent", tvm.tir.generic.cast(ceil_div(scan_axis_size, max_threads * width), "int32"), ) tid = bx * nthread_tx + tx by = te.thread_axis("blockIdx.y") ib.scope_attr(by, "thread_extent", nthread_by) start = ib.allocate("int64", (1,), name="start", scope="local") middle = ib.allocate("int64", (1,), name="middle", scope="local") end = ib.allocate("int64", (1,), name="end", scope="local") start[0] = width * tid with ib.if_scope(start[0] < scan_axis_size): middle[0] = start[0] + tvm.tir.indexdiv(width, 2) end[0] = tvm.te.min(start[0] + width, scan_axis_size) with ib.if_scope(middle[0] < scan_axis_size): output[by * scan_axis_size + end[0] - 1] = binop( output[by * scan_axis_size + end[0] - 1], output[by * scan_axis_size + middle[0] - 1], ) # Down Sweep of exclusive scan with ib.new_scope(): bx = te.thread_axis("blockIdx.x") ib.scope_attr(bx, "thread_extent", batch_size) with ib.if_scope(bx < batch_size): if reduction is not None: reduction[bx] = output[(bx + 1) * scan_axis_size - 1] output[(bx + 1) * scan_axis_size - 1] = cast(identity_value, out_dtype) with ib.for_range(0, cast(lim, "int64"), dtype="int64") as l2_width: width = 2 << (lim - l2_width - 1) with ib.new_scope(): tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr( bx, "thread_extent", tvm.tir.generic.cast(ceil_div(scan_axis_size, max_threads * width), "int32"), ) tid = bx * nthread_tx + tx by = te.thread_axis("blockIdx.y") ib.scope_attr(by, "thread_extent", nthread_by) start = ib.allocate("int64", (1,), name="start", scope="local") middle = ib.allocate("int64", (1,), name="middle", scope="local") end = ib.allocate("int64", (1,), name="end", scope="local") tmp = ib.allocate(out_dtype, (1,), name="end", scope="local") start[0] = width * tid with ib.if_scope(tvm.tir.all(start[0] < scan_axis_size)): middle[0] = start[0] + tvm.tir.indexdiv(width, 2) end[0] = tvm.tir.min(start[0] + width, scan_axis_size) with ib.if_scope(middle[0] < scan_axis_size): tmp[0] = output[by * scan_axis_size + middle[0] - 1] output[by * scan_axis_size + middle[0] - 1] = output[ by * scan_axis_size + end[0] - 1 ] output[by * scan_axis_size + end[0] - 1] = binop( output[by * scan_axis_size + end[0] - 1], tmp[0] ) return ib.get() def get_reduction_from_exclusive_scan(data, ex_scan_output, binop=tvm.tir.generic.add): """Return the sum of the last element of data and the exclusive scan output. The is the reduction of data along each row (for 2-D case). Parameters ---------- data : tvm.te.Tensor Input data of any shape ex_scan_output : tvm.te.Tensor The output of exclusive scan on data binop: function, optional A binary associative op to use for scan. The function takes two TIR expressions and produce a new TIR expression. By default it uses tvm.tir.generic.add to compute prefix sum. Returns ------- reduction : tvm.te.Tensor (N-1)-D tensor storing the reduction of each scan axis. """ ndim = len(data.shape) if ndim == 1: data = expand_dims(data, axis=0) ex_scan_output = expand_dims(ex_scan_output, axis=0) def ir(data, data_ex_scan, reduction): batch_size = prod(data.shape[:-1]) scan_axis_size = data.shape[-1] ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data) data_ex_scan = ib.buffer_ptr(data_ex_scan) reduction = ib.buffer_ptr(reduction) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(batch_size, max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < batch_size): with ib.if_scope(scan_axis_size > 0): reduction[tid] = binop( data_ex_scan[tid * scan_axis_size + scan_axis_size - 1], data[tid * scan_axis_size + scan_axis_size - 1], ) with ib.else_scope(): reduction[tid] = cast(0, reduction.dtype) return ib.get() data_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "valid_indices_buf", data_alignment=8) ex_scan_output_buf = tvm.tir.decl_buffer( ex_scan_output.shape, ex_scan_output.dtype, "ex_scan_output_buf", data_alignment=8 ) reduction = te.extern( [data.shape[:-1]], [data, ex_scan_output], lambda ins, outs: ir(ins[0], ins[1], outs[0]), dtype=[ex_scan_output.dtype], in_buffers=[data_buf, ex_scan_output_buf], name="ex_scan_reduction", tag="ex_scan_reduction_gpu", ) if ndim == 1: return squeeze(reduction, 0) return reduction def scan_thrust( data, output_dtype, exclusive=True, return_reduction=False, binop=tvm.tir.generic.add ): """Do exclusive or inclusive scan on 1D or multidimensional input, using thrust. Parameters ---------- data : tvm.te.Tensor Input data of any shape. The scan is done over the innermost axis. output_dtype: string The dtype of the output scan tensor. exclusive: bool, optional Whether or not do exclusive or inclusive scan. return_reduction: bool, optional Whether or not return a (N-1)-D tensor storing the reduction of each scan axis. Reductions are computed as part of the upsweep pass, so there is no extra cost. If False, reductions are ignored. It must be False when exclusive is False. binop: function, optional A binary associative op to use for scan. Since we need to lookup the corresponding thrust function, arbitrariy callables are not supported. Currently only tvm.tir.generic.add can be passed in. Returns ------- output : tvm.te.Tensor A N-D tensor of the same rank N and shape as the input data. reduction : tvm.te.Tensor, optional (N-1)-D tensor storing the reduction of each scan axis. Returned if return_reduction is True. """ data_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "data_buf", data_alignment=8) output_buf = tvm.tir.decl_buffer(data.shape, output_dtype, "output_buf", data_alignment=8) output = te.extern( [data.shape], [data], lambda ins, outs: tvm.tir.call_packed( _get_thrust_func_name(binop), ins[0], outs[0], exclusive ), dtype=[output_dtype], in_buffers=[data_buf], out_buffers=[output_buf], name="exclusive_scan_thrust", tag="exclusive_scan_thrust_gpu", ) if return_reduction: assert exclusive, "return_reduction should be False for inclusive scan" reduction = get_reduction_from_exclusive_scan(data, output, binop) return output, reduction return output def exclusive_scan( data, axis=-1, return_reduction=False, output_dtype=None, binop=tvm.tir.generic.add, identity_value=0, ): """Do exclusive scan on 1D or multidimensional input. Parameters ---------- data : tvm.te.Tensor Input data of any shape. axis: int, optional The axis to do scan on. By default, scan is done on the innermost axis. return_reduction: bool, optional Whether or not return a tensor storing the reduction over each scan axis. If the input rank is N, this tensor is of rank N - 1. Reductions are computed as part of the upsweep pass, so there is no extra cost. If False, reductions are ignored. output_dtype: string, optional The dtype of the output scan tensor. If not provided, the dtype of the input is used. binop: function, optional A binary associative op to use for scan. The function takes two TIR expressions and produce a new TIR expression. By default it uses tvm.tir.generic.add to compute prefix sum. identity_value: int or float A value for the binary operation which provides the identity property. E.g. if * is your operator and i is the identity_value then a * i = a for all a in the domain of your operation. Returns ------- output : tvm.te.Tensor A N-D tensor of the same rank N and shape as the input data. reduction : tvm.te.Tensor, optional (N-1)-D tensor storing the reduction of each scan axis. Returned if return_reduction is True. """ def do_scan(data, output_dtype): target = tvm.target.Target.current() # TODO: add support for a prod_scan if ( target and binop == tvm.tir.generic.add and ( can_use_thrust(target, "tvm.contrib.thrust.sum_scan") or can_use_rocthrust(target, "tvm.contrib.thrust.sum_scan") ) ): return scan_thrust( data, output_dtype, exclusive=True, return_reduction=return_reduction, binop=binop ) if ndim == 1: # TIR exclusive scan accepts only 2D or higher-rank inputs. data = expand_dims(data, axis=0) data_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "data_buf", data_alignment=8) output_buf = tvm.tir.decl_buffer(data.shape, output_dtype, "output_buf", data_alignment=8) if return_reduction: output, reduction = te.extern( [data.shape, data.shape[:-1]], [data], lambda ins, outs: exclusive_scan_ir( ins[0], outs[0], outs[1], binop=binop, identity_value=identity_value ), dtype=[output_dtype, output_dtype], in_buffers=[data_buf], name="exclusive_scan", tag="exclusive_scan_gpu", ) else: output = te.extern( [data.shape], [data], lambda ins, outs: exclusive_scan_ir( ins[0], outs[0], binop=binop, identity_value=identity_value ), dtype=[output_dtype], in_buffers=[data_buf], out_buffers=[output_buf], name="exclusive_scan", tag="exclusive_scan_gpu", ) reduction = None if ndim == 1: output = squeeze(output, 0) if return_reduction: reduction = squeeze(reduction, 0) if return_reduction: return output, reduction return output if output_dtype is None or output_dtype == "": output_dtype = data.dtype ndim = len(data.shape) if axis < 0: axis += ndim # If scan axis is not the innermost one, swap the scan and the innermost axes # Scan is always done on the innermost axis, for performance reason. if axis != ndim - 1: axes = swap(list(range(ndim)), axis) data = transpose(data, axes) if return_reduction: output, reduction = do_scan(data, output_dtype) else: output = do_scan(data, output_dtype) if axis != ndim - 1: axes = swap(list(range(ndim)), axis) output = transpose(output, axes) if return_reduction: return output, reduction return output def inclusive_scan(data, axis=-1, output_dtype=None, binop=tvm.tir.generic.add, identity_value=0): """Do inclusive scan on 1D or multidimensional input. Parameters ---------- data : tvm.te.Tensor Input data of any shape. axis: int, optional The axis to do scan on. By default, scan is done on the innermost axis. output_dtype: string, optional The dtype of the output scan tensor. If not provided, the dtype of the input is used. binop: function, optional A binary associative op to use for scan. The function takes two TIR expressions and produce a new TIR expression. By default it uses tvm.tir.generic.add to compute prefix sum. identity_value: int or float A value for the binary operation which provides the identity property. E.g. if * is your operator and i is the identity_value then a * i = a for all a in the domain of your operation. Returns ------- output : tvm.te.Tensor A N-D tensor of the same rank N as the input data. """ ex_scan = exclusive_scan( data, axis, output_dtype=output_dtype, binop=binop, identity_value=identity_value ) if output_dtype is not None and data.dtype != output_dtype and output_dtype != "": data = cast(data, output_dtype) return binop(data, ex_scan) def schedule_scan(outs): """Schedule for scan operator. Parameters ---------- outs: Array of Tensor The computation graph description of scan in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) scheduled_ops = [] def traverse(op): if tag.is_injective(op.tag): schedule_injective_from_existing(s, op.output(0)) for tensor in op.input_tensors: if tensor.op.input_tensors and tensor.op not in scheduled_ops: traverse(tensor.op) scheduled_ops.append(op) for out in outs: traverse(out.op) return s def scanop( data: tvm.te.Tensor, binop: Callable[["tvm.Expr", "tvm.Expr"], "tvm.Expr"], identity_value: Union[float, int], axis: Optional[int] = None, dtype: Optional[str] = None, exclusive: Optional[bool] = None, ) -> tvm.te.Tensor: """Cumulative binary operator (scan) with similar axis behavior as np.cumsum and np.cumprod. See cumprod and cumsum for an example of use. E.g. if * is your binary operator and the input tensor is [1, 2, 3, 4] the output may be [1, 1 * 2, 1 * 2 * 3, 1 * 2 * 3 * 4] Parameters ---------- data : tvm.te.Tensor The input data to the operator. binop: Callable (tvm.Expr, tvm.Expr) -> tvm.Expr A binary operator which should be associative and commutative. E.g. if * is your operator then a * (b * c) = (a * b) * c and a * b = b * a identity_value: int or float A value for the binary operation which provides the identity property. E.g. if * is your operator and i is the identity_value then a * i = a for all a in the domain of your operation. axis : int, optional Axis along which the operation is computed. The default (None) is to compute the cumulative operation over the flattened array. dtype : string, optional Type of the returned array and of the accumulator in which the elements are computed. If dtype is not specified, it defaults to the dtype of data. exclusive : bool, optional If true will return exclusive cumulative operation in which the first element is not included. In other terms, if true, the j-th output element would be the cumulative operation of the first (j-1) elements. Otherwise, it would be the cumulative operation of the first j elements. Returns ------- result : tvm.te.Tensor The result has the same size as data, and the same shape as data if axis is not None. If axis is None, the result is a 1-d array. """ if axis is None: axis = 0 data = reshape(data, (prod(data.shape),)) axis = get_const_int(axis) if exclusive is not None and exclusive: return exclusive_scan( data, axis, output_dtype=dtype, binop=binop, identity_value=identity_value ) return inclusive_scan( data, axis, output_dtype=dtype, binop=binop, identity_value=identity_value ) def cumsum( data: tvm.te.Tensor, axis: Optional[int] = None, dtype: Optional[int] = None, exclusive: Optional[bool] = None, ) -> tvm.te.Tensor: """Numpy style cumsum op. Return the cumulative sum of the elements along a given axis. Parameters ---------- data : tvm.te.Tensor The input data to the operator. axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. dtype : string, optional Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of data. exclusive : bool, optional If true will return exclusive sum in which the first element is not included. In other terms, if true, the j-th output element would be the sum of the first (j-1) elements. Otherwise, it would be the sum of the first j elements. Returns ------- result : tvm.te.Tensor The result has the same size as data, and the same shape as data if axis is not None. If axis is None, the result is a 1-d array. """ return scanop( data=data, binop=tvm.tir.generic.add, identity_value=0, axis=axis, dtype=dtype, exclusive=exclusive, ) def cumprod( data: tvm.te.Tensor, axis: Optional[int] = None, dtype: Optional[int] = None, exclusive: Optional[bool] = None, ): """Numpy style cumprod op. Return the cumulative product of the elements along a given axis. Parameters ---------- data : tvm.te.Tensor The input data to the operator. axis : int, optional Axis along which the cumulative product is computed. The default (None) is to compute the cumproduct over the flattened array. dtype : string, optional Type of the returned array and of the accumulator in which the elements are multiplied. If dtype is not specified, it defaults to the dtype of data. exclusive : bool, optional If True, will return exclusive product in which the first element is not included. In other terms, if True, the j-th output element would be the product of the first (j-1) elements. Otherwise, it would be the product of the first j elements. Returns ------- result : tvm.te.Tensor The result has the same size as data, and the same shape as data if axis is not None. If axis is None, the result is a 1-d array. """ return scanop( data=data, binop=tvm.tir.generic.multiply, identity_value=1, axis=axis, dtype=dtype, exclusive=exclusive, )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/scatter.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-member, too-many-locals, too-many-arguments, too-many-statements, singleton-comparison, unused-argument """Scatter operator """ import tvm from tvm import te, autotvm from ..scatter import _verify_scatter_nd_inputs from ..generic import schedule_extern from .nms import atomic_add from .sort import stable_sort_by_key_thrust from ..utils import prod, ceil_div def _memcpy_ir(ib, out_ptr, data_ptr, shape): fused = prod(shape) with ib.new_scope(): num_thread = int(tvm.target.Target.current(allow_none=False).max_num_threads) num_blocks = ceil_div(fused, num_thread) bx = te.thread_axis("blockIdx.x") ib.scope_attr(bx, "thread_extent", num_blocks) tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", num_thread) tid = bx * num_thread + tx with ib.if_scope(tid < fused): out_ptr[tid] = data_ptr[tid] def gen_ir_1d(data, indices, updates, axis, out, update_func): """Generate scatter ir for 1d inputs Parameters ---------- data : tir.Tensor The input data to the operator. indices : tir.Tensor The index locations to update. updates : tir.Tensor The values to update. axis : int The axis to scatter on out : tir.Tensor The output tensor. update_func: function The function to be applied to a destination and the corresponding update. Returns ------- ret : tir The computational ir. """ assert axis == 0 n = data.shape[0] ib = tvm.tir.ir_builder.create() out_ptr = ib.buffer_ptr(out) data_ptr = ib.buffer_ptr(data) _memcpy_ir(ib, out_ptr, data_ptr, data.shape) indices_ptr = ib.buffer_ptr(indices) updates_ptr = ib.buffer_ptr(updates) ni = indices.shape[0] with ib.new_scope(): bx = te.thread_axis("blockIdx.x") ib.scope_attr(bx, "thread_extent", 1) with ib.for_range(0, ni, name="i") as i: index = indices_ptr[i] with ib.if_scope(index < 0): update_func(out_ptr, index + n, updates_ptr[i]) with ib.else_scope(): update_func(out_ptr, index, updates_ptr[i]) return ib.get() def gen_ir_2d(data, indices, updates, axis, out, update_func): """Generate scatter ir for 2d inputs Parameters ---------- data : tir.Tensor The input data to the operator. indices : tir.Tensor The index locations to update. updates : tir.Tensor The values to update. axis : int The axis to scatter on out : tir.Tensor The output tensor. update_func: function The function to be applied to a destination and the corresponding update Returns ------- ret : tir The computational ir. """ n = data.shape[0] c = data.shape[1] ib = tvm.tir.ir_builder.create() out_ptr = ib.buffer_ptr(out) data_ptr = ib.buffer_ptr(data) _memcpy_ir(ib, out_ptr, data_ptr, data.shape) indices_ptr = ib.buffer_ptr(indices) updates_ptr = ib.buffer_ptr(updates) ni = indices.shape[0] ci = indices.shape[1] if axis == 0: with ib.new_scope(): j = te.thread_axis("blockIdx.x") ib.scope_attr(j, "thread_extent", ci) with ib.for_range(0, ni, name="i") as i: idx = i * ci + j index = indices_ptr[idx] with ib.if_scope(index < 0): update_func(out_ptr, (index + n) * c + j, updates_ptr[idx]) with ib.else_scope(): update_func(out_ptr, index * c + j, updates_ptr[idx]) else: with ib.new_scope(): i = te.thread_axis("blockIdx.x") ib.scope_attr(i, "thread_extent", ni) with ib.for_range(0, ci, name="j") as j: idx = i * ci + j index = indices_ptr[idx] with ib.if_scope(index < 0): update_func(out_ptr, i * c + (index + c), updates_ptr[idx]) with ib.else_scope(): update_func(out_ptr, i * c + index, updates_ptr[idx]) return ib.get() def gen_ir_3d(data, indices, updates, axis, out, update_func): """Generate scatter ir for 3d inputs Parameters ---------- data : tir.Tensor The input data to the operator. indices : tir.Tensor The index locations to update. updates : tir.Tensor The values to update. axis : int The axis to scatter on out : tir.Tensor The output tensor. update_func: function The function to be applied to a destination and the corresponding update Returns ------- ret : tir The computational ir. """ warp_size = tvm.target.Target.current(False).thread_warp_size n = data.shape[0] c = data.shape[1] h = data.shape[2] ib = tvm.tir.ir_builder.create() out_ptr = ib.buffer_ptr(out) data_ptr = ib.buffer_ptr(data) _memcpy_ir(ib, out_ptr, data_ptr, data.shape) indices_ptr = ib.buffer_ptr(indices) updates_ptr = ib.buffer_ptr(updates) ni = indices.shape[0] ci = indices.shape[1] hi = indices.shape[2] if axis == 0: with ib.new_scope(): j = te.thread_axis("blockIdx.x") ib.scope_attr(j, "thread_extent", ci) tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", warp_size) with ib.for_range(0, ni, name="i") as i: with ib.for_range(0, ceil_div(hi, warp_size), name="k") as k_: k = k_ * warp_size + tx with ib.if_scope(k < hi): idx = (i * ci + j) * hi + k index = indices_ptr[idx] with ib.if_scope(index < 0): update_func(out_ptr, ((index + n) * c + j) * h + k, updates_ptr[idx]) with ib.else_scope(): update_func(out_ptr, (index * c + j) * h + k, updates_ptr[idx]) elif axis == 1: with ib.new_scope(): i = te.thread_axis("blockIdx.x") ib.scope_attr(i, "thread_extent", ni) tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", warp_size) with ib.for_range(0, ci, name="j") as j: with ib.for_range(0, ceil_div(hi, warp_size), name="k") as k_: k = k_ * warp_size + tx with ib.if_scope(k < hi): idx = (i * ci + j) * hi + k index = indices_ptr[idx] with ib.if_scope(index < 0): update_func(out_ptr, (i * c + (index + c)) * h + k, updates_ptr[idx]) with ib.else_scope(): update_func(out_ptr, (i * c + index) * h + k, updates_ptr[idx]) else: with ib.new_scope(): i = te.thread_axis("blockIdx.x") ib.scope_attr(i, "thread_extent", ni) j = te.thread_axis("blockIdx.y") ib.scope_attr(j, "thread_extent", ci) with ib.for_range(0, hi, name="k") as k: idx = (i * ci + j) * hi + k index = indices_ptr[idx] with ib.if_scope(index < 0): update_func(out_ptr, (i * c + j) * h + (index + h), updates_ptr[idx]) with ib.else_scope(): update_func(out_ptr, (i * c + j) * h + index, updates_ptr[idx]) return ib.get() def gen_ir_4d(data, indices, updates, axis, out, update_func): """Generate scatter ir for 4d inputs Parameters ---------- data : tir.Tensor The input data to the operator. indices : tir.Tensor The index locations to update. updates : tir.Tensor The values to update. axis : int The axis to scatter on out : tir.Tensor The output tensor. update_func: function The function to be applied to a destination and the corresponding update Returns ------- ret : tir The computational ir. """ warp_size = tvm.target.Target.current(False).thread_warp_size n = data.shape[0] c = data.shape[1] h = data.shape[2] w = data.shape[3] ib = tvm.tir.ir_builder.create() out_ptr = ib.buffer_ptr(out) data_ptr = ib.buffer_ptr(data) _memcpy_ir(ib, out_ptr, data_ptr, data.shape) indices_ptr = ib.buffer_ptr(indices) updates_ptr = ib.buffer_ptr(updates) ni = indices.shape[0] ci = indices.shape[1] hi = indices.shape[2] wi = indices.shape[3] if axis == 0: with ib.new_scope(): j = te.thread_axis("blockIdx.y") ib.scope_attr(j, "thread_extent", ci) k = te.thread_axis("blockIdx.z") ib.scope_attr(k, "thread_extent", hi) tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", warp_size) with ib.for_range(0, ni, name="i") as i: with ib.for_range(0, ceil_div(wi, warp_size), name="l") as l_: l = l_ * warp_size + tx with ib.if_scope(l < wi): idx = ((i * ci + j) * hi + k) * wi + l index = indices_ptr[idx] with ib.if_scope(index < 0): update_func( out_ptr, (((index + n) * c + j) * h + k) * w + l, updates_ptr[idx] ) with ib.else_scope(): update_func( out_ptr, ((index * c + j) * h + k) * w + l, updates_ptr[idx] ) elif axis == 1: with ib.new_scope(): i = te.thread_axis("blockIdx.x") ib.scope_attr(i, "thread_extent", ni) k = te.thread_axis("blockIdx.z") ib.scope_attr(k, "thread_extent", hi) tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", warp_size) with ib.for_range(0, ci, name="j") as j: with ib.for_range(0, ceil_div(wi, warp_size), name="l") as l_: l = l_ * warp_size + tx with ib.if_scope(l < wi): idx = ((i * ci + j) * hi + k) * wi + l index = indices_ptr[idx] with ib.if_scope(index < 0): update_func( out_ptr, ((i * c + (index + c)) * h + k) * w + l, updates_ptr[idx] ) with ib.else_scope(): update_func( out_ptr, ((i * c + index) * h + k) * w + l, updates_ptr[idx] ) elif axis == 2: with ib.new_scope(): i = te.thread_axis("blockIdx.x") ib.scope_attr(i, "thread_extent", ni) j = te.thread_axis("blockIdx.y") ib.scope_attr(j, "thread_extent", ci) tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", warp_size) with ib.for_range(0, hi, name="k") as k: with ib.for_range(0, ceil_div(wi, warp_size), name="l") as l_: l = l_ * warp_size + tx with ib.if_scope(l < wi): idx = ((i * ci + j) * hi + k) * wi + l index = indices_ptr[idx] with ib.if_scope(index < 0): update_func( out_ptr, ((i * c + j) * h + (index + h)) * w + l, updates_ptr[idx] ) with ib.else_scope(): update_func( out_ptr, ((i * c + j) * h + index) * w + l, updates_ptr[idx] ) else: with ib.new_scope(): i = te.thread_axis("blockIdx.x") ib.scope_attr(i, "thread_extent", ni) j = te.thread_axis("blockIdx.y") ib.scope_attr(j, "thread_extent", ci) k = te.thread_axis("blockIdx.z") ib.scope_attr(k, "thread_extent", hi) with ib.for_range(0, wi, name="l") as l: idx = ((i * ci + j) * hi + k) * wi + l index = indices_ptr[idx] with ib.if_scope(index < 0): update_func(out_ptr, ((i * c + j) * h + k) * w + (index + w), updates_ptr[idx]) with ib.else_scope(): update_func(out_ptr, ((i * c + j) * h + k) * w + index, updates_ptr[idx]) return ib.get() @autotvm.register_topi_compute("scatter.cuda") def scatter(cfg, data, indices, updates, axis=0): """Update data at positions defined by indices with values in updates Parameters ---------- data : relay.Expr The input data to the operator. indices : relay.Expr The index locations to update. updates : relay.Expr The values to update. axis : int The axis to scatter on Returns ------- ret : relay.Expr The computed result. """ if axis < 0: axis += len(data.shape) assert axis >= 0 assert axis < len(data.shape) rank = len(data.shape) assert 1 <= rank <= 4, "scatter only supports 1-4 dimensions" ir_funcs = { 1: gen_ir_1d, 2: gen_ir_2d, 3: gen_ir_3d, 4: gen_ir_4d, } def update_func(dst_ptr, dst_index, update): dst_ptr[dst_index] = update out_shape = data.shape out_buf = tvm.tir.decl_buffer(out_shape, data.dtype, "out_buf") cfg.add_flop(1) # A dummy value to satisfy AutoTVM out = te.extern( [out_shape], [data, indices, updates], lambda ins, outs: ir_funcs[rank](ins[0], ins[1], ins[2], axis, outs[0], update_func), dtype=data.dtype, out_buffers=[out_buf], name="scatter_gpu", tag="scatter_gpu", ) return out @autotvm.register_topi_schedule("scatter.cuda") def schedule_scatter(_, outs): return schedule_extern(outs) def gen_scatter_1d_thrust(data, indices_sorted, updates_sorted, out): """Generate scatter ir for 1d inputs, using a sorting based approach. By sorting indices and comparing neighboring two indices, we can tell which of elements in the indices tensor can scatter its update value into the output. Sorting of indices, and sorting of updates with respect to indices, can be done at the same time by thrust's sort_by_key function. It is important that sorting be done in a "stable" way via stable_sort, to guarantee deterministic output. Negative indices are assumed to have been converted to corresponding positive indices. Parameters ---------- data : tir.Tensor The input data to the operator. indices_sorted : tir.Tensor The sorted index locations to update. updates : tir.Tensor The values to update, sorted by indices. out : tir.Tensor The output tensor. Returns ------- ret : tir The computational ir. """ n = data.shape[0] ib = tvm.tir.ir_builder.create() out_ptr = ib.buffer_ptr(out) data_ptr = ib.buffer_ptr(data) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads with ib.new_scope(): nthread_bx = ceil_div(n, nthread_tx) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * nthread_tx + tx with ib.if_scope(tid < n): out_ptr[tid] = data_ptr[tid] indices_ptr = ib.buffer_ptr(indices_sorted) updates_ptr = ib.buffer_ptr(updates_sorted) ni = indices_sorted.shape[0] with ib.new_scope(): nthread_bx = ceil_div(ni, nthread_tx) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * nthread_tx + tx with ib.if_scope(tid == ni - 1): # The last element can always update. index = indices_ptr[tid] update = updates_ptr[tid] out_ptr[index] = update with ib.else_scope(): with ib.if_scope(tid < ni - 1): index = indices_ptr[tid] index_next = indices_ptr[tid + 1] # If the next neighbor in the sorted list of indices has a different index, # that means thread tid is the last one to have this index. # This thread can update the output. with ib.if_scope(index != index_next): update = updates_ptr[tid] out_ptr[index] = update return ib.get() @autotvm.register_topi_compute("scatter_via_sort.cuda") def scatter_via_sort(cfg, data, indices, updates, axis=0): """Update data at positions defined by indices with values in updates Parameters ---------- data : relay.Expr The input data to the operator. indices : relay.Expr The index locations to update. updates : relay.Expr The values to update. axis : int The axis to scatter on Returns ------- ret : relay.Expr The computed result. """ if axis < 0: axis += len(data.shape) assert axis == 0 and len(data.shape) == 1, "sorting based scatter only supported for 1d input" cfg.add_flop(1) # A dummy value to satisfy AutoTVM out_shape = data.shape out_buf = tvm.tir.decl_buffer(out_shape, data.dtype, "out_buf") indices_sorted, updates_sorted = stable_sort_by_key_thrust(indices, updates, for_scatter=True) out = te.extern( [out_shape], [data, indices_sorted, updates_sorted], lambda ins, outs: gen_scatter_1d_thrust(ins[0], ins[1], ins[2], outs[0]), dtype=data.dtype, out_buffers=[out_buf], name="scatter_via_sort_gpu", tag="scatter_via_sort_gpu", ) return out @autotvm.register_topi_schedule("scatter_via_sort.cuda") def schedule_scatter_via_sort(_, outs): return schedule_extern(outs) def gen_scatter_add_1d_atomic(data, indices, updates, axis, out, _): """Generate scatter add ir for 1d inputs, using atomic_add instruction Parameters ---------- data : tir.Tensor The input data to the operator. indices : tir.Tensor The index locations to update. updates : tir.Tensor The values to update. axis : int The axis to scatter on out : tir.Tensor The output tensor. Returns ------- ret : tir The computational ir. """ assert axis == 0 n = data.shape[0] ib = tvm.tir.ir_builder.create() out_ptr = ib.buffer_ptr(out) data_ptr = ib.buffer_ptr(data) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads with ib.new_scope(): nthread_bx = ceil_div(n, nthread_tx) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * nthread_tx + tx with ib.if_scope(tid < n): out_ptr[tid] = data_ptr[tid] indices_ptr = ib.buffer_ptr(indices) updates_ptr = ib.buffer_ptr(updates) ni = indices.shape[0] atomic_add_return = ib.allocate(updates.dtype, (1,), name="atomic_add_return", scope="local") with ib.new_scope(): nthread_bx = ceil_div(ni, nthread_tx) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * nthread_tx + tx with ib.if_scope(tid < ni): index = indices_ptr[tid] with ib.if_scope(index < 0): atomic_add_return[0] = atomic_add( tvm.tir.call_intrin("handle", "tir.address_of", out_ptr[index + n]), updates_ptr[tid], ) with ib.else_scope(): atomic_add_return[0] = atomic_add( tvm.tir.call_intrin("handle", "tir.address_of", out_ptr[index]), updates_ptr[tid], ) return ib.get() def scatter_add(data, indices, updates, axis=0): """Update data by adding values in updates at positions defined by indices Parameters ---------- data : relay.Expr The input data to the operator. indices : relay.Expr The index locations to update. updates : relay.Expr The values to be added. axis : int The axis to scatter on Returns ------- ret : relay.Expr The computed result. """ if axis < 0: axis += len(data.shape) assert axis >= 0 assert axis < len(data.shape) rank = len(data.shape) assert 1 <= rank <= 4, "scatter_add only supports 1-4 dimensions" ir_funcs = { 1: gen_scatter_add_1d_atomic, 2: gen_ir_2d, 3: gen_ir_3d, 4: gen_ir_4d, } def update_func(dst_ptr, dst_index, update): dst_ptr[dst_index] += update out_shape = data.shape out_buf = tvm.tir.decl_buffer(out_shape, data.dtype, "out_buf") out = te.extern( [out_shape], [data, indices, updates], lambda ins, outs: ir_funcs[rank](ins[0], ins[1], ins[2], axis, outs[0], update_func), dtype=data.dtype, out_buffers=[out_buf], name="scatter_add_gpu", tag="scatter_add_gpu", ) return out def scatter_nd(data, indices, updates, mode): """Scatter elements from a n-dimension array. Given updates with shape (Y_0, ..., Y_{K-1}, X_M, ..., X_{N-1}), indices with shape (M, Y_0, ..., Y_{K-1}), and output copied from data with shape (X_0, X_1, ..., X_{N-1}), scatter_nd computes .. code-block:: output[indices[0, y_0, ..., y_{K-1}], ..., indices[M-1, y_0, ..., y_{K-1}], x_M, ..., x_{N-1} ] = f(output[...], updates[y_0, ..., y_{K-1}, x_M, ..., x_{N-1}]) where the update function f is determinted by the mode. Parameters ---------- data : tvm.te.Tensor The source array. indices : tvm.te.Tensor The indices of the values to extract. updates : tvm.te.Tensor The updates to apply at the Indices mode : string The update mode for the algorithm, either "update" or "add" If update, the update values will replace the input data If add, the update values will be added to the input data Returns ------- ret : tvm.te.Tensor """ _verify_scatter_nd_inputs(data, indices, updates) def gen_ir(data_ptr, indices_ptr, updates_ptr, out_ptr): ib = tvm.tir.ir_builder.create() data = ib.buffer_ptr(data_ptr) indices = ib.buffer_ptr(indices_ptr) updates = ib.buffer_ptr(updates_ptr) out = ib.buffer_ptr(out_ptr) atomic_add_return = ib.allocate( updates.dtype, (1,), name="atomic_add_return", scope="local" ) fused_indices_dimension = 1 for i in indices_ptr.shape[1:]: fused_indices_dimension *= i fused_updates_dimension = 1 for i in updates_ptr.shape[len(indices_ptr.shape) - 1 :]: fused_updates_dimension *= i fused_shape = 1 for i in data_ptr.shape: fused_shape *= i max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) tdim = min(max_threads, fused_updates_dimension) with ib.new_scope(): bdim = ceil_div(fused_shape, tdim) bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") ib.scope_attr(bx, "thread_extent", bdim) ib.scope_attr(tx, "thread_extent", tdim) index = bx * tdim + tx with ib.if_scope(index < fused_shape): out[index] = data[index] # For better performance, we introduce blockIdx.y to implement for-loops # within one thread. # The code is parallel over the scattered indices, so we use atomic_add # to guarantee correctness when mode=="add" # For now, atomic is not supported by target "vulkan", "metal", or "cuda" with "int64" # So we fallback to normal algorithm, using "+=" rather than atomic_add # TODO (CaptainDuke): # Since multiple threads compete for the same write index, which leads to # non-determinstic output for update mode. We could add a new attribute, # "allow_non_deterministic", which can be conditionally set to True by # each frontend when non-determinsm is allowed. cur_target_kind = str(tvm.target.Target.current(allow_none=False).kind) with ib.new_scope(): if ( mode == "add" and cur_target_kind not in ["vulkan", "metal"] and updates.dtype in ["int32", "float32"] ): bdim_x = fused_indices_dimension bdim_y = ceil_div(fused_updates_dimension, tdim) # In case of large input sizes, fused_indices_dimension might be too large. # So we use blockIdx.x because holds larger scales. bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") tx = te.thread_axis("threadIdx.x") ib.scope_attr(bx, "thread_extent", bdim_x) ib.scope_attr(by, "thread_extent", bdim_y) ib.scope_attr(tx, "thread_extent", tdim) j = by * tdim + tx with ib.if_scope(j < fused_updates_dimension): offset = fused_updates_dimension index = j # This is x_M, .. x_{N-1} part of the index into out. # Build up the indices[0, y_0, .. y_{K-1}], .. indices[M-1, y_0, .. y_{K-1}] # part of the index into out. up_index = bx * fused_updates_dimension + j for l in reversed(range(indices_ptr.shape[0].value)): # indices[bx * l * fused_indices_dimension] = indices[l, y_0, ... y_{k-1}] index += offset * indices[bx + l * fused_indices_dimension] offset *= data_ptr.shape[l] atomic_add_return[0] = atomic_add( tvm.tir.call_intrin("handle", "tir.address_of", out[index]), updates[up_index], ) else: bdim_x = ceil_div(fused_updates_dimension, tdim) bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") ib.scope_attr(bx, "thread_extent", bdim_x) ib.scope_attr(tx, "thread_extent", tdim) with ib.for_range(0, fused_indices_dimension) as i: j = bx * tdim + tx with ib.if_scope(j < fused_updates_dimension): offset = fused_updates_dimension index = j # This is x_M, .. x_{N-1} part of the index into out. # Build up the # indices[0, y_0, .. y_{K-1}], ... indices[M-1, y_0, .. y_{K-1}] # part of the index into out. for l in reversed(range(indices_ptr.shape[0].value)): # indices[i * l * fused_indices_dimension] = indices[l, y_0, # ... y_{k-1}] index += offset * indices[i + l * fused_indices_dimension] offset *= data_ptr.shape[l] if mode == "update": out[index] = updates[i * fused_updates_dimension + j] elif mode == "add": out[index] += updates[i * fused_updates_dimension + j] else: raise NotImplementedError("scatter_nd mode not in [update, add]:", mode) return ib.get() out_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "out_buf") return te.extern( [data.shape], [data, indices, updates], lambda ins, outs: gen_ir(ins[0], ins[1], ins[2], outs[0]), dtype=data.dtype, out_buffers=[out_buf], name="scatter_nd_cuda", tag="scatter_nd_cuda", )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/searchsorted.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """searchsorted operator for GPU""" import tvm from tvm import te from .. import utils from ..searchsorted import binary_search def searchsorted(sorted_sequence, values, right, out_dtype="int64"): """Find indices where elements should be inserted to maintain order. If `sorted_sequence` is N-dimensional, the innermost dimension of `values` are searched in the corresponding dimension of `sorted_sequence`. Parameters ---------- sorted_sequence : te.Tensor N-D or 1-D Tensor, containing monotonically increasing sequence on the innermost dimension. values : te.Tensor N-D Tensor containing the search values. When `sorted_sequence` is 1-D, the shape of `values` can be arbitrary. Otherwise, ranks of `sorted_sequence` and `values` must be the same, and outer N-1 axes must have the same size. right : bool, optional Controls which index is returned if a value lands exactly on one of sorted values. If False, the index of the first suitable location found is given. If true, return the last such index. If there is no suitable index, return either 0 or N (where N is the size of the innermost dimension). dtype : string, optional The data type of the output indices. Returns ------- indices : te.Tensor Tensor with same shape as values, representing the indices of elements of `values` if they are inserted in `sorted_sequence`. """ def ir(sorted_sequence, values, indices): ib = tvm.tir.ir_builder.create() sorted_sequence_shape = sorted_sequence.shape values_shape = values.shape num_search = utils.prod(values_shape) search_range = sorted_sequence_shape[-1] sorted_sequence = ib.buffer_ptr(sorted_sequence) values = ib.buffer_ptr(values) indices = ib.buffer_ptr(indices) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") ib.scope_attr( bx, "thread_extent", tvm.tir.indexdiv(num_search + max_threads - 1, max_threads) ) ib.scope_attr(tx, "thread_extent", max_threads) tid = bx * max_threads + tx with ib.if_scope(tid < num_search): if len(sorted_sequence_shape) == 1: sequence_offset = 0 else: sequence_id = tid // values_shape[-1] sequence_offset = sequence_id * search_range indices[tid] = binary_search( ib, sequence_offset, search_range, sorted_sequence, values[tid], right, out_dtype, ) return ib.get() return te.extern( values.shape, [sorted_sequence, values], lambda ins, outs: ir(ins[0], ins[1], outs[0]), name="searchsorted", dtype=out_dtype, )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/softmax.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable, trailing-whitespace """Schedule for softmax operator""" from tvm.target import Target from tvm import te from tvm.contrib import cudnn from .. import generic from .injective import schedule_injective_from_existing from ..utils import get_const_int, traverse_inline def _schedule_softmax(softmax_op, s, outs, tgt): op_tag = softmax_op.tag axis = get_const_int(softmax_op.attrs["axis"]) # reduce axis if op_tag == "softmax_output": expsum = softmax_op.input_tensors[1] exp = softmax_op.input_tensors[0] max_elem = s[exp].op.input_tensors[1] delta = None elif op_tag == "fast_softmax_output": expsum = softmax_op.input_tensors[1] exp = softmax_op.input_tensors[0] delta = s[exp].op.input_tensors[0] max_elem = s[delta].op.input_tensors[1] elif op_tag == "log_softmax_output": exp = None delta = None max_elem = softmax_op.input_tensors[1] expsum = softmax_op.input_tensors[2] else: raise ValueError( "Tag is expected to be softmax_output or log_softmax_output. \ Got {0}".format( op_tag ) ) # The nvptx and rocm backends only supports 32-bits warp shuffle # instructions. # # TODO(tvm-team) Fix nvptx codegen or deprecate nvptx backend. def sched_warp_softmax(): if tgt.kind.name in ["nvptx", "rocm"]: dtype = softmax_op.output(0).dtype return dtype in ["float32", "int32"] if tgt.kind.name != "cuda": # this is used as the gpu schedule for other arches which # may not have warp reductions return False return True if len(outs[0].shape) != 2: ops = [max_elem.op, expsum.op, softmax_op] if delta is not None: ops.append(delta.op) if exp is not None: ops.append(exp.op) if softmax_op != outs[0].op: ops.append(outs[0].op) for op in ops: s = schedule_injective_from_existing(s, op.output(0)) elif sched_warp_softmax(): # A warp of 32 threads performs a row reduction. num_thread = tgt.thread_warp_size block_x = te.thread_axis("blockIdx.x") thread_x = te.thread_axis((0, num_thread), "threadIdx.x") # (4) softmax output = outs[0] xo, xi = s[output].split(output.op.axis[axis], nparts=num_thread) xio, xii = s[output].split(xi, factor=4) s[output].vectorize(xii) s[output].bind(xo, thread_x) s[output].bind(output.op.axis[axis ^ 1], block_x) s[output].reorder(output.op.axis[axis ^ 1], xo, xio, xii) if softmax_op != outs[0].op: s[softmax_op].compute_at(s[output], xio) s[softmax_op].vectorize(softmax_op.axis[axis]) # vec_len == 4 # (3) expsum k = expsum.op.reduce_axis[0] ko, _ = s[expsum].split(k, nparts=num_thread) s[expsum].bind(ko, thread_x) s[expsum].compute_at(s[output], xo) # (2) exp if delta is not None: s[exp].compute_inline() s[delta].compute_inline() elif exp is not None: xo, xi = s[exp].split(exp.op.axis[axis], nparts=num_thread) _, xii = s[exp].split(xi, factor=4) s[exp].vectorize(xii) s[exp].bind(xo, thread_x) s[exp].compute_at(s[expsum], expsum.op.axis[0]) s[exp].compute_at(s[output], output.op.axis[axis ^ 1]) s[exp].set_scope("warp") # (1) max_elem k = max_elem.op.reduce_axis[0] ko, _ = s[max_elem].split(k, nparts=num_thread) s[max_elem].bind(ko, thread_x) if exp is not None and delta is None: s[max_elem].compute_at(s[exp], xo) else: s[max_elem].bind(ko, thread_x) s[max_elem].bind(max_elem.op.axis[0], block_x) else: num_thread = 64 block_x = te.thread_axis("blockIdx.x") thread_x = te.thread_axis((0, num_thread), "threadIdx.x") if delta is not None: s[exp].compute_inline() s[delta].compute_inline() elif exp is not None: s[exp].bind(exp.op.axis[axis ^ 1], block_x) s[max_elem].bind(max_elem.op.axis[0], block_x) k = expsum.op.reduce_axis[0] ko, ki = s[expsum].split(k, factor=num_thread) EF = s.rfactor(expsum, ki) s[expsum].bind(s[expsum].op.axis[0], block_x) s[expsum].bind(s[expsum].op.reduce_axis[0], thread_x) s[EF].compute_at(s[expsum], s[expsum].op.reduce_axis[0]) s[expsum].set_store_predicate(thread_x.var.equal(0)) output = outs[0] tx, xi = s[output].split(output.op.axis[axis], nparts=num_thread) s[output].bind(output.op.axis[axis ^ 1], block_x) s[output].bind(tx, thread_x) s[output].reorder(output.op.axis[axis ^ 1], tx, xi) if softmax_op != outs[0].op: s[softmax_op].compute_at(s[output], tx) def schedule_softmax(outs): """Schedule for softmax op. Parameters ---------- outs: Array of Tensor The computation graph description of softmax in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) tgt = Target.current(allow_none=False) def _callback(op): if "softmax" in op.tag: _schedule_softmax(op, s, outs, tgt) traverse_inline(s, outs[0].op, _callback) return s def softmax_cudnn(x, axis=-1): """Perform softmax on the data using cudnn""" return cudnn.softmax(x, axis) def schedule_softmax_cudnn(outs): """Schedule for softmax cudnn op""" return generic.schedule_extern(outs) def log_softmax_cudnn(x, axis=-1): """Perform log_softmax on the data using cudnn""" return cudnn.log_softmax(x, axis) def schedule_log_softmax_cudnn(outs): """Schedule for log_softmax cudnn op""" return generic.schedule_extern(outs)
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/sort.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-member, too-many-locals, too-many-arguments, too-many-statements, singleton-comparison, unused-argument, no-else-return """Sort related operators """ import tvm from tvm import te from .injective import schedule_injective_from_existing from ..transform import strided_slice, transpose from .. import tag from ..utils import ceil_div, swap from ..math import cast, ceil_log2 def _schedule_sort(outs): """Schedule for argsort operator. Parameters ---------- outs: Array of Tensor The computation graph description of argsort in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) scheduled_ops = [] def traverse(op): if tag.is_injective(op.tag): schedule_injective_from_existing(s, op.output(0)) for tensor in op.input_tensors: if tensor.op.input_tensors and tensor.op not in scheduled_ops: traverse(tensor.op) scheduled_ops.append(op) for out in outs: traverse(out.op) return s def _get_threads(ib, nthread_tx, nthread_bx, nthread_by, nthread_bz): tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) by = te.thread_axis("blockIdx.y") bz = te.thread_axis("blockIdx.z") ib.scope_attr(by, "thread_extent", nthread_by) ib.scope_attr(bz, "thread_extent", nthread_bz) return tx, bx, by, bz def _sort_init(ib, shape, axis, keys_in, keys_out, values_out=None, value_init_func=None): """Initialize the output buffers by copying from inputs""" axis_mul_before = 1 axis_mul_after = 1 if axis < 0: axis = len(shape) + axis for i, value in enumerate(shape, 0): if i < axis: axis_mul_before *= value elif i > axis: axis_mul_after *= value # Set up threading max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = ceil_div(shape[axis], max_threads) nthread_by = axis_mul_before nthread_bz = axis_mul_after # Copy the keys_in to initial output with ib.new_scope(): tx, bx, by, bz = _get_threads(ib, nthread_tx, nthread_bx, nthread_by, nthread_bz) tid = bx * nthread_tx + tx idx = (by * shape[axis] + tid) * axis_mul_after + bz with ib.if_scope(tid < shape[axis]): keys_out[idx] = keys_in[idx] if values_out is not None: values_out[idx] = value_init_func(idx, tid) return axis_mul_before, axis_mul_after ## TODO(mbrookhart): These are effective optimziation hyperparametrs ## Perhaps we can autotune? block_size = 128 thread_work = 4 def _odd_even_sort( ib, size, axis_mul_before, axis_mul_after, is_ascend, keys, keys_swap, values=None, values_swap=None, ): nthread_tx = block_size // 2 nthread_bx = ceil_div(size, block_size) nthread_by = axis_mul_before nthread_bz = axis_mul_after with ib.new_scope(): ib.scope_attr(tvm.tir.const(0), "hand_threaded", 0) tx, bx, by, bz = _get_threads(ib, nthread_tx, nthread_bx, nthread_by, nthread_bz) tid = 2 * tx start = bx * block_size ## Create shared memory as syncable thread scratch space tmp_keys_swap = ib.allocate( keys_swap.dtype, (block_size,), name="temp_keys_swap", scope="shared", ) if values_swap is not None: tmp_values_swap = ib.allocate( values_swap.dtype, (block_size,), name="temp_values_swap", scope="shared", ) ## Create thread local data for swapping temp_keys = ib.allocate(keys_swap.dtype, (1,), name="temp_keys", scope="local") if values_swap is not None: temp_values = ib.allocate(values_swap.dtype, (1,), name="temp_values", scope="local") temp_cond1 = ib.allocate(keys_swap.dtype, (1,), name="temp_cond1", scope="local") temp_cond2 = ib.allocate(keys_swap.dtype, (1,), name="temp_cond2", scope="local") # Copy data to scratch space base_idx = by * size * axis_mul_after + bz with ib.for_range(0, 2) as n: with ib.if_scope((tid + n + start) < size): tmp_keys_swap[tid + n] = keys[base_idx + (tid + n + start) * axis_mul_after] if values_swap is not None: tmp_values_swap[tid + n] = values[base_idx + (tid + n + start) * axis_mul_after] ib.emit(tvm.tir.Call(None, "tir.tvm_storage_sync", tvm.runtime.convert(["shared"]))) idxm = tvm.tir.indexmod # OddEvenTransposeSort current_sort_num = tvm.tir.min(block_size, size - start) with ib.for_range(0, current_sort_num) as k: n = idxm(tid + k, 2) with ib.if_scope(tid + n < current_sort_num - 1): temp_cond1[0] = tmp_keys_swap[tid + n] temp_cond2[0] = tmp_keys_swap[tid + n + 1] if is_ascend: cond = temp_cond1[0] > temp_cond2[0] else: cond = temp_cond1[0] < temp_cond2[0] with ib.if_scope(cond): temp_keys[0] = tmp_keys_swap[tid + n] tmp_keys_swap[tid + n] = tmp_keys_swap[tid + n + 1] tmp_keys_swap[tid + n + 1] = temp_keys[0] if values_swap is not None: temp_values[0] = tmp_values_swap[tid + n] tmp_values_swap[tid + n] = tmp_values_swap[tid + n + 1] tmp_values_swap[tid + n + 1] = temp_values[0] ib.emit(tvm.tir.Call(None, "tir.tvm_storage_sync", tvm.runtime.convert(["shared"]))) ## Copy sorted data to output with ib.for_range(0, 2) as n: with ib.if_scope(tid + n + start < size): keys[base_idx + (tid + n + start) * axis_mul_after] = tmp_keys_swap[tid + n] keys_swap[base_idx + (tid + n + start) * axis_mul_after] = tmp_keys_swap[tid + n] if values_swap is not None: values[base_idx + (tid + n + start) * axis_mul_after] = tmp_values_swap[tid + n] values_swap[base_idx + (tid + n + start) * axis_mul_after] = tmp_values_swap[ tid + n ] def _sort_common( ib, size, axis_mul_before, axis_mul_after, is_ascend, keys, keys_swap, values=None, values_swap=None, ): """Either sort only values or sort values by keys.""" ## This function performs a multi-level mergesort ## For blocks of length <= block_size, it does odd-even transpose sort ## in GPU shared memory ## For intermediate block sizes (>block_size, < max_threads * thread_work) ## it uses the mergpath algorthim https://arxiv.org/abs/1406.2628 ## to merge blocks in parallel ## At some point, the size of the blocks to be merged is too big for max_threads ## and we switch to using a dual-level mergepath where the outer mergepath ## finds the start/end locations of the inner mergepath so that we can split ## the merge into more blocks max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_by = axis_mul_before * axis_mul_after nthread_bz = 1 nthread_tx = max_threads nthread_bx = ceil_div(size, nthread_tx) def compare(a, b): """ Compare a and b in proper ascending or descending order """ if is_ascend: out = a <= b else: out = b <= a return out # Sort the lower levels of the merge using odd-even sort, it's fast for small inputs lower_lim = ceil_log2(block_size) _odd_even_sort( ib, size, axis_mul_before * axis_mul_after, 1, is_ascend, keys, keys_swap, values, values_swap, ) upper_lim = ceil_log2(size) def get_merge_begin(source, base_idx, aCount, bCount, aStart, bStart, diag, step_count): first = ib.allocate("int64", (1,), name="first", scope="local") mid = ib.allocate("int64", (1,), name="mid", scope="local") last = ib.allocate("int64", (1,), name="last", scope="local") first[0] = tvm.te.max(0, diag - bCount) last[0] = tvm.te.min(diag, aCount) with ib.while_loop(first[0] < last[0]): mid = (first[0] + last[0]) >> 1 a = source[base_idx + (aStart + mid)] b = source[base_idx + (bStart + diag - 1 - mid)] with ib.if_scope(compare(a, b)): first[0] = mid + 1 with ib.else_scope(): last[0] = mid return first[0], last[0] def serial_merge( source, dest, source_idx, dest_idx, base_idx, aCount, bCount, aStart, bStart, kStart, diag, step_count, first, last, ): i = ib.allocate("int64", (1,), name="i", scope="local") j = ib.allocate("int64", (1,), name="j", scope="local") i[0] = aStart + first j[0] = bStart + diag - last with ib.for_range(0, tvm.te.min(aCount + bCount - diag, step_count)) as count: i_idx = base_idx + i[0] j_idx = base_idx + j[0] k_idx = base_idx + (kStart + diag + count) def assign_i(): """assign i value to current output""" dest[k_idx] = source[i_idx] if values is not None: dest_idx[k_idx] = source_idx[i_idx] i[0] += 1 def assign_j(): """assign j value to current output""" dest[k_idx] = source[j_idx] if values is not None: dest_idx[k_idx] = source_idx[j_idx] j[0] += 1 ## if both of the iterators are in range with ib.if_scope(tvm.tir.all(i[0] < aStart + aCount, j[0] < bStart + bCount)): # compare them and insert whichever is next into the output with ib.if_scope(compare(source[i_idx], source[j_idx])): assign_i() with ib.else_scope(): assign_j() # otherwise, simply copy the remainder of the valid iterator to the output with ib.else_scope(): with ib.if_scope(i[0] < aStart + aCount): assign_i() with ib.else_scope(): assign_j() with ib.for_range(0, cast(upper_lim - lower_lim, "int64"), dtype="int64") as l2_width: width = 2 << (l2_width + lower_lim) # Define and launch the cuda kernel with ib.new_scope(): target = tvm.target.Target.current() if "vulkan" in str(target): # Vulkan can't handle dynamic nthread, so we thread slightly differently # for vulkan. We don't do this generally because it causes a 15% perf # regression on other platforms ntx = max_threads nbx = tvm.tir.generic.cast(ceil_div(width, max_threads * thread_work), "int32") nbz = tvm.tir.generic.cast(ceil_div(size, width), "int32") tx, bx, by, bz = _get_threads(ib, ntx, nbx, nthread_by, nbz) else: ntx = tvm.tir.generic.cast(tvm.te.min(max_threads, width), "int32") nbx = tvm.tir.generic.cast(ceil_div(width, max_threads * thread_work), "int32") nbz = tvm.tir.generic.cast(ceil_div(size, width), "int32") tx, bx, by, bz = _get_threads(ib, ntx, nbx, nthread_by, nbz) def mergepath( source, dest, source_idx, dest_idx, aCount, bCount, aStart, bStart, kStart, step_count, even, ): # pylint: disable=arguments-out-of-order def merge(source, dest, source_idx, dest_idx): diag = tx * step_count first, last = get_merge_begin( source, by * size, aCount, bCount, aStart, bStart, diag, step_count, ) # iterate over the output loop serial_merge( source, dest, source_idx, dest_idx, by * size, aCount, bCount, aStart, bStart, kStart, diag, step_count, first, last, ) with ib.if_scope(even): merge(source, dest, source_idx, dest_idx) with ib.else_scope(): merge(dest, source, dest_idx, source_idx) def mergesort(source, dest, source_idx, dest_idx, size, width, even): # calculate the start, mid, and end points of this section start = width * bz middle = cast(tvm.te.min(start + tvm.tir.indexdiv(width, 2), size), "int64") end = cast(tvm.te.min(start + width, size), "int64") with ib.if_scope(start < size): with ib.if_scope(nbx == 1): ## merge the start->middle and middle->end arrays aCount = middle - start bCount = end - middle mergepath( source, dest, source_idx, dest_idx, aCount, bCount, start, middle, start, ceil_div(width, ntx), even, ) with ib.else_scope(): step_count = max_threads * thread_work diag = bx * step_count def do_merge(first, last): aStart = start + first bStart = middle + diag - last aCount = tvm.te.min(middle - aStart, step_count) bCount = tvm.te.min(end - bStart, step_count) mergepath( source, dest, source_idx, dest_idx, aCount, bCount, aStart, bStart, start + diag, thread_work, even, ) with ib.if_scope(even): first, last = get_merge_begin( source, by * size, middle - start, end - middle, start, middle, diag, step_count, ) do_merge(first, last) with ib.else_scope(): first, last = get_merge_begin( dest, by * size, middle - start, end - middle, start, middle, diag, step_count, ) do_merge(first, last) # Call the kernel mergesort( keys, keys_swap, values, values_swap, size, width, tvm.tir.indexmod(l2_width, 2) == 0, ) nthread_by = axis_mul_before nthread_bz = axis_mul_after nthread_tx = max_threads nthread_bx = ceil_div(size, nthread_tx) ## if the final sorted data ended up in the swap, copy it to the real output with ib.if_scope( tvm.tir.all(upper_lim > lower_lim, tvm.tir.indexmod(upper_lim - lower_lim, 2) == 1) ): with ib.new_scope(): tx, bx, by, bz = _get_threads(ib, nthread_tx, nthread_bx, nthread_by, nthread_bz) tid = bx * nthread_tx + tx idx = (by * axis_mul_after + bz) * size + tid with ib.if_scope(tid < size): keys[idx] = keys_swap[idx] if values is not None: values[idx] = values_swap[idx] def sort_ir( data, values_out, values_out_swap, axis, is_ascend, indices_out=None, indices_out_swap=None ): """Low level IR to do sorting on the GPU, same usage as tvm.contrib.sort.argsort on the CPU. Parameters ---------- data: Buffer Buffer of input data. Data will be sorted in place. values_out : Buffer Output buffer of values of sorted tensor with same shape as data. values_out_swap : Buffer Output buffer of values with same shape as data to use as swap. axis : Int Axis long which to sort the input tensor. is_ascend : Boolean Whether to sort in ascending or descending order. indicess_out : Buffer Output buffer of indices of sorted tensor with same shape as data. indices_out_swap : Buffer Output buffer of indices with same shape as data to use as swap. Returns ------- stmt : Stmt The result IR statement. """ ib = tvm.tir.ir_builder.create() shape = data.shape data = ib.buffer_ptr(data) values_out = ib.buffer_ptr(values_out) values_out_swap = ib.buffer_ptr(values_out_swap) if indices_out is not None: indices_out = ib.buffer_ptr(indices_out) assert indices_out_swap is not None indices_out_swap = ib.buffer_ptr(indices_out_swap) with ib.if_scope(shape[axis] > 0): axis_mul_before, axis_mul_after = _sort_init( ib, shape, axis, data, values_out, indices_out, value_init_func=lambda _, tid: tvm.tir.generic.cast(tid, indices_out.dtype), ) _sort_common( ib, shape[axis], axis_mul_before, axis_mul_after, is_ascend, values_out, values_out_swap, values=indices_out, values_swap=indices_out_swap, ) return ib.get() def sort_by_key_ir( keys_in, values_in, keys_out, values_out, keys_out_swap, values_out_swap, axis, is_ascend ): """Low level IR to do sort by key on the GPU. Parameters ---------- keys_in: Buffer Buffer of input keys. values_in: Buffer Buffer of input keys. keys_out : Buffer Buffer of output sorted keys. values_out : Buffer Buffer of output sorted values. keys_out_swap : Buffer Output buffer of values with same shape as keys_in to use as swap. values_out_swap : Buffer Output buffer of values with same shape as values_in to use as swap. axis : Int Axis long which to sort the input tensor. is_ascend : Boolean Whether to sort in ascending or descending order. indicess_out : Buffer Output buffer of indices of sorted tensor with same shape as keys_in. values_out_swap : Buffer Output buffer of indices with same shape as keys_in to use as swap. Returns ------- stmt : Stmt The result IR statement. """ ib = tvm.tir.ir_builder.create() shape = keys_in.shape keys_in = ib.buffer_ptr(keys_in) values_in = ib.buffer_ptr(values_in) keys_out = ib.buffer_ptr(keys_out) keys_out_swap = ib.buffer_ptr(keys_out_swap) values_out = ib.buffer_ptr(values_out) values_out_swap = ib.buffer_ptr(values_out_swap) with ib.if_scope(shape[axis] > 0): axis_mul_before, axis_mul_after = _sort_init( ib, shape, axis, keys_in, keys_out, values_out, value_init_func=lambda idx, _: values_in[idx], ) _sort_common( ib, shape[axis], axis_mul_before, axis_mul_after, is_ascend, keys_out, keys_out_swap, values=values_out, values_swap=values_out_swap, ) return ib.get() def sort(data, axis=-1, is_ascend=1): """Performs sorting along the given axis and returns an array of sorted values with the same shape as the input data. Parameters ---------- data: tvm.te.Tensor The input array. axis : int, optional Axis long which to sort the input tensor. is_ascend : boolean, optional Whether to sort in ascending or descending order. Returns ------- out : tvm.te.Tensor The output of this function. """ ndim = len(data.shape) axis = ndim + axis if axis < 0 else axis if axis != ndim - 1: # Prepare for sorting along axis -1. axes = swap(list(range(ndim)), axis) data = transpose(data, axes) value_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "value_buf", data_alignment=8) value_buf_swap = tvm.tir.decl_buffer(data.shape, data.dtype, "value_buf_swap", data_alignment=8) out = te.extern( [data.shape, data.shape], [data], lambda ins, outs: sort_ir(ins[0], outs[0], outs[1], -1, is_ascend), out_buffers=[value_buf, value_buf_swap], name="sort_gpu", tag="sort_gpu", )[0] if axis != ndim - 1: axes = swap(list(range(ndim)), axis) out = transpose(out, axes) return out def sort_thrust(data, axis=-1, is_ascend=1): """Performs sorting along the given axis and returns an array of sorted values with the same shape as the input data. Parameters ---------- data: tvm.te.Tensor The input array. axis : int, optional Axis long which to sort the input tensor. is_ascend : boolean, optional Whether to sort in ascending or descending order. Returns ------- out : tvm.te.Tensor The output of this function. """ dtype = "float32" ndim = len(data.shape) axis = ndim + axis if axis < 0 else axis if axis != ndim - 1: # Prepare for sorting along axis -1. axes = swap(list(range(ndim)), axis) data = transpose(data, axes) value_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "value_buf", data_alignment=8) indices_buf = tvm.tir.decl_buffer(data.shape, dtype, "out_buf", data_alignment=8) out = te.extern( [data.shape, data.shape], [data], ## TODO(mbrookhart): This thrust function is actually doing argsort, not sort ## For performance, we should probably rename the contrib function and add ## a pure sort lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.thrust.sort", ins[0], outs[0], outs[1], is_ascend ), out_buffers=[value_buf, indices_buf], name="sort_gpu", tag="sort_gpu", )[0] if axis != ndim - 1: axes = swap(list(range(ndim)), axis) out = transpose(out, axes) return out def argsort(data, axis=-1, is_ascend=1, dtype="float32", ret_type="indices"): """Performs sorting along the given axis and returns an array of indices having same shape as an input array that index data in sorted order. Parameters ---------- data: tvm.te.Tensor The input array. axis : int, optional Axis long which to sort the input tensor. is_ascend : boolean, optional Whether to sort in ascending or descending order. dtype : string, optional DType of the output indices. ret_type : string, optional The return type [both, indices]. "both": return both sorted data and indices. "indices": return sorted indices only. Returns ------- out : tvm.te.Tensor The output of this function. """ ndim = len(data.shape) axis = ndim + axis if axis < 0 else axis if axis != ndim - 1: # Prepare for sorting along axis -1. axes = swap(list(range(ndim)), axis) data = transpose(data, axes) value_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "value_buf", data_alignment=8) value_swap_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "value_swap_buf", data_alignment=8) indices_buf = tvm.tir.decl_buffer(data.shape, dtype, "out_buf", data_alignment=8) indices_swap_buf = tvm.tir.decl_buffer(data.shape, dtype, "out_swap_buf", data_alignment=8) outs = te.extern( [data.shape, data.shape, data.shape, data.shape], [data], lambda ins, outs: sort_ir( ins[0], outs[0], outs[2], -1, is_ascend, indices_out=outs[1], indices_out_swap=outs[3], ), out_buffers=[value_buf, indices_buf, value_swap_buf, indices_swap_buf], name="argsort_gpu", tag="argsort_gpu", ) if axis != ndim - 1: axes = swap(list(range(ndim)), axis) outs = [transpose(out, axes) for out in outs] if ret_type == "indices": return outs[1] return outs[0], outs[1] def argsort_thrust(data, axis=-1, is_ascend=1, dtype="float32", ret_type="indices"): """Performs sorting along the given axis and returns an array of indices having same shape as an input array that index data in sorted order. Parameters ---------- data: tvm.te.Tensor The input array. axis : int, optional Axis long which to sort the input tensor. is_ascend : boolean, optional Whether to sort in ascending or descending order. dtype : string, optional DType of the output indices. ret_type : string, optional The return type [both, indices]. "both": return both sorted data and indices. "indices": return sorted indices only. Returns ------- out : tvm.te.Tensor The output of this function. """ return topk_thrust(data, 0, axis, ret_type, is_ascend, dtype) def schedule_sort(outs): """Schedule for sort operator. Parameters ---------- outs: Array of Tensor The computation graph description of argsort in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _schedule_sort(outs) def schedule_argsort(outs): """Schedule for argsort operator. Parameters ---------- outs: Array of Tensor The computation graph description of argsort in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _schedule_sort(outs) def topk(data, k=1, axis=-1, ret_type="both", is_ascend=False, dtype="int64"): """Get the top k elements in an input tensor along the given axis. Parameters ---------- data : tvm.te.Tensor The input tensor. k : int, optional Number of top elements to select. Return all elements if k < 1. axis : int, optional Axis long which to sort the input tensor. ret_type: str, optional The return type [both, values, indices]. "both": return both top k data and indices. "values": return top k data only. "indices": return top k indices only. is_ascend : boolean, optional Whether to sort in ascending or descending order. dtype : string, optional The data type of the indices output. Returns ------- out : tvm.te.Tensor or List[tvm.te.Tensor] The computed result. """ assert ret_type in ["both", "values", "indices"] ndim = len(data.shape) axis = axis + ndim if axis < 0 else axis assert 0 <= axis < ndim dshape = data.shape if axis != ndim - 1: axes = swap(list(range(ndim)), axis) data = transpose(data, axes) values_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "values_buf", data_alignment=8) values_swap_buf = tvm.tir.decl_buffer( data.shape, data.dtype, "values_swap_buf", data_alignment=8 ) indices_buf = tvm.tir.decl_buffer(data.shape, dtype, "indices_buf", data_alignment=8) indices_swap_buf = tvm.tir.decl_buffer(data.shape, dtype, "indies_swap_buf", data_alignment=8) if ret_type == "values": output = te.extern( [data.shape, data.shape], [data], lambda ins, outs: sort_ir(ins[0], outs[0], outs[1], -1, is_ascend), out_buffers=[values_buf, values_swap_buf], name="topk_gpu", tag="topk_gpu", )[0] if axis != ndim - 1: axes = swap(list(range(ndim)), axis) output = transpose(output, axes) else: output = te.extern( [data.shape, data.shape, data.shape, data.shape], [data], lambda ins, outs: sort_ir( ins[0], outs[0], outs[2], -1, is_ascend, indices_out=outs[1], indices_out_swap=outs[3], ), out_buffers=[values_buf, indices_buf, values_swap_buf, indices_swap_buf], name="topk_gpu", tag="topk_gpu", )[0:2] if axis != ndim - 1: axes = swap(list(range(ndim)), axis) output[0] = transpose(output[0], axes) output[1] = transpose(output[1], axes) if isinstance(k, int) and k < 1: if ret_type == "indices": return output[1] return output beg = [0] * ndim end = [] strides = [1] * ndim for i in range(ndim): if i == axis: end.append(k if isinstance(k, int) else tvm.te.size_var("dim")) else: end.append(dshape[i]) if ret_type == "both": values_out, indices_out = output values_out = strided_slice(values_out, beg, end, strides) indices_out = strided_slice(indices_out, beg, end, strides) output = [values_out, indices_out] elif ret_type == "values": output = [strided_slice(output, beg, end, strides)] else: # ret_type == "indices" indices_out = output[1] output = [strided_slice(indices_out, beg, end, strides)] return output def topk_thrust(data, k=1, axis=-1, ret_type="both", is_ascend=False, dtype="int64"): """Get the top k elements in an input tensor along the given axis. Parameters ---------- data : tvm.te.Tensor The input tensor. k : int, optional Number of top elements to select. Return all elements if k < 1. axis : int, optional Axis long which to sort the input tensor. ret_type: str, optional The return type [both, values, indices]. "both": return both top k data and indices. "values": return top k data only. "indices": return top k indices only. is_ascend : boolean, optional Whether to sort in ascending or descending order. dtype : string, optional The data type of the indices output. Returns ------- out : tvm.te.Tensor or List[tvm.te.Tensor] The computed result. """ assert ret_type in ["both", "values", "indices"] ndim = len(data.shape) axis = ndim + axis if axis < 0 else axis if axis != ndim - 1: # Prepare for sorting along axis -1. axes = swap(list(range(ndim)), axis) data = transpose(data, axes) data_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "data_buf", data_alignment=8) out_bufs = [ tvm.tir.decl_buffer(data.shape, data.dtype, "value_buf", data_alignment=8), tvm.tir.decl_buffer(data.shape, dtype, "indices_buf", data_alignment=8), ] is_ascend = 1 if is_ascend else 0 out = te.extern( [data.shape, data.shape], [data], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.thrust.sort", ins[0], outs[0], outs[1], is_ascend ), in_buffers=[data_buf], out_buffers=out_bufs, name="topk_gpu", tag="topk_gpu", ) if isinstance(k, tvm.tir.IntImm): k = k.value if not isinstance(k, int) or k > 0: beg = [0] * ndim end = data.shape[:-1] + [k if isinstance(k, int) else tvm.te.size_var("dim")] strides = [1] * ndim out = [strided_slice(o, beg, end, strides) for o in out] if axis != ndim - 1: axes = swap(list(range(ndim)), axis) out = [transpose(o, axes) for o in out] if ret_type == "values": out = out[0] elif ret_type == "indices": out = out[1] return out def schedule_topk(outs): """Schedule for argsort operator. Parameters ---------- outs: Array of Tensor The computation graph description of argsort in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _schedule_sort(outs) def sort_by_key(keys, values, axis=-1, is_ascend=1): """Sort values with respect to keys. Both keys and values will be sorted and returned. Parameters ---------- keys: tvm.te.Tensor The input keys. values : tvm.te.Tensor, The input values. axis : int, optional Axis long which to sort the input tensor. is_ascend : boolean, optional Whether to sort in ascending or descending order. Returns ------- keys_sorted : tvm.te.Tensor The sorted keys values_sorted : tvm.te.Tensor The values sorted with respect to the keys """ keys_buf = tvm.tir.decl_buffer(keys.shape, keys.dtype, "keys_buf", data_alignment=8) values_buf = tvm.tir.decl_buffer(values.shape, values.dtype, "values_buf", data_alignment=8) out_bufs = [ tvm.tir.decl_buffer(keys.shape, keys.dtype, "keys_buf", data_alignment=8), tvm.tir.decl_buffer(values.shape, values.dtype, "values_buf", data_alignment=8), tvm.tir.decl_buffer(keys.shape, keys.dtype, "keys_swap_buf", data_alignment=8), tvm.tir.decl_buffer(values.shape, values.dtype, "values_swap_buf", data_alignment=8), ] out = te.extern( [keys.shape, values.shape, keys.shape, values.shape], [keys, values], lambda ins, outs: sort_by_key_ir( ins[0], ins[1], outs[0], outs[1], outs[2], outs[3], axis, is_ascend ), in_buffers=[keys_buf, values_buf], out_buffers=out_bufs, dtype=[keys.dtype, values.dtype], name="sort_by_key", tag="sort_by_key", ) return out[0], out[1] def stable_sort_by_key_thrust(keys, values, for_scatter=False): """Sort values with respect to keys using thrust. Both keys and values will be sorted and returned. Sorting is done via stable sort, so relative ordering among ties are preserved. Parameters ---------- keys: tvm.te.Tensor The 1D input keys. values : tvm.te.Tensor, The 1D input values. for_scatter: bool, optional If True, negative keys are interpreted as negative indices. Before sorting, negative indices are converted to corresponding positive indices. The output keys (indices) are all positive. This option is introduced to optimize the scatter implementation. Returns ------- keys_sorted : tvm.te.Tensor The sorted keys values_sorted : tvm.te.Tensor The values sorted with respect to the keys """ keys_buf = tvm.tir.decl_buffer(keys.shape, keys.dtype, "keys_buf", data_alignment=8) values_buf = tvm.tir.decl_buffer(values.shape, values.dtype, "values_buf", data_alignment=8) out_bufs = [ tvm.tir.decl_buffer(keys.shape, keys.dtype, "keys_buf", data_alignment=8), tvm.tir.decl_buffer(keys.shape, values.dtype, "values_buf", data_alignment=8), ] out = te.extern( [keys.shape, values.shape], [keys, values], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.thrust.stable_sort_by_key", ins[0], ins[1], outs[0], outs[1], for_scatter ), in_buffers=[keys_buf, values_buf], out_buffers=out_bufs, dtype=[keys.dtype, values.dtype], name="stable_sort_by_key", tag="stable_sort_by_key", ) return out[0], out[1]
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/sparse.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Sparse operators""" import numpy as np import scipy.sparse as sp import tvm from tvm import relay, te from .. import nn from ..utils import traverse_inline, get_const_tuple, prod, get_const_int, ceil_div from .transform import schedule_transpose_from_existing def sparse_dense(data, weight_data, weight_indices, weight_indptr, sparse_lhs=False): """ Computes sparse-dense matrix multiplication of `data` and `(weight_data, weight_indices, weight_indptr).T` Parameters ---------- cfg: ConfigEntity The config for this template data : tvm.te.Tensor 2-D with shape [M, K], float32 weight_data : tvm.te.Tensor 1-D with shape [nnz] (CSR) or 3-D with shape [num_blocks, bs_r, bs_c] (BSR) weight_indices : tvm.te.Tensor 1-D with shape [nnz] (CSR) or 1-D with shape [num_blocks] (BSR) weight_indptr : tvm.te.Tensor 1-D with shape [N + 1] (CSR) or 1-D with shape [(N + 1) // bs_r] (BSR) Returns ------- output : tvm.te.Tensor 2-D with shape [M, N] """ # pylint:disable=unused-argument return nn.sparse_dense(data, weight_data, weight_indices, weight_indptr, sparse_lhs) def schedule_sparse_dense(outs): """Create schedule for sparse dense""" # pylint:disable=invalid-name s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "sparse_dense_sp_rhs_bsrmm" or op.tag == "sparse_dense_sp_lhs_bsrmm": y_bsrmm = op.input_tensors[0] assert ( y_bsrmm.op.tag == "sparse_dense_sp_rhs_bsrmm_block" or y_bsrmm.op.tag == "sparse_dense_sp_lhs_bsrmm_block" ) out = s.outputs[0].output(0) if op not in s.outputs: y_reshape = op.output(0) s[y_reshape].compute_at(s[out], s[out].op.axis[1]) (_, c) = s[y_bsrmm].op.reduce_axis (m_o, n_o) = s[out].op.axis s[out].bind(m_o, te.thread_axis("blockIdx.x")) s[out].bind(n_o, te.thread_axis("blockIdx.y")) s[y_bsrmm].compute_at(s[out], n_o) thread_x = te.thread_axis("threadIdx.x") y_bsrmm_factored = s.rfactor(y_bsrmm, c) tx = s[y_bsrmm].op.reduce_axis[0] s[y_bsrmm].bind(tx, thread_x) s[y_bsrmm_factored].compute_at(s[y_bsrmm], tx) s[y_bsrmm].set_store_predicate(thread_x.var.equal(0)) s[out].set_store_predicate(thread_x.var.equal(0)) elif op.tag == "sparse_dense_sp_lhs_csrmm" or op.tag == "sparse_dense_sp_rhs_csrmm": out = op.output(0) const_size = get_const_int(prod(out.shape)) fused = s[out].fuse(*s[out].op.axis) bx, tx = s[out].split(fused, factor=const_size) s[out].bind(tx, te.thread_axis("threadIdx.x")) s[out].bind(bx, te.thread_axis("blockIdx.x")) traverse_inline(s, outs[0].op, _callback) return s def sparse_dense_tir(data, w_data, w_indices, w_indptr): """Compute data * w^T. Actually computes (w * data^T) ^ T as data needs to be in column-major format for performance reasons. Good resources: Yang, Carl, Aydın Buluç, and John D. Owens. "Design principles for sparse matrix multiplication on the GPU." European Conference on Parallel Processing. Springer, Cham, 2018. <- This code is basically row-split from here. Gale, Trevor, et al. "Sparse GPU Kernels for Deep Learning." arXiv preprint arXiv:2006.10901 (2020). Profile with `/opt/nvidia/nsight-compute/2020.1.2/ncu -k default_function_kernel1 --section '.*' -s 1 -c 1 venv/bin/python3 test_topi_sparse.py manual` with either default_function_kernel0 for the transpose or default_function_kernel1 for the multiply. """ def gen_ir(data, w_data, w_indices, w_indptr, out): # pylint: disable=invalid-name, simplifiable-if-statement # TODO(tkonolige): use tensorcores for block multiply # TODO(tkonolige): use vectorize on loads # TODO(tkonolige): separate implementation if M is small # TODO(tkonolige): separate implementation for large block sizes ib = tvm.tir.ir_builder.create() if tvm.target.Target.current(allow_none=False).kind.name == "cuda": use_warp_storage = True else: # TVMs warp shuffle intrinsics are slow on ROCM because they use # LDS (shared memory) to do the shuffling. Instead, we could use # ROCM's support for accessing neighboring threads memory, but we # those intrinsics aren't accessible from TVM. For now, we just use # shared memory. We also default to shared memory on platforms # where we do not know how warp storage performs. use_warp_storage = False warp_size = int(tvm.target.Target.current(allow_none=False).thread_warp_size) m = data.shape[1] nb = w_indptr.shape[0] - 1 # treat csr like block size 1 bsr if len(w_data.shape) == 1: bs_n = 1 bs_k = 1 else: bs_n = w_data.shape[1] bs_k = w_data.shape[2] bs_m = bs_n mb = m // bs_m mi = warp_size assert ( mb >= mi ), "Number of block rows in dense matrix must be larger than warp size: {} vs {}.".format( warp_size, mb ) mo = ceil_div(mb, mi) ni = 1 # TODO(tkonolige): how do I compute the number of warps per block? no = ceil_div(nb, ni) rowlength_bi = warp_size bx = te.thread_axis("blockIdx.x") ib.scope_attr(bx, "thread_extent", mo) by = te.thread_axis("blockIdx.y") ib.scope_attr(by, "thread_extent", no) tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", warp_size) warp = te.thread_axis("threadIdx.y") ib.scope_attr(warp, "thread_extent", ni) out_ptr = ib.buffer_ptr(out) data_ptr = ib.buffer_ptr(data) w_data_ptr = ib.buffer_ptr(w_data) w_indices_ptr = ib.buffer_ptr(w_indices) w_indptr_ptr = ib.buffer_ptr(w_indptr) n_index = by * ni + warp m_index = bx * mi + tx row_start = w_indptr_ptr[n_index] # Guaranteed to be evenly divisible rowlength_bo = ceil_div(w_indptr_ptr[n_index + 1] - row_start, rowlength_bi) # thread local storage for bs_m x bs_n block block = ib.allocate(data.dtype, (bs_m, bs_n), name="block", scope="local") data_cache = ib.allocate(data.dtype, (mi, bs_m, bs_k), name="data_cache", scope="local") if use_warp_storage: indices = ib.allocate(w_indices.dtype, (rowlength_bi,), name="indices", scope="warp") w_data_cache = ib.allocate( w_data.dtype, (rowlength_bi, bs_n, bs_k), name="w_data_cache", scope="warp" ) else: indices = ib.allocate( w_indices.dtype, (ni, rowlength_bi), name="indices", scope="shared" ) w_data_cache = ib.allocate( w_data.dtype, (ni, rowlength_bi, bs_n, bs_k), name="w_data_cache", scope="shared" ) # zero block with ib.for_range(0, bs_m, name="x", kind="unroll") as x: with ib.for_range(0, bs_n, name="y", kind="unroll") as y: block[x, y] = 0.0 # compute into thread local storage using warp_size chunks with ib.for_range(0, rowlength_bo, name="bb") as bb: elem_idx = bb * rowlength_bi + tx # Cache indices. Guaranteed to be multiple of warp_size. if use_warp_storage: indices[tx] = w_indices_ptr[row_start + elem_idx] else: indices[warp, tx] = w_indices_ptr[row_start + elem_idx] # cache dense matrix # each thread has a row # TODO: ideally we could vectorize this with ib.for_range(0, rowlength_bi, name="bi") as bi: with ib.for_range(0, bs_m, name="x", kind="unroll") as x: with ib.for_range(0, bs_k, name="z", kind="unroll") as z: # This memory acces should be out of bounds when # m_index >= mb (which occurs when the dense matrix # rows % 32 != 0), but it seems to work just fine... if use_warp_storage: ind = indices[bi] else: ind = indices[warp, bi] data_cache[bi, x, z] = data_ptr[ind * bs_k + z, m_index * bs_m + x] # cache w_data elem_idx = bb * rowlength_bi + tx with ib.for_range(0, bs_n, name="y", kind="unroll") as y: with ib.for_range(0, bs_k, name="z", kind="unroll") as z: data_indices = [row_start + elem_idx] + ( [y, z] if len(w_data.shape) > 1 else [] ) cache_indices = [tx, y, z] if use_warp_storage else [warp, tx, y, z] w_data_cache[cache_indices] = w_data_ptr[data_indices] with ib.for_range(0, mi, name="i") as i: # thread local block matmul with ib.for_range(0, bs_m, name="x", kind="unroll") as x: with ib.for_range(0, bs_n, name="y", kind="unroll") as y: with ib.for_range(0, bs_k, name="z", kind="unroll") as z: if use_warp_storage: w = w_data_cache[i, y, z] else: w = w_data_cache[warp, i, y, z] block[x, y] += data_cache[i, x, z] * w # store results with ib.for_range(0, bs_m, name="x", kind="unroll") as x: with ib.for_range(0, bs_n, name="y", kind="unroll") as y: with ib.if_scope(m_index < mb): with ib.if_scope(n_index < nb): # It doesn't seem like we would be getting coelesced # writes here, but it doesn't seem to matter out_ptr[m_index * bs_m + x, n_index * bs_n + y] = block[x, y] return ib.get() data_t = tvm.topi.transpose(data) # handle csr if len(w_data.shape) == 1: blocksize = 1 else: blocksize = w_data.shape[1] out_shape = (data_t.shape[1], (w_indptr.shape[0] - 1) * blocksize) out_buf = tvm.tir.decl_buffer(out_shape, data.dtype, "out_buf") out = te.extern( [out_shape], [data_t, w_data, w_indices, w_indptr, data], lambda ins, outs: gen_ir(ins[0], ins[1], ins[2], ins[3], outs[0]), dtype=data.dtype, out_buffers=[out_buf], name="sparse_dense_gpu", tag="sparse_dense_gpu", ) return out def is_valid_for_sparse_dense_padded(data, weight_data): """ Check whether input is applicable for sparse_dense_padded op. If not we should fall back to default scheduling. """ # pylint:disable=invalid-name warp_size = int(tvm.target.Target.current(allow_none=False).thread_warp_size) # If there are multiple alter_ops in a model, the first alteration does not # run type inference for the subsequent ones. In this case, we don't have # the shape information, so we run the inferencer manually. try: m = get_const_tuple(data.checked_type.shape)[1] except ValueError: data_infered = relay.transform.InferType()(tvm.IRModule.from_expr(data))["main"] m = get_const_tuple(data_infered.ret_type.shape)[1] if len(weight_data.shape) == 1: bs_m = 1 else: bs_m = weight_data.shape[1] mb = m // bs_m if mb >= warp_size: return True return False def sparse_dense_padded(data, weight_data, weight_indices, weight_indptr, sparse_lhs=False): """ Computes sparse-dense matrix multiplication of `data` and `(weight_data, weight_indices, weight_indptr).T` This variation uses a padded matrix where all row lengths are a multiple of the warp size. Parameters ---------- cfg: ConfigEntity The config for this template data : tvm.te.Tensor 2-D with shape [M, K], float32 weight_data : tvm.te.Tensor 1-D with shape [nnz] (CSR) or 3-D with shape [num_blocks, bs_r, bs_c] (BSR) weight_indices : tvm.te.Tensor 1-D with shape [nnz] (CSR) or 1-D with shape [num_blocks] (BSR) weight_indptr : tvm.te.Tensor 1-D with shape [N + 1] (CSR) or 1-D with shape [(N + 1) // bs_r] (BSR) Returns ------- output : tvm.te.Tensor 2-D with shape [M, N] """ # TODO(ANSHUMAN87): Handle for sparse_lhs case too assert not sparse_lhs, "Currently only sparse weight is supported." return sparse_dense_tir(data, weight_data, weight_indices, weight_indptr) def schedule_sparse_dense_padded(outs): """Create schedule for sparse dense""" # XXX: this will fail if we don't include the data_t Tensor in the schedule # ops. Maybe create_schedule should do some analysis so this isn't # necessary data_t = outs[0].op.input_tensors[0] s = te.create_schedule([outs[0].op, data_t.op]) schedule_transpose_from_existing(s, outs[0].op.input_tensors[0]) return s def pad_sparse_matrix(matrix, blocksize): """Pad rows of sparse matrix matrix so that they are a multiple of blocksize.""" assert isinstance(matrix, sp.bsr_matrix) new_entries = np.zeros(matrix.shape[0], dtype=matrix.indptr.dtype) bsr = matrix.blocksize[0] for i in range(matrix.shape[0] // bsr): row_length = matrix.indptr[i + 1] - matrix.indptr[i] if row_length % blocksize != 0: new_entries[i] = blocksize - (row_length % blocksize) additional = np.sum(new_entries) indices = np.zeros(matrix.indices.shape[0] + additional, dtype=matrix.indices.dtype) data = np.zeros( (matrix.data.shape[0] + additional, matrix.data.shape[1], matrix.data.shape[2]), dtype=matrix.data.dtype, ) n = matrix.shape[0] // bsr indptr = np.zeros(n + 1, dtype=matrix.indptr.dtype) indptr[: matrix.indptr.shape[0]] = matrix.indptr for i in range(matrix.shape[0] // bsr): indptr[i + 1] = indptr[i] + new_entries[i] + (matrix.indptr[i + 1] - matrix.indptr[i]) indices[indptr[i] : indptr[i + 1] - new_entries[i]] = matrix.indices[ matrix.indptr[i] : matrix.indptr[i + 1] ] data[indptr[i] : indptr[i + 1] - new_entries[i], :, :] = matrix.data[ matrix.indptr[i] : matrix.indptr[i + 1], :, : ] return sp.bsr_matrix((data, indices, indptr), matrix.shape) @nn.sparse_dense_alter_layout.register(["cuda", "gpu", "rocm"]) def _alter_sparse_dense_layout(_attrs, inputs, _tinfos, _out_type): """With cuda, we modify use alter_op_layout to swap the default sparse_dense implementation for one that operates on a padded matrix. We also pad the matrix. """ # TODO(ANSHUMAN87): Handle for sparse_lhs case too if ( isinstance(inputs[1], relay.Constant) and isinstance(inputs[2], relay.Constant) and isinstance(inputs[3], relay.Constant) and is_valid_for_sparse_dense_padded(inputs[0], inputs[1].data.numpy()) ): if len(inputs[1].data.numpy().shape) == 1: sparse_matrix = sp.csr_matrix( (inputs[1].data.numpy(), inputs[2].data.numpy(), inputs[3].data.numpy()) ).tobsr() else: sparse_matrix = sp.bsr_matrix( (inputs[1].data.numpy(), inputs[2].data.numpy(), inputs[3].data.numpy()) ) warp_size = int(tvm.target.Target.current(allow_none=False).thread_warp_size) sparse_matrix = pad_sparse_matrix(sparse_matrix, warp_size) return relay.nn._make.sparse_dense_padded( inputs[0], relay.Constant(tvm.nd.array(sparse_matrix.data)), relay.Constant(tvm.nd.array(sparse_matrix.indices)), relay.Constant(tvm.nd.array(sparse_matrix.indptr)), ) return None
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/sparse_reshape.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-arguments, too-many-nested-blocks """Sparse_Reshape operator""" import tvm from tvm import te from ...tir import decl_buffer, ir_builder, Cast from ...te import extern, div, floordiv, floormod from ..utils import ceil_div def sparse_reshape( sparse_indices, prev_shape, new_shape, new_sparse_indices_shape, new_shape_shape, ): """ Reshape a Sparse Tensor Parameters ---------- sparse_indices : relay.Expr A 2-D tensor[N, n_dim] of integers containing location of sparse values, where N is the number of sparse values and n_dim is the number of dimensions of the dense_shape prev_shape : relay.Expr A 1-D tensor containing the previous shape of the dense tensor new_shape : relay.Expr A 1-D tensor containing the new shape of the dense tensor Returns ------- result: relay.Expr Output tensor. Examples -------- .. code-block:: python sparse_indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 2, 3]] prev_shape = [2, 3, 4] new_shape = [9, -1] new_sparse_indices, new_shape = relay.sparse_reshape(sparse_indices, prev_shape, new_shape) new_sparse_indices = [[0, 0], [0, 1], [1, 2], [4, 2], [8, 1]] new_shape = [9, 4] """ def gen_ir( sparse_indices_ptr, prev_shape_ptr, new_shape_ptr, new_sparse_indices_ptr, out_new_shape_ptr, ): ib = ir_builder.create() sparse_indices = ib.buffer_ptr(sparse_indices_ptr) prev_shape = ib.buffer_ptr(prev_shape_ptr) new_shape = ib.buffer_ptr(new_shape_ptr) out_new_shape = ib.buffer_ptr(out_new_shape_ptr) new_sparse_indices = ib.buffer_ptr(new_sparse_indices_ptr) out_new_shape = ib.buffer_ptr(out_new_shape_ptr) prev_shape_size = prev_shape_ptr.shape[0] new_shape_size = new_shape_ptr.shape[0] multipliers = ib.allocate( new_shape_ptr.dtype, (prev_shape_size,), name="multipliers", scope="global" ) dividers = ib.allocate( new_shape_ptr.dtype, (new_shape_size,), name="dividers", scope="global" ) flattened_indices = ib.allocate( new_shape_ptr.dtype, (sparse_indices_ptr.shape[0],), name="flattened_indices", scope="global", ) total_ele = ib.allocate(new_shape_ptr.dtype, (1,), name="total_ele", scope="global") division_total_ele = ib.allocate( new_shape_ptr.dtype, (1,), name="division_total_ele", scope="global" ) equal_shape = ib.allocate("bool", (1,), name="equal_shape", scope="global") max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) with ib.new_scope(): # The computation in this block is very very miniscule since we are just iterating over # shape tensors which are very small (< 10) and there is no need of parallelization nthread_tx = 1 nthread_bx = 1 tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) total_ele[0] = prev_shape[0] # Cumulative Reverse Exclusive Multiply multipliers[prev_shape_size - 1] = Cast(new_shape_ptr.dtype, 1) with ib.for_range(0, prev_shape_size - 1) as i_: i = i_ + 1 multipliers[prev_shape_size - 1 - i] = ( prev_shape[prev_shape_size - i] * multipliers[prev_shape_size - i] ) total_ele[0] *= prev_shape[prev_shape_size - i] division_total_ele[0] = Cast(new_shape_ptr.dtype, 1) with ib.for_range(0, new_shape_size) as i: with ib.if_scope(new_shape[i] != -1): division_total_ele[0] *= new_shape[i] # Compute true output shape (replace negative ones) with ib.for_range(0, new_shape_size) as i: with ib.if_scope(new_shape[i] == -1): out_new_shape[i] = Cast( new_shape_ptr.dtype, div(total_ele[0], division_total_ele[0]) ) with ib.else_scope(): out_new_shape[i] = new_shape[i] # Check if prev_shape and new_shape are equal equal_shape[0] = True with ib.if_scope(prev_shape_size == new_shape_size): with ib.for_range(0, prev_shape_size) as i: with ib.if_scope(prev_shape[i] != out_new_shape[i]): equal_shape[0] = False with ib.else_scope(): equal_shape[0] = False with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(sparse_indices_ptr.shape[0], max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) row_number = bx * max_threads + tx # Return same inputs if shapes are equal with ib.if_scope(equal_shape[0]): with ib.if_scope(row_number < sparse_indices_ptr.shape[0]): with ib.for_range(0, sparse_indices_ptr.shape[1]) as j: new_sparse_indices[row_number, j] = sparse_indices[row_number, j] # Else compute new_sparse_indices with ib.else_scope(): dividers[new_shape_size - 1] = Cast(new_shape_ptr.dtype, 1) with ib.for_range(0, new_shape_size - 1) as i_: i = i_ + 1 dividers[new_shape_size - 1 - i] = ( dividers[new_shape_size - i] * out_new_shape[new_shape_size - i] ) with ib.if_scope(row_number < sparse_indices_ptr.shape[0]): flattened_indices[row_number] = Cast(new_shape_ptr.dtype, 0) with ib.for_range(0, sparse_indices_ptr.shape[1]) as j: flattened_indices[row_number] += ( sparse_indices[row_number, j] * multipliers[j] ) with ib.if_scope(row_number < sparse_indices_ptr.shape[0]): current_element = ib.allocate( new_shape_ptr.dtype, (1,), name="current_element", scope="local" ) current_element[0] = flattened_indices[row_number] with ib.for_range(0, new_sparse_indices_ptr.shape[1]) as j: new_sparse_indices[row_number, j] = Cast( sparse_indices_ptr.dtype, floordiv(current_element[0], dividers[j]) ) current_element[0] = floormod(current_element[0], dividers[j]) return ib.get() new_sparse_indices_buf = decl_buffer( new_sparse_indices_shape, sparse_indices.dtype, "new_sparse_indices_buf" ) new_shape_buf = decl_buffer(new_shape_shape, prev_shape.dtype, "new_shape_buf") return extern( [new_sparse_indices_shape, new_shape_shape], [sparse_indices, prev_shape, new_shape], lambda ins, outs: gen_ir(ins[0], ins[1], ins[2], outs[0], outs[1]), out_buffers=[new_sparse_indices_buf, new_shape_buf], name="sparse_reshape_cuda", tag="sparse_reshape_cuda", )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/ssd/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import """VISION network operators""" from __future__ import absolute_import as _abs from .multibox import *
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/ssd/multibox.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-member, too-many-locals, too-many-arguments, too-many-statements, too-many-function-args """SSD multibox operators""" import math import tvm from tvm import te from tvm.tir import if_then_else, exp from tvm import topi from ..nms import non_max_suppression def multibox_prior_ir(data, out, sizes, ratios, steps, offsets): """Low level IR routing for multibox_prior operator. Parameters ---------- data : Buffer Input data buffer. out : Buffer Output buffer. sizes : tuple of float Tuple of sizes for anchor boxes. ratios : tuple of float Tuple of ratios for anchor boxes. steps : Tuple of float Priorbox step across y and x, -1 for auto calculation. offsets : tuple of int Priorbox center offsets, y and x respectively. Returns ------- stmt : Stmt The result IR statement. """ max_threads = int(math.sqrt(tvm.target.Target.current(allow_none=False).max_num_threads)) tx = te.thread_axis("threadIdx.x") ty = te.thread_axis("threadIdx.y") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib = tvm.tir.ir_builder.create() p_out = ib.buffer_ptr(out) in_height = data.shape[2] in_width = data.shape[3] nthread_tx = max_threads nthread_bx = in_height // max_threads + 1 nthread_ty = max_threads nthread_by = in_width // max_threads + 1 ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(ty, "thread_extent", nthread_ty) ib.scope_attr(bx, "thread_extent", nthread_bx) ib.scope_attr(by, "thread_extent", nthread_by) num_sizes = len(sizes) num_ratios = len(ratios) size_ratio_concat = sizes + ratios steps_h = steps[0] if steps[0] > 0 else 1.0 / in_height steps_w = steps[1] if steps[1] > 0 else 1.0 / in_width offset_h = offsets[0] offset_w = offsets[1] i = bx * max_threads + tx j = by * max_threads + ty with ib.if_scope((i < in_height)): with ib.if_scope((j < in_width)): center_h = (i + offset_h) * steps_h center_w = (j + offset_w) * steps_w for k in range(num_sizes + num_ratios - 1): w = if_then_else( k < num_sizes, float(size_ratio_concat[k]) * in_height / in_width / 2.0, float(size_ratio_concat[0]) * in_height / in_width * math.sqrt(size_ratio_concat[k + 1]) / 2.0, ) h = if_then_else( k < num_sizes, size_ratio_concat[k] / 2.0, size_ratio_concat[0] / math.sqrt(size_ratio_concat[k + 1]) / 2.0, ) count = ( i * in_width * (num_sizes + num_ratios - 1) + j * (num_sizes + num_ratios - 1) + k ) * 4 p_out[count] = center_w - w p_out[count + 1] = center_h - h p_out[count + 2] = center_w + w p_out[count + 3] = center_h + h body = ib.get() return body def multibox_prior(data, sizes=(1,), ratios=(1,), steps=(-1, -1), offsets=(0.5, 0.5), clip=False): """Generate prior(anchor) boxes from data, sizes and ratios. Parameters ---------- data : tvm.te.Tensor 4-D with shape [batch, c_in, h_in, w_in]] sizes : tuple of float Tuple of sizes for anchor boxes. ratios : tuple of float Tuple of ratios for anchor boxes. steps : Tuple of float Priorbox step across y and x, -1 for auto calculation. offsets : tuple of int Priorbox center offsets, y and x respectively. clip : boolean Whether to clip out-of-boundary boxes. Returns ------- out : tvm.te.Tensor 3-D tensor with shape [1, h_in * w_in * (num_sizes + num_ratios - 1), 4] """ num_sizes = len(sizes) num_ratios = len(ratios) oshape = (1, data.shape[2] * data.shape[3] * (num_sizes + num_ratios - 1), 4) out = te.extern( oshape, [data], lambda ins, outs: multibox_prior_ir(ins[0], outs[0], sizes, ratios, steps, offsets), tag="multibox_prior", ) if clip: out = topi.clip(out, 0, 1) return out def transform_loc_pre(cls_prob, valid_count, temp_valid_count, temp_cls_id, temp_score, threshold): """Low level IR routing for transform location data preparation. Parameters ---------- cls_prob : Buffer Buffer of class probabilities. valid_count : Buffer Buffer of number of valid output boxes. temp_valid_count : Buffer Output intermediate result buffer temp_cls_id : Buffer Output intermediate result buffer temp_score : Buffer Output buffer threshold : float Threshold to be a positive prediction. Returns ------- stmt : Stmt The result IR statement. """ batch_size = cls_prob.shape[0] num_classes = cls_prob.shape[1] num_anchors = cls_prob.shape[2] ib = tvm.tir.ir_builder.create() cls_prob = ib.buffer_ptr(cls_prob) cls_id = ib.buffer_ptr(temp_cls_id) valid_count = ib.buffer_ptr(valid_count) temp_valid_count = ib.buffer_ptr(temp_valid_count) score = ib.buffer_ptr(temp_score) threshold = tvm.tir.FloatImm("float32", threshold) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = (batch_size * num_anchors) // max_threads + 1 tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx idxd = tvm.tir.indexdiv idxm = tvm.tir.indexmod with ib.if_scope(tid < batch_size * num_anchors): i = idxd(tid, num_anchors) j = idxm(tid, num_anchors) valid_count[i] = 0 score[tid] = -1.0 cls_id[tid] = 0 with ib.for_range(0, num_classes - 1) as k: temp = cls_prob[i * num_classes * num_anchors + (k + 1) * num_anchors + j] cls_id[tid] = if_then_else(temp > score[tid], k + 1, cls_id[tid]) score[tid] = tvm.te.max(temp, score[tid]) with ib.if_scope(tvm.tir.all(cls_id[tid] > 0, score[tid] < threshold)): cls_id[tid] = 0 with ib.if_scope(cls_id[tid] > 0): temp_valid_count[tid] = 1 with ib.else_scope(): temp_valid_count[tid] = 0 with ib.if_scope(tid < batch_size): with ib.for_range(0, num_anchors) as k: with ib.if_scope(k > 0): temp_valid_count[tid * num_anchors + k] += temp_valid_count[ tid * num_anchors + k - 1 ] valid_count[i] = temp_valid_count[tid * num_anchors + num_anchors - 1] return ib.get() def transform_loc_ir( loc_pred, anchor, temp_valid_count, temp_cls_id, temp_score, out, clip, variances, batch_size, num_anchors, ): """Low level IR routing for transform location in multibox_detection operator. Parameters ---------- loc_pred : Buffer Buffer of location regression predictions. anchor : Buffer Buffer of prior anchor boxes. temp_valid_count : Buffer Intermediate result buffer. temp_cls_id : Buffer Intermediate result buffer. temp_score : Buffer Input buffer which stores intermediate results. out : Buffer Output buffer. clip : boolean Whether to clip out-of-boundary boxes. variances : tuple of float Variances to be decoded from box regression output. batch_size : int Batch size num_anchors : int Number of anchors Returns ------- stmt : Stmt The result IR statement. """ def transform_loc(loc, loc_base_idx, anchor, anchor_base_idx, clip, vx, vy, vw, vh): """Transform prior anchor box to output box through location predictions.""" al = anchor[anchor_base_idx] at = anchor[anchor_base_idx + 1] ar = anchor[anchor_base_idx + 2] ab = anchor[anchor_base_idx + 3] aw = ar - al ah = ab - at ax = (al + ar) / 2.0 ay = (at + ab) / 2.0 px = loc[loc_base_idx] py = loc[loc_base_idx + 1] pw = loc[loc_base_idx + 2] ph = loc[loc_base_idx + 3] ox = px * vx * aw + ax oy = py * vy * ah + ay ow = exp(pw * vw) * aw / 2.0 oh = exp(ph * vh) * ah / 2.0 return ( tvm.tir.if_then_else(clip, tvm.te.max(0.0, tvm.te.min(1.0, ox - ow)), ox - ow), tvm.tir.if_then_else(clip, tvm.te.max(0.0, tvm.te.min(1.0, oy - oh)), oy - oh), tvm.tir.if_then_else(clip, tvm.te.max(0.0, tvm.te.min(1.0, ox + ow)), ox + ow), tvm.tir.if_then_else(clip, tvm.te.max(0.0, tvm.te.min(1.0, oy + oh)), oy + oh), ) ib = tvm.tir.ir_builder.create() loc_pred = ib.buffer_ptr(loc_pred) anchor = ib.buffer_ptr(anchor) temp_valid_count = ib.buffer_ptr(temp_valid_count) cls_id = ib.buffer_ptr(temp_cls_id) score = ib.buffer_ptr(temp_score) out_loc = ib.buffer_ptr(out) max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = (batch_size * num_anchors) // max_threads + 1 tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx idxd = tvm.tir.indexdiv idxm = tvm.tir.indexmod with ib.if_scope(tid < batch_size * num_anchors): i = idxd(tid, num_anchors) j = idxm(tid, num_anchors) with ib.if_scope(cls_id[tid] > 0): with ib.if_scope(tid == 0): out_base_idx = i * num_anchors * 6 out_loc[out_base_idx] = cls_id[tid] - 1.0 out_loc[out_base_idx + 1] = score[tid] ( out_loc[out_base_idx + 2], out_loc[out_base_idx + 3], out_loc[out_base_idx + 4], out_loc[out_base_idx + 5], ) = transform_loc( loc_pred, tid * 4, anchor, j * 4, clip, variances[0], variances[1], variances[2], variances[3], ) with ib.else_scope(): out_base_idx = i * num_anchors * 6 + temp_valid_count[tid - 1] * 6 out_loc[out_base_idx] = cls_id[tid] - 1.0 out_loc[out_base_idx + 1] = score[tid] ( out_loc[out_base_idx + 2], out_loc[out_base_idx + 3], out_loc[out_base_idx + 4], out_loc[out_base_idx + 5], ) = transform_loc( loc_pred, tid * 4, anchor, j * 4, clip, variances[0], variances[1], variances[2], variances[3], ) return ib.get() def multibox_transform_loc( cls_prob, loc_pred, anchor, clip=True, threshold=0.01, variances=(0.1, 0.1, 0.2, 0.2) ): """Location transformation for multibox detection Parameters ---------- cls_prob : tvm.te.Tensor Class probabilities. loc_pred : tvm.te.Tensor Location regression predictions. anchor : tvm.te.Tensor Prior anchor boxes. clip : boolean Whether to clip out-of-boundary boxes. threshold : float Threshold to be a positive prediction. variances : tuple of float Variances to be decoded from box regression output. Returns ------- ret : tuple of tvm.te.Tensor composed of out : tvm.te.Tensor 3-D tensor with shape (batch_size, num_anchors, 6) valid_count : tvm.te.Tensor 1-D tensor with shape (batch_size,), number of valid anchor boxes. """ batch_size = cls_prob.shape[0] num_anchors = cls_prob.shape[2] oshape = (batch_size, num_anchors, 6) # Define data alignment for intermediate buffer valid_count_dtype = "int32" out_loc_dtype = loc_pred.dtype valid_count_buf = tvm.tir.decl_buffer( (batch_size,), valid_count_dtype, "valid_count_buf", data_alignment=4 ) loc_pred_buf = tvm.tir.decl_buffer( loc_pred.shape, loc_pred.dtype, "loc_pred_buf", data_alignment=8 ) anchor_buf = tvm.tir.decl_buffer(anchor.shape, anchor.dtype, "anchor_buf", data_alignment=8) temp_valid_count_buf = tvm.tir.decl_buffer( ( batch_size, num_anchors, ), valid_count_dtype, "temp_valid_count", data_alignment=8, ) temp_cls_id_buf = tvm.tir.decl_buffer( ( batch_size, num_anchors, ), valid_count_dtype, "temp_cls_id", data_alignment=8, ) temp_score_buf = tvm.tir.decl_buffer( ( batch_size, num_anchors, ), cls_prob.dtype, "temp_score", data_alignment=8, ) valid_count, temp_valid_count, temp_cls_id, temp_score = te.extern( [ (batch_size,), ( batch_size, num_anchors, ), ( batch_size, num_anchors, ), ( batch_size, num_anchors, ), ], [cls_prob], lambda ins, outs: transform_loc_pre(ins[0], outs[0], outs[1], outs[2], outs[3], threshold), dtype=[valid_count_dtype, valid_count_dtype, valid_count_dtype, cls_prob.dtype], out_buffers=[valid_count_buf, temp_valid_count_buf, temp_cls_id_buf, temp_score_buf], tag="multibox_transform_loc_phase_one", ) out_loc = te.extern( [oshape], [loc_pred, anchor, temp_valid_count, temp_cls_id, temp_score], lambda ins, outs: transform_loc_ir( ins[0], ins[1], ins[2], ins[3], ins[4], outs[0], clip, variances, batch_size, num_anchors, ), in_buffers=[ loc_pred_buf, anchor_buf, temp_valid_count_buf, temp_cls_id_buf, temp_score_buf, ], dtype=[out_loc_dtype], tag="multibox_transform_loc", ) return [out_loc, valid_count] def multibox_detection( cls_prob, loc_pred, anchor, clip=True, threshold=0.01, nms_threshold=0.5, force_suppress=False, variances=(0.1, 0.1, 0.2, 0.2), nms_topk=-1, ): """Convert multibox detection predictions. Parameters ---------- cls_prob : tvm.te.Tensor Class probabilities. loc_pred : tvm.te.Tensor Location regression predictions. anchor : tvm.te.Tensor Prior anchor boxes. clip : boolean Whether to clip out-of-boundary boxes. nms_threshold : float Non-maximum suppression threshold. force_suppress : boolean Whether to suppress all detections regardless of class_id. threshold : float Threshold to be a positive prediction. variances : tuple of float Variances to be decoded from box regression output. nms_topk : int Keep maximum top k detections before nms, -1 for no limit. Returns ------- out : tvm.te.Tensor 3-D tensor with shape (batch_size, num_anchors, 6) """ inter_out = multibox_transform_loc(cls_prob, loc_pred, anchor, clip, threshold, variances) out = non_max_suppression( inter_out[0], inter_out[1], inter_out[1], max_output_size=-1, iou_threshold=nms_threshold, force_suppress=force_suppress, top_k=nms_topk, return_indices=False, ) return out
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/stft.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, too-many-arguments, too-many-nested-blocks, unused-argument """STFT operator""" from math import pi import tvm from tvm import te, tir from ..utils import ceil_div def _get_max_threads(batch_row): max_threads = tvm.target.Target.current(allow_none=False).max_num_threads return tir.min(batch_row, max_threads) def stft( data, n_fft, hop_length, win_length, window, normalized, onesided, output_shape, ): """ The STFT computes the Fourier transform of short overlapping windows of the input. This gives frequency components of the signal as they change over time. Parameters ---------- data : relay.Expr Either a 1-D tensor or a 2-D batch tensor. n_fft : int The size of Fourier transform hop_length : int The distance between neighboring sliding window frames win_length : int The size of window frame and STFT filter window : relay.Expr A 1-D tensor window frame normalized : bool Whether to return the normalized STFT results onesided : bool Whether to return onesided result or fill with conjugate symmetry Returns ------- output : relay.Expr Tensor containing the STFT result Examples -------- .. code-block:: python data = [1, 2, 3, 4, 5, 6] window = [4, 3, 2] [n_fft, hop_length, win_length, normalized, onesided] = [3, 3, 3, False, True] relay.stft(data, n_fft, hop_length, win_length, window, normalized, onesided) -> [[[15.0000, 0.0000], [34.0000, 0.0000]], [[ 4.5000, 0.8660], [ 1.0000, -1.7321]]] """ def gen_ir( data_ptr, n_fft, hop_length, win_length, window_ptr, normalized, onesided, output_ptr, ): ib = tir.ir_builder.create() data = ib.buffer_ptr(data_ptr) window = ib.buffer_ptr(window_ptr) output = ib.buffer_ptr(output_ptr) max_threads = _get_max_threads(output_ptr.shape[0] * output_ptr.shape[1]) output_size = output_ptr.shape[0] * output_ptr.shape[1] * output_ptr.shape[2] with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(output_size, max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < output_size): matrix_size = output_ptr.shape[1] * output_ptr.shape[2] batch = tir.floordiv(tid, matrix_size) row = tir.floordiv(tir.indexmod(tid, matrix_size), output_ptr.shape[2]) col = tir.indexmod(tir.indexmod(tid, matrix_size), output_ptr.shape[2]) output[batch, row, col, 0] = tir.Cast(data_ptr.dtype, 0) output[batch, row, col, 1] = tir.Cast(data_ptr.dtype, 0) with ib.for_range(0, win_length) as wlen: output[batch, row, col, 0] += ( window[wlen] * data[batch, col * hop_length + wlen] * tir.cos(2 * pi * row * wlen / win_length) ) output[batch, row, col, 1] -= ( window[wlen] * data[batch, col * hop_length + wlen] * tir.sin(2 * pi * row * wlen / win_length) ) with ib.if_scope(normalized): output[batch, row, col, 0] /= tir.sqrt(tir.const(n_fft, "float32")) output[batch, row, col, 1] /= tir.sqrt(tir.const(n_fft, "float32")) return ib.get() output_buf = tir.decl_buffer(output_shape, data.dtype, "output_buf") return te.extern( output_shape, [data, window], lambda ins, outs: gen_ir( ins[0], n_fft, hop_length, win_length, ins[1], normalized, onesided, outs[0] ), dtype=[data.dtype], out_buffers=[output_buf], name="stft_cuda", tag="stft_cuda", )
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/tensor_intrin.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unnecessary-lambda, too-many-arguments """Tensor intrinsics on CUDA.""" import tvm from tvm import te from ..utils import is_target def dp4a(x_scope="local", y_scope="local", z_scope="local", dtypes=("int8", "int8")): """ Int8 dot product reduced by every 4 elements using __dp4a Parameters ---------- x_scope : str, optional The storage scope of buffer for lhs y_scope : str, optional The storage scope of buffer for rhs z_scope : str, optional The storage scope of buffer for result dtypes: tuple of strs, optional The dtype of x and y Returns ------- intrin : TensorIntrin The dp4a TensorIntrin that can be used in tensorizing schedule. """ n = 4 # dp4a requires operands packed by 4 result_dtype = "int32" if dtypes[1] == "int8" else "uint32" x = te.placeholder((n,), name="x", dtype=dtypes[0]) y = te.placeholder((n,), name="y", dtype=dtypes[1]) k = te.reduce_axis((0, n), name="rc") z = te.compute( (1,), lambda i: te.sum(x[k].astype(result_dtype) * y[k].astype(result_dtype), axis=[k]) ) def _intrin_func(ins, outs): def _instr(index): xx, yy = ins zz = outs[0] zz_dtype = zz.dtype if index == 1: return zz.vstore(0, tvm.tir.const(0, zz_dtype)) ib = tvm.tir.ir_builder.create() vec_x_dtype = "int8x4" if xx.dtype == "int8" else "uint8x4" vec_y_dtype = "int8x4" if yy.dtype == "int8" else "uint8x4" vec_x = xx.vload(0, dtype=vec_x_dtype) vec_y = yy.vload(0, dtype=vec_y_dtype) prev_z = 0 if index == 0 else zz.vload(0) if is_target("rocm"): # TODO(masahi): Here we are assuming that we are compiling for gfx10 or later # We can refine the specification for dot product on rocm if needed later. # We can just use "llvm.amdgcn.udot4" for u8u8u32, but it is not tested. assert ( dtypes[0] == "int8" and dtypes[0] == "int8" ), "u8u8u32 dot product for rocm not supported yet" new_z = tvm.tir.call_llvm_pure_intrin( zz_dtype, "llvm.amdgcn.sdot4", tvm.tir.const(4, "uint32"), tvm.tir.call_intrin("int32", "tir.reinterpret", vec_x), tvm.tir.call_intrin("int32", "tir.reinterpret", vec_y), prev_z, True, ) else: new_z = tvm.tir.call_pure_extern(zz_dtype, "__dp4a", vec_x, vec_y, prev_z) ib.emit(zz.vstore(0, new_z)) return ib.get() return _instr(0), _instr(1), _instr(2) # body, reset, update default_buffer_params = {"data_alignment": 4, "offset_factor": 1} scopes = {x: x_scope, y: y_scope, z: z_scope} binds = { t: tvm.tir.decl_buffer( t.shape, t.dtype, t.op.name, scope=scopes[t], **default_buffer_params ) for t in [x, y, z] } return te.decl_tensor_intrin( z.op, _intrin_func, binds=binds, default_buffer_params=default_buffer_params ) def intrin_wmma_load_matrix_A(strides_dst, strides_from, shape, layout, A_shape, C_shape, in_dtype): """Intrin function for loading data from shared memory to wmma.matrix_a""" wmma_m, wmma_n, wmma_k = shape A = te.placeholder(A_shape, name="A", dtype=in_dtype) BA = tvm.tir.decl_buffer( A.shape, A.dtype, scope="shared", strides=strides_from, data_alignment=32, offset_factor=8 ) C = te.compute(C_shape, lambda *i: A(*i), name="C") BC = tvm.tir.decl_buffer( C.shape, C.dtype, scope="wmma.matrix_a", strides=strides_dst, data_alignment=32, offset_factor=8, ) def intrin_func(ins, outs): ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] row = wmma_m * wmma_k warp_index = BC.elem_offset // row + BC.elem_offset % row // wmma_k ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_load_matrix_sync", BC.data, wmma_m, wmma_n, wmma_k, warp_index, BA.access_ptr("r"), strides_from[0], layout, ) ) return ib.get() return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) def intrin_wmma_load_matrix_W(strides_dst, strides_from, shape, layout, A_shape, C_shape, in_dtype): """Intrin function for loading data from shared memory to wmma.matrix_b""" wmma_m, wmma_n, wmma_k = shape A = te.placeholder(A_shape, name="A", dtype=in_dtype) BA = tvm.tir.decl_buffer( A.shape, A.dtype, scope="shared", strides=strides_from, data_alignment=32, offset_factor=8 ) C = te.compute(C_shape, lambda *i: A(*i), name="C") BC = tvm.tir.decl_buffer( C.shape, C.dtype, scope="wmma.matrix_b", strides=strides_dst, data_alignment=32, offset_factor=8, ) def intrin_func(ins, outs): ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] row = wmma_n * wmma_k warp_index = BC.elem_offset // row + BC.elem_offset % row // wmma_n ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_load_matrix_sync", BC.data, wmma_m, wmma_n, wmma_k, warp_index, BA.access_ptr("r"), strides_from[0], layout, ) ) return ib.get() return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) def intrin_wmma_store_matrix(strides_dst, strides_from, shape, out_dtype, A_shape, C_shape): """Intrin function for storing the results from wmma.accumulator to shared""" wmma_m, wmma_n, wmma_k = shape A = te.placeholder(A_shape, name="A", dtype=out_dtype) BA = tvm.tir.decl_buffer( A.shape, A.dtype, scope="wmma.accumulator", strides=strides_from, data_alignment=32, offset_factor=8, ) C = te.compute(C_shape, lambda *i: A(*i), name="C") BC = tvm.tir.decl_buffer( C.shape, C.dtype, scope="shared", strides=strides_dst, data_alignment=32, offset_factor=8 ) def intrin_func(ins, outs): ib = tvm.tir.ir_builder.create() BA = ins[0] BC = outs[0] row = wmma_m * wmma_n warp_index = BA.elem_offset // row + BA.elem_offset % row // wmma_n ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_store_matrix_sync", BA.data, wmma_m, wmma_n, wmma_k, warp_index, BC.access_ptr("w"), strides_dst[0], "row_major", ) ) return ib.get() return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, C: BC}) def intrin_wmma_gemm(AL_gemm, WL_gemm, CL_compute, strides_A, strides_W, strides_Conv, shape): """Intrin for wmma fill_fragment and mma_sync Parameters ---------- AL_gemm : tvm.te.placeholder wmma matrix A WL_gemm : tvm.te.placeholder wmma matrix B CL_compute : tvm.te.compute The definition of wmma gemm """ wmma_m, wmma_n, wmma_k = shape A = AL_gemm B = WL_gemm C = CL_compute BA = tvm.tir.decl_buffer( A.shape, A.dtype, name="BA", scope="wmma.matrix_a", data_alignment=32, offset_factor=8, strides=strides_A, ) BB = tvm.tir.decl_buffer( B.shape, B.dtype, name="BB", scope="wmma.matrix_b", data_alignment=32, offset_factor=8, strides=strides_W, ) BC = tvm.tir.decl_buffer( C.shape, C.dtype, name="BC", scope="wmma.accumulator", data_alignment=32, offset_factor=8, strides=strides_Conv, ) def intrin_func(ins, outs): BA, BB = ins (BC,) = outs def warp_idnex(offset, row, col): row = row * col return offset // row + offset % row // col warp_index_A = warp_idnex(BA.elem_offset, wmma_m, wmma_k) warp_index_B = warp_idnex(BB.elem_offset, wmma_k, wmma_n) warp_index_C = warp_idnex(BC.elem_offset, wmma_m, wmma_n) def init(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_fill_fragment", BC.data, wmma_m, wmma_n, wmma_k, warp_index_C, 0.0, ) ) return ib.get() def update(): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_intrin( "handle", "tir.tvm_mma_sync", BC.data, warp_index_C, BA.data, warp_index_A, BB.data, warp_index_B, BC.data, warp_index_C, ) ) return ib.get() return update(), init(), update() return te.decl_tensor_intrin(C.op, intrin_func, binds={A: BA, B: BB, C: BC})
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/tensorcore_alter_op.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-variable,unused-argument """Tensorcore alter op and legalize functions for cuda backend""" import logging import math from tvm import relay, tir from .. import nn logger = logging.getLogger("topi") @nn.batch_matmul_legalize.register("cuda") def _batch_matmul_legalize(attrs, inputs, arg_types): """Legalizes batch_matmul op. Parameters ---------- attrs : tvm.ir.Attrs Attributes of current convolution inputs : list of tvm.relay.Expr The args of the Relay expr to be legalized arg_types : list of types List of input and output types Returns ------- result : tvm.relay.Expr The legalized expr """ # Collect the input tensors. x_tensor, y_tensor = arg_types[0], arg_types[1] dtype = x_tensor.dtype # Collect the output tensor. output_tensor = arg_types[2] # Collect the input exprs. x, y = inputs B, M, K = x_tensor.shape B, N, K = y_tensor.shape if ( isinstance(B, tir.expr.Any) or isinstance(M, tir.expr.Any) or isinstance(K, tir.expr.Any) or isinstance(N, tir.expr.Any) ): # Dynamic shape do not support alter op layout now return None M = M.value K = K.value N = N.value # Pad input and output channels to use tensorcore schedule. if dtype in ["float16", "int8", "uint8"]: # The shape of (M, K, N) must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) if ( (M % 8 == 0 and K % 16 == 0 and N % 32 == 0) or (M % 16 == 0 and K % 16 == 0 and N % 16 == 0) or (M % 32 == 0 and K % 16 == 0 and N % 8 == 0) ): # no need to pad return None candidates = [(16, 16, 16), (32, 16, 8), (8, 16, 32)] elif dtype in ["int4", "uint4"]: if M % 8 == 0 and K % 32 == 0 and N % 8 == 0: # no need to pad return None candidates = [(8, 32, 8)] else: return None (dm, dk, dn), extra_flops = pad_to_tensorcore(M, K, N, candidates) if extra_flops > 2: logger.info("batch_matmul pad_to_tensorcore skipped, extra_flops %s", extra_flops) return None logger.info("batch_matmul pad_to_tensorcore, extra_flops %s", extra_flops) x_ = relay.nn.pad(x, pad_width=((0, 0), (0, dm), (0, dk))) if dm or dk else x y_ = relay.nn.pad(y, pad_width=((0, 0), (0, dn), (0, dk))) if dn or dk else y out_ = relay.nn.batch_matmul(x_, y_, attrs.out_dtype) out = ( relay.strided_slice(out_, begin=[0, 0, 0], end=[x.value for x in output_tensor.shape]) if dm or dn else out_ ) return out @nn.dense_legalize.register("cuda") def _dense_legalize(attrs, inputs, arg_types): """Legalizes dense op. Parameters ---------- attrs : tvm.ir.Attrs Attributes of current convolution inputs : list of tvm.relay.Expr The args of the Relay expr to be legalized types : list of types List of input and output types Returns ------- result : tvm.relay.Expr The legalized expr """ new_attrs = {k: attrs[k] for k in attrs.keys()} # Collect the input tensors. x_tensor, y_tensor = arg_types[0], arg_types[1] dtype = x_tensor.dtype # Collect the output tensor. output_tensor = arg_types[2] # Collect the input exprs. x, y = inputs M, K = x_tensor.shape N, K = y_tensor.shape try: M = M.value K = K.value N = N.value except AttributeError: # todo: deal with unfixed shape when compiling wdl model return None # Pad input and output channels to use tensorcore schedule. if dtype in ["float16", "int8", "uint8"]: # The shape of (M, K, N) must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32) if ( (M % 8 == 0 and K % 16 == 0 and N % 32 == 0) or (M % 16 == 0 and K % 16 == 0 and N % 16 == 0) or (M % 32 == 0 and K % 16 == 0 and N % 8 == 0) ): # no need to pad return None candidates = [(16, 16, 16), (32, 16, 8), (8, 16, 32)] elif dtype in ["int4", "uint4"]: if M % 8 == 0 and K % 32 == 0 and N % 8 == 0: # no need to pad return None candidates = [(8, 32, 8)] else: return None (dm, dk, dn), extra_flops_ratio = pad_to_tensorcore(M, K, N, candidates) skip_pad = extra_flops_ratio > 2 if skip_pad and dtype in ["int8", "uint8"]: skip_pad = False # If tensorcore schedule padding fails, pad to nearest upward 4x4x4 as long as # the additional flops ratio isn't double or more. # Note that 4x4x4 is invalid for tensorcore scheduling, but padding upwards to 4x4x4 # doesn't hurt if tensorcore padding has already failed. if M % 4 == 0 and K % 4 == 0 and N % 4 == 0: # No need to pad return None (dm, dk, dn) = _pad_to(M, K, N, (4, 4, 4)) extra_flops_ratio = _extra_flops(M, K, N, dm, dk, dn) / (M * K * N) skip_pad = extra_flops_ratio > 2 if skip_pad: logger.info("dense pad_to_tensorcore skipped, extra_flops_ratio %s", extra_flops_ratio) return None logger.info("dense pad_to_tensorcore, extra_flops_ratio %s", extra_flops_ratio) x_ = relay.nn.pad(x, pad_width=((0, dm), (0, dk))) if dm or dk else x y_ = relay.nn.pad(y, pad_width=((0, dn), (0, dk))) if dn or dk else y # If units is explicitly specified, it is used to compute the output shape. # We need to update units after padding to prevent a type error. if attrs["units"] is not None: new_attrs["units"] = N + dn out_ = relay.nn.dense(x_, y_, **new_attrs) out = ( relay.strided_slice(out_, begin=[0, 0], end=[x.value for x in output_tensor.shape]) if dm or dn else out_ ) return out def pad_to_tensorcore(M, K, N, candidates): """pad shape to enable tensorcore""" flops = M * K * N extra_flops = math.inf best_pad = (0, 0, 0) for padding in candidates: dm, dk, dn = _pad_to(M, K, N, padding) e = _extra_flops(M, K, N, dm, dk, dn) # print(dm, dk, dn, e, flops) if e < extra_flops: extra_flops = e best_pad = (dm, dk, dn) return best_pad, extra_flops / flops def _extra_flops(M, K, N, dm, dk, dn): return (M + dm) * (N + dn) * (K + dk) - M * N * K def _pad_to(M, K, N, PADDING): dm, dk, dn = 0, 0, 0 if M % PADDING[0] != 0: M_ = ((M + PADDING[0]) // PADDING[0]) * PADDING[0] dm = M_ - M if K % PADDING[1] != 0: K_ = ((K + PADDING[1]) // PADDING[1]) * PADDING[1] dk = K_ - K if N % PADDING[2] != 0: N_ = ((N + PADDING[2]) // PADDING[2]) * PADDING[2] dn = N_ - N return dm, dk, dn
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/transform.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """CUDA implementations of transforms""" import tvm from ... import te from ...target import Target from ..utils import traverse_inline def schedule_transpose(outs): """Schedule a unfused transpose""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) schedule_transpose_from_existing(s, outs[0]) return s def schedule_transpose_from_existing(s, out): """Schedule for transpose on the gpu. Roughly follows this: https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/, but without the padding for shared memory. For better performance, we could rewrite it in tir to add the padding. Also, rewriting in tir would allow use to use warp shuffles instead of shared memory (see https://github.com/bryancatanzaro/trove). """ def _callback(op): # pylint: disable=invalid-name m, n = s[op].op.axis warp_size = int(Target.current(allow_none=False).thread_warp_size) no, ni = s[op].split(n, factor=warp_size) mo, mi = s[op].split(m, factor=warp_size) s[op].reorder(mo, no, mi, ni) s[op].bind(mo, te.thread_axis("blockIdx.x")) s[op].bind(no, te.thread_axis("blockIdx.y")) c = s.cache_read(op.input_tensors[0], "shared", op) s[c].compute_at(s[op], no) thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") s[op].bind(ni, thread_x) # This is a hack to make the scheduling language realize that this axis # can be scheduled. a, _ = s[c].split(s[c].op.axis[1], factor=1) s[c].bind(a, thread_x) # Use 4 warps per block. Slightly faster than 1 warp per block ao, _ = s[op].split(mi, nparts=4) s[op].bind(ao, thread_y) ao, _ = s[c].split(s[c].op.axis[0], nparts=4) s[c].bind(ao, thread_y) traverse_inline(s, out.op, _callback) def _invert_permutation_ir(data, out): """Low level IR to get invert_permutation. Parameters ---------- data : Buffer Input data. 1-D Buffer with shape [elem_num]. out : Buffer 1D buffer for invert permutation result with the same shape with data. Returns ------- stmt : Stmt The result IR statement. """ elem_num = data.shape[0] irb = tvm.tir.ir_builder.create() data = irb.buffer_ptr(data) out = irb.buffer_ptr(out) max_threads = int(Target.current(allow_none=False).max_num_threads) nthread_tx = max_threads nthread_bx = elem_num // max_threads + 1 thread_x = te.thread_axis("threadIdx.x") block_x = te.thread_axis("blockIdx.x") irb.scope_attr(thread_x, "thread_extent", nthread_tx) irb.scope_attr(block_x, "thread_extent", nthread_bx) tid = block_x * max_threads + thread_x with irb.if_scope(tid < elem_num): r_ind = data[tid] out[r_ind] = tid return irb.get() def invert_permutation(data): """Compute definition of invert_permutation. For an output tensor y and an input tensor x, this operation computes the following: y[x[i]] = i for i in [0, 1, ..., len(x) - 1] Parameters ---------- data : tvm.te.Tensor 1-D tensor Returns ------- out : tvm.te.Tensor """ data_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "data_buf", data_alignment=8) out_buf = tvm.tir.decl_buffer(data.shape, data.dtype, "out_buf", data_alignment=8) out = te.extern( [data.shape], [data], lambda ins, outs: _invert_permutation_ir(ins[0], outs[0]), in_buffers=[ data_buf, ], out_buffers=[ out_buf, ], name="invert_permutation", tag="invert_permutation_gpu", ) return out
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/unique.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Unique operator""" import tvm from tvm import te, tir from ...te import hybrid from .scan import cumsum from .sort import sort, argsort from ..utils import ceil_div def _get_max_threads(batch_size): target = tvm.target.Target.current() max_threads = tvm.target.Target.current(allow_none=False).max_num_threads if "vulkan" in str(target) and not isinstance(batch_size, tvm.tir.IntImm): # SPIR-V does not support dynamic thread group size return max_threads return tir.min(batch_size, max_threads) def _calc_adjacent_diff_ir(data, output, binop=tir.Sub): """Low level IR to calculate adjacent difference in an 1-D array. Parameters ---------- data : Buffer Input 1-D Buffer. output: Buffer A buffer to store adjacent difference, of the same shape as data. The adjacent difference is defined as: output[0] = 0, output[i] = binop(data[i], data[i-1]) where i > 0 and i < len(data). binop: function, optional A binary associative op to use for calculating adjacent difference. The function takes two TIR expressions and produce a new TIR expression. By default it uses tvm.tir.Sub to compute the adjacent difference. """ ib = tir.ir_builder.create() data_ptr = ib.buffer_ptr(data) output_ptr = ib.buffer_ptr(output) batch_size = data.shape[0] max_threads = _get_max_threads(batch_size) with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(batch_size, max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < batch_size): with ib.if_scope(tid == 0): output_ptr[tid] = 0 with ib.else_scope(): output_ptr[tid] = tir.Cast(output.dtype, binop(data_ptr[tid], data_ptr[tid - 1])) return ib.get() def _calc_adjacent_diff(data, out_dtype="int32", binop=tir.Sub): """Function calculate adjacent difference in an 1-D array. Parameters ---------- data : tvm.te.Tensor Input 1-D tensor. output_dtype : str The output tensor data type. binop: function, optional A binary associative op to use for calculating difference. The function takes two TIR expressions and produce a new TIR expression. By default it uses tvm.tir.Sub to compute the adjacent difference. Returns ------- output : tvm.te.Tensor 1-D tensor storing the adjacent difference of the input tensor. The adjacent difference is defined as: output[0] = 0, output[i] = binop(data[i], data[i-1]) where i > 0 and i < len(data). """ data_buf = tir.decl_buffer(data.shape, data.dtype, "sorted_data_buf", data_alignment=8) output_buf = tir.decl_buffer(data.shape, out_dtype, "output_buf", data_alignment=8) return te.extern( [data.shape], [data], lambda ins, outs: _calc_adjacent_diff_ir(ins[0], outs[0], binop=binop), dtype=[out_dtype], in_buffers=[data_buf], out_buffers=[output_buf], name="_calc_adjacent_diff", tag="_calc_adjacent_diff_gpu", ) @hybrid.script def _calc_num_unique(inc_scan): """Helper function to get the number of unique elements fron inc_scan tensor""" output = output_tensor((1,), "int32") for i in bind("threadIdx.x", 1): output[i] = inc_scan[inc_scan.shape[0] - 1] + int32(1) return output def _calc_unique_ir( data, argsorted_indices, inc_scan, index_converter, unique_elements, inverse_indices, counts ): """Low level IR to calculate unique elements, inverse indices, and counts (optional) of unique elements of 1-D array. Parameters ---------- data : Buffer Input 1-D Buffer. argsorted_indices : Buffer A buffer that stores the argsorted indices of the input data. inc_scan : Buffer A buffer that stores the inclusive scan of the binary tir.NE adjacent difference of the sorted data. index_converter (optional) : Buffer An optional index converter that transforms the unique element index such that new_idx = index_converter[old_idx]. unique_elements : Buffer A buffer that stores the unique elements. inverse_indices : Buffer A buffer that stores the index of each input data element in the unique element array. counts (optional) : Buffer A buffer that stores the count of each unique element. """ ib = tir.ir_builder.create() data_ptr = ib.buffer_ptr(data) argsorted_indices_ptr = ib.buffer_ptr(argsorted_indices) inc_scan_ptr = ib.buffer_ptr(inc_scan) unique_elements_ptr = ib.buffer_ptr(unique_elements) inverse_indices_ptr = ib.buffer_ptr(inverse_indices) index_converter_ptr = None if isinstance(index_converter, tir.Buffer): index_converter_ptr = ib.buffer_ptr(index_converter) if isinstance(counts, tir.Buffer): counts_ptr = ib.buffer_ptr(counts) # use indices_ptr as a tmp buffer to store tids with inc_scan[tid] != inc_scan[tid-1] unique_seq_indices_ptr = ib.buffer_ptr(inverse_indices) batch_size = data.shape[0] max_threads = _get_max_threads(batch_size) # if need to return counts if isinstance(counts, tir.Buffer): num_unique = inc_scan_ptr[inc_scan.shape[0] - 1] + 1 num_elements = data.shape[0] with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(batch_size, max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < batch_size): with ib.if_scope(tid == 0): unique_seq_indices_ptr[num_unique - 1] = num_elements with ib.else_scope(): with ib.if_scope(inc_scan_ptr[tid] != inc_scan_ptr[tid - 1]): unique_seq_indices_ptr[inc_scan_ptr[tid] - 1] = tid with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(batch_size, max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < num_unique): unique_idx = tid if not index_converter_ptr else index_converter_ptr[tid] with ib.if_scope(tid == 0): counts_ptr[unique_idx] = unique_seq_indices_ptr[tid] with ib.else_scope(): counts_ptr[unique_idx] = ( unique_seq_indices_ptr[tid] - unique_seq_indices_ptr[tid - 1] ) # calculate unique elements and inverse indices with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(batch_size, max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < batch_size): data_idx = argsorted_indices_ptr[tid] unique_idx = ( inc_scan_ptr[tid] if not index_converter_ptr else index_converter_ptr[inc_scan_ptr[tid]] ) inverse_indices_ptr[data_idx] = unique_idx with ib.if_scope(tid == 0): unique_elements_ptr[unique_idx] = data_ptr[data_idx] with ib.else_scope(): with ib.if_scope(inc_scan_ptr[tid] != inc_scan_ptr[tid - 1]): unique_elements_ptr[unique_idx] = data_ptr[data_idx] return ib.get() def _calc_first_occurence_ir(argsorted_indices, inc_scan, first_occurence): """Low level IR to calculate the first occurence of each unique element in the input data. Parameters ---------- argsorted_indices : Buffer A buffer that stores the argsorted indices of the input data. inc_scan : Buffer A buffer that stores the inclusive scan of the binary tir.NE adjacent difference of the sorted data. first_occurence : Buffer A buffer that stores the first occurence of each unique element in the input data. """ ib = tir.ir_builder.create() argsorted_indices_ptr = ib.buffer_ptr(argsorted_indices) inc_scan_ptr = ib.buffer_ptr(inc_scan) first_occurence_ptr = ib.buffer_ptr(first_occurence) batch_size = argsorted_indices.shape[0] max_threads = _get_max_threads(batch_size) with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(batch_size, max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < batch_size): first_occurence_ptr[tid] = batch_size with ib.new_scope(): nthread_tx = max_threads nthread_bx = ceil_div(batch_size, max_threads) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", nthread_tx) ib.scope_attr(bx, "thread_extent", nthread_bx) tid = bx * max_threads + tx with ib.if_scope(tid < batch_size): with ib.if_scope(tid == 0): first_occurence_ptr[inc_scan_ptr[tid]] = argsorted_indices_ptr[tid] with ib.else_scope(): with ib.if_scope(inc_scan_ptr[tid] != inc_scan_ptr[tid - 1]): first_occurence_ptr[inc_scan_ptr[tid]] = argsorted_indices_ptr[tid] return ib.get() def unique(data, is_sorted=True, return_counts=False): """ Find the unique elements of a 1-D tensor. Please note `output` and `counts` are all padded to have the same length of `data` and element with index >= num_unique[0] has undefined value. Parameters ---------- data : tvm.te.Tensor A 1-D tensor of integers. sorted : bool Whether to sort the unique elements in ascending order before returning as output. return_counts : bool Whether to return the count of each unique element. Returns ------- unique : tvm.te.Tensor A 1-D tensor containing the unique elements of the input data tensor. The same size as the input data. If there are less unique elements than input data, the end of the tensor is padded with zeros. indices : tvm.te.Tensor A 1-D tensor. The same size as output. For each entry in output, it contains the index of its first occurence in the input data. The end of the tensor is padded with the length of the input data. inverse_indices : tvm.te.Tensor A 1-D tensor. For each entry in data, it contains the index of that data element in the unique array. (Note that inverse_indices is very similar to indices if output is not sorted) num_unique : tvm.te.Tensor A 1-D tensor with size=1 containing the number of unique elements in the input data tensor. counts (optional) : tvm.te.Tensor A 1-D tensor containing the count of each unique element in the output. Examples -------- .. code-block:: python [output, indices, num_unique] = unique([4, 5, 1, 2, 3, 3, 4, 5], False, False) output = [4, 5, 1, 2, 3, ?, ?, ?] indices = [0, 1, 2, 3, 4, ?, ?, ?] inverse_indices = [0, 1, 2, 3, 4, 4, 0, 1] num_unique = [5] [output, indices, num_unique, counts] = unique([4, 5, 1, 2, 3, 3, 4, 5], False, True) output = [4, 5, 1, 2, 3, ?, ?, ?] indices = [0, 1, 2, 3, 4, ?, ?, ?] inverse_indices = [0, 1, 2, 3, 4, 4, 0, 1] num_unique = [5] counts = [2, 2, 1, 1, 2, ?, ?, ?] [output, indices, num_unique] = unique([4, 5, 1, 2, 3, 3, 4, 5], True) output = [1, 2, 3, 4, 5, ?, ?, ?] indices = [2, 3, 4, 0, 1, ?, ?, ?] inverse_indices = [3, 4, 0, 1, 2, 2, 3, 4] num_unique = [5] """ sorted_data = sort(data) argsorted_indices = argsort(data, dtype="int32") # adjacent difference adjacent_diff = _calc_adjacent_diff(sorted_data, out_dtype="int32", binop=tir.NE) # inclusive scan inc_scan = cumsum(adjacent_diff, dtype="int32", exclusive=0) # total number of unique elements num_unique_elements = _calc_num_unique(inc_scan) # buffers data_buf = tir.decl_buffer(data.shape, data.dtype, "data_buf", data_alignment=8) argsorted_indices_buf = tir.decl_buffer( data.shape, "int32", "argsorted_indices_buf", data_alignment=8 ) inc_scan_buf = tvm.tir.decl_buffer(data.shape, "int32", "inc_scan_buf", data_alignment=8) unique_elements_buf = tir.decl_buffer( data.shape, data.dtype, "unique_elements_buf", data_alignment=8 ) inverse_indices_buf = tvm.tir.decl_buffer( data.shape, "int32", "inverse_indices_buf", data_alignment=8 ) # prepare outputs if return_counts: counts_buf = tir.decl_buffer(data.shape, "int32", "counts_buf", data_alignment=8) out_data_shape = [data.shape] * 3 out_buffers = [unique_elements_buf, inverse_indices_buf, counts_buf] out_dtypes = [data.dtype, "int32", "int32"] else: out_data_shape = [data.shape] * 2 out_buffers = [unique_elements_buf, inverse_indices_buf] out_dtypes = [data.dtype, "int32"] # prepare inputs and fcompute # calculate first occurence first_occurence_buf = tir.decl_buffer( data.shape, "int32", "first_occurence_buf", data_alignment=8 ) first_occurence = te.extern( [data.shape], [argsorted_indices, inc_scan], lambda ins, outs: _calc_first_occurence_ir(ins[0], ins[1], outs[0]), dtype=["int32"], in_buffers=[argsorted_indices_buf, inc_scan_buf], out_buffers=[first_occurence_buf], name="_calc_first_occurence", tag="_calc_first_occurence_gpu", ) if is_sorted: in_data = [data, argsorted_indices, inc_scan] in_buffers = [data_buf, argsorted_indices_buf, inc_scan_buf] if return_counts: fcompute = lambda ins, outs: _calc_unique_ir(*ins, None, *outs) else: fcompute = lambda ins, outs: _calc_unique_ir(*ins, None, *outs, None) indices = first_occurence else: # calculate index converter by sorting unique elements by their first occurence argsorted_first_occurence = argsort(first_occurence, dtype="int32") index_converter = argsort(argsorted_first_occurence, dtype="int32") index_converter_buf = tir.decl_buffer( data.shape, "int32", "index_converter_buf", data_alignment=8 ) in_data = [data, argsorted_indices, inc_scan, index_converter] in_buffers = [data_buf, argsorted_indices_buf, inc_scan_buf, index_converter_buf] if return_counts: fcompute = lambda ins, outs: _calc_unique_ir(*ins, *outs) else: fcompute = lambda ins, outs: _calc_unique_ir(*ins, *outs, None) indices = sort(first_occurence) outs = te.extern( out_data_shape, in_data, fcompute, dtype=out_dtypes, in_buffers=in_buffers, out_buffers=out_buffers, name="_calc_unique", tag="_calc_unique_gpu", ) if return_counts: return [outs[0], indices, outs[1], num_unique_elements, outs[2]] return [outs[0], indices, outs[1], num_unique_elements]
https://github.com/zk-ml/tachikoma
python/tvm/topi/cuda/vision.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable, unused-argument, no-member, import-outside-toplevel """Schedule for vision operators""" from __future__ import absolute_import as _abs import tvm from tvm import te from .. import cpp from .. import tag from .pooling import schedule_pool from .injective import schedule_injective_from_existing def _default_schedule(outs): """Default schedule for gpu.""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) scheduled_ops = [] def traverse(op): if tag.is_injective(op.tag) or op.tag in ["bbox_score", "sorted_bbox"]: schedule_injective_from_existing(s, op.output(0)) for tensor in op.input_tensors: if tensor.op.input_tensors and tensor.op not in scheduled_ops: traverse(tensor.op) scheduled_ops.append(op) for o in outs: traverse(o.op) return s def schedule_reorg(outs): """Schedule for reorg operator. Parameters ---------- outs: Array of Tensor The computation graph description of reorg in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for reorg. """ target = tvm.target.Target.current(allow_none=False) cpp_target = cpp.TEST_create_target(target.kind.name) return cpp.cuda.schedule_injective(cpp_target, outs) def schedule_nms(outs): """Schedule for non-maximum suppression Parameters ---------- outs: Array of Tensor The computation graph description of nms in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs) def schedule_multibox_prior(outs): """Schedule for multibox_prior operator. Parameters ---------- outs: Array of Tensor The computation graph description of multibox_prior in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for multibox_prior. """ return _default_schedule(outs) def schedule_multibox_transform_loc(outs): """Schedule for multibox_transform_loc Parameters ---------- outs: Array of Tensor The computation graph description of multibox_transform_loc in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs) def schedule_multibox_detection(outs): """Schedule for multibox_detection operator. Parameters ---------- outs: Array of Tensor The computation graph description of multibox_detection in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for multibox_detection. """ return _default_schedule(outs) def schedule_roi_align(outs): return schedule_pool(outs, "NCHW") def schedule_roi_pool(outs): return schedule_pool(outs, "NCHW") def schedule_proposal(outs): """Schedule for proposal operator. Parameters ---------- outs: Array of Tensor The computation graph description of proposal in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs) def schedule_get_valid_counts(outs): """Schedule for get_valid_counts operator. Parameters ---------- outs: Array of Tensor The computation graph description of get_valid_counts in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs)
https://github.com/zk-ml/tachikoma
python/tvm/topi/einsum.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,consider-using-enumerate,redefined-outer-name """Einsum operator""" from . import cpp def einsum(subscripts, *operand): """Evaluates the Einstein summation convention on the operands. Parameters ---------- subscripts : string Specifies the subscripts for summation as comma separated list of subscript labels. An implicit (classical Einstein summation) calculation is performed unless the explicit indicator ‘->’ is included as well as subscript labels of the precise output form. a_tuple : tuple of tvm.te.Tensor These are the Tensors for the operation. The only difference of einsum between in tvm and numpy is it needs an extra brackets for the tensors. For example, topi.einsum("ij, jk -> ik", (A, B)). Returns ------- out : tvm.te.Tensor The calculation based on the Einstein summation convention. """ return cpp.einsum(subscripts, operand)
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import """Generic declaration and schedules. This is a recommended way of using TOPI API. To use the generic schedule function, user must set the current target scope using with block. See also :any:`tvm.target` Example ------- .. code-block:: python # create schedule that dispatches to topi.cuda.schedule_injective with tvm.target.Target("cuda"): s = tvm.tir.generic.schedule_injective(outs) """ from __future__ import absolute_import as _abs from .nn import * from .injective import * from .extern import * from .vision import * from .sort import * from .search import * from .image import * from .math import *
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable, too-many-locals # pylint: disable=unused-argument, redefined-builtin """Generic convolution schedules""" from tvm import te from tvm import autotvm from tvm import relay from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity from ..utils import get_const_tuple, traverse_inline from ..nn.utils import get_pad_tuple def fallback_schedule_cpu_common_int8(cfg, wkl, int32_lanes, num_int8_elements): """Fallback schedule for conv2d int8 on cpu. Normally the inner most pattern takes two int8/uint8 tensors data[num_int8_elements] and kernel[int32_lanes, num_int8_elements], produces a dot product int32/uint32 output[int32_lanes]. Parameters ---------- int32_lanes : int How many numbers of int32/uint32 will be produced using intrinsic. This is related to output channel. num_int8_elements : int How many numbers of input int32/uint32 will be multiplied and reduced. This is related to input channel. """ pt, pl, pb, pr = wkl.padt, wkl.padl, wkl.padb, wkl.padr HSTR, WSTR = wkl.stride_h, wkl.stride_w dilated_kernel_w = (wkl.kernel_w - 1) * wkl.dilation_w + 1 out_width = (wkl.width + pl + pr - dilated_kernel_w) // WSTR + 1 assert wkl.out_filter % int32_lanes == 0, "wkl.out_filter=%d, int32_lanes=%d" % ( wkl.out_filter, int32_lanes, ) assert wkl.in_filter % num_int8_elements == 0, "wkl.in_filter=%d, num_int8_elements=%d" % ( wkl.in_filter, num_int8_elements, ) oc_bn = int32_lanes if int32_lanes >= num_int8_elements else num_int8_elements ic_bn = 1 for bn in range(oc_bn, 0, -4): if wkl.in_filter % bn == 0: ic_bn = bn break reg_n = 1 for n in range(31, 0, -1): if out_width % n == 0: reg_n = n break cfg["tile_ic"] = SplitEntity([wkl.in_filter // ic_bn, ic_bn]) cfg["tile_oc"] = SplitEntity([wkl.out_filter // oc_bn, oc_bn]) cfg["tile_ow"] = SplitEntity([out_width // reg_n, reg_n]) cfg["unroll_kw"] = OtherOptionEntity(False) def fallback_schedule_cpu_1x1_int8(cfg, wkl, int32_lanes, num_int8_elements): """Fallback schedule for 1x1 conv2d int8 on cpu. Normally the inner most pattern takes two int8/uint8 tensors data[num_int8_elements] and kernel[int32_lanes, num_int8_elements], produces a dot product int32/uint32 output[int32_lanes]. Parameters ---------- int32_lanes : int How many numbers of int32/uint32 will be produced using intrinsic. This is related to output channel. num_int8_elements : int How many numbers of input int32/uint32 will be multiplied and reduced. This is related to input channel. """ pt, pl, pb, pr = wkl.padt, wkl.padl, wkl.padb, wkl.padr HSTR, WSTR = wkl.stride_h, wkl.stride_w out_height = (wkl.height + pt + pb - wkl.kernel_h) // HSTR + 1 out_width = (wkl.width + pl + pr - wkl.kernel_w) // WSTR + 1 assert wkl.out_filter % int32_lanes == 0, "wkl.out_filter=%d, int32_lanes=%d" % ( wkl.out_filter, int32_lanes, ) assert wkl.in_filter % num_int8_elements == 0, "wkl.in_filter=%d, num_int8_elements=%d" % ( wkl.in_filter, num_int8_elements, ) oc_bn = int32_lanes if int32_lanes >= num_int8_elements else num_int8_elements ic_bn = 1 for bn in range(oc_bn, 0, -4): if wkl.in_filter % bn == 0: ic_bn = bn break for ow_factor in range(out_width, 0, -1): if out_width % ow_factor == 0: for oh_factor in range(out_height, 0, -1): if out_height % oh_factor == 0 and ow_factor * oh_factor < 32: cfg["tile_ic"] = SplitEntity([wkl.in_filter // ic_bn, ic_bn]) cfg["tile_oc"] = SplitEntity([wkl.out_filter // oc_bn, oc_bn]) cfg["tile_oh"] = OtherOptionEntity(oh_factor) cfg["tile_ow"] = SplitEntity([out_width // ow_factor, ow_factor]) return raise ValueError("cannot decide default schedule for workload: {}".format(wkl)) def schedule_conv_NCHWc_cpu_common_int8( s, cfg, data_vec, kernel_vec, conv_out, last, int32_lanes=16, int8_elems=4, intrin=None, inline_fused=True, ): """ Defines the schedule for INT8 for Intel and ARM machines Uses the Intel/ARM intrinsics to use INT8 operations More details - https://software.intel.com/en-us/articles/ lower-numerical-precision-deep-learning-inference-and-training """ if isinstance(cfg["tile_ow"], int): reg_n = cfg["tile_ow"] else: reg_n = cfg["tile_ow"].size[-1] if isinstance(cfg["unroll_kw"], (int, bool)): unroll_kw = cfg["unroll_kw"] else: unroll_kw = cfg["unroll_kw"].val _, _, _, _, ic_bn = get_const_tuple(data_vec.shape) _, _, _, _, oc_bn = get_const_tuple(conv_out.shape) # schedule pad if isinstance(s[data_vec].op, te.tensor.ComputeOp) and "pad" in data_vec.op.tag: batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih) s[data_vec].parallel(parallel_axis) data_vec = data_vec.op.input_tensors[0] if autotvm.GLOBAL_SCOPE.in_tuning: # only in autotuning, input data of conv2d_NCHWc will be 4-D. # skip this part during tuning to make records accurate. # this part will be folded during Relay fold_constant pass. if isinstance(data_vec.op, te.tensor.ComputeOp): s[data_vec].pragma(s[data_vec].op.axis[0], "debug_skip_region") if isinstance(kernel_vec.op, te.tensor.ComputeOp): s[kernel_vec].pragma(s[kernel_vec].op.axis[0], "debug_skip_region") elif isinstance(kernel_vec.op, te.tensor.ComputeOp) and kernel_vec.name == "kernel_vec": # data and kernel are not pre-computed, schedule layout transform here. # this should only be used by x86 conv2d_nchw, which is for # testing purpose. batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih) s[data_vec].parallel(parallel_axis) # conv2d_nchwc_int8 has 7D kernel oc_chunk, ic_chunk, oh, ow, ic_block, oc_block, _ = s[kernel_vec].op.axis s[kernel_vec].reorder(oc_chunk, oh, ic_chunk, ow, ic_block, oc_block) oc_bn = cfg["tile_oc"].size[-1] if oc_bn > 1: s[kernel_vec].vectorize(oc_block) parallel_axis = s[kernel_vec].fuse(oc_chunk, oh) s[kernel_vec].parallel(parallel_axis) # schedule 5-D NCHW[x]c conv C, O = conv_out, last CC = s.cache_write(C, "global") batch, oc_chunk, oh, ow, oc_block = s[C].op.axis ow_chunk, ow_block = s[C].split(ow, factor=reg_n) s[C].reorder(oc_chunk, oh, ow_chunk, ow_block, oc_block) parallel_axis = s[C].fuse(batch, oc_chunk, oh) s[C].vectorize(oc_block) if C == O: s[C].parallel(parallel_axis) s[CC].compute_at(s[C], parallel_axis) _, oc_chunk, oh, ow, oc_block = s[CC].op.axis kh, kw, ic_outer, ic_f_inner, ic_s_inner = s[CC].op.reduce_axis ow_chunk, ow_block = s[CC].split(ow, factor=reg_n) assert oc_bn % int32_lanes == 0, f"oc_bn={oc_bn} % int32_lanes={int32_lanes} != 0" assert ( ic_bn % int8_elems == 0 ), f"ic_bn={ic_bn} % int8_elems={int8_elems} != 0" # (u)int8 elements in (u)int32 oc_f_inner, oc_s_inner = s[CC].split(oc_block, factor=int32_lanes) if unroll_kw: s[CC].reorder( oc_chunk, oh, ow_chunk, ic_outer, kh, ic_f_inner, kw, ow_block, oc_f_inner, oc_s_inner, ic_s_inner, ) s[CC].unroll(kw) else: s[CC].reorder( oc_chunk, oh, ow_chunk, ic_outer, kh, kw, ic_f_inner, ow_block, oc_f_inner, oc_s_inner, ic_s_inner, ) if intrin is not None: s[CC].tensorize(oc_s_inner, intrin) s[CC].unroll(ow_block) s[CC].unroll(oc_f_inner) if C != O: out_ndim = len(s[O].op.axis) if out_ndim == 5: batch, oc_chunk, oh, ow, oc_block = s[O].op.axis ow_chunk, ow_block = s[O].split(ow, factor=reg_n) s[O].reorder(oc_chunk, oh, ow_chunk, ow_block, oc_block) elif out_ndim == 4: batch, oc, oh, ow = s[O].op.axis ow_chunk, ow_block = s[O].split(ow, factor=reg_n) oc_chunk, oc_block = s[O].split(oc, factor=oc_bn) s[O].reorder(oc_chunk, oh, ow_chunk, ow_block, oc_block) else: raise ValueError("Unsupported output ndim: %s" % out_ndim) parallel_axis = s[O].fuse(batch, oc_chunk, oh) if inline_fused: s[C].compute_at(s[O], ow_block) else: s[C].compute_at(s[O], parallel_axis) s[O].vectorize(oc_block) s[O].parallel(parallel_axis) return s def schedule_conv_NCHWc_cpu_1x1_int8( s, cfg, data_vec, kernel_vec, conv_out, last, int32_lanes=16, int8_elems=4, intrin=None, inline_fused=False, ): """ Defines the 1x1 conv schedule for INT8 for Intel and ARM machines Uses the Intel/ARM intrinsics to use INT8 operations More details - https://software.intel.com/en-us/articles/ lower-numerical-precision-deep-learning-inference-and-training """ oh_factor, ow_factor = cfg["tile_oh"].val, cfg["tile_ow"].size[-1] _, _, _, _, ic_bn = get_const_tuple(data_vec.shape) _, _, _, _, oc_bn = get_const_tuple(conv_out.shape) # schedule pad if isinstance(s[data_vec].op, te.tensor.ComputeOp) and "pad" in data_vec.op.tag: batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih) s[data_vec].parallel(parallel_axis) data_vec = data_vec.op.input_tensors[0] if autotvm.GLOBAL_SCOPE.in_tuning: # only in autotuning, input data of conv2d_NCHWc will be 4-D. # skip this part during tuning to make records accurate. # this part will be folded during Relay fold_constant pass. if isinstance(data_vec.op, te.tensor.ComputeOp): s[data_vec].pragma(s[data_vec].op.axis[0], "debug_skip_region") if isinstance(kernel_vec.op, te.tensor.ComputeOp): s[kernel_vec].pragma(s[kernel_vec].op.axis[0], "debug_skip_region") elif isinstance(kernel_vec.op, te.tensor.ComputeOp) and kernel_vec.name == "kernel_vec": # data and kernel are not pre-computed, schedule layout transform here. # this should only be used by x86 conv2d_nchw, which is for # testing purpose. batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih) s[data_vec].parallel(parallel_axis) # Conv2d int8 schedule has 7D kernel oc_chunk, ic_chunk, oh, ow, ic_block, oc_block, _ = s[kernel_vec].op.axis s[kernel_vec].reorder(oc_chunk, oh, ic_chunk, ow, ic_block, oc_block) oc_bn = cfg["tile_oc"].size[-1] if oc_bn > 1: s[kernel_vec].vectorize(oc_block) parallel_axis = s[kernel_vec].fuse(oc_chunk, oh) s[kernel_vec].parallel(parallel_axis) C, O = conv_out, last CC = s.cache_write(C, "global") batch, oc_chunk, oh, ow, oc_block = s[C].op.axis oh_outer, oh_inner = s[C].split(oh, factor=oh_factor) ow_outer, ow_inner = s[C].split(ow, factor=ow_factor) s[C].reorder(oc_chunk, oh_outer, ow_outer, oh_inner, ow_inner, oc_block) s[C].vectorize(oc_block) parallel_axis = s[C].fuse(batch, oc_chunk, oh_outer) if C == O: s[C].parallel(parallel_axis) s[CC].compute_at(s[C], parallel_axis) # good perf on mobilenet, but not on individuals? _, oc_chunk, oh, ow, oc_block = s[CC].op.axis kh, kw, ic_outer, ic_f_inner, ic_s_inner = s[CC].op.reduce_axis assert oc_bn % int32_lanes == 0 assert ic_bn % int8_elems == 0 # (u)int8 elements in (u)int32 oc_f_inner, oc_s_inner = s[CC].split(oc_block, factor=int32_lanes) oh_outer, oh_inner = s[CC].split(oh, factor=oh_factor) ow_outer, ow_inner = s[CC].split(ow, factor=ow_factor) s[CC].reorder( oc_chunk, oh_outer, ow_outer, kh, kw, ic_outer, ic_f_inner, oh_inner, ow_inner, oc_f_inner, oc_s_inner, ic_s_inner, ) s[CC].fuse(oc_chunk, oh_outer) if intrin is not None: s[CC].tensorize(oc_s_inner, intrin) s[CC].unroll(ow_inner) s[CC].unroll(oh_inner) if C != O: out_ndim = len(s[O].op.axis) if out_ndim == 5: batch, oc_chunk, oh, ow, oc_block = s[O].op.axis oh_outer, oh_inner = s[O].split(oh, factor=oh_factor) ow_outer, ow_inner = s[O].split(ow, factor=ow_factor) elif out_ndim == 4: batch, oc, oh, ow = s[O].op.axis oc_chunk, oc_block = s[O].split(oc, factor=oc_bn) oh_outer, oh_inner = s[O].split(oh, factor=oh_factor) ow_outer, ow_inner = s[O].split(ow, factor=ow_factor) else: raise ValueError("Unsupported output ndim: %s" % out_ndim) s[O].reorder(oc_chunk, oh_outer, ow_outer, oh_inner, ow_inner, oc_block) parallel_axis = s[O].fuse(batch, oc_chunk, oh_outer) if inline_fused: s[C].compute_at(s[O], ow_inner) else: s[C].compute_at(s[O], parallel_axis) s[O].vectorize(oc_block) s[O].parallel(parallel_axis) return s def schedule_depthwise_conv2d_nhwc(outs): """Create schedule for depthwise conv2d in NHWC layout. Parameters ---------- outs : list[te.tensor.Tensor] The output tensors. Returns ------- s : tvm.te.schedule.Schedule The computation schedule for depthwise conv2d. """ outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): """Traverse operators from computation graph""" if "depthwise_conv2d_nhwc" in op.tag: out = outs[0] depthwise_conv2d_out = op.output(0) data_pad = depthwise_conv2d_out.op.input_tensors[0] s[data_pad].compute_inline() if depthwise_conv2d_out != out: s[depthwise_conv2d_out].compute_at(s[out], s[out].op.axis[3]) s[out].fuse(*s[out].op.axis) traverse_inline(s, outs[0].op, _callback) return s def conv2d_alter_int8_common( data, data_tensor, kernel, kernel_tensor, output_tensor, attrs, data_dtype: str, in_channel_vector_length: int, out_channel_vector_length: int, ): """ Convert TE inputs/outputs so that they are suitable for fast Int8 instructions. Int8 instructions require input channels and output channels to be a multiple of the vector length. For input channels, we pad both the inputs and weights channels. For output channels, we pad the weight and stride_slice the output. Arguments --------- data: Expr Data Expr data_tensor: Tensor Data tensor kernel: Expr Kernel Expr kernel_tensor: Tensor Kernel tensor output_tensor: Tensor Output tensor attrs: Conv2dAttrs Attributes of the computation data_dtype: "int8" or "uint8" Desired dtype of data. Data will be converted to this dtype before the main computation. in_channel_vector_length: int Length of vector units on target hardware. Input channels are padded to this length. out_channel_vector_length: int Output size of vector instruction. Output channels are padded to this length. Returns ------- out : Tensor Conv2d computation with inputs in the correct order for tensorization. """ # Dilation not supported yet. Return None if dilation is not (1, 1) dilation = attrs.get_int_tuple("dilation") if not (dilation[0] == 1 and dilation[1] == 1): return None # No legalization for depthwise convolutions yet. groups = attrs.get_int("groups") if groups != 1: return None # Get the conv attrs new_attrs = {k: attrs[k] for k in attrs.keys()} padding = attrs.get_int_tuple("padding") kh, kw = attrs.get_int_tuple("kernel_size") pt, pl, pb, pr = get_pad_tuple(padding, (kh, kw)) if data_tensor.dtype != data_dtype: # How to convert data to uint8 # Original --> C = A (conv) B # A and B are int8 # C = (A + 128 - 128) (conv) B # C = (A' conv B) - 128 (conv) B # where A' = A + 128 # and 128 (conv) B is basically a reduce on CRS axis for weights. # # How to convert data to int8 # C = (A - 128 + 128) (conv) B # C = (A' conv B) + 128 (conv) B # where A' = A - 128 if data_dtype == "uint8": # shift data to uint8 before_shift = relay.add after_shift = relay.subtract pad_value = 128 else: # shift data to int8 before_shift = relay.subtract after_shift = relay.add pad_value = -128 if attrs["data_layout"] == "NHWC" and attrs["kernel_layout"] == "HWIO": adjust_shift = relay.sum(relay.cast(kernel, dtype="int32"), axis=(0, 1, 2)) pad_width = ((0, 0), (pt, pb), (pl, pr), (0, 0)) elif attrs["data_layout"] == "NCHW" and attrs["kernel_layout"] == "OIHW": pad_width = ((0, 0), (0, 0), (pt, pb), (pl, pr)) adjust_shift = relay.sum(relay.cast(kernel, dtype="int32"), axis=(1, 2, 3)) adjust_shift = relay.expand_dims(adjust_shift, axis=1, num_newaxis=2) else: return None data = relay.cast(data, "int32") data = before_shift(data, relay.const(128, "int32")) data = relay.cast(data, data_dtype) # Do external padding as pad value has to be 128. if any(padding): data = relay.nn.pad(data, pad_width=pad_width, pad_value=pad_value) new_attrs["padding"] = (0, 0) # Multiply 128 to adjust shift. adjust_shift = relay.multiply(adjust_shift, relay.const(128, "int32")) # Flags to remember if the expr is modified ic_modified = False oc_modified = False # Find the value of input and output channel. in_channel = -1 out_channel = -1 if attrs["data_layout"] == "NHWC" and attrs["kernel_layout"] == "HWIO": in_channel = data_tensor.shape[3].value out_channel = kernel_tensor.shape[3].value elif attrs["data_layout"] == "NCHW" and attrs["kernel_layout"] == "OIHW": in_channel = data_tensor.shape[1].value out_channel = kernel_tensor.shape[0].value else: return None if in_channel % in_channel_vector_length != 0: new_in_channel = ( (in_channel + in_channel_vector_length) // in_channel_vector_length ) * in_channel_vector_length diff = new_in_channel - in_channel if attrs["data_layout"] == "NHWC" and attrs["kernel_layout"] == "HWIO": data = relay.nn.pad(data, pad_width=((0, 0), (0, 0), (0, 0), (0, diff))) kernel = relay.nn.pad(kernel, pad_width=((0, 0), (0, 0), (0, diff), (0, 0))) ic_modified = True elif attrs["data_layout"] == "NCHW" and attrs["kernel_layout"] == "OIHW": pad_width = ((0, 0), (0, diff), (0, 0), (0, 0)) data = relay.nn.pad(data, pad_width=pad_width) kernel = relay.nn.pad(kernel, pad_width=pad_width) ic_modified = True else: return None new_out_channel = out_channel if out_channel % out_channel_vector_length != 0: new_out_channel = ( (out_channel + out_channel_vector_length) // out_channel_vector_length ) * out_channel_vector_length diff = new_out_channel - out_channel if attrs["data_layout"] == "NHWC" and attrs["kernel_layout"] == "HWIO": kernel = relay.nn.pad(kernel, pad_width=((0, 0), (0, 0), (0, 0), (0, diff))) oc_modified = True elif attrs["data_layout"] == "NCHW" and attrs["kernel_layout"] == "OIHW": kernel = relay.nn.pad(kernel, pad_width=((0, diff), (0, 0), (0, 0), (0, 0))) oc_modified = True else: return None if oc_modified: new_attrs["channels"] = new_out_channel out = relay.nn.conv2d(data, kernel, **new_attrs) original_out_shape = [x.value for x in output_tensor.shape] out = relay.strided_slice(out, begin=[0, 0, 0, 0], end=original_out_shape) else: out = relay.nn.conv2d(data, kernel, **new_attrs) if data_tensor.dtype != data_dtype: out = after_shift(out, adjust_shift) return out
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/default.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-argument """The default schedule used by various operators""" import tvm from tvm import te def default_schedule(outs, auto_inline): """Default schedule for llvm.""" target = tvm.target.Target.current(allow_none=False) outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs if target.kind.name not in ("llvm", "c"): raise RuntimeError("schedule not registered for '%s'" % target) s = te.create_schedule([x.op for x in outs]) if auto_inline: x = outs[0] te.schedule.AutoInlineInjective(s) s[x].fuse(s[x].op.axis) return s
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/extern.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """generic declaration and schedules.""" import tvm from .. import cpp def schedule_extern(outs): """Schedule for an extern op followed by injective operations. Parameters ---------- outs: Array of Tensor The computation graph description of extern plus injective ops in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ target = tvm.target.Target.current() return cpp.generic.schedule_extern(target, outs)
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/image.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Generic image operators""" from .default import default_schedule as _default_schedule def schedule_dilation2d_nchw(outs): """Schedule for dilation2d Parameters ---------- outs : Array of Tensor The computation graph description of dilation2d in the format of an array of tensors. Returns ------- sch : Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_dilation2d_nhwc(outs): """Schedule for dilation2d Parameters ---------- outs : Array of Tensor The computation graph description of dilation2d in the format of an array of tensors. Returns ------- sch : Schedule The computation schedule for the op. """ return _default_schedule(outs, False)
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/injective.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """generic declaration and schedules.""" from __future__ import absolute_import as _abs import tvm from tvm import te def schedule_injective_from_existing(sch, out): """Schedule for injective op from existing schedule. Parameters ---------- sch: Schedule The schedule to update. out: Tensor The tensor representing the injective op. Returns ------- sch: Schedule The updated schedule. """ sch[out].fuse(*sch[out].op.axis) return sch def schedule_injective(outs): """Schedule for injective op. Parameters ---------- outs: Array of Tensor The computation graph description of injective in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ target = tvm.target.Target.current(allow_none=False) if target.kind.name != "llvm": raise RuntimeError("schedule_injective not registered for '%s'" % target) outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs x = outs[0] s = te.create_schedule([x.op for x in outs]) te.schedule.AutoInlineInjective(s) schedule_injective_from_existing(s, x) return s schedule_elemwise = schedule_injective schedule_broadcast = schedule_injective
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/math.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Generic math operators""" from .default import default_schedule as _default_schedule def schedule_einsum(outs): """Schedule for einsum operator. Parameters ---------- outs: Array of Tensor The computation graph description of einsum. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False)
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/nn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,unused-argument """Generic nn operators""" from tvm import te from .default import default_schedule as _default_schedule def schedule_conv1d_ncw(outs): """Schedule for conv1d_ncw Parameters ---------- outs: Array of Tensor The computation graph description of conv1d_ncw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv1d_nwc(outs): """Schedule for conv1d_nwc Parameters ---------- outs: Array of Tensor The computation graph description of conv1d_nwc in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_group_conv1d_ncw(outs): """Schedule for group_conv1d_ncw Parameters ---------- outs: Array of Tensor The computation graph description of group_conv1d_ncw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_group_conv1d_nwc(outs): """Schedule for group_conv1d_nwc Parameters ---------- outs: Array of Tensor The computation graph description of group_conv1d_nwc in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_hwcn(outs): """Schedule for conv2d_hwcn Parameters ---------- outs: Array of Tensor The computation graph description of conv2d_hwcn in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_nchw(outs): """Schedule for conv2d_nchw Parameters ---------- outs: Array of Tensor The computation graph description of conv2d_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_nhwc_pack(outs): """Schedule for conv2d_nhwc_pack Parameters ---------- outs: Array of Tensor The computation graph description of conv2d_nhwc_pack in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_nhwc(outs): """Schedule for conv2d_nhwc Parameters ---------- outs: Array of Tensor The computation graph description of conv2d_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_NCHWc(outs): """Schedule for conv2d_NCHW[x]c Parameters ---------- outs : Array of Tensor The computation graph description of conv2d_NCHWc in the format of an array of tensors. The number of filter, i.e., the output channel. Returns ------- sch : Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_NCHWc_int8(outs): """Schedule for conv2d_NCHW[x]c_int8 Parameters ---------- outs : Array of Tensor The computation graph description of conv2d_NCHWc_int8 in the format of an array of tensors. The number of filter, i.e., the output channel. Returns ------- sch : Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_winograd_weight_transform(outs): """Schedule for weight transformation of winograd Parameters ---------- outs: Array of Tensor The computation graph description of this operator in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ # Typically this is computed in PreCompute pass # so we make a schedule here for cpu llvm s = te.create_schedule([x.op for x in outs]) output = outs[0] _, G = s[output].op.input_tensors s[G].compute_inline() eps, nu, co, ci = s[output].op.axis r_kh, r_kw = s[output].op.reduce_axis s[output].reorder(co, ci, r_kh, r_kw, eps, nu) for axis in [r_kh, r_kw, eps, nu]: s[output].unroll(axis) s[output].parallel(co) return s def schedule_conv2d_gemm_weight_transform(outs): """Schedule for weight transformation of gemm Parameters ---------- outs: Array of Tensor The computation graph description of this operator in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ # Typically this is computed in PreCompute pass s = te.create_schedule([x.op for x in outs]) return s def schedule_conv3d_winograd_weight_transform(outs): """Schedule for weight transformation of 3D winograd Parameters ---------- outs: Array of Tensor The computation graph description of this operator in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ # Typically this is computed in PreCompute pass # so we make a schedule here for cpu llvm s = te.create_schedule([x.op for x in outs]) output = outs[0] _, G = s[output].op.input_tensors s[G].compute_inline() transform_depth = len(s[output].op.reduce_axis) == 3 if transform_depth: omg, eps, nu, ci, co = s[output].op.axis r_kd, r_kh, r_kw = s[output].op.reduce_axis s[output].reorder(co, ci, omg, eps, nu, r_kd, r_kh, r_kw) for axis in [r_kd, r_kh, r_kw]: s[output].unroll(axis) else: eps, nu, d, ci, co = s[output].op.axis r_kh, r_kw = s[output].op.reduce_axis s[output].reorder(co, ci, d, eps, nu, r_kh, r_kw) for axis in [r_kh, r_kw]: s[output].unroll(axis) s[output].parallel(co) return s def schedule_conv2d_winograd_without_weight_transform(outs): """Schedule for winograd without weight transformation Parameters ---------- outs: Array of Tensor The computation graph description of this operator in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_winograd_nnpack_weight_transform(outs): """Schedule for weight transformation of winograd Parameters ---------- outs: Array of Tensor The computation graph description of this operator in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ # Typically this is computed in PreCompute pass s = te.create_schedule([x.op for x in outs]) return s def schedule_conv3d_ncdhw(outs): """Schedule for conv3d_ncdhw Parameters ---------- outs: Array of Tensor The computation graph description of conv2d_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv3d_ndhwc(outs): """Schedule for conv3d_ndhwc Parameters ---------- outs: Array of Tensor The computation graph description of conv3d_ndhwc in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv3d_transpose_ncdhw(outs): """Schedule for conv3d_transpose_ncdhw Parameters ---------- outs: Array of Tensor The computation graph description of conv3d_transpose_ncdhw in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv2d_transpose_nchw(outs): """Schedule for conv2d_transpose_nchw Parameters ---------- outs: Array of Tensor The computation graph description of conv2d_transpose_nchw in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_conv1d_transpose_ncw(outs): """Schedule for conv1d_transpose_ncw Parameters ---------- outs: Array of Tensor The computation graph description of conv2d_transpose_ncw in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_depthwise_conv2d_nchw(outs): """Schedule for depthwise_conv2d_nchw Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_depthwise_conv2d_nhwc(outs): """Schedule for depthwise_conv2d_nhwc Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d_nhwc in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_depthwise_conv2d_NCHWc(outs): """Schedule for depthwise_conv2d_NCHWc Parameters ---------- outs: Array of Tensor The computation graph description of depthwise_conv2d_nhwc in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_group_conv2d_nchw(outs): """Schedule for group_conv2d_nchw Parameters ---------- outs: Array of Tensor The computation graph description of group_conv2d_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_group_conv2d_transpose_nchw(outs): """Schedule for group_conv2d_transpose_nchw Parameters ---------- outs: Array of Tensor The computation graph description of group_conv2d_nhwc in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_group_conv2d_nhwc(outs): """Schedule for group_conv2d_nhwc Parameters ---------- outs: Array of Tensor The computation graph description of group_conv2d_nhwc in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_deformable_conv2d_nchw(outs): """Schedule for deformable_conv2d_nchw Parameters ---------- outs: Array of Tensor The computation graph description of deformable_conv2d_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_deformable_conv2d_nhwc(outs): """Schedule for deformable_conv2d_nhwc. We only use the default schedule here and rely on auto_scheduler. Parameters ---------- outs: Array of Tensor The computation graph description of deformable_conv2d_nhwc in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_bitserial_conv2d_nchw(outs): """Schedule for bitserial_conv2d_nchw Parameters ---------- outs: Array of Tensor The computation graph description of bitserial_conv2d_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_bitserial_conv2d_nhwc(outs): """Schedule for bitserial_conv2d_nhwc Parameters ---------- outs: Array of Tensor The computation graph description of bitserial_conv2d_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_bitserial_dense(outs): """Schedule for bitserial_dense Parameters ---------- outs: Array of Tensor The computation graph description of bitserial_dense in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_reduce(outs): """Schedule for reduction Parameters ---------- outs: Array of Tensor The computation graph description of reduce in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, True) def schedule_softmax(outs): """Schedule for softmax Parameters ---------- outs: Array of Tensor The computation graph description of softmax in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_fast_softmax(outs): """Schedule for fast_softmax Parameters ---------- outs: Array of Tensor The computation graph description of fast_softmax in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_matmul(outs): """Schedule for matmul Parameters ---------- outs: Array of Tensor The computation graph description of matmul in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_dense(outs): """Schedule for dense Parameters ---------- outs: Array of Tensor The computation graph description of dense in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_pool(outs, layout): """Schedule for pool Parameters ---------- outs: Array of Tensor The computation graph description of pool in the format of an array of tensors. layout: str Data layout. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_pool_grad(outs): """Schedule for pool_grad Parameters ---------- outs: Array of Tensor The computation graph description of pool in the format of an array of tensors. """ return _default_schedule(outs, False) def schedule_adaptive_pool(outs): """Schedule for adaptive pool Parameters ---------- outs: Array of Tensor The computation graph description of adaptive pool in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_binarize_pack(outs): """Schedule for binarize_pack Parameters ---------- outs: Array of Tensor The computation graph description of binarize_pack in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_bitpack(outs): """Schedule for bitpack Parameters ---------- outs: Array of Tensor The computation graph description of bitpack in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_binary_dense(outs): """Schedule for binary_dense Parameters ---------- outs: Array of Tensor The computation graph description of binary_dense in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_lrn(outs): """Schedule for lrn Parameters ---------- outs: Array of Tensor The computation graph description of lrn in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_sparse_dense(outs): """Schedule for sparse_dense Parameters ---------- outs: Array of Tensor The computation graph description of sparse_dense in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_sparse_transpose(outs): """Schedule for sparse_transpose Parameters ---------- outs: Array of Tensor The computation graph description of sparse_transpose in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_sparse_conv2d(outs): """Schedule for sparse_conv2d Parameters ---------- outs: Array of Tensor The computation graph description of sparse_conv2d in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_batch_matmul(outs): """Schedule for batch_matmul Parameters ---------- outs: Array of Tensor The computation graph description of sparse_transpose in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_batch_norm(outs): """Schedule for batch_norm Parameters ---------- outs: Array of Tensor The computation graph description of sparse_transpose in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_correlation_nchw(outs): """Schedule for correlation_nchw Parameters ---------- outs: Array of Tensor The computation graph description of correlation_nchw in the format of an array of tensors. Returns ------- sch: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_lstm(outs): """Schedule for LSTM Parameters ---------- outs : Array of Tensor The outputs of LSTM (hidden states and cell states). Returns ------- sch: Schedule The default schedule for LSTM. """ return _default_schedule(outs, False)
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/search.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-member """Generic search operators""" from __future__ import absolute_import as _abs from .default import default_schedule as _default_schedule def schedule_argwhere(outs): """Schedule for argwhere operator. Parameters ---------- outs: Array of Tensor The computation graph description of argwhere. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_scatter(outs): """Schedule for scatter operator. Parameters ---------- outs: Array of Tensor The computation graph description of scatter. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_scatter_add(outs): """Schedule for scatter_add operator. Parameters ---------- outs: Array of Tensor The computation graph description of scatter_add. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_sparse_fill_empty_rows(outs): return _default_schedule(outs, False) def schedule_unique(outs): """Schedule for unique operator. Parameters ---------- outs: Array of Tensor The computation graph description of unique. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False)
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/sort.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-member """Generic sort operators""" from __future__ import absolute_import as _abs from .default import default_schedule as _default_schedule def schedule_sort(outs): """Schedule for sort operator. Parameters ---------- outs: Array of Tensor The indices that would sort an input array along the given axis. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_argsort(outs): """Schedule for argsort operator. Parameters ---------- outs: Array of Tensor The indices that would sort an input array along the given axis. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_topk(outs): """Schedule for topk operator. Parameters ---------- outs: Array of Tensor The indices that would sort an input array along the given axis. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False)
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic/vision.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, no-member """Generic vision operators""" from __future__ import absolute_import as _abs import tvm from .. import cpp from .default import default_schedule as _default_schedule def schedule_reorg(outs): """Schedule for reorg Parameters ---------- outs: Array of Tensor The computation graph description of reorg in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ target = tvm.target.Target.current(allow_none=False) cpp_target = cpp.TEST_create_target(target.kind.name) return cpp.generic.default_schedule(cpp_target, outs, False) def schedule_get_valid_counts(outs): """Schedule for get_valid_counts Parameters ---------- outs: Array of Tensor The computation graph description of nms in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_nms(outs): """Schedule for non-maximum suppression Parameters ---------- outs: Array of Tensor The computation graph description of nms in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_multibox_prior(outs): """Schedule for multibox_prior Parameters ---------- outs: Array of Tensor The computation graph description of multibox_prior in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_multibox_transform_loc(outs): """Schedule for multibox_transform_loc Parameters ---------- outs: Array of Tensor The computation graph description of multibox_transform_loc in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_multibox_detection(outs): """Schedule for multibox_detection Parameters ---------- outs: Array of Tensor The computation graph description of multibox_detection in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_roi_align(outs): """Schedule for roi_align Parameters ---------- outs: Array of Tensor The computation graph description of roi_align in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_roi_pool(outs): """Schedule for roi_align Parameters ---------- outs: Array of Tensor The computation graph description of roi_pool in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False) def schedule_proposal(outs): """Schedule for proposal operator. Parameters ---------- outs: Array of Tensor The computation graph description of proposal in the format of an array of tensors. Returns ------- s: Schedule The computation schedule for the op. """ return _default_schedule(outs, False)
https://github.com/zk-ml/tachikoma
python/tvm/topi/generic_op_impl.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Implementation of generic operators in the presence of Tensor""" # pylint: disable=invalid-name, too-many-arguments import tvm from tvm import te from . import broadcast as _broadcast from . import math as _math def _make_bop(broadcast_bop, orig_bop): """Make a specific overloaded binary operator of Tensor when applicable; apply the original operator if it is not supposed to be overloaded. Consider the following scenario: OP : + | - | * | / R0 : int | float | Expr | TensorSlice | Tensor (rank zero) R1 : Tensor (positive rank) In terms of (LHS OP RHS), we apply the following overloading rules: (1) We use broadcast_OP(LHS, RHS), when both LHS and RHS are R1. (2) We perform element-wise operation of Tensor and scalar, when one of LHS and RHS is R1 and another is R0. (3) We do not overload OP (i.e. stick to orig_bop) otherwise. Parameters ---------- broadcast_bop : operator function Operator for broadcast tensor-tensor operation, for rule (1). orig_bop: operator function Operator before overloading, for rule (3). Returns ------- ret : operator function The overloaded operator function if applicable or orig_bop otherwise. """ name = orig_bop.__name__ def _tensor_bop_impl(lhs, rhs): """Overloaded {op} operator. If both operands are non-zero-rank Tensors, it performs tensor-tensor {op} operation, and broadcasts inputs when necessary. If one operand is non-zero-rank Tensor, while the other operand is scalar like type (e.g., numeric types, Expr, or TensorSlice), it performs tensor-scalar {op} operation on an element-wise basis. Otherwise, it performs default generic.{op} operation, as defined in tvm.generic module. Parameters ---------- lhs : object Left operand. rhs : object Right operand. Returns ------- ret : tvm.te.Tensor (if at least one operand is non-zero-rank Tensor) tvm.Expr (otherwise) The result of {op} operation. """ if not isinstance(lhs, te.tensor.Tensor) and not isinstance(rhs, te.tensor.Tensor): return orig_bop(lhs, rhs) return broadcast_bop(lhs, rhs) _tensor_bop_impl.__doc__ = _tensor_bop_impl.__doc__.format(op=name) return _tensor_bop_impl def _bind_generic_ops(): """Bind generic operators for Tensor.""" # Check __op_priority__ to make sure the binding happens only once. __op_priority__ = 1 if __op_priority__ > tvm.tir.generic.__op_priority__: tvm.tir.generic.__op_priority__ = __op_priority__ tvm.tir.generic.add = _make_bop(_broadcast.add, tvm.tir.generic.add) tvm.tir.generic.subtract = _make_bop(_broadcast.subtract, tvm.tir.generic.subtract) tvm.tir.generic.multiply = _make_bop(_broadcast.multiply, tvm.tir.generic.multiply) tvm.tir.generic.divide = _make_bop(_broadcast.divide, tvm.tir.generic.divide) tvm.tir.generic.cast = _math.cast _bind_generic_ops()
https://github.com/zk-ml/tachikoma
python/tvm/topi/gpu/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=redefined-builtin, wildcard-import """GPU specific declaration and schedules.""" from .dense import * from .conv2d import *
https://github.com/zk-ml/tachikoma
python/tvm/topi/gpu/conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Schedule for conv2d operator""" from tvm import te, autotvm from .. import nn from ..utils import traverse_inline from .conv2d_nhwc import schedule_conv2d_nhwc_direct @autotvm.register_topi_compute("conv2d_nhwc.gpu") def conv2d_nhwc(cfg, data, kernel, strides, padding, dilation, out_dtype="float32"): """Compute conv2d with NHWC layout""" return nn.conv2d_nhwc(data, kernel, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("conv2d_nhwc.gpu") def schedule_conv2d_nhwc(cfg, outs): """Create the schedule for conv2d_nhwc""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "conv2d_nhwc": schedule_conv2d_nhwc_direct(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s
https://github.com/zk-ml/tachikoma