subset
stringclasses 6
values | context
stringlengths 16
17.7k
| context_tokens
sequence | qid
stringlengths 32
32
| question
stringlengths 1
717
| question_tokens
sequence | detected_answers
sequence | answers
sequencelengths 1
25
|
---|---|---|---|---|---|---|---|
SQuAD | The common features of passive solar architecture are orientation relative to the Sun, compact proportion (a low surface area to volume ratio), selective shading (overhangs) and thermal mass. When these features are tailored to the local climate and environment they can produce well-lit spaces that stay in a comfortable temperature range. Socrates' Megaron House is a classic example of passive solar design. The most recent approaches to solar design use computer modeling tying together solar lighting, heating and ventilation systems in an integrated solar design package. Active solar equipment such as pumps, fans and switchable windows can complement passive design and improve system performance. | {
"tokens": [
"The",
"common",
"features",
"of",
"passive",
"solar",
"architecture",
"are",
"orientation",
"relative",
"to",
"the",
"Sun",
",",
"compact",
"proportion",
"(",
"a",
"low",
"surface",
"area",
"to",
"volume",
"ratio",
")",
",",
"selective",
"shading",
"(",
"overhangs",
")",
"and",
"thermal",
"mass",
".",
"When",
"these",
"features",
"are",
"tailored",
"to",
"the",
"local",
"climate",
"and",
"environment",
"they",
"can",
"produce",
"well",
"-",
"lit",
"spaces",
"that",
"stay",
"in",
"a",
"comfortable",
"temperature",
"range",
".",
"Socrates",
"'",
"Megaron",
"House",
"is",
"a",
"classic",
"example",
"of",
"passive",
"solar",
"design",
".",
"The",
"most",
"recent",
"approaches",
"to",
"solar",
"design",
"use",
"computer",
"modeling",
"tying",
"together",
"solar",
"lighting",
",",
"heating",
"and",
"ventilation",
"systems",
"in",
"an",
"integrated",
"solar",
"design",
"package",
".",
"Active",
"solar",
"equipment",
"such",
"as",
"pumps",
",",
"fans",
"and",
"switchable",
"windows",
"can",
"complement",
"passive",
"design",
"and",
"improve",
"system",
"performance",
"."
],
"offsets": [
0,
4,
11,
20,
23,
31,
37,
50,
54,
66,
75,
78,
82,
85,
87,
95,
106,
107,
109,
113,
121,
126,
129,
136,
141,
142,
144,
154,
162,
163,
172,
174,
178,
186,
190,
192,
197,
203,
212,
216,
225,
228,
232,
238,
246,
250,
262,
267,
271,
279,
283,
284,
288,
295,
300,
305,
308,
310,
322,
334,
339,
341,
349,
351,
359,
365,
368,
370,
378,
386,
389,
397,
403,
409,
411,
415,
420,
427,
438,
441,
447,
454,
458,
467,
476,
482,
491,
497,
505,
507,
515,
519,
531,
539,
542,
545,
556,
562,
569,
576,
578,
585,
591,
601,
606,
609,
614,
616,
621,
625,
636,
644,
648,
659,
667,
674,
678,
686,
693,
704
]
} | 2de4c4f8a97146c68dad152b1d20942b | What is produced when the features of passive solar architecture are customized to the environment? | {
"tokens": [
"What",
"is",
"produced",
"when",
"the",
"features",
"of",
"passive",
"solar",
"architecture",
"are",
"customized",
"to",
"the",
"environment",
"?"
],
"offsets": [
0,
5,
8,
17,
22,
26,
35,
38,
46,
52,
65,
69,
80,
83,
87,
98
]
} | {
"text": [
"well-lit spaces that stay in a comfortable temperature range"
],
"char_spans": [
{
"start": [
279
],
"end": [
338
]
}
],
"token_spans": [
{
"start": [
49
],
"end": [
59
]
}
]
} | [
"well-lit spaces that stay in a comfortable temperature range"
] |
SQuAD | The common features of passive solar architecture are orientation relative to the Sun, compact proportion (a low surface area to volume ratio), selective shading (overhangs) and thermal mass. When these features are tailored to the local climate and environment they can produce well-lit spaces that stay in a comfortable temperature range. Socrates' Megaron House is a classic example of passive solar design. The most recent approaches to solar design use computer modeling tying together solar lighting, heating and ventilation systems in an integrated solar design package. Active solar equipment such as pumps, fans and switchable windows can complement passive design and improve system performance. | {
"tokens": [
"The",
"common",
"features",
"of",
"passive",
"solar",
"architecture",
"are",
"orientation",
"relative",
"to",
"the",
"Sun",
",",
"compact",
"proportion",
"(",
"a",
"low",
"surface",
"area",
"to",
"volume",
"ratio",
")",
",",
"selective",
"shading",
"(",
"overhangs",
")",
"and",
"thermal",
"mass",
".",
"When",
"these",
"features",
"are",
"tailored",
"to",
"the",
"local",
"climate",
"and",
"environment",
"they",
"can",
"produce",
"well",
"-",
"lit",
"spaces",
"that",
"stay",
"in",
"a",
"comfortable",
"temperature",
"range",
".",
"Socrates",
"'",
"Megaron",
"House",
"is",
"a",
"classic",
"example",
"of",
"passive",
"solar",
"design",
".",
"The",
"most",
"recent",
"approaches",
"to",
"solar",
"design",
"use",
"computer",
"modeling",
"tying",
"together",
"solar",
"lighting",
",",
"heating",
"and",
"ventilation",
"systems",
"in",
"an",
"integrated",
"solar",
"design",
"package",
".",
"Active",
"solar",
"equipment",
"such",
"as",
"pumps",
",",
"fans",
"and",
"switchable",
"windows",
"can",
"complement",
"passive",
"design",
"and",
"improve",
"system",
"performance",
"."
],
"offsets": [
0,
4,
11,
20,
23,
31,
37,
50,
54,
66,
75,
78,
82,
85,
87,
95,
106,
107,
109,
113,
121,
126,
129,
136,
141,
142,
144,
154,
162,
163,
172,
174,
178,
186,
190,
192,
197,
203,
212,
216,
225,
228,
232,
238,
246,
250,
262,
267,
271,
279,
283,
284,
288,
295,
300,
305,
308,
310,
322,
334,
339,
341,
349,
351,
359,
365,
368,
370,
378,
386,
389,
397,
403,
409,
411,
415,
420,
427,
438,
441,
447,
454,
458,
467,
476,
482,
491,
497,
505,
507,
515,
519,
531,
539,
542,
545,
556,
562,
569,
576,
578,
585,
591,
601,
606,
609,
614,
616,
621,
625,
636,
644,
648,
659,
667,
674,
678,
686,
693,
704
]
} | 0f22fbb3c4f94911a1490d10e2328294 | What is an example of passive solar design? | {
"tokens": [
"What",
"is",
"an",
"example",
"of",
"passive",
"solar",
"design",
"?"
],
"offsets": [
0,
5,
8,
11,
19,
22,
30,
36,
42
]
} | {
"text": [
"Socrates' Megaron House"
],
"char_spans": [
{
"start": [
341
],
"end": [
363
]
}
],
"token_spans": [
{
"start": [
61
],
"end": [
64
]
}
]
} | [
"Socrates' Megaron House"
] |
SQuAD | The common features of passive solar architecture are orientation relative to the Sun, compact proportion (a low surface area to volume ratio), selective shading (overhangs) and thermal mass. When these features are tailored to the local climate and environment they can produce well-lit spaces that stay in a comfortable temperature range. Socrates' Megaron House is a classic example of passive solar design. The most recent approaches to solar design use computer modeling tying together solar lighting, heating and ventilation systems in an integrated solar design package. Active solar equipment such as pumps, fans and switchable windows can complement passive design and improve system performance. | {
"tokens": [
"The",
"common",
"features",
"of",
"passive",
"solar",
"architecture",
"are",
"orientation",
"relative",
"to",
"the",
"Sun",
",",
"compact",
"proportion",
"(",
"a",
"low",
"surface",
"area",
"to",
"volume",
"ratio",
")",
",",
"selective",
"shading",
"(",
"overhangs",
")",
"and",
"thermal",
"mass",
".",
"When",
"these",
"features",
"are",
"tailored",
"to",
"the",
"local",
"climate",
"and",
"environment",
"they",
"can",
"produce",
"well",
"-",
"lit",
"spaces",
"that",
"stay",
"in",
"a",
"comfortable",
"temperature",
"range",
".",
"Socrates",
"'",
"Megaron",
"House",
"is",
"a",
"classic",
"example",
"of",
"passive",
"solar",
"design",
".",
"The",
"most",
"recent",
"approaches",
"to",
"solar",
"design",
"use",
"computer",
"modeling",
"tying",
"together",
"solar",
"lighting",
",",
"heating",
"and",
"ventilation",
"systems",
"in",
"an",
"integrated",
"solar",
"design",
"package",
".",
"Active",
"solar",
"equipment",
"such",
"as",
"pumps",
",",
"fans",
"and",
"switchable",
"windows",
"can",
"complement",
"passive",
"design",
"and",
"improve",
"system",
"performance",
"."
],
"offsets": [
0,
4,
11,
20,
23,
31,
37,
50,
54,
66,
75,
78,
82,
85,
87,
95,
106,
107,
109,
113,
121,
126,
129,
136,
141,
142,
144,
154,
162,
163,
172,
174,
178,
186,
190,
192,
197,
203,
212,
216,
225,
228,
232,
238,
246,
250,
262,
267,
271,
279,
283,
284,
288,
295,
300,
305,
308,
310,
322,
334,
339,
341,
349,
351,
359,
365,
368,
370,
378,
386,
389,
397,
403,
409,
411,
415,
420,
427,
438,
441,
447,
454,
458,
467,
476,
482,
491,
497,
505,
507,
515,
519,
531,
539,
542,
545,
556,
562,
569,
576,
578,
585,
591,
601,
606,
609,
614,
616,
621,
625,
636,
644,
648,
659,
667,
674,
678,
686,
693,
704
]
} | 9d672cec97fa4bd6bedb56906f3e7eef | What kind of equipment can improve system performance? | {
"tokens": [
"What",
"kind",
"of",
"equipment",
"can",
"improve",
"system",
"performance",
"?"
],
"offsets": [
0,
5,
10,
13,
23,
27,
35,
42,
53
]
} | {
"text": [
"pumps, fans and switchable windows"
],
"char_spans": [
{
"start": [
609
],
"end": [
642
]
}
],
"token_spans": [
{
"start": [
105
],
"end": [
110
]
}
]
} | [
"pumps, fans and switchable windows"
] |
SQuAD | The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters. | {
"tokens": [
"The",
"International",
"Organization",
"for",
"Standardization",
"has",
"established",
"a",
"number",
"of",
"standards",
"relating",
"to",
"solar",
"energy",
"equipment",
".",
"For",
"example",
",",
"ISO",
"9050",
"relates",
"to",
"glass",
"in",
"building",
"while",
"ISO",
"10217",
"relates",
"to",
"the",
"materials",
"used",
"in",
"solar",
"water",
"heaters",
"."
],
"offsets": [
0,
4,
18,
31,
35,
51,
55,
67,
69,
76,
79,
89,
98,
101,
107,
114,
123,
125,
129,
136,
138,
142,
147,
155,
158,
164,
167,
176,
182,
186,
192,
200,
203,
207,
217,
222,
225,
231,
237,
244
]
} | f7bfe7777dc74de5b3d9024fe93f03c8 | ISO 9050 relates to standards for what? | {
"tokens": [
"ISO",
"9050",
"relates",
"to",
"standards",
"for",
"what",
"?"
],
"offsets": [
0,
4,
9,
17,
20,
30,
34,
38
]
} | {
"text": [
"glass in building"
],
"char_spans": [
{
"start": [
158
],
"end": [
174
]
}
],
"token_spans": [
{
"start": [
24
],
"end": [
26
]
}
]
} | [
"glass in building"
] |
SQuAD | The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters. | {
"tokens": [
"The",
"International",
"Organization",
"for",
"Standardization",
"has",
"established",
"a",
"number",
"of",
"standards",
"relating",
"to",
"solar",
"energy",
"equipment",
".",
"For",
"example",
",",
"ISO",
"9050",
"relates",
"to",
"glass",
"in",
"building",
"while",
"ISO",
"10217",
"relates",
"to",
"the",
"materials",
"used",
"in",
"solar",
"water",
"heaters",
"."
],
"offsets": [
0,
4,
18,
31,
35,
51,
55,
67,
69,
76,
79,
89,
98,
101,
107,
114,
123,
125,
129,
136,
138,
142,
147,
155,
158,
164,
167,
176,
182,
186,
192,
200,
203,
207,
217,
222,
225,
231,
237,
244
]
} | 0e5145088b544ddc8f2259fd013a71e2 | ISO 10217 relates to standards for what? | {
"tokens": [
"ISO",
"10217",
"relates",
"to",
"standards",
"for",
"what",
"?"
],
"offsets": [
0,
4,
10,
18,
21,
31,
35,
39
]
} | {
"text": [
"materials used in solar water heaters"
],
"char_spans": [
{
"start": [
207
],
"end": [
243
]
}
],
"token_spans": [
{
"start": [
33
],
"end": [
38
]
}
]
} | [
"materials used in solar water heaters"
] |
SQuAD | The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters. | {
"tokens": [
"The",
"International",
"Organization",
"for",
"Standardization",
"has",
"established",
"a",
"number",
"of",
"standards",
"relating",
"to",
"solar",
"energy",
"equipment",
".",
"For",
"example",
",",
"ISO",
"9050",
"relates",
"to",
"glass",
"in",
"building",
"while",
"ISO",
"10217",
"relates",
"to",
"the",
"materials",
"used",
"in",
"solar",
"water",
"heaters",
"."
],
"offsets": [
0,
4,
18,
31,
35,
51,
55,
67,
69,
76,
79,
89,
98,
101,
107,
114,
123,
125,
129,
136,
138,
142,
147,
155,
158,
164,
167,
176,
182,
186,
192,
200,
203,
207,
217,
222,
225,
231,
237,
244
]
} | e1dd0ed85df043a997be2c6351a393d0 | What is the name of the standard related to glass in building? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"standard",
"related",
"to",
"glass",
"in",
"building",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
33,
41,
44,
50,
53,
61
]
} | {
"text": [
"ISO 9050"
],
"char_spans": [
{
"start": [
138
],
"end": [
145
]
}
],
"token_spans": [
{
"start": [
20
],
"end": [
21
]
}
]
} | [
"ISO 9050"
] |
SQuAD | The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters. | {
"tokens": [
"The",
"International",
"Organization",
"for",
"Standardization",
"has",
"established",
"a",
"number",
"of",
"standards",
"relating",
"to",
"solar",
"energy",
"equipment",
".",
"For",
"example",
",",
"ISO",
"9050",
"relates",
"to",
"glass",
"in",
"building",
"while",
"ISO",
"10217",
"relates",
"to",
"the",
"materials",
"used",
"in",
"solar",
"water",
"heaters",
"."
],
"offsets": [
0,
4,
18,
31,
35,
51,
55,
67,
69,
76,
79,
89,
98,
101,
107,
114,
123,
125,
129,
136,
138,
142,
147,
155,
158,
164,
167,
176,
182,
186,
192,
200,
203,
207,
217,
222,
225,
231,
237,
244
]
} | f90540406bca4fee8b69d5bbc1a5dd8c | What is the name of the standard related to the materials used in solar water heaters? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"standard",
"related",
"to",
"the",
"materials",
"used",
"in",
"solar",
"water",
"heaters",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
33,
41,
44,
48,
58,
63,
66,
72,
78,
85
]
} | {
"text": [
"ISO 10217"
],
"char_spans": [
{
"start": [
182
],
"end": [
190
]
}
],
"token_spans": [
{
"start": [
28
],
"end": [
29
]
}
]
} | [
"ISO 10217"
] |
SQuAD | In 2000, the United Nations Development Programme, UN Department of Economic and Social Affairs, and World Energy Council published an estimate of the potential solar energy that could be used by humans each year that took into account factors such as insolation, cloud cover, and the land that is usable by humans. The estimate found that solar energy has a global potential of 1,575–49,837 EJ per year (see table below). | {
"tokens": [
"In",
"2000",
",",
"the",
"United",
"Nations",
"Development",
"Programme",
",",
"UN",
"Department",
"of",
"Economic",
"and",
"Social",
"Affairs",
",",
"and",
"World",
"Energy",
"Council",
"published",
"an",
"estimate",
"of",
"the",
"potential",
"solar",
"energy",
"that",
"could",
"be",
"used",
"by",
"humans",
"each",
"year",
"that",
"took",
"into",
"account",
"factors",
"such",
"as",
"insolation",
",",
"cloud",
"cover",
",",
"and",
"the",
"land",
"that",
"is",
"usable",
"by",
"humans",
".",
"The",
"estimate",
"found",
"that",
"solar",
"energy",
"has",
"a",
"global",
"potential",
"of",
"1,575–49,837",
"EJ",
"per",
"year",
"(",
"see",
"table",
"below",
")",
"."
],
"offsets": [
0,
3,
7,
9,
13,
20,
28,
40,
49,
51,
54,
65,
68,
77,
81,
88,
95,
97,
101,
107,
114,
122,
132,
135,
144,
147,
151,
161,
167,
174,
179,
185,
188,
193,
196,
203,
208,
213,
218,
223,
228,
236,
244,
249,
252,
262,
264,
270,
275,
277,
281,
285,
290,
295,
298,
305,
308,
314,
316,
320,
329,
335,
340,
346,
353,
357,
359,
366,
376,
379,
392,
395,
399,
404,
405,
409,
415,
420,
421
]
} | ab2a5e44f97843249d263fce7df2f6ae | What factors were taken into account in the estimate published in 2000 on solar energy? | {
"tokens": [
"What",
"factors",
"were",
"taken",
"into",
"account",
"in",
"the",
"estimate",
"published",
"in",
"2000",
"on",
"solar",
"energy",
"?"
],
"offsets": [
0,
5,
13,
18,
24,
29,
37,
40,
44,
53,
63,
66,
71,
74,
80,
86
]
} | {
"text": [
"insolation, cloud cover, and the land that is usable by humans"
],
"char_spans": [
{
"start": [
252
],
"end": [
313
]
}
],
"token_spans": [
{
"start": [
44
],
"end": [
56
]
}
]
} | [
"insolation, cloud cover, and the land that is usable by humans"
] |
SQuAD | In 2000, the United Nations Development Programme, UN Department of Economic and Social Affairs, and World Energy Council published an estimate of the potential solar energy that could be used by humans each year that took into account factors such as insolation, cloud cover, and the land that is usable by humans. The estimate found that solar energy has a global potential of 1,575–49,837 EJ per year (see table below). | {
"tokens": [
"In",
"2000",
",",
"the",
"United",
"Nations",
"Development",
"Programme",
",",
"UN",
"Department",
"of",
"Economic",
"and",
"Social",
"Affairs",
",",
"and",
"World",
"Energy",
"Council",
"published",
"an",
"estimate",
"of",
"the",
"potential",
"solar",
"energy",
"that",
"could",
"be",
"used",
"by",
"humans",
"each",
"year",
"that",
"took",
"into",
"account",
"factors",
"such",
"as",
"insolation",
",",
"cloud",
"cover",
",",
"and",
"the",
"land",
"that",
"is",
"usable",
"by",
"humans",
".",
"The",
"estimate",
"found",
"that",
"solar",
"energy",
"has",
"a",
"global",
"potential",
"of",
"1,575–49,837",
"EJ",
"per",
"year",
"(",
"see",
"table",
"below",
")",
"."
],
"offsets": [
0,
3,
7,
9,
13,
20,
28,
40,
49,
51,
54,
65,
68,
77,
81,
88,
95,
97,
101,
107,
114,
122,
132,
135,
144,
147,
151,
161,
167,
174,
179,
185,
188,
193,
196,
203,
208,
213,
218,
223,
228,
236,
244,
249,
252,
262,
264,
270,
275,
277,
281,
285,
290,
295,
298,
305,
308,
314,
316,
320,
329,
335,
340,
346,
353,
357,
359,
366,
376,
379,
392,
395,
399,
404,
405,
409,
415,
420,
421
]
} | e2c92062ca264a99a43078071bc931f5 | What was the total potential of solar energy found in the estimate? | {
"tokens": [
"What",
"was",
"the",
"total",
"potential",
"of",
"solar",
"energy",
"found",
"in",
"the",
"estimate",
"?"
],
"offsets": [
0,
5,
9,
13,
19,
29,
32,
38,
45,
51,
54,
58,
66
]
} | {
"text": [
"1,575–49,837 EJ per year"
],
"char_spans": [
{
"start": [
379
],
"end": [
402
]
}
],
"token_spans": [
{
"start": [
69
],
"end": [
72
]
}
]
} | [
"1,575–49,837 EJ per year"
] |
SQuAD | In addition, land availability has a large effect on the available solar energy because solar panels can only be set up on land that is unowned and suitable for solar panels. Roofs have been found to be a suitable place for solar cells, as many people have discovered that they can collect energy directly from their homes this way. Other areas that are suitable for solar cells are lands that are unowned by businesses where solar plants can be established. | {
"tokens": [
"In",
"addition",
",",
"land",
"availability",
"has",
"a",
"large",
"effect",
"on",
"the",
"available",
"solar",
"energy",
"because",
"solar",
"panels",
"can",
"only",
"be",
"set",
"up",
"on",
"land",
"that",
"is",
"unowned",
"and",
"suitable",
"for",
"solar",
"panels",
".",
"Roofs",
"have",
"been",
"found",
"to",
"be",
"a",
"suitable",
"place",
"for",
"solar",
"cells",
",",
"as",
"many",
"people",
"have",
"discovered",
"that",
"they",
"can",
"collect",
"energy",
"directly",
"from",
"their",
"homes",
"this",
"way",
".",
"Other",
"areas",
"that",
"are",
"suitable",
"for",
"solar",
"cells",
"are",
"lands",
"that",
"are",
"unowned",
"by",
"businesses",
"where",
"solar",
"plants",
"can",
"be",
"established",
"."
],
"offsets": [
0,
3,
11,
13,
18,
31,
35,
37,
43,
50,
53,
57,
67,
73,
80,
88,
94,
101,
105,
110,
113,
117,
120,
123,
128,
133,
136,
144,
148,
157,
161,
167,
173,
175,
181,
186,
191,
197,
200,
203,
205,
214,
220,
224,
230,
235,
237,
240,
245,
252,
257,
268,
273,
278,
282,
290,
297,
306,
311,
317,
323,
328,
331,
333,
339,
345,
350,
354,
363,
367,
373,
379,
383,
389,
394,
398,
406,
409,
420,
426,
432,
439,
443,
446,
457
]
} | 5b445ccda6294b189c99a608032ec9bd | Why does land availability have an effect on solar energy? | {
"tokens": [
"Why",
"does",
"land",
"availability",
"have",
"an",
"effect",
"on",
"solar",
"energy",
"?"
],
"offsets": [
0,
4,
9,
14,
27,
32,
35,
42,
45,
51,
57
]
} | {
"text": [
"solar panels can only be set up on land that is unowned and suitable for solar panels"
],
"char_spans": [
{
"start": [
88
],
"end": [
172
]
}
],
"token_spans": [
{
"start": [
15
],
"end": [
31
]
}
]
} | [
"solar panels can only be set up on land that is unowned and suitable for solar panels"
] |
SQuAD | In addition, land availability has a large effect on the available solar energy because solar panels can only be set up on land that is unowned and suitable for solar panels. Roofs have been found to be a suitable place for solar cells, as many people have discovered that they can collect energy directly from their homes this way. Other areas that are suitable for solar cells are lands that are unowned by businesses where solar plants can be established. | {
"tokens": [
"In",
"addition",
",",
"land",
"availability",
"has",
"a",
"large",
"effect",
"on",
"the",
"available",
"solar",
"energy",
"because",
"solar",
"panels",
"can",
"only",
"be",
"set",
"up",
"on",
"land",
"that",
"is",
"unowned",
"and",
"suitable",
"for",
"solar",
"panels",
".",
"Roofs",
"have",
"been",
"found",
"to",
"be",
"a",
"suitable",
"place",
"for",
"solar",
"cells",
",",
"as",
"many",
"people",
"have",
"discovered",
"that",
"they",
"can",
"collect",
"energy",
"directly",
"from",
"their",
"homes",
"this",
"way",
".",
"Other",
"areas",
"that",
"are",
"suitable",
"for",
"solar",
"cells",
"are",
"lands",
"that",
"are",
"unowned",
"by",
"businesses",
"where",
"solar",
"plants",
"can",
"be",
"established",
"."
],
"offsets": [
0,
3,
11,
13,
18,
31,
35,
37,
43,
50,
53,
57,
67,
73,
80,
88,
94,
101,
105,
110,
113,
117,
120,
123,
128,
133,
136,
144,
148,
157,
161,
167,
173,
175,
181,
186,
191,
197,
200,
203,
205,
214,
220,
224,
230,
235,
237,
240,
245,
252,
257,
268,
273,
278,
282,
290,
297,
306,
311,
317,
323,
328,
331,
333,
339,
345,
350,
354,
363,
367,
373,
379,
383,
389,
394,
398,
406,
409,
420,
426,
432,
439,
443,
446,
457
]
} | 6ea0c9732d4e4395b0903774508c0e56 | Why are roofs a good place for solar panels? | {
"tokens": [
"Why",
"are",
"roofs",
"a",
"good",
"place",
"for",
"solar",
"panels",
"?"
],
"offsets": [
0,
4,
8,
14,
16,
21,
27,
31,
37,
43
]
} | {
"text": [
"many people have discovered that they can collect energy directly from their homes this way"
],
"char_spans": [
{
"start": [
240
],
"end": [
330
]
}
],
"token_spans": [
{
"start": [
47
],
"end": [
61
]
}
]
} | [
"many people have discovered that they can collect energy directly from their homes this way"
] |
SQuAD | The potential solar energy that could be used by humans differs from the amount of solar energy present near the surface of the planet because factors such as geography, time variation, cloud cover, and the land available to humans limits the amount of solar energy that we can acquire. | {
"tokens": [
"The",
"potential",
"solar",
"energy",
"that",
"could",
"be",
"used",
"by",
"humans",
"differs",
"from",
"the",
"amount",
"of",
"solar",
"energy",
"present",
"near",
"the",
"surface",
"of",
"the",
"planet",
"because",
"factors",
"such",
"as",
"geography",
",",
"time",
"variation",
",",
"cloud",
"cover",
",",
"and",
"the",
"land",
"available",
"to",
"humans",
"limits",
"the",
"amount",
"of",
"solar",
"energy",
"that",
"we",
"can",
"acquire",
"."
],
"offsets": [
0,
4,
14,
20,
27,
32,
38,
41,
46,
49,
56,
64,
69,
73,
80,
83,
89,
96,
104,
109,
113,
121,
124,
128,
135,
143,
151,
156,
159,
168,
170,
175,
184,
186,
192,
197,
199,
203,
207,
212,
222,
225,
232,
239,
243,
250,
253,
259,
266,
271,
274,
278,
285
]
} | 3574153337c749aba29364cc360cf25c | Why does the amount of usable solar energy differ from the amount near the planets surface? | {
"tokens": [
"Why",
"does",
"the",
"amount",
"of",
"usable",
"solar",
"energy",
"differ",
"from",
"the",
"amount",
"near",
"the",
"planets",
"surface",
"?"
],
"offsets": [
0,
4,
9,
13,
20,
23,
30,
36,
43,
50,
55,
59,
66,
71,
75,
83,
90
]
} | {
"text": [
"geography, time variation, cloud cover, and the land available to humans"
],
"char_spans": [
{
"start": [
159
],
"end": [
230
]
}
],
"token_spans": [
{
"start": [
28
],
"end": [
41
]
}
]
} | [
"geography, time variation, cloud cover, and the land available to humans"
] |
SQuAD | In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%. | {
"tokens": [
"In",
"the",
"last",
"two",
"decades",
",",
"photovoltaics",
"(",
"PV",
")",
",",
"also",
"known",
"as",
"solar",
"PV",
",",
"has",
"evolved",
"from",
"a",
"pure",
"niche",
"market",
"of",
"small",
"scale",
"applications",
"towards",
"becoming",
"a",
"mainstream",
"electricity",
"source",
".",
"A",
"solar",
"cell",
"is",
"a",
"device",
"that",
"converts",
"light",
"directly",
"into",
"electricity",
"using",
"the",
"photoelectric",
"effect",
".",
"The",
"first",
"solar",
"cell",
"was",
"constructed",
"by",
"Charles",
"Fritts",
"in",
"the",
"1880s",
".",
"In",
"1931",
"a",
"German",
"engineer",
",",
"Dr",
"Bruno",
"Lange",
",",
"developed",
"a",
"photo",
"cell",
"using",
"silver",
"selenide",
"in",
"place",
"of",
"copper",
"oxide",
".",
"Although",
"the",
"prototype",
"selenium",
"cells",
"converted",
"less",
"than",
"1",
"%",
"of",
"incident",
"light",
"into",
"electricity",
",",
"both",
"Ernst",
"Werner",
"von",
"Siemens",
"and",
"James",
"Clerk",
"Maxwell",
"recognized",
"the",
"importance",
"of",
"this",
"discovery",
".",
"Following",
"the",
"work",
"of",
"Russell",
"Ohl",
"in",
"the",
"1940s",
",",
"researchers",
"Gerald",
"Pearson",
",",
"Calvin",
"Fuller",
"and",
"Daryl",
"Chapin",
"created",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"in",
"1954",
".",
"These",
"early",
"solar",
"cells",
"cost",
"286",
"USD",
"/",
"watt",
"and",
"reached",
"efficiencies",
"of",
"4.5–6",
"%",
".",
"By",
"2012",
"available",
"efficiencies",
"exceed",
"20",
"%",
"and",
"the",
"maximum",
"efficiency",
"of",
"research",
"photovoltaics",
"is",
"over",
"40",
"%",
"."
],
"offsets": [
0,
3,
7,
12,
16,
23,
25,
39,
40,
42,
43,
45,
50,
56,
59,
65,
67,
69,
73,
81,
86,
88,
93,
99,
106,
109,
115,
121,
134,
142,
151,
153,
164,
176,
182,
184,
186,
192,
197,
200,
202,
209,
214,
223,
229,
238,
243,
255,
261,
265,
279,
285,
287,
291,
297,
303,
308,
312,
324,
327,
335,
342,
345,
349,
354,
356,
359,
364,
366,
373,
381,
383,
386,
392,
397,
399,
409,
411,
417,
422,
428,
435,
444,
447,
453,
456,
463,
468,
470,
479,
483,
493,
502,
508,
518,
523,
528,
529,
531,
534,
543,
549,
554,
565,
567,
572,
578,
585,
589,
597,
601,
607,
613,
621,
632,
636,
647,
650,
655,
664,
666,
676,
680,
685,
688,
696,
700,
703,
707,
712,
714,
726,
733,
740,
742,
749,
756,
760,
766,
773,
781,
785,
797,
805,
811,
816,
819,
823,
825,
831,
837,
843,
849,
854,
858,
861,
862,
867,
871,
879,
892,
895,
900,
901,
903,
906,
911,
921,
934,
941,
943,
945,
949,
953,
961,
972,
975,
984,
998,
1001,
1006,
1008,
1009
]
} | a5037affd7fc4ed0ade04c039289899a | In the 1880s, who constructed the first solar cell? | {
"tokens": [
"In",
"the",
"1880s",
",",
"who",
"constructed",
"the",
"first",
"solar",
"cell",
"?"
],
"offsets": [
0,
3,
7,
12,
14,
18,
30,
34,
40,
46,
50
]
} | {
"text": [
"Charles Fritts"
],
"char_spans": [
{
"start": [
327
],
"end": [
340
]
}
],
"token_spans": [
{
"start": [
59
],
"end": [
60
]
}
]
} | [
"Charles Fritts"
] |
SQuAD | In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%. | {
"tokens": [
"In",
"the",
"last",
"two",
"decades",
",",
"photovoltaics",
"(",
"PV",
")",
",",
"also",
"known",
"as",
"solar",
"PV",
",",
"has",
"evolved",
"from",
"a",
"pure",
"niche",
"market",
"of",
"small",
"scale",
"applications",
"towards",
"becoming",
"a",
"mainstream",
"electricity",
"source",
".",
"A",
"solar",
"cell",
"is",
"a",
"device",
"that",
"converts",
"light",
"directly",
"into",
"electricity",
"using",
"the",
"photoelectric",
"effect",
".",
"The",
"first",
"solar",
"cell",
"was",
"constructed",
"by",
"Charles",
"Fritts",
"in",
"the",
"1880s",
".",
"In",
"1931",
"a",
"German",
"engineer",
",",
"Dr",
"Bruno",
"Lange",
",",
"developed",
"a",
"photo",
"cell",
"using",
"silver",
"selenide",
"in",
"place",
"of",
"copper",
"oxide",
".",
"Although",
"the",
"prototype",
"selenium",
"cells",
"converted",
"less",
"than",
"1",
"%",
"of",
"incident",
"light",
"into",
"electricity",
",",
"both",
"Ernst",
"Werner",
"von",
"Siemens",
"and",
"James",
"Clerk",
"Maxwell",
"recognized",
"the",
"importance",
"of",
"this",
"discovery",
".",
"Following",
"the",
"work",
"of",
"Russell",
"Ohl",
"in",
"the",
"1940s",
",",
"researchers",
"Gerald",
"Pearson",
",",
"Calvin",
"Fuller",
"and",
"Daryl",
"Chapin",
"created",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"in",
"1954",
".",
"These",
"early",
"solar",
"cells",
"cost",
"286",
"USD",
"/",
"watt",
"and",
"reached",
"efficiencies",
"of",
"4.5–6",
"%",
".",
"By",
"2012",
"available",
"efficiencies",
"exceed",
"20",
"%",
"and",
"the",
"maximum",
"efficiency",
"of",
"research",
"photovoltaics",
"is",
"over",
"40",
"%",
"."
],
"offsets": [
0,
3,
7,
12,
16,
23,
25,
39,
40,
42,
43,
45,
50,
56,
59,
65,
67,
69,
73,
81,
86,
88,
93,
99,
106,
109,
115,
121,
134,
142,
151,
153,
164,
176,
182,
184,
186,
192,
197,
200,
202,
209,
214,
223,
229,
238,
243,
255,
261,
265,
279,
285,
287,
291,
297,
303,
308,
312,
324,
327,
335,
342,
345,
349,
354,
356,
359,
364,
366,
373,
381,
383,
386,
392,
397,
399,
409,
411,
417,
422,
428,
435,
444,
447,
453,
456,
463,
468,
470,
479,
483,
493,
502,
508,
518,
523,
528,
529,
531,
534,
543,
549,
554,
565,
567,
572,
578,
585,
589,
597,
601,
607,
613,
621,
632,
636,
647,
650,
655,
664,
666,
676,
680,
685,
688,
696,
700,
703,
707,
712,
714,
726,
733,
740,
742,
749,
756,
760,
766,
773,
781,
785,
797,
805,
811,
816,
819,
823,
825,
831,
837,
843,
849,
854,
858,
861,
862,
867,
871,
879,
892,
895,
900,
901,
903,
906,
911,
921,
934,
941,
943,
945,
949,
953,
961,
972,
975,
984,
998,
1001,
1006,
1008,
1009
]
} | 59a8e79968694d96beee19b280e7b8f9 | In what year was the crystalline silicon solar cell constructed? | {
"tokens": [
"In",
"what",
"year",
"was",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"constructed",
"?"
],
"offsets": [
0,
3,
8,
13,
17,
21,
33,
41,
47,
52,
63
]
} | {
"text": [
"1954"
],
"char_spans": [
{
"start": [
819
],
"end": [
822
]
}
],
"token_spans": [
{
"start": [
146
],
"end": [
146
]
}
]
} | [
"1954"
] |
SQuAD | In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%. | {
"tokens": [
"In",
"the",
"last",
"two",
"decades",
",",
"photovoltaics",
"(",
"PV",
")",
",",
"also",
"known",
"as",
"solar",
"PV",
",",
"has",
"evolved",
"from",
"a",
"pure",
"niche",
"market",
"of",
"small",
"scale",
"applications",
"towards",
"becoming",
"a",
"mainstream",
"electricity",
"source",
".",
"A",
"solar",
"cell",
"is",
"a",
"device",
"that",
"converts",
"light",
"directly",
"into",
"electricity",
"using",
"the",
"photoelectric",
"effect",
".",
"The",
"first",
"solar",
"cell",
"was",
"constructed",
"by",
"Charles",
"Fritts",
"in",
"the",
"1880s",
".",
"In",
"1931",
"a",
"German",
"engineer",
",",
"Dr",
"Bruno",
"Lange",
",",
"developed",
"a",
"photo",
"cell",
"using",
"silver",
"selenide",
"in",
"place",
"of",
"copper",
"oxide",
".",
"Although",
"the",
"prototype",
"selenium",
"cells",
"converted",
"less",
"than",
"1",
"%",
"of",
"incident",
"light",
"into",
"electricity",
",",
"both",
"Ernst",
"Werner",
"von",
"Siemens",
"and",
"James",
"Clerk",
"Maxwell",
"recognized",
"the",
"importance",
"of",
"this",
"discovery",
".",
"Following",
"the",
"work",
"of",
"Russell",
"Ohl",
"in",
"the",
"1940s",
",",
"researchers",
"Gerald",
"Pearson",
",",
"Calvin",
"Fuller",
"and",
"Daryl",
"Chapin",
"created",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"in",
"1954",
".",
"These",
"early",
"solar",
"cells",
"cost",
"286",
"USD",
"/",
"watt",
"and",
"reached",
"efficiencies",
"of",
"4.5–6",
"%",
".",
"By",
"2012",
"available",
"efficiencies",
"exceed",
"20",
"%",
"and",
"the",
"maximum",
"efficiency",
"of",
"research",
"photovoltaics",
"is",
"over",
"40",
"%",
"."
],
"offsets": [
0,
3,
7,
12,
16,
23,
25,
39,
40,
42,
43,
45,
50,
56,
59,
65,
67,
69,
73,
81,
86,
88,
93,
99,
106,
109,
115,
121,
134,
142,
151,
153,
164,
176,
182,
184,
186,
192,
197,
200,
202,
209,
214,
223,
229,
238,
243,
255,
261,
265,
279,
285,
287,
291,
297,
303,
308,
312,
324,
327,
335,
342,
345,
349,
354,
356,
359,
364,
366,
373,
381,
383,
386,
392,
397,
399,
409,
411,
417,
422,
428,
435,
444,
447,
453,
456,
463,
468,
470,
479,
483,
493,
502,
508,
518,
523,
528,
529,
531,
534,
543,
549,
554,
565,
567,
572,
578,
585,
589,
597,
601,
607,
613,
621,
632,
636,
647,
650,
655,
664,
666,
676,
680,
685,
688,
696,
700,
703,
707,
712,
714,
726,
733,
740,
742,
749,
756,
760,
766,
773,
781,
785,
797,
805,
811,
816,
819,
823,
825,
831,
837,
843,
849,
854,
858,
861,
862,
867,
871,
879,
892,
895,
900,
901,
903,
906,
911,
921,
934,
941,
943,
945,
949,
953,
961,
972,
975,
984,
998,
1001,
1006,
1008,
1009
]
} | 4c2536ceabab4c7ea21b6a1757264d34 | What has happened to photovoltaic in the past 20 years? | {
"tokens": [
"What",
"has",
"happened",
"to",
"photovoltaic",
"in",
"the",
"past",
"20",
"years",
"?"
],
"offsets": [
0,
5,
9,
18,
21,
34,
37,
41,
46,
49,
54
]
} | {
"text": [
"evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source"
],
"char_spans": [
{
"start": [
73
],
"end": [
181
]
}
],
"token_spans": [
{
"start": [
18
],
"end": [
33
]
}
]
} | [
"evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source"
] |
SQuAD | In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%. | {
"tokens": [
"In",
"the",
"last",
"two",
"decades",
",",
"photovoltaics",
"(",
"PV",
")",
",",
"also",
"known",
"as",
"solar",
"PV",
",",
"has",
"evolved",
"from",
"a",
"pure",
"niche",
"market",
"of",
"small",
"scale",
"applications",
"towards",
"becoming",
"a",
"mainstream",
"electricity",
"source",
".",
"A",
"solar",
"cell",
"is",
"a",
"device",
"that",
"converts",
"light",
"directly",
"into",
"electricity",
"using",
"the",
"photoelectric",
"effect",
".",
"The",
"first",
"solar",
"cell",
"was",
"constructed",
"by",
"Charles",
"Fritts",
"in",
"the",
"1880s",
".",
"In",
"1931",
"a",
"German",
"engineer",
",",
"Dr",
"Bruno",
"Lange",
",",
"developed",
"a",
"photo",
"cell",
"using",
"silver",
"selenide",
"in",
"place",
"of",
"copper",
"oxide",
".",
"Although",
"the",
"prototype",
"selenium",
"cells",
"converted",
"less",
"than",
"1",
"%",
"of",
"incident",
"light",
"into",
"electricity",
",",
"both",
"Ernst",
"Werner",
"von",
"Siemens",
"and",
"James",
"Clerk",
"Maxwell",
"recognized",
"the",
"importance",
"of",
"this",
"discovery",
".",
"Following",
"the",
"work",
"of",
"Russell",
"Ohl",
"in",
"the",
"1940s",
",",
"researchers",
"Gerald",
"Pearson",
",",
"Calvin",
"Fuller",
"and",
"Daryl",
"Chapin",
"created",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"in",
"1954",
".",
"These",
"early",
"solar",
"cells",
"cost",
"286",
"USD",
"/",
"watt",
"and",
"reached",
"efficiencies",
"of",
"4.5–6",
"%",
".",
"By",
"2012",
"available",
"efficiencies",
"exceed",
"20",
"%",
"and",
"the",
"maximum",
"efficiency",
"of",
"research",
"photovoltaics",
"is",
"over",
"40",
"%",
"."
],
"offsets": [
0,
3,
7,
12,
16,
23,
25,
39,
40,
42,
43,
45,
50,
56,
59,
65,
67,
69,
73,
81,
86,
88,
93,
99,
106,
109,
115,
121,
134,
142,
151,
153,
164,
176,
182,
184,
186,
192,
197,
200,
202,
209,
214,
223,
229,
238,
243,
255,
261,
265,
279,
285,
287,
291,
297,
303,
308,
312,
324,
327,
335,
342,
345,
349,
354,
356,
359,
364,
366,
373,
381,
383,
386,
392,
397,
399,
409,
411,
417,
422,
428,
435,
444,
447,
453,
456,
463,
468,
470,
479,
483,
493,
502,
508,
518,
523,
528,
529,
531,
534,
543,
549,
554,
565,
567,
572,
578,
585,
589,
597,
601,
607,
613,
621,
632,
636,
647,
650,
655,
664,
666,
676,
680,
685,
688,
696,
700,
703,
707,
712,
714,
726,
733,
740,
742,
749,
756,
760,
766,
773,
781,
785,
797,
805,
811,
816,
819,
823,
825,
831,
837,
843,
849,
854,
858,
861,
862,
867,
871,
879,
892,
895,
900,
901,
903,
906,
911,
921,
934,
941,
943,
945,
949,
953,
961,
972,
975,
984,
998,
1001,
1006,
1008,
1009
]
} | 4dfb31dcc95345cbbfbc7dd4def48106 | What is a solar cell? | {
"tokens": [
"What",
"is",
"a",
"solar",
"cell",
"?"
],
"offsets": [
0,
5,
8,
10,
16,
20
]
} | {
"text": [
"a device that converts light directly into electricity"
],
"char_spans": [
{
"start": [
200
],
"end": [
253
]
}
],
"token_spans": [
{
"start": [
39
],
"end": [
46
]
}
]
} | [
"a device that converts light directly into electricity"
] |
SQuAD | In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%. | {
"tokens": [
"In",
"the",
"last",
"two",
"decades",
",",
"photovoltaics",
"(",
"PV",
")",
",",
"also",
"known",
"as",
"solar",
"PV",
",",
"has",
"evolved",
"from",
"a",
"pure",
"niche",
"market",
"of",
"small",
"scale",
"applications",
"towards",
"becoming",
"a",
"mainstream",
"electricity",
"source",
".",
"A",
"solar",
"cell",
"is",
"a",
"device",
"that",
"converts",
"light",
"directly",
"into",
"electricity",
"using",
"the",
"photoelectric",
"effect",
".",
"The",
"first",
"solar",
"cell",
"was",
"constructed",
"by",
"Charles",
"Fritts",
"in",
"the",
"1880s",
".",
"In",
"1931",
"a",
"German",
"engineer",
",",
"Dr",
"Bruno",
"Lange",
",",
"developed",
"a",
"photo",
"cell",
"using",
"silver",
"selenide",
"in",
"place",
"of",
"copper",
"oxide",
".",
"Although",
"the",
"prototype",
"selenium",
"cells",
"converted",
"less",
"than",
"1",
"%",
"of",
"incident",
"light",
"into",
"electricity",
",",
"both",
"Ernst",
"Werner",
"von",
"Siemens",
"and",
"James",
"Clerk",
"Maxwell",
"recognized",
"the",
"importance",
"of",
"this",
"discovery",
".",
"Following",
"the",
"work",
"of",
"Russell",
"Ohl",
"in",
"the",
"1940s",
",",
"researchers",
"Gerald",
"Pearson",
",",
"Calvin",
"Fuller",
"and",
"Daryl",
"Chapin",
"created",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"in",
"1954",
".",
"These",
"early",
"solar",
"cells",
"cost",
"286",
"USD",
"/",
"watt",
"and",
"reached",
"efficiencies",
"of",
"4.5–6",
"%",
".",
"By",
"2012",
"available",
"efficiencies",
"exceed",
"20",
"%",
"and",
"the",
"maximum",
"efficiency",
"of",
"research",
"photovoltaics",
"is",
"over",
"40",
"%",
"."
],
"offsets": [
0,
3,
7,
12,
16,
23,
25,
39,
40,
42,
43,
45,
50,
56,
59,
65,
67,
69,
73,
81,
86,
88,
93,
99,
106,
109,
115,
121,
134,
142,
151,
153,
164,
176,
182,
184,
186,
192,
197,
200,
202,
209,
214,
223,
229,
238,
243,
255,
261,
265,
279,
285,
287,
291,
297,
303,
308,
312,
324,
327,
335,
342,
345,
349,
354,
356,
359,
364,
366,
373,
381,
383,
386,
392,
397,
399,
409,
411,
417,
422,
428,
435,
444,
447,
453,
456,
463,
468,
470,
479,
483,
493,
502,
508,
518,
523,
528,
529,
531,
534,
543,
549,
554,
565,
567,
572,
578,
585,
589,
597,
601,
607,
613,
621,
632,
636,
647,
650,
655,
664,
666,
676,
680,
685,
688,
696,
700,
703,
707,
712,
714,
726,
733,
740,
742,
749,
756,
760,
766,
773,
781,
785,
797,
805,
811,
816,
819,
823,
825,
831,
837,
843,
849,
854,
858,
861,
862,
867,
871,
879,
892,
895,
900,
901,
903,
906,
911,
921,
934,
941,
943,
945,
949,
953,
961,
972,
975,
984,
998,
1001,
1006,
1008,
1009
]
} | 9a9d4c6f22044b0b84e8b04960b5379b | Who created the first solar cell? | {
"tokens": [
"Who",
"created",
"the",
"first",
"solar",
"cell",
"?"
],
"offsets": [
0,
4,
12,
16,
22,
28,
32
]
} | {
"text": [
"Charles Fritts"
],
"char_spans": [
{
"start": [
327
],
"end": [
340
]
}
],
"token_spans": [
{
"start": [
59
],
"end": [
60
]
}
]
} | [
"Charles Fritts"
] |
SQuAD | In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%. | {
"tokens": [
"In",
"the",
"last",
"two",
"decades",
",",
"photovoltaics",
"(",
"PV",
")",
",",
"also",
"known",
"as",
"solar",
"PV",
",",
"has",
"evolved",
"from",
"a",
"pure",
"niche",
"market",
"of",
"small",
"scale",
"applications",
"towards",
"becoming",
"a",
"mainstream",
"electricity",
"source",
".",
"A",
"solar",
"cell",
"is",
"a",
"device",
"that",
"converts",
"light",
"directly",
"into",
"electricity",
"using",
"the",
"photoelectric",
"effect",
".",
"The",
"first",
"solar",
"cell",
"was",
"constructed",
"by",
"Charles",
"Fritts",
"in",
"the",
"1880s",
".",
"In",
"1931",
"a",
"German",
"engineer",
",",
"Dr",
"Bruno",
"Lange",
",",
"developed",
"a",
"photo",
"cell",
"using",
"silver",
"selenide",
"in",
"place",
"of",
"copper",
"oxide",
".",
"Although",
"the",
"prototype",
"selenium",
"cells",
"converted",
"less",
"than",
"1",
"%",
"of",
"incident",
"light",
"into",
"electricity",
",",
"both",
"Ernst",
"Werner",
"von",
"Siemens",
"and",
"James",
"Clerk",
"Maxwell",
"recognized",
"the",
"importance",
"of",
"this",
"discovery",
".",
"Following",
"the",
"work",
"of",
"Russell",
"Ohl",
"in",
"the",
"1940s",
",",
"researchers",
"Gerald",
"Pearson",
",",
"Calvin",
"Fuller",
"and",
"Daryl",
"Chapin",
"created",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"in",
"1954",
".",
"These",
"early",
"solar",
"cells",
"cost",
"286",
"USD",
"/",
"watt",
"and",
"reached",
"efficiencies",
"of",
"4.5–6",
"%",
".",
"By",
"2012",
"available",
"efficiencies",
"exceed",
"20",
"%",
"and",
"the",
"maximum",
"efficiency",
"of",
"research",
"photovoltaics",
"is",
"over",
"40",
"%",
"."
],
"offsets": [
0,
3,
7,
12,
16,
23,
25,
39,
40,
42,
43,
45,
50,
56,
59,
65,
67,
69,
73,
81,
86,
88,
93,
99,
106,
109,
115,
121,
134,
142,
151,
153,
164,
176,
182,
184,
186,
192,
197,
200,
202,
209,
214,
223,
229,
238,
243,
255,
261,
265,
279,
285,
287,
291,
297,
303,
308,
312,
324,
327,
335,
342,
345,
349,
354,
356,
359,
364,
366,
373,
381,
383,
386,
392,
397,
399,
409,
411,
417,
422,
428,
435,
444,
447,
453,
456,
463,
468,
470,
479,
483,
493,
502,
508,
518,
523,
528,
529,
531,
534,
543,
549,
554,
565,
567,
572,
578,
585,
589,
597,
601,
607,
613,
621,
632,
636,
647,
650,
655,
664,
666,
676,
680,
685,
688,
696,
700,
703,
707,
712,
714,
726,
733,
740,
742,
749,
756,
760,
766,
773,
781,
785,
797,
805,
811,
816,
819,
823,
825,
831,
837,
843,
849,
854,
858,
861,
862,
867,
871,
879,
892,
895,
900,
901,
903,
906,
911,
921,
934,
941,
943,
945,
949,
953,
961,
972,
975,
984,
998,
1001,
1006,
1008,
1009
]
} | 7b84e43b48f64fd29b639f9b2db1ada7 | Who created the first solar cell using silver selenide in place of copper oxide? | {
"tokens": [
"Who",
"created",
"the",
"first",
"solar",
"cell",
"using",
"silver",
"selenide",
"in",
"place",
"of",
"copper",
"oxide",
"?"
],
"offsets": [
0,
4,
12,
16,
22,
28,
33,
39,
46,
55,
58,
64,
67,
74,
79
]
} | {
"text": [
"Dr Bruno Lange"
],
"char_spans": [
{
"start": [
383
],
"end": [
396
]
}
],
"token_spans": [
{
"start": [
71
],
"end": [
73
]
}
]
} | [
"Dr Bruno Lange"
] |
SQuAD | In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%. | {
"tokens": [
"In",
"the",
"last",
"two",
"decades",
",",
"photovoltaics",
"(",
"PV",
")",
",",
"also",
"known",
"as",
"solar",
"PV",
",",
"has",
"evolved",
"from",
"a",
"pure",
"niche",
"market",
"of",
"small",
"scale",
"applications",
"towards",
"becoming",
"a",
"mainstream",
"electricity",
"source",
".",
"A",
"solar",
"cell",
"is",
"a",
"device",
"that",
"converts",
"light",
"directly",
"into",
"electricity",
"using",
"the",
"photoelectric",
"effect",
".",
"The",
"first",
"solar",
"cell",
"was",
"constructed",
"by",
"Charles",
"Fritts",
"in",
"the",
"1880s",
".",
"In",
"1931",
"a",
"German",
"engineer",
",",
"Dr",
"Bruno",
"Lange",
",",
"developed",
"a",
"photo",
"cell",
"using",
"silver",
"selenide",
"in",
"place",
"of",
"copper",
"oxide",
".",
"Although",
"the",
"prototype",
"selenium",
"cells",
"converted",
"less",
"than",
"1",
"%",
"of",
"incident",
"light",
"into",
"electricity",
",",
"both",
"Ernst",
"Werner",
"von",
"Siemens",
"and",
"James",
"Clerk",
"Maxwell",
"recognized",
"the",
"importance",
"of",
"this",
"discovery",
".",
"Following",
"the",
"work",
"of",
"Russell",
"Ohl",
"in",
"the",
"1940s",
",",
"researchers",
"Gerald",
"Pearson",
",",
"Calvin",
"Fuller",
"and",
"Daryl",
"Chapin",
"created",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"in",
"1954",
".",
"These",
"early",
"solar",
"cells",
"cost",
"286",
"USD",
"/",
"watt",
"and",
"reached",
"efficiencies",
"of",
"4.5–6",
"%",
".",
"By",
"2012",
"available",
"efficiencies",
"exceed",
"20",
"%",
"and",
"the",
"maximum",
"efficiency",
"of",
"research",
"photovoltaics",
"is",
"over",
"40",
"%",
"."
],
"offsets": [
0,
3,
7,
12,
16,
23,
25,
39,
40,
42,
43,
45,
50,
56,
59,
65,
67,
69,
73,
81,
86,
88,
93,
99,
106,
109,
115,
121,
134,
142,
151,
153,
164,
176,
182,
184,
186,
192,
197,
200,
202,
209,
214,
223,
229,
238,
243,
255,
261,
265,
279,
285,
287,
291,
297,
303,
308,
312,
324,
327,
335,
342,
345,
349,
354,
356,
359,
364,
366,
373,
381,
383,
386,
392,
397,
399,
409,
411,
417,
422,
428,
435,
444,
447,
453,
456,
463,
468,
470,
479,
483,
493,
502,
508,
518,
523,
528,
529,
531,
534,
543,
549,
554,
565,
567,
572,
578,
585,
589,
597,
601,
607,
613,
621,
632,
636,
647,
650,
655,
664,
666,
676,
680,
685,
688,
696,
700,
703,
707,
712,
714,
726,
733,
740,
742,
749,
756,
760,
766,
773,
781,
785,
797,
805,
811,
816,
819,
823,
825,
831,
837,
843,
849,
854,
858,
861,
862,
867,
871,
879,
892,
895,
900,
901,
903,
906,
911,
921,
934,
941,
943,
945,
949,
953,
961,
972,
975,
984,
998,
1001,
1006,
1008,
1009
]
} | b849cd440b0340d38738700afca37941 | Who created the crystalline silicon solar cell? | {
"tokens": [
"Who",
"created",
"the",
"crystalline",
"silicon",
"solar",
"cell",
"?"
],
"offsets": [
0,
4,
12,
16,
28,
36,
42,
46
]
} | {
"text": [
"Gerald Pearson, Calvin Fuller and Daryl Chapin"
],
"char_spans": [
{
"start": [
726
],
"end": [
771
]
}
],
"token_spans": [
{
"start": [
131
],
"end": [
138
]
}
]
} | [
"Gerald Pearson, Calvin Fuller and Daryl Chapin"
] |
SQuAD | It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on the way they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. | {
"tokens": [
"It",
"is",
"an",
"important",
"source",
"of",
"renewable",
"energy",
"and",
"its",
"technologies",
"are",
"broadly",
"characterized",
"as",
"either",
"passive",
"solar",
"or",
"active",
"solar",
"depending",
"on",
"the",
"way",
"they",
"capture",
"and",
"distribute",
"solar",
"energy",
"or",
"convert",
"it",
"into",
"solar",
"power",
".",
"Active",
"solar",
"techniques",
"include",
"the",
"use",
"of",
"photovoltaic",
"systems",
",",
"concentrated",
"solar",
"power",
"and",
"solar",
"water",
"heating",
"to",
"harness",
"the",
"energy",
".",
"Passive",
"solar",
"techniques",
"include",
"orienting",
"a",
"building",
"to",
"the",
"Sun",
",",
"selecting",
"materials",
"with",
"favorable",
"thermal",
"mass",
"or",
"light",
"dispersing",
"properties",
",",
"and",
"designing",
"spaces",
"that",
"naturally",
"circulate",
"air",
"."
],
"offsets": [
0,
3,
6,
9,
19,
26,
29,
39,
46,
50,
54,
67,
71,
79,
93,
96,
103,
111,
117,
120,
127,
133,
143,
146,
150,
154,
159,
167,
171,
182,
188,
195,
198,
206,
209,
214,
220,
225,
227,
234,
240,
251,
259,
263,
267,
270,
283,
290,
292,
305,
311,
317,
321,
327,
333,
341,
344,
352,
356,
362,
364,
372,
378,
389,
397,
407,
409,
418,
421,
425,
428,
430,
440,
450,
455,
465,
473,
478,
481,
487,
498,
508,
510,
514,
524,
531,
536,
546,
556,
559
]
} | 994c5098bde242818b0237f6e69882fc | What are the technologies used to capture solar energy characterized as? | {
"tokens": [
"What",
"are",
"the",
"technologies",
"used",
"to",
"capture",
"solar",
"energy",
"characterized",
"as",
"?"
],
"offsets": [
0,
5,
9,
13,
26,
31,
34,
42,
48,
55,
69,
71
]
} | {
"text": [
"passive solar or active solar"
],
"char_spans": [
{
"start": [
103
],
"end": [
131
]
}
],
"token_spans": [
{
"start": [
16
],
"end": [
20
]
}
]
} | [
"passive solar or active solar"
] |
SQuAD | It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on the way they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. | {
"tokens": [
"It",
"is",
"an",
"important",
"source",
"of",
"renewable",
"energy",
"and",
"its",
"technologies",
"are",
"broadly",
"characterized",
"as",
"either",
"passive",
"solar",
"or",
"active",
"solar",
"depending",
"on",
"the",
"way",
"they",
"capture",
"and",
"distribute",
"solar",
"energy",
"or",
"convert",
"it",
"into",
"solar",
"power",
".",
"Active",
"solar",
"techniques",
"include",
"the",
"use",
"of",
"photovoltaic",
"systems",
",",
"concentrated",
"solar",
"power",
"and",
"solar",
"water",
"heating",
"to",
"harness",
"the",
"energy",
".",
"Passive",
"solar",
"techniques",
"include",
"orienting",
"a",
"building",
"to",
"the",
"Sun",
",",
"selecting",
"materials",
"with",
"favorable",
"thermal",
"mass",
"or",
"light",
"dispersing",
"properties",
",",
"and",
"designing",
"spaces",
"that",
"naturally",
"circulate",
"air",
"."
],
"offsets": [
0,
3,
6,
9,
19,
26,
29,
39,
46,
50,
54,
67,
71,
79,
93,
96,
103,
111,
117,
120,
127,
133,
143,
146,
150,
154,
159,
167,
171,
182,
188,
195,
198,
206,
209,
214,
220,
225,
227,
234,
240,
251,
259,
263,
267,
270,
283,
290,
292,
305,
311,
317,
321,
327,
333,
341,
344,
352,
356,
362,
364,
372,
378,
389,
397,
407,
409,
418,
421,
425,
428,
430,
440,
450,
455,
465,
473,
478,
481,
487,
498,
508,
510,
514,
524,
531,
536,
546,
556,
559
]
} | ae025aacb91a4d08a574adadecf993db | What are some active solar techniques used to harness solar energy? | {
"tokens": [
"What",
"are",
"some",
"active",
"solar",
"techniques",
"used",
"to",
"harness",
"solar",
"energy",
"?"
],
"offsets": [
0,
5,
9,
14,
21,
27,
38,
43,
46,
54,
60,
66
]
} | {
"text": [
"photovoltaic systems, concentrated solar power and solar water heating"
],
"char_spans": [
{
"start": [
270
],
"end": [
339
]
}
],
"token_spans": [
{
"start": [
45
],
"end": [
54
]
}
]
} | [
"photovoltaic systems, concentrated solar power and solar water heating"
] |
SQuAD | It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on the way they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. | {
"tokens": [
"It",
"is",
"an",
"important",
"source",
"of",
"renewable",
"energy",
"and",
"its",
"technologies",
"are",
"broadly",
"characterized",
"as",
"either",
"passive",
"solar",
"or",
"active",
"solar",
"depending",
"on",
"the",
"way",
"they",
"capture",
"and",
"distribute",
"solar",
"energy",
"or",
"convert",
"it",
"into",
"solar",
"power",
".",
"Active",
"solar",
"techniques",
"include",
"the",
"use",
"of",
"photovoltaic",
"systems",
",",
"concentrated",
"solar",
"power",
"and",
"solar",
"water",
"heating",
"to",
"harness",
"the",
"energy",
".",
"Passive",
"solar",
"techniques",
"include",
"orienting",
"a",
"building",
"to",
"the",
"Sun",
",",
"selecting",
"materials",
"with",
"favorable",
"thermal",
"mass",
"or",
"light",
"dispersing",
"properties",
",",
"and",
"designing",
"spaces",
"that",
"naturally",
"circulate",
"air",
"."
],
"offsets": [
0,
3,
6,
9,
19,
26,
29,
39,
46,
50,
54,
67,
71,
79,
93,
96,
103,
111,
117,
120,
127,
133,
143,
146,
150,
154,
159,
167,
171,
182,
188,
195,
198,
206,
209,
214,
220,
225,
227,
234,
240,
251,
259,
263,
267,
270,
283,
290,
292,
305,
311,
317,
321,
327,
333,
341,
344,
352,
356,
362,
364,
372,
378,
389,
397,
407,
409,
418,
421,
425,
428,
430,
440,
450,
455,
465,
473,
478,
481,
487,
498,
508,
510,
514,
524,
531,
536,
546,
556,
559
]
} | 85e505b941cb463c83ab0ce257f78bc0 | What is an example of a passive solar technique? | {
"tokens": [
"What",
"is",
"an",
"example",
"of",
"a",
"passive",
"solar",
"technique",
"?"
],
"offsets": [
0,
5,
8,
11,
19,
22,
24,
32,
38,
47
]
} | {
"text": [
"orienting a building to the Sun"
],
"char_spans": [
{
"start": [
397
],
"end": [
427
]
}
],
"token_spans": [
{
"start": [
64
],
"end": [
69
]
}
]
} | [
"orienting a building to the Sun"
] |
SQuAD | Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles. | {
"tokens": [
"Development",
"of",
"a",
"solar",
"-",
"powered",
"car",
"has",
"been",
"an",
"engineering",
"goal",
"since",
"the",
"1980s",
".",
"The",
"World",
"Solar",
"Challenge",
"is",
"a",
"biannual",
"solar",
"-",
"powered",
"car",
"race",
",",
"where",
"teams",
"from",
"universities",
"and",
"enterprises",
"compete",
"over",
"3,021",
"kilometres",
"(",
"1,877",
"mi",
")",
"across",
"central",
"Australia",
"from",
"Darwin",
"to",
"Adelaide",
".",
"In",
"1987",
",",
"when",
"it",
"was",
"founded",
",",
"the",
"winner",
"'s",
"average",
"speed",
"was",
"67",
"kilometres",
"per",
"hour",
"(",
"42",
"mph",
")",
"and",
"by",
"2007",
"the",
"winner",
"'s",
"average",
"speed",
"had",
"improved",
"to",
"90.87",
"kilometres",
"per",
"hour",
"(",
"56.46",
"mph",
")",
".",
"The",
"North",
"American",
"Solar",
"Challenge",
"and",
"the",
"planned",
"South",
"African",
"Solar",
"Challenge",
"are",
"comparable",
"competitions",
"that",
"reflect",
"an",
"international",
"interest",
"in",
"the",
"engineering",
"and",
"development",
"of",
"solar",
"powered",
"vehicles",
"."
],
"offsets": [
0,
12,
15,
17,
22,
23,
31,
35,
39,
44,
47,
59,
64,
70,
74,
79,
81,
85,
91,
97,
107,
110,
112,
121,
126,
127,
135,
139,
143,
145,
151,
157,
162,
175,
179,
191,
199,
204,
210,
221,
222,
228,
230,
232,
239,
247,
257,
262,
269,
272,
280,
282,
285,
289,
291,
296,
299,
303,
310,
312,
316,
322,
325,
333,
339,
343,
346,
357,
361,
366,
367,
370,
373,
375,
379,
382,
387,
391,
397,
400,
408,
414,
418,
427,
430,
436,
447,
451,
456,
457,
463,
466,
467,
469,
473,
479,
488,
494,
504,
508,
512,
520,
526,
534,
540,
550,
554,
565,
578,
583,
591,
594,
608,
617,
620,
624,
636,
640,
652,
655,
661,
669,
677
]
} | 18539c42b2774411895ea5fb17db316f | What is the name of the solar powered car race held every two years? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"solar",
"powered",
"car",
"race",
"held",
"every",
"two",
"years",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
30,
38,
42,
47,
52,
58,
62,
67
]
} | {
"text": [
"The World Solar Challenge"
],
"char_spans": [
{
"start": [
81
],
"end": [
105
]
}
],
"token_spans": [
{
"start": [
16
],
"end": [
19
]
}
]
} | [
"The World Solar Challenge"
] |
SQuAD | Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles. | {
"tokens": [
"Development",
"of",
"a",
"solar",
"-",
"powered",
"car",
"has",
"been",
"an",
"engineering",
"goal",
"since",
"the",
"1980s",
".",
"The",
"World",
"Solar",
"Challenge",
"is",
"a",
"biannual",
"solar",
"-",
"powered",
"car",
"race",
",",
"where",
"teams",
"from",
"universities",
"and",
"enterprises",
"compete",
"over",
"3,021",
"kilometres",
"(",
"1,877",
"mi",
")",
"across",
"central",
"Australia",
"from",
"Darwin",
"to",
"Adelaide",
".",
"In",
"1987",
",",
"when",
"it",
"was",
"founded",
",",
"the",
"winner",
"'s",
"average",
"speed",
"was",
"67",
"kilometres",
"per",
"hour",
"(",
"42",
"mph",
")",
"and",
"by",
"2007",
"the",
"winner",
"'s",
"average",
"speed",
"had",
"improved",
"to",
"90.87",
"kilometres",
"per",
"hour",
"(",
"56.46",
"mph",
")",
".",
"The",
"North",
"American",
"Solar",
"Challenge",
"and",
"the",
"planned",
"South",
"African",
"Solar",
"Challenge",
"are",
"comparable",
"competitions",
"that",
"reflect",
"an",
"international",
"interest",
"in",
"the",
"engineering",
"and",
"development",
"of",
"solar",
"powered",
"vehicles",
"."
],
"offsets": [
0,
12,
15,
17,
22,
23,
31,
35,
39,
44,
47,
59,
64,
70,
74,
79,
81,
85,
91,
97,
107,
110,
112,
121,
126,
127,
135,
139,
143,
145,
151,
157,
162,
175,
179,
191,
199,
204,
210,
221,
222,
228,
230,
232,
239,
247,
257,
262,
269,
272,
280,
282,
285,
289,
291,
296,
299,
303,
310,
312,
316,
322,
325,
333,
339,
343,
346,
357,
361,
366,
367,
370,
373,
375,
379,
382,
387,
391,
397,
400,
408,
414,
418,
427,
430,
436,
447,
451,
456,
457,
463,
466,
467,
469,
473,
479,
488,
494,
504,
508,
512,
520,
526,
534,
540,
550,
554,
565,
578,
583,
591,
594,
608,
617,
620,
624,
636,
640,
652,
655,
661,
669,
677
]
} | a7c12ec774ff4702a2411f733d40a0cd | What was the winner of the World Solar Challenge's average speed in 2007 in km/h? | {
"tokens": [
"What",
"was",
"the",
"winner",
"of",
"the",
"World",
"Solar",
"Challenge",
"'s",
"average",
"speed",
"in",
"2007",
"in",
"km",
"/",
"h",
"?"
],
"offsets": [
0,
5,
9,
13,
20,
23,
27,
33,
39,
48,
51,
59,
65,
68,
73,
76,
78,
79,
80
]
} | {
"text": [
"90.87"
],
"char_spans": [
{
"start": [
430
],
"end": [
434
]
}
],
"token_spans": [
{
"start": [
84
],
"end": [
84
]
}
]
} | [
"90.87"
] |
SQuAD | Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles. | {
"tokens": [
"Development",
"of",
"a",
"solar",
"-",
"powered",
"car",
"has",
"been",
"an",
"engineering",
"goal",
"since",
"the",
"1980s",
".",
"The",
"World",
"Solar",
"Challenge",
"is",
"a",
"biannual",
"solar",
"-",
"powered",
"car",
"race",
",",
"where",
"teams",
"from",
"universities",
"and",
"enterprises",
"compete",
"over",
"3,021",
"kilometres",
"(",
"1,877",
"mi",
")",
"across",
"central",
"Australia",
"from",
"Darwin",
"to",
"Adelaide",
".",
"In",
"1987",
",",
"when",
"it",
"was",
"founded",
",",
"the",
"winner",
"'s",
"average",
"speed",
"was",
"67",
"kilometres",
"per",
"hour",
"(",
"42",
"mph",
")",
"and",
"by",
"2007",
"the",
"winner",
"'s",
"average",
"speed",
"had",
"improved",
"to",
"90.87",
"kilometres",
"per",
"hour",
"(",
"56.46",
"mph",
")",
".",
"The",
"North",
"American",
"Solar",
"Challenge",
"and",
"the",
"planned",
"South",
"African",
"Solar",
"Challenge",
"are",
"comparable",
"competitions",
"that",
"reflect",
"an",
"international",
"interest",
"in",
"the",
"engineering",
"and",
"development",
"of",
"solar",
"powered",
"vehicles",
"."
],
"offsets": [
0,
12,
15,
17,
22,
23,
31,
35,
39,
44,
47,
59,
64,
70,
74,
79,
81,
85,
91,
97,
107,
110,
112,
121,
126,
127,
135,
139,
143,
145,
151,
157,
162,
175,
179,
191,
199,
204,
210,
221,
222,
228,
230,
232,
239,
247,
257,
262,
269,
272,
280,
282,
285,
289,
291,
296,
299,
303,
310,
312,
316,
322,
325,
333,
339,
343,
346,
357,
361,
366,
367,
370,
373,
375,
379,
382,
387,
391,
397,
400,
408,
414,
418,
427,
430,
436,
447,
451,
456,
457,
463,
466,
467,
469,
473,
479,
488,
494,
504,
508,
512,
520,
526,
534,
540,
550,
554,
565,
578,
583,
591,
594,
608,
617,
620,
624,
636,
640,
652,
655,
661,
669,
677
]
} | cc4918f0ae4d4622890fcf6b4d31e025 | What is The World Solar Challenge? | {
"tokens": [
"What",
"is",
"The",
"World",
"Solar",
"Challenge",
"?"
],
"offsets": [
0,
5,
8,
12,
18,
24,
33
]
} | {
"text": [
"a biannual solar-powered car race"
],
"char_spans": [
{
"start": [
110
],
"end": [
142
]
}
],
"token_spans": [
{
"start": [
21
],
"end": [
27
]
}
]
} | [
"a biannual solar-powered car race"
] |
SQuAD | Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles. | {
"tokens": [
"Development",
"of",
"a",
"solar",
"-",
"powered",
"car",
"has",
"been",
"an",
"engineering",
"goal",
"since",
"the",
"1980s",
".",
"The",
"World",
"Solar",
"Challenge",
"is",
"a",
"biannual",
"solar",
"-",
"powered",
"car",
"race",
",",
"where",
"teams",
"from",
"universities",
"and",
"enterprises",
"compete",
"over",
"3,021",
"kilometres",
"(",
"1,877",
"mi",
")",
"across",
"central",
"Australia",
"from",
"Darwin",
"to",
"Adelaide",
".",
"In",
"1987",
",",
"when",
"it",
"was",
"founded",
",",
"the",
"winner",
"'s",
"average",
"speed",
"was",
"67",
"kilometres",
"per",
"hour",
"(",
"42",
"mph",
")",
"and",
"by",
"2007",
"the",
"winner",
"'s",
"average",
"speed",
"had",
"improved",
"to",
"90.87",
"kilometres",
"per",
"hour",
"(",
"56.46",
"mph",
")",
".",
"The",
"North",
"American",
"Solar",
"Challenge",
"and",
"the",
"planned",
"South",
"African",
"Solar",
"Challenge",
"are",
"comparable",
"competitions",
"that",
"reflect",
"an",
"international",
"interest",
"in",
"the",
"engineering",
"and",
"development",
"of",
"solar",
"powered",
"vehicles",
"."
],
"offsets": [
0,
12,
15,
17,
22,
23,
31,
35,
39,
44,
47,
59,
64,
70,
74,
79,
81,
85,
91,
97,
107,
110,
112,
121,
126,
127,
135,
139,
143,
145,
151,
157,
162,
175,
179,
191,
199,
204,
210,
221,
222,
228,
230,
232,
239,
247,
257,
262,
269,
272,
280,
282,
285,
289,
291,
296,
299,
303,
310,
312,
316,
322,
325,
333,
339,
343,
346,
357,
361,
366,
367,
370,
373,
375,
379,
382,
387,
391,
397,
400,
408,
414,
418,
427,
430,
436,
447,
451,
456,
457,
463,
466,
467,
469,
473,
479,
488,
494,
504,
508,
512,
520,
526,
534,
540,
550,
554,
565,
578,
583,
591,
594,
608,
617,
620,
624,
636,
640,
652,
655,
661,
669,
677
]
} | db766a52e9fc41c6b027aae95abf67e2 | When was The World Solar Challenge started? | {
"tokens": [
"When",
"was",
"The",
"World",
"Solar",
"Challenge",
"started",
"?"
],
"offsets": [
0,
5,
9,
13,
19,
25,
35,
42
]
} | {
"text": [
"1987"
],
"char_spans": [
{
"start": [
285
],
"end": [
288
]
}
],
"token_spans": [
{
"start": [
52
],
"end": [
52
]
}
]
} | [
"1987"
] |
SQuAD | Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles. | {
"tokens": [
"Development",
"of",
"a",
"solar",
"-",
"powered",
"car",
"has",
"been",
"an",
"engineering",
"goal",
"since",
"the",
"1980s",
".",
"The",
"World",
"Solar",
"Challenge",
"is",
"a",
"biannual",
"solar",
"-",
"powered",
"car",
"race",
",",
"where",
"teams",
"from",
"universities",
"and",
"enterprises",
"compete",
"over",
"3,021",
"kilometres",
"(",
"1,877",
"mi",
")",
"across",
"central",
"Australia",
"from",
"Darwin",
"to",
"Adelaide",
".",
"In",
"1987",
",",
"when",
"it",
"was",
"founded",
",",
"the",
"winner",
"'s",
"average",
"speed",
"was",
"67",
"kilometres",
"per",
"hour",
"(",
"42",
"mph",
")",
"and",
"by",
"2007",
"the",
"winner",
"'s",
"average",
"speed",
"had",
"improved",
"to",
"90.87",
"kilometres",
"per",
"hour",
"(",
"56.46",
"mph",
")",
".",
"The",
"North",
"American",
"Solar",
"Challenge",
"and",
"the",
"planned",
"South",
"African",
"Solar",
"Challenge",
"are",
"comparable",
"competitions",
"that",
"reflect",
"an",
"international",
"interest",
"in",
"the",
"engineering",
"and",
"development",
"of",
"solar",
"powered",
"vehicles",
"."
],
"offsets": [
0,
12,
15,
17,
22,
23,
31,
35,
39,
44,
47,
59,
64,
70,
74,
79,
81,
85,
91,
97,
107,
110,
112,
121,
126,
127,
135,
139,
143,
145,
151,
157,
162,
175,
179,
191,
199,
204,
210,
221,
222,
228,
230,
232,
239,
247,
257,
262,
269,
272,
280,
282,
285,
289,
291,
296,
299,
303,
310,
312,
316,
322,
325,
333,
339,
343,
346,
357,
361,
366,
367,
370,
373,
375,
379,
382,
387,
391,
397,
400,
408,
414,
418,
427,
430,
436,
447,
451,
456,
457,
463,
466,
467,
469,
473,
479,
488,
494,
504,
508,
512,
520,
526,
534,
540,
550,
554,
565,
578,
583,
591,
594,
608,
617,
620,
624,
636,
640,
652,
655,
661,
669,
677
]
} | 9f50646ab82a4ec19027b954d694b1ad | What was the average speed of a winning solar powered car in 1987? | {
"tokens": [
"What",
"was",
"the",
"average",
"speed",
"of",
"a",
"winning",
"solar",
"powered",
"car",
"in",
"1987",
"?"
],
"offsets": [
0,
5,
9,
13,
21,
27,
30,
32,
40,
46,
54,
58,
61,
65
]
} | {
"text": [
"67 kilometres per hour (42 mph)"
],
"char_spans": [
{
"start": [
343
],
"end": [
373
]
}
],
"token_spans": [
{
"start": [
65
],
"end": [
72
]
}
]
} | [
"67 kilometres per hour (42 mph)"
] |
SQuAD | Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles. | {
"tokens": [
"Development",
"of",
"a",
"solar",
"-",
"powered",
"car",
"has",
"been",
"an",
"engineering",
"goal",
"since",
"the",
"1980s",
".",
"The",
"World",
"Solar",
"Challenge",
"is",
"a",
"biannual",
"solar",
"-",
"powered",
"car",
"race",
",",
"where",
"teams",
"from",
"universities",
"and",
"enterprises",
"compete",
"over",
"3,021",
"kilometres",
"(",
"1,877",
"mi",
")",
"across",
"central",
"Australia",
"from",
"Darwin",
"to",
"Adelaide",
".",
"In",
"1987",
",",
"when",
"it",
"was",
"founded",
",",
"the",
"winner",
"'s",
"average",
"speed",
"was",
"67",
"kilometres",
"per",
"hour",
"(",
"42",
"mph",
")",
"and",
"by",
"2007",
"the",
"winner",
"'s",
"average",
"speed",
"had",
"improved",
"to",
"90.87",
"kilometres",
"per",
"hour",
"(",
"56.46",
"mph",
")",
".",
"The",
"North",
"American",
"Solar",
"Challenge",
"and",
"the",
"planned",
"South",
"African",
"Solar",
"Challenge",
"are",
"comparable",
"competitions",
"that",
"reflect",
"an",
"international",
"interest",
"in",
"the",
"engineering",
"and",
"development",
"of",
"solar",
"powered",
"vehicles",
"."
],
"offsets": [
0,
12,
15,
17,
22,
23,
31,
35,
39,
44,
47,
59,
64,
70,
74,
79,
81,
85,
91,
97,
107,
110,
112,
121,
126,
127,
135,
139,
143,
145,
151,
157,
162,
175,
179,
191,
199,
204,
210,
221,
222,
228,
230,
232,
239,
247,
257,
262,
269,
272,
280,
282,
285,
289,
291,
296,
299,
303,
310,
312,
316,
322,
325,
333,
339,
343,
346,
357,
361,
366,
367,
370,
373,
375,
379,
382,
387,
391,
397,
400,
408,
414,
418,
427,
430,
436,
447,
451,
456,
457,
463,
466,
467,
469,
473,
479,
488,
494,
504,
508,
512,
520,
526,
534,
540,
550,
554,
565,
578,
583,
591,
594,
608,
617,
620,
624,
636,
640,
652,
655,
661,
669,
677
]
} | dcbe9f3199c14a8ab3ab36b826a9824b | What was the average speed of a winning solar powered car by 2007? | {
"tokens": [
"What",
"was",
"the",
"average",
"speed",
"of",
"a",
"winning",
"solar",
"powered",
"car",
"by",
"2007",
"?"
],
"offsets": [
0,
5,
9,
13,
21,
27,
30,
32,
40,
46,
54,
58,
61,
65
]
} | {
"text": [
"90.87 kilometres per hour (56.46 mph)"
],
"char_spans": [
{
"start": [
430
],
"end": [
466
]
}
],
"token_spans": [
{
"start": [
84
],
"end": [
91
]
}
]
} | [
"90.87 kilometres per hour (56.46 mph)"
] |
SQuAD | Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles. | {
"tokens": [
"Development",
"of",
"a",
"solar",
"-",
"powered",
"car",
"has",
"been",
"an",
"engineering",
"goal",
"since",
"the",
"1980s",
".",
"The",
"World",
"Solar",
"Challenge",
"is",
"a",
"biannual",
"solar",
"-",
"powered",
"car",
"race",
",",
"where",
"teams",
"from",
"universities",
"and",
"enterprises",
"compete",
"over",
"3,021",
"kilometres",
"(",
"1,877",
"mi",
")",
"across",
"central",
"Australia",
"from",
"Darwin",
"to",
"Adelaide",
".",
"In",
"1987",
",",
"when",
"it",
"was",
"founded",
",",
"the",
"winner",
"'s",
"average",
"speed",
"was",
"67",
"kilometres",
"per",
"hour",
"(",
"42",
"mph",
")",
"and",
"by",
"2007",
"the",
"winner",
"'s",
"average",
"speed",
"had",
"improved",
"to",
"90.87",
"kilometres",
"per",
"hour",
"(",
"56.46",
"mph",
")",
".",
"The",
"North",
"American",
"Solar",
"Challenge",
"and",
"the",
"planned",
"South",
"African",
"Solar",
"Challenge",
"are",
"comparable",
"competitions",
"that",
"reflect",
"an",
"international",
"interest",
"in",
"the",
"engineering",
"and",
"development",
"of",
"solar",
"powered",
"vehicles",
"."
],
"offsets": [
0,
12,
15,
17,
22,
23,
31,
35,
39,
44,
47,
59,
64,
70,
74,
79,
81,
85,
91,
97,
107,
110,
112,
121,
126,
127,
135,
139,
143,
145,
151,
157,
162,
175,
179,
191,
199,
204,
210,
221,
222,
228,
230,
232,
239,
247,
257,
262,
269,
272,
280,
282,
285,
289,
291,
296,
299,
303,
310,
312,
316,
322,
325,
333,
339,
343,
346,
357,
361,
366,
367,
370,
373,
375,
379,
382,
387,
391,
397,
400,
408,
414,
418,
427,
430,
436,
447,
451,
456,
457,
463,
466,
467,
469,
473,
479,
488,
494,
504,
508,
512,
520,
526,
534,
540,
550,
554,
565,
578,
583,
591,
594,
608,
617,
620,
624,
636,
640,
652,
655,
661,
669,
677
]
} | d79b539781624de68a3fa331c99c9540 | What are some other similar car races that use solar powered vehicles? | {
"tokens": [
"What",
"are",
"some",
"other",
"similar",
"car",
"races",
"that",
"use",
"solar",
"powered",
"vehicles",
"?"
],
"offsets": [
0,
5,
9,
14,
20,
28,
32,
38,
43,
47,
53,
61,
69
]
} | {
"text": [
"The North American Solar Challenge and the planned South African Solar Challenge"
],
"char_spans": [
{
"start": [
469
],
"end": [
548
]
}
],
"token_spans": [
{
"start": [
93
],
"end": [
104
]
}
]
} | [
"The North American Solar Challenge and the planned South African Solar Challenge"
] |
SQuAD | Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings. | {
"tokens": [
"Urban",
"heat",
"islands",
"(",
"UHI",
")",
"are",
"metropolitan",
"areas",
"with",
"higher",
"temperatures",
"than",
"that",
"of",
"the",
"surrounding",
"environment",
".",
"The",
"higher",
"temperatures",
"are",
"a",
"result",
"of",
"increased",
"absorption",
"of",
"the",
"Solar",
"light",
"by",
"urban",
"materials",
"such",
"as",
"asphalt",
"and",
"concrete",
",",
"which",
"have",
"lower",
"albedos",
"and",
"higher",
"heat",
"capacities",
"than",
"those",
"in",
"the",
"natural",
"environment",
".",
"A",
"straightforward",
"method",
"of",
"counteracting",
"the",
"UHI",
"effect",
"is",
"to",
"paint",
"buildings",
"and",
"roads",
"white",
"and",
"plant",
"trees",
".",
"Using",
"these",
"methods",
",",
"a",
"hypothetical",
"\"",
"cool",
"communities",
"\"",
"program",
"in",
"Los",
"Angeles",
"has",
"projected",
"that",
"urban",
"temperatures",
"could",
"be",
"reduced",
"by",
"approximately",
"3",
"°",
"C",
"at",
"an",
"estimated",
"cost",
"of",
"US$",
"1",
"billion",
",",
"giving",
"estimated",
"total",
"annual",
"benefits",
"of",
"US$",
"530",
"million",
"from",
"reduced",
"air",
"-",
"conditioning",
"costs",
"and",
"healthcare",
"savings",
"."
],
"offsets": [
0,
6,
11,
19,
20,
23,
25,
29,
42,
48,
53,
60,
73,
78,
83,
86,
90,
102,
113,
115,
119,
126,
139,
143,
145,
152,
155,
165,
176,
179,
183,
189,
195,
198,
204,
214,
219,
222,
230,
234,
242,
244,
250,
255,
261,
269,
273,
280,
285,
296,
301,
307,
310,
314,
322,
333,
335,
337,
353,
360,
363,
377,
381,
385,
392,
395,
398,
404,
414,
418,
424,
430,
434,
440,
445,
447,
453,
459,
466,
468,
470,
483,
484,
489,
500,
502,
510,
513,
517,
525,
529,
539,
544,
550,
563,
569,
572,
580,
583,
597,
599,
600,
602,
605,
608,
618,
623,
626,
629,
631,
638,
640,
647,
657,
663,
670,
679,
682,
685,
689,
697,
702,
710,
713,
714,
727,
733,
737,
748,
755
]
} | ddb0307261754ab381cfd64a01794b27 | UHI is an abbreviation of what? | {
"tokens": [
"UHI",
"is",
"an",
"abbreviation",
"of",
"what",
"?"
],
"offsets": [
0,
4,
7,
10,
23,
26,
30
]
} | {
"text": [
"Urban heat islands"
],
"char_spans": [
{
"start": [
0
],
"end": [
17
]
}
],
"token_spans": [
{
"start": [
0
],
"end": [
2
]
}
]
} | [
"Urban heat islands"
] |
SQuAD | Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings. | {
"tokens": [
"Urban",
"heat",
"islands",
"(",
"UHI",
")",
"are",
"metropolitan",
"areas",
"with",
"higher",
"temperatures",
"than",
"that",
"of",
"the",
"surrounding",
"environment",
".",
"The",
"higher",
"temperatures",
"are",
"a",
"result",
"of",
"increased",
"absorption",
"of",
"the",
"Solar",
"light",
"by",
"urban",
"materials",
"such",
"as",
"asphalt",
"and",
"concrete",
",",
"which",
"have",
"lower",
"albedos",
"and",
"higher",
"heat",
"capacities",
"than",
"those",
"in",
"the",
"natural",
"environment",
".",
"A",
"straightforward",
"method",
"of",
"counteracting",
"the",
"UHI",
"effect",
"is",
"to",
"paint",
"buildings",
"and",
"roads",
"white",
"and",
"plant",
"trees",
".",
"Using",
"these",
"methods",
",",
"a",
"hypothetical",
"\"",
"cool",
"communities",
"\"",
"program",
"in",
"Los",
"Angeles",
"has",
"projected",
"that",
"urban",
"temperatures",
"could",
"be",
"reduced",
"by",
"approximately",
"3",
"°",
"C",
"at",
"an",
"estimated",
"cost",
"of",
"US$",
"1",
"billion",
",",
"giving",
"estimated",
"total",
"annual",
"benefits",
"of",
"US$",
"530",
"million",
"from",
"reduced",
"air",
"-",
"conditioning",
"costs",
"and",
"healthcare",
"savings",
"."
],
"offsets": [
0,
6,
11,
19,
20,
23,
25,
29,
42,
48,
53,
60,
73,
78,
83,
86,
90,
102,
113,
115,
119,
126,
139,
143,
145,
152,
155,
165,
176,
179,
183,
189,
195,
198,
204,
214,
219,
222,
230,
234,
242,
244,
250,
255,
261,
269,
273,
280,
285,
296,
301,
307,
310,
314,
322,
333,
335,
337,
353,
360,
363,
377,
381,
385,
392,
395,
398,
404,
414,
418,
424,
430,
434,
440,
445,
447,
453,
459,
466,
468,
470,
483,
484,
489,
500,
502,
510,
513,
517,
525,
529,
539,
544,
550,
563,
569,
572,
580,
583,
597,
599,
600,
602,
605,
608,
618,
623,
626,
629,
631,
638,
640,
647,
657,
663,
670,
679,
682,
685,
689,
697,
702,
710,
713,
714,
727,
733,
737,
748,
755
]
} | 37a6e17630054ba4b852c78b9c5a53fa | A program in Los Angeles believes that with $1 billion, city temperatures could be reduced by approximately how many degrees in Celsius? | {
"tokens": [
"A",
"program",
"in",
"Los",
"Angeles",
"believes",
"that",
"with",
"$",
"1",
"billion",
",",
"city",
"temperatures",
"could",
"be",
"reduced",
"by",
"approximately",
"how",
"many",
"degrees",
"in",
"Celsius",
"?"
],
"offsets": [
0,
2,
10,
13,
17,
25,
34,
39,
44,
45,
47,
54,
56,
61,
74,
80,
83,
91,
94,
108,
112,
117,
125,
128,
135
]
} | {
"text": [
"3"
],
"char_spans": [
{
"start": [
597
],
"end": [
597
]
}
],
"token_spans": [
{
"start": [
99
],
"end": [
99
]
}
]
} | [
"3"
] |
SQuAD | Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings. | {
"tokens": [
"Urban",
"heat",
"islands",
"(",
"UHI",
")",
"are",
"metropolitan",
"areas",
"with",
"higher",
"temperatures",
"than",
"that",
"of",
"the",
"surrounding",
"environment",
".",
"The",
"higher",
"temperatures",
"are",
"a",
"result",
"of",
"increased",
"absorption",
"of",
"the",
"Solar",
"light",
"by",
"urban",
"materials",
"such",
"as",
"asphalt",
"and",
"concrete",
",",
"which",
"have",
"lower",
"albedos",
"and",
"higher",
"heat",
"capacities",
"than",
"those",
"in",
"the",
"natural",
"environment",
".",
"A",
"straightforward",
"method",
"of",
"counteracting",
"the",
"UHI",
"effect",
"is",
"to",
"paint",
"buildings",
"and",
"roads",
"white",
"and",
"plant",
"trees",
".",
"Using",
"these",
"methods",
",",
"a",
"hypothetical",
"\"",
"cool",
"communities",
"\"",
"program",
"in",
"Los",
"Angeles",
"has",
"projected",
"that",
"urban",
"temperatures",
"could",
"be",
"reduced",
"by",
"approximately",
"3",
"°",
"C",
"at",
"an",
"estimated",
"cost",
"of",
"US$",
"1",
"billion",
",",
"giving",
"estimated",
"total",
"annual",
"benefits",
"of",
"US$",
"530",
"million",
"from",
"reduced",
"air",
"-",
"conditioning",
"costs",
"and",
"healthcare",
"savings",
"."
],
"offsets": [
0,
6,
11,
19,
20,
23,
25,
29,
42,
48,
53,
60,
73,
78,
83,
86,
90,
102,
113,
115,
119,
126,
139,
143,
145,
152,
155,
165,
176,
179,
183,
189,
195,
198,
204,
214,
219,
222,
230,
234,
242,
244,
250,
255,
261,
269,
273,
280,
285,
296,
301,
307,
310,
314,
322,
333,
335,
337,
353,
360,
363,
377,
381,
385,
392,
395,
398,
404,
414,
418,
424,
430,
434,
440,
445,
447,
453,
459,
466,
468,
470,
483,
484,
489,
500,
502,
510,
513,
517,
525,
529,
539,
544,
550,
563,
569,
572,
580,
583,
597,
599,
600,
602,
605,
608,
618,
623,
626,
629,
631,
638,
640,
647,
657,
663,
670,
679,
682,
685,
689,
697,
702,
710,
713,
714,
727,
733,
737,
748,
755
]
} | 7e5d2fe0b1264a9c9f83b99d7be54872 | What are the metropolitan areas with higher temperatures than the surrounding areas called? | {
"tokens": [
"What",
"are",
"the",
"metropolitan",
"areas",
"with",
"higher",
"temperatures",
"than",
"the",
"surrounding",
"areas",
"called",
"?"
],
"offsets": [
0,
5,
9,
13,
26,
32,
37,
44,
57,
62,
66,
78,
84,
90
]
} | {
"text": [
"Urban heat islands"
],
"char_spans": [
{
"start": [
0
],
"end": [
17
]
}
],
"token_spans": [
{
"start": [
0
],
"end": [
2
]
}
]
} | [
"Urban heat islands"
] |
SQuAD | Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings. | {
"tokens": [
"Urban",
"heat",
"islands",
"(",
"UHI",
")",
"are",
"metropolitan",
"areas",
"with",
"higher",
"temperatures",
"than",
"that",
"of",
"the",
"surrounding",
"environment",
".",
"The",
"higher",
"temperatures",
"are",
"a",
"result",
"of",
"increased",
"absorption",
"of",
"the",
"Solar",
"light",
"by",
"urban",
"materials",
"such",
"as",
"asphalt",
"and",
"concrete",
",",
"which",
"have",
"lower",
"albedos",
"and",
"higher",
"heat",
"capacities",
"than",
"those",
"in",
"the",
"natural",
"environment",
".",
"A",
"straightforward",
"method",
"of",
"counteracting",
"the",
"UHI",
"effect",
"is",
"to",
"paint",
"buildings",
"and",
"roads",
"white",
"and",
"plant",
"trees",
".",
"Using",
"these",
"methods",
",",
"a",
"hypothetical",
"\"",
"cool",
"communities",
"\"",
"program",
"in",
"Los",
"Angeles",
"has",
"projected",
"that",
"urban",
"temperatures",
"could",
"be",
"reduced",
"by",
"approximately",
"3",
"°",
"C",
"at",
"an",
"estimated",
"cost",
"of",
"US$",
"1",
"billion",
",",
"giving",
"estimated",
"total",
"annual",
"benefits",
"of",
"US$",
"530",
"million",
"from",
"reduced",
"air",
"-",
"conditioning",
"costs",
"and",
"healthcare",
"savings",
"."
],
"offsets": [
0,
6,
11,
19,
20,
23,
25,
29,
42,
48,
53,
60,
73,
78,
83,
86,
90,
102,
113,
115,
119,
126,
139,
143,
145,
152,
155,
165,
176,
179,
183,
189,
195,
198,
204,
214,
219,
222,
230,
234,
242,
244,
250,
255,
261,
269,
273,
280,
285,
296,
301,
307,
310,
314,
322,
333,
335,
337,
353,
360,
363,
377,
381,
385,
392,
395,
398,
404,
414,
418,
424,
430,
434,
440,
445,
447,
453,
459,
466,
468,
470,
483,
484,
489,
500,
502,
510,
513,
517,
525,
529,
539,
544,
550,
563,
569,
572,
580,
583,
597,
599,
600,
602,
605,
608,
618,
623,
626,
629,
631,
638,
640,
647,
657,
663,
670,
679,
682,
685,
689,
697,
702,
710,
713,
714,
727,
733,
737,
748,
755
]
} | e917983e19704d69b258d10465ce2989 | What materials absorb sunlight and create higher temperatures than natural materials? | {
"tokens": [
"What",
"materials",
"absorb",
"sunlight",
"and",
"create",
"higher",
"temperatures",
"than",
"natural",
"materials",
"?"
],
"offsets": [
0,
5,
15,
22,
31,
35,
42,
49,
62,
67,
75,
84
]
} | {
"text": [
"asphalt and concrete"
],
"char_spans": [
{
"start": [
222
],
"end": [
241
]
}
],
"token_spans": [
{
"start": [
37
],
"end": [
39
]
}
]
} | [
"asphalt and concrete"
] |
SQuAD | Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings. | {
"tokens": [
"Urban",
"heat",
"islands",
"(",
"UHI",
")",
"are",
"metropolitan",
"areas",
"with",
"higher",
"temperatures",
"than",
"that",
"of",
"the",
"surrounding",
"environment",
".",
"The",
"higher",
"temperatures",
"are",
"a",
"result",
"of",
"increased",
"absorption",
"of",
"the",
"Solar",
"light",
"by",
"urban",
"materials",
"such",
"as",
"asphalt",
"and",
"concrete",
",",
"which",
"have",
"lower",
"albedos",
"and",
"higher",
"heat",
"capacities",
"than",
"those",
"in",
"the",
"natural",
"environment",
".",
"A",
"straightforward",
"method",
"of",
"counteracting",
"the",
"UHI",
"effect",
"is",
"to",
"paint",
"buildings",
"and",
"roads",
"white",
"and",
"plant",
"trees",
".",
"Using",
"these",
"methods",
",",
"a",
"hypothetical",
"\"",
"cool",
"communities",
"\"",
"program",
"in",
"Los",
"Angeles",
"has",
"projected",
"that",
"urban",
"temperatures",
"could",
"be",
"reduced",
"by",
"approximately",
"3",
"°",
"C",
"at",
"an",
"estimated",
"cost",
"of",
"US$",
"1",
"billion",
",",
"giving",
"estimated",
"total",
"annual",
"benefits",
"of",
"US$",
"530",
"million",
"from",
"reduced",
"air",
"-",
"conditioning",
"costs",
"and",
"healthcare",
"savings",
"."
],
"offsets": [
0,
6,
11,
19,
20,
23,
25,
29,
42,
48,
53,
60,
73,
78,
83,
86,
90,
102,
113,
115,
119,
126,
139,
143,
145,
152,
155,
165,
176,
179,
183,
189,
195,
198,
204,
214,
219,
222,
230,
234,
242,
244,
250,
255,
261,
269,
273,
280,
285,
296,
301,
307,
310,
314,
322,
333,
335,
337,
353,
360,
363,
377,
381,
385,
392,
395,
398,
404,
414,
418,
424,
430,
434,
440,
445,
447,
453,
459,
466,
468,
470,
483,
484,
489,
500,
502,
510,
513,
517,
525,
529,
539,
544,
550,
563,
569,
572,
580,
583,
597,
599,
600,
602,
605,
608,
618,
623,
626,
629,
631,
638,
640,
647,
657,
663,
670,
679,
682,
685,
689,
697,
702,
710,
713,
714,
727,
733,
737,
748,
755
]
} | 50a97d815d5d42bd89c01d5225174024 | What is a way to reduce the high temperatures created in urban heat islands? | {
"tokens": [
"What",
"is",
"a",
"way",
"to",
"reduce",
"the",
"high",
"temperatures",
"created",
"in",
"urban",
"heat",
"islands",
"?"
],
"offsets": [
0,
5,
8,
10,
14,
17,
24,
28,
33,
46,
54,
57,
63,
68,
75
]
} | {
"text": [
"paint buildings and roads white and plant trees"
],
"char_spans": [
{
"start": [
398
],
"end": [
444
]
}
],
"token_spans": [
{
"start": [
66
],
"end": [
73
]
}
]
} | [
"paint buildings and roads white and plant trees"
] |
SQuAD | The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE). | {
"tokens": [
"The",
"1973",
"oil",
"embargo",
"and",
"1979",
"energy",
"crisis",
"caused",
"a",
"reorganization",
"of",
"energy",
"policies",
"around",
"the",
"world",
"and",
"brought",
"renewed",
"attention",
"to",
"developing",
"solar",
"technologies",
".",
"Deployment",
"strategies",
"focused",
"on",
"incentive",
"programs",
"such",
"as",
"the",
"Federal",
"Photovoltaic",
"Utilization",
"Program",
"in",
"the",
"US",
"and",
"the",
"Sunshine",
"Program",
"in",
"Japan",
".",
"Other",
"efforts",
"included",
"the",
"formation",
"of",
"research",
"facilities",
"in",
"the",
"US",
"(",
"SERI",
",",
"now",
"NREL",
")",
",",
"Japan",
"(",
"NEDO",
")",
",",
"and",
"Germany",
"(",
"Fraunhofer",
"Institute",
"for",
"Solar",
"Energy",
"Systems",
"ISE",
")",
"."
],
"offsets": [
0,
4,
9,
13,
21,
25,
30,
37,
44,
51,
53,
68,
71,
78,
87,
94,
98,
104,
108,
116,
124,
134,
137,
148,
154,
166,
168,
179,
190,
198,
201,
211,
220,
225,
228,
232,
240,
253,
265,
273,
276,
280,
283,
287,
291,
300,
308,
311,
316,
318,
324,
332,
341,
345,
355,
358,
367,
378,
381,
385,
388,
389,
393,
395,
399,
403,
404,
406,
412,
413,
417,
418,
420,
424,
432,
433,
444,
454,
458,
464,
471,
479,
482,
483
]
} | 6f2d60621b9444a4a1992f047126af26 | The oil embargo in what year was a contributing factor to the reorganization of energy policies? | {
"tokens": [
"The",
"oil",
"embargo",
"in",
"what",
"year",
"was",
"a",
"contributing",
"factor",
"to",
"the",
"reorganization",
"of",
"energy",
"policies",
"?"
],
"offsets": [
0,
4,
8,
16,
19,
24,
29,
33,
35,
48,
55,
58,
62,
77,
80,
87,
95
]
} | {
"text": [
"1973"
],
"char_spans": [
{
"start": [
4
],
"end": [
7
]
}
],
"token_spans": [
{
"start": [
1
],
"end": [
1
]
}
]
} | [
"1973"
] |
SQuAD | The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE). | {
"tokens": [
"The",
"1973",
"oil",
"embargo",
"and",
"1979",
"energy",
"crisis",
"caused",
"a",
"reorganization",
"of",
"energy",
"policies",
"around",
"the",
"world",
"and",
"brought",
"renewed",
"attention",
"to",
"developing",
"solar",
"technologies",
".",
"Deployment",
"strategies",
"focused",
"on",
"incentive",
"programs",
"such",
"as",
"the",
"Federal",
"Photovoltaic",
"Utilization",
"Program",
"in",
"the",
"US",
"and",
"the",
"Sunshine",
"Program",
"in",
"Japan",
".",
"Other",
"efforts",
"included",
"the",
"formation",
"of",
"research",
"facilities",
"in",
"the",
"US",
"(",
"SERI",
",",
"now",
"NREL",
")",
",",
"Japan",
"(",
"NEDO",
")",
",",
"and",
"Germany",
"(",
"Fraunhofer",
"Institute",
"for",
"Solar",
"Energy",
"Systems",
"ISE",
")",
"."
],
"offsets": [
0,
4,
9,
13,
21,
25,
30,
37,
44,
51,
53,
68,
71,
78,
87,
94,
98,
104,
108,
116,
124,
134,
137,
148,
154,
166,
168,
179,
190,
198,
201,
211,
220,
225,
228,
232,
240,
253,
265,
273,
276,
280,
283,
287,
291,
300,
308,
311,
316,
318,
324,
332,
341,
345,
355,
358,
367,
378,
381,
385,
388,
389,
393,
395,
399,
403,
404,
406,
412,
413,
417,
418,
420,
424,
432,
433,
444,
454,
458,
464,
471,
479,
482,
483
]
} | dd43b35dc5f748c3b423bbfa352198c1 | What brought attention to solar technologies in the 1970s? | {
"tokens": [
"What",
"brought",
"attention",
"to",
"solar",
"technologies",
"in",
"the",
"1970s",
"?"
],
"offsets": [
0,
5,
13,
23,
26,
32,
45,
48,
52,
57
]
} | {
"text": [
"The 1973 oil embargo and 1979 energy crisis"
],
"char_spans": [
{
"start": [
4
],
"end": [
42
]
}
],
"token_spans": [
{
"start": [
1
],
"end": [
7
]
}
]
} | [
"The 1973 oil embargo and 1979 energy crisis"
] |
SQuAD | The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE). | {
"tokens": [
"The",
"1973",
"oil",
"embargo",
"and",
"1979",
"energy",
"crisis",
"caused",
"a",
"reorganization",
"of",
"energy",
"policies",
"around",
"the",
"world",
"and",
"brought",
"renewed",
"attention",
"to",
"developing",
"solar",
"technologies",
".",
"Deployment",
"strategies",
"focused",
"on",
"incentive",
"programs",
"such",
"as",
"the",
"Federal",
"Photovoltaic",
"Utilization",
"Program",
"in",
"the",
"US",
"and",
"the",
"Sunshine",
"Program",
"in",
"Japan",
".",
"Other",
"efforts",
"included",
"the",
"formation",
"of",
"research",
"facilities",
"in",
"the",
"US",
"(",
"SERI",
",",
"now",
"NREL",
")",
",",
"Japan",
"(",
"NEDO",
")",
",",
"and",
"Germany",
"(",
"Fraunhofer",
"Institute",
"for",
"Solar",
"Energy",
"Systems",
"ISE",
")",
"."
],
"offsets": [
0,
4,
9,
13,
21,
25,
30,
37,
44,
51,
53,
68,
71,
78,
87,
94,
98,
104,
108,
116,
124,
134,
137,
148,
154,
166,
168,
179,
190,
198,
201,
211,
220,
225,
228,
232,
240,
253,
265,
273,
276,
280,
283,
287,
291,
300,
308,
311,
316,
318,
324,
332,
341,
345,
355,
358,
367,
378,
381,
385,
388,
389,
393,
395,
399,
403,
404,
406,
412,
413,
417,
418,
420,
424,
432,
433,
444,
454,
458,
464,
471,
479,
482,
483
]
} | 19453a6e47c348fea27bc04faab18352 | What are the names of some of the incentive programs used to promote solar technology? | {
"tokens": [
"What",
"are",
"the",
"names",
"of",
"some",
"of",
"the",
"incentive",
"programs",
"used",
"to",
"promote",
"solar",
"technology",
"?"
],
"offsets": [
0,
5,
9,
13,
19,
22,
27,
30,
34,
44,
53,
58,
61,
69,
75,
85
]
} | {
"text": [
"the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan"
],
"char_spans": [
{
"start": [
228
],
"end": [
315
]
}
],
"token_spans": [
{
"start": [
34
],
"end": [
47
]
}
]
} | [
"the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan"
] |
SQuAD | The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE). | {
"tokens": [
"The",
"1973",
"oil",
"embargo",
"and",
"1979",
"energy",
"crisis",
"caused",
"a",
"reorganization",
"of",
"energy",
"policies",
"around",
"the",
"world",
"and",
"brought",
"renewed",
"attention",
"to",
"developing",
"solar",
"technologies",
".",
"Deployment",
"strategies",
"focused",
"on",
"incentive",
"programs",
"such",
"as",
"the",
"Federal",
"Photovoltaic",
"Utilization",
"Program",
"in",
"the",
"US",
"and",
"the",
"Sunshine",
"Program",
"in",
"Japan",
".",
"Other",
"efforts",
"included",
"the",
"formation",
"of",
"research",
"facilities",
"in",
"the",
"US",
"(",
"SERI",
",",
"now",
"NREL",
")",
",",
"Japan",
"(",
"NEDO",
")",
",",
"and",
"Germany",
"(",
"Fraunhofer",
"Institute",
"for",
"Solar",
"Energy",
"Systems",
"ISE",
")",
"."
],
"offsets": [
0,
4,
9,
13,
21,
25,
30,
37,
44,
51,
53,
68,
71,
78,
87,
94,
98,
104,
108,
116,
124,
134,
137,
148,
154,
166,
168,
179,
190,
198,
201,
211,
220,
225,
228,
232,
240,
253,
265,
273,
276,
280,
283,
287,
291,
300,
308,
311,
316,
318,
324,
332,
341,
345,
355,
358,
367,
378,
381,
385,
388,
389,
393,
395,
399,
403,
404,
406,
412,
413,
417,
418,
420,
424,
432,
433,
444,
454,
458,
464,
471,
479,
482,
483
]
} | 2afc3d10272e433fa88a126db938cb72 | What is the name of the solar energy research facility in the US? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"solar",
"energy",
"research",
"facility",
"in",
"the",
"US",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
30,
37,
46,
55,
58,
62,
64
]
} | {
"text": [
"SERI, now NREL"
],
"char_spans": [
{
"start": [
389
],
"end": [
402
]
}
],
"token_spans": [
{
"start": [
61
],
"end": [
64
]
}
]
} | [
"SERI, now NREL"
] |
SQuAD | The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE). | {
"tokens": [
"The",
"1973",
"oil",
"embargo",
"and",
"1979",
"energy",
"crisis",
"caused",
"a",
"reorganization",
"of",
"energy",
"policies",
"around",
"the",
"world",
"and",
"brought",
"renewed",
"attention",
"to",
"developing",
"solar",
"technologies",
".",
"Deployment",
"strategies",
"focused",
"on",
"incentive",
"programs",
"such",
"as",
"the",
"Federal",
"Photovoltaic",
"Utilization",
"Program",
"in",
"the",
"US",
"and",
"the",
"Sunshine",
"Program",
"in",
"Japan",
".",
"Other",
"efforts",
"included",
"the",
"formation",
"of",
"research",
"facilities",
"in",
"the",
"US",
"(",
"SERI",
",",
"now",
"NREL",
")",
",",
"Japan",
"(",
"NEDO",
")",
",",
"and",
"Germany",
"(",
"Fraunhofer",
"Institute",
"for",
"Solar",
"Energy",
"Systems",
"ISE",
")",
"."
],
"offsets": [
0,
4,
9,
13,
21,
25,
30,
37,
44,
51,
53,
68,
71,
78,
87,
94,
98,
104,
108,
116,
124,
134,
137,
148,
154,
166,
168,
179,
190,
198,
201,
211,
220,
225,
228,
232,
240,
253,
265,
273,
276,
280,
283,
287,
291,
300,
308,
311,
316,
318,
324,
332,
341,
345,
355,
358,
367,
378,
381,
385,
388,
389,
393,
395,
399,
403,
404,
406,
412,
413,
417,
418,
420,
424,
432,
433,
444,
454,
458,
464,
471,
479,
482,
483
]
} | fc0b29a21c2940818109323ae2a59d3c | What is the name of the solar energy research facility in Japan? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"solar",
"energy",
"research",
"facility",
"in",
"Japan",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
30,
37,
46,
55,
58,
63
]
} | {
"text": [
"NEDO"
],
"char_spans": [
{
"start": [
413
],
"end": [
416
]
}
],
"token_spans": [
{
"start": [
69
],
"end": [
69
]
}
]
} | [
"NEDO"
] |
SQuAD | The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE). | {
"tokens": [
"The",
"1973",
"oil",
"embargo",
"and",
"1979",
"energy",
"crisis",
"caused",
"a",
"reorganization",
"of",
"energy",
"policies",
"around",
"the",
"world",
"and",
"brought",
"renewed",
"attention",
"to",
"developing",
"solar",
"technologies",
".",
"Deployment",
"strategies",
"focused",
"on",
"incentive",
"programs",
"such",
"as",
"the",
"Federal",
"Photovoltaic",
"Utilization",
"Program",
"in",
"the",
"US",
"and",
"the",
"Sunshine",
"Program",
"in",
"Japan",
".",
"Other",
"efforts",
"included",
"the",
"formation",
"of",
"research",
"facilities",
"in",
"the",
"US",
"(",
"SERI",
",",
"now",
"NREL",
")",
",",
"Japan",
"(",
"NEDO",
")",
",",
"and",
"Germany",
"(",
"Fraunhofer",
"Institute",
"for",
"Solar",
"Energy",
"Systems",
"ISE",
")",
"."
],
"offsets": [
0,
4,
9,
13,
21,
25,
30,
37,
44,
51,
53,
68,
71,
78,
87,
94,
98,
104,
108,
116,
124,
134,
137,
148,
154,
166,
168,
179,
190,
198,
201,
211,
220,
225,
228,
232,
240,
253,
265,
273,
276,
280,
283,
287,
291,
300,
308,
311,
316,
318,
324,
332,
341,
345,
355,
358,
367,
378,
381,
385,
388,
389,
393,
395,
399,
403,
404,
406,
412,
413,
417,
418,
420,
424,
432,
433,
444,
454,
458,
464,
471,
479,
482,
483
]
} | 45f8877f182f4d4f95b4642128856659 | What is the name of the solar energy research facility in Germany? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"solar",
"energy",
"research",
"facility",
"in",
"Germany",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
30,
37,
46,
55,
58,
65
]
} | {
"text": [
"Fraunhofer Institute for Solar Energy Systems ISE"
],
"char_spans": [
{
"start": [
433
],
"end": [
481
]
}
],
"token_spans": [
{
"start": [
75
],
"end": [
81
]
}
]
} | [
"Fraunhofer Institute for Solar Energy Systems ISE"
] |
SQuAD | Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses. | {
"tokens": [
"Agriculture",
"and",
"horticulture",
"seek",
"to",
"optimize",
"the",
"capture",
"of",
"solar",
"energy",
"in",
"order",
"to",
"optimize",
"the",
"productivity",
"of",
"plants",
".",
"Techniques",
"such",
"as",
"timed",
"planting",
"cycles",
",",
"tailored",
"row",
"orientation",
",",
"staggered",
"heights",
"between",
"rows",
"and",
"the",
"mixing",
"of",
"plant",
"varieties",
"can",
"improve",
"crop",
"yields",
".",
"While",
"sunlight",
"is",
"generally",
"considered",
"a",
"plentiful",
"resource",
",",
"the",
"exceptions",
"highlight",
"the",
"importance",
"of",
"solar",
"energy",
"to",
"agriculture",
".",
"During",
"the",
"short",
"growing",
"seasons",
"of",
"the",
"Little",
"Ice",
"Age",
",",
"French",
"and",
"English",
"farmers",
"employed",
"fruit",
"walls",
"to",
"maximize",
"the",
"collection",
"of",
"solar",
"energy",
".",
"These",
"walls",
"acted",
"as",
"thermal",
"masses",
"and",
"accelerated",
"ripening",
"by",
"keeping",
"plants",
"warm",
".",
"Early",
"fruit",
"walls",
"were",
"built",
"perpendicular",
"to",
"the",
"ground",
"and",
"facing",
"south",
",",
"but",
"over",
"time",
",",
"sloping",
"walls",
"were",
"developed",
"to",
"make",
"better",
"use",
"of",
"sunlight",
".",
"In",
"1699",
",",
"Nicolas",
"Fatio",
"de",
"Duillier",
"even",
"suggested",
"using",
"a",
"tracking",
"mechanism",
"which",
"could",
"pivot",
"to",
"follow",
"the",
"Sun",
".",
"Applications",
"of",
"solar",
"energy",
"in",
"agriculture",
"aside",
"from",
"growing",
"crops",
"include",
"pumping",
"water",
",",
"drying",
"crops",
",",
"brooding",
"chicks",
"and",
"drying",
"chicken",
"manure",
".",
"More",
"recently",
"the",
"technology",
"has",
"been",
"embraced",
"by",
"vinters",
",",
"who",
"use",
"the",
"energy",
"generated",
"by",
"solar",
"panels",
"to",
"power",
"grape",
"presses",
"."
],
"offsets": [
0,
12,
16,
29,
34,
37,
46,
50,
58,
61,
67,
74,
77,
83,
86,
95,
99,
112,
115,
121,
123,
134,
139,
142,
148,
157,
163,
165,
174,
178,
189,
191,
201,
209,
217,
222,
226,
230,
237,
240,
246,
256,
260,
268,
273,
279,
281,
287,
296,
299,
309,
320,
322,
332,
340,
342,
346,
357,
367,
371,
382,
385,
391,
398,
401,
412,
414,
421,
425,
431,
439,
447,
450,
454,
461,
465,
468,
470,
477,
481,
489,
497,
506,
512,
518,
521,
530,
534,
545,
548,
554,
560,
562,
568,
574,
580,
583,
591,
598,
602,
614,
623,
626,
634,
641,
645,
647,
653,
659,
665,
670,
676,
690,
693,
697,
704,
708,
715,
720,
722,
726,
731,
735,
737,
745,
751,
756,
766,
769,
774,
781,
785,
788,
796,
798,
801,
805,
807,
815,
821,
824,
833,
838,
848,
854,
856,
865,
875,
881,
887,
893,
896,
903,
907,
910,
912,
925,
928,
934,
941,
944,
956,
962,
967,
975,
981,
989,
997,
1002,
1004,
1011,
1016,
1018,
1027,
1034,
1038,
1045,
1053,
1059,
1061,
1066,
1075,
1079,
1090,
1094,
1099,
1108,
1111,
1118,
1120,
1124,
1128,
1132,
1139,
1149,
1152,
1158,
1165,
1168,
1174,
1180,
1187
]
} | 76cee702aebd47e09a893caa1ba147ae | During the Little Ice Age, what did English and French farmers use to increase collection of solar energy? | {
"tokens": [
"During",
"the",
"Little",
"Ice",
"Age",
",",
"what",
"did",
"English",
"and",
"French",
"farmers",
"use",
"to",
"increase",
"collection",
"of",
"solar",
"energy",
"?"
],
"offsets": [
0,
7,
11,
18,
22,
25,
27,
32,
36,
44,
48,
55,
63,
67,
70,
79,
90,
93,
99,
105
]
} | {
"text": [
"fruit walls"
],
"char_spans": [
{
"start": [
506
],
"end": [
516
]
}
],
"token_spans": [
{
"start": [
82
],
"end": [
83
]
}
]
} | [
"fruit walls"
] |
SQuAD | Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses. | {
"tokens": [
"Agriculture",
"and",
"horticulture",
"seek",
"to",
"optimize",
"the",
"capture",
"of",
"solar",
"energy",
"in",
"order",
"to",
"optimize",
"the",
"productivity",
"of",
"plants",
".",
"Techniques",
"such",
"as",
"timed",
"planting",
"cycles",
",",
"tailored",
"row",
"orientation",
",",
"staggered",
"heights",
"between",
"rows",
"and",
"the",
"mixing",
"of",
"plant",
"varieties",
"can",
"improve",
"crop",
"yields",
".",
"While",
"sunlight",
"is",
"generally",
"considered",
"a",
"plentiful",
"resource",
",",
"the",
"exceptions",
"highlight",
"the",
"importance",
"of",
"solar",
"energy",
"to",
"agriculture",
".",
"During",
"the",
"short",
"growing",
"seasons",
"of",
"the",
"Little",
"Ice",
"Age",
",",
"French",
"and",
"English",
"farmers",
"employed",
"fruit",
"walls",
"to",
"maximize",
"the",
"collection",
"of",
"solar",
"energy",
".",
"These",
"walls",
"acted",
"as",
"thermal",
"masses",
"and",
"accelerated",
"ripening",
"by",
"keeping",
"plants",
"warm",
".",
"Early",
"fruit",
"walls",
"were",
"built",
"perpendicular",
"to",
"the",
"ground",
"and",
"facing",
"south",
",",
"but",
"over",
"time",
",",
"sloping",
"walls",
"were",
"developed",
"to",
"make",
"better",
"use",
"of",
"sunlight",
".",
"In",
"1699",
",",
"Nicolas",
"Fatio",
"de",
"Duillier",
"even",
"suggested",
"using",
"a",
"tracking",
"mechanism",
"which",
"could",
"pivot",
"to",
"follow",
"the",
"Sun",
".",
"Applications",
"of",
"solar",
"energy",
"in",
"agriculture",
"aside",
"from",
"growing",
"crops",
"include",
"pumping",
"water",
",",
"drying",
"crops",
",",
"brooding",
"chicks",
"and",
"drying",
"chicken",
"manure",
".",
"More",
"recently",
"the",
"technology",
"has",
"been",
"embraced",
"by",
"vinters",
",",
"who",
"use",
"the",
"energy",
"generated",
"by",
"solar",
"panels",
"to",
"power",
"grape",
"presses",
"."
],
"offsets": [
0,
12,
16,
29,
34,
37,
46,
50,
58,
61,
67,
74,
77,
83,
86,
95,
99,
112,
115,
121,
123,
134,
139,
142,
148,
157,
163,
165,
174,
178,
189,
191,
201,
209,
217,
222,
226,
230,
237,
240,
246,
256,
260,
268,
273,
279,
281,
287,
296,
299,
309,
320,
322,
332,
340,
342,
346,
357,
367,
371,
382,
385,
391,
398,
401,
412,
414,
421,
425,
431,
439,
447,
450,
454,
461,
465,
468,
470,
477,
481,
489,
497,
506,
512,
518,
521,
530,
534,
545,
548,
554,
560,
562,
568,
574,
580,
583,
591,
598,
602,
614,
623,
626,
634,
641,
645,
647,
653,
659,
665,
670,
676,
690,
693,
697,
704,
708,
715,
720,
722,
726,
731,
735,
737,
745,
751,
756,
766,
769,
774,
781,
785,
788,
796,
798,
801,
805,
807,
815,
821,
824,
833,
838,
848,
854,
856,
865,
875,
881,
887,
893,
896,
903,
907,
910,
912,
925,
928,
934,
941,
944,
956,
962,
967,
975,
981,
989,
997,
1002,
1004,
1011,
1016,
1018,
1027,
1034,
1038,
1045,
1053,
1059,
1061,
1066,
1075,
1079,
1090,
1094,
1099,
1108,
1111,
1118,
1120,
1124,
1128,
1132,
1139,
1149,
1152,
1158,
1165,
1168,
1174,
1180,
1187
]
} | f0fcc6c5e3134606a7e98c370564aafd | Vinters have adopted solar technology to do what? | {
"tokens": [
"Vinters",
"have",
"adopted",
"solar",
"technology",
"to",
"do",
"what",
"?"
],
"offsets": [
0,
8,
13,
21,
27,
38,
41,
44,
48
]
} | {
"text": [
"power grape presses"
],
"char_spans": [
{
"start": [
1168
],
"end": [
1186
]
}
],
"token_spans": [
{
"start": [
198
],
"end": [
200
]
}
]
} | [
"power grape presses"
] |
SQuAD | Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses. | {
"tokens": [
"Agriculture",
"and",
"horticulture",
"seek",
"to",
"optimize",
"the",
"capture",
"of",
"solar",
"energy",
"in",
"order",
"to",
"optimize",
"the",
"productivity",
"of",
"plants",
".",
"Techniques",
"such",
"as",
"timed",
"planting",
"cycles",
",",
"tailored",
"row",
"orientation",
",",
"staggered",
"heights",
"between",
"rows",
"and",
"the",
"mixing",
"of",
"plant",
"varieties",
"can",
"improve",
"crop",
"yields",
".",
"While",
"sunlight",
"is",
"generally",
"considered",
"a",
"plentiful",
"resource",
",",
"the",
"exceptions",
"highlight",
"the",
"importance",
"of",
"solar",
"energy",
"to",
"agriculture",
".",
"During",
"the",
"short",
"growing",
"seasons",
"of",
"the",
"Little",
"Ice",
"Age",
",",
"French",
"and",
"English",
"farmers",
"employed",
"fruit",
"walls",
"to",
"maximize",
"the",
"collection",
"of",
"solar",
"energy",
".",
"These",
"walls",
"acted",
"as",
"thermal",
"masses",
"and",
"accelerated",
"ripening",
"by",
"keeping",
"plants",
"warm",
".",
"Early",
"fruit",
"walls",
"were",
"built",
"perpendicular",
"to",
"the",
"ground",
"and",
"facing",
"south",
",",
"but",
"over",
"time",
",",
"sloping",
"walls",
"were",
"developed",
"to",
"make",
"better",
"use",
"of",
"sunlight",
".",
"In",
"1699",
",",
"Nicolas",
"Fatio",
"de",
"Duillier",
"even",
"suggested",
"using",
"a",
"tracking",
"mechanism",
"which",
"could",
"pivot",
"to",
"follow",
"the",
"Sun",
".",
"Applications",
"of",
"solar",
"energy",
"in",
"agriculture",
"aside",
"from",
"growing",
"crops",
"include",
"pumping",
"water",
",",
"drying",
"crops",
",",
"brooding",
"chicks",
"and",
"drying",
"chicken",
"manure",
".",
"More",
"recently",
"the",
"technology",
"has",
"been",
"embraced",
"by",
"vinters",
",",
"who",
"use",
"the",
"energy",
"generated",
"by",
"solar",
"panels",
"to",
"power",
"grape",
"presses",
"."
],
"offsets": [
0,
12,
16,
29,
34,
37,
46,
50,
58,
61,
67,
74,
77,
83,
86,
95,
99,
112,
115,
121,
123,
134,
139,
142,
148,
157,
163,
165,
174,
178,
189,
191,
201,
209,
217,
222,
226,
230,
237,
240,
246,
256,
260,
268,
273,
279,
281,
287,
296,
299,
309,
320,
322,
332,
340,
342,
346,
357,
367,
371,
382,
385,
391,
398,
401,
412,
414,
421,
425,
431,
439,
447,
450,
454,
461,
465,
468,
470,
477,
481,
489,
497,
506,
512,
518,
521,
530,
534,
545,
548,
554,
560,
562,
568,
574,
580,
583,
591,
598,
602,
614,
623,
626,
634,
641,
645,
647,
653,
659,
665,
670,
676,
690,
693,
697,
704,
708,
715,
720,
722,
726,
731,
735,
737,
745,
751,
756,
766,
769,
774,
781,
785,
788,
796,
798,
801,
805,
807,
815,
821,
824,
833,
838,
848,
854,
856,
865,
875,
881,
887,
893,
896,
903,
907,
910,
912,
925,
928,
934,
941,
944,
956,
962,
967,
975,
981,
989,
997,
1002,
1004,
1011,
1016,
1018,
1027,
1034,
1038,
1045,
1053,
1059,
1061,
1066,
1075,
1079,
1090,
1094,
1099,
1108,
1111,
1118,
1120,
1124,
1128,
1132,
1139,
1149,
1152,
1158,
1165,
1168,
1174,
1180,
1187
]
} | 46f14d9a7a2f4516bdddb6ceb5b63df9 | Why do agriculture and horticulture seek to make the most use of the solar energy captured? | {
"tokens": [
"Why",
"do",
"agriculture",
"and",
"horticulture",
"seek",
"to",
"make",
"the",
"most",
"use",
"of",
"the",
"solar",
"energy",
"captured",
"?"
],
"offsets": [
0,
4,
7,
19,
23,
36,
41,
44,
49,
53,
58,
62,
65,
69,
75,
82,
90
]
} | {
"text": [
"to optimize the productivity of plants"
],
"char_spans": [
{
"start": [
83
],
"end": [
120
]
}
],
"token_spans": [
{
"start": [
13
],
"end": [
18
]
}
]
} | [
"to optimize the productivity of plants"
] |
SQuAD | Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses. | {
"tokens": [
"Agriculture",
"and",
"horticulture",
"seek",
"to",
"optimize",
"the",
"capture",
"of",
"solar",
"energy",
"in",
"order",
"to",
"optimize",
"the",
"productivity",
"of",
"plants",
".",
"Techniques",
"such",
"as",
"timed",
"planting",
"cycles",
",",
"tailored",
"row",
"orientation",
",",
"staggered",
"heights",
"between",
"rows",
"and",
"the",
"mixing",
"of",
"plant",
"varieties",
"can",
"improve",
"crop",
"yields",
".",
"While",
"sunlight",
"is",
"generally",
"considered",
"a",
"plentiful",
"resource",
",",
"the",
"exceptions",
"highlight",
"the",
"importance",
"of",
"solar",
"energy",
"to",
"agriculture",
".",
"During",
"the",
"short",
"growing",
"seasons",
"of",
"the",
"Little",
"Ice",
"Age",
",",
"French",
"and",
"English",
"farmers",
"employed",
"fruit",
"walls",
"to",
"maximize",
"the",
"collection",
"of",
"solar",
"energy",
".",
"These",
"walls",
"acted",
"as",
"thermal",
"masses",
"and",
"accelerated",
"ripening",
"by",
"keeping",
"plants",
"warm",
".",
"Early",
"fruit",
"walls",
"were",
"built",
"perpendicular",
"to",
"the",
"ground",
"and",
"facing",
"south",
",",
"but",
"over",
"time",
",",
"sloping",
"walls",
"were",
"developed",
"to",
"make",
"better",
"use",
"of",
"sunlight",
".",
"In",
"1699",
",",
"Nicolas",
"Fatio",
"de",
"Duillier",
"even",
"suggested",
"using",
"a",
"tracking",
"mechanism",
"which",
"could",
"pivot",
"to",
"follow",
"the",
"Sun",
".",
"Applications",
"of",
"solar",
"energy",
"in",
"agriculture",
"aside",
"from",
"growing",
"crops",
"include",
"pumping",
"water",
",",
"drying",
"crops",
",",
"brooding",
"chicks",
"and",
"drying",
"chicken",
"manure",
".",
"More",
"recently",
"the",
"technology",
"has",
"been",
"embraced",
"by",
"vinters",
",",
"who",
"use",
"the",
"energy",
"generated",
"by",
"solar",
"panels",
"to",
"power",
"grape",
"presses",
"."
],
"offsets": [
0,
12,
16,
29,
34,
37,
46,
50,
58,
61,
67,
74,
77,
83,
86,
95,
99,
112,
115,
121,
123,
134,
139,
142,
148,
157,
163,
165,
174,
178,
189,
191,
201,
209,
217,
222,
226,
230,
237,
240,
246,
256,
260,
268,
273,
279,
281,
287,
296,
299,
309,
320,
322,
332,
340,
342,
346,
357,
367,
371,
382,
385,
391,
398,
401,
412,
414,
421,
425,
431,
439,
447,
450,
454,
461,
465,
468,
470,
477,
481,
489,
497,
506,
512,
518,
521,
530,
534,
545,
548,
554,
560,
562,
568,
574,
580,
583,
591,
598,
602,
614,
623,
626,
634,
641,
645,
647,
653,
659,
665,
670,
676,
690,
693,
697,
704,
708,
715,
720,
722,
726,
731,
735,
737,
745,
751,
756,
766,
769,
774,
781,
785,
788,
796,
798,
801,
805,
807,
815,
821,
824,
833,
838,
848,
854,
856,
865,
875,
881,
887,
893,
896,
903,
907,
910,
912,
925,
928,
934,
941,
944,
956,
962,
967,
975,
981,
989,
997,
1002,
1004,
1011,
1016,
1018,
1027,
1034,
1038,
1045,
1053,
1059,
1061,
1066,
1075,
1079,
1090,
1094,
1099,
1108,
1111,
1118,
1120,
1124,
1128,
1132,
1139,
1149,
1152,
1158,
1165,
1168,
1174,
1180,
1187
]
} | ab4a5e84cba143cabeb119f05d4204a7 | What are some techniques used to improve crop production? | {
"tokens": [
"What",
"are",
"some",
"techniques",
"used",
"to",
"improve",
"crop",
"production",
"?"
],
"offsets": [
0,
5,
9,
14,
25,
30,
33,
41,
46,
56
]
} | {
"text": [
"timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties"
],
"char_spans": [
{
"start": [
142
],
"end": [
254
]
}
],
"token_spans": [
{
"start": [
23
],
"end": [
40
]
}
]
} | [
"timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties"
] |
SQuAD | Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses. | {
"tokens": [
"Agriculture",
"and",
"horticulture",
"seek",
"to",
"optimize",
"the",
"capture",
"of",
"solar",
"energy",
"in",
"order",
"to",
"optimize",
"the",
"productivity",
"of",
"plants",
".",
"Techniques",
"such",
"as",
"timed",
"planting",
"cycles",
",",
"tailored",
"row",
"orientation",
",",
"staggered",
"heights",
"between",
"rows",
"and",
"the",
"mixing",
"of",
"plant",
"varieties",
"can",
"improve",
"crop",
"yields",
".",
"While",
"sunlight",
"is",
"generally",
"considered",
"a",
"plentiful",
"resource",
",",
"the",
"exceptions",
"highlight",
"the",
"importance",
"of",
"solar",
"energy",
"to",
"agriculture",
".",
"During",
"the",
"short",
"growing",
"seasons",
"of",
"the",
"Little",
"Ice",
"Age",
",",
"French",
"and",
"English",
"farmers",
"employed",
"fruit",
"walls",
"to",
"maximize",
"the",
"collection",
"of",
"solar",
"energy",
".",
"These",
"walls",
"acted",
"as",
"thermal",
"masses",
"and",
"accelerated",
"ripening",
"by",
"keeping",
"plants",
"warm",
".",
"Early",
"fruit",
"walls",
"were",
"built",
"perpendicular",
"to",
"the",
"ground",
"and",
"facing",
"south",
",",
"but",
"over",
"time",
",",
"sloping",
"walls",
"were",
"developed",
"to",
"make",
"better",
"use",
"of",
"sunlight",
".",
"In",
"1699",
",",
"Nicolas",
"Fatio",
"de",
"Duillier",
"even",
"suggested",
"using",
"a",
"tracking",
"mechanism",
"which",
"could",
"pivot",
"to",
"follow",
"the",
"Sun",
".",
"Applications",
"of",
"solar",
"energy",
"in",
"agriculture",
"aside",
"from",
"growing",
"crops",
"include",
"pumping",
"water",
",",
"drying",
"crops",
",",
"brooding",
"chicks",
"and",
"drying",
"chicken",
"manure",
".",
"More",
"recently",
"the",
"technology",
"has",
"been",
"embraced",
"by",
"vinters",
",",
"who",
"use",
"the",
"energy",
"generated",
"by",
"solar",
"panels",
"to",
"power",
"grape",
"presses",
"."
],
"offsets": [
0,
12,
16,
29,
34,
37,
46,
50,
58,
61,
67,
74,
77,
83,
86,
95,
99,
112,
115,
121,
123,
134,
139,
142,
148,
157,
163,
165,
174,
178,
189,
191,
201,
209,
217,
222,
226,
230,
237,
240,
246,
256,
260,
268,
273,
279,
281,
287,
296,
299,
309,
320,
322,
332,
340,
342,
346,
357,
367,
371,
382,
385,
391,
398,
401,
412,
414,
421,
425,
431,
439,
447,
450,
454,
461,
465,
468,
470,
477,
481,
489,
497,
506,
512,
518,
521,
530,
534,
545,
548,
554,
560,
562,
568,
574,
580,
583,
591,
598,
602,
614,
623,
626,
634,
641,
645,
647,
653,
659,
665,
670,
676,
690,
693,
697,
704,
708,
715,
720,
722,
726,
731,
735,
737,
745,
751,
756,
766,
769,
774,
781,
785,
788,
796,
798,
801,
805,
807,
815,
821,
824,
833,
838,
848,
854,
856,
865,
875,
881,
887,
893,
896,
903,
907,
910,
912,
925,
928,
934,
941,
944,
956,
962,
967,
975,
981,
989,
997,
1002,
1004,
1011,
1016,
1018,
1027,
1034,
1038,
1045,
1053,
1059,
1061,
1066,
1075,
1079,
1090,
1094,
1099,
1108,
1111,
1118,
1120,
1124,
1128,
1132,
1139,
1149,
1152,
1158,
1165,
1168,
1174,
1180,
1187
]
} | 1dc5d04a46d5485e9bed6c33fb8aac8b | What did French and English farmers do during the Little Ice Age to gain more solar energy? | {
"tokens": [
"What",
"did",
"French",
"and",
"English",
"farmers",
"do",
"during",
"the",
"Little",
"Ice",
"Age",
"to",
"gain",
"more",
"solar",
"energy",
"?"
],
"offsets": [
0,
5,
9,
16,
20,
28,
36,
39,
46,
50,
57,
61,
65,
68,
73,
78,
84,
90
]
} | {
"text": [
"employed fruit walls"
],
"char_spans": [
{
"start": [
497
],
"end": [
516
]
}
],
"token_spans": [
{
"start": [
81
],
"end": [
83
]
}
]
} | [
"employed fruit walls"
] |
SQuAD | Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses. | {
"tokens": [
"Agriculture",
"and",
"horticulture",
"seek",
"to",
"optimize",
"the",
"capture",
"of",
"solar",
"energy",
"in",
"order",
"to",
"optimize",
"the",
"productivity",
"of",
"plants",
".",
"Techniques",
"such",
"as",
"timed",
"planting",
"cycles",
",",
"tailored",
"row",
"orientation",
",",
"staggered",
"heights",
"between",
"rows",
"and",
"the",
"mixing",
"of",
"plant",
"varieties",
"can",
"improve",
"crop",
"yields",
".",
"While",
"sunlight",
"is",
"generally",
"considered",
"a",
"plentiful",
"resource",
",",
"the",
"exceptions",
"highlight",
"the",
"importance",
"of",
"solar",
"energy",
"to",
"agriculture",
".",
"During",
"the",
"short",
"growing",
"seasons",
"of",
"the",
"Little",
"Ice",
"Age",
",",
"French",
"and",
"English",
"farmers",
"employed",
"fruit",
"walls",
"to",
"maximize",
"the",
"collection",
"of",
"solar",
"energy",
".",
"These",
"walls",
"acted",
"as",
"thermal",
"masses",
"and",
"accelerated",
"ripening",
"by",
"keeping",
"plants",
"warm",
".",
"Early",
"fruit",
"walls",
"were",
"built",
"perpendicular",
"to",
"the",
"ground",
"and",
"facing",
"south",
",",
"but",
"over",
"time",
",",
"sloping",
"walls",
"were",
"developed",
"to",
"make",
"better",
"use",
"of",
"sunlight",
".",
"In",
"1699",
",",
"Nicolas",
"Fatio",
"de",
"Duillier",
"even",
"suggested",
"using",
"a",
"tracking",
"mechanism",
"which",
"could",
"pivot",
"to",
"follow",
"the",
"Sun",
".",
"Applications",
"of",
"solar",
"energy",
"in",
"agriculture",
"aside",
"from",
"growing",
"crops",
"include",
"pumping",
"water",
",",
"drying",
"crops",
",",
"brooding",
"chicks",
"and",
"drying",
"chicken",
"manure",
".",
"More",
"recently",
"the",
"technology",
"has",
"been",
"embraced",
"by",
"vinters",
",",
"who",
"use",
"the",
"energy",
"generated",
"by",
"solar",
"panels",
"to",
"power",
"grape",
"presses",
"."
],
"offsets": [
0,
12,
16,
29,
34,
37,
46,
50,
58,
61,
67,
74,
77,
83,
86,
95,
99,
112,
115,
121,
123,
134,
139,
142,
148,
157,
163,
165,
174,
178,
189,
191,
201,
209,
217,
222,
226,
230,
237,
240,
246,
256,
260,
268,
273,
279,
281,
287,
296,
299,
309,
320,
322,
332,
340,
342,
346,
357,
367,
371,
382,
385,
391,
398,
401,
412,
414,
421,
425,
431,
439,
447,
450,
454,
461,
465,
468,
470,
477,
481,
489,
497,
506,
512,
518,
521,
530,
534,
545,
548,
554,
560,
562,
568,
574,
580,
583,
591,
598,
602,
614,
623,
626,
634,
641,
645,
647,
653,
659,
665,
670,
676,
690,
693,
697,
704,
708,
715,
720,
722,
726,
731,
735,
737,
745,
751,
756,
766,
769,
774,
781,
785,
788,
796,
798,
801,
805,
807,
815,
821,
824,
833,
838,
848,
854,
856,
865,
875,
881,
887,
893,
896,
903,
907,
910,
912,
925,
928,
934,
941,
944,
956,
962,
967,
975,
981,
989,
997,
1002,
1004,
1011,
1016,
1018,
1027,
1034,
1038,
1045,
1053,
1059,
1061,
1066,
1075,
1079,
1090,
1094,
1099,
1108,
1111,
1118,
1120,
1124,
1128,
1132,
1139,
1149,
1152,
1158,
1165,
1168,
1174,
1180,
1187
]
} | 7b0f4b0e72dd4186a04f7626253dfbd9 | What was the purpose of the fruit walls built by French and English farmers? | {
"tokens": [
"What",
"was",
"the",
"purpose",
"of",
"the",
"fruit",
"walls",
"built",
"by",
"French",
"and",
"English",
"farmers",
"?"
],
"offsets": [
0,
5,
9,
13,
21,
24,
28,
34,
40,
46,
49,
56,
60,
68,
75
]
} | {
"text": [
"acted as thermal masses and accelerated ripening by keeping plants warm"
],
"char_spans": [
{
"start": [
574
],
"end": [
644
]
}
],
"token_spans": [
{
"start": [
94
],
"end": [
104
]
}
]
} | [
"acted as thermal masses and accelerated ripening by keeping plants warm"
] |
SQuAD | Tajikistan's economy grew substantially after the war. The GDP of Tajikistan expanded at an average rate of 9.6% over the period of 2000–2007 according to the World Bank data. This improved Tajikistan's position among other Central Asian countries (namely Turkmenistan and Uzbekistan), which seem to have degraded economically ever since. The primary sources of income in Tajikistan are aluminium production, cotton growing and remittances from migrant workers. Cotton accounts for 60% of agricultural output, supporting 75% of the rural population, and using 45% of irrigated arable land. The aluminium industry is represented by the state-owned Tajik Aluminum Company – the biggest aluminium plant in Central Asia and one of the biggest in the world. | {
"tokens": [
"Tajikistan",
"'s",
"economy",
"grew",
"substantially",
"after",
"the",
"war",
".",
"The",
"GDP",
"of",
"Tajikistan",
"expanded",
"at",
"an",
"average",
"rate",
"of",
"9.6",
"%",
"over",
"the",
"period",
"of",
"2000–2007",
"according",
"to",
"the",
"World",
"Bank",
"data",
".",
"This",
"improved",
"Tajikistan",
"'s",
"position",
"among",
"other",
"Central",
"Asian",
"countries",
"(",
"namely",
"Turkmenistan",
"and",
"Uzbekistan",
")",
",",
"which",
"seem",
"to",
"have",
"degraded",
"economically",
"ever",
"since",
".",
"The",
"primary",
"sources",
"of",
"income",
"in",
"Tajikistan",
"are",
"aluminium",
"production",
",",
"cotton",
"growing",
"and",
"remittances",
"from",
"migrant",
"workers",
".",
"Cotton",
"accounts",
"for",
"60",
"%",
"of",
"agricultural",
"output",
",",
"supporting",
"75",
"%",
"of",
"the",
"rural",
"population",
",",
"and",
"using",
"45",
"%",
"of",
"irrigated",
"arable",
"land",
".",
"The",
"aluminium",
"industry",
"is",
"represented",
"by",
"the",
"state",
"-",
"owned",
"Tajik",
"Aluminum",
"Company",
"–",
"the",
"biggest",
"aluminium",
"plant",
"in",
"Central",
"Asia",
"and",
"one",
"of",
"the",
"biggest",
"in",
"the",
"world",
"."
],
"offsets": [
0,
10,
13,
21,
26,
40,
46,
50,
53,
55,
59,
63,
66,
77,
86,
89,
92,
100,
105,
108,
111,
113,
118,
122,
129,
132,
142,
152,
155,
159,
165,
170,
174,
176,
181,
190,
200,
203,
212,
218,
224,
232,
238,
248,
249,
256,
269,
273,
283,
284,
286,
292,
297,
300,
305,
314,
327,
332,
337,
339,
343,
351,
359,
362,
369,
372,
383,
387,
397,
407,
409,
416,
424,
428,
440,
445,
453,
460,
462,
469,
478,
482,
484,
486,
489,
502,
508,
510,
521,
523,
525,
528,
532,
538,
548,
550,
554,
560,
562,
564,
567,
577,
584,
588,
590,
594,
604,
613,
616,
628,
631,
635,
640,
641,
647,
653,
662,
670,
672,
676,
684,
694,
700,
703,
711,
716,
720,
724,
727,
731,
739,
742,
746,
751
]
} | 5cdcf796f38047b9bf8eb96f1af0b7f0 | What was the rate that the GDP expanded? | {
"tokens": [
"What",
"was",
"the",
"rate",
"that",
"the",
"GDP",
"expanded",
"?"
],
"offsets": [
0,
5,
9,
13,
18,
23,
27,
31,
39
]
} | {
"text": [
"an average rate of 9.6%"
],
"char_spans": [
{
"start": [
89
],
"end": [
111
]
}
],
"token_spans": [
{
"start": [
15
],
"end": [
20
]
}
]
} | [
"an average rate of 9.6%"
] |
SQuAD | Tajikistan's economy grew substantially after the war. The GDP of Tajikistan expanded at an average rate of 9.6% over the period of 2000–2007 according to the World Bank data. This improved Tajikistan's position among other Central Asian countries (namely Turkmenistan and Uzbekistan), which seem to have degraded economically ever since. The primary sources of income in Tajikistan are aluminium production, cotton growing and remittances from migrant workers. Cotton accounts for 60% of agricultural output, supporting 75% of the rural population, and using 45% of irrigated arable land. The aluminium industry is represented by the state-owned Tajik Aluminum Company – the biggest aluminium plant in Central Asia and one of the biggest in the world. | {
"tokens": [
"Tajikistan",
"'s",
"economy",
"grew",
"substantially",
"after",
"the",
"war",
".",
"The",
"GDP",
"of",
"Tajikistan",
"expanded",
"at",
"an",
"average",
"rate",
"of",
"9.6",
"%",
"over",
"the",
"period",
"of",
"2000–2007",
"according",
"to",
"the",
"World",
"Bank",
"data",
".",
"This",
"improved",
"Tajikistan",
"'s",
"position",
"among",
"other",
"Central",
"Asian",
"countries",
"(",
"namely",
"Turkmenistan",
"and",
"Uzbekistan",
")",
",",
"which",
"seem",
"to",
"have",
"degraded",
"economically",
"ever",
"since",
".",
"The",
"primary",
"sources",
"of",
"income",
"in",
"Tajikistan",
"are",
"aluminium",
"production",
",",
"cotton",
"growing",
"and",
"remittances",
"from",
"migrant",
"workers",
".",
"Cotton",
"accounts",
"for",
"60",
"%",
"of",
"agricultural",
"output",
",",
"supporting",
"75",
"%",
"of",
"the",
"rural",
"population",
",",
"and",
"using",
"45",
"%",
"of",
"irrigated",
"arable",
"land",
".",
"The",
"aluminium",
"industry",
"is",
"represented",
"by",
"the",
"state",
"-",
"owned",
"Tajik",
"Aluminum",
"Company",
"–",
"the",
"biggest",
"aluminium",
"plant",
"in",
"Central",
"Asia",
"and",
"one",
"of",
"the",
"biggest",
"in",
"the",
"world",
"."
],
"offsets": [
0,
10,
13,
21,
26,
40,
46,
50,
53,
55,
59,
63,
66,
77,
86,
89,
92,
100,
105,
108,
111,
113,
118,
122,
129,
132,
142,
152,
155,
159,
165,
170,
174,
176,
181,
190,
200,
203,
212,
218,
224,
232,
238,
248,
249,
256,
269,
273,
283,
284,
286,
292,
297,
300,
305,
314,
327,
332,
337,
339,
343,
351,
359,
362,
369,
372,
383,
387,
397,
407,
409,
416,
424,
428,
440,
445,
453,
460,
462,
469,
478,
482,
484,
486,
489,
502,
508,
510,
521,
523,
525,
528,
532,
538,
548,
550,
554,
560,
562,
564,
567,
577,
584,
588,
590,
594,
604,
613,
616,
628,
631,
635,
640,
641,
647,
653,
662,
670,
672,
676,
684,
694,
700,
703,
711,
716,
720,
724,
727,
731,
739,
742,
746,
751
]
} | 1988ad2a979c4618886fa2076e2c6b5f | What is the primary source of income in Tajikistan? | {
"tokens": [
"What",
"is",
"the",
"primary",
"source",
"of",
"income",
"in",
"Tajikistan",
"?"
],
"offsets": [
0,
5,
8,
12,
20,
27,
30,
37,
40,
50
]
} | {
"text": [
"aluminium production, cotton growing and remittances from migrant workers"
],
"char_spans": [
{
"start": [
387
],
"end": [
459
]
}
],
"token_spans": [
{
"start": [
67
],
"end": [
76
]
}
]
} | [
"aluminium production, cotton growing and remittances from migrant workers"
] |
SQuAD | Tajikistan's economy grew substantially after the war. The GDP of Tajikistan expanded at an average rate of 9.6% over the period of 2000–2007 according to the World Bank data. This improved Tajikistan's position among other Central Asian countries (namely Turkmenistan and Uzbekistan), which seem to have degraded economically ever since. The primary sources of income in Tajikistan are aluminium production, cotton growing and remittances from migrant workers. Cotton accounts for 60% of agricultural output, supporting 75% of the rural population, and using 45% of irrigated arable land. The aluminium industry is represented by the state-owned Tajik Aluminum Company – the biggest aluminium plant in Central Asia and one of the biggest in the world. | {
"tokens": [
"Tajikistan",
"'s",
"economy",
"grew",
"substantially",
"after",
"the",
"war",
".",
"The",
"GDP",
"of",
"Tajikistan",
"expanded",
"at",
"an",
"average",
"rate",
"of",
"9.6",
"%",
"over",
"the",
"period",
"of",
"2000–2007",
"according",
"to",
"the",
"World",
"Bank",
"data",
".",
"This",
"improved",
"Tajikistan",
"'s",
"position",
"among",
"other",
"Central",
"Asian",
"countries",
"(",
"namely",
"Turkmenistan",
"and",
"Uzbekistan",
")",
",",
"which",
"seem",
"to",
"have",
"degraded",
"economically",
"ever",
"since",
".",
"The",
"primary",
"sources",
"of",
"income",
"in",
"Tajikistan",
"are",
"aluminium",
"production",
",",
"cotton",
"growing",
"and",
"remittances",
"from",
"migrant",
"workers",
".",
"Cotton",
"accounts",
"for",
"60",
"%",
"of",
"agricultural",
"output",
",",
"supporting",
"75",
"%",
"of",
"the",
"rural",
"population",
",",
"and",
"using",
"45",
"%",
"of",
"irrigated",
"arable",
"land",
".",
"The",
"aluminium",
"industry",
"is",
"represented",
"by",
"the",
"state",
"-",
"owned",
"Tajik",
"Aluminum",
"Company",
"–",
"the",
"biggest",
"aluminium",
"plant",
"in",
"Central",
"Asia",
"and",
"one",
"of",
"the",
"biggest",
"in",
"the",
"world",
"."
],
"offsets": [
0,
10,
13,
21,
26,
40,
46,
50,
53,
55,
59,
63,
66,
77,
86,
89,
92,
100,
105,
108,
111,
113,
118,
122,
129,
132,
142,
152,
155,
159,
165,
170,
174,
176,
181,
190,
200,
203,
212,
218,
224,
232,
238,
248,
249,
256,
269,
273,
283,
284,
286,
292,
297,
300,
305,
314,
327,
332,
337,
339,
343,
351,
359,
362,
369,
372,
383,
387,
397,
407,
409,
416,
424,
428,
440,
445,
453,
460,
462,
469,
478,
482,
484,
486,
489,
502,
508,
510,
521,
523,
525,
528,
532,
538,
548,
550,
554,
560,
562,
564,
567,
577,
584,
588,
590,
594,
604,
613,
616,
628,
631,
635,
640,
641,
647,
653,
662,
670,
672,
676,
684,
694,
700,
703,
711,
716,
720,
724,
727,
731,
739,
742,
746,
751
]
} | e44f235798844b2ab38656f272c356c0 | What accounts for 60% of the agricultural output? | {
"tokens": [
"What",
"accounts",
"for",
"60",
"%",
"of",
"the",
"agricultural",
"output",
"?"
],
"offsets": [
0,
5,
14,
18,
20,
22,
25,
29,
42,
48
]
} | {
"text": [
"60%"
],
"char_spans": [
{
"start": [
482
],
"end": [
484
]
}
],
"token_spans": [
{
"start": [
81
],
"end": [
82
]
}
]
} | [
"60%"
] |
SQuAD | Tajikistan's economy grew substantially after the war. The GDP of Tajikistan expanded at an average rate of 9.6% over the period of 2000–2007 according to the World Bank data. This improved Tajikistan's position among other Central Asian countries (namely Turkmenistan and Uzbekistan), which seem to have degraded economically ever since. The primary sources of income in Tajikistan are aluminium production, cotton growing and remittances from migrant workers. Cotton accounts for 60% of agricultural output, supporting 75% of the rural population, and using 45% of irrigated arable land. The aluminium industry is represented by the state-owned Tajik Aluminum Company – the biggest aluminium plant in Central Asia and one of the biggest in the world. | {
"tokens": [
"Tajikistan",
"'s",
"economy",
"grew",
"substantially",
"after",
"the",
"war",
".",
"The",
"GDP",
"of",
"Tajikistan",
"expanded",
"at",
"an",
"average",
"rate",
"of",
"9.6",
"%",
"over",
"the",
"period",
"of",
"2000–2007",
"according",
"to",
"the",
"World",
"Bank",
"data",
".",
"This",
"improved",
"Tajikistan",
"'s",
"position",
"among",
"other",
"Central",
"Asian",
"countries",
"(",
"namely",
"Turkmenistan",
"and",
"Uzbekistan",
")",
",",
"which",
"seem",
"to",
"have",
"degraded",
"economically",
"ever",
"since",
".",
"The",
"primary",
"sources",
"of",
"income",
"in",
"Tajikistan",
"are",
"aluminium",
"production",
",",
"cotton",
"growing",
"and",
"remittances",
"from",
"migrant",
"workers",
".",
"Cotton",
"accounts",
"for",
"60",
"%",
"of",
"agricultural",
"output",
",",
"supporting",
"75",
"%",
"of",
"the",
"rural",
"population",
",",
"and",
"using",
"45",
"%",
"of",
"irrigated",
"arable",
"land",
".",
"The",
"aluminium",
"industry",
"is",
"represented",
"by",
"the",
"state",
"-",
"owned",
"Tajik",
"Aluminum",
"Company",
"–",
"the",
"biggest",
"aluminium",
"plant",
"in",
"Central",
"Asia",
"and",
"one",
"of",
"the",
"biggest",
"in",
"the",
"world",
"."
],
"offsets": [
0,
10,
13,
21,
26,
40,
46,
50,
53,
55,
59,
63,
66,
77,
86,
89,
92,
100,
105,
108,
111,
113,
118,
122,
129,
132,
142,
152,
155,
159,
165,
170,
174,
176,
181,
190,
200,
203,
212,
218,
224,
232,
238,
248,
249,
256,
269,
273,
283,
284,
286,
292,
297,
300,
305,
314,
327,
332,
337,
339,
343,
351,
359,
362,
369,
372,
383,
387,
397,
407,
409,
416,
424,
428,
440,
445,
453,
460,
462,
469,
478,
482,
484,
486,
489,
502,
508,
510,
521,
523,
525,
528,
532,
538,
548,
550,
554,
560,
562,
564,
567,
577,
584,
588,
590,
594,
604,
613,
616,
628,
631,
635,
640,
641,
647,
653,
662,
670,
672,
676,
684,
694,
700,
703,
711,
716,
720,
724,
727,
731,
739,
742,
746,
751
]
} | b95c0fbcf1ab4b3eb1aef28e37a6d53e | What is the name of the state owned company that produces aluminium? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"state",
"owned",
"company",
"that",
"produces",
"aluminium",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
30,
36,
44,
49,
58,
67
]
} | {
"text": [
"Tajik Aluminum Company"
],
"char_spans": [
{
"start": [
647
],
"end": [
668
]
}
],
"token_spans": [
{
"start": [
114
],
"end": [
116
]
}
]
} | [
"Tajik Aluminum Company"
] |
SQuAD | Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen. | {
"tokens": [
"Hydrogen",
"production",
"technologies",
"been",
"a",
"significant",
"area",
"of",
"solar",
"chemical",
"research",
"since",
"the",
"1970s",
".",
"Aside",
"from",
"electrolysis",
"driven",
"by",
"photovoltaic",
"or",
"photochemical",
"cells",
",",
"several",
"thermochemical",
"processes",
"have",
"also",
"been",
"explored",
".",
"One",
"such",
"route",
"uses",
"concentrators",
"to",
"split",
"water",
"into",
"oxygen",
"and",
"hydrogen",
"at",
"high",
"temperatures",
"(",
"2,300–2,600",
"°",
"C",
"or",
"4,200–4,700",
"°",
"F",
")",
".",
"Another",
"approach",
"uses",
"the",
"heat",
"from",
"solar",
"concentrators",
"to",
"drive",
"the",
"steam",
"reformation",
"of",
"natural",
"gas",
"thereby",
"increasing",
"the",
"overall",
"hydrogen",
"yield",
"compared",
"to",
"conventional",
"reforming",
"methods",
".",
"Thermochemical",
"cycles",
"characterized",
"by",
"the",
"decomposition",
"and",
"regeneration",
"of",
"reactants",
"present",
"another",
"avenue",
"for",
"hydrogen",
"production",
".",
"The",
"Solzinc",
"process",
"under",
"development",
"at",
"the",
"Weizmann",
"Institute",
"uses",
"a",
"1",
"MW",
"solar",
"furnace",
"to",
"decompose",
"zinc",
"oxide",
"(",
"ZnO",
")",
"at",
"temperatures",
"above",
"1,200",
"°",
"C",
"(",
"2,200",
"°",
"F",
")",
".",
"This",
"initial",
"reaction",
"produces",
"pure",
"zinc",
",",
"which",
"can",
"subsequently",
"be",
"reacted",
"with",
"water",
"to",
"produce",
"hydrogen",
"."
],
"offsets": [
0,
9,
20,
33,
38,
40,
52,
57,
60,
66,
75,
84,
90,
94,
99,
101,
107,
112,
125,
132,
135,
148,
151,
165,
170,
172,
180,
195,
205,
210,
215,
220,
228,
230,
234,
239,
245,
250,
264,
267,
273,
279,
284,
291,
295,
304,
307,
312,
325,
326,
338,
339,
341,
344,
356,
357,
358,
359,
361,
369,
378,
383,
387,
392,
397,
403,
417,
420,
426,
430,
436,
448,
451,
459,
463,
471,
482,
486,
494,
503,
509,
518,
521,
534,
544,
551,
553,
568,
575,
589,
592,
596,
610,
614,
627,
630,
640,
648,
656,
663,
667,
676,
686,
688,
692,
700,
708,
714,
726,
729,
733,
742,
752,
757,
759,
761,
764,
770,
778,
781,
791,
796,
802,
803,
806,
808,
811,
824,
830,
836,
837,
839,
840,
846,
847,
848,
849,
851,
856,
864,
873,
882,
887,
891,
893,
899,
903,
916,
919,
927,
932,
938,
941,
949,
957
]
} | e62f2a4a4d274fe09760df1649720b07 | What is the name of the process under development at the Weizmann Institute? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"process",
"under",
"development",
"at",
"the",
"Weizmann",
"Institute",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
32,
38,
50,
53,
57,
66,
75
]
} | {
"text": [
"The Solzinc process"
],
"char_spans": [
{
"start": [
688
],
"end": [
706
]
}
],
"token_spans": [
{
"start": [
103
],
"end": [
105
]
}
]
} | [
"The Solzinc process"
] |
SQuAD | Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen. | {
"tokens": [
"Hydrogen",
"production",
"technologies",
"been",
"a",
"significant",
"area",
"of",
"solar",
"chemical",
"research",
"since",
"the",
"1970s",
".",
"Aside",
"from",
"electrolysis",
"driven",
"by",
"photovoltaic",
"or",
"photochemical",
"cells",
",",
"several",
"thermochemical",
"processes",
"have",
"also",
"been",
"explored",
".",
"One",
"such",
"route",
"uses",
"concentrators",
"to",
"split",
"water",
"into",
"oxygen",
"and",
"hydrogen",
"at",
"high",
"temperatures",
"(",
"2,300–2,600",
"°",
"C",
"or",
"4,200–4,700",
"°",
"F",
")",
".",
"Another",
"approach",
"uses",
"the",
"heat",
"from",
"solar",
"concentrators",
"to",
"drive",
"the",
"steam",
"reformation",
"of",
"natural",
"gas",
"thereby",
"increasing",
"the",
"overall",
"hydrogen",
"yield",
"compared",
"to",
"conventional",
"reforming",
"methods",
".",
"Thermochemical",
"cycles",
"characterized",
"by",
"the",
"decomposition",
"and",
"regeneration",
"of",
"reactants",
"present",
"another",
"avenue",
"for",
"hydrogen",
"production",
".",
"The",
"Solzinc",
"process",
"under",
"development",
"at",
"the",
"Weizmann",
"Institute",
"uses",
"a",
"1",
"MW",
"solar",
"furnace",
"to",
"decompose",
"zinc",
"oxide",
"(",
"ZnO",
")",
"at",
"temperatures",
"above",
"1,200",
"°",
"C",
"(",
"2,200",
"°",
"F",
")",
".",
"This",
"initial",
"reaction",
"produces",
"pure",
"zinc",
",",
"which",
"can",
"subsequently",
"be",
"reacted",
"with",
"water",
"to",
"produce",
"hydrogen",
"."
],
"offsets": [
0,
9,
20,
33,
38,
40,
52,
57,
60,
66,
75,
84,
90,
94,
99,
101,
107,
112,
125,
132,
135,
148,
151,
165,
170,
172,
180,
195,
205,
210,
215,
220,
228,
230,
234,
239,
245,
250,
264,
267,
273,
279,
284,
291,
295,
304,
307,
312,
325,
326,
338,
339,
341,
344,
356,
357,
358,
359,
361,
369,
378,
383,
387,
392,
397,
403,
417,
420,
426,
430,
436,
448,
451,
459,
463,
471,
482,
486,
494,
503,
509,
518,
521,
534,
544,
551,
553,
568,
575,
589,
592,
596,
610,
614,
627,
630,
640,
648,
656,
663,
667,
676,
686,
688,
692,
700,
708,
714,
726,
729,
733,
742,
752,
757,
759,
761,
764,
770,
778,
781,
791,
796,
802,
803,
806,
808,
811,
824,
830,
836,
837,
839,
840,
846,
847,
848,
849,
851,
856,
864,
873,
882,
887,
891,
893,
899,
903,
916,
919,
927,
932,
938,
941,
949,
957
]
} | 2e63b0d9f19e48bbb6ab77779dec9397 | The Solznic process produces what? | {
"tokens": [
"The",
"Solznic",
"process",
"produces",
"what",
"?"
],
"offsets": [
0,
4,
12,
20,
29,
33
]
} | {
"text": [
"pure zinc"
],
"char_spans": [
{
"start": [
882
],
"end": [
890
]
}
],
"token_spans": [
{
"start": [
141
],
"end": [
142
]
}
]
} | [
"pure zinc"
] |
SQuAD | Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen. | {
"tokens": [
"Hydrogen",
"production",
"technologies",
"been",
"a",
"significant",
"area",
"of",
"solar",
"chemical",
"research",
"since",
"the",
"1970s",
".",
"Aside",
"from",
"electrolysis",
"driven",
"by",
"photovoltaic",
"or",
"photochemical",
"cells",
",",
"several",
"thermochemical",
"processes",
"have",
"also",
"been",
"explored",
".",
"One",
"such",
"route",
"uses",
"concentrators",
"to",
"split",
"water",
"into",
"oxygen",
"and",
"hydrogen",
"at",
"high",
"temperatures",
"(",
"2,300–2,600",
"°",
"C",
"or",
"4,200–4,700",
"°",
"F",
")",
".",
"Another",
"approach",
"uses",
"the",
"heat",
"from",
"solar",
"concentrators",
"to",
"drive",
"the",
"steam",
"reformation",
"of",
"natural",
"gas",
"thereby",
"increasing",
"the",
"overall",
"hydrogen",
"yield",
"compared",
"to",
"conventional",
"reforming",
"methods",
".",
"Thermochemical",
"cycles",
"characterized",
"by",
"the",
"decomposition",
"and",
"regeneration",
"of",
"reactants",
"present",
"another",
"avenue",
"for",
"hydrogen",
"production",
".",
"The",
"Solzinc",
"process",
"under",
"development",
"at",
"the",
"Weizmann",
"Institute",
"uses",
"a",
"1",
"MW",
"solar",
"furnace",
"to",
"decompose",
"zinc",
"oxide",
"(",
"ZnO",
")",
"at",
"temperatures",
"above",
"1,200",
"°",
"C",
"(",
"2,200",
"°",
"F",
")",
".",
"This",
"initial",
"reaction",
"produces",
"pure",
"zinc",
",",
"which",
"can",
"subsequently",
"be",
"reacted",
"with",
"water",
"to",
"produce",
"hydrogen",
"."
],
"offsets": [
0,
9,
20,
33,
38,
40,
52,
57,
60,
66,
75,
84,
90,
94,
99,
101,
107,
112,
125,
132,
135,
148,
151,
165,
170,
172,
180,
195,
205,
210,
215,
220,
228,
230,
234,
239,
245,
250,
264,
267,
273,
279,
284,
291,
295,
304,
307,
312,
325,
326,
338,
339,
341,
344,
356,
357,
358,
359,
361,
369,
378,
383,
387,
392,
397,
403,
417,
420,
426,
430,
436,
448,
451,
459,
463,
471,
482,
486,
494,
503,
509,
518,
521,
534,
544,
551,
553,
568,
575,
589,
592,
596,
610,
614,
627,
630,
640,
648,
656,
663,
667,
676,
686,
688,
692,
700,
708,
714,
726,
729,
733,
742,
752,
757,
759,
761,
764,
770,
778,
781,
791,
796,
802,
803,
806,
808,
811,
824,
830,
836,
837,
839,
840,
846,
847,
848,
849,
851,
856,
864,
873,
882,
887,
891,
893,
899,
903,
916,
919,
927,
932,
938,
941,
949,
957
]
} | e3444ab5c5e64664b5fbfb26dbd42d3d | What has been a main area of solar chemical research since the 1970s? | {
"tokens": [
"What",
"has",
"been",
"a",
"main",
"area",
"of",
"solar",
"chemical",
"research",
"since",
"the",
"1970s",
"?"
],
"offsets": [
0,
5,
9,
14,
16,
21,
26,
29,
35,
44,
53,
59,
63,
68
]
} | {
"text": [
"Hydrogen production technologies"
],
"char_spans": [
{
"start": [
0
],
"end": [
31
]
}
],
"token_spans": [
{
"start": [
0
],
"end": [
2
]
}
]
} | [
"Hydrogen production technologies"
] |
SQuAD | Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen. | {
"tokens": [
"Hydrogen",
"production",
"technologies",
"been",
"a",
"significant",
"area",
"of",
"solar",
"chemical",
"research",
"since",
"the",
"1970s",
".",
"Aside",
"from",
"electrolysis",
"driven",
"by",
"photovoltaic",
"or",
"photochemical",
"cells",
",",
"several",
"thermochemical",
"processes",
"have",
"also",
"been",
"explored",
".",
"One",
"such",
"route",
"uses",
"concentrators",
"to",
"split",
"water",
"into",
"oxygen",
"and",
"hydrogen",
"at",
"high",
"temperatures",
"(",
"2,300–2,600",
"°",
"C",
"or",
"4,200–4,700",
"°",
"F",
")",
".",
"Another",
"approach",
"uses",
"the",
"heat",
"from",
"solar",
"concentrators",
"to",
"drive",
"the",
"steam",
"reformation",
"of",
"natural",
"gas",
"thereby",
"increasing",
"the",
"overall",
"hydrogen",
"yield",
"compared",
"to",
"conventional",
"reforming",
"methods",
".",
"Thermochemical",
"cycles",
"characterized",
"by",
"the",
"decomposition",
"and",
"regeneration",
"of",
"reactants",
"present",
"another",
"avenue",
"for",
"hydrogen",
"production",
".",
"The",
"Solzinc",
"process",
"under",
"development",
"at",
"the",
"Weizmann",
"Institute",
"uses",
"a",
"1",
"MW",
"solar",
"furnace",
"to",
"decompose",
"zinc",
"oxide",
"(",
"ZnO",
")",
"at",
"temperatures",
"above",
"1,200",
"°",
"C",
"(",
"2,200",
"°",
"F",
")",
".",
"This",
"initial",
"reaction",
"produces",
"pure",
"zinc",
",",
"which",
"can",
"subsequently",
"be",
"reacted",
"with",
"water",
"to",
"produce",
"hydrogen",
"."
],
"offsets": [
0,
9,
20,
33,
38,
40,
52,
57,
60,
66,
75,
84,
90,
94,
99,
101,
107,
112,
125,
132,
135,
148,
151,
165,
170,
172,
180,
195,
205,
210,
215,
220,
228,
230,
234,
239,
245,
250,
264,
267,
273,
279,
284,
291,
295,
304,
307,
312,
325,
326,
338,
339,
341,
344,
356,
357,
358,
359,
361,
369,
378,
383,
387,
392,
397,
403,
417,
420,
426,
430,
436,
448,
451,
459,
463,
471,
482,
486,
494,
503,
509,
518,
521,
534,
544,
551,
553,
568,
575,
589,
592,
596,
610,
614,
627,
630,
640,
648,
656,
663,
667,
676,
686,
688,
692,
700,
708,
714,
726,
729,
733,
742,
752,
757,
759,
761,
764,
770,
778,
781,
791,
796,
802,
803,
806,
808,
811,
824,
830,
836,
837,
839,
840,
846,
847,
848,
849,
851,
856,
864,
873,
882,
887,
891,
893,
899,
903,
916,
919,
927,
932,
938,
941,
949,
957
]
} | 92243a31d301402ca78984663a6bb37c | What is one of the thermochemical processes that has been explored besides electrolysis? | {
"tokens": [
"What",
"is",
"one",
"of",
"the",
"thermochemical",
"processes",
"that",
"has",
"been",
"explored",
"besides",
"electrolysis",
"?"
],
"offsets": [
0,
5,
8,
12,
15,
19,
34,
44,
49,
53,
58,
67,
75,
87
]
} | {
"text": [
"uses concentrators to split water into oxygen and hydrogen at high temperatures"
],
"char_spans": [
{
"start": [
245
],
"end": [
323
]
}
],
"token_spans": [
{
"start": [
36
],
"end": [
47
]
}
]
} | [
"uses concentrators to split water into oxygen and hydrogen at high temperatures"
] |
SQuAD | Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen. | {
"tokens": [
"Hydrogen",
"production",
"technologies",
"been",
"a",
"significant",
"area",
"of",
"solar",
"chemical",
"research",
"since",
"the",
"1970s",
".",
"Aside",
"from",
"electrolysis",
"driven",
"by",
"photovoltaic",
"or",
"photochemical",
"cells",
",",
"several",
"thermochemical",
"processes",
"have",
"also",
"been",
"explored",
".",
"One",
"such",
"route",
"uses",
"concentrators",
"to",
"split",
"water",
"into",
"oxygen",
"and",
"hydrogen",
"at",
"high",
"temperatures",
"(",
"2,300–2,600",
"°",
"C",
"or",
"4,200–4,700",
"°",
"F",
")",
".",
"Another",
"approach",
"uses",
"the",
"heat",
"from",
"solar",
"concentrators",
"to",
"drive",
"the",
"steam",
"reformation",
"of",
"natural",
"gas",
"thereby",
"increasing",
"the",
"overall",
"hydrogen",
"yield",
"compared",
"to",
"conventional",
"reforming",
"methods",
".",
"Thermochemical",
"cycles",
"characterized",
"by",
"the",
"decomposition",
"and",
"regeneration",
"of",
"reactants",
"present",
"another",
"avenue",
"for",
"hydrogen",
"production",
".",
"The",
"Solzinc",
"process",
"under",
"development",
"at",
"the",
"Weizmann",
"Institute",
"uses",
"a",
"1",
"MW",
"solar",
"furnace",
"to",
"decompose",
"zinc",
"oxide",
"(",
"ZnO",
")",
"at",
"temperatures",
"above",
"1,200",
"°",
"C",
"(",
"2,200",
"°",
"F",
")",
".",
"This",
"initial",
"reaction",
"produces",
"pure",
"zinc",
",",
"which",
"can",
"subsequently",
"be",
"reacted",
"with",
"water",
"to",
"produce",
"hydrogen",
"."
],
"offsets": [
0,
9,
20,
33,
38,
40,
52,
57,
60,
66,
75,
84,
90,
94,
99,
101,
107,
112,
125,
132,
135,
148,
151,
165,
170,
172,
180,
195,
205,
210,
215,
220,
228,
230,
234,
239,
245,
250,
264,
267,
273,
279,
284,
291,
295,
304,
307,
312,
325,
326,
338,
339,
341,
344,
356,
357,
358,
359,
361,
369,
378,
383,
387,
392,
397,
403,
417,
420,
426,
430,
436,
448,
451,
459,
463,
471,
482,
486,
494,
503,
509,
518,
521,
534,
544,
551,
553,
568,
575,
589,
592,
596,
610,
614,
627,
630,
640,
648,
656,
663,
667,
676,
686,
688,
692,
700,
708,
714,
726,
729,
733,
742,
752,
757,
759,
761,
764,
770,
778,
781,
791,
796,
802,
803,
806,
808,
811,
824,
830,
836,
837,
839,
840,
846,
847,
848,
849,
851,
856,
864,
873,
882,
887,
891,
893,
899,
903,
916,
919,
927,
932,
938,
941,
949,
957
]
} | eaf35833f7894b2cae082c261d0c7bb0 | What is the name of the process being developed by the Weizmann Institute? | {
"tokens": [
"What",
"is",
"the",
"name",
"of",
"the",
"process",
"being",
"developed",
"by",
"the",
"Weizmann",
"Institute",
"?"
],
"offsets": [
0,
5,
8,
12,
17,
20,
24,
32,
38,
48,
51,
55,
64,
73
]
} | {
"text": [
"Solzinc process"
],
"char_spans": [
{
"start": [
692
],
"end": [
706
]
}
],
"token_spans": [
{
"start": [
104
],
"end": [
105
]
}
]
} | [
"Solzinc process"
] |
SQuAD | Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%. | {
"tokens": [
"Phase",
"change",
"materials",
"such",
"as",
"paraffin",
"wax",
"and",
"Glauber",
"'s",
"salt",
"are",
"another",
"thermal",
"storage",
"media",
".",
"These",
"materials",
"are",
"inexpensive",
",",
"readily",
"available",
",",
"and",
"can",
"deliver",
"domestically",
"useful",
"temperatures",
"(",
"approximately",
"64",
"°",
"C",
"or",
"147",
"°",
"F",
")",
".",
"The",
"\"",
"Dover",
"House",
"\"",
"(",
"in",
"Dover",
",",
"Massachusetts",
")",
"was",
"the",
"first",
"to",
"use",
"a",
"Glauber",
"'s",
"salt",
"heating",
"system",
",",
"in",
"1948",
".",
"Solar",
"energy",
"can",
"also",
"be",
"stored",
"at",
"high",
"temperatures",
"using",
"molten",
"salts",
".",
"Salts",
"are",
"an",
"effective",
"storage",
"medium",
"because",
"they",
"are",
"low",
"-",
"cost",
",",
"have",
"a",
"high",
"specific",
"heat",
"capacity",
"and",
"can",
"deliver",
"heat",
"at",
"temperatures",
"compatible",
"with",
"conventional",
"power",
"systems",
".",
"The",
"Solar",
"Two",
"used",
"this",
"method",
"of",
"energy",
"storage",
",",
"allowing",
"it",
"to",
"store",
"1.44",
"terajoules",
"(",
"400,000",
"kWh",
")",
"in",
"its",
"68",
"cubic",
"metres",
"storage",
"tank",
"with",
"an",
"annual",
"storage",
"efficiency",
"of",
"about",
"99",
"%",
"."
],
"offsets": [
0,
6,
13,
23,
28,
31,
40,
44,
48,
55,
58,
63,
67,
75,
83,
91,
96,
98,
104,
114,
118,
129,
131,
139,
148,
150,
154,
158,
166,
179,
186,
199,
200,
214,
217,
218,
220,
223,
227,
228,
229,
230,
232,
236,
237,
243,
248,
250,
251,
254,
259,
261,
274,
276,
280,
284,
290,
293,
297,
299,
306,
309,
314,
322,
328,
330,
333,
337,
339,
345,
352,
356,
361,
364,
371,
374,
379,
392,
398,
405,
410,
412,
418,
422,
425,
435,
443,
450,
458,
463,
467,
470,
471,
475,
477,
482,
484,
489,
498,
503,
512,
516,
520,
528,
533,
536,
549,
560,
565,
578,
584,
591,
593,
597,
603,
607,
612,
617,
624,
627,
634,
641,
643,
652,
655,
658,
664,
669,
680,
681,
689,
692,
694,
697,
701,
704,
710,
717,
725,
730,
735,
738,
745,
753,
764,
767,
773,
775,
776
]
} | 83eddc5244184f1a958f8f07b259bce3 | Paraffin wax is an example of what kind of storage media? | {
"tokens": [
"Paraffin",
"wax",
"is",
"an",
"example",
"of",
"what",
"kind",
"of",
"storage",
"media",
"?"
],
"offsets": [
0,
9,
13,
16,
19,
27,
30,
35,
40,
43,
51,
56
]
} | {
"text": [
"thermal"
],
"char_spans": [
{
"start": [
75
],
"end": [
81
]
}
],
"token_spans": [
{
"start": [
13
],
"end": [
13
]
}
]
} | [
"thermal"
] |
SQuAD | Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%. | {
"tokens": [
"Phase",
"change",
"materials",
"such",
"as",
"paraffin",
"wax",
"and",
"Glauber",
"'s",
"salt",
"are",
"another",
"thermal",
"storage",
"media",
".",
"These",
"materials",
"are",
"inexpensive",
",",
"readily",
"available",
",",
"and",
"can",
"deliver",
"domestically",
"useful",
"temperatures",
"(",
"approximately",
"64",
"°",
"C",
"or",
"147",
"°",
"F",
")",
".",
"The",
"\"",
"Dover",
"House",
"\"",
"(",
"in",
"Dover",
",",
"Massachusetts",
")",
"was",
"the",
"first",
"to",
"use",
"a",
"Glauber",
"'s",
"salt",
"heating",
"system",
",",
"in",
"1948",
".",
"Solar",
"energy",
"can",
"also",
"be",
"stored",
"at",
"high",
"temperatures",
"using",
"molten",
"salts",
".",
"Salts",
"are",
"an",
"effective",
"storage",
"medium",
"because",
"they",
"are",
"low",
"-",
"cost",
",",
"have",
"a",
"high",
"specific",
"heat",
"capacity",
"and",
"can",
"deliver",
"heat",
"at",
"temperatures",
"compatible",
"with",
"conventional",
"power",
"systems",
".",
"The",
"Solar",
"Two",
"used",
"this",
"method",
"of",
"energy",
"storage",
",",
"allowing",
"it",
"to",
"store",
"1.44",
"terajoules",
"(",
"400,000",
"kWh",
")",
"in",
"its",
"68",
"cubic",
"metres",
"storage",
"tank",
"with",
"an",
"annual",
"storage",
"efficiency",
"of",
"about",
"99",
"%",
"."
],
"offsets": [
0,
6,
13,
23,
28,
31,
40,
44,
48,
55,
58,
63,
67,
75,
83,
91,
96,
98,
104,
114,
118,
129,
131,
139,
148,
150,
154,
158,
166,
179,
186,
199,
200,
214,
217,
218,
220,
223,
227,
228,
229,
230,
232,
236,
237,
243,
248,
250,
251,
254,
259,
261,
274,
276,
280,
284,
290,
293,
297,
299,
306,
309,
314,
322,
328,
330,
333,
337,
339,
345,
352,
356,
361,
364,
371,
374,
379,
392,
398,
405,
410,
412,
418,
422,
425,
435,
443,
450,
458,
463,
467,
470,
471,
475,
477,
482,
484,
489,
498,
503,
512,
516,
520,
528,
533,
536,
549,
560,
565,
578,
584,
591,
593,
597,
603,
607,
612,
617,
624,
627,
634,
641,
643,
652,
655,
658,
664,
669,
680,
681,
689,
692,
694,
697,
701,
704,
710,
717,
725,
730,
735,
738,
745,
753,
764,
767,
773,
775,
776
]
} | 8748f401bb7c4055a34c43f5c7e95051 | The first Glauber's salt heating system was first used where? | {
"tokens": [
"The",
"first",
"Glauber",
"'s",
"salt",
"heating",
"system",
"was",
"first",
"used",
"where",
"?"
],
"offsets": [
0,
4,
10,
17,
20,
25,
33,
40,
44,
50,
55,
60
]
} | {
"text": [
"The \"Dover House\""
],
"char_spans": [
{
"start": [
232
],
"end": [
248
]
}
],
"token_spans": [
{
"start": [
42
],
"end": [
46
]
}
]
} | [
"The \"Dover House\""
] |
SQuAD | Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%. | {
"tokens": [
"Phase",
"change",
"materials",
"such",
"as",
"paraffin",
"wax",
"and",
"Glauber",
"'s",
"salt",
"are",
"another",
"thermal",
"storage",
"media",
".",
"These",
"materials",
"are",
"inexpensive",
",",
"readily",
"available",
",",
"and",
"can",
"deliver",
"domestically",
"useful",
"temperatures",
"(",
"approximately",
"64",
"°",
"C",
"or",
"147",
"°",
"F",
")",
".",
"The",
"\"",
"Dover",
"House",
"\"",
"(",
"in",
"Dover",
",",
"Massachusetts",
")",
"was",
"the",
"first",
"to",
"use",
"a",
"Glauber",
"'s",
"salt",
"heating",
"system",
",",
"in",
"1948",
".",
"Solar",
"energy",
"can",
"also",
"be",
"stored",
"at",
"high",
"temperatures",
"using",
"molten",
"salts",
".",
"Salts",
"are",
"an",
"effective",
"storage",
"medium",
"because",
"they",
"are",
"low",
"-",
"cost",
",",
"have",
"a",
"high",
"specific",
"heat",
"capacity",
"and",
"can",
"deliver",
"heat",
"at",
"temperatures",
"compatible",
"with",
"conventional",
"power",
"systems",
".",
"The",
"Solar",
"Two",
"used",
"this",
"method",
"of",
"energy",
"storage",
",",
"allowing",
"it",
"to",
"store",
"1.44",
"terajoules",
"(",
"400,000",
"kWh",
")",
"in",
"its",
"68",
"cubic",
"metres",
"storage",
"tank",
"with",
"an",
"annual",
"storage",
"efficiency",
"of",
"about",
"99",
"%",
"."
],
"offsets": [
0,
6,
13,
23,
28,
31,
40,
44,
48,
55,
58,
63,
67,
75,
83,
91,
96,
98,
104,
114,
118,
129,
131,
139,
148,
150,
154,
158,
166,
179,
186,
199,
200,
214,
217,
218,
220,
223,
227,
228,
229,
230,
232,
236,
237,
243,
248,
250,
251,
254,
259,
261,
274,
276,
280,
284,
290,
293,
297,
299,
306,
309,
314,
322,
328,
330,
333,
337,
339,
345,
352,
356,
361,
364,
371,
374,
379,
392,
398,
405,
410,
412,
418,
422,
425,
435,
443,
450,
458,
463,
467,
470,
471,
475,
477,
482,
484,
489,
498,
503,
512,
516,
520,
528,
533,
536,
549,
560,
565,
578,
584,
591,
593,
597,
603,
607,
612,
617,
624,
627,
634,
641,
643,
652,
655,
658,
664,
669,
680,
681,
689,
692,
694,
697,
701,
704,
710,
717,
725,
730,
735,
738,
745,
753,
764,
767,
773,
775,
776
]
} | 715824755bd24cd99c65fa85c121edf4 | What are some examples of phase change materials? | {
"tokens": [
"What",
"are",
"some",
"examples",
"of",
"phase",
"change",
"materials",
"?"
],
"offsets": [
0,
5,
9,
14,
23,
26,
32,
39,
48
]
} | {
"text": [
"paraffin wax and Glauber's salt"
],
"char_spans": [
{
"start": [
31
],
"end": [
61
]
}
],
"token_spans": [
{
"start": [
5
],
"end": [
10
]
}
]
} | [
"paraffin wax and Glauber's salt"
] |
SQuAD | Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%. | {
"tokens": [
"Phase",
"change",
"materials",
"such",
"as",
"paraffin",
"wax",
"and",
"Glauber",
"'s",
"salt",
"are",
"another",
"thermal",
"storage",
"media",
".",
"These",
"materials",
"are",
"inexpensive",
",",
"readily",
"available",
",",
"and",
"can",
"deliver",
"domestically",
"useful",
"temperatures",
"(",
"approximately",
"64",
"°",
"C",
"or",
"147",
"°",
"F",
")",
".",
"The",
"\"",
"Dover",
"House",
"\"",
"(",
"in",
"Dover",
",",
"Massachusetts",
")",
"was",
"the",
"first",
"to",
"use",
"a",
"Glauber",
"'s",
"salt",
"heating",
"system",
",",
"in",
"1948",
".",
"Solar",
"energy",
"can",
"also",
"be",
"stored",
"at",
"high",
"temperatures",
"using",
"molten",
"salts",
".",
"Salts",
"are",
"an",
"effective",
"storage",
"medium",
"because",
"they",
"are",
"low",
"-",
"cost",
",",
"have",
"a",
"high",
"specific",
"heat",
"capacity",
"and",
"can",
"deliver",
"heat",
"at",
"temperatures",
"compatible",
"with",
"conventional",
"power",
"systems",
".",
"The",
"Solar",
"Two",
"used",
"this",
"method",
"of",
"energy",
"storage",
",",
"allowing",
"it",
"to",
"store",
"1.44",
"terajoules",
"(",
"400,000",
"kWh",
")",
"in",
"its",
"68",
"cubic",
"metres",
"storage",
"tank",
"with",
"an",
"annual",
"storage",
"efficiency",
"of",
"about",
"99",
"%",
"."
],
"offsets": [
0,
6,
13,
23,
28,
31,
40,
44,
48,
55,
58,
63,
67,
75,
83,
91,
96,
98,
104,
114,
118,
129,
131,
139,
148,
150,
154,
158,
166,
179,
186,
199,
200,
214,
217,
218,
220,
223,
227,
228,
229,
230,
232,
236,
237,
243,
248,
250,
251,
254,
259,
261,
274,
276,
280,
284,
290,
293,
297,
299,
306,
309,
314,
322,
328,
330,
333,
337,
339,
345,
352,
356,
361,
364,
371,
374,
379,
392,
398,
405,
410,
412,
418,
422,
425,
435,
443,
450,
458,
463,
467,
470,
471,
475,
477,
482,
484,
489,
498,
503,
512,
516,
520,
528,
533,
536,
549,
560,
565,
578,
584,
591,
593,
597,
603,
607,
612,
617,
624,
627,
634,
641,
643,
652,
655,
658,
664,
669,
680,
681,
689,
692,
694,
697,
701,
704,
710,
717,
725,
730,
735,
738,
745,
753,
764,
767,
773,
775,
776
]
} | 65fe41b0a23f4654b051e50f7fb4cc46 | What are the approximate temperatures that can be delivered by phase change materials? | {
"tokens": [
"What",
"are",
"the",
"approximate",
"temperatures",
"that",
"can",
"be",
"delivered",
"by",
"phase",
"change",
"materials",
"?"
],
"offsets": [
0,
5,
9,
13,
25,
38,
43,
47,
50,
60,
63,
69,
76,
85
]
} | {
"text": [
"64 °C or 147 °F"
],
"char_spans": [
{
"start": [
214
],
"end": [
228
]
}
],
"token_spans": [
{
"start": [
33
],
"end": [
39
]
}
]
} | [
"64 °C or 147 °F"
] |
SQuAD | Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%. | {
"tokens": [
"Phase",
"change",
"materials",
"such",
"as",
"paraffin",
"wax",
"and",
"Glauber",
"'s",
"salt",
"are",
"another",
"thermal",
"storage",
"media",
".",
"These",
"materials",
"are",
"inexpensive",
",",
"readily",
"available",
",",
"and",
"can",
"deliver",
"domestically",
"useful",
"temperatures",
"(",
"approximately",
"64",
"°",
"C",
"or",
"147",
"°",
"F",
")",
".",
"The",
"\"",
"Dover",
"House",
"\"",
"(",
"in",
"Dover",
",",
"Massachusetts",
")",
"was",
"the",
"first",
"to",
"use",
"a",
"Glauber",
"'s",
"salt",
"heating",
"system",
",",
"in",
"1948",
".",
"Solar",
"energy",
"can",
"also",
"be",
"stored",
"at",
"high",
"temperatures",
"using",
"molten",
"salts",
".",
"Salts",
"are",
"an",
"effective",
"storage",
"medium",
"because",
"they",
"are",
"low",
"-",
"cost",
",",
"have",
"a",
"high",
"specific",
"heat",
"capacity",
"and",
"can",
"deliver",
"heat",
"at",
"temperatures",
"compatible",
"with",
"conventional",
"power",
"systems",
".",
"The",
"Solar",
"Two",
"used",
"this",
"method",
"of",
"energy",
"storage",
",",
"allowing",
"it",
"to",
"store",
"1.44",
"terajoules",
"(",
"400,000",
"kWh",
")",
"in",
"its",
"68",
"cubic",
"metres",
"storage",
"tank",
"with",
"an",
"annual",
"storage",
"efficiency",
"of",
"about",
"99",
"%",
"."
],
"offsets": [
0,
6,
13,
23,
28,
31,
40,
44,
48,
55,
58,
63,
67,
75,
83,
91,
96,
98,
104,
114,
118,
129,
131,
139,
148,
150,
154,
158,
166,
179,
186,
199,
200,
214,
217,
218,
220,
223,
227,
228,
229,
230,
232,
236,
237,
243,
248,
250,
251,
254,
259,
261,
274,
276,
280,
284,
290,
293,
297,
299,
306,
309,
314,
322,
328,
330,
333,
337,
339,
345,
352,
356,
361,
364,
371,
374,
379,
392,
398,
405,
410,
412,
418,
422,
425,
435,
443,
450,
458,
463,
467,
470,
471,
475,
477,
482,
484,
489,
498,
503,
512,
516,
520,
528,
533,
536,
549,
560,
565,
578,
584,
591,
593,
597,
603,
607,
612,
617,
624,
627,
634,
641,
643,
652,
655,
658,
664,
669,
680,
681,
689,
692,
694,
697,
701,
704,
710,
717,
725,
730,
735,
738,
745,
753,
764,
767,
773,
775,
776
]
} | 8d147afd119347bebafb4a78831b3bef | What was the name of the heating system that first used Glauber's salt? | {
"tokens": [
"What",
"was",
"the",
"name",
"of",
"the",
"heating",
"system",
"that",
"first",
"used",
"Glauber",
"'s",
"salt",
"?"
],
"offsets": [
0,
5,
9,
13,
18,
21,
25,
33,
40,
45,
51,
56,
63,
66,
70
]
} | {
"text": [
"Dover House"
],
"char_spans": [
{
"start": [
237
],
"end": [
247
]
}
],
"token_spans": [
{
"start": [
44
],
"end": [
45
]
}
]
} | [
"Dover House"
] |
SQuAD | Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%. | {
"tokens": [
"Phase",
"change",
"materials",
"such",
"as",
"paraffin",
"wax",
"and",
"Glauber",
"'s",
"salt",
"are",
"another",
"thermal",
"storage",
"media",
".",
"These",
"materials",
"are",
"inexpensive",
",",
"readily",
"available",
",",
"and",
"can",
"deliver",
"domestically",
"useful",
"temperatures",
"(",
"approximately",
"64",
"°",
"C",
"or",
"147",
"°",
"F",
")",
".",
"The",
"\"",
"Dover",
"House",
"\"",
"(",
"in",
"Dover",
",",
"Massachusetts",
")",
"was",
"the",
"first",
"to",
"use",
"a",
"Glauber",
"'s",
"salt",
"heating",
"system",
",",
"in",
"1948",
".",
"Solar",
"energy",
"can",
"also",
"be",
"stored",
"at",
"high",
"temperatures",
"using",
"molten",
"salts",
".",
"Salts",
"are",
"an",
"effective",
"storage",
"medium",
"because",
"they",
"are",
"low",
"-",
"cost",
",",
"have",
"a",
"high",
"specific",
"heat",
"capacity",
"and",
"can",
"deliver",
"heat",
"at",
"temperatures",
"compatible",
"with",
"conventional",
"power",
"systems",
".",
"The",
"Solar",
"Two",
"used",
"this",
"method",
"of",
"energy",
"storage",
",",
"allowing",
"it",
"to",
"store",
"1.44",
"terajoules",
"(",
"400,000",
"kWh",
")",
"in",
"its",
"68",
"cubic",
"metres",
"storage",
"tank",
"with",
"an",
"annual",
"storage",
"efficiency",
"of",
"about",
"99",
"%",
"."
],
"offsets": [
0,
6,
13,
23,
28,
31,
40,
44,
48,
55,
58,
63,
67,
75,
83,
91,
96,
98,
104,
114,
118,
129,
131,
139,
148,
150,
154,
158,
166,
179,
186,
199,
200,
214,
217,
218,
220,
223,
227,
228,
229,
230,
232,
236,
237,
243,
248,
250,
251,
254,
259,
261,
274,
276,
280,
284,
290,
293,
297,
299,
306,
309,
314,
322,
328,
330,
333,
337,
339,
345,
352,
356,
361,
364,
371,
374,
379,
392,
398,
405,
410,
412,
418,
422,
425,
435,
443,
450,
458,
463,
467,
470,
471,
475,
477,
482,
484,
489,
498,
503,
512,
516,
520,
528,
533,
536,
549,
560,
565,
578,
584,
591,
593,
597,
603,
607,
612,
617,
624,
627,
634,
641,
643,
652,
655,
658,
664,
669,
680,
681,
689,
692,
694,
697,
701,
704,
710,
717,
725,
730,
735,
738,
745,
753,
764,
767,
773,
775,
776
]
} | c6e9d55ab9bc485ab588411e15f6323c | Why are salts good for thermal storage? | {
"tokens": [
"Why",
"are",
"salts",
"good",
" ",
"for",
"thermal",
"storage",
"?"
],
"offsets": [
0,
4,
8,
14,
19,
20,
24,
32,
39
]
} | {
"text": [
"they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems"
],
"char_spans": [
{
"start": [
458
],
"end": [
590
]
}
],
"token_spans": [
{
"start": [
88
],
"end": [
110
]
}
]
} | [
"they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems"
] |
SQuAD | Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%. | {
"tokens": [
"Phase",
"change",
"materials",
"such",
"as",
"paraffin",
"wax",
"and",
"Glauber",
"'s",
"salt",
"are",
"another",
"thermal",
"storage",
"media",
".",
"These",
"materials",
"are",
"inexpensive",
",",
"readily",
"available",
",",
"and",
"can",
"deliver",
"domestically",
"useful",
"temperatures",
"(",
"approximately",
"64",
"°",
"C",
"or",
"147",
"°",
"F",
")",
".",
"The",
"\"",
"Dover",
"House",
"\"",
"(",
"in",
"Dover",
",",
"Massachusetts",
")",
"was",
"the",
"first",
"to",
"use",
"a",
"Glauber",
"'s",
"salt",
"heating",
"system",
",",
"in",
"1948",
".",
"Solar",
"energy",
"can",
"also",
"be",
"stored",
"at",
"high",
"temperatures",
"using",
"molten",
"salts",
".",
"Salts",
"are",
"an",
"effective",
"storage",
"medium",
"because",
"they",
"are",
"low",
"-",
"cost",
",",
"have",
"a",
"high",
"specific",
"heat",
"capacity",
"and",
"can",
"deliver",
"heat",
"at",
"temperatures",
"compatible",
"with",
"conventional",
"power",
"systems",
".",
"The",
"Solar",
"Two",
"used",
"this",
"method",
"of",
"energy",
"storage",
",",
"allowing",
"it",
"to",
"store",
"1.44",
"terajoules",
"(",
"400,000",
"kWh",
")",
"in",
"its",
"68",
"cubic",
"metres",
"storage",
"tank",
"with",
"an",
"annual",
"storage",
"efficiency",
"of",
"about",
"99",
"%",
"."
],
"offsets": [
0,
6,
13,
23,
28,
31,
40,
44,
48,
55,
58,
63,
67,
75,
83,
91,
96,
98,
104,
114,
118,
129,
131,
139,
148,
150,
154,
158,
166,
179,
186,
199,
200,
214,
217,
218,
220,
223,
227,
228,
229,
230,
232,
236,
237,
243,
248,
250,
251,
254,
259,
261,
274,
276,
280,
284,
290,
293,
297,
299,
306,
309,
314,
322,
328,
330,
333,
337,
339,
345,
352,
356,
361,
364,
371,
374,
379,
392,
398,
405,
410,
412,
418,
422,
425,
435,
443,
450,
458,
463,
467,
470,
471,
475,
477,
482,
484,
489,
498,
503,
512,
516,
520,
528,
533,
536,
549,
560,
565,
578,
584,
591,
593,
597,
603,
607,
612,
617,
624,
627,
634,
641,
643,
652,
655,
658,
664,
669,
680,
681,
689,
692,
694,
697,
701,
704,
710,
717,
725,
730,
735,
738,
745,
753,
764,
767,
773,
775,
776
]
} | 55baad8273ac4d5884621e8756691f1a | How much energy was the Solar Two able to store using salts? | {
"tokens": [
"How",
"much",
"energy",
"was",
"the",
"Solar",
"Two",
"able",
"to",
"store",
"using",
"salts",
"?"
],
"offsets": [
0,
4,
9,
16,
20,
24,
30,
34,
39,
42,
48,
54,
59
]
} | {
"text": [
"1.44 terajoules (400,000 kWh)"
],
"char_spans": [
{
"start": [
664
],
"end": [
692
]
}
],
"token_spans": [
{
"start": [
126
],
"end": [
131
]
}
]
} | [
"1.44 terajoules (400,000 kWh)"
] |
SQuAD | Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect. | {
"tokens": [
"Solar",
"power",
"is",
"the",
"conversion",
"of",
"sunlight",
"into",
"electricity",
",",
"either",
"directly",
"using",
"photovoltaics",
"(",
"PV",
")",
",",
"or",
"indirectly",
"using",
"concentrated",
"solar",
"power",
"(",
"CSP",
")",
".",
"CSP",
"systems",
"use",
"lenses",
"or",
"mirrors",
"and",
"tracking",
"systems",
"to",
"focus",
"a",
"large",
"area",
"of",
"sunlight",
"into",
"a",
"small",
"beam",
".",
"PV",
"converts",
"light",
"into",
"electric",
"current",
"using",
"the",
"photoelectric",
"effect",
"."
],
"offsets": [
0,
6,
12,
15,
19,
30,
33,
42,
47,
58,
60,
67,
76,
82,
96,
97,
99,
100,
102,
105,
116,
122,
135,
141,
147,
148,
151,
152,
154,
158,
166,
170,
177,
180,
188,
192,
201,
209,
212,
218,
220,
226,
231,
234,
243,
248,
250,
256,
260,
262,
265,
274,
280,
285,
294,
302,
308,
312,
326,
332
]
} | 9e230dfd77084baab3dfb50599bb45bf | What is solar power? | {
"tokens": [
"What",
"is",
"solar",
"power",
"?"
],
"offsets": [
0,
5,
8,
14,
19
]
} | {
"text": [
"conversion of sunlight into electricity"
],
"char_spans": [
{
"start": [
19
],
"end": [
57
]
}
],
"token_spans": [
{
"start": [
4
],
"end": [
8
]
}
]
} | [
"conversion of sunlight into electricity"
] |
SQuAD | Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect. | {
"tokens": [
"Solar",
"power",
"is",
"the",
"conversion",
"of",
"sunlight",
"into",
"electricity",
",",
"either",
"directly",
"using",
"photovoltaics",
"(",
"PV",
")",
",",
"or",
"indirectly",
"using",
"concentrated",
"solar",
"power",
"(",
"CSP",
")",
".",
"CSP",
"systems",
"use",
"lenses",
"or",
"mirrors",
"and",
"tracking",
"systems",
"to",
"focus",
"a",
"large",
"area",
"of",
"sunlight",
"into",
"a",
"small",
"beam",
".",
"PV",
"converts",
"light",
"into",
"electric",
"current",
"using",
"the",
"photoelectric",
"effect",
"."
],
"offsets": [
0,
6,
12,
15,
19,
30,
33,
42,
47,
58,
60,
67,
76,
82,
96,
97,
99,
100,
102,
105,
116,
122,
135,
141,
147,
148,
151,
152,
154,
158,
166,
170,
177,
180,
188,
192,
201,
209,
212,
218,
220,
226,
231,
234,
243,
248,
250,
256,
260,
262,
265,
274,
280,
285,
294,
302,
308,
312,
326,
332
]
} | a63562a9d8e945e69d041f643c8872b4 | How is sunlight converted into electricity? | {
"tokens": [
"How",
"is",
"sunlight",
"converted",
"into",
"electricity",
"?"
],
"offsets": [
0,
4,
7,
16,
26,
31,
42
]
} | {
"text": [
"either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP)"
],
"char_spans": [
{
"start": [
60
],
"end": [
151
]
}
],
"token_spans": [
{
"start": [
10
],
"end": [
26
]
}
]
} | [
"either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP)"
] |
SQuAD | Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect. | {
"tokens": [
"Solar",
"power",
"is",
"the",
"conversion",
"of",
"sunlight",
"into",
"electricity",
",",
"either",
"directly",
"using",
"photovoltaics",
"(",
"PV",
")",
",",
"or",
"indirectly",
"using",
"concentrated",
"solar",
"power",
"(",
"CSP",
")",
".",
"CSP",
"systems",
"use",
"lenses",
"or",
"mirrors",
"and",
"tracking",
"systems",
"to",
"focus",
"a",
"large",
"area",
"of",
"sunlight",
"into",
"a",
"small",
"beam",
".",
"PV",
"converts",
"light",
"into",
"electric",
"current",
"using",
"the",
"photoelectric",
"effect",
"."
],
"offsets": [
0,
6,
12,
15,
19,
30,
33,
42,
47,
58,
60,
67,
76,
82,
96,
97,
99,
100,
102,
105,
116,
122,
135,
141,
147,
148,
151,
152,
154,
158,
166,
170,
177,
180,
188,
192,
201,
209,
212,
218,
220,
226,
231,
234,
243,
248,
250,
256,
260,
262,
265,
274,
280,
285,
294,
302,
308,
312,
326,
332
]
} | f6710fb63c2c40a1af0c1b55d2b5d459 | What does a concentrated solar power system use? | {
"tokens": [
"What",
"does",
"a",
"concentrated",
"solar",
"power",
"system",
"use",
"?"
],
"offsets": [
0,
5,
10,
12,
25,
31,
37,
44,
47
]
} | {
"text": [
"lenses or mirrors and tracking systems"
],
"char_spans": [
{
"start": [
170
],
"end": [
207
]
}
],
"token_spans": [
{
"start": [
31
],
"end": [
36
]
}
]
} | [
"lenses or mirrors and tracking systems"
] |
SQuAD | Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect. | {
"tokens": [
"Solar",
"power",
"is",
"the",
"conversion",
"of",
"sunlight",
"into",
"electricity",
",",
"either",
"directly",
"using",
"photovoltaics",
"(",
"PV",
")",
",",
"or",
"indirectly",
"using",
"concentrated",
"solar",
"power",
"(",
"CSP",
")",
".",
"CSP",
"systems",
"use",
"lenses",
"or",
"mirrors",
"and",
"tracking",
"systems",
"to",
"focus",
"a",
"large",
"area",
"of",
"sunlight",
"into",
"a",
"small",
"beam",
".",
"PV",
"converts",
"light",
"into",
"electric",
"current",
"using",
"the",
"photoelectric",
"effect",
"."
],
"offsets": [
0,
6,
12,
15,
19,
30,
33,
42,
47,
58,
60,
67,
76,
82,
96,
97,
99,
100,
102,
105,
116,
122,
135,
141,
147,
148,
151,
152,
154,
158,
166,
170,
177,
180,
188,
192,
201,
209,
212,
218,
220,
226,
231,
234,
243,
248,
250,
256,
260,
262,
265,
274,
280,
285,
294,
302,
308,
312,
326,
332
]
} | 8af9af98003a4c178970c16b2b2aed3e | What is the purpose of a concentrated solar power system? | {
"tokens": [
"What",
"is",
"the",
"purpose",
"of",
"a",
"concentrated",
"solar",
"power",
"system",
"?"
],
"offsets": [
0,
5,
8,
12,
20,
23,
25,
38,
44,
50,
56
]
} | {
"text": [
"focus a large area of sunlight into a small beam"
],
"char_spans": [
{
"start": [
212
],
"end": [
259
]
}
],
"token_spans": [
{
"start": [
38
],
"end": [
47
]
}
]
} | [
"focus a large area of sunlight into a small beam"
] |
SQuAD | Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect. | {
"tokens": [
"Solar",
"power",
"is",
"the",
"conversion",
"of",
"sunlight",
"into",
"electricity",
",",
"either",
"directly",
"using",
"photovoltaics",
"(",
"PV",
")",
",",
"or",
"indirectly",
"using",
"concentrated",
"solar",
"power",
"(",
"CSP",
")",
".",
"CSP",
"systems",
"use",
"lenses",
"or",
"mirrors",
"and",
"tracking",
"systems",
"to",
"focus",
"a",
"large",
"area",
"of",
"sunlight",
"into",
"a",
"small",
"beam",
".",
"PV",
"converts",
"light",
"into",
"electric",
"current",
"using",
"the",
"photoelectric",
"effect",
"."
],
"offsets": [
0,
6,
12,
15,
19,
30,
33,
42,
47,
58,
60,
67,
76,
82,
96,
97,
99,
100,
102,
105,
116,
122,
135,
141,
147,
148,
151,
152,
154,
158,
166,
170,
177,
180,
188,
192,
201,
209,
212,
218,
220,
226,
231,
234,
243,
248,
250,
256,
260,
262,
265,
274,
280,
285,
294,
302,
308,
312,
326,
332
]
} | e079f2650e2840cf857d6b0d9149b7b0 | What method does the photovoltaics system use to turn light into electricity? | {
"tokens": [
"What",
"method",
"does",
"the",
"photovoltaics",
"system",
"use",
"to",
"turn",
"light",
"into",
"electricity",
"?"
],
"offsets": [
0,
5,
12,
17,
21,
35,
42,
46,
49,
54,
60,
65,
76
]
} | {
"text": [
"photoelectric effect"
],
"char_spans": [
{
"start": [
312
],
"end": [
331
]
}
],
"token_spans": [
{
"start": [
57
],
"end": [
58
]
}
]
} | [
"photoelectric effect"
] |
SQuAD | Beginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum. | {
"tokens": [
"Beginning",
"with",
"the",
"surge",
"in",
"coal",
"use",
"which",
"accompanied",
"the",
"Industrial",
"Revolution",
",",
"energy",
"consumption",
"has",
"steadily",
"transitioned",
"from",
"wood",
"and",
"biomass",
"to",
"fossil",
"fuels",
".",
"The",
"early",
"development",
"of",
"solar",
"technologies",
"starting",
"in",
"the",
"1860s",
"was",
"driven",
"by",
"an",
"expectation",
"that",
"coal",
"would",
"soon",
"become",
"scarce",
".",
"However",
",",
"development",
"of",
"solar",
"technologies",
"stagnated",
"in",
"the",
"early",
"20th",
"century",
"in",
"the",
"face",
"of",
"the",
"increasing",
"availability",
",",
"economy",
",",
"and",
"utility",
"of",
"coal",
"and",
"petroleum",
"."
],
"offsets": [
0,
10,
15,
19,
25,
28,
33,
37,
43,
55,
59,
70,
80,
82,
89,
101,
105,
114,
127,
132,
137,
141,
149,
152,
159,
164,
166,
170,
176,
188,
191,
197,
210,
219,
222,
226,
232,
236,
243,
246,
249,
261,
266,
271,
277,
282,
289,
295,
297,
304,
306,
318,
321,
327,
340,
350,
353,
357,
363,
368,
376,
379,
383,
388,
391,
395,
406,
418,
420,
427,
429,
433,
441,
444,
449,
453,
462
]
} | d84e11a6e36b4e739f16aeb2473af37f | Why was solar technology developed in the 1860s? | {
"tokens": [
"Why",
"was",
"solar",
"technology",
"developed",
"in",
"the",
"1860s",
"?"
],
"offsets": [
0,
4,
8,
14,
25,
35,
38,
42,
47
]
} | {
"text": [
"driven by an expectation that coal would soon become scarce"
],
"char_spans": [
{
"start": [
236
],
"end": [
294
]
}
],
"token_spans": [
{
"start": [
37
],
"end": [
46
]
}
]
} | [
"driven by an expectation that coal would soon become scarce"
] |
SQuAD | Beginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum. | {
"tokens": [
"Beginning",
"with",
"the",
"surge",
"in",
"coal",
"use",
"which",
"accompanied",
"the",
"Industrial",
"Revolution",
",",
"energy",
"consumption",
"has",
"steadily",
"transitioned",
"from",
"wood",
"and",
"biomass",
"to",
"fossil",
"fuels",
".",
"The",
"early",
"development",
"of",
"solar",
"technologies",
"starting",
"in",
"the",
"1860s",
"was",
"driven",
"by",
"an",
"expectation",
"that",
"coal",
"would",
"soon",
"become",
"scarce",
".",
"However",
",",
"development",
"of",
"solar",
"technologies",
"stagnated",
"in",
"the",
"early",
"20th",
"century",
"in",
"the",
"face",
"of",
"the",
"increasing",
"availability",
",",
"economy",
",",
"and",
"utility",
"of",
"coal",
"and",
"petroleum",
"."
],
"offsets": [
0,
10,
15,
19,
25,
28,
33,
37,
43,
55,
59,
70,
80,
82,
89,
101,
105,
114,
127,
132,
137,
141,
149,
152,
159,
164,
166,
170,
176,
188,
191,
197,
210,
219,
222,
226,
232,
236,
243,
246,
249,
261,
266,
271,
277,
282,
289,
295,
297,
304,
306,
318,
321,
327,
340,
350,
353,
357,
363,
368,
376,
379,
383,
388,
391,
395,
406,
418,
420,
427,
429,
433,
441,
444,
449,
453,
462
]
} | 57bec4264cf14a838db6c42e0ce993af | What slowed the development of solar technologies in the early 20th century? | {
"tokens": [
"What",
"slowed",
"the",
"development",
"of",
"solar",
"technologies",
"in",
"the",
"early",
"20th",
"century",
"?"
],
"offsets": [
0,
5,
12,
16,
28,
31,
37,
50,
53,
57,
63,
68,
75
]
} | {
"text": [
"increasing availability, economy, and utility of coal and petroleum"
],
"char_spans": [
{
"start": [
395
],
"end": [
461
]
}
],
"token_spans": [
{
"start": [
65
],
"end": [
75
]
}
]
} | [
"increasing availability, economy, and utility of coal and petroleum"
] |
SQuAD | Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from a fossil fuel source and can also convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical. A variety of fuels can be produced by artificial photosynthesis. The multielectron catalytic chemistry involved in making carbon-based fuels (such as methanol) from reduction of carbon dioxide is challenging; a feasible alternative is hydrogen production from protons, though use of water as the source of electrons (as plants do) requires mastering the multielectron oxidation of two water molecules to molecular oxygen. Some have envisaged working solar fuel plants in coastal metropolitan areas by 2050 – the splitting of sea water providing hydrogen to be run through adjacent fuel-cell electric power plants and the pure water by-product going directly into the municipal water system. Another vision involves all human structures covering the earth's surface (i.e., roads, vehicles and buildings) doing photosynthesis more efficiently than plants. | {
"tokens": [
"Solar",
"chemical",
"processes",
"use",
"solar",
"energy",
"to",
"drive",
"chemical",
"reactions",
".",
"These",
"processes",
"offset",
"energy",
"that",
"would",
"otherwise",
"come",
"from",
"a",
"fossil",
"fuel",
"source",
"and",
"can",
"also",
"convert",
"solar",
"energy",
"into",
"storable",
"and",
"transportable",
"fuels",
".",
"Solar",
"induced",
"chemical",
"reactions",
"can",
"be",
"divided",
"into",
"thermochemical",
"or",
"photochemical",
".",
"A",
"variety",
"of",
"fuels",
"can",
"be",
"produced",
"by",
"artificial",
"photosynthesis",
".",
"The",
"multielectron",
"catalytic",
"chemistry",
"involved",
"in",
"making",
"carbon",
"-",
"based",
"fuels",
"(",
"such",
"as",
"methanol",
")",
"from",
"reduction",
"of",
"carbon",
"dioxide",
"is",
"challenging",
";",
"a",
"feasible",
"alternative",
"is",
"hydrogen",
"production",
"from",
"protons",
",",
"though",
"use",
"of",
"water",
"as",
"the",
"source",
"of",
"electrons",
"(",
"as",
"plants",
"do",
")",
"requires",
"mastering",
"the",
"multielectron",
"oxidation",
"of",
"two",
"water",
"molecules",
"to",
"molecular",
"oxygen",
".",
"Some",
"have",
"envisaged",
"working",
"solar",
"fuel",
"plants",
"in",
"coastal",
"metropolitan",
"areas",
"by",
"2050",
"–",
"the",
"splitting",
"of",
"sea",
"water",
"providing",
"hydrogen",
"to",
"be",
"run",
"through",
"adjacent",
"fuel",
"-",
"cell",
"electric",
"power",
"plants",
"and",
"the",
"pure",
"water",
"by",
"-",
"product",
"going",
"directly",
"into",
"the",
"municipal",
"water",
"system",
".",
"Another",
"vision",
"involves",
"all",
"human",
"structures",
"covering",
"the",
"earth",
"'s",
"surface",
"(",
"i.e.",
",",
"roads",
",",
"vehicles",
"and",
"buildings",
")",
"doing",
"photosynthesis",
"more",
"efficiently",
"than",
"plants",
"."
],
"offsets": [
0,
6,
15,
25,
29,
35,
42,
45,
51,
60,
69,
71,
77,
87,
94,
101,
106,
112,
122,
127,
132,
134,
141,
146,
153,
157,
161,
166,
174,
180,
187,
192,
201,
205,
219,
224,
226,
232,
240,
249,
259,
263,
266,
274,
279,
294,
297,
310,
312,
314,
322,
325,
331,
335,
338,
347,
350,
361,
375,
377,
381,
395,
405,
415,
424,
427,
434,
440,
441,
447,
453,
454,
459,
462,
470,
472,
477,
487,
490,
497,
505,
508,
519,
521,
523,
532,
544,
547,
556,
567,
572,
579,
581,
588,
592,
595,
601,
604,
608,
615,
618,
628,
629,
632,
639,
641,
643,
652,
662,
666,
680,
690,
693,
697,
703,
713,
716,
726,
732,
734,
739,
744,
754,
762,
768,
773,
780,
783,
791,
804,
810,
813,
818,
821,
825,
835,
838,
842,
848,
858,
867,
870,
873,
877,
885,
894,
898,
899,
904,
913,
919,
926,
930,
934,
939,
945,
947,
948,
956,
962,
971,
976,
980,
990,
996,
1002,
1004,
1012,
1019,
1028,
1032,
1038,
1049,
1058,
1062,
1067,
1070,
1078,
1079,
1083,
1085,
1090,
1092,
1101,
1105,
1114,
1116,
1122,
1137,
1142,
1154,
1159,
1165
]
} | af4687acf7d44893b0d0557a90b92a9b | What is a possible alternative to making carbon-based fuels from reduction of carbon dioxide? | {
"tokens": [
"What",
"is",
"a",
"possible",
"alternative",
"to",
"making",
"carbon",
"-",
"based",
"fuels",
"from",
"reduction",
"of",
"carbon",
"dioxide",
"?"
],
"offsets": [
0,
5,
8,
10,
19,
31,
34,
41,
47,
48,
54,
60,
65,
75,
78,
85,
92
]
} | {
"text": [
"hydrogen production from protons"
],
"char_spans": [
{
"start": [
547
],
"end": [
578
]
}
],
"token_spans": [
{
"start": [
87
],
"end": [
90
]
}
]
} | [
"hydrogen production from protons"
] |
SQuAD | Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from a fossil fuel source and can also convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical. A variety of fuels can be produced by artificial photosynthesis. The multielectron catalytic chemistry involved in making carbon-based fuels (such as methanol) from reduction of carbon dioxide is challenging; a feasible alternative is hydrogen production from protons, though use of water as the source of electrons (as plants do) requires mastering the multielectron oxidation of two water molecules to molecular oxygen. Some have envisaged working solar fuel plants in coastal metropolitan areas by 2050 – the splitting of sea water providing hydrogen to be run through adjacent fuel-cell electric power plants and the pure water by-product going directly into the municipal water system. Another vision involves all human structures covering the earth's surface (i.e., roads, vehicles and buildings) doing photosynthesis more efficiently than plants. | {
"tokens": [
"Solar",
"chemical",
"processes",
"use",
"solar",
"energy",
"to",
"drive",
"chemical",
"reactions",
".",
"These",
"processes",
"offset",
"energy",
"that",
"would",
"otherwise",
"come",
"from",
"a",
"fossil",
"fuel",
"source",
"and",
"can",
"also",
"convert",
"solar",
"energy",
"into",
"storable",
"and",
"transportable",
"fuels",
".",
"Solar",
"induced",
"chemical",
"reactions",
"can",
"be",
"divided",
"into",
"thermochemical",
"or",
"photochemical",
".",
"A",
"variety",
"of",
"fuels",
"can",
"be",
"produced",
"by",
"artificial",
"photosynthesis",
".",
"The",
"multielectron",
"catalytic",
"chemistry",
"involved",
"in",
"making",
"carbon",
"-",
"based",
"fuels",
"(",
"such",
"as",
"methanol",
")",
"from",
"reduction",
"of",
"carbon",
"dioxide",
"is",
"challenging",
";",
"a",
"feasible",
"alternative",
"is",
"hydrogen",
"production",
"from",
"protons",
",",
"though",
"use",
"of",
"water",
"as",
"the",
"source",
"of",
"electrons",
"(",
"as",
"plants",
"do",
")",
"requires",
"mastering",
"the",
"multielectron",
"oxidation",
"of",
"two",
"water",
"molecules",
"to",
"molecular",
"oxygen",
".",
"Some",
"have",
"envisaged",
"working",
"solar",
"fuel",
"plants",
"in",
"coastal",
"metropolitan",
"areas",
"by",
"2050",
"–",
"the",
"splitting",
"of",
"sea",
"water",
"providing",
"hydrogen",
"to",
"be",
"run",
"through",
"adjacent",
"fuel",
"-",
"cell",
"electric",
"power",
"plants",
"and",
"the",
"pure",
"water",
"by",
"-",
"product",
"going",
"directly",
"into",
"the",
"municipal",
"water",
"system",
".",
"Another",
"vision",
"involves",
"all",
"human",
"structures",
"covering",
"the",
"earth",
"'s",
"surface",
"(",
"i.e.",
",",
"roads",
",",
"vehicles",
"and",
"buildings",
")",
"doing",
"photosynthesis",
"more",
"efficiently",
"than",
"plants",
"."
],
"offsets": [
0,
6,
15,
25,
29,
35,
42,
45,
51,
60,
69,
71,
77,
87,
94,
101,
106,
112,
122,
127,
132,
134,
141,
146,
153,
157,
161,
166,
174,
180,
187,
192,
201,
205,
219,
224,
226,
232,
240,
249,
259,
263,
266,
274,
279,
294,
297,
310,
312,
314,
322,
325,
331,
335,
338,
347,
350,
361,
375,
377,
381,
395,
405,
415,
424,
427,
434,
440,
441,
447,
453,
454,
459,
462,
470,
472,
477,
487,
490,
497,
505,
508,
519,
521,
523,
532,
544,
547,
556,
567,
572,
579,
581,
588,
592,
595,
601,
604,
608,
615,
618,
628,
629,
632,
639,
641,
643,
652,
662,
666,
680,
690,
693,
697,
703,
713,
716,
726,
732,
734,
739,
744,
754,
762,
768,
773,
780,
783,
791,
804,
810,
813,
818,
821,
825,
835,
838,
842,
848,
858,
867,
870,
873,
877,
885,
894,
898,
899,
904,
913,
919,
926,
930,
934,
939,
945,
947,
948,
956,
962,
971,
976,
980,
990,
996,
1002,
1004,
1012,
1019,
1028,
1032,
1038,
1049,
1058,
1062,
1067,
1070,
1078,
1079,
1083,
1085,
1090,
1092,
1101,
1105,
1114,
1116,
1122,
1137,
1142,
1154,
1159,
1165
]
} | fb8868e0f5e9449090e19b525752d68e | What process converts solar energy into storable and transportable fuels? | {
"tokens": [
"What",
"process",
"converts",
"solar",
"energy",
"into",
"storable",
"and",
"transportable",
"fuels",
"?"
],
"offsets": [
0,
5,
13,
22,
28,
35,
40,
49,
53,
67,
72
]
} | {
"text": [
"Solar chemical processes"
],
"char_spans": [
{
"start": [
0
],
"end": [
23
]
}
],
"token_spans": [
{
"start": [
0
],
"end": [
2
]
}
]
} | [
"Solar chemical processes"
] |
SQuAD | Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from a fossil fuel source and can also convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical. A variety of fuels can be produced by artificial photosynthesis. The multielectron catalytic chemistry involved in making carbon-based fuels (such as methanol) from reduction of carbon dioxide is challenging; a feasible alternative is hydrogen production from protons, though use of water as the source of electrons (as plants do) requires mastering the multielectron oxidation of two water molecules to molecular oxygen. Some have envisaged working solar fuel plants in coastal metropolitan areas by 2050 – the splitting of sea water providing hydrogen to be run through adjacent fuel-cell electric power plants and the pure water by-product going directly into the municipal water system. Another vision involves all human structures covering the earth's surface (i.e., roads, vehicles and buildings) doing photosynthesis more efficiently than plants. | {
"tokens": [
"Solar",
"chemical",
"processes",
"use",
"solar",
"energy",
"to",
"drive",
"chemical",
"reactions",
".",
"These",
"processes",
"offset",
"energy",
"that",
"would",
"otherwise",
"come",
"from",
"a",
"fossil",
"fuel",
"source",
"and",
"can",
"also",
"convert",
"solar",
"energy",
"into",
"storable",
"and",
"transportable",
"fuels",
".",
"Solar",
"induced",
"chemical",
"reactions",
"can",
"be",
"divided",
"into",
"thermochemical",
"or",
"photochemical",
".",
"A",
"variety",
"of",
"fuels",
"can",
"be",
"produced",
"by",
"artificial",
"photosynthesis",
".",
"The",
"multielectron",
"catalytic",
"chemistry",
"involved",
"in",
"making",
"carbon",
"-",
"based",
"fuels",
"(",
"such",
"as",
"methanol",
")",
"from",
"reduction",
"of",
"carbon",
"dioxide",
"is",
"challenging",
";",
"a",
"feasible",
"alternative",
"is",
"hydrogen",
"production",
"from",
"protons",
",",
"though",
"use",
"of",
"water",
"as",
"the",
"source",
"of",
"electrons",
"(",
"as",
"plants",
"do",
")",
"requires",
"mastering",
"the",
"multielectron",
"oxidation",
"of",
"two",
"water",
"molecules",
"to",
"molecular",
"oxygen",
".",
"Some",
"have",
"envisaged",
"working",
"solar",
"fuel",
"plants",
"in",
"coastal",
"metropolitan",
"areas",
"by",
"2050",
"–",
"the",
"splitting",
"of",
"sea",
"water",
"providing",
"hydrogen",
"to",
"be",
"run",
"through",
"adjacent",
"fuel",
"-",
"cell",
"electric",
"power",
"plants",
"and",
"the",
"pure",
"water",
"by",
"-",
"product",
"going",
"directly",
"into",
"the",
"municipal",
"water",
"system",
".",
"Another",
"vision",
"involves",
"all",
"human",
"structures",
"covering",
"the",
"earth",
"'s",
"surface",
"(",
"i.e.",
",",
"roads",
",",
"vehicles",
"and",
"buildings",
")",
"doing",
"photosynthesis",
"more",
"efficiently",
"than",
"plants",
"."
],
"offsets": [
0,
6,
15,
25,
29,
35,
42,
45,
51,
60,
69,
71,
77,
87,
94,
101,
106,
112,
122,
127,
132,
134,
141,
146,
153,
157,
161,
166,
174,
180,
187,
192,
201,
205,
219,
224,
226,
232,
240,
249,
259,
263,
266,
274,
279,
294,
297,
310,
312,
314,
322,
325,
331,
335,
338,
347,
350,
361,
375,
377,
381,
395,
405,
415,
424,
427,
434,
440,
441,
447,
453,
454,
459,
462,
470,
472,
477,
487,
490,
497,
505,
508,
519,
521,
523,
532,
544,
547,
556,
567,
572,
579,
581,
588,
592,
595,
601,
604,
608,
615,
618,
628,
629,
632,
639,
641,
643,
652,
662,
666,
680,
690,
693,
697,
703,
713,
716,
726,
732,
734,
739,
744,
754,
762,
768,
773,
780,
783,
791,
804,
810,
813,
818,
821,
825,
835,
838,
842,
848,
858,
867,
870,
873,
877,
885,
894,
898,
899,
904,
913,
919,
926,
930,
934,
939,
945,
947,
948,
956,
962,
971,
976,
980,
990,
996,
1002,
1004,
1012,
1019,
1028,
1032,
1038,
1049,
1058,
1062,
1067,
1070,
1078,
1079,
1083,
1085,
1090,
1092,
1101,
1105,
1114,
1116,
1122,
1137,
1142,
1154,
1159,
1165
]
} | d341d6d32d1f40419001d9a6e6b4b74a | What solar process can be used to produce different fuels? | {
"tokens": [
"What",
"solar",
"process",
"can",
"be",
"used",
"to",
"produce",
"different",
"fuels",
"?"
],
"offsets": [
0,
5,
11,
19,
23,
26,
31,
34,
42,
52,
57
]
} | {
"text": [
"artificial photosynthesis"
],
"char_spans": [
{
"start": [
350
],
"end": [
374
]
}
],
"token_spans": [
{
"start": [
56
],
"end": [
57
]
}
]
} | [
"artificial photosynthesis"
] |
SQuAD | Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007. | {
"tokens": [
"Commercial",
"solar",
"water",
"heaters",
"began",
"appearing",
"in",
"the",
"United",
"States",
"in",
"the",
"1890s",
".",
"These",
"systems",
"saw",
"increasing",
"use",
"until",
"the",
"1920s",
"but",
"were",
"gradually",
"replaced",
"by",
"cheaper",
"and",
"more",
"reliable",
"heating",
"fuels",
".",
"As",
"with",
"photovoltaics",
",",
"solar",
"water",
"heating",
"attracted",
"renewed",
"attention",
"as",
"a",
"result",
"of",
"the",
"oil",
"crises",
"in",
"the",
"1970s",
"but",
"interest",
"subsided",
"in",
"the",
"1980s",
"due",
"to",
"falling",
"petroleum",
"prices",
".",
"Development",
"in",
"the",
"solar",
"water",
"heating",
"sector",
"progressed",
"steadily",
"throughout",
"the",
"1990s",
"and",
"growth",
"rates",
"have",
"averaged",
"20",
"%",
"per",
"year",
"since",
"1999",
".",
"Although",
"generally",
"underestimated",
",",
"solar",
"water",
"heating",
"and",
"cooling",
"is",
"by",
"far",
"the",
"most",
"widely",
"deployed",
"solar",
"technology",
"with",
"an",
"estimated",
"capacity",
"of",
"154",
"GW",
"as",
"of",
"2007",
"."
],
"offsets": [
0,
11,
17,
23,
31,
37,
47,
50,
54,
61,
68,
71,
75,
80,
82,
88,
96,
100,
111,
115,
121,
125,
131,
135,
140,
150,
159,
162,
170,
174,
179,
188,
196,
201,
203,
206,
211,
224,
226,
232,
238,
246,
256,
264,
274,
277,
279,
286,
289,
293,
297,
304,
307,
311,
317,
321,
330,
339,
342,
346,
352,
356,
359,
367,
377,
383,
385,
397,
400,
404,
410,
416,
424,
431,
442,
451,
462,
466,
472,
476,
483,
489,
494,
503,
505,
507,
511,
516,
522,
526,
528,
537,
547,
561,
563,
569,
575,
583,
587,
595,
598,
601,
605,
609,
614,
621,
630,
636,
647,
652,
655,
665,
674,
677,
681,
684,
687,
690,
694
]
} | fd5e3dcbf4b14af7839fc9a1af369a70 | The solar water heaters introduced in the US in the 1890s saw growth until what time period? | {
"tokens": [
"The",
"solar",
"water",
"heaters",
"introduced",
"in",
"the",
"US",
"in",
"the",
"1890s",
"saw",
"growth",
"until",
"what",
"time",
"period",
"?"
],
"offsets": [
0,
4,
10,
16,
24,
35,
38,
42,
45,
48,
52,
58,
62,
69,
75,
80,
85,
91
]
} | {
"text": [
"the 1920s"
],
"char_spans": [
{
"start": [
121
],
"end": [
129
]
}
],
"token_spans": [
{
"start": [
20
],
"end": [
21
]
}
]
} | [
"the 1920s"
] |
SQuAD | Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007. | {
"tokens": [
"Commercial",
"solar",
"water",
"heaters",
"began",
"appearing",
"in",
"the",
"United",
"States",
"in",
"the",
"1890s",
".",
"These",
"systems",
"saw",
"increasing",
"use",
"until",
"the",
"1920s",
"but",
"were",
"gradually",
"replaced",
"by",
"cheaper",
"and",
"more",
"reliable",
"heating",
"fuels",
".",
"As",
"with",
"photovoltaics",
",",
"solar",
"water",
"heating",
"attracted",
"renewed",
"attention",
"as",
"a",
"result",
"of",
"the",
"oil",
"crises",
"in",
"the",
"1970s",
"but",
"interest",
"subsided",
"in",
"the",
"1980s",
"due",
"to",
"falling",
"petroleum",
"prices",
".",
"Development",
"in",
"the",
"solar",
"water",
"heating",
"sector",
"progressed",
"steadily",
"throughout",
"the",
"1990s",
"and",
"growth",
"rates",
"have",
"averaged",
"20",
"%",
"per",
"year",
"since",
"1999",
".",
"Although",
"generally",
"underestimated",
",",
"solar",
"water",
"heating",
"and",
"cooling",
"is",
"by",
"far",
"the",
"most",
"widely",
"deployed",
"solar",
"technology",
"with",
"an",
"estimated",
"capacity",
"of",
"154",
"GW",
"as",
"of",
"2007",
"."
],
"offsets": [
0,
11,
17,
23,
31,
37,
47,
50,
54,
61,
68,
71,
75,
80,
82,
88,
96,
100,
111,
115,
121,
125,
131,
135,
140,
150,
159,
162,
170,
174,
179,
188,
196,
201,
203,
206,
211,
224,
226,
232,
238,
246,
256,
264,
274,
277,
279,
286,
289,
293,
297,
304,
307,
311,
317,
321,
330,
339,
342,
346,
352,
356,
359,
367,
377,
383,
385,
397,
400,
404,
410,
416,
424,
431,
442,
451,
462,
466,
472,
476,
483,
489,
494,
503,
505,
507,
511,
516,
522,
526,
528,
537,
547,
561,
563,
569,
575,
583,
587,
595,
598,
601,
605,
609,
614,
621,
630,
636,
647,
652,
655,
665,
674,
677,
681,
684,
687,
690,
694
]
} | 7ff4370938804c7dba00c07704182809 | Since 1999, what average rate has the solar water heating sector progressed at? | {
"tokens": [
"Since",
"1999",
",",
"what",
"average",
"rate",
"has",
"the",
"solar",
"water",
"heating",
"sector",
"progressed",
"at",
"?"
],
"offsets": [
0,
6,
10,
12,
17,
25,
30,
34,
38,
44,
50,
58,
65,
76,
78
]
} | {
"text": [
"20% per year"
],
"char_spans": [
{
"start": [
503
],
"end": [
514
]
}
],
"token_spans": [
{
"start": [
83
],
"end": [
86
]
}
]
} | [
"20% per year"
] |
SQuAD | Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007. | {
"tokens": [
"Commercial",
"solar",
"water",
"heaters",
"began",
"appearing",
"in",
"the",
"United",
"States",
"in",
"the",
"1890s",
".",
"These",
"systems",
"saw",
"increasing",
"use",
"until",
"the",
"1920s",
"but",
"were",
"gradually",
"replaced",
"by",
"cheaper",
"and",
"more",
"reliable",
"heating",
"fuels",
".",
"As",
"with",
"photovoltaics",
",",
"solar",
"water",
"heating",
"attracted",
"renewed",
"attention",
"as",
"a",
"result",
"of",
"the",
"oil",
"crises",
"in",
"the",
"1970s",
"but",
"interest",
"subsided",
"in",
"the",
"1980s",
"due",
"to",
"falling",
"petroleum",
"prices",
".",
"Development",
"in",
"the",
"solar",
"water",
"heating",
"sector",
"progressed",
"steadily",
"throughout",
"the",
"1990s",
"and",
"growth",
"rates",
"have",
"averaged",
"20",
"%",
"per",
"year",
"since",
"1999",
".",
"Although",
"generally",
"underestimated",
",",
"solar",
"water",
"heating",
"and",
"cooling",
"is",
"by",
"far",
"the",
"most",
"widely",
"deployed",
"solar",
"technology",
"with",
"an",
"estimated",
"capacity",
"of",
"154",
"GW",
"as",
"of",
"2007",
"."
],
"offsets": [
0,
11,
17,
23,
31,
37,
47,
50,
54,
61,
68,
71,
75,
80,
82,
88,
96,
100,
111,
115,
121,
125,
131,
135,
140,
150,
159,
162,
170,
174,
179,
188,
196,
201,
203,
206,
211,
224,
226,
232,
238,
246,
256,
264,
274,
277,
279,
286,
289,
293,
297,
304,
307,
311,
317,
321,
330,
339,
342,
346,
352,
356,
359,
367,
377,
383,
385,
397,
400,
404,
410,
416,
424,
431,
442,
451,
462,
466,
472,
476,
483,
489,
494,
503,
505,
507,
511,
516,
522,
526,
528,
537,
547,
561,
563,
569,
575,
583,
587,
595,
598,
601,
605,
609,
614,
621,
630,
636,
647,
652,
655,
665,
674,
677,
681,
684,
687,
690,
694
]
} | 7ebdad65c9334e14b58a9249a4244058 | When did the use of solar water heaters in the US first begin? | {
"tokens": [
"When",
"did",
"the",
"use",
"of",
"solar",
"water",
"heaters",
"in",
"the",
"US",
"first",
"begin",
"?"
],
"offsets": [
0,
5,
9,
13,
17,
20,
26,
32,
40,
43,
47,
50,
56,
61
]
} | {
"text": [
"in the 1890s"
],
"char_spans": [
{
"start": [
68
],
"end": [
79
]
}
],
"token_spans": [
{
"start": [
10
],
"end": [
12
]
}
]
} | [
"in the 1890s"
] |
SQuAD | Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007. | {
"tokens": [
"Commercial",
"solar",
"water",
"heaters",
"began",
"appearing",
"in",
"the",
"United",
"States",
"in",
"the",
"1890s",
".",
"These",
"systems",
"saw",
"increasing",
"use",
"until",
"the",
"1920s",
"but",
"were",
"gradually",
"replaced",
"by",
"cheaper",
"and",
"more",
"reliable",
"heating",
"fuels",
".",
"As",
"with",
"photovoltaics",
",",
"solar",
"water",
"heating",
"attracted",
"renewed",
"attention",
"as",
"a",
"result",
"of",
"the",
"oil",
"crises",
"in",
"the",
"1970s",
"but",
"interest",
"subsided",
"in",
"the",
"1980s",
"due",
"to",
"falling",
"petroleum",
"prices",
".",
"Development",
"in",
"the",
"solar",
"water",
"heating",
"sector",
"progressed",
"steadily",
"throughout",
"the",
"1990s",
"and",
"growth",
"rates",
"have",
"averaged",
"20",
"%",
"per",
"year",
"since",
"1999",
".",
"Although",
"generally",
"underestimated",
",",
"solar",
"water",
"heating",
"and",
"cooling",
"is",
"by",
"far",
"the",
"most",
"widely",
"deployed",
"solar",
"technology",
"with",
"an",
"estimated",
"capacity",
"of",
"154",
"GW",
"as",
"of",
"2007",
"."
],
"offsets": [
0,
11,
17,
23,
31,
37,
47,
50,
54,
61,
68,
71,
75,
80,
82,
88,
96,
100,
111,
115,
121,
125,
131,
135,
140,
150,
159,
162,
170,
174,
179,
188,
196,
201,
203,
206,
211,
224,
226,
232,
238,
246,
256,
264,
274,
277,
279,
286,
289,
293,
297,
304,
307,
311,
317,
321,
330,
339,
342,
346,
352,
356,
359,
367,
377,
383,
385,
397,
400,
404,
410,
416,
424,
431,
442,
451,
462,
466,
472,
476,
483,
489,
494,
503,
505,
507,
511,
516,
522,
526,
528,
537,
547,
561,
563,
569,
575,
583,
587,
595,
598,
601,
605,
609,
614,
621,
630,
636,
647,
652,
655,
665,
674,
677,
681,
684,
687,
690,
694
]
} | e22400c2e213448493d9f58d9cab1eed | Why did interest in solar water heating decrease in the 1980s? | {
"tokens": [
"Why",
"did",
"interest",
"in",
"solar",
"water",
"heating",
"decrease",
"in",
"the",
"1980s",
"?"
],
"offsets": [
0,
4,
8,
17,
20,
26,
32,
40,
49,
52,
56,
61
]
} | {
"text": [
"falling petroleum prices"
],
"char_spans": [
{
"start": [
359
],
"end": [
382
]
}
],
"token_spans": [
{
"start": [
62
],
"end": [
64
]
}
]
} | [
"falling petroleum prices"
] |
SQuAD | Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007. | {
"tokens": [
"Commercial",
"solar",
"water",
"heaters",
"began",
"appearing",
"in",
"the",
"United",
"States",
"in",
"the",
"1890s",
".",
"These",
"systems",
"saw",
"increasing",
"use",
"until",
"the",
"1920s",
"but",
"were",
"gradually",
"replaced",
"by",
"cheaper",
"and",
"more",
"reliable",
"heating",
"fuels",
".",
"As",
"with",
"photovoltaics",
",",
"solar",
"water",
"heating",
"attracted",
"renewed",
"attention",
"as",
"a",
"result",
"of",
"the",
"oil",
"crises",
"in",
"the",
"1970s",
"but",
"interest",
"subsided",
"in",
"the",
"1980s",
"due",
"to",
"falling",
"petroleum",
"prices",
".",
"Development",
"in",
"the",
"solar",
"water",
"heating",
"sector",
"progressed",
"steadily",
"throughout",
"the",
"1990s",
"and",
"growth",
"rates",
"have",
"averaged",
"20",
"%",
"per",
"year",
"since",
"1999",
".",
"Although",
"generally",
"underestimated",
",",
"solar",
"water",
"heating",
"and",
"cooling",
"is",
"by",
"far",
"the",
"most",
"widely",
"deployed",
"solar",
"technology",
"with",
"an",
"estimated",
"capacity",
"of",
"154",
"GW",
"as",
"of",
"2007",
"."
],
"offsets": [
0,
11,
17,
23,
31,
37,
47,
50,
54,
61,
68,
71,
75,
80,
82,
88,
96,
100,
111,
115,
121,
125,
131,
135,
140,
150,
159,
162,
170,
174,
179,
188,
196,
201,
203,
206,
211,
224,
226,
232,
238,
246,
256,
264,
274,
277,
279,
286,
289,
293,
297,
304,
307,
311,
317,
321,
330,
339,
342,
346,
352,
356,
359,
367,
377,
383,
385,
397,
400,
404,
410,
416,
424,
431,
442,
451,
462,
466,
472,
476,
483,
489,
494,
503,
505,
507,
511,
516,
522,
526,
528,
537,
547,
561,
563,
569,
575,
583,
587,
595,
598,
601,
605,
609,
614,
621,
630,
636,
647,
652,
655,
665,
674,
677,
681,
684,
687,
690,
694
]
} | 8d7999ae17bb4b489fe2c889bcc94ba4 | Growth of solar water heating development has averaged how much per year since 1999 | {
"tokens": [
"Growth",
"of",
"solar",
"water",
"heating",
"development",
"has",
"averaged",
"how",
"much",
"per",
"year",
"since",
"1999"
],
"offsets": [
0,
7,
10,
16,
22,
30,
42,
46,
55,
59,
64,
68,
73,
79
]
} | {
"text": [
"20%"
],
"char_spans": [
{
"start": [
503
],
"end": [
505
]
}
],
"token_spans": [
{
"start": [
83
],
"end": [
84
]
}
]
} | [
"20%"
] |
SQuAD | Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007. | {
"tokens": [
"Commercial",
"solar",
"water",
"heaters",
"began",
"appearing",
"in",
"the",
"United",
"States",
"in",
"the",
"1890s",
".",
"These",
"systems",
"saw",
"increasing",
"use",
"until",
"the",
"1920s",
"but",
"were",
"gradually",
"replaced",
"by",
"cheaper",
"and",
"more",
"reliable",
"heating",
"fuels",
".",
"As",
"with",
"photovoltaics",
",",
"solar",
"water",
"heating",
"attracted",
"renewed",
"attention",
"as",
"a",
"result",
"of",
"the",
"oil",
"crises",
"in",
"the",
"1970s",
"but",
"interest",
"subsided",
"in",
"the",
"1980s",
"due",
"to",
"falling",
"petroleum",
"prices",
".",
"Development",
"in",
"the",
"solar",
"water",
"heating",
"sector",
"progressed",
"steadily",
"throughout",
"the",
"1990s",
"and",
"growth",
"rates",
"have",
"averaged",
"20",
"%",
"per",
"year",
"since",
"1999",
".",
"Although",
"generally",
"underestimated",
",",
"solar",
"water",
"heating",
"and",
"cooling",
"is",
"by",
"far",
"the",
"most",
"widely",
"deployed",
"solar",
"technology",
"with",
"an",
"estimated",
"capacity",
"of",
"154",
"GW",
"as",
"of",
"2007",
"."
],
"offsets": [
0,
11,
17,
23,
31,
37,
47,
50,
54,
61,
68,
71,
75,
80,
82,
88,
96,
100,
111,
115,
121,
125,
131,
135,
140,
150,
159,
162,
170,
174,
179,
188,
196,
201,
203,
206,
211,
224,
226,
232,
238,
246,
256,
264,
274,
277,
279,
286,
289,
293,
297,
304,
307,
311,
317,
321,
330,
339,
342,
346,
352,
356,
359,
367,
377,
383,
385,
397,
400,
404,
410,
416,
424,
431,
442,
451,
462,
466,
472,
476,
483,
489,
494,
503,
505,
507,
511,
516,
522,
526,
528,
537,
547,
561,
563,
569,
575,
583,
587,
595,
598,
601,
605,
609,
614,
621,
630,
636,
647,
652,
655,
665,
674,
677,
681,
684,
687,
690,
694
]
} | 6b3a5e23f2f94f8aadc61db4ea2cb6ee | What was the estimated capacity of solar water heating and cooling in 2007? | {
"tokens": [
"What",
"was",
"the",
"estimated",
"capacity",
"of",
"solar",
"water",
"heating",
"and",
"cooling",
"in",
"2007",
"?"
],
"offsets": [
0,
5,
9,
13,
23,
32,
35,
41,
47,
55,
59,
67,
70,
74
]
} | {
"text": [
"154 GW"
],
"char_spans": [
{
"start": [
677
],
"end": [
682
]
}
],
"token_spans": [
{
"start": [
113
],
"end": [
114
]
}
]
} | [
"154 GW"
] |
SQuAD | A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high. | {
"tokens": [
"A",
"solar",
"balloon",
"is",
"a",
"black",
"balloon",
"that",
"is",
"filled",
"with",
"ordinary",
"air",
".",
"As",
"sunlight",
"shines",
"on",
"the",
"balloon",
",",
"the",
"air",
"inside",
"is",
"heated",
"and",
"expands",
"causing",
"an",
"upward",
"buoyancy",
"force",
",",
"much",
"like",
"an",
"artificially",
"heated",
"hot",
"air",
"balloon",
".",
"Some",
"solar",
"balloons",
"are",
"large",
"enough",
"for",
"human",
"flight",
",",
"but",
"usage",
"is",
"generally",
"limited",
"to",
"the",
"toy",
"market",
"as",
"the",
"surface",
"-",
"area",
"to",
"payload",
"-",
"weight",
"ratio",
"is",
"relatively",
"high",
"."
],
"offsets": [
0,
2,
8,
16,
19,
21,
27,
35,
40,
43,
50,
55,
64,
67,
69,
72,
81,
88,
91,
95,
102,
104,
108,
112,
119,
122,
129,
133,
141,
149,
152,
159,
168,
173,
175,
180,
185,
188,
201,
208,
212,
216,
223,
225,
230,
236,
245,
249,
255,
262,
266,
272,
278,
280,
284,
290,
293,
303,
311,
314,
318,
322,
329,
332,
336,
343,
344,
349,
352,
359,
360,
367,
373,
376,
387,
391
]
} | 4d4bd730da6049558c9f4cd478ea8367 | What is a solar balloon? | {
"tokens": [
"What",
"is",
"a",
"solar",
"balloon",
"?"
],
"offsets": [
0,
5,
8,
10,
16,
23
]
} | {
"text": [
"a black balloon that is filled with ordinary air"
],
"char_spans": [
{
"start": [
19
],
"end": [
66
]
}
],
"token_spans": [
{
"start": [
4
],
"end": [
12
]
}
]
} | [
"a black balloon that is filled with ordinary air"
] |
SQuAD | A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high. | {
"tokens": [
"A",
"solar",
"balloon",
"is",
"a",
"black",
"balloon",
"that",
"is",
"filled",
"with",
"ordinary",
"air",
".",
"As",
"sunlight",
"shines",
"on",
"the",
"balloon",
",",
"the",
"air",
"inside",
"is",
"heated",
"and",
"expands",
"causing",
"an",
"upward",
"buoyancy",
"force",
",",
"much",
"like",
"an",
"artificially",
"heated",
"hot",
"air",
"balloon",
".",
"Some",
"solar",
"balloons",
"are",
"large",
"enough",
"for",
"human",
"flight",
",",
"but",
"usage",
"is",
"generally",
"limited",
"to",
"the",
"toy",
"market",
"as",
"the",
"surface",
"-",
"area",
"to",
"payload",
"-",
"weight",
"ratio",
"is",
"relatively",
"high",
"."
],
"offsets": [
0,
2,
8,
16,
19,
21,
27,
35,
40,
43,
50,
55,
64,
67,
69,
72,
81,
88,
91,
95,
102,
104,
108,
112,
119,
122,
129,
133,
141,
149,
152,
159,
168,
173,
175,
180,
185,
188,
201,
208,
212,
216,
223,
225,
230,
236,
245,
249,
255,
262,
266,
272,
278,
280,
284,
290,
293,
303,
311,
314,
318,
322,
329,
332,
336,
343,
344,
349,
352,
359,
360,
367,
373,
376,
387,
391
]
} | 557220fa26de4e71babc24c785c70635 | What happens when sunlight shines on a solar balloon? | {
"tokens": [
"What",
"happens",
"when",
"sunlight",
"shines",
"on",
"a",
"solar",
"balloon",
"?"
],
"offsets": [
0,
5,
13,
18,
27,
34,
37,
39,
45,
52
]
} | {
"text": [
"the air inside is heated and expands causing an upward buoyancy force"
],
"char_spans": [
{
"start": [
104
],
"end": [
172
]
}
],
"token_spans": [
{
"start": [
21
],
"end": [
32
]
}
]
} | [
"the air inside is heated and expands causing an upward buoyancy force"
] |
SQuAD | A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high. | {
"tokens": [
"A",
"solar",
"balloon",
"is",
"a",
"black",
"balloon",
"that",
"is",
"filled",
"with",
"ordinary",
"air",
".",
"As",
"sunlight",
"shines",
"on",
"the",
"balloon",
",",
"the",
"air",
"inside",
"is",
"heated",
"and",
"expands",
"causing",
"an",
"upward",
"buoyancy",
"force",
",",
"much",
"like",
"an",
"artificially",
"heated",
"hot",
"air",
"balloon",
".",
"Some",
"solar",
"balloons",
"are",
"large",
"enough",
"for",
"human",
"flight",
",",
"but",
"usage",
"is",
"generally",
"limited",
"to",
"the",
"toy",
"market",
"as",
"the",
"surface",
"-",
"area",
"to",
"payload",
"-",
"weight",
"ratio",
"is",
"relatively",
"high",
"."
],
"offsets": [
0,
2,
8,
16,
19,
21,
27,
35,
40,
43,
50,
55,
64,
67,
69,
72,
81,
88,
91,
95,
102,
104,
108,
112,
119,
122,
129,
133,
141,
149,
152,
159,
168,
173,
175,
180,
185,
188,
201,
208,
212,
216,
223,
225,
230,
236,
245,
249,
255,
262,
266,
272,
278,
280,
284,
290,
293,
303,
311,
314,
318,
322,
329,
332,
336,
343,
344,
349,
352,
359,
360,
367,
373,
376,
387,
391
]
} | 8118ae33e9394898b28760b8503e331c | What is the use of solar balloons typically limited to? | {
"tokens": [
"What",
"is",
"the",
"use",
"of",
"solar",
"balloons",
"typically",
"limited",
"to",
"?"
],
"offsets": [
0,
5,
8,
12,
16,
19,
25,
34,
44,
52,
54
]
} | {
"text": [
"the toy market"
],
"char_spans": [
{
"start": [
314
],
"end": [
327
]
}
],
"token_spans": [
{
"start": [
59
],
"end": [
61
]
}
]
} | [
"the toy market"
] |
SQuAD | A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high. | {
"tokens": [
"A",
"solar",
"balloon",
"is",
"a",
"black",
"balloon",
"that",
"is",
"filled",
"with",
"ordinary",
"air",
".",
"As",
"sunlight",
"shines",
"on",
"the",
"balloon",
",",
"the",
"air",
"inside",
"is",
"heated",
"and",
"expands",
"causing",
"an",
"upward",
"buoyancy",
"force",
",",
"much",
"like",
"an",
"artificially",
"heated",
"hot",
"air",
"balloon",
".",
"Some",
"solar",
"balloons",
"are",
"large",
"enough",
"for",
"human",
"flight",
",",
"but",
"usage",
"is",
"generally",
"limited",
"to",
"the",
"toy",
"market",
"as",
"the",
"surface",
"-",
"area",
"to",
"payload",
"-",
"weight",
"ratio",
"is",
"relatively",
"high",
"."
],
"offsets": [
0,
2,
8,
16,
19,
21,
27,
35,
40,
43,
50,
55,
64,
67,
69,
72,
81,
88,
91,
95,
102,
104,
108,
112,
119,
122,
129,
133,
141,
149,
152,
159,
168,
173,
175,
180,
185,
188,
201,
208,
212,
216,
223,
225,
230,
236,
245,
249,
255,
262,
266,
272,
278,
280,
284,
290,
293,
303,
311,
314,
318,
322,
329,
332,
336,
343,
344,
349,
352,
359,
360,
367,
373,
376,
387,
391
]
} | 77e1fffc2b0b4b21bee834d9cfa83797 | Why is the use of solar balloons typically limited to the toy market? | {
"tokens": [
"Why",
"is",
"the",
"use",
"of",
"solar",
"balloons",
"typically",
"limited",
"to",
"the",
"toy",
"market",
"?"
],
"offsets": [
0,
4,
7,
11,
15,
18,
24,
33,
43,
51,
54,
58,
62,
68
]
} | {
"text": [
"the surface-area to payload-weight ratio is relatively high"
],
"char_spans": [
{
"start": [
332
],
"end": [
390
]
}
],
"token_spans": [
{
"start": [
63
],
"end": [
74
]
}
]
} | [
"the surface-area to payload-weight ratio is relatively high"
] |
SQuAD | In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared". | {
"tokens": [
"In",
"2011",
",",
"the",
"International",
"Energy",
"Agency",
"said",
"that",
"\"",
"the",
"development",
"of",
"affordable",
",",
"inexhaustible",
"and",
"clean",
"solar",
"energy",
"technologies",
"will",
"have",
"huge",
"longer",
"-",
"term",
"benefits",
".",
"It",
"will",
"increase",
"countries",
"’",
"energy",
"security",
"through",
"reliance",
"on",
"an",
"indigenous",
",",
"inexhaustible",
"and",
"mostly",
"import",
"-",
"independent",
"resource",
",",
"enhance",
"sustainability",
",",
"reduce",
"pollution",
",",
"lower",
"the",
"costs",
"of",
"mitigating",
"global",
"warming",
",",
"and",
"keep",
"fossil",
"fuel",
"prices",
"lower",
"than",
"otherwise",
".",
"These",
"advantages",
"are",
"global",
".",
"Hence",
"the",
"additional",
"costs",
"of",
"the",
"incentives",
"for",
"early",
"deployment",
"should",
"be",
"considered",
"learning",
"investments",
";",
"they",
"must",
"be",
"wisely",
"spent",
"and",
"need",
"to",
"be",
"widely",
"shared",
"\"",
"."
],
"offsets": [
0,
3,
7,
9,
13,
27,
34,
41,
46,
51,
52,
56,
68,
71,
81,
83,
97,
101,
107,
113,
120,
133,
138,
143,
148,
154,
155,
160,
168,
170,
173,
178,
187,
196,
198,
205,
214,
222,
231,
234,
237,
247,
249,
263,
267,
274,
280,
281,
293,
301,
303,
311,
325,
327,
334,
343,
345,
351,
355,
361,
364,
375,
382,
389,
391,
395,
400,
407,
412,
419,
425,
430,
439,
441,
447,
458,
462,
468,
470,
476,
480,
491,
497,
500,
504,
515,
519,
525,
536,
543,
546,
557,
566,
577,
579,
584,
589,
592,
599,
605,
609,
614,
617,
620,
627,
633,
634
]
} | 3ce2288415a54a64bb97b0bebb2cbe12 | How will solar energy increase energy security? | {
"tokens": [
"How",
"will",
"solar",
"energy",
"increase",
"energy",
"security",
"?"
],
"offsets": [
0,
4,
9,
15,
22,
31,
38,
46
]
} | {
"text": [
"through reliance on an indigenous, inexhaustible and mostly import-independent resource"
],
"char_spans": [
{
"start": [
214
],
"end": [
300
]
}
],
"token_spans": [
{
"start": [
36
],
"end": [
48
]
}
]
} | [
"through reliance on an indigenous, inexhaustible and mostly import-independent resource"
] |
SQuAD | In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared". | {
"tokens": [
"In",
"2011",
",",
"the",
"International",
"Energy",
"Agency",
"said",
"that",
"\"",
"the",
"development",
"of",
"affordable",
",",
"inexhaustible",
"and",
"clean",
"solar",
"energy",
"technologies",
"will",
"have",
"huge",
"longer",
"-",
"term",
"benefits",
".",
"It",
"will",
"increase",
"countries",
"’",
"energy",
"security",
"through",
"reliance",
"on",
"an",
"indigenous",
",",
"inexhaustible",
"and",
"mostly",
"import",
"-",
"independent",
"resource",
",",
"enhance",
"sustainability",
",",
"reduce",
"pollution",
",",
"lower",
"the",
"costs",
"of",
"mitigating",
"global",
"warming",
",",
"and",
"keep",
"fossil",
"fuel",
"prices",
"lower",
"than",
"otherwise",
".",
"These",
"advantages",
"are",
"global",
".",
"Hence",
"the",
"additional",
"costs",
"of",
"the",
"incentives",
"for",
"early",
"deployment",
"should",
"be",
"considered",
"learning",
"investments",
";",
"they",
"must",
"be",
"wisely",
"spent",
"and",
"need",
"to",
"be",
"widely",
"shared",
"\"",
"."
],
"offsets": [
0,
3,
7,
9,
13,
27,
34,
41,
46,
51,
52,
56,
68,
71,
81,
83,
97,
101,
107,
113,
120,
133,
138,
143,
148,
154,
155,
160,
168,
170,
173,
178,
187,
196,
198,
205,
214,
222,
231,
234,
237,
247,
249,
263,
267,
274,
280,
281,
293,
301,
303,
311,
325,
327,
334,
343,
345,
351,
355,
361,
364,
375,
382,
389,
391,
395,
400,
407,
412,
419,
425,
430,
439,
441,
447,
458,
462,
468,
470,
476,
480,
491,
497,
500,
504,
515,
519,
525,
536,
543,
546,
557,
566,
577,
579,
584,
589,
592,
599,
605,
609,
614,
617,
620,
627,
633,
634
]
} | bbed2c643f594c69969830c073963712 | What costs will solar energy lower? | {
"tokens": [
"What",
"costs",
"will",
"solar",
"energy",
"lower",
"?"
],
"offsets": [
0,
5,
11,
16,
22,
29,
34
]
} | {
"text": [
"the costs of mitigating global warming"
],
"char_spans": [
{
"start": [
351
],
"end": [
388
]
}
],
"token_spans": [
{
"start": [
57
],
"end": [
62
]
}
]
} | [
"the costs of mitigating global warming"
] |
SQuAD | In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared". | {
"tokens": [
"In",
"2011",
",",
"the",
"International",
"Energy",
"Agency",
"said",
"that",
"\"",
"the",
"development",
"of",
"affordable",
",",
"inexhaustible",
"and",
"clean",
"solar",
"energy",
"technologies",
"will",
"have",
"huge",
"longer",
"-",
"term",
"benefits",
".",
"It",
"will",
"increase",
"countries",
"’",
"energy",
"security",
"through",
"reliance",
"on",
"an",
"indigenous",
",",
"inexhaustible",
"and",
"mostly",
"import",
"-",
"independent",
"resource",
",",
"enhance",
"sustainability",
",",
"reduce",
"pollution",
",",
"lower",
"the",
"costs",
"of",
"mitigating",
"global",
"warming",
",",
"and",
"keep",
"fossil",
"fuel",
"prices",
"lower",
"than",
"otherwise",
".",
"These",
"advantages",
"are",
"global",
".",
"Hence",
"the",
"additional",
"costs",
"of",
"the",
"incentives",
"for",
"early",
"deployment",
"should",
"be",
"considered",
"learning",
"investments",
";",
"they",
"must",
"be",
"wisely",
"spent",
"and",
"need",
"to",
"be",
"widely",
"shared",
"\"",
"."
],
"offsets": [
0,
3,
7,
9,
13,
27,
34,
41,
46,
51,
52,
56,
68,
71,
81,
83,
97,
101,
107,
113,
120,
133,
138,
143,
148,
154,
155,
160,
168,
170,
173,
178,
187,
196,
198,
205,
214,
222,
231,
234,
237,
247,
249,
263,
267,
274,
280,
281,
293,
301,
303,
311,
325,
327,
334,
343,
345,
351,
355,
361,
364,
375,
382,
389,
391,
395,
400,
407,
412,
419,
425,
430,
439,
441,
447,
458,
462,
468,
470,
476,
480,
491,
497,
500,
504,
515,
519,
525,
536,
543,
546,
557,
566,
577,
579,
584,
589,
592,
599,
605,
609,
614,
617,
620,
627,
633,
634
]
} | de4ad854fdaf4d4db935194349b01adc | What should the cost of incentives for producing solar energy be considered? | {
"tokens": [
"What",
"should",
"the",
"cost",
"of",
"incentives",
"for",
"producing",
"solar",
"energy",
"be",
"considered",
"?"
],
"offsets": [
0,
5,
12,
16,
21,
24,
35,
39,
49,
55,
62,
65,
75
]
} | {
"text": [
"learning investments"
],
"char_spans": [
{
"start": [
557
],
"end": [
576
]
}
],
"token_spans": [
{
"start": [
91
],
"end": [
92
]
}
]
} | [
"learning investments"
] |
SQuAD | In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared". | {
"tokens": [
"In",
"2011",
",",
"the",
"International",
"Energy",
"Agency",
"said",
"that",
"\"",
"the",
"development",
"of",
"affordable",
",",
"inexhaustible",
"and",
"clean",
"solar",
"energy",
"technologies",
"will",
"have",
"huge",
"longer",
"-",
"term",
"benefits",
".",
"It",
"will",
"increase",
"countries",
"’",
"energy",
"security",
"through",
"reliance",
"on",
"an",
"indigenous",
",",
"inexhaustible",
"and",
"mostly",
"import",
"-",
"independent",
"resource",
",",
"enhance",
"sustainability",
",",
"reduce",
"pollution",
",",
"lower",
"the",
"costs",
"of",
"mitigating",
"global",
"warming",
",",
"and",
"keep",
"fossil",
"fuel",
"prices",
"lower",
"than",
"otherwise",
".",
"These",
"advantages",
"are",
"global",
".",
"Hence",
"the",
"additional",
"costs",
"of",
"the",
"incentives",
"for",
"early",
"deployment",
"should",
"be",
"considered",
"learning",
"investments",
";",
"they",
"must",
"be",
"wisely",
"spent",
"and",
"need",
"to",
"be",
"widely",
"shared",
"\"",
"."
],
"offsets": [
0,
3,
7,
9,
13,
27,
34,
41,
46,
51,
52,
56,
68,
71,
81,
83,
97,
101,
107,
113,
120,
133,
138,
143,
148,
154,
155,
160,
168,
170,
173,
178,
187,
196,
198,
205,
214,
222,
231,
234,
237,
247,
249,
263,
267,
274,
280,
281,
293,
301,
303,
311,
325,
327,
334,
343,
345,
351,
355,
361,
364,
375,
382,
389,
391,
395,
400,
407,
412,
419,
425,
430,
439,
441,
447,
458,
462,
468,
470,
476,
480,
491,
497,
500,
504,
515,
519,
525,
536,
543,
546,
557,
566,
577,
579,
584,
589,
592,
599,
605,
609,
614,
617,
620,
627,
633,
634
]
} | d4a980653f184dac968ab4a30b26372d | What effect will solar energy have on the price of fossil fuels? | {
"tokens": [
"What",
"effect",
"will",
"solar",
"energy",
"have",
"on",
"the",
"price",
"of",
"fossil",
"fuels",
"?"
],
"offsets": [
0,
5,
12,
17,
23,
30,
35,
38,
42,
48,
51,
58,
63
]
} | {
"text": [
"keep fossil fuel prices lower than otherwise"
],
"char_spans": [
{
"start": [
395
],
"end": [
438
]
}
],
"token_spans": [
{
"start": [
65
],
"end": [
71
]
}
]
} | [
"keep fossil fuel prices lower than otherwise"
] |
SQuAD | In 2011, a report by the International Energy Agency found that solar energy technologies such as photovoltaics, solar hot water and concentrated solar power could provide a third of the world’s energy by 2060 if politicians commit to limiting climate change. The energy from the sun could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters. "The strength of solar is the incredible variety and flexibility of applications, from small scale to big scale". | {
"tokens": [
"In",
"2011",
",",
"a",
"report",
"by",
"the",
"International",
"Energy",
"Agency",
"found",
"that",
"solar",
"energy",
"technologies",
"such",
"as",
"photovoltaics",
",",
"solar",
"hot",
"water",
"and",
"concentrated",
"solar",
"power",
"could",
"provide",
"a",
"third",
"of",
"the",
"world",
"’s",
"energy",
"by",
"2060",
"if",
"politicians",
"commit",
"to",
"limiting",
"climate",
"change",
".",
"The",
"energy",
"from",
"the",
"sun",
"could",
"play",
"a",
"key",
"role",
"in",
"de",
"-",
"carbonizing",
"the",
"global",
"economy",
"alongside",
"improvements",
"in",
"energy",
"efficiency",
"and",
"imposing",
"costs",
"on",
"greenhouse",
"gas",
"emitters",
".",
"\"",
"The",
"strength",
"of",
"solar",
"is",
"the",
"incredible",
"variety",
"and",
"flexibility",
"of",
"applications",
",",
"from",
"small",
"scale",
"to",
"big",
"scale",
"\"",
"."
],
"offsets": [
0,
3,
7,
9,
11,
18,
21,
25,
39,
46,
53,
59,
64,
70,
77,
90,
95,
98,
111,
113,
119,
123,
129,
133,
146,
152,
158,
164,
172,
174,
180,
183,
187,
192,
195,
202,
205,
210,
213,
225,
232,
235,
244,
252,
258,
260,
264,
271,
276,
280,
284,
290,
295,
297,
301,
306,
309,
311,
312,
324,
328,
335,
343,
353,
366,
369,
376,
387,
391,
400,
406,
409,
420,
424,
432,
434,
435,
439,
448,
451,
457,
460,
464,
475,
483,
487,
499,
502,
514,
516,
521,
527,
533,
536,
540,
545,
546
]
} | c3049f913da04ccfa9ded8f80c33cc46 | According to a report in 2011, by what year could solar energy provide a third of the world's energy? | {
"tokens": [
"According",
"to",
"a",
"report",
"in",
"2011",
",",
"by",
"what",
"year",
"could",
"solar",
"energy",
"provide",
"a",
"third",
"of",
"the",
"world",
"'s",
"energy",
"?"
],
"offsets": [
0,
10,
13,
15,
22,
25,
29,
31,
34,
39,
44,
50,
56,
63,
71,
73,
79,
82,
86,
91,
94,
100
]
} | {
"text": [
"2060"
],
"char_spans": [
{
"start": [
205
],
"end": [
208
]
}
],
"token_spans": [
{
"start": [
36
],
"end": [
36
]
}
]
} | [
"2060"
] |
SQuAD | In 2011, a report by the International Energy Agency found that solar energy technologies such as photovoltaics, solar hot water and concentrated solar power could provide a third of the world’s energy by 2060 if politicians commit to limiting climate change. The energy from the sun could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters. "The strength of solar is the incredible variety and flexibility of applications, from small scale to big scale". | {
"tokens": [
"In",
"2011",
",",
"a",
"report",
"by",
"the",
"International",
"Energy",
"Agency",
"found",
"that",
"solar",
"energy",
"technologies",
"such",
"as",
"photovoltaics",
",",
"solar",
"hot",
"water",
"and",
"concentrated",
"solar",
"power",
"could",
"provide",
"a",
"third",
"of",
"the",
"world",
"’s",
"energy",
"by",
"2060",
"if",
"politicians",
"commit",
"to",
"limiting",
"climate",
"change",
".",
"The",
"energy",
"from",
"the",
"sun",
"could",
"play",
"a",
"key",
"role",
"in",
"de",
"-",
"carbonizing",
"the",
"global",
"economy",
"alongside",
"improvements",
"in",
"energy",
"efficiency",
"and",
"imposing",
"costs",
"on",
"greenhouse",
"gas",
"emitters",
".",
"\"",
"The",
"strength",
"of",
"solar",
"is",
"the",
"incredible",
"variety",
"and",
"flexibility",
"of",
"applications",
",",
"from",
"small",
"scale",
"to",
"big",
"scale",
"\"",
"."
],
"offsets": [
0,
3,
7,
9,
11,
18,
21,
25,
39,
46,
53,
59,
64,
70,
77,
90,
95,
98,
111,
113,
119,
123,
129,
133,
146,
152,
158,
164,
172,
174,
180,
183,
187,
192,
195,
202,
205,
210,
213,
225,
232,
235,
244,
252,
258,
260,
264,
271,
276,
280,
284,
290,
295,
297,
301,
306,
309,
311,
312,
324,
328,
335,
343,
353,
366,
369,
376,
387,
391,
400,
406,
409,
420,
424,
432,
434,
435,
439,
448,
451,
457,
460,
464,
475,
483,
487,
499,
502,
514,
516,
521,
527,
533,
536,
540,
545,
546
]
} | 67c4bfb11fb443e4a0c312f247f84e68 | What could the sun's energy do to help limit climate change? | {
"tokens": [
"What",
"could",
"the",
"sun",
"'s",
"energy",
"do",
"to",
"help",
"limit",
"climate",
"change",
"?"
],
"offsets": [
0,
5,
11,
15,
18,
21,
28,
31,
34,
39,
45,
53,
59
]
} | {
"text": [
"could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters"
],
"char_spans": [
{
"start": [
284
],
"end": [
431
]
}
],
"token_spans": [
{
"start": [
50
],
"end": [
73
]
}
]
} | [
"could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters"
] |
SQuAD | Geography effects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can effect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells. | {
"tokens": [
"Geography",
"effects",
"solar",
"energy",
"potential",
"because",
"areas",
"that",
"are",
"closer",
"to",
"the",
"equator",
"have",
"a",
"greater",
"amount",
"of",
"solar",
"radiation",
".",
"However",
",",
"the",
"use",
"of",
"photovoltaics",
"that",
"can",
"follow",
"the",
"position",
"of",
"the",
"sun",
"can",
"significantly",
"increase",
"the",
"solar",
"energy",
"potential",
"in",
"areas",
"that",
"are",
"farther",
"from",
"the",
"equator",
".",
"Time",
"variation",
"effects",
"the",
"potential",
"of",
"solar",
"energy",
"because",
"during",
"the",
"nighttime",
"there",
"is",
"little",
"solar",
"radiation",
"on",
"the",
"surface",
"of",
"the",
"Earth",
"for",
"solar",
"panels",
"to",
"absorb",
".",
"This",
"limits",
"the",
"amount",
"of",
"energy",
"that",
"solar",
"panels",
"can",
"absorb",
"in",
"one",
"day",
".",
"Cloud",
"cover",
"can",
"effect",
"the",
"potential",
"of",
"solar",
"panels",
"because",
"clouds",
"block",
"incoming",
"light",
"from",
"the",
"sun",
"and",
"reduce",
"the",
"light",
"available",
"for",
"solar",
"cells",
"."
],
"offsets": [
0,
10,
18,
24,
31,
41,
49,
55,
60,
64,
71,
74,
78,
86,
91,
93,
101,
108,
111,
117,
126,
128,
135,
137,
141,
145,
148,
162,
167,
171,
178,
182,
191,
194,
198,
202,
206,
220,
229,
233,
239,
246,
256,
259,
265,
270,
274,
282,
287,
291,
298,
300,
305,
315,
323,
327,
337,
340,
346,
353,
361,
368,
372,
382,
388,
391,
398,
404,
414,
417,
421,
429,
432,
436,
442,
446,
452,
459,
462,
468,
470,
475,
482,
486,
493,
496,
503,
508,
514,
521,
525,
532,
535,
539,
542,
544,
550,
556,
560,
567,
571,
581,
584,
590,
597,
605,
612,
618,
627,
633,
638,
642,
646,
650,
657,
661,
667,
677,
681,
687,
692
]
} | 6bc88ec096ff461ea8eb89b3903d9a84 | Why does geography have an effect of the amount of solar energy available? | {
"tokens": [
"Why",
"does",
"geography",
"have",
"an",
"effect",
"of",
"the",
"amount",
"of",
"solar",
"energy",
"available",
"?"
],
"offsets": [
0,
4,
9,
19,
24,
27,
34,
37,
41,
48,
51,
57,
64,
73
]
} | {
"text": [
"areas that are closer to the equator have a greater amount of solar radiation"
],
"char_spans": [
{
"start": [
49
],
"end": [
125
]
}
],
"token_spans": [
{
"start": [
6
],
"end": [
19
]
}
]
} | [
"areas that are closer to the equator have a greater amount of solar radiation"
] |
SQuAD | Geography effects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can effect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells. | {
"tokens": [
"Geography",
"effects",
"solar",
"energy",
"potential",
"because",
"areas",
"that",
"are",
"closer",
"to",
"the",
"equator",
"have",
"a",
"greater",
"amount",
"of",
"solar",
"radiation",
".",
"However",
",",
"the",
"use",
"of",
"photovoltaics",
"that",
"can",
"follow",
"the",
"position",
"of",
"the",
"sun",
"can",
"significantly",
"increase",
"the",
"solar",
"energy",
"potential",
"in",
"areas",
"that",
"are",
"farther",
"from",
"the",
"equator",
".",
"Time",
"variation",
"effects",
"the",
"potential",
"of",
"solar",
"energy",
"because",
"during",
"the",
"nighttime",
"there",
"is",
"little",
"solar",
"radiation",
"on",
"the",
"surface",
"of",
"the",
"Earth",
"for",
"solar",
"panels",
"to",
"absorb",
".",
"This",
"limits",
"the",
"amount",
"of",
"energy",
"that",
"solar",
"panels",
"can",
"absorb",
"in",
"one",
"day",
".",
"Cloud",
"cover",
"can",
"effect",
"the",
"potential",
"of",
"solar",
"panels",
"because",
"clouds",
"block",
"incoming",
"light",
"from",
"the",
"sun",
"and",
"reduce",
"the",
"light",
"available",
"for",
"solar",
"cells",
"."
],
"offsets": [
0,
10,
18,
24,
31,
41,
49,
55,
60,
64,
71,
74,
78,
86,
91,
93,
101,
108,
111,
117,
126,
128,
135,
137,
141,
145,
148,
162,
167,
171,
178,
182,
191,
194,
198,
202,
206,
220,
229,
233,
239,
246,
256,
259,
265,
270,
274,
282,
287,
291,
298,
300,
305,
315,
323,
327,
337,
340,
346,
353,
361,
368,
372,
382,
388,
391,
398,
404,
414,
417,
421,
429,
432,
436,
442,
446,
452,
459,
462,
468,
470,
475,
482,
486,
493,
496,
503,
508,
514,
521,
525,
532,
535,
539,
542,
544,
550,
556,
560,
567,
571,
581,
584,
590,
597,
605,
612,
618,
627,
633,
638,
642,
646,
650,
657,
661,
667,
677,
681,
687,
692
]
} | 7504712091024a4a9f9f25bf9cbb573f | What is the process called that can increase solar energy in areas further away from the earth's equator? | {
"tokens": [
"What",
"is",
"the",
"process",
"called",
"that",
"can",
"increase",
"solar",
"energy",
"in",
"areas",
"further",
"away",
"from",
"the",
"earth",
"'s",
"equator",
"?"
],
"offsets": [
0,
5,
8,
12,
20,
27,
32,
36,
45,
51,
58,
61,
67,
75,
80,
85,
89,
94,
97,
104
]
} | {
"text": [
"photovoltaics"
],
"char_spans": [
{
"start": [
148
],
"end": [
160
]
}
],
"token_spans": [
{
"start": [
26
],
"end": [
26
]
}
]
} | [
"photovoltaics"
] |
SQuAD | Geography effects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can effect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells. | {
"tokens": [
"Geography",
"effects",
"solar",
"energy",
"potential",
"because",
"areas",
"that",
"are",
"closer",
"to",
"the",
"equator",
"have",
"a",
"greater",
"amount",
"of",
"solar",
"radiation",
".",
"However",
",",
"the",
"use",
"of",
"photovoltaics",
"that",
"can",
"follow",
"the",
"position",
"of",
"the",
"sun",
"can",
"significantly",
"increase",
"the",
"solar",
"energy",
"potential",
"in",
"areas",
"that",
"are",
"farther",
"from",
"the",
"equator",
".",
"Time",
"variation",
"effects",
"the",
"potential",
"of",
"solar",
"energy",
"because",
"during",
"the",
"nighttime",
"there",
"is",
"little",
"solar",
"radiation",
"on",
"the",
"surface",
"of",
"the",
"Earth",
"for",
"solar",
"panels",
"to",
"absorb",
".",
"This",
"limits",
"the",
"amount",
"of",
"energy",
"that",
"solar",
"panels",
"can",
"absorb",
"in",
"one",
"day",
".",
"Cloud",
"cover",
"can",
"effect",
"the",
"potential",
"of",
"solar",
"panels",
"because",
"clouds",
"block",
"incoming",
"light",
"from",
"the",
"sun",
"and",
"reduce",
"the",
"light",
"available",
"for",
"solar",
"cells",
"."
],
"offsets": [
0,
10,
18,
24,
31,
41,
49,
55,
60,
64,
71,
74,
78,
86,
91,
93,
101,
108,
111,
117,
126,
128,
135,
137,
141,
145,
148,
162,
167,
171,
178,
182,
191,
194,
198,
202,
206,
220,
229,
233,
239,
246,
256,
259,
265,
270,
274,
282,
287,
291,
298,
300,
305,
315,
323,
327,
337,
340,
346,
353,
361,
368,
372,
382,
388,
391,
398,
404,
414,
417,
421,
429,
432,
436,
442,
446,
452,
459,
462,
468,
470,
475,
482,
486,
493,
496,
503,
508,
514,
521,
525,
532,
535,
539,
542,
544,
550,
556,
560,
567,
571,
581,
584,
590,
597,
605,
612,
618,
627,
633,
638,
642,
646,
650,
657,
661,
667,
677,
681,
687,
692
]
} | 12b5d12a0bea4a8fbf9631cfe436c857 | Why does time have an effect of the amount of available solar energy? | {
"tokens": [
"Why",
"does",
"time",
"have",
"an",
"effect",
"of",
"the",
"amount",
"of",
"available",
"solar",
"energy",
"?"
],
"offsets": [
0,
4,
9,
14,
19,
22,
29,
32,
36,
43,
46,
56,
62,
68
]
} | {
"text": [
"during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb"
],
"char_spans": [
{
"start": [
361
],
"end": [
467
]
}
],
"token_spans": [
{
"start": [
60
],
"end": [
78
]
}
]
} | [
"during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb"
] |
SQuAD | Geography effects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can effect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells. | {
"tokens": [
"Geography",
"effects",
"solar",
"energy",
"potential",
"because",
"areas",
"that",
"are",
"closer",
"to",
"the",
"equator",
"have",
"a",
"greater",
"amount",
"of",
"solar",
"radiation",
".",
"However",
",",
"the",
"use",
"of",
"photovoltaics",
"that",
"can",
"follow",
"the",
"position",
"of",
"the",
"sun",
"can",
"significantly",
"increase",
"the",
"solar",
"energy",
"potential",
"in",
"areas",
"that",
"are",
"farther",
"from",
"the",
"equator",
".",
"Time",
"variation",
"effects",
"the",
"potential",
"of",
"solar",
"energy",
"because",
"during",
"the",
"nighttime",
"there",
"is",
"little",
"solar",
"radiation",
"on",
"the",
"surface",
"of",
"the",
"Earth",
"for",
"solar",
"panels",
"to",
"absorb",
".",
"This",
"limits",
"the",
"amount",
"of",
"energy",
"that",
"solar",
"panels",
"can",
"absorb",
"in",
"one",
"day",
".",
"Cloud",
"cover",
"can",
"effect",
"the",
"potential",
"of",
"solar",
"panels",
"because",
"clouds",
"block",
"incoming",
"light",
"from",
"the",
"sun",
"and",
"reduce",
"the",
"light",
"available",
"for",
"solar",
"cells",
"."
],
"offsets": [
0,
10,
18,
24,
31,
41,
49,
55,
60,
64,
71,
74,
78,
86,
91,
93,
101,
108,
111,
117,
126,
128,
135,
137,
141,
145,
148,
162,
167,
171,
178,
182,
191,
194,
198,
202,
206,
220,
229,
233,
239,
246,
256,
259,
265,
270,
274,
282,
287,
291,
298,
300,
305,
315,
323,
327,
337,
340,
346,
353,
361,
368,
372,
382,
388,
391,
398,
404,
414,
417,
421,
429,
432,
436,
442,
446,
452,
459,
462,
468,
470,
475,
482,
486,
493,
496,
503,
508,
514,
521,
525,
532,
535,
539,
542,
544,
550,
556,
560,
567,
571,
581,
584,
590,
597,
605,
612,
618,
627,
633,
638,
642,
646,
650,
657,
661,
667,
677,
681,
687,
692
]
} | 21955410e1ca4b76ba1d69fabdad2b86 | What effect does cloud coverage have on the amount of solar energy available? | {
"tokens": [
"What",
"effect",
"does",
"cloud",
"coverage",
"have",
"on",
"the",
"amount",
"of",
"solar",
"energy",
"available",
"?"
],
"offsets": [
0,
5,
12,
17,
23,
32,
37,
40,
44,
51,
54,
60,
67,
76
]
} | {
"text": [
"clouds block incoming light from the sun and reduce the light available for solar cells"
],
"char_spans": [
{
"start": [
605
],
"end": [
691
]
}
],
"token_spans": [
{
"start": [
105
],
"end": [
119
]
}
]
} | [
"clouds block incoming light from the sun and reduce the light available for solar cells"
] |
SQuAD | Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds. | {
"tokens": [
"Solar",
"concentrating",
"technologies",
"such",
"as",
"parabolic",
"dish",
",",
"trough",
"and",
"Scheffler",
"reflectors",
"can",
"provide",
"process",
"heat",
"for",
"commercial",
"and",
"industrial",
"applications",
".",
"The",
"first",
"commercial",
"system",
"was",
"the",
"Solar",
"Total",
"Energy",
"Project",
"(",
"STEP",
")",
"in",
"Shenandoah",
",",
"Georgia",
",",
"USA",
"where",
"a",
"field",
"of",
"114",
"parabolic",
"dishes",
"provided",
"50",
"%",
"of",
"the",
"process",
"heating",
",",
"air",
"conditioning",
"and",
"electrical",
"requirements",
"for",
"a",
"clothing",
"factory",
".",
"This",
"grid",
"-",
"connected",
"cogeneration",
"system",
"provided",
"400",
"kW",
"of",
"electricity",
"plus",
"thermal",
"energy",
"in",
"the",
"form",
"of",
"401",
"kW",
"steam",
"and",
"468",
"kW",
"chilled",
"water",
",",
"and",
"had",
"a",
"one",
"-",
"hour",
"peak",
"load",
"thermal",
"storage",
".",
"Evaporation",
"ponds",
"are",
"shallow",
"pools",
"that",
"concentrate",
"dissolved",
"solids",
"through",
"evaporation",
".",
"The",
"use",
"of",
"evaporation",
"ponds",
"to",
"obtain",
"salt",
"from",
"sea",
"water",
"is",
"one",
"of",
"the",
"oldest",
"applications",
"of",
"solar",
"energy",
".",
"Modern",
"uses",
"include",
"concentrating",
"brine",
"solutions",
"used",
"in",
"leach",
"mining",
"and",
"removing",
"dissolved",
"solids",
"from",
"waste",
"streams",
".",
"Clothes",
"lines",
",",
"clotheshorses",
",",
"and",
"clothes",
"racks",
"dry",
"clothes",
"through",
"evaporation",
"by",
"wind",
"and",
"sunlight",
"without",
"consuming",
"electricity",
"or",
"gas",
".",
"In",
"some",
"states",
"of",
"the",
"United",
"States",
"legislation",
"protects",
"the",
"\"",
"right",
"to",
"dry",
"\"",
"clothes",
".",
"Unglazed",
"transpired",
"collectors",
"(",
"UTC",
")",
"are",
"perforated",
"sun",
"-",
"facing",
"walls",
"used",
"for",
"preheating",
"ventilation",
"air",
".",
"UTCs",
"can",
"raise",
"the",
"incoming",
"air",
"temperature",
"up",
"to",
"22",
"°",
"C",
"(",
"40",
"°",
"F",
")",
"and",
"deliver",
"outlet",
"temperatures",
"of",
"45–60",
"°",
"C",
"(",
"113–140",
"°",
"F",
")",
".",
"The",
"short",
"payback",
"period",
"of",
"transpired",
"collectors",
"(",
"3",
"to",
"12",
"years",
")",
"makes",
"them",
"a",
"more",
"cost",
"-",
"effective",
"alternative",
"than",
"glazed",
"collection",
"systems",
".",
"As",
"of",
"2003",
",",
"over",
"80",
"systems",
"with",
"a",
"combined",
"collector",
"area",
"of",
"35,000",
"square",
"metres",
"(",
"380,000",
"sq",
"ft",
")",
"had",
"been",
"installed",
"worldwide",
",",
"including",
"an",
"860",
"m2",
"(",
"9,300",
"sq",
"ft",
")",
"collector",
"in",
"Costa",
"Rica",
"used",
"for",
"drying",
"coffee",
"beans",
"and",
"a",
"1,300",
"m2",
"(",
"14,000",
"sq",
"ft",
")",
"collector",
"in",
"Coimbatore",
",",
"India",
",",
"used",
"for",
"drying",
"marigolds",
"."
],
"offsets": [
0,
6,
20,
33,
38,
41,
51,
55,
57,
64,
68,
78,
89,
93,
101,
109,
114,
118,
129,
133,
144,
156,
158,
162,
168,
179,
186,
190,
194,
200,
206,
213,
221,
222,
226,
228,
231,
241,
243,
250,
252,
256,
262,
264,
270,
273,
277,
287,
294,
303,
305,
307,
310,
314,
322,
329,
331,
335,
348,
352,
363,
376,
380,
382,
391,
398,
400,
405,
409,
410,
420,
433,
440,
449,
453,
456,
459,
471,
476,
484,
491,
494,
498,
503,
506,
510,
513,
519,
523,
527,
530,
538,
543,
545,
549,
553,
555,
558,
559,
564,
569,
574,
582,
589,
591,
603,
609,
613,
621,
627,
632,
644,
654,
661,
669,
680,
682,
686,
690,
693,
705,
711,
714,
721,
726,
731,
735,
741,
744,
748,
751,
755,
762,
775,
778,
784,
790,
792,
799,
804,
812,
826,
832,
842,
847,
850,
856,
863,
867,
876,
886,
893,
898,
904,
911,
913,
921,
926,
928,
941,
943,
947,
955,
961,
965,
973,
981,
993,
996,
1001,
1005,
1014,
1022,
1032,
1044,
1047,
1050,
1052,
1055,
1060,
1067,
1070,
1074,
1081,
1088,
1100,
1109,
1113,
1114,
1120,
1123,
1126,
1128,
1135,
1137,
1146,
1157,
1168,
1169,
1172,
1174,
1178,
1189,
1192,
1193,
1200,
1206,
1211,
1215,
1226,
1238,
1241,
1243,
1248,
1252,
1258,
1262,
1271,
1275,
1287,
1290,
1293,
1296,
1297,
1299,
1300,
1303,
1304,
1305,
1307,
1311,
1319,
1326,
1339,
1342,
1348,
1349,
1351,
1352,
1360,
1361,
1362,
1363,
1365,
1369,
1375,
1383,
1390,
1393,
1404,
1415,
1416,
1418,
1421,
1424,
1429,
1431,
1437,
1442,
1444,
1449,
1453,
1454,
1464,
1476,
1481,
1488,
1499,
1506,
1508,
1511,
1514,
1518,
1520,
1525,
1528,
1536,
1541,
1543,
1552,
1562,
1567,
1570,
1577,
1584,
1591,
1592,
1600,
1603,
1605,
1607,
1611,
1616,
1626,
1635,
1637,
1647,
1650,
1654,
1657,
1658,
1664,
1667,
1669,
1671,
1681,
1684,
1690,
1695,
1700,
1704,
1711,
1718,
1724,
1728,
1730,
1736,
1739,
1740,
1747,
1750,
1752,
1754,
1764,
1767,
1777,
1779,
1784,
1786,
1791,
1795,
1802,
1811
]
} | 3318a33ef60c44ca9bddea8b71a17f73 | The Solar Total Energy Project had a field of how many parabolic dishes? | {
"tokens": [
"The",
"Solar",
"Total",
"Energy",
"Project",
"had",
"a",
"field",
"of",
"how",
"many",
"parabolic",
"dishes",
"?"
],
"offsets": [
0,
4,
10,
16,
23,
31,
35,
37,
43,
46,
50,
55,
65,
71
]
} | {
"text": [
"114"
],
"char_spans": [
{
"start": [
273
],
"end": [
275
]
}
],
"token_spans": [
{
"start": [
45
],
"end": [
45
]
}
]
} | [
"114"
] |
SQuAD | Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds. | {
"tokens": [
"Solar",
"concentrating",
"technologies",
"such",
"as",
"parabolic",
"dish",
",",
"trough",
"and",
"Scheffler",
"reflectors",
"can",
"provide",
"process",
"heat",
"for",
"commercial",
"and",
"industrial",
"applications",
".",
"The",
"first",
"commercial",
"system",
"was",
"the",
"Solar",
"Total",
"Energy",
"Project",
"(",
"STEP",
")",
"in",
"Shenandoah",
",",
"Georgia",
",",
"USA",
"where",
"a",
"field",
"of",
"114",
"parabolic",
"dishes",
"provided",
"50",
"%",
"of",
"the",
"process",
"heating",
",",
"air",
"conditioning",
"and",
"electrical",
"requirements",
"for",
"a",
"clothing",
"factory",
".",
"This",
"grid",
"-",
"connected",
"cogeneration",
"system",
"provided",
"400",
"kW",
"of",
"electricity",
"plus",
"thermal",
"energy",
"in",
"the",
"form",
"of",
"401",
"kW",
"steam",
"and",
"468",
"kW",
"chilled",
"water",
",",
"and",
"had",
"a",
"one",
"-",
"hour",
"peak",
"load",
"thermal",
"storage",
".",
"Evaporation",
"ponds",
"are",
"shallow",
"pools",
"that",
"concentrate",
"dissolved",
"solids",
"through",
"evaporation",
".",
"The",
"use",
"of",
"evaporation",
"ponds",
"to",
"obtain",
"salt",
"from",
"sea",
"water",
"is",
"one",
"of",
"the",
"oldest",
"applications",
"of",
"solar",
"energy",
".",
"Modern",
"uses",
"include",
"concentrating",
"brine",
"solutions",
"used",
"in",
"leach",
"mining",
"and",
"removing",
"dissolved",
"solids",
"from",
"waste",
"streams",
".",
"Clothes",
"lines",
",",
"clotheshorses",
",",
"and",
"clothes",
"racks",
"dry",
"clothes",
"through",
"evaporation",
"by",
"wind",
"and",
"sunlight",
"without",
"consuming",
"electricity",
"or",
"gas",
".",
"In",
"some",
"states",
"of",
"the",
"United",
"States",
"legislation",
"protects",
"the",
"\"",
"right",
"to",
"dry",
"\"",
"clothes",
".",
"Unglazed",
"transpired",
"collectors",
"(",
"UTC",
")",
"are",
"perforated",
"sun",
"-",
"facing",
"walls",
"used",
"for",
"preheating",
"ventilation",
"air",
".",
"UTCs",
"can",
"raise",
"the",
"incoming",
"air",
"temperature",
"up",
"to",
"22",
"°",
"C",
"(",
"40",
"°",
"F",
")",
"and",
"deliver",
"outlet",
"temperatures",
"of",
"45–60",
"°",
"C",
"(",
"113–140",
"°",
"F",
")",
".",
"The",
"short",
"payback",
"period",
"of",
"transpired",
"collectors",
"(",
"3",
"to",
"12",
"years",
")",
"makes",
"them",
"a",
"more",
"cost",
"-",
"effective",
"alternative",
"than",
"glazed",
"collection",
"systems",
".",
"As",
"of",
"2003",
",",
"over",
"80",
"systems",
"with",
"a",
"combined",
"collector",
"area",
"of",
"35,000",
"square",
"metres",
"(",
"380,000",
"sq",
"ft",
")",
"had",
"been",
"installed",
"worldwide",
",",
"including",
"an",
"860",
"m2",
"(",
"9,300",
"sq",
"ft",
")",
"collector",
"in",
"Costa",
"Rica",
"used",
"for",
"drying",
"coffee",
"beans",
"and",
"a",
"1,300",
"m2",
"(",
"14,000",
"sq",
"ft",
")",
"collector",
"in",
"Coimbatore",
",",
"India",
",",
"used",
"for",
"drying",
"marigolds",
"."
],
"offsets": [
0,
6,
20,
33,
38,
41,
51,
55,
57,
64,
68,
78,
89,
93,
101,
109,
114,
118,
129,
133,
144,
156,
158,
162,
168,
179,
186,
190,
194,
200,
206,
213,
221,
222,
226,
228,
231,
241,
243,
250,
252,
256,
262,
264,
270,
273,
277,
287,
294,
303,
305,
307,
310,
314,
322,
329,
331,
335,
348,
352,
363,
376,
380,
382,
391,
398,
400,
405,
409,
410,
420,
433,
440,
449,
453,
456,
459,
471,
476,
484,
491,
494,
498,
503,
506,
510,
513,
519,
523,
527,
530,
538,
543,
545,
549,
553,
555,
558,
559,
564,
569,
574,
582,
589,
591,
603,
609,
613,
621,
627,
632,
644,
654,
661,
669,
680,
682,
686,
690,
693,
705,
711,
714,
721,
726,
731,
735,
741,
744,
748,
751,
755,
762,
775,
778,
784,
790,
792,
799,
804,
812,
826,
832,
842,
847,
850,
856,
863,
867,
876,
886,
893,
898,
904,
911,
913,
921,
926,
928,
941,
943,
947,
955,
961,
965,
973,
981,
993,
996,
1001,
1005,
1014,
1022,
1032,
1044,
1047,
1050,
1052,
1055,
1060,
1067,
1070,
1074,
1081,
1088,
1100,
1109,
1113,
1114,
1120,
1123,
1126,
1128,
1135,
1137,
1146,
1157,
1168,
1169,
1172,
1174,
1178,
1189,
1192,
1193,
1200,
1206,
1211,
1215,
1226,
1238,
1241,
1243,
1248,
1252,
1258,
1262,
1271,
1275,
1287,
1290,
1293,
1296,
1297,
1299,
1300,
1303,
1304,
1305,
1307,
1311,
1319,
1326,
1339,
1342,
1348,
1349,
1351,
1352,
1360,
1361,
1362,
1363,
1365,
1369,
1375,
1383,
1390,
1393,
1404,
1415,
1416,
1418,
1421,
1424,
1429,
1431,
1437,
1442,
1444,
1449,
1453,
1454,
1464,
1476,
1481,
1488,
1499,
1506,
1508,
1511,
1514,
1518,
1520,
1525,
1528,
1536,
1541,
1543,
1552,
1562,
1567,
1570,
1577,
1584,
1591,
1592,
1600,
1603,
1605,
1607,
1611,
1616,
1626,
1635,
1637,
1647,
1650,
1654,
1657,
1658,
1664,
1667,
1669,
1671,
1681,
1684,
1690,
1695,
1700,
1704,
1711,
1718,
1724,
1728,
1730,
1736,
1739,
1740,
1747,
1750,
1752,
1754,
1764,
1767,
1777,
1779,
1784,
1786,
1791,
1795,
1802,
1811
]
} | ceb83cccf6114cf7bd5d2c9cecac573e | Are transpired collectors more or less cost-effective than glazed collection systems? | {
"tokens": [
"Are",
"transpired",
"collectors",
"more",
"or",
"less",
"cost",
"-",
"effective",
"than",
"glazed",
"collection",
"systems",
"?"
],
"offsets": [
0,
4,
15,
26,
31,
34,
39,
43,
44,
54,
59,
66,
77,
84
]
} | {
"text": [
"more"
],
"char_spans": [
{
"start": [
1444
],
"end": [
1447
]
}
],
"token_spans": [
{
"start": [
259
],
"end": [
259
]
}
]
} | [
"more"
] |
SQuAD | Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds. | {
"tokens": [
"Solar",
"concentrating",
"technologies",
"such",
"as",
"parabolic",
"dish",
",",
"trough",
"and",
"Scheffler",
"reflectors",
"can",
"provide",
"process",
"heat",
"for",
"commercial",
"and",
"industrial",
"applications",
".",
"The",
"first",
"commercial",
"system",
"was",
"the",
"Solar",
"Total",
"Energy",
"Project",
"(",
"STEP",
")",
"in",
"Shenandoah",
",",
"Georgia",
",",
"USA",
"where",
"a",
"field",
"of",
"114",
"parabolic",
"dishes",
"provided",
"50",
"%",
"of",
"the",
"process",
"heating",
",",
"air",
"conditioning",
"and",
"electrical",
"requirements",
"for",
"a",
"clothing",
"factory",
".",
"This",
"grid",
"-",
"connected",
"cogeneration",
"system",
"provided",
"400",
"kW",
"of",
"electricity",
"plus",
"thermal",
"energy",
"in",
"the",
"form",
"of",
"401",
"kW",
"steam",
"and",
"468",
"kW",
"chilled",
"water",
",",
"and",
"had",
"a",
"one",
"-",
"hour",
"peak",
"load",
"thermal",
"storage",
".",
"Evaporation",
"ponds",
"are",
"shallow",
"pools",
"that",
"concentrate",
"dissolved",
"solids",
"through",
"evaporation",
".",
"The",
"use",
"of",
"evaporation",
"ponds",
"to",
"obtain",
"salt",
"from",
"sea",
"water",
"is",
"one",
"of",
"the",
"oldest",
"applications",
"of",
"solar",
"energy",
".",
"Modern",
"uses",
"include",
"concentrating",
"brine",
"solutions",
"used",
"in",
"leach",
"mining",
"and",
"removing",
"dissolved",
"solids",
"from",
"waste",
"streams",
".",
"Clothes",
"lines",
",",
"clotheshorses",
",",
"and",
"clothes",
"racks",
"dry",
"clothes",
"through",
"evaporation",
"by",
"wind",
"and",
"sunlight",
"without",
"consuming",
"electricity",
"or",
"gas",
".",
"In",
"some",
"states",
"of",
"the",
"United",
"States",
"legislation",
"protects",
"the",
"\"",
"right",
"to",
"dry",
"\"",
"clothes",
".",
"Unglazed",
"transpired",
"collectors",
"(",
"UTC",
")",
"are",
"perforated",
"sun",
"-",
"facing",
"walls",
"used",
"for",
"preheating",
"ventilation",
"air",
".",
"UTCs",
"can",
"raise",
"the",
"incoming",
"air",
"temperature",
"up",
"to",
"22",
"°",
"C",
"(",
"40",
"°",
"F",
")",
"and",
"deliver",
"outlet",
"temperatures",
"of",
"45–60",
"°",
"C",
"(",
"113–140",
"°",
"F",
")",
".",
"The",
"short",
"payback",
"period",
"of",
"transpired",
"collectors",
"(",
"3",
"to",
"12",
"years",
")",
"makes",
"them",
"a",
"more",
"cost",
"-",
"effective",
"alternative",
"than",
"glazed",
"collection",
"systems",
".",
"As",
"of",
"2003",
",",
"over",
"80",
"systems",
"with",
"a",
"combined",
"collector",
"area",
"of",
"35,000",
"square",
"metres",
"(",
"380,000",
"sq",
"ft",
")",
"had",
"been",
"installed",
"worldwide",
",",
"including",
"an",
"860",
"m2",
"(",
"9,300",
"sq",
"ft",
")",
"collector",
"in",
"Costa",
"Rica",
"used",
"for",
"drying",
"coffee",
"beans",
"and",
"a",
"1,300",
"m2",
"(",
"14,000",
"sq",
"ft",
")",
"collector",
"in",
"Coimbatore",
",",
"India",
",",
"used",
"for",
"drying",
"marigolds",
"."
],
"offsets": [
0,
6,
20,
33,
38,
41,
51,
55,
57,
64,
68,
78,
89,
93,
101,
109,
114,
118,
129,
133,
144,
156,
158,
162,
168,
179,
186,
190,
194,
200,
206,
213,
221,
222,
226,
228,
231,
241,
243,
250,
252,
256,
262,
264,
270,
273,
277,
287,
294,
303,
305,
307,
310,
314,
322,
329,
331,
335,
348,
352,
363,
376,
380,
382,
391,
398,
400,
405,
409,
410,
420,
433,
440,
449,
453,
456,
459,
471,
476,
484,
491,
494,
498,
503,
506,
510,
513,
519,
523,
527,
530,
538,
543,
545,
549,
553,
555,
558,
559,
564,
569,
574,
582,
589,
591,
603,
609,
613,
621,
627,
632,
644,
654,
661,
669,
680,
682,
686,
690,
693,
705,
711,
714,
721,
726,
731,
735,
741,
744,
748,
751,
755,
762,
775,
778,
784,
790,
792,
799,
804,
812,
826,
832,
842,
847,
850,
856,
863,
867,
876,
886,
893,
898,
904,
911,
913,
921,
926,
928,
941,
943,
947,
955,
961,
965,
973,
981,
993,
996,
1001,
1005,
1014,
1022,
1032,
1044,
1047,
1050,
1052,
1055,
1060,
1067,
1070,
1074,
1081,
1088,
1100,
1109,
1113,
1114,
1120,
1123,
1126,
1128,
1135,
1137,
1146,
1157,
1168,
1169,
1172,
1174,
1178,
1189,
1192,
1193,
1200,
1206,
1211,
1215,
1226,
1238,
1241,
1243,
1248,
1252,
1258,
1262,
1271,
1275,
1287,
1290,
1293,
1296,
1297,
1299,
1300,
1303,
1304,
1305,
1307,
1311,
1319,
1326,
1339,
1342,
1348,
1349,
1351,
1352,
1360,
1361,
1362,
1363,
1365,
1369,
1375,
1383,
1390,
1393,
1404,
1415,
1416,
1418,
1421,
1424,
1429,
1431,
1437,
1442,
1444,
1449,
1453,
1454,
1464,
1476,
1481,
1488,
1499,
1506,
1508,
1511,
1514,
1518,
1520,
1525,
1528,
1536,
1541,
1543,
1552,
1562,
1567,
1570,
1577,
1584,
1591,
1592,
1600,
1603,
1605,
1607,
1611,
1616,
1626,
1635,
1637,
1647,
1650,
1654,
1657,
1658,
1664,
1667,
1669,
1671,
1681,
1684,
1690,
1695,
1700,
1704,
1711,
1718,
1724,
1728,
1730,
1736,
1739,
1740,
1747,
1750,
1752,
1754,
1764,
1767,
1777,
1779,
1784,
1786,
1791,
1795,
1802,
1811
]
} | 17c83973dd57412e9753c23e40266c86 | What are some examples of solar concentrating technologies? | {
"tokens": [
"What",
"are",
"some",
"examples",
"of",
"solar",
"concentrating",
"technologies",
"?"
],
"offsets": [
0,
5,
9,
14,
23,
26,
32,
46,
58
]
} | {
"text": [
"parabolic dish, trough and Scheffler reflectors"
],
"char_spans": [
{
"start": [
41
],
"end": [
87
]
}
],
"token_spans": [
{
"start": [
5
],
"end": [
11
]
}
]
} | [
"parabolic dish, trough and Scheffler reflectors"
] |
SQuAD | Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds. | {
"tokens": [
"Solar",
"concentrating",
"technologies",
"such",
"as",
"parabolic",
"dish",
",",
"trough",
"and",
"Scheffler",
"reflectors",
"can",
"provide",
"process",
"heat",
"for",
"commercial",
"and",
"industrial",
"applications",
".",
"The",
"first",
"commercial",
"system",
"was",
"the",
"Solar",
"Total",
"Energy",
"Project",
"(",
"STEP",
")",
"in",
"Shenandoah",
",",
"Georgia",
",",
"USA",
"where",
"a",
"field",
"of",
"114",
"parabolic",
"dishes",
"provided",
"50",
"%",
"of",
"the",
"process",
"heating",
",",
"air",
"conditioning",
"and",
"electrical",
"requirements",
"for",
"a",
"clothing",
"factory",
".",
"This",
"grid",
"-",
"connected",
"cogeneration",
"system",
"provided",
"400",
"kW",
"of",
"electricity",
"plus",
"thermal",
"energy",
"in",
"the",
"form",
"of",
"401",
"kW",
"steam",
"and",
"468",
"kW",
"chilled",
"water",
",",
"and",
"had",
"a",
"one",
"-",
"hour",
"peak",
"load",
"thermal",
"storage",
".",
"Evaporation",
"ponds",
"are",
"shallow",
"pools",
"that",
"concentrate",
"dissolved",
"solids",
"through",
"evaporation",
".",
"The",
"use",
"of",
"evaporation",
"ponds",
"to",
"obtain",
"salt",
"from",
"sea",
"water",
"is",
"one",
"of",
"the",
"oldest",
"applications",
"of",
"solar",
"energy",
".",
"Modern",
"uses",
"include",
"concentrating",
"brine",
"solutions",
"used",
"in",
"leach",
"mining",
"and",
"removing",
"dissolved",
"solids",
"from",
"waste",
"streams",
".",
"Clothes",
"lines",
",",
"clotheshorses",
",",
"and",
"clothes",
"racks",
"dry",
"clothes",
"through",
"evaporation",
"by",
"wind",
"and",
"sunlight",
"without",
"consuming",
"electricity",
"or",
"gas",
".",
"In",
"some",
"states",
"of",
"the",
"United",
"States",
"legislation",
"protects",
"the",
"\"",
"right",
"to",
"dry",
"\"",
"clothes",
".",
"Unglazed",
"transpired",
"collectors",
"(",
"UTC",
")",
"are",
"perforated",
"sun",
"-",
"facing",
"walls",
"used",
"for",
"preheating",
"ventilation",
"air",
".",
"UTCs",
"can",
"raise",
"the",
"incoming",
"air",
"temperature",
"up",
"to",
"22",
"°",
"C",
"(",
"40",
"°",
"F",
")",
"and",
"deliver",
"outlet",
"temperatures",
"of",
"45–60",
"°",
"C",
"(",
"113–140",
"°",
"F",
")",
".",
"The",
"short",
"payback",
"period",
"of",
"transpired",
"collectors",
"(",
"3",
"to",
"12",
"years",
")",
"makes",
"them",
"a",
"more",
"cost",
"-",
"effective",
"alternative",
"than",
"glazed",
"collection",
"systems",
".",
"As",
"of",
"2003",
",",
"over",
"80",
"systems",
"with",
"a",
"combined",
"collector",
"area",
"of",
"35,000",
"square",
"metres",
"(",
"380,000",
"sq",
"ft",
")",
"had",
"been",
"installed",
"worldwide",
",",
"including",
"an",
"860",
"m2",
"(",
"9,300",
"sq",
"ft",
")",
"collector",
"in",
"Costa",
"Rica",
"used",
"for",
"drying",
"coffee",
"beans",
"and",
"a",
"1,300",
"m2",
"(",
"14,000",
"sq",
"ft",
")",
"collector",
"in",
"Coimbatore",
",",
"India",
",",
"used",
"for",
"drying",
"marigolds",
"."
],
"offsets": [
0,
6,
20,
33,
38,
41,
51,
55,
57,
64,
68,
78,
89,
93,
101,
109,
114,
118,
129,
133,
144,
156,
158,
162,
168,
179,
186,
190,
194,
200,
206,
213,
221,
222,
226,
228,
231,
241,
243,
250,
252,
256,
262,
264,
270,
273,
277,
287,
294,
303,
305,
307,
310,
314,
322,
329,
331,
335,
348,
352,
363,
376,
380,
382,
391,
398,
400,
405,
409,
410,
420,
433,
440,
449,
453,
456,
459,
471,
476,
484,
491,
494,
498,
503,
506,
510,
513,
519,
523,
527,
530,
538,
543,
545,
549,
553,
555,
558,
559,
564,
569,
574,
582,
589,
591,
603,
609,
613,
621,
627,
632,
644,
654,
661,
669,
680,
682,
686,
690,
693,
705,
711,
714,
721,
726,
731,
735,
741,
744,
748,
751,
755,
762,
775,
778,
784,
790,
792,
799,
804,
812,
826,
832,
842,
847,
850,
856,
863,
867,
876,
886,
893,
898,
904,
911,
913,
921,
926,
928,
941,
943,
947,
955,
961,
965,
973,
981,
993,
996,
1001,
1005,
1014,
1022,
1032,
1044,
1047,
1050,
1052,
1055,
1060,
1067,
1070,
1074,
1081,
1088,
1100,
1109,
1113,
1114,
1120,
1123,
1126,
1128,
1135,
1137,
1146,
1157,
1168,
1169,
1172,
1174,
1178,
1189,
1192,
1193,
1200,
1206,
1211,
1215,
1226,
1238,
1241,
1243,
1248,
1252,
1258,
1262,
1271,
1275,
1287,
1290,
1293,
1296,
1297,
1299,
1300,
1303,
1304,
1305,
1307,
1311,
1319,
1326,
1339,
1342,
1348,
1349,
1351,
1352,
1360,
1361,
1362,
1363,
1365,
1369,
1375,
1383,
1390,
1393,
1404,
1415,
1416,
1418,
1421,
1424,
1429,
1431,
1437,
1442,
1444,
1449,
1453,
1454,
1464,
1476,
1481,
1488,
1499,
1506,
1508,
1511,
1514,
1518,
1520,
1525,
1528,
1536,
1541,
1543,
1552,
1562,
1567,
1570,
1577,
1584,
1591,
1592,
1600,
1603,
1605,
1607,
1611,
1616,
1626,
1635,
1637,
1647,
1650,
1654,
1657,
1658,
1664,
1667,
1669,
1671,
1681,
1684,
1690,
1695,
1700,
1704,
1711,
1718,
1724,
1728,
1730,
1736,
1739,
1740,
1747,
1750,
1752,
1754,
1764,
1767,
1777,
1779,
1784,
1786,
1791,
1795,
1802,
1811
]
} | 087f2e06110e48c2b4bc0e9c71e43fa2 | What was the first commercial solar concentrating system? | {
"tokens": [
"What",
"was",
"the",
"first",
"commercial",
"solar",
"concentrating",
"system",
"?"
],
"offsets": [
0,
5,
9,
13,
19,
30,
36,
50,
56
]
} | {
"text": [
"Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA"
],
"char_spans": [
{
"start": [
194
],
"end": [
254
]
}
],
"token_spans": [
{
"start": [
28
],
"end": [
40
]
}
]
} | [
"Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA"
] |
SQuAD | Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds. | {
"tokens": [
"Solar",
"concentrating",
"technologies",
"such",
"as",
"parabolic",
"dish",
",",
"trough",
"and",
"Scheffler",
"reflectors",
"can",
"provide",
"process",
"heat",
"for",
"commercial",
"and",
"industrial",
"applications",
".",
"The",
"first",
"commercial",
"system",
"was",
"the",
"Solar",
"Total",
"Energy",
"Project",
"(",
"STEP",
")",
"in",
"Shenandoah",
",",
"Georgia",
",",
"USA",
"where",
"a",
"field",
"of",
"114",
"parabolic",
"dishes",
"provided",
"50",
"%",
"of",
"the",
"process",
"heating",
",",
"air",
"conditioning",
"and",
"electrical",
"requirements",
"for",
"a",
"clothing",
"factory",
".",
"This",
"grid",
"-",
"connected",
"cogeneration",
"system",
"provided",
"400",
"kW",
"of",
"electricity",
"plus",
"thermal",
"energy",
"in",
"the",
"form",
"of",
"401",
"kW",
"steam",
"and",
"468",
"kW",
"chilled",
"water",
",",
"and",
"had",
"a",
"one",
"-",
"hour",
"peak",
"load",
"thermal",
"storage",
".",
"Evaporation",
"ponds",
"are",
"shallow",
"pools",
"that",
"concentrate",
"dissolved",
"solids",
"through",
"evaporation",
".",
"The",
"use",
"of",
"evaporation",
"ponds",
"to",
"obtain",
"salt",
"from",
"sea",
"water",
"is",
"one",
"of",
"the",
"oldest",
"applications",
"of",
"solar",
"energy",
".",
"Modern",
"uses",
"include",
"concentrating",
"brine",
"solutions",
"used",
"in",
"leach",
"mining",
"and",
"removing",
"dissolved",
"solids",
"from",
"waste",
"streams",
".",
"Clothes",
"lines",
",",
"clotheshorses",
",",
"and",
"clothes",
"racks",
"dry",
"clothes",
"through",
"evaporation",
"by",
"wind",
"and",
"sunlight",
"without",
"consuming",
"electricity",
"or",
"gas",
".",
"In",
"some",
"states",
"of",
"the",
"United",
"States",
"legislation",
"protects",
"the",
"\"",
"right",
"to",
"dry",
"\"",
"clothes",
".",
"Unglazed",
"transpired",
"collectors",
"(",
"UTC",
")",
"are",
"perforated",
"sun",
"-",
"facing",
"walls",
"used",
"for",
"preheating",
"ventilation",
"air",
".",
"UTCs",
"can",
"raise",
"the",
"incoming",
"air",
"temperature",
"up",
"to",
"22",
"°",
"C",
"(",
"40",
"°",
"F",
")",
"and",
"deliver",
"outlet",
"temperatures",
"of",
"45–60",
"°",
"C",
"(",
"113–140",
"°",
"F",
")",
".",
"The",
"short",
"payback",
"period",
"of",
"transpired",
"collectors",
"(",
"3",
"to",
"12",
"years",
")",
"makes",
"them",
"a",
"more",
"cost",
"-",
"effective",
"alternative",
"than",
"glazed",
"collection",
"systems",
".",
"As",
"of",
"2003",
",",
"over",
"80",
"systems",
"with",
"a",
"combined",
"collector",
"area",
"of",
"35,000",
"square",
"metres",
"(",
"380,000",
"sq",
"ft",
")",
"had",
"been",
"installed",
"worldwide",
",",
"including",
"an",
"860",
"m2",
"(",
"9,300",
"sq",
"ft",
")",
"collector",
"in",
"Costa",
"Rica",
"used",
"for",
"drying",
"coffee",
"beans",
"and",
"a",
"1,300",
"m2",
"(",
"14,000",
"sq",
"ft",
")",
"collector",
"in",
"Coimbatore",
",",
"India",
",",
"used",
"for",
"drying",
"marigolds",
"."
],
"offsets": [
0,
6,
20,
33,
38,
41,
51,
55,
57,
64,
68,
78,
89,
93,
101,
109,
114,
118,
129,
133,
144,
156,
158,
162,
168,
179,
186,
190,
194,
200,
206,
213,
221,
222,
226,
228,
231,
241,
243,
250,
252,
256,
262,
264,
270,
273,
277,
287,
294,
303,
305,
307,
310,
314,
322,
329,
331,
335,
348,
352,
363,
376,
380,
382,
391,
398,
400,
405,
409,
410,
420,
433,
440,
449,
453,
456,
459,
471,
476,
484,
491,
494,
498,
503,
506,
510,
513,
519,
523,
527,
530,
538,
543,
545,
549,
553,
555,
558,
559,
564,
569,
574,
582,
589,
591,
603,
609,
613,
621,
627,
632,
644,
654,
661,
669,
680,
682,
686,
690,
693,
705,
711,
714,
721,
726,
731,
735,
741,
744,
748,
751,
755,
762,
775,
778,
784,
790,
792,
799,
804,
812,
826,
832,
842,
847,
850,
856,
863,
867,
876,
886,
893,
898,
904,
911,
913,
921,
926,
928,
941,
943,
947,
955,
961,
965,
973,
981,
993,
996,
1001,
1005,
1014,
1022,
1032,
1044,
1047,
1050,
1052,
1055,
1060,
1067,
1070,
1074,
1081,
1088,
1100,
1109,
1113,
1114,
1120,
1123,
1126,
1128,
1135,
1137,
1146,
1157,
1168,
1169,
1172,
1174,
1178,
1189,
1192,
1193,
1200,
1206,
1211,
1215,
1226,
1238,
1241,
1243,
1248,
1252,
1258,
1262,
1271,
1275,
1287,
1290,
1293,
1296,
1297,
1299,
1300,
1303,
1304,
1305,
1307,
1311,
1319,
1326,
1339,
1342,
1348,
1349,
1351,
1352,
1360,
1361,
1362,
1363,
1365,
1369,
1375,
1383,
1390,
1393,
1404,
1415,
1416,
1418,
1421,
1424,
1429,
1431,
1437,
1442,
1444,
1449,
1453,
1454,
1464,
1476,
1481,
1488,
1499,
1506,
1508,
1511,
1514,
1518,
1520,
1525,
1528,
1536,
1541,
1543,
1552,
1562,
1567,
1570,
1577,
1584,
1591,
1592,
1600,
1603,
1605,
1607,
1611,
1616,
1626,
1635,
1637,
1647,
1650,
1654,
1657,
1658,
1664,
1667,
1669,
1671,
1681,
1684,
1690,
1695,
1700,
1704,
1711,
1718,
1724,
1728,
1730,
1736,
1739,
1740,
1747,
1750,
1752,
1754,
1764,
1767,
1777,
1779,
1784,
1786,
1791,
1795,
1802,
1811
]
} | adb25681ad7c4ba89832f9f4256f4ad4 | What is one of the oldest uses of solar energy? | {
"tokens": [
"What",
"is",
"one",
"of",
"the",
"oldest",
"uses",
"of",
"solar",
"energy",
"?"
],
"offsets": [
0,
5,
8,
12,
15,
19,
26,
31,
34,
40,
46
]
} | {
"text": [
"use of evaporation ponds to obtain salt from sea water"
],
"char_spans": [
{
"start": [
686
],
"end": [
739
]
}
],
"token_spans": [
{
"start": [
117
],
"end": [
126
]
}
]
} | [
"use of evaporation ponds to obtain salt from sea water"
] |
SQuAD | Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds. | {
"tokens": [
"Solar",
"concentrating",
"technologies",
"such",
"as",
"parabolic",
"dish",
",",
"trough",
"and",
"Scheffler",
"reflectors",
"can",
"provide",
"process",
"heat",
"for",
"commercial",
"and",
"industrial",
"applications",
".",
"The",
"first",
"commercial",
"system",
"was",
"the",
"Solar",
"Total",
"Energy",
"Project",
"(",
"STEP",
")",
"in",
"Shenandoah",
",",
"Georgia",
",",
"USA",
"where",
"a",
"field",
"of",
"114",
"parabolic",
"dishes",
"provided",
"50",
"%",
"of",
"the",
"process",
"heating",
",",
"air",
"conditioning",
"and",
"electrical",
"requirements",
"for",
"a",
"clothing",
"factory",
".",
"This",
"grid",
"-",
"connected",
"cogeneration",
"system",
"provided",
"400",
"kW",
"of",
"electricity",
"plus",
"thermal",
"energy",
"in",
"the",
"form",
"of",
"401",
"kW",
"steam",
"and",
"468",
"kW",
"chilled",
"water",
",",
"and",
"had",
"a",
"one",
"-",
"hour",
"peak",
"load",
"thermal",
"storage",
".",
"Evaporation",
"ponds",
"are",
"shallow",
"pools",
"that",
"concentrate",
"dissolved",
"solids",
"through",
"evaporation",
".",
"The",
"use",
"of",
"evaporation",
"ponds",
"to",
"obtain",
"salt",
"from",
"sea",
"water",
"is",
"one",
"of",
"the",
"oldest",
"applications",
"of",
"solar",
"energy",
".",
"Modern",
"uses",
"include",
"concentrating",
"brine",
"solutions",
"used",
"in",
"leach",
"mining",
"and",
"removing",
"dissolved",
"solids",
"from",
"waste",
"streams",
".",
"Clothes",
"lines",
",",
"clotheshorses",
",",
"and",
"clothes",
"racks",
"dry",
"clothes",
"through",
"evaporation",
"by",
"wind",
"and",
"sunlight",
"without",
"consuming",
"electricity",
"or",
"gas",
".",
"In",
"some",
"states",
"of",
"the",
"United",
"States",
"legislation",
"protects",
"the",
"\"",
"right",
"to",
"dry",
"\"",
"clothes",
".",
"Unglazed",
"transpired",
"collectors",
"(",
"UTC",
")",
"are",
"perforated",
"sun",
"-",
"facing",
"walls",
"used",
"for",
"preheating",
"ventilation",
"air",
".",
"UTCs",
"can",
"raise",
"the",
"incoming",
"air",
"temperature",
"up",
"to",
"22",
"°",
"C",
"(",
"40",
"°",
"F",
")",
"and",
"deliver",
"outlet",
"temperatures",
"of",
"45–60",
"°",
"C",
"(",
"113–140",
"°",
"F",
")",
".",
"The",
"short",
"payback",
"period",
"of",
"transpired",
"collectors",
"(",
"3",
"to",
"12",
"years",
")",
"makes",
"them",
"a",
"more",
"cost",
"-",
"effective",
"alternative",
"than",
"glazed",
"collection",
"systems",
".",
"As",
"of",
"2003",
",",
"over",
"80",
"systems",
"with",
"a",
"combined",
"collector",
"area",
"of",
"35,000",
"square",
"metres",
"(",
"380,000",
"sq",
"ft",
")",
"had",
"been",
"installed",
"worldwide",
",",
"including",
"an",
"860",
"m2",
"(",
"9,300",
"sq",
"ft",
")",
"collector",
"in",
"Costa",
"Rica",
"used",
"for",
"drying",
"coffee",
"beans",
"and",
"a",
"1,300",
"m2",
"(",
"14,000",
"sq",
"ft",
")",
"collector",
"in",
"Coimbatore",
",",
"India",
",",
"used",
"for",
"drying",
"marigolds",
"."
],
"offsets": [
0,
6,
20,
33,
38,
41,
51,
55,
57,
64,
68,
78,
89,
93,
101,
109,
114,
118,
129,
133,
144,
156,
158,
162,
168,
179,
186,
190,
194,
200,
206,
213,
221,
222,
226,
228,
231,
241,
243,
250,
252,
256,
262,
264,
270,
273,
277,
287,
294,
303,
305,
307,
310,
314,
322,
329,
331,
335,
348,
352,
363,
376,
380,
382,
391,
398,
400,
405,
409,
410,
420,
433,
440,
449,
453,
456,
459,
471,
476,
484,
491,
494,
498,
503,
506,
510,
513,
519,
523,
527,
530,
538,
543,
545,
549,
553,
555,
558,
559,
564,
569,
574,
582,
589,
591,
603,
609,
613,
621,
627,
632,
644,
654,
661,
669,
680,
682,
686,
690,
693,
705,
711,
714,
721,
726,
731,
735,
741,
744,
748,
751,
755,
762,
775,
778,
784,
790,
792,
799,
804,
812,
826,
832,
842,
847,
850,
856,
863,
867,
876,
886,
893,
898,
904,
911,
913,
921,
926,
928,
941,
943,
947,
955,
961,
965,
973,
981,
993,
996,
1001,
1005,
1014,
1022,
1032,
1044,
1047,
1050,
1052,
1055,
1060,
1067,
1070,
1074,
1081,
1088,
1100,
1109,
1113,
1114,
1120,
1123,
1126,
1128,
1135,
1137,
1146,
1157,
1168,
1169,
1172,
1174,
1178,
1189,
1192,
1193,
1200,
1206,
1211,
1215,
1226,
1238,
1241,
1243,
1248,
1252,
1258,
1262,
1271,
1275,
1287,
1290,
1293,
1296,
1297,
1299,
1300,
1303,
1304,
1305,
1307,
1311,
1319,
1326,
1339,
1342,
1348,
1349,
1351,
1352,
1360,
1361,
1362,
1363,
1365,
1369,
1375,
1383,
1390,
1393,
1404,
1415,
1416,
1418,
1421,
1424,
1429,
1431,
1437,
1442,
1444,
1449,
1453,
1454,
1464,
1476,
1481,
1488,
1499,
1506,
1508,
1511,
1514,
1518,
1520,
1525,
1528,
1536,
1541,
1543,
1552,
1562,
1567,
1570,
1577,
1584,
1591,
1592,
1600,
1603,
1605,
1607,
1611,
1616,
1626,
1635,
1637,
1647,
1650,
1654,
1657,
1658,
1664,
1667,
1669,
1671,
1681,
1684,
1690,
1695,
1700,
1704,
1711,
1718,
1724,
1728,
1730,
1736,
1739,
1740,
1747,
1750,
1752,
1754,
1764,
1767,
1777,
1779,
1784,
1786,
1791,
1795,
1802,
1811
]
} | 1c892d6fc4b4455aa2d0ed4b697021f7 | What are some items used to dry clothes without the use of electricity? | {
"tokens": [
"What",
"are",
"some",
"items",
"used",
"to",
"dry",
"clothes",
"without",
"the",
"use",
"of",
"electricity",
"?"
],
"offsets": [
0,
5,
9,
14,
20,
25,
28,
32,
40,
48,
52,
56,
59,
70
]
} | {
"text": [
"Clothes lines, clotheshorses, and clothes racks"
],
"char_spans": [
{
"start": [
913
],
"end": [
959
]
}
],
"token_spans": [
{
"start": [
155
],
"end": [
162
]
}
]
} | [
"Clothes lines, clotheshorses, and clothes racks"
] |
SQuAD | Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds. | {
"tokens": [
"Solar",
"concentrating",
"technologies",
"such",
"as",
"parabolic",
"dish",
",",
"trough",
"and",
"Scheffler",
"reflectors",
"can",
"provide",
"process",
"heat",
"for",
"commercial",
"and",
"industrial",
"applications",
".",
"The",
"first",
"commercial",
"system",
"was",
"the",
"Solar",
"Total",
"Energy",
"Project",
"(",
"STEP",
")",
"in",
"Shenandoah",
",",
"Georgia",
",",
"USA",
"where",
"a",
"field",
"of",
"114",
"parabolic",
"dishes",
"provided",
"50",
"%",
"of",
"the",
"process",
"heating",
",",
"air",
"conditioning",
"and",
"electrical",
"requirements",
"for",
"a",
"clothing",
"factory",
".",
"This",
"grid",
"-",
"connected",
"cogeneration",
"system",
"provided",
"400",
"kW",
"of",
"electricity",
"plus",
"thermal",
"energy",
"in",
"the",
"form",
"of",
"401",
"kW",
"steam",
"and",
"468",
"kW",
"chilled",
"water",
",",
"and",
"had",
"a",
"one",
"-",
"hour",
"peak",
"load",
"thermal",
"storage",
".",
"Evaporation",
"ponds",
"are",
"shallow",
"pools",
"that",
"concentrate",
"dissolved",
"solids",
"through",
"evaporation",
".",
"The",
"use",
"of",
"evaporation",
"ponds",
"to",
"obtain",
"salt",
"from",
"sea",
"water",
"is",
"one",
"of",
"the",
"oldest",
"applications",
"of",
"solar",
"energy",
".",
"Modern",
"uses",
"include",
"concentrating",
"brine",
"solutions",
"used",
"in",
"leach",
"mining",
"and",
"removing",
"dissolved",
"solids",
"from",
"waste",
"streams",
".",
"Clothes",
"lines",
",",
"clotheshorses",
",",
"and",
"clothes",
"racks",
"dry",
"clothes",
"through",
"evaporation",
"by",
"wind",
"and",
"sunlight",
"without",
"consuming",
"electricity",
"or",
"gas",
".",
"In",
"some",
"states",
"of",
"the",
"United",
"States",
"legislation",
"protects",
"the",
"\"",
"right",
"to",
"dry",
"\"",
"clothes",
".",
"Unglazed",
"transpired",
"collectors",
"(",
"UTC",
")",
"are",
"perforated",
"sun",
"-",
"facing",
"walls",
"used",
"for",
"preheating",
"ventilation",
"air",
".",
"UTCs",
"can",
"raise",
"the",
"incoming",
"air",
"temperature",
"up",
"to",
"22",
"°",
"C",
"(",
"40",
"°",
"F",
")",
"and",
"deliver",
"outlet",
"temperatures",
"of",
"45–60",
"°",
"C",
"(",
"113–140",
"°",
"F",
")",
".",
"The",
"short",
"payback",
"period",
"of",
"transpired",
"collectors",
"(",
"3",
"to",
"12",
"years",
")",
"makes",
"them",
"a",
"more",
"cost",
"-",
"effective",
"alternative",
"than",
"glazed",
"collection",
"systems",
".",
"As",
"of",
"2003",
",",
"over",
"80",
"systems",
"with",
"a",
"combined",
"collector",
"area",
"of",
"35,000",
"square",
"metres",
"(",
"380,000",
"sq",
"ft",
")",
"had",
"been",
"installed",
"worldwide",
",",
"including",
"an",
"860",
"m2",
"(",
"9,300",
"sq",
"ft",
")",
"collector",
"in",
"Costa",
"Rica",
"used",
"for",
"drying",
"coffee",
"beans",
"and",
"a",
"1,300",
"m2",
"(",
"14,000",
"sq",
"ft",
")",
"collector",
"in",
"Coimbatore",
",",
"India",
",",
"used",
"for",
"drying",
"marigolds",
"."
],
"offsets": [
0,
6,
20,
33,
38,
41,
51,
55,
57,
64,
68,
78,
89,
93,
101,
109,
114,
118,
129,
133,
144,
156,
158,
162,
168,
179,
186,
190,
194,
200,
206,
213,
221,
222,
226,
228,
231,
241,
243,
250,
252,
256,
262,
264,
270,
273,
277,
287,
294,
303,
305,
307,
310,
314,
322,
329,
331,
335,
348,
352,
363,
376,
380,
382,
391,
398,
400,
405,
409,
410,
420,
433,
440,
449,
453,
456,
459,
471,
476,
484,
491,
494,
498,
503,
506,
510,
513,
519,
523,
527,
530,
538,
543,
545,
549,
553,
555,
558,
559,
564,
569,
574,
582,
589,
591,
603,
609,
613,
621,
627,
632,
644,
654,
661,
669,
680,
682,
686,
690,
693,
705,
711,
714,
721,
726,
731,
735,
741,
744,
748,
751,
755,
762,
775,
778,
784,
790,
792,
799,
804,
812,
826,
832,
842,
847,
850,
856,
863,
867,
876,
886,
893,
898,
904,
911,
913,
921,
926,
928,
941,
943,
947,
955,
961,
965,
973,
981,
993,
996,
1001,
1005,
1014,
1022,
1032,
1044,
1047,
1050,
1052,
1055,
1060,
1067,
1070,
1074,
1081,
1088,
1100,
1109,
1113,
1114,
1120,
1123,
1126,
1128,
1135,
1137,
1146,
1157,
1168,
1169,
1172,
1174,
1178,
1189,
1192,
1193,
1200,
1206,
1211,
1215,
1226,
1238,
1241,
1243,
1248,
1252,
1258,
1262,
1271,
1275,
1287,
1290,
1293,
1296,
1297,
1299,
1300,
1303,
1304,
1305,
1307,
1311,
1319,
1326,
1339,
1342,
1348,
1349,
1351,
1352,
1360,
1361,
1362,
1363,
1365,
1369,
1375,
1383,
1390,
1393,
1404,
1415,
1416,
1418,
1421,
1424,
1429,
1431,
1437,
1442,
1444,
1449,
1453,
1454,
1464,
1476,
1481,
1488,
1499,
1506,
1508,
1511,
1514,
1518,
1520,
1525,
1528,
1536,
1541,
1543,
1552,
1562,
1567,
1570,
1577,
1584,
1591,
1592,
1600,
1603,
1605,
1607,
1611,
1616,
1626,
1635,
1637,
1647,
1650,
1654,
1657,
1658,
1664,
1667,
1669,
1671,
1681,
1684,
1690,
1695,
1700,
1704,
1711,
1718,
1724,
1728,
1730,
1736,
1739,
1740,
1747,
1750,
1752,
1754,
1764,
1767,
1777,
1779,
1784,
1786,
1791,
1795,
1802,
1811
]
} | e84464b2dcd24e3bbf45436020663f9c | What are Unglazed transpired collectors? | {
"tokens": [
"What",
"are",
"Unglazed",
"transpired",
"collectors",
"?"
],
"offsets": [
0,
5,
9,
18,
29,
39
]
} | {
"text": [
"perforated sun-facing walls used for preheating ventilation air"
],
"char_spans": [
{
"start": [
1178
],
"end": [
1240
]
}
],
"token_spans": [
{
"start": [
201
],
"end": [
210
]
}
]
} | [
"perforated sun-facing walls used for preheating ventilation air"
] |
SQuAD | Tajiks began to be conscripted into the Soviet Army in 1939 and during World War II around 260,000 Tajik citizens fought against Germany, Finland and Japan. Between 60,000(4%) and 120,000(8%) of Tajikistan's 1,530,000 citizens were killed during World War II. Following the war and Stalin's reign attempts were made to further expand the agriculture and industry of Tajikistan. During 1957–58 Nikita Khrushchev's Virgin Lands Campaign focused attention on Tajikistan, where living conditions, education and industry lagged behind the other Soviet Republics. In the 1980s, Tajikistan had the lowest household saving rate in the USSR, the lowest percentage of households in the two top per capita income groups, and the lowest rate of university graduates per 1000 people. By the late 1980s Tajik nationalists were calling for increased rights. Real disturbances did not occur within the republic until 1990. The following year, the Soviet Union collapsed, and Tajikistan declared its independence. | {
"tokens": [
"Tajiks",
"began",
"to",
"be",
"conscripted",
"into",
"the",
"Soviet",
"Army",
"in",
"1939",
"and",
"during",
"World",
"War",
"II",
"around",
"260,000",
"Tajik",
"citizens",
"fought",
"against",
"Germany",
",",
"Finland",
"and",
"Japan",
".",
"Between",
"60,000(4",
"%",
")",
"and",
"120,000(8",
"%",
")",
"of",
"Tajikistan",
"'s",
"1,530,000",
"citizens",
"were",
"killed",
"during",
"World",
"War",
"II",
".",
"Following",
"the",
"war",
"and",
"Stalin",
"'s",
"reign",
"attempts",
"were",
"made",
"to",
"further",
"expand",
"the",
"agriculture",
"and",
"industry",
"of",
"Tajikistan",
".",
"During",
"1957–58",
"Nikita",
"Khrushchev",
"'s",
"Virgin",
"Lands",
"Campaign",
"focused",
"attention",
"on",
"Tajikistan",
",",
"where",
"living",
"conditions",
",",
"education",
"and",
"industry",
"lagged",
"behind",
"the",
"other",
"Soviet",
"Republics",
".",
"In",
"the",
"1980s",
",",
"Tajikistan",
"had",
"the",
"lowest",
"household",
"saving",
"rate",
"in",
"the",
"USSR",
",",
"the",
"lowest",
"percentage",
"of",
"households",
"in",
"the",
"two",
"top",
"per",
"capita",
"income",
"groups",
",",
"and",
"the",
"lowest",
"rate",
"of",
"university",
"graduates",
"per",
"1000",
"people",
".",
"By",
"the",
"late",
"1980s",
"Tajik",
"nationalists",
"were",
"calling",
"for",
"increased",
"rights",
".",
"Real",
"disturbances",
"did",
"not",
"occur",
"within",
"the",
"republic",
"until",
"1990",
".",
"The",
"following",
"year",
",",
"the",
"Soviet",
"Union",
"collapsed",
",",
"and",
"Tajikistan",
"declared",
"its",
"independence",
"."
],
"offsets": [
0,
7,
13,
16,
19,
31,
36,
40,
47,
52,
55,
60,
64,
71,
77,
81,
84,
91,
99,
105,
114,
121,
129,
136,
138,
146,
150,
155,
157,
165,
173,
174,
176,
180,
189,
190,
192,
195,
205,
208,
218,
227,
232,
239,
246,
252,
256,
258,
260,
270,
274,
278,
282,
288,
291,
297,
306,
311,
316,
319,
327,
334,
338,
350,
354,
363,
366,
376,
378,
385,
393,
400,
410,
413,
420,
426,
435,
443,
453,
456,
466,
468,
474,
481,
491,
493,
503,
507,
516,
523,
530,
534,
540,
547,
556,
558,
561,
565,
570,
572,
583,
587,
591,
598,
608,
615,
620,
623,
627,
631,
633,
637,
644,
655,
658,
669,
672,
676,
680,
684,
688,
695,
702,
708,
710,
714,
718,
725,
730,
733,
744,
754,
758,
763,
769,
771,
774,
778,
783,
789,
795,
808,
813,
821,
825,
835,
841,
843,
848,
861,
865,
869,
875,
882,
886,
895,
901,
905,
907,
911,
921,
925,
927,
931,
938,
944,
953,
955,
959,
970,
979,
983,
995
]
} | aacb1ed153db4c1081927f74abf52188 | When did Tajiks start being part of the Soviet Army? | {
"tokens": [
"When",
"did",
"Tajiks",
"start",
"being",
"part",
"of",
"the",
"Soviet",
"Army",
"?"
],
"offsets": [
0,
5,
9,
16,
22,
28,
33,
36,
40,
47,
51
]
} | {
"text": [
"1939"
],
"char_spans": [
{
"start": [
55
],
"end": [
58
]
}
],
"token_spans": [
{
"start": [
10
],
"end": [
10
]
}
]
} | [
"1939"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.