Datasets:

subset
stringclasses
6 values
context
stringlengths
16
17.7k
context_tokens
sequence
qid
stringlengths
32
32
question
stringlengths
1
717
question_tokens
sequence
detected_answers
sequence
answers
sequencelengths
1
25
SQuAD
The common features of passive solar architecture are orientation relative to the Sun, compact proportion (a low surface area to volume ratio), selective shading (overhangs) and thermal mass. When these features are tailored to the local climate and environment they can produce well-lit spaces that stay in a comfortable temperature range. Socrates' Megaron House is a classic example of passive solar design. The most recent approaches to solar design use computer modeling tying together solar lighting, heating and ventilation systems in an integrated solar design package. Active solar equipment such as pumps, fans and switchable windows can complement passive design and improve system performance.
{ "tokens": [ "The", "common", "features", "of", "passive", "solar", "architecture", "are", "orientation", "relative", "to", "the", "Sun", ",", "compact", "proportion", "(", "a", "low", "surface", "area", "to", "volume", "ratio", ")", ",", "selective", "shading", "(", "overhangs", ")", "and", "thermal", "mass", ".", "When", "these", "features", "are", "tailored", "to", "the", "local", "climate", "and", "environment", "they", "can", "produce", "well", "-", "lit", "spaces", "that", "stay", "in", "a", "comfortable", "temperature", "range", ".", "Socrates", "'", "Megaron", "House", "is", "a", "classic", "example", "of", "passive", "solar", "design", ".", "The", "most", "recent", "approaches", "to", "solar", "design", "use", "computer", "modeling", "tying", "together", "solar", "lighting", ",", "heating", "and", "ventilation", "systems", "in", "an", "integrated", "solar", "design", "package", ".", "Active", "solar", "equipment", "such", "as", "pumps", ",", "fans", "and", "switchable", "windows", "can", "complement", "passive", "design", "and", "improve", "system", "performance", "." ], "offsets": [ 0, 4, 11, 20, 23, 31, 37, 50, 54, 66, 75, 78, 82, 85, 87, 95, 106, 107, 109, 113, 121, 126, 129, 136, 141, 142, 144, 154, 162, 163, 172, 174, 178, 186, 190, 192, 197, 203, 212, 216, 225, 228, 232, 238, 246, 250, 262, 267, 271, 279, 283, 284, 288, 295, 300, 305, 308, 310, 322, 334, 339, 341, 349, 351, 359, 365, 368, 370, 378, 386, 389, 397, 403, 409, 411, 415, 420, 427, 438, 441, 447, 454, 458, 467, 476, 482, 491, 497, 505, 507, 515, 519, 531, 539, 542, 545, 556, 562, 569, 576, 578, 585, 591, 601, 606, 609, 614, 616, 621, 625, 636, 644, 648, 659, 667, 674, 678, 686, 693, 704 ] }
2de4c4f8a97146c68dad152b1d20942b
What is produced when the features of passive solar architecture are customized to the environment?
{ "tokens": [ "What", "is", "produced", "when", "the", "features", "of", "passive", "solar", "architecture", "are", "customized", "to", "the", "environment", "?" ], "offsets": [ 0, 5, 8, 17, 22, 26, 35, 38, 46, 52, 65, 69, 80, 83, 87, 98 ] }
{ "text": [ "well-lit spaces that stay in a comfortable temperature range" ], "char_spans": [ { "start": [ 279 ], "end": [ 338 ] } ], "token_spans": [ { "start": [ 49 ], "end": [ 59 ] } ] }
[ "well-lit spaces that stay in a comfortable temperature range" ]
SQuAD
The common features of passive solar architecture are orientation relative to the Sun, compact proportion (a low surface area to volume ratio), selective shading (overhangs) and thermal mass. When these features are tailored to the local climate and environment they can produce well-lit spaces that stay in a comfortable temperature range. Socrates' Megaron House is a classic example of passive solar design. The most recent approaches to solar design use computer modeling tying together solar lighting, heating and ventilation systems in an integrated solar design package. Active solar equipment such as pumps, fans and switchable windows can complement passive design and improve system performance.
{ "tokens": [ "The", "common", "features", "of", "passive", "solar", "architecture", "are", "orientation", "relative", "to", "the", "Sun", ",", "compact", "proportion", "(", "a", "low", "surface", "area", "to", "volume", "ratio", ")", ",", "selective", "shading", "(", "overhangs", ")", "and", "thermal", "mass", ".", "When", "these", "features", "are", "tailored", "to", "the", "local", "climate", "and", "environment", "they", "can", "produce", "well", "-", "lit", "spaces", "that", "stay", "in", "a", "comfortable", "temperature", "range", ".", "Socrates", "'", "Megaron", "House", "is", "a", "classic", "example", "of", "passive", "solar", "design", ".", "The", "most", "recent", "approaches", "to", "solar", "design", "use", "computer", "modeling", "tying", "together", "solar", "lighting", ",", "heating", "and", "ventilation", "systems", "in", "an", "integrated", "solar", "design", "package", ".", "Active", "solar", "equipment", "such", "as", "pumps", ",", "fans", "and", "switchable", "windows", "can", "complement", "passive", "design", "and", "improve", "system", "performance", "." ], "offsets": [ 0, 4, 11, 20, 23, 31, 37, 50, 54, 66, 75, 78, 82, 85, 87, 95, 106, 107, 109, 113, 121, 126, 129, 136, 141, 142, 144, 154, 162, 163, 172, 174, 178, 186, 190, 192, 197, 203, 212, 216, 225, 228, 232, 238, 246, 250, 262, 267, 271, 279, 283, 284, 288, 295, 300, 305, 308, 310, 322, 334, 339, 341, 349, 351, 359, 365, 368, 370, 378, 386, 389, 397, 403, 409, 411, 415, 420, 427, 438, 441, 447, 454, 458, 467, 476, 482, 491, 497, 505, 507, 515, 519, 531, 539, 542, 545, 556, 562, 569, 576, 578, 585, 591, 601, 606, 609, 614, 616, 621, 625, 636, 644, 648, 659, 667, 674, 678, 686, 693, 704 ] }
0f22fbb3c4f94911a1490d10e2328294
What is an example of passive solar design?
{ "tokens": [ "What", "is", "an", "example", "of", "passive", "solar", "design", "?" ], "offsets": [ 0, 5, 8, 11, 19, 22, 30, 36, 42 ] }
{ "text": [ "Socrates' Megaron House" ], "char_spans": [ { "start": [ 341 ], "end": [ 363 ] } ], "token_spans": [ { "start": [ 61 ], "end": [ 64 ] } ] }
[ "Socrates' Megaron House" ]
SQuAD
The common features of passive solar architecture are orientation relative to the Sun, compact proportion (a low surface area to volume ratio), selective shading (overhangs) and thermal mass. When these features are tailored to the local climate and environment they can produce well-lit spaces that stay in a comfortable temperature range. Socrates' Megaron House is a classic example of passive solar design. The most recent approaches to solar design use computer modeling tying together solar lighting, heating and ventilation systems in an integrated solar design package. Active solar equipment such as pumps, fans and switchable windows can complement passive design and improve system performance.
{ "tokens": [ "The", "common", "features", "of", "passive", "solar", "architecture", "are", "orientation", "relative", "to", "the", "Sun", ",", "compact", "proportion", "(", "a", "low", "surface", "area", "to", "volume", "ratio", ")", ",", "selective", "shading", "(", "overhangs", ")", "and", "thermal", "mass", ".", "When", "these", "features", "are", "tailored", "to", "the", "local", "climate", "and", "environment", "they", "can", "produce", "well", "-", "lit", "spaces", "that", "stay", "in", "a", "comfortable", "temperature", "range", ".", "Socrates", "'", "Megaron", "House", "is", "a", "classic", "example", "of", "passive", "solar", "design", ".", "The", "most", "recent", "approaches", "to", "solar", "design", "use", "computer", "modeling", "tying", "together", "solar", "lighting", ",", "heating", "and", "ventilation", "systems", "in", "an", "integrated", "solar", "design", "package", ".", "Active", "solar", "equipment", "such", "as", "pumps", ",", "fans", "and", "switchable", "windows", "can", "complement", "passive", "design", "and", "improve", "system", "performance", "." ], "offsets": [ 0, 4, 11, 20, 23, 31, 37, 50, 54, 66, 75, 78, 82, 85, 87, 95, 106, 107, 109, 113, 121, 126, 129, 136, 141, 142, 144, 154, 162, 163, 172, 174, 178, 186, 190, 192, 197, 203, 212, 216, 225, 228, 232, 238, 246, 250, 262, 267, 271, 279, 283, 284, 288, 295, 300, 305, 308, 310, 322, 334, 339, 341, 349, 351, 359, 365, 368, 370, 378, 386, 389, 397, 403, 409, 411, 415, 420, 427, 438, 441, 447, 454, 458, 467, 476, 482, 491, 497, 505, 507, 515, 519, 531, 539, 542, 545, 556, 562, 569, 576, 578, 585, 591, 601, 606, 609, 614, 616, 621, 625, 636, 644, 648, 659, 667, 674, 678, 686, 693, 704 ] }
9d672cec97fa4bd6bedb56906f3e7eef
What kind of equipment can improve system performance?
{ "tokens": [ "What", "kind", "of", "equipment", "can", "improve", "system", "performance", "?" ], "offsets": [ 0, 5, 10, 13, 23, 27, 35, 42, 53 ] }
{ "text": [ "pumps, fans and switchable windows" ], "char_spans": [ { "start": [ 609 ], "end": [ 642 ] } ], "token_spans": [ { "start": [ 105 ], "end": [ 110 ] } ] }
[ "pumps, fans and switchable windows" ]
SQuAD
The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters.
{ "tokens": [ "The", "International", "Organization", "for", "Standardization", "has", "established", "a", "number", "of", "standards", "relating", "to", "solar", "energy", "equipment", ".", "For", "example", ",", "ISO", "9050", "relates", "to", "glass", "in", "building", "while", "ISO", "10217", "relates", "to", "the", "materials", "used", "in", "solar", "water", "heaters", "." ], "offsets": [ 0, 4, 18, 31, 35, 51, 55, 67, 69, 76, 79, 89, 98, 101, 107, 114, 123, 125, 129, 136, 138, 142, 147, 155, 158, 164, 167, 176, 182, 186, 192, 200, 203, 207, 217, 222, 225, 231, 237, 244 ] }
f7bfe7777dc74de5b3d9024fe93f03c8
ISO 9050 relates to standards for what?
{ "tokens": [ "ISO", "9050", "relates", "to", "standards", "for", "what", "?" ], "offsets": [ 0, 4, 9, 17, 20, 30, 34, 38 ] }
{ "text": [ "glass in building" ], "char_spans": [ { "start": [ 158 ], "end": [ 174 ] } ], "token_spans": [ { "start": [ 24 ], "end": [ 26 ] } ] }
[ "glass in building" ]
SQuAD
The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters.
{ "tokens": [ "The", "International", "Organization", "for", "Standardization", "has", "established", "a", "number", "of", "standards", "relating", "to", "solar", "energy", "equipment", ".", "For", "example", ",", "ISO", "9050", "relates", "to", "glass", "in", "building", "while", "ISO", "10217", "relates", "to", "the", "materials", "used", "in", "solar", "water", "heaters", "." ], "offsets": [ 0, 4, 18, 31, 35, 51, 55, 67, 69, 76, 79, 89, 98, 101, 107, 114, 123, 125, 129, 136, 138, 142, 147, 155, 158, 164, 167, 176, 182, 186, 192, 200, 203, 207, 217, 222, 225, 231, 237, 244 ] }
0e5145088b544ddc8f2259fd013a71e2
ISO 10217 relates to standards for what?
{ "tokens": [ "ISO", "10217", "relates", "to", "standards", "for", "what", "?" ], "offsets": [ 0, 4, 10, 18, 21, 31, 35, 39 ] }
{ "text": [ "materials used in solar water heaters" ], "char_spans": [ { "start": [ 207 ], "end": [ 243 ] } ], "token_spans": [ { "start": [ 33 ], "end": [ 38 ] } ] }
[ "materials used in solar water heaters" ]
SQuAD
The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters.
{ "tokens": [ "The", "International", "Organization", "for", "Standardization", "has", "established", "a", "number", "of", "standards", "relating", "to", "solar", "energy", "equipment", ".", "For", "example", ",", "ISO", "9050", "relates", "to", "glass", "in", "building", "while", "ISO", "10217", "relates", "to", "the", "materials", "used", "in", "solar", "water", "heaters", "." ], "offsets": [ 0, 4, 18, 31, 35, 51, 55, 67, 69, 76, 79, 89, 98, 101, 107, 114, 123, 125, 129, 136, 138, 142, 147, 155, 158, 164, 167, 176, 182, 186, 192, 200, 203, 207, 217, 222, 225, 231, 237, 244 ] }
e1dd0ed85df043a997be2c6351a393d0
What is the name of the standard related to glass in building?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "standard", "related", "to", "glass", "in", "building", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 33, 41, 44, 50, 53, 61 ] }
{ "text": [ "ISO 9050" ], "char_spans": [ { "start": [ 138 ], "end": [ 145 ] } ], "token_spans": [ { "start": [ 20 ], "end": [ 21 ] } ] }
[ "ISO 9050" ]
SQuAD
The International Organization for Standardization has established a number of standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters.
{ "tokens": [ "The", "International", "Organization", "for", "Standardization", "has", "established", "a", "number", "of", "standards", "relating", "to", "solar", "energy", "equipment", ".", "For", "example", ",", "ISO", "9050", "relates", "to", "glass", "in", "building", "while", "ISO", "10217", "relates", "to", "the", "materials", "used", "in", "solar", "water", "heaters", "." ], "offsets": [ 0, 4, 18, 31, 35, 51, 55, 67, 69, 76, 79, 89, 98, 101, 107, 114, 123, 125, 129, 136, 138, 142, 147, 155, 158, 164, 167, 176, 182, 186, 192, 200, 203, 207, 217, 222, 225, 231, 237, 244 ] }
f90540406bca4fee8b69d5bbc1a5dd8c
What is the name of the standard related to the materials used in solar water heaters?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "standard", "related", "to", "the", "materials", "used", "in", "solar", "water", "heaters", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 33, 41, 44, 48, 58, 63, 66, 72, 78, 85 ] }
{ "text": [ "ISO 10217" ], "char_spans": [ { "start": [ 182 ], "end": [ 190 ] } ], "token_spans": [ { "start": [ 28 ], "end": [ 29 ] } ] }
[ "ISO 10217" ]
SQuAD
In 2000, the United Nations Development Programme, UN Department of Economic and Social Affairs, and World Energy Council published an estimate of the potential solar energy that could be used by humans each year that took into account factors such as insolation, cloud cover, and the land that is usable by humans. The estimate found that solar energy has a global potential of 1,575–49,837 EJ per year (see table below).
{ "tokens": [ "In", "2000", ",", "the", "United", "Nations", "Development", "Programme", ",", "UN", "Department", "of", "Economic", "and", "Social", "Affairs", ",", "and", "World", "Energy", "Council", "published", "an", "estimate", "of", "the", "potential", "solar", "energy", "that", "could", "be", "used", "by", "humans", "each", "year", "that", "took", "into", "account", "factors", "such", "as", "insolation", ",", "cloud", "cover", ",", "and", "the", "land", "that", "is", "usable", "by", "humans", ".", "The", "estimate", "found", "that", "solar", "energy", "has", "a", "global", "potential", "of", "1,575–49,837", "EJ", "per", "year", "(", "see", "table", "below", ")", "." ], "offsets": [ 0, 3, 7, 9, 13, 20, 28, 40, 49, 51, 54, 65, 68, 77, 81, 88, 95, 97, 101, 107, 114, 122, 132, 135, 144, 147, 151, 161, 167, 174, 179, 185, 188, 193, 196, 203, 208, 213, 218, 223, 228, 236, 244, 249, 252, 262, 264, 270, 275, 277, 281, 285, 290, 295, 298, 305, 308, 314, 316, 320, 329, 335, 340, 346, 353, 357, 359, 366, 376, 379, 392, 395, 399, 404, 405, 409, 415, 420, 421 ] }
ab2a5e44f97843249d263fce7df2f6ae
What factors were taken into account in the estimate published in 2000 on solar energy?
{ "tokens": [ "What", "factors", "were", "taken", "into", "account", "in", "the", "estimate", "published", "in", "2000", "on", "solar", "energy", "?" ], "offsets": [ 0, 5, 13, 18, 24, 29, 37, 40, 44, 53, 63, 66, 71, 74, 80, 86 ] }
{ "text": [ "insolation, cloud cover, and the land that is usable by humans" ], "char_spans": [ { "start": [ 252 ], "end": [ 313 ] } ], "token_spans": [ { "start": [ 44 ], "end": [ 56 ] } ] }
[ "insolation, cloud cover, and the land that is usable by humans" ]
SQuAD
In 2000, the United Nations Development Programme, UN Department of Economic and Social Affairs, and World Energy Council published an estimate of the potential solar energy that could be used by humans each year that took into account factors such as insolation, cloud cover, and the land that is usable by humans. The estimate found that solar energy has a global potential of 1,575–49,837 EJ per year (see table below).
{ "tokens": [ "In", "2000", ",", "the", "United", "Nations", "Development", "Programme", ",", "UN", "Department", "of", "Economic", "and", "Social", "Affairs", ",", "and", "World", "Energy", "Council", "published", "an", "estimate", "of", "the", "potential", "solar", "energy", "that", "could", "be", "used", "by", "humans", "each", "year", "that", "took", "into", "account", "factors", "such", "as", "insolation", ",", "cloud", "cover", ",", "and", "the", "land", "that", "is", "usable", "by", "humans", ".", "The", "estimate", "found", "that", "solar", "energy", "has", "a", "global", "potential", "of", "1,575–49,837", "EJ", "per", "year", "(", "see", "table", "below", ")", "." ], "offsets": [ 0, 3, 7, 9, 13, 20, 28, 40, 49, 51, 54, 65, 68, 77, 81, 88, 95, 97, 101, 107, 114, 122, 132, 135, 144, 147, 151, 161, 167, 174, 179, 185, 188, 193, 196, 203, 208, 213, 218, 223, 228, 236, 244, 249, 252, 262, 264, 270, 275, 277, 281, 285, 290, 295, 298, 305, 308, 314, 316, 320, 329, 335, 340, 346, 353, 357, 359, 366, 376, 379, 392, 395, 399, 404, 405, 409, 415, 420, 421 ] }
e2c92062ca264a99a43078071bc931f5
What was the total potential of solar energy found in the estimate?
{ "tokens": [ "What", "was", "the", "total", "potential", "of", "solar", "energy", "found", "in", "the", "estimate", "?" ], "offsets": [ 0, 5, 9, 13, 19, 29, 32, 38, 45, 51, 54, 58, 66 ] }
{ "text": [ "1,575–49,837 EJ per year" ], "char_spans": [ { "start": [ 379 ], "end": [ 402 ] } ], "token_spans": [ { "start": [ 69 ], "end": [ 72 ] } ] }
[ "1,575–49,837 EJ per year" ]
SQuAD
In addition, land availability has a large effect on the available solar energy because solar panels can only be set up on land that is unowned and suitable for solar panels. Roofs have been found to be a suitable place for solar cells, as many people have discovered that they can collect energy directly from their homes this way. Other areas that are suitable for solar cells are lands that are unowned by businesses where solar plants can be established.
{ "tokens": [ "In", "addition", ",", "land", "availability", "has", "a", "large", "effect", "on", "the", "available", "solar", "energy", "because", "solar", "panels", "can", "only", "be", "set", "up", "on", "land", "that", "is", "unowned", "and", "suitable", "for", "solar", "panels", ".", "Roofs", "have", "been", "found", "to", "be", "a", "suitable", "place", "for", "solar", "cells", ",", "as", "many", "people", "have", "discovered", "that", "they", "can", "collect", "energy", "directly", "from", "their", "homes", "this", "way", ".", "Other", "areas", "that", "are", "suitable", "for", "solar", "cells", "are", "lands", "that", "are", "unowned", "by", "businesses", "where", "solar", "plants", "can", "be", "established", "." ], "offsets": [ 0, 3, 11, 13, 18, 31, 35, 37, 43, 50, 53, 57, 67, 73, 80, 88, 94, 101, 105, 110, 113, 117, 120, 123, 128, 133, 136, 144, 148, 157, 161, 167, 173, 175, 181, 186, 191, 197, 200, 203, 205, 214, 220, 224, 230, 235, 237, 240, 245, 252, 257, 268, 273, 278, 282, 290, 297, 306, 311, 317, 323, 328, 331, 333, 339, 345, 350, 354, 363, 367, 373, 379, 383, 389, 394, 398, 406, 409, 420, 426, 432, 439, 443, 446, 457 ] }
5b445ccda6294b189c99a608032ec9bd
Why does land availability have an effect on solar energy?
{ "tokens": [ "Why", "does", "land", "availability", "have", "an", "effect", "on", "solar", "energy", "?" ], "offsets": [ 0, 4, 9, 14, 27, 32, 35, 42, 45, 51, 57 ] }
{ "text": [ "solar panels can only be set up on land that is unowned and suitable for solar panels" ], "char_spans": [ { "start": [ 88 ], "end": [ 172 ] } ], "token_spans": [ { "start": [ 15 ], "end": [ 31 ] } ] }
[ "solar panels can only be set up on land that is unowned and suitable for solar panels" ]
SQuAD
In addition, land availability has a large effect on the available solar energy because solar panels can only be set up on land that is unowned and suitable for solar panels. Roofs have been found to be a suitable place for solar cells, as many people have discovered that they can collect energy directly from their homes this way. Other areas that are suitable for solar cells are lands that are unowned by businesses where solar plants can be established.
{ "tokens": [ "In", "addition", ",", "land", "availability", "has", "a", "large", "effect", "on", "the", "available", "solar", "energy", "because", "solar", "panels", "can", "only", "be", "set", "up", "on", "land", "that", "is", "unowned", "and", "suitable", "for", "solar", "panels", ".", "Roofs", "have", "been", "found", "to", "be", "a", "suitable", "place", "for", "solar", "cells", ",", "as", "many", "people", "have", "discovered", "that", "they", "can", "collect", "energy", "directly", "from", "their", "homes", "this", "way", ".", "Other", "areas", "that", "are", "suitable", "for", "solar", "cells", "are", "lands", "that", "are", "unowned", "by", "businesses", "where", "solar", "plants", "can", "be", "established", "." ], "offsets": [ 0, 3, 11, 13, 18, 31, 35, 37, 43, 50, 53, 57, 67, 73, 80, 88, 94, 101, 105, 110, 113, 117, 120, 123, 128, 133, 136, 144, 148, 157, 161, 167, 173, 175, 181, 186, 191, 197, 200, 203, 205, 214, 220, 224, 230, 235, 237, 240, 245, 252, 257, 268, 273, 278, 282, 290, 297, 306, 311, 317, 323, 328, 331, 333, 339, 345, 350, 354, 363, 367, 373, 379, 383, 389, 394, 398, 406, 409, 420, 426, 432, 439, 443, 446, 457 ] }
6ea0c9732d4e4395b0903774508c0e56
Why are roofs a good place for solar panels?
{ "tokens": [ "Why", "are", "roofs", "a", "good", "place", "for", "solar", "panels", "?" ], "offsets": [ 0, 4, 8, 14, 16, 21, 27, 31, 37, 43 ] }
{ "text": [ "many people have discovered that they can collect energy directly from their homes this way" ], "char_spans": [ { "start": [ 240 ], "end": [ 330 ] } ], "token_spans": [ { "start": [ 47 ], "end": [ 61 ] } ] }
[ "many people have discovered that they can collect energy directly from their homes this way" ]
SQuAD
The potential solar energy that could be used by humans differs from the amount of solar energy present near the surface of the planet because factors such as geography, time variation, cloud cover, and the land available to humans limits the amount of solar energy that we can acquire.
{ "tokens": [ "The", "potential", "solar", "energy", "that", "could", "be", "used", "by", "humans", "differs", "from", "the", "amount", "of", "solar", "energy", "present", "near", "the", "surface", "of", "the", "planet", "because", "factors", "such", "as", "geography", ",", "time", "variation", ",", "cloud", "cover", ",", "and", "the", "land", "available", "to", "humans", "limits", "the", "amount", "of", "solar", "energy", "that", "we", "can", "acquire", "." ], "offsets": [ 0, 4, 14, 20, 27, 32, 38, 41, 46, 49, 56, 64, 69, 73, 80, 83, 89, 96, 104, 109, 113, 121, 124, 128, 135, 143, 151, 156, 159, 168, 170, 175, 184, 186, 192, 197, 199, 203, 207, 212, 222, 225, 232, 239, 243, 250, 253, 259, 266, 271, 274, 278, 285 ] }
3574153337c749aba29364cc360cf25c
Why does the amount of usable solar energy differ from the amount near the planets surface?
{ "tokens": [ "Why", "does", "the", "amount", "of", "usable", "solar", "energy", "differ", "from", "the", "amount", "near", "the", "planets", "surface", "?" ], "offsets": [ 0, 4, 9, 13, 20, 23, 30, 36, 43, 50, 55, 59, 66, 71, 75, 83, 90 ] }
{ "text": [ "geography, time variation, cloud cover, and the land available to humans" ], "char_spans": [ { "start": [ 159 ], "end": [ 230 ] } ], "token_spans": [ { "start": [ 28 ], "end": [ 41 ] } ] }
[ "geography, time variation, cloud cover, and the land available to humans" ]
SQuAD
In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%.
{ "tokens": [ "In", "the", "last", "two", "decades", ",", "photovoltaics", "(", "PV", ")", ",", "also", "known", "as", "solar", "PV", ",", "has", "evolved", "from", "a", "pure", "niche", "market", "of", "small", "scale", "applications", "towards", "becoming", "a", "mainstream", "electricity", "source", ".", "A", "solar", "cell", "is", "a", "device", "that", "converts", "light", "directly", "into", "electricity", "using", "the", "photoelectric", "effect", ".", "The", "first", "solar", "cell", "was", "constructed", "by", "Charles", "Fritts", "in", "the", "1880s", ".", "In", "1931", "a", "German", "engineer", ",", "Dr", "Bruno", "Lange", ",", "developed", "a", "photo", "cell", "using", "silver", "selenide", "in", "place", "of", "copper", "oxide", ".", "Although", "the", "prototype", "selenium", "cells", "converted", "less", "than", "1", "%", "of", "incident", "light", "into", "electricity", ",", "both", "Ernst", "Werner", "von", "Siemens", "and", "James", "Clerk", "Maxwell", "recognized", "the", "importance", "of", "this", "discovery", ".", "Following", "the", "work", "of", "Russell", "Ohl", "in", "the", "1940s", ",", "researchers", "Gerald", "Pearson", ",", "Calvin", "Fuller", "and", "Daryl", "Chapin", "created", "the", "crystalline", "silicon", "solar", "cell", "in", "1954", ".", "These", "early", "solar", "cells", "cost", "286", "USD", "/", "watt", "and", "reached", "efficiencies", "of", "4.5–6", "%", ".", "By", "2012", "available", "efficiencies", "exceed", "20", "%", "and", "the", "maximum", "efficiency", "of", "research", "photovoltaics", "is", "over", "40", "%", "." ], "offsets": [ 0, 3, 7, 12, 16, 23, 25, 39, 40, 42, 43, 45, 50, 56, 59, 65, 67, 69, 73, 81, 86, 88, 93, 99, 106, 109, 115, 121, 134, 142, 151, 153, 164, 176, 182, 184, 186, 192, 197, 200, 202, 209, 214, 223, 229, 238, 243, 255, 261, 265, 279, 285, 287, 291, 297, 303, 308, 312, 324, 327, 335, 342, 345, 349, 354, 356, 359, 364, 366, 373, 381, 383, 386, 392, 397, 399, 409, 411, 417, 422, 428, 435, 444, 447, 453, 456, 463, 468, 470, 479, 483, 493, 502, 508, 518, 523, 528, 529, 531, 534, 543, 549, 554, 565, 567, 572, 578, 585, 589, 597, 601, 607, 613, 621, 632, 636, 647, 650, 655, 664, 666, 676, 680, 685, 688, 696, 700, 703, 707, 712, 714, 726, 733, 740, 742, 749, 756, 760, 766, 773, 781, 785, 797, 805, 811, 816, 819, 823, 825, 831, 837, 843, 849, 854, 858, 861, 862, 867, 871, 879, 892, 895, 900, 901, 903, 906, 911, 921, 934, 941, 943, 945, 949, 953, 961, 972, 975, 984, 998, 1001, 1006, 1008, 1009 ] }
a5037affd7fc4ed0ade04c039289899a
In the 1880s, who constructed the first solar cell?
{ "tokens": [ "In", "the", "1880s", ",", "who", "constructed", "the", "first", "solar", "cell", "?" ], "offsets": [ 0, 3, 7, 12, 14, 18, 30, 34, 40, 46, 50 ] }
{ "text": [ "Charles Fritts" ], "char_spans": [ { "start": [ 327 ], "end": [ 340 ] } ], "token_spans": [ { "start": [ 59 ], "end": [ 60 ] } ] }
[ "Charles Fritts" ]
SQuAD
In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%.
{ "tokens": [ "In", "the", "last", "two", "decades", ",", "photovoltaics", "(", "PV", ")", ",", "also", "known", "as", "solar", "PV", ",", "has", "evolved", "from", "a", "pure", "niche", "market", "of", "small", "scale", "applications", "towards", "becoming", "a", "mainstream", "electricity", "source", ".", "A", "solar", "cell", "is", "a", "device", "that", "converts", "light", "directly", "into", "electricity", "using", "the", "photoelectric", "effect", ".", "The", "first", "solar", "cell", "was", "constructed", "by", "Charles", "Fritts", "in", "the", "1880s", ".", "In", "1931", "a", "German", "engineer", ",", "Dr", "Bruno", "Lange", ",", "developed", "a", "photo", "cell", "using", "silver", "selenide", "in", "place", "of", "copper", "oxide", ".", "Although", "the", "prototype", "selenium", "cells", "converted", "less", "than", "1", "%", "of", "incident", "light", "into", "electricity", ",", "both", "Ernst", "Werner", "von", "Siemens", "and", "James", "Clerk", "Maxwell", "recognized", "the", "importance", "of", "this", "discovery", ".", "Following", "the", "work", "of", "Russell", "Ohl", "in", "the", "1940s", ",", "researchers", "Gerald", "Pearson", ",", "Calvin", "Fuller", "and", "Daryl", "Chapin", "created", "the", "crystalline", "silicon", "solar", "cell", "in", "1954", ".", "These", "early", "solar", "cells", "cost", "286", "USD", "/", "watt", "and", "reached", "efficiencies", "of", "4.5–6", "%", ".", "By", "2012", "available", "efficiencies", "exceed", "20", "%", "and", "the", "maximum", "efficiency", "of", "research", "photovoltaics", "is", "over", "40", "%", "." ], "offsets": [ 0, 3, 7, 12, 16, 23, 25, 39, 40, 42, 43, 45, 50, 56, 59, 65, 67, 69, 73, 81, 86, 88, 93, 99, 106, 109, 115, 121, 134, 142, 151, 153, 164, 176, 182, 184, 186, 192, 197, 200, 202, 209, 214, 223, 229, 238, 243, 255, 261, 265, 279, 285, 287, 291, 297, 303, 308, 312, 324, 327, 335, 342, 345, 349, 354, 356, 359, 364, 366, 373, 381, 383, 386, 392, 397, 399, 409, 411, 417, 422, 428, 435, 444, 447, 453, 456, 463, 468, 470, 479, 483, 493, 502, 508, 518, 523, 528, 529, 531, 534, 543, 549, 554, 565, 567, 572, 578, 585, 589, 597, 601, 607, 613, 621, 632, 636, 647, 650, 655, 664, 666, 676, 680, 685, 688, 696, 700, 703, 707, 712, 714, 726, 733, 740, 742, 749, 756, 760, 766, 773, 781, 785, 797, 805, 811, 816, 819, 823, 825, 831, 837, 843, 849, 854, 858, 861, 862, 867, 871, 879, 892, 895, 900, 901, 903, 906, 911, 921, 934, 941, 943, 945, 949, 953, 961, 972, 975, 984, 998, 1001, 1006, 1008, 1009 ] }
59a8e79968694d96beee19b280e7b8f9
In what year was the crystalline silicon solar cell constructed?
{ "tokens": [ "In", "what", "year", "was", "the", "crystalline", "silicon", "solar", "cell", "constructed", "?" ], "offsets": [ 0, 3, 8, 13, 17, 21, 33, 41, 47, 52, 63 ] }
{ "text": [ "1954" ], "char_spans": [ { "start": [ 819 ], "end": [ 822 ] } ], "token_spans": [ { "start": [ 146 ], "end": [ 146 ] } ] }
[ "1954" ]
SQuAD
In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%.
{ "tokens": [ "In", "the", "last", "two", "decades", ",", "photovoltaics", "(", "PV", ")", ",", "also", "known", "as", "solar", "PV", ",", "has", "evolved", "from", "a", "pure", "niche", "market", "of", "small", "scale", "applications", "towards", "becoming", "a", "mainstream", "electricity", "source", ".", "A", "solar", "cell", "is", "a", "device", "that", "converts", "light", "directly", "into", "electricity", "using", "the", "photoelectric", "effect", ".", "The", "first", "solar", "cell", "was", "constructed", "by", "Charles", "Fritts", "in", "the", "1880s", ".", "In", "1931", "a", "German", "engineer", ",", "Dr", "Bruno", "Lange", ",", "developed", "a", "photo", "cell", "using", "silver", "selenide", "in", "place", "of", "copper", "oxide", ".", "Although", "the", "prototype", "selenium", "cells", "converted", "less", "than", "1", "%", "of", "incident", "light", "into", "electricity", ",", "both", "Ernst", "Werner", "von", "Siemens", "and", "James", "Clerk", "Maxwell", "recognized", "the", "importance", "of", "this", "discovery", ".", "Following", "the", "work", "of", "Russell", "Ohl", "in", "the", "1940s", ",", "researchers", "Gerald", "Pearson", ",", "Calvin", "Fuller", "and", "Daryl", "Chapin", "created", "the", "crystalline", "silicon", "solar", "cell", "in", "1954", ".", "These", "early", "solar", "cells", "cost", "286", "USD", "/", "watt", "and", "reached", "efficiencies", "of", "4.5–6", "%", ".", "By", "2012", "available", "efficiencies", "exceed", "20", "%", "and", "the", "maximum", "efficiency", "of", "research", "photovoltaics", "is", "over", "40", "%", "." ], "offsets": [ 0, 3, 7, 12, 16, 23, 25, 39, 40, 42, 43, 45, 50, 56, 59, 65, 67, 69, 73, 81, 86, 88, 93, 99, 106, 109, 115, 121, 134, 142, 151, 153, 164, 176, 182, 184, 186, 192, 197, 200, 202, 209, 214, 223, 229, 238, 243, 255, 261, 265, 279, 285, 287, 291, 297, 303, 308, 312, 324, 327, 335, 342, 345, 349, 354, 356, 359, 364, 366, 373, 381, 383, 386, 392, 397, 399, 409, 411, 417, 422, 428, 435, 444, 447, 453, 456, 463, 468, 470, 479, 483, 493, 502, 508, 518, 523, 528, 529, 531, 534, 543, 549, 554, 565, 567, 572, 578, 585, 589, 597, 601, 607, 613, 621, 632, 636, 647, 650, 655, 664, 666, 676, 680, 685, 688, 696, 700, 703, 707, 712, 714, 726, 733, 740, 742, 749, 756, 760, 766, 773, 781, 785, 797, 805, 811, 816, 819, 823, 825, 831, 837, 843, 849, 854, 858, 861, 862, 867, 871, 879, 892, 895, 900, 901, 903, 906, 911, 921, 934, 941, 943, 945, 949, 953, 961, 972, 975, 984, 998, 1001, 1006, 1008, 1009 ] }
4c2536ceabab4c7ea21b6a1757264d34
What has happened to photovoltaic in the past 20 years?
{ "tokens": [ "What", "has", "happened", "to", "photovoltaic", "in", "the", "past", "20", "years", "?" ], "offsets": [ 0, 5, 9, 18, 21, 34, 37, 41, 46, 49, 54 ] }
{ "text": [ "evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source" ], "char_spans": [ { "start": [ 73 ], "end": [ 181 ] } ], "token_spans": [ { "start": [ 18 ], "end": [ 33 ] } ] }
[ "evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source" ]
SQuAD
In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%.
{ "tokens": [ "In", "the", "last", "two", "decades", ",", "photovoltaics", "(", "PV", ")", ",", "also", "known", "as", "solar", "PV", ",", "has", "evolved", "from", "a", "pure", "niche", "market", "of", "small", "scale", "applications", "towards", "becoming", "a", "mainstream", "electricity", "source", ".", "A", "solar", "cell", "is", "a", "device", "that", "converts", "light", "directly", "into", "electricity", "using", "the", "photoelectric", "effect", ".", "The", "first", "solar", "cell", "was", "constructed", "by", "Charles", "Fritts", "in", "the", "1880s", ".", "In", "1931", "a", "German", "engineer", ",", "Dr", "Bruno", "Lange", ",", "developed", "a", "photo", "cell", "using", "silver", "selenide", "in", "place", "of", "copper", "oxide", ".", "Although", "the", "prototype", "selenium", "cells", "converted", "less", "than", "1", "%", "of", "incident", "light", "into", "electricity", ",", "both", "Ernst", "Werner", "von", "Siemens", "and", "James", "Clerk", "Maxwell", "recognized", "the", "importance", "of", "this", "discovery", ".", "Following", "the", "work", "of", "Russell", "Ohl", "in", "the", "1940s", ",", "researchers", "Gerald", "Pearson", ",", "Calvin", "Fuller", "and", "Daryl", "Chapin", "created", "the", "crystalline", "silicon", "solar", "cell", "in", "1954", ".", "These", "early", "solar", "cells", "cost", "286", "USD", "/", "watt", "and", "reached", "efficiencies", "of", "4.5–6", "%", ".", "By", "2012", "available", "efficiencies", "exceed", "20", "%", "and", "the", "maximum", "efficiency", "of", "research", "photovoltaics", "is", "over", "40", "%", "." ], "offsets": [ 0, 3, 7, 12, 16, 23, 25, 39, 40, 42, 43, 45, 50, 56, 59, 65, 67, 69, 73, 81, 86, 88, 93, 99, 106, 109, 115, 121, 134, 142, 151, 153, 164, 176, 182, 184, 186, 192, 197, 200, 202, 209, 214, 223, 229, 238, 243, 255, 261, 265, 279, 285, 287, 291, 297, 303, 308, 312, 324, 327, 335, 342, 345, 349, 354, 356, 359, 364, 366, 373, 381, 383, 386, 392, 397, 399, 409, 411, 417, 422, 428, 435, 444, 447, 453, 456, 463, 468, 470, 479, 483, 493, 502, 508, 518, 523, 528, 529, 531, 534, 543, 549, 554, 565, 567, 572, 578, 585, 589, 597, 601, 607, 613, 621, 632, 636, 647, 650, 655, 664, 666, 676, 680, 685, 688, 696, 700, 703, 707, 712, 714, 726, 733, 740, 742, 749, 756, 760, 766, 773, 781, 785, 797, 805, 811, 816, 819, 823, 825, 831, 837, 843, 849, 854, 858, 861, 862, 867, 871, 879, 892, 895, 900, 901, 903, 906, 911, 921, 934, 941, 943, 945, 949, 953, 961, 972, 975, 984, 998, 1001, 1006, 1008, 1009 ] }
4dfb31dcc95345cbbfbc7dd4def48106
What is a solar cell?
{ "tokens": [ "What", "is", "a", "solar", "cell", "?" ], "offsets": [ 0, 5, 8, 10, 16, 20 ] }
{ "text": [ "a device that converts light directly into electricity" ], "char_spans": [ { "start": [ 200 ], "end": [ 253 ] } ], "token_spans": [ { "start": [ 39 ], "end": [ 46 ] } ] }
[ "a device that converts light directly into electricity" ]
SQuAD
In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%.
{ "tokens": [ "In", "the", "last", "two", "decades", ",", "photovoltaics", "(", "PV", ")", ",", "also", "known", "as", "solar", "PV", ",", "has", "evolved", "from", "a", "pure", "niche", "market", "of", "small", "scale", "applications", "towards", "becoming", "a", "mainstream", "electricity", "source", ".", "A", "solar", "cell", "is", "a", "device", "that", "converts", "light", "directly", "into", "electricity", "using", "the", "photoelectric", "effect", ".", "The", "first", "solar", "cell", "was", "constructed", "by", "Charles", "Fritts", "in", "the", "1880s", ".", "In", "1931", "a", "German", "engineer", ",", "Dr", "Bruno", "Lange", ",", "developed", "a", "photo", "cell", "using", "silver", "selenide", "in", "place", "of", "copper", "oxide", ".", "Although", "the", "prototype", "selenium", "cells", "converted", "less", "than", "1", "%", "of", "incident", "light", "into", "electricity", ",", "both", "Ernst", "Werner", "von", "Siemens", "and", "James", "Clerk", "Maxwell", "recognized", "the", "importance", "of", "this", "discovery", ".", "Following", "the", "work", "of", "Russell", "Ohl", "in", "the", "1940s", ",", "researchers", "Gerald", "Pearson", ",", "Calvin", "Fuller", "and", "Daryl", "Chapin", "created", "the", "crystalline", "silicon", "solar", "cell", "in", "1954", ".", "These", "early", "solar", "cells", "cost", "286", "USD", "/", "watt", "and", "reached", "efficiencies", "of", "4.5–6", "%", ".", "By", "2012", "available", "efficiencies", "exceed", "20", "%", "and", "the", "maximum", "efficiency", "of", "research", "photovoltaics", "is", "over", "40", "%", "." ], "offsets": [ 0, 3, 7, 12, 16, 23, 25, 39, 40, 42, 43, 45, 50, 56, 59, 65, 67, 69, 73, 81, 86, 88, 93, 99, 106, 109, 115, 121, 134, 142, 151, 153, 164, 176, 182, 184, 186, 192, 197, 200, 202, 209, 214, 223, 229, 238, 243, 255, 261, 265, 279, 285, 287, 291, 297, 303, 308, 312, 324, 327, 335, 342, 345, 349, 354, 356, 359, 364, 366, 373, 381, 383, 386, 392, 397, 399, 409, 411, 417, 422, 428, 435, 444, 447, 453, 456, 463, 468, 470, 479, 483, 493, 502, 508, 518, 523, 528, 529, 531, 534, 543, 549, 554, 565, 567, 572, 578, 585, 589, 597, 601, 607, 613, 621, 632, 636, 647, 650, 655, 664, 666, 676, 680, 685, 688, 696, 700, 703, 707, 712, 714, 726, 733, 740, 742, 749, 756, 760, 766, 773, 781, 785, 797, 805, 811, 816, 819, 823, 825, 831, 837, 843, 849, 854, 858, 861, 862, 867, 871, 879, 892, 895, 900, 901, 903, 906, 911, 921, 934, 941, 943, 945, 949, 953, 961, 972, 975, 984, 998, 1001, 1006, 1008, 1009 ] }
9a9d4c6f22044b0b84e8b04960b5379b
Who created the first solar cell?
{ "tokens": [ "Who", "created", "the", "first", "solar", "cell", "?" ], "offsets": [ 0, 4, 12, 16, 22, 28, 32 ] }
{ "text": [ "Charles Fritts" ], "char_spans": [ { "start": [ 327 ], "end": [ 340 ] } ], "token_spans": [ { "start": [ 59 ], "end": [ 60 ] } ] }
[ "Charles Fritts" ]
SQuAD
In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%.
{ "tokens": [ "In", "the", "last", "two", "decades", ",", "photovoltaics", "(", "PV", ")", ",", "also", "known", "as", "solar", "PV", ",", "has", "evolved", "from", "a", "pure", "niche", "market", "of", "small", "scale", "applications", "towards", "becoming", "a", "mainstream", "electricity", "source", ".", "A", "solar", "cell", "is", "a", "device", "that", "converts", "light", "directly", "into", "electricity", "using", "the", "photoelectric", "effect", ".", "The", "first", "solar", "cell", "was", "constructed", "by", "Charles", "Fritts", "in", "the", "1880s", ".", "In", "1931", "a", "German", "engineer", ",", "Dr", "Bruno", "Lange", ",", "developed", "a", "photo", "cell", "using", "silver", "selenide", "in", "place", "of", "copper", "oxide", ".", "Although", "the", "prototype", "selenium", "cells", "converted", "less", "than", "1", "%", "of", "incident", "light", "into", "electricity", ",", "both", "Ernst", "Werner", "von", "Siemens", "and", "James", "Clerk", "Maxwell", "recognized", "the", "importance", "of", "this", "discovery", ".", "Following", "the", "work", "of", "Russell", "Ohl", "in", "the", "1940s", ",", "researchers", "Gerald", "Pearson", ",", "Calvin", "Fuller", "and", "Daryl", "Chapin", "created", "the", "crystalline", "silicon", "solar", "cell", "in", "1954", ".", "These", "early", "solar", "cells", "cost", "286", "USD", "/", "watt", "and", "reached", "efficiencies", "of", "4.5–6", "%", ".", "By", "2012", "available", "efficiencies", "exceed", "20", "%", "and", "the", "maximum", "efficiency", "of", "research", "photovoltaics", "is", "over", "40", "%", "." ], "offsets": [ 0, 3, 7, 12, 16, 23, 25, 39, 40, 42, 43, 45, 50, 56, 59, 65, 67, 69, 73, 81, 86, 88, 93, 99, 106, 109, 115, 121, 134, 142, 151, 153, 164, 176, 182, 184, 186, 192, 197, 200, 202, 209, 214, 223, 229, 238, 243, 255, 261, 265, 279, 285, 287, 291, 297, 303, 308, 312, 324, 327, 335, 342, 345, 349, 354, 356, 359, 364, 366, 373, 381, 383, 386, 392, 397, 399, 409, 411, 417, 422, 428, 435, 444, 447, 453, 456, 463, 468, 470, 479, 483, 493, 502, 508, 518, 523, 528, 529, 531, 534, 543, 549, 554, 565, 567, 572, 578, 585, 589, 597, 601, 607, 613, 621, 632, 636, 647, 650, 655, 664, 666, 676, 680, 685, 688, 696, 700, 703, 707, 712, 714, 726, 733, 740, 742, 749, 756, 760, 766, 773, 781, 785, 797, 805, 811, 816, 819, 823, 825, 831, 837, 843, 849, 854, 858, 861, 862, 867, 871, 879, 892, 895, 900, 901, 903, 906, 911, 921, 934, 941, 943, 945, 949, 953, 961, 972, 975, 984, 998, 1001, 1006, 1008, 1009 ] }
7b84e43b48f64fd29b639f9b2db1ada7
Who created the first solar cell using silver selenide in place of copper oxide?
{ "tokens": [ "Who", "created", "the", "first", "solar", "cell", "using", "silver", "selenide", "in", "place", "of", "copper", "oxide", "?" ], "offsets": [ 0, 4, 12, 16, 22, 28, 33, 39, 46, 55, 58, 64, 67, 74, 79 ] }
{ "text": [ "Dr Bruno Lange" ], "char_spans": [ { "start": [ 383 ], "end": [ 396 ] } ], "token_spans": [ { "start": [ 71 ], "end": [ 73 ] } ] }
[ "Dr Bruno Lange" ]
SQuAD
In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceed 20% and the maximum efficiency of research photovoltaics is over 40%.
{ "tokens": [ "In", "the", "last", "two", "decades", ",", "photovoltaics", "(", "PV", ")", ",", "also", "known", "as", "solar", "PV", ",", "has", "evolved", "from", "a", "pure", "niche", "market", "of", "small", "scale", "applications", "towards", "becoming", "a", "mainstream", "electricity", "source", ".", "A", "solar", "cell", "is", "a", "device", "that", "converts", "light", "directly", "into", "electricity", "using", "the", "photoelectric", "effect", ".", "The", "first", "solar", "cell", "was", "constructed", "by", "Charles", "Fritts", "in", "the", "1880s", ".", "In", "1931", "a", "German", "engineer", ",", "Dr", "Bruno", "Lange", ",", "developed", "a", "photo", "cell", "using", "silver", "selenide", "in", "place", "of", "copper", "oxide", ".", "Although", "the", "prototype", "selenium", "cells", "converted", "less", "than", "1", "%", "of", "incident", "light", "into", "electricity", ",", "both", "Ernst", "Werner", "von", "Siemens", "and", "James", "Clerk", "Maxwell", "recognized", "the", "importance", "of", "this", "discovery", ".", "Following", "the", "work", "of", "Russell", "Ohl", "in", "the", "1940s", ",", "researchers", "Gerald", "Pearson", ",", "Calvin", "Fuller", "and", "Daryl", "Chapin", "created", "the", "crystalline", "silicon", "solar", "cell", "in", "1954", ".", "These", "early", "solar", "cells", "cost", "286", "USD", "/", "watt", "and", "reached", "efficiencies", "of", "4.5–6", "%", ".", "By", "2012", "available", "efficiencies", "exceed", "20", "%", "and", "the", "maximum", "efficiency", "of", "research", "photovoltaics", "is", "over", "40", "%", "." ], "offsets": [ 0, 3, 7, 12, 16, 23, 25, 39, 40, 42, 43, 45, 50, 56, 59, 65, 67, 69, 73, 81, 86, 88, 93, 99, 106, 109, 115, 121, 134, 142, 151, 153, 164, 176, 182, 184, 186, 192, 197, 200, 202, 209, 214, 223, 229, 238, 243, 255, 261, 265, 279, 285, 287, 291, 297, 303, 308, 312, 324, 327, 335, 342, 345, 349, 354, 356, 359, 364, 366, 373, 381, 383, 386, 392, 397, 399, 409, 411, 417, 422, 428, 435, 444, 447, 453, 456, 463, 468, 470, 479, 483, 493, 502, 508, 518, 523, 528, 529, 531, 534, 543, 549, 554, 565, 567, 572, 578, 585, 589, 597, 601, 607, 613, 621, 632, 636, 647, 650, 655, 664, 666, 676, 680, 685, 688, 696, 700, 703, 707, 712, 714, 726, 733, 740, 742, 749, 756, 760, 766, 773, 781, 785, 797, 805, 811, 816, 819, 823, 825, 831, 837, 843, 849, 854, 858, 861, 862, 867, 871, 879, 892, 895, 900, 901, 903, 906, 911, 921, 934, 941, 943, 945, 949, 953, 961, 972, 975, 984, 998, 1001, 1006, 1008, 1009 ] }
b849cd440b0340d38738700afca37941
Who created the crystalline silicon solar cell?
{ "tokens": [ "Who", "created", "the", "crystalline", "silicon", "solar", "cell", "?" ], "offsets": [ 0, 4, 12, 16, 28, 36, 42, 46 ] }
{ "text": [ "Gerald Pearson, Calvin Fuller and Daryl Chapin" ], "char_spans": [ { "start": [ 726 ], "end": [ 771 ] } ], "token_spans": [ { "start": [ 131 ], "end": [ 138 ] } ] }
[ "Gerald Pearson, Calvin Fuller and Daryl Chapin" ]
SQuAD
It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on the way they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.
{ "tokens": [ "It", "is", "an", "important", "source", "of", "renewable", "energy", "and", "its", "technologies", "are", "broadly", "characterized", "as", "either", "passive", "solar", "or", "active", "solar", "depending", "on", "the", "way", "they", "capture", "and", "distribute", "solar", "energy", "or", "convert", "it", "into", "solar", "power", ".", "Active", "solar", "techniques", "include", "the", "use", "of", "photovoltaic", "systems", ",", "concentrated", "solar", "power", "and", "solar", "water", "heating", "to", "harness", "the", "energy", ".", "Passive", "solar", "techniques", "include", "orienting", "a", "building", "to", "the", "Sun", ",", "selecting", "materials", "with", "favorable", "thermal", "mass", "or", "light", "dispersing", "properties", ",", "and", "designing", "spaces", "that", "naturally", "circulate", "air", "." ], "offsets": [ 0, 3, 6, 9, 19, 26, 29, 39, 46, 50, 54, 67, 71, 79, 93, 96, 103, 111, 117, 120, 127, 133, 143, 146, 150, 154, 159, 167, 171, 182, 188, 195, 198, 206, 209, 214, 220, 225, 227, 234, 240, 251, 259, 263, 267, 270, 283, 290, 292, 305, 311, 317, 321, 327, 333, 341, 344, 352, 356, 362, 364, 372, 378, 389, 397, 407, 409, 418, 421, 425, 428, 430, 440, 450, 455, 465, 473, 478, 481, 487, 498, 508, 510, 514, 524, 531, 536, 546, 556, 559 ] }
994c5098bde242818b0237f6e69882fc
What are the technologies used to capture solar energy characterized as?
{ "tokens": [ "What", "are", "the", "technologies", "used", "to", "capture", "solar", "energy", "characterized", "as", "?" ], "offsets": [ 0, 5, 9, 13, 26, 31, 34, 42, 48, 55, 69, 71 ] }
{ "text": [ "passive solar or active solar" ], "char_spans": [ { "start": [ 103 ], "end": [ 131 ] } ], "token_spans": [ { "start": [ 16 ], "end": [ 20 ] } ] }
[ "passive solar or active solar" ]
SQuAD
It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on the way they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.
{ "tokens": [ "It", "is", "an", "important", "source", "of", "renewable", "energy", "and", "its", "technologies", "are", "broadly", "characterized", "as", "either", "passive", "solar", "or", "active", "solar", "depending", "on", "the", "way", "they", "capture", "and", "distribute", "solar", "energy", "or", "convert", "it", "into", "solar", "power", ".", "Active", "solar", "techniques", "include", "the", "use", "of", "photovoltaic", "systems", ",", "concentrated", "solar", "power", "and", "solar", "water", "heating", "to", "harness", "the", "energy", ".", "Passive", "solar", "techniques", "include", "orienting", "a", "building", "to", "the", "Sun", ",", "selecting", "materials", "with", "favorable", "thermal", "mass", "or", "light", "dispersing", "properties", ",", "and", "designing", "spaces", "that", "naturally", "circulate", "air", "." ], "offsets": [ 0, 3, 6, 9, 19, 26, 29, 39, 46, 50, 54, 67, 71, 79, 93, 96, 103, 111, 117, 120, 127, 133, 143, 146, 150, 154, 159, 167, 171, 182, 188, 195, 198, 206, 209, 214, 220, 225, 227, 234, 240, 251, 259, 263, 267, 270, 283, 290, 292, 305, 311, 317, 321, 327, 333, 341, 344, 352, 356, 362, 364, 372, 378, 389, 397, 407, 409, 418, 421, 425, 428, 430, 440, 450, 455, 465, 473, 478, 481, 487, 498, 508, 510, 514, 524, 531, 536, 546, 556, 559 ] }
ae025aacb91a4d08a574adadecf993db
What are some active solar techniques used to harness solar energy?
{ "tokens": [ "What", "are", "some", "active", "solar", "techniques", "used", "to", "harness", "solar", "energy", "?" ], "offsets": [ 0, 5, 9, 14, 21, 27, 38, 43, 46, 54, 60, 66 ] }
{ "text": [ "photovoltaic systems, concentrated solar power and solar water heating" ], "char_spans": [ { "start": [ 270 ], "end": [ 339 ] } ], "token_spans": [ { "start": [ 45 ], "end": [ 54 ] } ] }
[ "photovoltaic systems, concentrated solar power and solar water heating" ]
SQuAD
It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on the way they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.
{ "tokens": [ "It", "is", "an", "important", "source", "of", "renewable", "energy", "and", "its", "technologies", "are", "broadly", "characterized", "as", "either", "passive", "solar", "or", "active", "solar", "depending", "on", "the", "way", "they", "capture", "and", "distribute", "solar", "energy", "or", "convert", "it", "into", "solar", "power", ".", "Active", "solar", "techniques", "include", "the", "use", "of", "photovoltaic", "systems", ",", "concentrated", "solar", "power", "and", "solar", "water", "heating", "to", "harness", "the", "energy", ".", "Passive", "solar", "techniques", "include", "orienting", "a", "building", "to", "the", "Sun", ",", "selecting", "materials", "with", "favorable", "thermal", "mass", "or", "light", "dispersing", "properties", ",", "and", "designing", "spaces", "that", "naturally", "circulate", "air", "." ], "offsets": [ 0, 3, 6, 9, 19, 26, 29, 39, 46, 50, 54, 67, 71, 79, 93, 96, 103, 111, 117, 120, 127, 133, 143, 146, 150, 154, 159, 167, 171, 182, 188, 195, 198, 206, 209, 214, 220, 225, 227, 234, 240, 251, 259, 263, 267, 270, 283, 290, 292, 305, 311, 317, 321, 327, 333, 341, 344, 352, 356, 362, 364, 372, 378, 389, 397, 407, 409, 418, 421, 425, 428, 430, 440, 450, 455, 465, 473, 478, 481, 487, 498, 508, 510, 514, 524, 531, 536, 546, 556, 559 ] }
85e505b941cb463c83ab0ce257f78bc0
What is an example of a passive solar technique?
{ "tokens": [ "What", "is", "an", "example", "of", "a", "passive", "solar", "technique", "?" ], "offsets": [ 0, 5, 8, 11, 19, 22, 24, 32, 38, 47 ] }
{ "text": [ "orienting a building to the Sun" ], "char_spans": [ { "start": [ 397 ], "end": [ 427 ] } ], "token_spans": [ { "start": [ 64 ], "end": [ 69 ] } ] }
[ "orienting a building to the Sun" ]
SQuAD
Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.
{ "tokens": [ "Development", "of", "a", "solar", "-", "powered", "car", "has", "been", "an", "engineering", "goal", "since", "the", "1980s", ".", "The", "World", "Solar", "Challenge", "is", "a", "biannual", "solar", "-", "powered", "car", "race", ",", "where", "teams", "from", "universities", "and", "enterprises", "compete", "over", "3,021", "kilometres", "(", "1,877", "mi", ")", "across", "central", "Australia", "from", "Darwin", "to", "Adelaide", ".", "In", "1987", ",", "when", "it", "was", "founded", ",", "the", "winner", "'s", "average", "speed", "was", "67", "kilometres", "per", "hour", "(", "42", "mph", ")", "and", "by", "2007", "the", "winner", "'s", "average", "speed", "had", "improved", "to", "90.87", "kilometres", "per", "hour", "(", "56.46", "mph", ")", ".", "The", "North", "American", "Solar", "Challenge", "and", "the", "planned", "South", "African", "Solar", "Challenge", "are", "comparable", "competitions", "that", "reflect", "an", "international", "interest", "in", "the", "engineering", "and", "development", "of", "solar", "powered", "vehicles", "." ], "offsets": [ 0, 12, 15, 17, 22, 23, 31, 35, 39, 44, 47, 59, 64, 70, 74, 79, 81, 85, 91, 97, 107, 110, 112, 121, 126, 127, 135, 139, 143, 145, 151, 157, 162, 175, 179, 191, 199, 204, 210, 221, 222, 228, 230, 232, 239, 247, 257, 262, 269, 272, 280, 282, 285, 289, 291, 296, 299, 303, 310, 312, 316, 322, 325, 333, 339, 343, 346, 357, 361, 366, 367, 370, 373, 375, 379, 382, 387, 391, 397, 400, 408, 414, 418, 427, 430, 436, 447, 451, 456, 457, 463, 466, 467, 469, 473, 479, 488, 494, 504, 508, 512, 520, 526, 534, 540, 550, 554, 565, 578, 583, 591, 594, 608, 617, 620, 624, 636, 640, 652, 655, 661, 669, 677 ] }
18539c42b2774411895ea5fb17db316f
What is the name of the solar powered car race held every two years?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "solar", "powered", "car", "race", "held", "every", "two", "years", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 30, 38, 42, 47, 52, 58, 62, 67 ] }
{ "text": [ "The World Solar Challenge" ], "char_spans": [ { "start": [ 81 ], "end": [ 105 ] } ], "token_spans": [ { "start": [ 16 ], "end": [ 19 ] } ] }
[ "The World Solar Challenge" ]
SQuAD
Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.
{ "tokens": [ "Development", "of", "a", "solar", "-", "powered", "car", "has", "been", "an", "engineering", "goal", "since", "the", "1980s", ".", "The", "World", "Solar", "Challenge", "is", "a", "biannual", "solar", "-", "powered", "car", "race", ",", "where", "teams", "from", "universities", "and", "enterprises", "compete", "over", "3,021", "kilometres", "(", "1,877", "mi", ")", "across", "central", "Australia", "from", "Darwin", "to", "Adelaide", ".", "In", "1987", ",", "when", "it", "was", "founded", ",", "the", "winner", "'s", "average", "speed", "was", "67", "kilometres", "per", "hour", "(", "42", "mph", ")", "and", "by", "2007", "the", "winner", "'s", "average", "speed", "had", "improved", "to", "90.87", "kilometres", "per", "hour", "(", "56.46", "mph", ")", ".", "The", "North", "American", "Solar", "Challenge", "and", "the", "planned", "South", "African", "Solar", "Challenge", "are", "comparable", "competitions", "that", "reflect", "an", "international", "interest", "in", "the", "engineering", "and", "development", "of", "solar", "powered", "vehicles", "." ], "offsets": [ 0, 12, 15, 17, 22, 23, 31, 35, 39, 44, 47, 59, 64, 70, 74, 79, 81, 85, 91, 97, 107, 110, 112, 121, 126, 127, 135, 139, 143, 145, 151, 157, 162, 175, 179, 191, 199, 204, 210, 221, 222, 228, 230, 232, 239, 247, 257, 262, 269, 272, 280, 282, 285, 289, 291, 296, 299, 303, 310, 312, 316, 322, 325, 333, 339, 343, 346, 357, 361, 366, 367, 370, 373, 375, 379, 382, 387, 391, 397, 400, 408, 414, 418, 427, 430, 436, 447, 451, 456, 457, 463, 466, 467, 469, 473, 479, 488, 494, 504, 508, 512, 520, 526, 534, 540, 550, 554, 565, 578, 583, 591, 594, 608, 617, 620, 624, 636, 640, 652, 655, 661, 669, 677 ] }
a7c12ec774ff4702a2411f733d40a0cd
What was the winner of the World Solar Challenge's average speed in 2007 in km/h?
{ "tokens": [ "What", "was", "the", "winner", "of", "the", "World", "Solar", "Challenge", "'s", "average", "speed", "in", "2007", "in", "km", "/", "h", "?" ], "offsets": [ 0, 5, 9, 13, 20, 23, 27, 33, 39, 48, 51, 59, 65, 68, 73, 76, 78, 79, 80 ] }
{ "text": [ "90.87" ], "char_spans": [ { "start": [ 430 ], "end": [ 434 ] } ], "token_spans": [ { "start": [ 84 ], "end": [ 84 ] } ] }
[ "90.87" ]
SQuAD
Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.
{ "tokens": [ "Development", "of", "a", "solar", "-", "powered", "car", "has", "been", "an", "engineering", "goal", "since", "the", "1980s", ".", "The", "World", "Solar", "Challenge", "is", "a", "biannual", "solar", "-", "powered", "car", "race", ",", "where", "teams", "from", "universities", "and", "enterprises", "compete", "over", "3,021", "kilometres", "(", "1,877", "mi", ")", "across", "central", "Australia", "from", "Darwin", "to", "Adelaide", ".", "In", "1987", ",", "when", "it", "was", "founded", ",", "the", "winner", "'s", "average", "speed", "was", "67", "kilometres", "per", "hour", "(", "42", "mph", ")", "and", "by", "2007", "the", "winner", "'s", "average", "speed", "had", "improved", "to", "90.87", "kilometres", "per", "hour", "(", "56.46", "mph", ")", ".", "The", "North", "American", "Solar", "Challenge", "and", "the", "planned", "South", "African", "Solar", "Challenge", "are", "comparable", "competitions", "that", "reflect", "an", "international", "interest", "in", "the", "engineering", "and", "development", "of", "solar", "powered", "vehicles", "." ], "offsets": [ 0, 12, 15, 17, 22, 23, 31, 35, 39, 44, 47, 59, 64, 70, 74, 79, 81, 85, 91, 97, 107, 110, 112, 121, 126, 127, 135, 139, 143, 145, 151, 157, 162, 175, 179, 191, 199, 204, 210, 221, 222, 228, 230, 232, 239, 247, 257, 262, 269, 272, 280, 282, 285, 289, 291, 296, 299, 303, 310, 312, 316, 322, 325, 333, 339, 343, 346, 357, 361, 366, 367, 370, 373, 375, 379, 382, 387, 391, 397, 400, 408, 414, 418, 427, 430, 436, 447, 451, 456, 457, 463, 466, 467, 469, 473, 479, 488, 494, 504, 508, 512, 520, 526, 534, 540, 550, 554, 565, 578, 583, 591, 594, 608, 617, 620, 624, 636, 640, 652, 655, 661, 669, 677 ] }
cc4918f0ae4d4622890fcf6b4d31e025
What is The World Solar Challenge?
{ "tokens": [ "What", "is", "The", "World", "Solar", "Challenge", "?" ], "offsets": [ 0, 5, 8, 12, 18, 24, 33 ] }
{ "text": [ "a biannual solar-powered car race" ], "char_spans": [ { "start": [ 110 ], "end": [ 142 ] } ], "token_spans": [ { "start": [ 21 ], "end": [ 27 ] } ] }
[ "a biannual solar-powered car race" ]
SQuAD
Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.
{ "tokens": [ "Development", "of", "a", "solar", "-", "powered", "car", "has", "been", "an", "engineering", "goal", "since", "the", "1980s", ".", "The", "World", "Solar", "Challenge", "is", "a", "biannual", "solar", "-", "powered", "car", "race", ",", "where", "teams", "from", "universities", "and", "enterprises", "compete", "over", "3,021", "kilometres", "(", "1,877", "mi", ")", "across", "central", "Australia", "from", "Darwin", "to", "Adelaide", ".", "In", "1987", ",", "when", "it", "was", "founded", ",", "the", "winner", "'s", "average", "speed", "was", "67", "kilometres", "per", "hour", "(", "42", "mph", ")", "and", "by", "2007", "the", "winner", "'s", "average", "speed", "had", "improved", "to", "90.87", "kilometres", "per", "hour", "(", "56.46", "mph", ")", ".", "The", "North", "American", "Solar", "Challenge", "and", "the", "planned", "South", "African", "Solar", "Challenge", "are", "comparable", "competitions", "that", "reflect", "an", "international", "interest", "in", "the", "engineering", "and", "development", "of", "solar", "powered", "vehicles", "." ], "offsets": [ 0, 12, 15, 17, 22, 23, 31, 35, 39, 44, 47, 59, 64, 70, 74, 79, 81, 85, 91, 97, 107, 110, 112, 121, 126, 127, 135, 139, 143, 145, 151, 157, 162, 175, 179, 191, 199, 204, 210, 221, 222, 228, 230, 232, 239, 247, 257, 262, 269, 272, 280, 282, 285, 289, 291, 296, 299, 303, 310, 312, 316, 322, 325, 333, 339, 343, 346, 357, 361, 366, 367, 370, 373, 375, 379, 382, 387, 391, 397, 400, 408, 414, 418, 427, 430, 436, 447, 451, 456, 457, 463, 466, 467, 469, 473, 479, 488, 494, 504, 508, 512, 520, 526, 534, 540, 550, 554, 565, 578, 583, 591, 594, 608, 617, 620, 624, 636, 640, 652, 655, 661, 669, 677 ] }
db766a52e9fc41c6b027aae95abf67e2
When was The World Solar Challenge started?
{ "tokens": [ "When", "was", "The", "World", "Solar", "Challenge", "started", "?" ], "offsets": [ 0, 5, 9, 13, 19, 25, 35, 42 ] }
{ "text": [ "1987" ], "char_spans": [ { "start": [ 285 ], "end": [ 288 ] } ], "token_spans": [ { "start": [ 52 ], "end": [ 52 ] } ] }
[ "1987" ]
SQuAD
Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.
{ "tokens": [ "Development", "of", "a", "solar", "-", "powered", "car", "has", "been", "an", "engineering", "goal", "since", "the", "1980s", ".", "The", "World", "Solar", "Challenge", "is", "a", "biannual", "solar", "-", "powered", "car", "race", ",", "where", "teams", "from", "universities", "and", "enterprises", "compete", "over", "3,021", "kilometres", "(", "1,877", "mi", ")", "across", "central", "Australia", "from", "Darwin", "to", "Adelaide", ".", "In", "1987", ",", "when", "it", "was", "founded", ",", "the", "winner", "'s", "average", "speed", "was", "67", "kilometres", "per", "hour", "(", "42", "mph", ")", "and", "by", "2007", "the", "winner", "'s", "average", "speed", "had", "improved", "to", "90.87", "kilometres", "per", "hour", "(", "56.46", "mph", ")", ".", "The", "North", "American", "Solar", "Challenge", "and", "the", "planned", "South", "African", "Solar", "Challenge", "are", "comparable", "competitions", "that", "reflect", "an", "international", "interest", "in", "the", "engineering", "and", "development", "of", "solar", "powered", "vehicles", "." ], "offsets": [ 0, 12, 15, 17, 22, 23, 31, 35, 39, 44, 47, 59, 64, 70, 74, 79, 81, 85, 91, 97, 107, 110, 112, 121, 126, 127, 135, 139, 143, 145, 151, 157, 162, 175, 179, 191, 199, 204, 210, 221, 222, 228, 230, 232, 239, 247, 257, 262, 269, 272, 280, 282, 285, 289, 291, 296, 299, 303, 310, 312, 316, 322, 325, 333, 339, 343, 346, 357, 361, 366, 367, 370, 373, 375, 379, 382, 387, 391, 397, 400, 408, 414, 418, 427, 430, 436, 447, 451, 456, 457, 463, 466, 467, 469, 473, 479, 488, 494, 504, 508, 512, 520, 526, 534, 540, 550, 554, 565, 578, 583, 591, 594, 608, 617, 620, 624, 636, 640, 652, 655, 661, 669, 677 ] }
9f50646ab82a4ec19027b954d694b1ad
What was the average speed of a winning solar powered car in 1987?
{ "tokens": [ "What", "was", "the", "average", "speed", "of", "a", "winning", "solar", "powered", "car", "in", "1987", "?" ], "offsets": [ 0, 5, 9, 13, 21, 27, 30, 32, 40, 46, 54, 58, 61, 65 ] }
{ "text": [ "67 kilometres per hour (42 mph)" ], "char_spans": [ { "start": [ 343 ], "end": [ 373 ] } ], "token_spans": [ { "start": [ 65 ], "end": [ 72 ] } ] }
[ "67 kilometres per hour (42 mph)" ]
SQuAD
Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.
{ "tokens": [ "Development", "of", "a", "solar", "-", "powered", "car", "has", "been", "an", "engineering", "goal", "since", "the", "1980s", ".", "The", "World", "Solar", "Challenge", "is", "a", "biannual", "solar", "-", "powered", "car", "race", ",", "where", "teams", "from", "universities", "and", "enterprises", "compete", "over", "3,021", "kilometres", "(", "1,877", "mi", ")", "across", "central", "Australia", "from", "Darwin", "to", "Adelaide", ".", "In", "1987", ",", "when", "it", "was", "founded", ",", "the", "winner", "'s", "average", "speed", "was", "67", "kilometres", "per", "hour", "(", "42", "mph", ")", "and", "by", "2007", "the", "winner", "'s", "average", "speed", "had", "improved", "to", "90.87", "kilometres", "per", "hour", "(", "56.46", "mph", ")", ".", "The", "North", "American", "Solar", "Challenge", "and", "the", "planned", "South", "African", "Solar", "Challenge", "are", "comparable", "competitions", "that", "reflect", "an", "international", "interest", "in", "the", "engineering", "and", "development", "of", "solar", "powered", "vehicles", "." ], "offsets": [ 0, 12, 15, 17, 22, 23, 31, 35, 39, 44, 47, 59, 64, 70, 74, 79, 81, 85, 91, 97, 107, 110, 112, 121, 126, 127, 135, 139, 143, 145, 151, 157, 162, 175, 179, 191, 199, 204, 210, 221, 222, 228, 230, 232, 239, 247, 257, 262, 269, 272, 280, 282, 285, 289, 291, 296, 299, 303, 310, 312, 316, 322, 325, 333, 339, 343, 346, 357, 361, 366, 367, 370, 373, 375, 379, 382, 387, 391, 397, 400, 408, 414, 418, 427, 430, 436, 447, 451, 456, 457, 463, 466, 467, 469, 473, 479, 488, 494, 504, 508, 512, 520, 526, 534, 540, 550, 554, 565, 578, 583, 591, 594, 608, 617, 620, 624, 636, 640, 652, 655, 661, 669, 677 ] }
dcbe9f3199c14a8ab3ab36b826a9824b
What was the average speed of a winning solar powered car by 2007?
{ "tokens": [ "What", "was", "the", "average", "speed", "of", "a", "winning", "solar", "powered", "car", "by", "2007", "?" ], "offsets": [ 0, 5, 9, 13, 21, 27, 30, 32, 40, 46, 54, 58, 61, 65 ] }
{ "text": [ "90.87 kilometres per hour (56.46 mph)" ], "char_spans": [ { "start": [ 430 ], "end": [ 466 ] } ], "token_spans": [ { "start": [ 84 ], "end": [ 91 ] } ] }
[ "90.87 kilometres per hour (56.46 mph)" ]
SQuAD
Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.
{ "tokens": [ "Development", "of", "a", "solar", "-", "powered", "car", "has", "been", "an", "engineering", "goal", "since", "the", "1980s", ".", "The", "World", "Solar", "Challenge", "is", "a", "biannual", "solar", "-", "powered", "car", "race", ",", "where", "teams", "from", "universities", "and", "enterprises", "compete", "over", "3,021", "kilometres", "(", "1,877", "mi", ")", "across", "central", "Australia", "from", "Darwin", "to", "Adelaide", ".", "In", "1987", ",", "when", "it", "was", "founded", ",", "the", "winner", "'s", "average", "speed", "was", "67", "kilometres", "per", "hour", "(", "42", "mph", ")", "and", "by", "2007", "the", "winner", "'s", "average", "speed", "had", "improved", "to", "90.87", "kilometres", "per", "hour", "(", "56.46", "mph", ")", ".", "The", "North", "American", "Solar", "Challenge", "and", "the", "planned", "South", "African", "Solar", "Challenge", "are", "comparable", "competitions", "that", "reflect", "an", "international", "interest", "in", "the", "engineering", "and", "development", "of", "solar", "powered", "vehicles", "." ], "offsets": [ 0, 12, 15, 17, 22, 23, 31, 35, 39, 44, 47, 59, 64, 70, 74, 79, 81, 85, 91, 97, 107, 110, 112, 121, 126, 127, 135, 139, 143, 145, 151, 157, 162, 175, 179, 191, 199, 204, 210, 221, 222, 228, 230, 232, 239, 247, 257, 262, 269, 272, 280, 282, 285, 289, 291, 296, 299, 303, 310, 312, 316, 322, 325, 333, 339, 343, 346, 357, 361, 366, 367, 370, 373, 375, 379, 382, 387, 391, 397, 400, 408, 414, 418, 427, 430, 436, 447, 451, 456, 457, 463, 466, 467, 469, 473, 479, 488, 494, 504, 508, 512, 520, 526, 534, 540, 550, 554, 565, 578, 583, 591, 594, 608, 617, 620, 624, 636, 640, 652, 655, 661, 669, 677 ] }
d79b539781624de68a3fa331c99c9540
What are some other similar car races that use solar powered vehicles?
{ "tokens": [ "What", "are", "some", "other", "similar", "car", "races", "that", "use", "solar", "powered", "vehicles", "?" ], "offsets": [ 0, 5, 9, 14, 20, 28, 32, 38, 43, 47, 53, 61, 69 ] }
{ "text": [ "The North American Solar Challenge and the planned South African Solar Challenge" ], "char_spans": [ { "start": [ 469 ], "end": [ 548 ] } ], "token_spans": [ { "start": [ 93 ], "end": [ 104 ] } ] }
[ "The North American Solar Challenge and the planned South African Solar Challenge" ]
SQuAD
Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings.
{ "tokens": [ "Urban", "heat", "islands", "(", "UHI", ")", "are", "metropolitan", "areas", "with", "higher", "temperatures", "than", "that", "of", "the", "surrounding", "environment", ".", "The", "higher", "temperatures", "are", "a", "result", "of", "increased", "absorption", "of", "the", "Solar", "light", "by", "urban", "materials", "such", "as", "asphalt", "and", "concrete", ",", "which", "have", "lower", "albedos", "and", "higher", "heat", "capacities", "than", "those", "in", "the", "natural", "environment", ".", "A", "straightforward", "method", "of", "counteracting", "the", "UHI", "effect", "is", "to", "paint", "buildings", "and", "roads", "white", "and", "plant", "trees", ".", "Using", "these", "methods", ",", "a", "hypothetical", "\"", "cool", "communities", "\"", "program", "in", "Los", "Angeles", "has", "projected", "that", "urban", "temperatures", "could", "be", "reduced", "by", "approximately", "3", "°", "C", "at", "an", "estimated", "cost", "of", "US$", "1", "billion", ",", "giving", "estimated", "total", "annual", "benefits", "of", "US$", "530", "million", "from", "reduced", "air", "-", "conditioning", "costs", "and", "healthcare", "savings", "." ], "offsets": [ 0, 6, 11, 19, 20, 23, 25, 29, 42, 48, 53, 60, 73, 78, 83, 86, 90, 102, 113, 115, 119, 126, 139, 143, 145, 152, 155, 165, 176, 179, 183, 189, 195, 198, 204, 214, 219, 222, 230, 234, 242, 244, 250, 255, 261, 269, 273, 280, 285, 296, 301, 307, 310, 314, 322, 333, 335, 337, 353, 360, 363, 377, 381, 385, 392, 395, 398, 404, 414, 418, 424, 430, 434, 440, 445, 447, 453, 459, 466, 468, 470, 483, 484, 489, 500, 502, 510, 513, 517, 525, 529, 539, 544, 550, 563, 569, 572, 580, 583, 597, 599, 600, 602, 605, 608, 618, 623, 626, 629, 631, 638, 640, 647, 657, 663, 670, 679, 682, 685, 689, 697, 702, 710, 713, 714, 727, 733, 737, 748, 755 ] }
ddb0307261754ab381cfd64a01794b27
UHI is an abbreviation of what?
{ "tokens": [ "UHI", "is", "an", "abbreviation", "of", "what", "?" ], "offsets": [ 0, 4, 7, 10, 23, 26, 30 ] }
{ "text": [ "Urban heat islands" ], "char_spans": [ { "start": [ 0 ], "end": [ 17 ] } ], "token_spans": [ { "start": [ 0 ], "end": [ 2 ] } ] }
[ "Urban heat islands" ]
SQuAD
Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings.
{ "tokens": [ "Urban", "heat", "islands", "(", "UHI", ")", "are", "metropolitan", "areas", "with", "higher", "temperatures", "than", "that", "of", "the", "surrounding", "environment", ".", "The", "higher", "temperatures", "are", "a", "result", "of", "increased", "absorption", "of", "the", "Solar", "light", "by", "urban", "materials", "such", "as", "asphalt", "and", "concrete", ",", "which", "have", "lower", "albedos", "and", "higher", "heat", "capacities", "than", "those", "in", "the", "natural", "environment", ".", "A", "straightforward", "method", "of", "counteracting", "the", "UHI", "effect", "is", "to", "paint", "buildings", "and", "roads", "white", "and", "plant", "trees", ".", "Using", "these", "methods", ",", "a", "hypothetical", "\"", "cool", "communities", "\"", "program", "in", "Los", "Angeles", "has", "projected", "that", "urban", "temperatures", "could", "be", "reduced", "by", "approximately", "3", "°", "C", "at", "an", "estimated", "cost", "of", "US$", "1", "billion", ",", "giving", "estimated", "total", "annual", "benefits", "of", "US$", "530", "million", "from", "reduced", "air", "-", "conditioning", "costs", "and", "healthcare", "savings", "." ], "offsets": [ 0, 6, 11, 19, 20, 23, 25, 29, 42, 48, 53, 60, 73, 78, 83, 86, 90, 102, 113, 115, 119, 126, 139, 143, 145, 152, 155, 165, 176, 179, 183, 189, 195, 198, 204, 214, 219, 222, 230, 234, 242, 244, 250, 255, 261, 269, 273, 280, 285, 296, 301, 307, 310, 314, 322, 333, 335, 337, 353, 360, 363, 377, 381, 385, 392, 395, 398, 404, 414, 418, 424, 430, 434, 440, 445, 447, 453, 459, 466, 468, 470, 483, 484, 489, 500, 502, 510, 513, 517, 525, 529, 539, 544, 550, 563, 569, 572, 580, 583, 597, 599, 600, 602, 605, 608, 618, 623, 626, 629, 631, 638, 640, 647, 657, 663, 670, 679, 682, 685, 689, 697, 702, 710, 713, 714, 727, 733, 737, 748, 755 ] }
37a6e17630054ba4b852c78b9c5a53fa
A program in Los Angeles believes that with $1 billion, city temperatures could be reduced by approximately how many degrees in Celsius?
{ "tokens": [ "A", "program", "in", "Los", "Angeles", "believes", "that", "with", "$", "1", "billion", ",", "city", "temperatures", "could", "be", "reduced", "by", "approximately", "how", "many", "degrees", "in", "Celsius", "?" ], "offsets": [ 0, 2, 10, 13, 17, 25, 34, 39, 44, 45, 47, 54, 56, 61, 74, 80, 83, 91, 94, 108, 112, 117, 125, 128, 135 ] }
{ "text": [ "3" ], "char_spans": [ { "start": [ 597 ], "end": [ 597 ] } ], "token_spans": [ { "start": [ 99 ], "end": [ 99 ] } ] }
[ "3" ]
SQuAD
Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings.
{ "tokens": [ "Urban", "heat", "islands", "(", "UHI", ")", "are", "metropolitan", "areas", "with", "higher", "temperatures", "than", "that", "of", "the", "surrounding", "environment", ".", "The", "higher", "temperatures", "are", "a", "result", "of", "increased", "absorption", "of", "the", "Solar", "light", "by", "urban", "materials", "such", "as", "asphalt", "and", "concrete", ",", "which", "have", "lower", "albedos", "and", "higher", "heat", "capacities", "than", "those", "in", "the", "natural", "environment", ".", "A", "straightforward", "method", "of", "counteracting", "the", "UHI", "effect", "is", "to", "paint", "buildings", "and", "roads", "white", "and", "plant", "trees", ".", "Using", "these", "methods", ",", "a", "hypothetical", "\"", "cool", "communities", "\"", "program", "in", "Los", "Angeles", "has", "projected", "that", "urban", "temperatures", "could", "be", "reduced", "by", "approximately", "3", "°", "C", "at", "an", "estimated", "cost", "of", "US$", "1", "billion", ",", "giving", "estimated", "total", "annual", "benefits", "of", "US$", "530", "million", "from", "reduced", "air", "-", "conditioning", "costs", "and", "healthcare", "savings", "." ], "offsets": [ 0, 6, 11, 19, 20, 23, 25, 29, 42, 48, 53, 60, 73, 78, 83, 86, 90, 102, 113, 115, 119, 126, 139, 143, 145, 152, 155, 165, 176, 179, 183, 189, 195, 198, 204, 214, 219, 222, 230, 234, 242, 244, 250, 255, 261, 269, 273, 280, 285, 296, 301, 307, 310, 314, 322, 333, 335, 337, 353, 360, 363, 377, 381, 385, 392, 395, 398, 404, 414, 418, 424, 430, 434, 440, 445, 447, 453, 459, 466, 468, 470, 483, 484, 489, 500, 502, 510, 513, 517, 525, 529, 539, 544, 550, 563, 569, 572, 580, 583, 597, 599, 600, 602, 605, 608, 618, 623, 626, 629, 631, 638, 640, 647, 657, 663, 670, 679, 682, 685, 689, 697, 702, 710, 713, 714, 727, 733, 737, 748, 755 ] }
7e5d2fe0b1264a9c9f83b99d7be54872
What are the metropolitan areas with higher temperatures than the surrounding areas called?
{ "tokens": [ "What", "are", "the", "metropolitan", "areas", "with", "higher", "temperatures", "than", "the", "surrounding", "areas", "called", "?" ], "offsets": [ 0, 5, 9, 13, 26, 32, 37, 44, 57, 62, 66, 78, 84, 90 ] }
{ "text": [ "Urban heat islands" ], "char_spans": [ { "start": [ 0 ], "end": [ 17 ] } ], "token_spans": [ { "start": [ 0 ], "end": [ 2 ] } ] }
[ "Urban heat islands" ]
SQuAD
Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings.
{ "tokens": [ "Urban", "heat", "islands", "(", "UHI", ")", "are", "metropolitan", "areas", "with", "higher", "temperatures", "than", "that", "of", "the", "surrounding", "environment", ".", "The", "higher", "temperatures", "are", "a", "result", "of", "increased", "absorption", "of", "the", "Solar", "light", "by", "urban", "materials", "such", "as", "asphalt", "and", "concrete", ",", "which", "have", "lower", "albedos", "and", "higher", "heat", "capacities", "than", "those", "in", "the", "natural", "environment", ".", "A", "straightforward", "method", "of", "counteracting", "the", "UHI", "effect", "is", "to", "paint", "buildings", "and", "roads", "white", "and", "plant", "trees", ".", "Using", "these", "methods", ",", "a", "hypothetical", "\"", "cool", "communities", "\"", "program", "in", "Los", "Angeles", "has", "projected", "that", "urban", "temperatures", "could", "be", "reduced", "by", "approximately", "3", "°", "C", "at", "an", "estimated", "cost", "of", "US$", "1", "billion", ",", "giving", "estimated", "total", "annual", "benefits", "of", "US$", "530", "million", "from", "reduced", "air", "-", "conditioning", "costs", "and", "healthcare", "savings", "." ], "offsets": [ 0, 6, 11, 19, 20, 23, 25, 29, 42, 48, 53, 60, 73, 78, 83, 86, 90, 102, 113, 115, 119, 126, 139, 143, 145, 152, 155, 165, 176, 179, 183, 189, 195, 198, 204, 214, 219, 222, 230, 234, 242, 244, 250, 255, 261, 269, 273, 280, 285, 296, 301, 307, 310, 314, 322, 333, 335, 337, 353, 360, 363, 377, 381, 385, 392, 395, 398, 404, 414, 418, 424, 430, 434, 440, 445, 447, 453, 459, 466, 468, 470, 483, 484, 489, 500, 502, 510, 513, 517, 525, 529, 539, 544, 550, 563, 569, 572, 580, 583, 597, 599, 600, 602, 605, 608, 618, 623, 626, 629, 631, 638, 640, 647, 657, 663, 670, 679, 682, 685, 689, 697, 702, 710, 713, 714, 727, 733, 737, 748, 755 ] }
e917983e19704d69b258d10465ce2989
What materials absorb sunlight and create higher temperatures than natural materials?
{ "tokens": [ "What", "materials", "absorb", "sunlight", "and", "create", "higher", "temperatures", "than", "natural", "materials", "?" ], "offsets": [ 0, 5, 15, 22, 31, 35, 42, 49, 62, 67, 75, 84 ] }
{ "text": [ "asphalt and concrete" ], "char_spans": [ { "start": [ 222 ], "end": [ 241 ] } ], "token_spans": [ { "start": [ 37 ], "end": [ 39 ] } ] }
[ "asphalt and concrete" ]
SQuAD
Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures are a result of increased absorption of the Solar light by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white and plant trees. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings.
{ "tokens": [ "Urban", "heat", "islands", "(", "UHI", ")", "are", "metropolitan", "areas", "with", "higher", "temperatures", "than", "that", "of", "the", "surrounding", "environment", ".", "The", "higher", "temperatures", "are", "a", "result", "of", "increased", "absorption", "of", "the", "Solar", "light", "by", "urban", "materials", "such", "as", "asphalt", "and", "concrete", ",", "which", "have", "lower", "albedos", "and", "higher", "heat", "capacities", "than", "those", "in", "the", "natural", "environment", ".", "A", "straightforward", "method", "of", "counteracting", "the", "UHI", "effect", "is", "to", "paint", "buildings", "and", "roads", "white", "and", "plant", "trees", ".", "Using", "these", "methods", ",", "a", "hypothetical", "\"", "cool", "communities", "\"", "program", "in", "Los", "Angeles", "has", "projected", "that", "urban", "temperatures", "could", "be", "reduced", "by", "approximately", "3", "°", "C", "at", "an", "estimated", "cost", "of", "US$", "1", "billion", ",", "giving", "estimated", "total", "annual", "benefits", "of", "US$", "530", "million", "from", "reduced", "air", "-", "conditioning", "costs", "and", "healthcare", "savings", "." ], "offsets": [ 0, 6, 11, 19, 20, 23, 25, 29, 42, 48, 53, 60, 73, 78, 83, 86, 90, 102, 113, 115, 119, 126, 139, 143, 145, 152, 155, 165, 176, 179, 183, 189, 195, 198, 204, 214, 219, 222, 230, 234, 242, 244, 250, 255, 261, 269, 273, 280, 285, 296, 301, 307, 310, 314, 322, 333, 335, 337, 353, 360, 363, 377, 381, 385, 392, 395, 398, 404, 414, 418, 424, 430, 434, 440, 445, 447, 453, 459, 466, 468, 470, 483, 484, 489, 500, 502, 510, 513, 517, 525, 529, 539, 544, 550, 563, 569, 572, 580, 583, 597, 599, 600, 602, 605, 608, 618, 623, 626, 629, 631, 638, 640, 647, 657, 663, 670, 679, 682, 685, 689, 697, 702, 710, 713, 714, 727, 733, 737, 748, 755 ] }
50a97d815d5d42bd89c01d5225174024
What is a way to reduce the high temperatures created in urban heat islands?
{ "tokens": [ "What", "is", "a", "way", "to", "reduce", "the", "high", "temperatures", "created", "in", "urban", "heat", "islands", "?" ], "offsets": [ 0, 5, 8, 10, 14, 17, 24, 28, 33, 46, 54, 57, 63, 68, 75 ] }
{ "text": [ "paint buildings and roads white and plant trees" ], "char_spans": [ { "start": [ 398 ], "end": [ 444 ] } ], "token_spans": [ { "start": [ 66 ], "end": [ 73 ] } ] }
[ "paint buildings and roads white and plant trees" ]
SQuAD
The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).
{ "tokens": [ "The", "1973", "oil", "embargo", "and", "1979", "energy", "crisis", "caused", "a", "reorganization", "of", "energy", "policies", "around", "the", "world", "and", "brought", "renewed", "attention", "to", "developing", "solar", "technologies", ".", "Deployment", "strategies", "focused", "on", "incentive", "programs", "such", "as", "the", "Federal", "Photovoltaic", "Utilization", "Program", "in", "the", "US", "and", "the", "Sunshine", "Program", "in", "Japan", ".", "Other", "efforts", "included", "the", "formation", "of", "research", "facilities", "in", "the", "US", "(", "SERI", ",", "now", "NREL", ")", ",", "Japan", "(", "NEDO", ")", ",", "and", "Germany", "(", "Fraunhofer", "Institute", "for", "Solar", "Energy", "Systems", "ISE", ")", "." ], "offsets": [ 0, 4, 9, 13, 21, 25, 30, 37, 44, 51, 53, 68, 71, 78, 87, 94, 98, 104, 108, 116, 124, 134, 137, 148, 154, 166, 168, 179, 190, 198, 201, 211, 220, 225, 228, 232, 240, 253, 265, 273, 276, 280, 283, 287, 291, 300, 308, 311, 316, 318, 324, 332, 341, 345, 355, 358, 367, 378, 381, 385, 388, 389, 393, 395, 399, 403, 404, 406, 412, 413, 417, 418, 420, 424, 432, 433, 444, 454, 458, 464, 471, 479, 482, 483 ] }
6f2d60621b9444a4a1992f047126af26
The oil embargo in what year was a contributing factor to the reorganization of energy policies?
{ "tokens": [ "The", "oil", "embargo", "in", "what", "year", "was", "a", "contributing", "factor", "to", "the", "reorganization", "of", "energy", "policies", "?" ], "offsets": [ 0, 4, 8, 16, 19, 24, 29, 33, 35, 48, 55, 58, 62, 77, 80, 87, 95 ] }
{ "text": [ "1973" ], "char_spans": [ { "start": [ 4 ], "end": [ 7 ] } ], "token_spans": [ { "start": [ 1 ], "end": [ 1 ] } ] }
[ "1973" ]
SQuAD
The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).
{ "tokens": [ "The", "1973", "oil", "embargo", "and", "1979", "energy", "crisis", "caused", "a", "reorganization", "of", "energy", "policies", "around", "the", "world", "and", "brought", "renewed", "attention", "to", "developing", "solar", "technologies", ".", "Deployment", "strategies", "focused", "on", "incentive", "programs", "such", "as", "the", "Federal", "Photovoltaic", "Utilization", "Program", "in", "the", "US", "and", "the", "Sunshine", "Program", "in", "Japan", ".", "Other", "efforts", "included", "the", "formation", "of", "research", "facilities", "in", "the", "US", "(", "SERI", ",", "now", "NREL", ")", ",", "Japan", "(", "NEDO", ")", ",", "and", "Germany", "(", "Fraunhofer", "Institute", "for", "Solar", "Energy", "Systems", "ISE", ")", "." ], "offsets": [ 0, 4, 9, 13, 21, 25, 30, 37, 44, 51, 53, 68, 71, 78, 87, 94, 98, 104, 108, 116, 124, 134, 137, 148, 154, 166, 168, 179, 190, 198, 201, 211, 220, 225, 228, 232, 240, 253, 265, 273, 276, 280, 283, 287, 291, 300, 308, 311, 316, 318, 324, 332, 341, 345, 355, 358, 367, 378, 381, 385, 388, 389, 393, 395, 399, 403, 404, 406, 412, 413, 417, 418, 420, 424, 432, 433, 444, 454, 458, 464, 471, 479, 482, 483 ] }
dd43b35dc5f748c3b423bbfa352198c1
What brought attention to solar technologies in the 1970s?
{ "tokens": [ "What", "brought", "attention", "to", "solar", "technologies", "in", "the", "1970s", "?" ], "offsets": [ 0, 5, 13, 23, 26, 32, 45, 48, 52, 57 ] }
{ "text": [ "The 1973 oil embargo and 1979 energy crisis" ], "char_spans": [ { "start": [ 4 ], "end": [ 42 ] } ], "token_spans": [ { "start": [ 1 ], "end": [ 7 ] } ] }
[ "The 1973 oil embargo and 1979 energy crisis" ]
SQuAD
The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).
{ "tokens": [ "The", "1973", "oil", "embargo", "and", "1979", "energy", "crisis", "caused", "a", "reorganization", "of", "energy", "policies", "around", "the", "world", "and", "brought", "renewed", "attention", "to", "developing", "solar", "technologies", ".", "Deployment", "strategies", "focused", "on", "incentive", "programs", "such", "as", "the", "Federal", "Photovoltaic", "Utilization", "Program", "in", "the", "US", "and", "the", "Sunshine", "Program", "in", "Japan", ".", "Other", "efforts", "included", "the", "formation", "of", "research", "facilities", "in", "the", "US", "(", "SERI", ",", "now", "NREL", ")", ",", "Japan", "(", "NEDO", ")", ",", "and", "Germany", "(", "Fraunhofer", "Institute", "for", "Solar", "Energy", "Systems", "ISE", ")", "." ], "offsets": [ 0, 4, 9, 13, 21, 25, 30, 37, 44, 51, 53, 68, 71, 78, 87, 94, 98, 104, 108, 116, 124, 134, 137, 148, 154, 166, 168, 179, 190, 198, 201, 211, 220, 225, 228, 232, 240, 253, 265, 273, 276, 280, 283, 287, 291, 300, 308, 311, 316, 318, 324, 332, 341, 345, 355, 358, 367, 378, 381, 385, 388, 389, 393, 395, 399, 403, 404, 406, 412, 413, 417, 418, 420, 424, 432, 433, 444, 454, 458, 464, 471, 479, 482, 483 ] }
19453a6e47c348fea27bc04faab18352
What are the names of some of the incentive programs used to promote solar technology?
{ "tokens": [ "What", "are", "the", "names", "of", "some", "of", "the", "incentive", "programs", "used", "to", "promote", "solar", "technology", "?" ], "offsets": [ 0, 5, 9, 13, 19, 22, 27, 30, 34, 44, 53, 58, 61, 69, 75, 85 ] }
{ "text": [ "the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan" ], "char_spans": [ { "start": [ 228 ], "end": [ 315 ] } ], "token_spans": [ { "start": [ 34 ], "end": [ 47 ] } ] }
[ "the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan" ]
SQuAD
The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).
{ "tokens": [ "The", "1973", "oil", "embargo", "and", "1979", "energy", "crisis", "caused", "a", "reorganization", "of", "energy", "policies", "around", "the", "world", "and", "brought", "renewed", "attention", "to", "developing", "solar", "technologies", ".", "Deployment", "strategies", "focused", "on", "incentive", "programs", "such", "as", "the", "Federal", "Photovoltaic", "Utilization", "Program", "in", "the", "US", "and", "the", "Sunshine", "Program", "in", "Japan", ".", "Other", "efforts", "included", "the", "formation", "of", "research", "facilities", "in", "the", "US", "(", "SERI", ",", "now", "NREL", ")", ",", "Japan", "(", "NEDO", ")", ",", "and", "Germany", "(", "Fraunhofer", "Institute", "for", "Solar", "Energy", "Systems", "ISE", ")", "." ], "offsets": [ 0, 4, 9, 13, 21, 25, 30, 37, 44, 51, 53, 68, 71, 78, 87, 94, 98, 104, 108, 116, 124, 134, 137, 148, 154, 166, 168, 179, 190, 198, 201, 211, 220, 225, 228, 232, 240, 253, 265, 273, 276, 280, 283, 287, 291, 300, 308, 311, 316, 318, 324, 332, 341, 345, 355, 358, 367, 378, 381, 385, 388, 389, 393, 395, 399, 403, 404, 406, 412, 413, 417, 418, 420, 424, 432, 433, 444, 454, 458, 464, 471, 479, 482, 483 ] }
2afc3d10272e433fa88a126db938cb72
What is the name of the solar energy research facility in the US?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "solar", "energy", "research", "facility", "in", "the", "US", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 30, 37, 46, 55, 58, 62, 64 ] }
{ "text": [ "SERI, now NREL" ], "char_spans": [ { "start": [ 389 ], "end": [ 402 ] } ], "token_spans": [ { "start": [ 61 ], "end": [ 64 ] } ] }
[ "SERI, now NREL" ]
SQuAD
The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).
{ "tokens": [ "The", "1973", "oil", "embargo", "and", "1979", "energy", "crisis", "caused", "a", "reorganization", "of", "energy", "policies", "around", "the", "world", "and", "brought", "renewed", "attention", "to", "developing", "solar", "technologies", ".", "Deployment", "strategies", "focused", "on", "incentive", "programs", "such", "as", "the", "Federal", "Photovoltaic", "Utilization", "Program", "in", "the", "US", "and", "the", "Sunshine", "Program", "in", "Japan", ".", "Other", "efforts", "included", "the", "formation", "of", "research", "facilities", "in", "the", "US", "(", "SERI", ",", "now", "NREL", ")", ",", "Japan", "(", "NEDO", ")", ",", "and", "Germany", "(", "Fraunhofer", "Institute", "for", "Solar", "Energy", "Systems", "ISE", ")", "." ], "offsets": [ 0, 4, 9, 13, 21, 25, 30, 37, 44, 51, 53, 68, 71, 78, 87, 94, 98, 104, 108, 116, 124, 134, 137, 148, 154, 166, 168, 179, 190, 198, 201, 211, 220, 225, 228, 232, 240, 253, 265, 273, 276, 280, 283, 287, 291, 300, 308, 311, 316, 318, 324, 332, 341, 345, 355, 358, 367, 378, 381, 385, 388, 389, 393, 395, 399, 403, 404, 406, 412, 413, 417, 418, 420, 424, 432, 433, 444, 454, 458, 464, 471, 479, 482, 483 ] }
fc0b29a21c2940818109323ae2a59d3c
What is the name of the solar energy research facility in Japan?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "solar", "energy", "research", "facility", "in", "Japan", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 30, 37, 46, 55, 58, 63 ] }
{ "text": [ "NEDO" ], "char_spans": [ { "start": [ 413 ], "end": [ 416 ] } ], "token_spans": [ { "start": [ 69 ], "end": [ 69 ] } ] }
[ "NEDO" ]
SQuAD
The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the US (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).
{ "tokens": [ "The", "1973", "oil", "embargo", "and", "1979", "energy", "crisis", "caused", "a", "reorganization", "of", "energy", "policies", "around", "the", "world", "and", "brought", "renewed", "attention", "to", "developing", "solar", "technologies", ".", "Deployment", "strategies", "focused", "on", "incentive", "programs", "such", "as", "the", "Federal", "Photovoltaic", "Utilization", "Program", "in", "the", "US", "and", "the", "Sunshine", "Program", "in", "Japan", ".", "Other", "efforts", "included", "the", "formation", "of", "research", "facilities", "in", "the", "US", "(", "SERI", ",", "now", "NREL", ")", ",", "Japan", "(", "NEDO", ")", ",", "and", "Germany", "(", "Fraunhofer", "Institute", "for", "Solar", "Energy", "Systems", "ISE", ")", "." ], "offsets": [ 0, 4, 9, 13, 21, 25, 30, 37, 44, 51, 53, 68, 71, 78, 87, 94, 98, 104, 108, 116, 124, 134, 137, 148, 154, 166, 168, 179, 190, 198, 201, 211, 220, 225, 228, 232, 240, 253, 265, 273, 276, 280, 283, 287, 291, 300, 308, 311, 316, 318, 324, 332, 341, 345, 355, 358, 367, 378, 381, 385, 388, 389, 393, 395, 399, 403, 404, 406, 412, 413, 417, 418, 420, 424, 432, 433, 444, 454, 458, 464, 471, 479, 482, 483 ] }
45f8877f182f4d4f95b4642128856659
What is the name of the solar energy research facility in Germany?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "solar", "energy", "research", "facility", "in", "Germany", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 30, 37, 46, 55, 58, 65 ] }
{ "text": [ "Fraunhofer Institute for Solar Energy Systems ISE" ], "char_spans": [ { "start": [ 433 ], "end": [ 481 ] } ], "token_spans": [ { "start": [ 75 ], "end": [ 81 ] } ] }
[ "Fraunhofer Institute for Solar Energy Systems ISE" ]
SQuAD
Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses.
{ "tokens": [ "Agriculture", "and", "horticulture", "seek", "to", "optimize", "the", "capture", "of", "solar", "energy", "in", "order", "to", "optimize", "the", "productivity", "of", "plants", ".", "Techniques", "such", "as", "timed", "planting", "cycles", ",", "tailored", "row", "orientation", ",", "staggered", "heights", "between", "rows", "and", "the", "mixing", "of", "plant", "varieties", "can", "improve", "crop", "yields", ".", "While", "sunlight", "is", "generally", "considered", "a", "plentiful", "resource", ",", "the", "exceptions", "highlight", "the", "importance", "of", "solar", "energy", "to", "agriculture", ".", "During", "the", "short", "growing", "seasons", "of", "the", "Little", "Ice", "Age", ",", "French", "and", "English", "farmers", "employed", "fruit", "walls", "to", "maximize", "the", "collection", "of", "solar", "energy", ".", "These", "walls", "acted", "as", "thermal", "masses", "and", "accelerated", "ripening", "by", "keeping", "plants", "warm", ".", "Early", "fruit", "walls", "were", "built", "perpendicular", "to", "the", "ground", "and", "facing", "south", ",", "but", "over", "time", ",", "sloping", "walls", "were", "developed", "to", "make", "better", "use", "of", "sunlight", ".", "In", "1699", ",", "Nicolas", "Fatio", "de", "Duillier", "even", "suggested", "using", "a", "tracking", "mechanism", "which", "could", "pivot", "to", "follow", "the", "Sun", ".", "Applications", "of", "solar", "energy", "in", "agriculture", "aside", "from", "growing", "crops", "include", "pumping", "water", ",", "drying", "crops", ",", "brooding", "chicks", "and", "drying", "chicken", "manure", ".", "More", "recently", "the", "technology", "has", "been", "embraced", "by", "vinters", ",", "who", "use", "the", "energy", "generated", "by", "solar", "panels", "to", "power", "grape", "presses", "." ], "offsets": [ 0, 12, 16, 29, 34, 37, 46, 50, 58, 61, 67, 74, 77, 83, 86, 95, 99, 112, 115, 121, 123, 134, 139, 142, 148, 157, 163, 165, 174, 178, 189, 191, 201, 209, 217, 222, 226, 230, 237, 240, 246, 256, 260, 268, 273, 279, 281, 287, 296, 299, 309, 320, 322, 332, 340, 342, 346, 357, 367, 371, 382, 385, 391, 398, 401, 412, 414, 421, 425, 431, 439, 447, 450, 454, 461, 465, 468, 470, 477, 481, 489, 497, 506, 512, 518, 521, 530, 534, 545, 548, 554, 560, 562, 568, 574, 580, 583, 591, 598, 602, 614, 623, 626, 634, 641, 645, 647, 653, 659, 665, 670, 676, 690, 693, 697, 704, 708, 715, 720, 722, 726, 731, 735, 737, 745, 751, 756, 766, 769, 774, 781, 785, 788, 796, 798, 801, 805, 807, 815, 821, 824, 833, 838, 848, 854, 856, 865, 875, 881, 887, 893, 896, 903, 907, 910, 912, 925, 928, 934, 941, 944, 956, 962, 967, 975, 981, 989, 997, 1002, 1004, 1011, 1016, 1018, 1027, 1034, 1038, 1045, 1053, 1059, 1061, 1066, 1075, 1079, 1090, 1094, 1099, 1108, 1111, 1118, 1120, 1124, 1128, 1132, 1139, 1149, 1152, 1158, 1165, 1168, 1174, 1180, 1187 ] }
76cee702aebd47e09a893caa1ba147ae
During the Little Ice Age, what did English and French farmers use to increase collection of solar energy?
{ "tokens": [ "During", "the", "Little", "Ice", "Age", ",", "what", "did", "English", "and", "French", "farmers", "use", "to", "increase", "collection", "of", "solar", "energy", "?" ], "offsets": [ 0, 7, 11, 18, 22, 25, 27, 32, 36, 44, 48, 55, 63, 67, 70, 79, 90, 93, 99, 105 ] }
{ "text": [ "fruit walls" ], "char_spans": [ { "start": [ 506 ], "end": [ 516 ] } ], "token_spans": [ { "start": [ 82 ], "end": [ 83 ] } ] }
[ "fruit walls" ]
SQuAD
Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses.
{ "tokens": [ "Agriculture", "and", "horticulture", "seek", "to", "optimize", "the", "capture", "of", "solar", "energy", "in", "order", "to", "optimize", "the", "productivity", "of", "plants", ".", "Techniques", "such", "as", "timed", "planting", "cycles", ",", "tailored", "row", "orientation", ",", "staggered", "heights", "between", "rows", "and", "the", "mixing", "of", "plant", "varieties", "can", "improve", "crop", "yields", ".", "While", "sunlight", "is", "generally", "considered", "a", "plentiful", "resource", ",", "the", "exceptions", "highlight", "the", "importance", "of", "solar", "energy", "to", "agriculture", ".", "During", "the", "short", "growing", "seasons", "of", "the", "Little", "Ice", "Age", ",", "French", "and", "English", "farmers", "employed", "fruit", "walls", "to", "maximize", "the", "collection", "of", "solar", "energy", ".", "These", "walls", "acted", "as", "thermal", "masses", "and", "accelerated", "ripening", "by", "keeping", "plants", "warm", ".", "Early", "fruit", "walls", "were", "built", "perpendicular", "to", "the", "ground", "and", "facing", "south", ",", "but", "over", "time", ",", "sloping", "walls", "were", "developed", "to", "make", "better", "use", "of", "sunlight", ".", "In", "1699", ",", "Nicolas", "Fatio", "de", "Duillier", "even", "suggested", "using", "a", "tracking", "mechanism", "which", "could", "pivot", "to", "follow", "the", "Sun", ".", "Applications", "of", "solar", "energy", "in", "agriculture", "aside", "from", "growing", "crops", "include", "pumping", "water", ",", "drying", "crops", ",", "brooding", "chicks", "and", "drying", "chicken", "manure", ".", "More", "recently", "the", "technology", "has", "been", "embraced", "by", "vinters", ",", "who", "use", "the", "energy", "generated", "by", "solar", "panels", "to", "power", "grape", "presses", "." ], "offsets": [ 0, 12, 16, 29, 34, 37, 46, 50, 58, 61, 67, 74, 77, 83, 86, 95, 99, 112, 115, 121, 123, 134, 139, 142, 148, 157, 163, 165, 174, 178, 189, 191, 201, 209, 217, 222, 226, 230, 237, 240, 246, 256, 260, 268, 273, 279, 281, 287, 296, 299, 309, 320, 322, 332, 340, 342, 346, 357, 367, 371, 382, 385, 391, 398, 401, 412, 414, 421, 425, 431, 439, 447, 450, 454, 461, 465, 468, 470, 477, 481, 489, 497, 506, 512, 518, 521, 530, 534, 545, 548, 554, 560, 562, 568, 574, 580, 583, 591, 598, 602, 614, 623, 626, 634, 641, 645, 647, 653, 659, 665, 670, 676, 690, 693, 697, 704, 708, 715, 720, 722, 726, 731, 735, 737, 745, 751, 756, 766, 769, 774, 781, 785, 788, 796, 798, 801, 805, 807, 815, 821, 824, 833, 838, 848, 854, 856, 865, 875, 881, 887, 893, 896, 903, 907, 910, 912, 925, 928, 934, 941, 944, 956, 962, 967, 975, 981, 989, 997, 1002, 1004, 1011, 1016, 1018, 1027, 1034, 1038, 1045, 1053, 1059, 1061, 1066, 1075, 1079, 1090, 1094, 1099, 1108, 1111, 1118, 1120, 1124, 1128, 1132, 1139, 1149, 1152, 1158, 1165, 1168, 1174, 1180, 1187 ] }
f0fcc6c5e3134606a7e98c370564aafd
Vinters have adopted solar technology to do what?
{ "tokens": [ "Vinters", "have", "adopted", "solar", "technology", "to", "do", "what", "?" ], "offsets": [ 0, 8, 13, 21, 27, 38, 41, 44, 48 ] }
{ "text": [ "power grape presses" ], "char_spans": [ { "start": [ 1168 ], "end": [ 1186 ] } ], "token_spans": [ { "start": [ 198 ], "end": [ 200 ] } ] }
[ "power grape presses" ]
SQuAD
Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses.
{ "tokens": [ "Agriculture", "and", "horticulture", "seek", "to", "optimize", "the", "capture", "of", "solar", "energy", "in", "order", "to", "optimize", "the", "productivity", "of", "plants", ".", "Techniques", "such", "as", "timed", "planting", "cycles", ",", "tailored", "row", "orientation", ",", "staggered", "heights", "between", "rows", "and", "the", "mixing", "of", "plant", "varieties", "can", "improve", "crop", "yields", ".", "While", "sunlight", "is", "generally", "considered", "a", "plentiful", "resource", ",", "the", "exceptions", "highlight", "the", "importance", "of", "solar", "energy", "to", "agriculture", ".", "During", "the", "short", "growing", "seasons", "of", "the", "Little", "Ice", "Age", ",", "French", "and", "English", "farmers", "employed", "fruit", "walls", "to", "maximize", "the", "collection", "of", "solar", "energy", ".", "These", "walls", "acted", "as", "thermal", "masses", "and", "accelerated", "ripening", "by", "keeping", "plants", "warm", ".", "Early", "fruit", "walls", "were", "built", "perpendicular", "to", "the", "ground", "and", "facing", "south", ",", "but", "over", "time", ",", "sloping", "walls", "were", "developed", "to", "make", "better", "use", "of", "sunlight", ".", "In", "1699", ",", "Nicolas", "Fatio", "de", "Duillier", "even", "suggested", "using", "a", "tracking", "mechanism", "which", "could", "pivot", "to", "follow", "the", "Sun", ".", "Applications", "of", "solar", "energy", "in", "agriculture", "aside", "from", "growing", "crops", "include", "pumping", "water", ",", "drying", "crops", ",", "brooding", "chicks", "and", "drying", "chicken", "manure", ".", "More", "recently", "the", "technology", "has", "been", "embraced", "by", "vinters", ",", "who", "use", "the", "energy", "generated", "by", "solar", "panels", "to", "power", "grape", "presses", "." ], "offsets": [ 0, 12, 16, 29, 34, 37, 46, 50, 58, 61, 67, 74, 77, 83, 86, 95, 99, 112, 115, 121, 123, 134, 139, 142, 148, 157, 163, 165, 174, 178, 189, 191, 201, 209, 217, 222, 226, 230, 237, 240, 246, 256, 260, 268, 273, 279, 281, 287, 296, 299, 309, 320, 322, 332, 340, 342, 346, 357, 367, 371, 382, 385, 391, 398, 401, 412, 414, 421, 425, 431, 439, 447, 450, 454, 461, 465, 468, 470, 477, 481, 489, 497, 506, 512, 518, 521, 530, 534, 545, 548, 554, 560, 562, 568, 574, 580, 583, 591, 598, 602, 614, 623, 626, 634, 641, 645, 647, 653, 659, 665, 670, 676, 690, 693, 697, 704, 708, 715, 720, 722, 726, 731, 735, 737, 745, 751, 756, 766, 769, 774, 781, 785, 788, 796, 798, 801, 805, 807, 815, 821, 824, 833, 838, 848, 854, 856, 865, 875, 881, 887, 893, 896, 903, 907, 910, 912, 925, 928, 934, 941, 944, 956, 962, 967, 975, 981, 989, 997, 1002, 1004, 1011, 1016, 1018, 1027, 1034, 1038, 1045, 1053, 1059, 1061, 1066, 1075, 1079, 1090, 1094, 1099, 1108, 1111, 1118, 1120, 1124, 1128, 1132, 1139, 1149, 1152, 1158, 1165, 1168, 1174, 1180, 1187 ] }
46f14d9a7a2f4516bdddb6ceb5b63df9
Why do agriculture and horticulture seek to make the most use of the solar energy captured?
{ "tokens": [ "Why", "do", "agriculture", "and", "horticulture", "seek", "to", "make", "the", "most", "use", "of", "the", "solar", "energy", "captured", "?" ], "offsets": [ 0, 4, 7, 19, 23, 36, 41, 44, 49, 53, 58, 62, 65, 69, 75, 82, 90 ] }
{ "text": [ "to optimize the productivity of plants" ], "char_spans": [ { "start": [ 83 ], "end": [ 120 ] } ], "token_spans": [ { "start": [ 13 ], "end": [ 18 ] } ] }
[ "to optimize the productivity of plants" ]
SQuAD
Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses.
{ "tokens": [ "Agriculture", "and", "horticulture", "seek", "to", "optimize", "the", "capture", "of", "solar", "energy", "in", "order", "to", "optimize", "the", "productivity", "of", "plants", ".", "Techniques", "such", "as", "timed", "planting", "cycles", ",", "tailored", "row", "orientation", ",", "staggered", "heights", "between", "rows", "and", "the", "mixing", "of", "plant", "varieties", "can", "improve", "crop", "yields", ".", "While", "sunlight", "is", "generally", "considered", "a", "plentiful", "resource", ",", "the", "exceptions", "highlight", "the", "importance", "of", "solar", "energy", "to", "agriculture", ".", "During", "the", "short", "growing", "seasons", "of", "the", "Little", "Ice", "Age", ",", "French", "and", "English", "farmers", "employed", "fruit", "walls", "to", "maximize", "the", "collection", "of", "solar", "energy", ".", "These", "walls", "acted", "as", "thermal", "masses", "and", "accelerated", "ripening", "by", "keeping", "plants", "warm", ".", "Early", "fruit", "walls", "were", "built", "perpendicular", "to", "the", "ground", "and", "facing", "south", ",", "but", "over", "time", ",", "sloping", "walls", "were", "developed", "to", "make", "better", "use", "of", "sunlight", ".", "In", "1699", ",", "Nicolas", "Fatio", "de", "Duillier", "even", "suggested", "using", "a", "tracking", "mechanism", "which", "could", "pivot", "to", "follow", "the", "Sun", ".", "Applications", "of", "solar", "energy", "in", "agriculture", "aside", "from", "growing", "crops", "include", "pumping", "water", ",", "drying", "crops", ",", "brooding", "chicks", "and", "drying", "chicken", "manure", ".", "More", "recently", "the", "technology", "has", "been", "embraced", "by", "vinters", ",", "who", "use", "the", "energy", "generated", "by", "solar", "panels", "to", "power", "grape", "presses", "." ], "offsets": [ 0, 12, 16, 29, 34, 37, 46, 50, 58, 61, 67, 74, 77, 83, 86, 95, 99, 112, 115, 121, 123, 134, 139, 142, 148, 157, 163, 165, 174, 178, 189, 191, 201, 209, 217, 222, 226, 230, 237, 240, 246, 256, 260, 268, 273, 279, 281, 287, 296, 299, 309, 320, 322, 332, 340, 342, 346, 357, 367, 371, 382, 385, 391, 398, 401, 412, 414, 421, 425, 431, 439, 447, 450, 454, 461, 465, 468, 470, 477, 481, 489, 497, 506, 512, 518, 521, 530, 534, 545, 548, 554, 560, 562, 568, 574, 580, 583, 591, 598, 602, 614, 623, 626, 634, 641, 645, 647, 653, 659, 665, 670, 676, 690, 693, 697, 704, 708, 715, 720, 722, 726, 731, 735, 737, 745, 751, 756, 766, 769, 774, 781, 785, 788, 796, 798, 801, 805, 807, 815, 821, 824, 833, 838, 848, 854, 856, 865, 875, 881, 887, 893, 896, 903, 907, 910, 912, 925, 928, 934, 941, 944, 956, 962, 967, 975, 981, 989, 997, 1002, 1004, 1011, 1016, 1018, 1027, 1034, 1038, 1045, 1053, 1059, 1061, 1066, 1075, 1079, 1090, 1094, 1099, 1108, 1111, 1118, 1120, 1124, 1128, 1132, 1139, 1149, 1152, 1158, 1165, 1168, 1174, 1180, 1187 ] }
ab4a5e84cba143cabeb119f05d4204a7
What are some techniques used to improve crop production?
{ "tokens": [ "What", "are", "some", "techniques", "used", "to", "improve", "crop", "production", "?" ], "offsets": [ 0, 5, 9, 14, 25, 30, 33, 41, 46, 56 ] }
{ "text": [ "timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties" ], "char_spans": [ { "start": [ 142 ], "end": [ 254 ] } ], "token_spans": [ { "start": [ 23 ], "end": [ 40 ] } ] }
[ "timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties" ]
SQuAD
Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses.
{ "tokens": [ "Agriculture", "and", "horticulture", "seek", "to", "optimize", "the", "capture", "of", "solar", "energy", "in", "order", "to", "optimize", "the", "productivity", "of", "plants", ".", "Techniques", "such", "as", "timed", "planting", "cycles", ",", "tailored", "row", "orientation", ",", "staggered", "heights", "between", "rows", "and", "the", "mixing", "of", "plant", "varieties", "can", "improve", "crop", "yields", ".", "While", "sunlight", "is", "generally", "considered", "a", "plentiful", "resource", ",", "the", "exceptions", "highlight", "the", "importance", "of", "solar", "energy", "to", "agriculture", ".", "During", "the", "short", "growing", "seasons", "of", "the", "Little", "Ice", "Age", ",", "French", "and", "English", "farmers", "employed", "fruit", "walls", "to", "maximize", "the", "collection", "of", "solar", "energy", ".", "These", "walls", "acted", "as", "thermal", "masses", "and", "accelerated", "ripening", "by", "keeping", "plants", "warm", ".", "Early", "fruit", "walls", "were", "built", "perpendicular", "to", "the", "ground", "and", "facing", "south", ",", "but", "over", "time", ",", "sloping", "walls", "were", "developed", "to", "make", "better", "use", "of", "sunlight", ".", "In", "1699", ",", "Nicolas", "Fatio", "de", "Duillier", "even", "suggested", "using", "a", "tracking", "mechanism", "which", "could", "pivot", "to", "follow", "the", "Sun", ".", "Applications", "of", "solar", "energy", "in", "agriculture", "aside", "from", "growing", "crops", "include", "pumping", "water", ",", "drying", "crops", ",", "brooding", "chicks", "and", "drying", "chicken", "manure", ".", "More", "recently", "the", "technology", "has", "been", "embraced", "by", "vinters", ",", "who", "use", "the", "energy", "generated", "by", "solar", "panels", "to", "power", "grape", "presses", "." ], "offsets": [ 0, 12, 16, 29, 34, 37, 46, 50, 58, 61, 67, 74, 77, 83, 86, 95, 99, 112, 115, 121, 123, 134, 139, 142, 148, 157, 163, 165, 174, 178, 189, 191, 201, 209, 217, 222, 226, 230, 237, 240, 246, 256, 260, 268, 273, 279, 281, 287, 296, 299, 309, 320, 322, 332, 340, 342, 346, 357, 367, 371, 382, 385, 391, 398, 401, 412, 414, 421, 425, 431, 439, 447, 450, 454, 461, 465, 468, 470, 477, 481, 489, 497, 506, 512, 518, 521, 530, 534, 545, 548, 554, 560, 562, 568, 574, 580, 583, 591, 598, 602, 614, 623, 626, 634, 641, 645, 647, 653, 659, 665, 670, 676, 690, 693, 697, 704, 708, 715, 720, 722, 726, 731, 735, 737, 745, 751, 756, 766, 769, 774, 781, 785, 788, 796, 798, 801, 805, 807, 815, 821, 824, 833, 838, 848, 854, 856, 865, 875, 881, 887, 893, 896, 903, 907, 910, 912, 925, 928, 934, 941, 944, 956, 962, 967, 975, 981, 989, 997, 1002, 1004, 1011, 1016, 1018, 1027, 1034, 1038, 1045, 1053, 1059, 1061, 1066, 1075, 1079, 1090, 1094, 1099, 1108, 1111, 1118, 1120, 1124, 1128, 1132, 1139, 1149, 1152, 1158, 1165, 1168, 1174, 1180, 1187 ] }
1dc5d04a46d5485e9bed6c33fb8aac8b
What did French and English farmers do during the Little Ice Age to gain more solar energy?
{ "tokens": [ "What", "did", "French", "and", "English", "farmers", "do", "during", "the", "Little", "Ice", "Age", "to", "gain", "more", "solar", "energy", "?" ], "offsets": [ 0, 5, 9, 16, 20, 28, 36, 39, 46, 50, 57, 61, 65, 68, 73, 78, 84, 90 ] }
{ "text": [ "employed fruit walls" ], "char_spans": [ { "start": [ 497 ], "end": [ 516 ] } ], "token_spans": [ { "start": [ 81 ], "end": [ 83 ] } ] }
[ "employed fruit walls" ]
SQuAD
Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vinters, who use the energy generated by solar panels to power grape presses.
{ "tokens": [ "Agriculture", "and", "horticulture", "seek", "to", "optimize", "the", "capture", "of", "solar", "energy", "in", "order", "to", "optimize", "the", "productivity", "of", "plants", ".", "Techniques", "such", "as", "timed", "planting", "cycles", ",", "tailored", "row", "orientation", ",", "staggered", "heights", "between", "rows", "and", "the", "mixing", "of", "plant", "varieties", "can", "improve", "crop", "yields", ".", "While", "sunlight", "is", "generally", "considered", "a", "plentiful", "resource", ",", "the", "exceptions", "highlight", "the", "importance", "of", "solar", "energy", "to", "agriculture", ".", "During", "the", "short", "growing", "seasons", "of", "the", "Little", "Ice", "Age", ",", "French", "and", "English", "farmers", "employed", "fruit", "walls", "to", "maximize", "the", "collection", "of", "solar", "energy", ".", "These", "walls", "acted", "as", "thermal", "masses", "and", "accelerated", "ripening", "by", "keeping", "plants", "warm", ".", "Early", "fruit", "walls", "were", "built", "perpendicular", "to", "the", "ground", "and", "facing", "south", ",", "but", "over", "time", ",", "sloping", "walls", "were", "developed", "to", "make", "better", "use", "of", "sunlight", ".", "In", "1699", ",", "Nicolas", "Fatio", "de", "Duillier", "even", "suggested", "using", "a", "tracking", "mechanism", "which", "could", "pivot", "to", "follow", "the", "Sun", ".", "Applications", "of", "solar", "energy", "in", "agriculture", "aside", "from", "growing", "crops", "include", "pumping", "water", ",", "drying", "crops", ",", "brooding", "chicks", "and", "drying", "chicken", "manure", ".", "More", "recently", "the", "technology", "has", "been", "embraced", "by", "vinters", ",", "who", "use", "the", "energy", "generated", "by", "solar", "panels", "to", "power", "grape", "presses", "." ], "offsets": [ 0, 12, 16, 29, 34, 37, 46, 50, 58, 61, 67, 74, 77, 83, 86, 95, 99, 112, 115, 121, 123, 134, 139, 142, 148, 157, 163, 165, 174, 178, 189, 191, 201, 209, 217, 222, 226, 230, 237, 240, 246, 256, 260, 268, 273, 279, 281, 287, 296, 299, 309, 320, 322, 332, 340, 342, 346, 357, 367, 371, 382, 385, 391, 398, 401, 412, 414, 421, 425, 431, 439, 447, 450, 454, 461, 465, 468, 470, 477, 481, 489, 497, 506, 512, 518, 521, 530, 534, 545, 548, 554, 560, 562, 568, 574, 580, 583, 591, 598, 602, 614, 623, 626, 634, 641, 645, 647, 653, 659, 665, 670, 676, 690, 693, 697, 704, 708, 715, 720, 722, 726, 731, 735, 737, 745, 751, 756, 766, 769, 774, 781, 785, 788, 796, 798, 801, 805, 807, 815, 821, 824, 833, 838, 848, 854, 856, 865, 875, 881, 887, 893, 896, 903, 907, 910, 912, 925, 928, 934, 941, 944, 956, 962, 967, 975, 981, 989, 997, 1002, 1004, 1011, 1016, 1018, 1027, 1034, 1038, 1045, 1053, 1059, 1061, 1066, 1075, 1079, 1090, 1094, 1099, 1108, 1111, 1118, 1120, 1124, 1128, 1132, 1139, 1149, 1152, 1158, 1165, 1168, 1174, 1180, 1187 ] }
7b0f4b0e72dd4186a04f7626253dfbd9
What was the purpose of the fruit walls built by French and English farmers?
{ "tokens": [ "What", "was", "the", "purpose", "of", "the", "fruit", "walls", "built", "by", "French", "and", "English", "farmers", "?" ], "offsets": [ 0, 5, 9, 13, 21, 24, 28, 34, 40, 46, 49, 56, 60, 68, 75 ] }
{ "text": [ "acted as thermal masses and accelerated ripening by keeping plants warm" ], "char_spans": [ { "start": [ 574 ], "end": [ 644 ] } ], "token_spans": [ { "start": [ 94 ], "end": [ 104 ] } ] }
[ "acted as thermal masses and accelerated ripening by keeping plants warm" ]
SQuAD
Tajikistan's economy grew substantially after the war. The GDP of Tajikistan expanded at an average rate of 9.6% over the period of 2000–2007 according to the World Bank data. This improved Tajikistan's position among other Central Asian countries (namely Turkmenistan and Uzbekistan), which seem to have degraded economically ever since. The primary sources of income in Tajikistan are aluminium production, cotton growing and remittances from migrant workers. Cotton accounts for 60% of agricultural output, supporting 75% of the rural population, and using 45% of irrigated arable land. The aluminium industry is represented by the state-owned Tajik Aluminum Company – the biggest aluminium plant in Central Asia and one of the biggest in the world.
{ "tokens": [ "Tajikistan", "'s", "economy", "grew", "substantially", "after", "the", "war", ".", "The", "GDP", "of", "Tajikistan", "expanded", "at", "an", "average", "rate", "of", "9.6", "%", "over", "the", "period", "of", "2000–2007", "according", "to", "the", "World", "Bank", "data", ".", "This", "improved", "Tajikistan", "'s", "position", "among", "other", "Central", "Asian", "countries", "(", "namely", "Turkmenistan", "and", "Uzbekistan", ")", ",", "which", "seem", "to", "have", "degraded", "economically", "ever", "since", ".", "The", "primary", "sources", "of", "income", "in", "Tajikistan", "are", "aluminium", "production", ",", "cotton", "growing", "and", "remittances", "from", "migrant", "workers", ".", "Cotton", "accounts", "for", "60", "%", "of", "agricultural", "output", ",", "supporting", "75", "%", "of", "the", "rural", "population", ",", "and", "using", "45", "%", "of", "irrigated", "arable", "land", ".", "The", "aluminium", "industry", "is", "represented", "by", "the", "state", "-", "owned", "Tajik", "Aluminum", "Company", "–", "the", "biggest", "aluminium", "plant", "in", "Central", "Asia", "and", "one", "of", "the", "biggest", "in", "the", "world", "." ], "offsets": [ 0, 10, 13, 21, 26, 40, 46, 50, 53, 55, 59, 63, 66, 77, 86, 89, 92, 100, 105, 108, 111, 113, 118, 122, 129, 132, 142, 152, 155, 159, 165, 170, 174, 176, 181, 190, 200, 203, 212, 218, 224, 232, 238, 248, 249, 256, 269, 273, 283, 284, 286, 292, 297, 300, 305, 314, 327, 332, 337, 339, 343, 351, 359, 362, 369, 372, 383, 387, 397, 407, 409, 416, 424, 428, 440, 445, 453, 460, 462, 469, 478, 482, 484, 486, 489, 502, 508, 510, 521, 523, 525, 528, 532, 538, 548, 550, 554, 560, 562, 564, 567, 577, 584, 588, 590, 594, 604, 613, 616, 628, 631, 635, 640, 641, 647, 653, 662, 670, 672, 676, 684, 694, 700, 703, 711, 716, 720, 724, 727, 731, 739, 742, 746, 751 ] }
5cdcf796f38047b9bf8eb96f1af0b7f0
What was the rate that the GDP expanded?
{ "tokens": [ "What", "was", "the", "rate", "that", "the", "GDP", "expanded", "?" ], "offsets": [ 0, 5, 9, 13, 18, 23, 27, 31, 39 ] }
{ "text": [ "an average rate of 9.6%" ], "char_spans": [ { "start": [ 89 ], "end": [ 111 ] } ], "token_spans": [ { "start": [ 15 ], "end": [ 20 ] } ] }
[ "an average rate of 9.6%" ]
SQuAD
Tajikistan's economy grew substantially after the war. The GDP of Tajikistan expanded at an average rate of 9.6% over the period of 2000–2007 according to the World Bank data. This improved Tajikistan's position among other Central Asian countries (namely Turkmenistan and Uzbekistan), which seem to have degraded economically ever since. The primary sources of income in Tajikistan are aluminium production, cotton growing and remittances from migrant workers. Cotton accounts for 60% of agricultural output, supporting 75% of the rural population, and using 45% of irrigated arable land. The aluminium industry is represented by the state-owned Tajik Aluminum Company – the biggest aluminium plant in Central Asia and one of the biggest in the world.
{ "tokens": [ "Tajikistan", "'s", "economy", "grew", "substantially", "after", "the", "war", ".", "The", "GDP", "of", "Tajikistan", "expanded", "at", "an", "average", "rate", "of", "9.6", "%", "over", "the", "period", "of", "2000–2007", "according", "to", "the", "World", "Bank", "data", ".", "This", "improved", "Tajikistan", "'s", "position", "among", "other", "Central", "Asian", "countries", "(", "namely", "Turkmenistan", "and", "Uzbekistan", ")", ",", "which", "seem", "to", "have", "degraded", "economically", "ever", "since", ".", "The", "primary", "sources", "of", "income", "in", "Tajikistan", "are", "aluminium", "production", ",", "cotton", "growing", "and", "remittances", "from", "migrant", "workers", ".", "Cotton", "accounts", "for", "60", "%", "of", "agricultural", "output", ",", "supporting", "75", "%", "of", "the", "rural", "population", ",", "and", "using", "45", "%", "of", "irrigated", "arable", "land", ".", "The", "aluminium", "industry", "is", "represented", "by", "the", "state", "-", "owned", "Tajik", "Aluminum", "Company", "–", "the", "biggest", "aluminium", "plant", "in", "Central", "Asia", "and", "one", "of", "the", "biggest", "in", "the", "world", "." ], "offsets": [ 0, 10, 13, 21, 26, 40, 46, 50, 53, 55, 59, 63, 66, 77, 86, 89, 92, 100, 105, 108, 111, 113, 118, 122, 129, 132, 142, 152, 155, 159, 165, 170, 174, 176, 181, 190, 200, 203, 212, 218, 224, 232, 238, 248, 249, 256, 269, 273, 283, 284, 286, 292, 297, 300, 305, 314, 327, 332, 337, 339, 343, 351, 359, 362, 369, 372, 383, 387, 397, 407, 409, 416, 424, 428, 440, 445, 453, 460, 462, 469, 478, 482, 484, 486, 489, 502, 508, 510, 521, 523, 525, 528, 532, 538, 548, 550, 554, 560, 562, 564, 567, 577, 584, 588, 590, 594, 604, 613, 616, 628, 631, 635, 640, 641, 647, 653, 662, 670, 672, 676, 684, 694, 700, 703, 711, 716, 720, 724, 727, 731, 739, 742, 746, 751 ] }
1988ad2a979c4618886fa2076e2c6b5f
What is the primary source of income in Tajikistan?
{ "tokens": [ "What", "is", "the", "primary", "source", "of", "income", "in", "Tajikistan", "?" ], "offsets": [ 0, 5, 8, 12, 20, 27, 30, 37, 40, 50 ] }
{ "text": [ "aluminium production, cotton growing and remittances from migrant workers" ], "char_spans": [ { "start": [ 387 ], "end": [ 459 ] } ], "token_spans": [ { "start": [ 67 ], "end": [ 76 ] } ] }
[ "aluminium production, cotton growing and remittances from migrant workers" ]
SQuAD
Tajikistan's economy grew substantially after the war. The GDP of Tajikistan expanded at an average rate of 9.6% over the period of 2000–2007 according to the World Bank data. This improved Tajikistan's position among other Central Asian countries (namely Turkmenistan and Uzbekistan), which seem to have degraded economically ever since. The primary sources of income in Tajikistan are aluminium production, cotton growing and remittances from migrant workers. Cotton accounts for 60% of agricultural output, supporting 75% of the rural population, and using 45% of irrigated arable land. The aluminium industry is represented by the state-owned Tajik Aluminum Company – the biggest aluminium plant in Central Asia and one of the biggest in the world.
{ "tokens": [ "Tajikistan", "'s", "economy", "grew", "substantially", "after", "the", "war", ".", "The", "GDP", "of", "Tajikistan", "expanded", "at", "an", "average", "rate", "of", "9.6", "%", "over", "the", "period", "of", "2000–2007", "according", "to", "the", "World", "Bank", "data", ".", "This", "improved", "Tajikistan", "'s", "position", "among", "other", "Central", "Asian", "countries", "(", "namely", "Turkmenistan", "and", "Uzbekistan", ")", ",", "which", "seem", "to", "have", "degraded", "economically", "ever", "since", ".", "The", "primary", "sources", "of", "income", "in", "Tajikistan", "are", "aluminium", "production", ",", "cotton", "growing", "and", "remittances", "from", "migrant", "workers", ".", "Cotton", "accounts", "for", "60", "%", "of", "agricultural", "output", ",", "supporting", "75", "%", "of", "the", "rural", "population", ",", "and", "using", "45", "%", "of", "irrigated", "arable", "land", ".", "The", "aluminium", "industry", "is", "represented", "by", "the", "state", "-", "owned", "Tajik", "Aluminum", "Company", "–", "the", "biggest", "aluminium", "plant", "in", "Central", "Asia", "and", "one", "of", "the", "biggest", "in", "the", "world", "." ], "offsets": [ 0, 10, 13, 21, 26, 40, 46, 50, 53, 55, 59, 63, 66, 77, 86, 89, 92, 100, 105, 108, 111, 113, 118, 122, 129, 132, 142, 152, 155, 159, 165, 170, 174, 176, 181, 190, 200, 203, 212, 218, 224, 232, 238, 248, 249, 256, 269, 273, 283, 284, 286, 292, 297, 300, 305, 314, 327, 332, 337, 339, 343, 351, 359, 362, 369, 372, 383, 387, 397, 407, 409, 416, 424, 428, 440, 445, 453, 460, 462, 469, 478, 482, 484, 486, 489, 502, 508, 510, 521, 523, 525, 528, 532, 538, 548, 550, 554, 560, 562, 564, 567, 577, 584, 588, 590, 594, 604, 613, 616, 628, 631, 635, 640, 641, 647, 653, 662, 670, 672, 676, 684, 694, 700, 703, 711, 716, 720, 724, 727, 731, 739, 742, 746, 751 ] }
e44f235798844b2ab38656f272c356c0
What accounts for 60% of the agricultural output?
{ "tokens": [ "What", "accounts", "for", "60", "%", "of", "the", "agricultural", "output", "?" ], "offsets": [ 0, 5, 14, 18, 20, 22, 25, 29, 42, 48 ] }
{ "text": [ "60%" ], "char_spans": [ { "start": [ 482 ], "end": [ 484 ] } ], "token_spans": [ { "start": [ 81 ], "end": [ 82 ] } ] }
[ "60%" ]
SQuAD
Tajikistan's economy grew substantially after the war. The GDP of Tajikistan expanded at an average rate of 9.6% over the period of 2000–2007 according to the World Bank data. This improved Tajikistan's position among other Central Asian countries (namely Turkmenistan and Uzbekistan), which seem to have degraded economically ever since. The primary sources of income in Tajikistan are aluminium production, cotton growing and remittances from migrant workers. Cotton accounts for 60% of agricultural output, supporting 75% of the rural population, and using 45% of irrigated arable land. The aluminium industry is represented by the state-owned Tajik Aluminum Company – the biggest aluminium plant in Central Asia and one of the biggest in the world.
{ "tokens": [ "Tajikistan", "'s", "economy", "grew", "substantially", "after", "the", "war", ".", "The", "GDP", "of", "Tajikistan", "expanded", "at", "an", "average", "rate", "of", "9.6", "%", "over", "the", "period", "of", "2000–2007", "according", "to", "the", "World", "Bank", "data", ".", "This", "improved", "Tajikistan", "'s", "position", "among", "other", "Central", "Asian", "countries", "(", "namely", "Turkmenistan", "and", "Uzbekistan", ")", ",", "which", "seem", "to", "have", "degraded", "economically", "ever", "since", ".", "The", "primary", "sources", "of", "income", "in", "Tajikistan", "are", "aluminium", "production", ",", "cotton", "growing", "and", "remittances", "from", "migrant", "workers", ".", "Cotton", "accounts", "for", "60", "%", "of", "agricultural", "output", ",", "supporting", "75", "%", "of", "the", "rural", "population", ",", "and", "using", "45", "%", "of", "irrigated", "arable", "land", ".", "The", "aluminium", "industry", "is", "represented", "by", "the", "state", "-", "owned", "Tajik", "Aluminum", "Company", "–", "the", "biggest", "aluminium", "plant", "in", "Central", "Asia", "and", "one", "of", "the", "biggest", "in", "the", "world", "." ], "offsets": [ 0, 10, 13, 21, 26, 40, 46, 50, 53, 55, 59, 63, 66, 77, 86, 89, 92, 100, 105, 108, 111, 113, 118, 122, 129, 132, 142, 152, 155, 159, 165, 170, 174, 176, 181, 190, 200, 203, 212, 218, 224, 232, 238, 248, 249, 256, 269, 273, 283, 284, 286, 292, 297, 300, 305, 314, 327, 332, 337, 339, 343, 351, 359, 362, 369, 372, 383, 387, 397, 407, 409, 416, 424, 428, 440, 445, 453, 460, 462, 469, 478, 482, 484, 486, 489, 502, 508, 510, 521, 523, 525, 528, 532, 538, 548, 550, 554, 560, 562, 564, 567, 577, 584, 588, 590, 594, 604, 613, 616, 628, 631, 635, 640, 641, 647, 653, 662, 670, 672, 676, 684, 694, 700, 703, 711, 716, 720, 724, 727, 731, 739, 742, 746, 751 ] }
b95c0fbcf1ab4b3eb1aef28e37a6d53e
What is the name of the state owned company that produces aluminium?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "state", "owned", "company", "that", "produces", "aluminium", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 30, 36, 44, 49, 58, 67 ] }
{ "text": [ "Tajik Aluminum Company" ], "char_spans": [ { "start": [ 647 ], "end": [ 668 ] } ], "token_spans": [ { "start": [ 114 ], "end": [ 116 ] } ] }
[ "Tajik Aluminum Company" ]
SQuAD
Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.
{ "tokens": [ "Hydrogen", "production", "technologies", "been", "a", "significant", "area", "of", "solar", "chemical", "research", "since", "the", "1970s", ".", "Aside", "from", "electrolysis", "driven", "by", "photovoltaic", "or", "photochemical", "cells", ",", "several", "thermochemical", "processes", "have", "also", "been", "explored", ".", "One", "such", "route", "uses", "concentrators", "to", "split", "water", "into", "oxygen", "and", "hydrogen", "at", "high", "temperatures", "(", "2,300–2,600", "°", "C", "or", "4,200–4,700", "°", "F", ")", ".", "Another", "approach", "uses", "the", "heat", "from", "solar", "concentrators", "to", "drive", "the", "steam", "reformation", "of", "natural", "gas", "thereby", "increasing", "the", "overall", "hydrogen", "yield", "compared", "to", "conventional", "reforming", "methods", ".", "Thermochemical", "cycles", "characterized", "by", "the", "decomposition", "and", "regeneration", "of", "reactants", "present", "another", "avenue", "for", "hydrogen", "production", ".", "The", "Solzinc", "process", "under", "development", "at", "the", "Weizmann", "Institute", "uses", "a", "1", "MW", "solar", "furnace", "to", "decompose", "zinc", "oxide", "(", "ZnO", ")", "at", "temperatures", "above", "1,200", "°", "C", "(", "2,200", "°", "F", ")", ".", "This", "initial", "reaction", "produces", "pure", "zinc", ",", "which", "can", "subsequently", "be", "reacted", "with", "water", "to", "produce", "hydrogen", "." ], "offsets": [ 0, 9, 20, 33, 38, 40, 52, 57, 60, 66, 75, 84, 90, 94, 99, 101, 107, 112, 125, 132, 135, 148, 151, 165, 170, 172, 180, 195, 205, 210, 215, 220, 228, 230, 234, 239, 245, 250, 264, 267, 273, 279, 284, 291, 295, 304, 307, 312, 325, 326, 338, 339, 341, 344, 356, 357, 358, 359, 361, 369, 378, 383, 387, 392, 397, 403, 417, 420, 426, 430, 436, 448, 451, 459, 463, 471, 482, 486, 494, 503, 509, 518, 521, 534, 544, 551, 553, 568, 575, 589, 592, 596, 610, 614, 627, 630, 640, 648, 656, 663, 667, 676, 686, 688, 692, 700, 708, 714, 726, 729, 733, 742, 752, 757, 759, 761, 764, 770, 778, 781, 791, 796, 802, 803, 806, 808, 811, 824, 830, 836, 837, 839, 840, 846, 847, 848, 849, 851, 856, 864, 873, 882, 887, 891, 893, 899, 903, 916, 919, 927, 932, 938, 941, 949, 957 ] }
e62f2a4a4d274fe09760df1649720b07
What is the name of the process under development at the Weizmann Institute?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "process", "under", "development", "at", "the", "Weizmann", "Institute", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 32, 38, 50, 53, 57, 66, 75 ] }
{ "text": [ "The Solzinc process" ], "char_spans": [ { "start": [ 688 ], "end": [ 706 ] } ], "token_spans": [ { "start": [ 103 ], "end": [ 105 ] } ] }
[ "The Solzinc process" ]
SQuAD
Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.
{ "tokens": [ "Hydrogen", "production", "technologies", "been", "a", "significant", "area", "of", "solar", "chemical", "research", "since", "the", "1970s", ".", "Aside", "from", "electrolysis", "driven", "by", "photovoltaic", "or", "photochemical", "cells", ",", "several", "thermochemical", "processes", "have", "also", "been", "explored", ".", "One", "such", "route", "uses", "concentrators", "to", "split", "water", "into", "oxygen", "and", "hydrogen", "at", "high", "temperatures", "(", "2,300–2,600", "°", "C", "or", "4,200–4,700", "°", "F", ")", ".", "Another", "approach", "uses", "the", "heat", "from", "solar", "concentrators", "to", "drive", "the", "steam", "reformation", "of", "natural", "gas", "thereby", "increasing", "the", "overall", "hydrogen", "yield", "compared", "to", "conventional", "reforming", "methods", ".", "Thermochemical", "cycles", "characterized", "by", "the", "decomposition", "and", "regeneration", "of", "reactants", "present", "another", "avenue", "for", "hydrogen", "production", ".", "The", "Solzinc", "process", "under", "development", "at", "the", "Weizmann", "Institute", "uses", "a", "1", "MW", "solar", "furnace", "to", "decompose", "zinc", "oxide", "(", "ZnO", ")", "at", "temperatures", "above", "1,200", "°", "C", "(", "2,200", "°", "F", ")", ".", "This", "initial", "reaction", "produces", "pure", "zinc", ",", "which", "can", "subsequently", "be", "reacted", "with", "water", "to", "produce", "hydrogen", "." ], "offsets": [ 0, 9, 20, 33, 38, 40, 52, 57, 60, 66, 75, 84, 90, 94, 99, 101, 107, 112, 125, 132, 135, 148, 151, 165, 170, 172, 180, 195, 205, 210, 215, 220, 228, 230, 234, 239, 245, 250, 264, 267, 273, 279, 284, 291, 295, 304, 307, 312, 325, 326, 338, 339, 341, 344, 356, 357, 358, 359, 361, 369, 378, 383, 387, 392, 397, 403, 417, 420, 426, 430, 436, 448, 451, 459, 463, 471, 482, 486, 494, 503, 509, 518, 521, 534, 544, 551, 553, 568, 575, 589, 592, 596, 610, 614, 627, 630, 640, 648, 656, 663, 667, 676, 686, 688, 692, 700, 708, 714, 726, 729, 733, 742, 752, 757, 759, 761, 764, 770, 778, 781, 791, 796, 802, 803, 806, 808, 811, 824, 830, 836, 837, 839, 840, 846, 847, 848, 849, 851, 856, 864, 873, 882, 887, 891, 893, 899, 903, 916, 919, 927, 932, 938, 941, 949, 957 ] }
2e63b0d9f19e48bbb6ab77779dec9397
The Solznic process produces what?
{ "tokens": [ "The", "Solznic", "process", "produces", "what", "?" ], "offsets": [ 0, 4, 12, 20, 29, 33 ] }
{ "text": [ "pure zinc" ], "char_spans": [ { "start": [ 882 ], "end": [ 890 ] } ], "token_spans": [ { "start": [ 141 ], "end": [ 142 ] } ] }
[ "pure zinc" ]
SQuAD
Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.
{ "tokens": [ "Hydrogen", "production", "technologies", "been", "a", "significant", "area", "of", "solar", "chemical", "research", "since", "the", "1970s", ".", "Aside", "from", "electrolysis", "driven", "by", "photovoltaic", "or", "photochemical", "cells", ",", "several", "thermochemical", "processes", "have", "also", "been", "explored", ".", "One", "such", "route", "uses", "concentrators", "to", "split", "water", "into", "oxygen", "and", "hydrogen", "at", "high", "temperatures", "(", "2,300–2,600", "°", "C", "or", "4,200–4,700", "°", "F", ")", ".", "Another", "approach", "uses", "the", "heat", "from", "solar", "concentrators", "to", "drive", "the", "steam", "reformation", "of", "natural", "gas", "thereby", "increasing", "the", "overall", "hydrogen", "yield", "compared", "to", "conventional", "reforming", "methods", ".", "Thermochemical", "cycles", "characterized", "by", "the", "decomposition", "and", "regeneration", "of", "reactants", "present", "another", "avenue", "for", "hydrogen", "production", ".", "The", "Solzinc", "process", "under", "development", "at", "the", "Weizmann", "Institute", "uses", "a", "1", "MW", "solar", "furnace", "to", "decompose", "zinc", "oxide", "(", "ZnO", ")", "at", "temperatures", "above", "1,200", "°", "C", "(", "2,200", "°", "F", ")", ".", "This", "initial", "reaction", "produces", "pure", "zinc", ",", "which", "can", "subsequently", "be", "reacted", "with", "water", "to", "produce", "hydrogen", "." ], "offsets": [ 0, 9, 20, 33, 38, 40, 52, 57, 60, 66, 75, 84, 90, 94, 99, 101, 107, 112, 125, 132, 135, 148, 151, 165, 170, 172, 180, 195, 205, 210, 215, 220, 228, 230, 234, 239, 245, 250, 264, 267, 273, 279, 284, 291, 295, 304, 307, 312, 325, 326, 338, 339, 341, 344, 356, 357, 358, 359, 361, 369, 378, 383, 387, 392, 397, 403, 417, 420, 426, 430, 436, 448, 451, 459, 463, 471, 482, 486, 494, 503, 509, 518, 521, 534, 544, 551, 553, 568, 575, 589, 592, 596, 610, 614, 627, 630, 640, 648, 656, 663, 667, 676, 686, 688, 692, 700, 708, 714, 726, 729, 733, 742, 752, 757, 759, 761, 764, 770, 778, 781, 791, 796, 802, 803, 806, 808, 811, 824, 830, 836, 837, 839, 840, 846, 847, 848, 849, 851, 856, 864, 873, 882, 887, 891, 893, 899, 903, 916, 919, 927, 932, 938, 941, 949, 957 ] }
e3444ab5c5e64664b5fbfb26dbd42d3d
What has been a main area of solar chemical research since the 1970s?
{ "tokens": [ "What", "has", "been", "a", "main", "area", "of", "solar", "chemical", "research", "since", "the", "1970s", "?" ], "offsets": [ 0, 5, 9, 14, 16, 21, 26, 29, 35, 44, 53, 59, 63, 68 ] }
{ "text": [ "Hydrogen production technologies" ], "char_spans": [ { "start": [ 0 ], "end": [ 31 ] } ], "token_spans": [ { "start": [ 0 ], "end": [ 2 ] } ] }
[ "Hydrogen production technologies" ]
SQuAD
Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.
{ "tokens": [ "Hydrogen", "production", "technologies", "been", "a", "significant", "area", "of", "solar", "chemical", "research", "since", "the", "1970s", ".", "Aside", "from", "electrolysis", "driven", "by", "photovoltaic", "or", "photochemical", "cells", ",", "several", "thermochemical", "processes", "have", "also", "been", "explored", ".", "One", "such", "route", "uses", "concentrators", "to", "split", "water", "into", "oxygen", "and", "hydrogen", "at", "high", "temperatures", "(", "2,300–2,600", "°", "C", "or", "4,200–4,700", "°", "F", ")", ".", "Another", "approach", "uses", "the", "heat", "from", "solar", "concentrators", "to", "drive", "the", "steam", "reformation", "of", "natural", "gas", "thereby", "increasing", "the", "overall", "hydrogen", "yield", "compared", "to", "conventional", "reforming", "methods", ".", "Thermochemical", "cycles", "characterized", "by", "the", "decomposition", "and", "regeneration", "of", "reactants", "present", "another", "avenue", "for", "hydrogen", "production", ".", "The", "Solzinc", "process", "under", "development", "at", "the", "Weizmann", "Institute", "uses", "a", "1", "MW", "solar", "furnace", "to", "decompose", "zinc", "oxide", "(", "ZnO", ")", "at", "temperatures", "above", "1,200", "°", "C", "(", "2,200", "°", "F", ")", ".", "This", "initial", "reaction", "produces", "pure", "zinc", ",", "which", "can", "subsequently", "be", "reacted", "with", "water", "to", "produce", "hydrogen", "." ], "offsets": [ 0, 9, 20, 33, 38, 40, 52, 57, 60, 66, 75, 84, 90, 94, 99, 101, 107, 112, 125, 132, 135, 148, 151, 165, 170, 172, 180, 195, 205, 210, 215, 220, 228, 230, 234, 239, 245, 250, 264, 267, 273, 279, 284, 291, 295, 304, 307, 312, 325, 326, 338, 339, 341, 344, 356, 357, 358, 359, 361, 369, 378, 383, 387, 392, 397, 403, 417, 420, 426, 430, 436, 448, 451, 459, 463, 471, 482, 486, 494, 503, 509, 518, 521, 534, 544, 551, 553, 568, 575, 589, 592, 596, 610, 614, 627, 630, 640, 648, 656, 663, 667, 676, 686, 688, 692, 700, 708, 714, 726, 729, 733, 742, 752, 757, 759, 761, 764, 770, 778, 781, 791, 796, 802, 803, 806, 808, 811, 824, 830, 836, 837, 839, 840, 846, 847, 848, 849, 851, 856, 864, 873, 882, 887, 891, 893, 899, 903, 916, 919, 927, 932, 938, 941, 949, 957 ] }
92243a31d301402ca78984663a6bb37c
What is one of the thermochemical processes that has been explored besides electrolysis?
{ "tokens": [ "What", "is", "one", "of", "the", "thermochemical", "processes", "that", "has", "been", "explored", "besides", "electrolysis", "?" ], "offsets": [ 0, 5, 8, 12, 15, 19, 34, 44, 49, 53, 58, 67, 75, 87 ] }
{ "text": [ "uses concentrators to split water into oxygen and hydrogen at high temperatures" ], "char_spans": [ { "start": [ 245 ], "end": [ 323 ] } ], "token_spans": [ { "start": [ 36 ], "end": [ 47 ] } ] }
[ "uses concentrators to split water into oxygen and hydrogen at high temperatures" ]
SQuAD
Hydrogen production technologies been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.
{ "tokens": [ "Hydrogen", "production", "technologies", "been", "a", "significant", "area", "of", "solar", "chemical", "research", "since", "the", "1970s", ".", "Aside", "from", "electrolysis", "driven", "by", "photovoltaic", "or", "photochemical", "cells", ",", "several", "thermochemical", "processes", "have", "also", "been", "explored", ".", "One", "such", "route", "uses", "concentrators", "to", "split", "water", "into", "oxygen", "and", "hydrogen", "at", "high", "temperatures", "(", "2,300–2,600", "°", "C", "or", "4,200–4,700", "°", "F", ")", ".", "Another", "approach", "uses", "the", "heat", "from", "solar", "concentrators", "to", "drive", "the", "steam", "reformation", "of", "natural", "gas", "thereby", "increasing", "the", "overall", "hydrogen", "yield", "compared", "to", "conventional", "reforming", "methods", ".", "Thermochemical", "cycles", "characterized", "by", "the", "decomposition", "and", "regeneration", "of", "reactants", "present", "another", "avenue", "for", "hydrogen", "production", ".", "The", "Solzinc", "process", "under", "development", "at", "the", "Weizmann", "Institute", "uses", "a", "1", "MW", "solar", "furnace", "to", "decompose", "zinc", "oxide", "(", "ZnO", ")", "at", "temperatures", "above", "1,200", "°", "C", "(", "2,200", "°", "F", ")", ".", "This", "initial", "reaction", "produces", "pure", "zinc", ",", "which", "can", "subsequently", "be", "reacted", "with", "water", "to", "produce", "hydrogen", "." ], "offsets": [ 0, 9, 20, 33, 38, 40, 52, 57, 60, 66, 75, 84, 90, 94, 99, 101, 107, 112, 125, 132, 135, 148, 151, 165, 170, 172, 180, 195, 205, 210, 215, 220, 228, 230, 234, 239, 245, 250, 264, 267, 273, 279, 284, 291, 295, 304, 307, 312, 325, 326, 338, 339, 341, 344, 356, 357, 358, 359, 361, 369, 378, 383, 387, 392, 397, 403, 417, 420, 426, 430, 436, 448, 451, 459, 463, 471, 482, 486, 494, 503, 509, 518, 521, 534, 544, 551, 553, 568, 575, 589, 592, 596, 610, 614, 627, 630, 640, 648, 656, 663, 667, 676, 686, 688, 692, 700, 708, 714, 726, 729, 733, 742, 752, 757, 759, 761, 764, 770, 778, 781, 791, 796, 802, 803, 806, 808, 811, 824, 830, 836, 837, 839, 840, 846, 847, 848, 849, 851, 856, 864, 873, 882, 887, 891, 893, 899, 903, 916, 919, 927, 932, 938, 941, 949, 957 ] }
eaf35833f7894b2cae082c261d0c7bb0
What is the name of the process being developed by the Weizmann Institute?
{ "tokens": [ "What", "is", "the", "name", "of", "the", "process", "being", "developed", "by", "the", "Weizmann", "Institute", "?" ], "offsets": [ 0, 5, 8, 12, 17, 20, 24, 32, 38, 48, 51, 55, 64, 73 ] }
{ "text": [ "Solzinc process" ], "char_spans": [ { "start": [ 692 ], "end": [ 706 ] } ], "token_spans": [ { "start": [ 104 ], "end": [ 105 ] } ] }
[ "Solzinc process" ]
SQuAD
Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%.
{ "tokens": [ "Phase", "change", "materials", "such", "as", "paraffin", "wax", "and", "Glauber", "'s", "salt", "are", "another", "thermal", "storage", "media", ".", "These", "materials", "are", "inexpensive", ",", "readily", "available", ",", "and", "can", "deliver", "domestically", "useful", "temperatures", "(", "approximately", "64", "°", "C", "or", "147", "°", "F", ")", ".", "The", "\"", "Dover", "House", "\"", "(", "in", "Dover", ",", "Massachusetts", ")", "was", "the", "first", "to", "use", "a", "Glauber", "'s", "salt", "heating", "system", ",", "in", "1948", ".", "Solar", "energy", "can", "also", "be", "stored", "at", "high", "temperatures", "using", "molten", "salts", ".", "Salts", "are", "an", "effective", "storage", "medium", "because", "they", "are", "low", "-", "cost", ",", "have", "a", "high", "specific", "heat", "capacity", "and", "can", "deliver", "heat", "at", "temperatures", "compatible", "with", "conventional", "power", "systems", ".", "The", "Solar", "Two", "used", "this", "method", "of", "energy", "storage", ",", "allowing", "it", "to", "store", "1.44", "terajoules", "(", "400,000", "kWh", ")", "in", "its", "68", "cubic", "metres", "storage", "tank", "with", "an", "annual", "storage", "efficiency", "of", "about", "99", "%", "." ], "offsets": [ 0, 6, 13, 23, 28, 31, 40, 44, 48, 55, 58, 63, 67, 75, 83, 91, 96, 98, 104, 114, 118, 129, 131, 139, 148, 150, 154, 158, 166, 179, 186, 199, 200, 214, 217, 218, 220, 223, 227, 228, 229, 230, 232, 236, 237, 243, 248, 250, 251, 254, 259, 261, 274, 276, 280, 284, 290, 293, 297, 299, 306, 309, 314, 322, 328, 330, 333, 337, 339, 345, 352, 356, 361, 364, 371, 374, 379, 392, 398, 405, 410, 412, 418, 422, 425, 435, 443, 450, 458, 463, 467, 470, 471, 475, 477, 482, 484, 489, 498, 503, 512, 516, 520, 528, 533, 536, 549, 560, 565, 578, 584, 591, 593, 597, 603, 607, 612, 617, 624, 627, 634, 641, 643, 652, 655, 658, 664, 669, 680, 681, 689, 692, 694, 697, 701, 704, 710, 717, 725, 730, 735, 738, 745, 753, 764, 767, 773, 775, 776 ] }
83eddc5244184f1a958f8f07b259bce3
Paraffin wax is an example of what kind of storage media?
{ "tokens": [ "Paraffin", "wax", "is", "an", "example", "of", "what", "kind", "of", "storage", "media", "?" ], "offsets": [ 0, 9, 13, 16, 19, 27, 30, 35, 40, 43, 51, 56 ] }
{ "text": [ "thermal" ], "char_spans": [ { "start": [ 75 ], "end": [ 81 ] } ], "token_spans": [ { "start": [ 13 ], "end": [ 13 ] } ] }
[ "thermal" ]
SQuAD
Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%.
{ "tokens": [ "Phase", "change", "materials", "such", "as", "paraffin", "wax", "and", "Glauber", "'s", "salt", "are", "another", "thermal", "storage", "media", ".", "These", "materials", "are", "inexpensive", ",", "readily", "available", ",", "and", "can", "deliver", "domestically", "useful", "temperatures", "(", "approximately", "64", "°", "C", "or", "147", "°", "F", ")", ".", "The", "\"", "Dover", "House", "\"", "(", "in", "Dover", ",", "Massachusetts", ")", "was", "the", "first", "to", "use", "a", "Glauber", "'s", "salt", "heating", "system", ",", "in", "1948", ".", "Solar", "energy", "can", "also", "be", "stored", "at", "high", "temperatures", "using", "molten", "salts", ".", "Salts", "are", "an", "effective", "storage", "medium", "because", "they", "are", "low", "-", "cost", ",", "have", "a", "high", "specific", "heat", "capacity", "and", "can", "deliver", "heat", "at", "temperatures", "compatible", "with", "conventional", "power", "systems", ".", "The", "Solar", "Two", "used", "this", "method", "of", "energy", "storage", ",", "allowing", "it", "to", "store", "1.44", "terajoules", "(", "400,000", "kWh", ")", "in", "its", "68", "cubic", "metres", "storage", "tank", "with", "an", "annual", "storage", "efficiency", "of", "about", "99", "%", "." ], "offsets": [ 0, 6, 13, 23, 28, 31, 40, 44, 48, 55, 58, 63, 67, 75, 83, 91, 96, 98, 104, 114, 118, 129, 131, 139, 148, 150, 154, 158, 166, 179, 186, 199, 200, 214, 217, 218, 220, 223, 227, 228, 229, 230, 232, 236, 237, 243, 248, 250, 251, 254, 259, 261, 274, 276, 280, 284, 290, 293, 297, 299, 306, 309, 314, 322, 328, 330, 333, 337, 339, 345, 352, 356, 361, 364, 371, 374, 379, 392, 398, 405, 410, 412, 418, 422, 425, 435, 443, 450, 458, 463, 467, 470, 471, 475, 477, 482, 484, 489, 498, 503, 512, 516, 520, 528, 533, 536, 549, 560, 565, 578, 584, 591, 593, 597, 603, 607, 612, 617, 624, 627, 634, 641, 643, 652, 655, 658, 664, 669, 680, 681, 689, 692, 694, 697, 701, 704, 710, 717, 725, 730, 735, 738, 745, 753, 764, 767, 773, 775, 776 ] }
8748f401bb7c4055a34c43f5c7e95051
The first Glauber's salt heating system was first used where?
{ "tokens": [ "The", "first", "Glauber", "'s", "salt", "heating", "system", "was", "first", "used", "where", "?" ], "offsets": [ 0, 4, 10, 17, 20, 25, 33, 40, 44, 50, 55, 60 ] }
{ "text": [ "The \"Dover House\"" ], "char_spans": [ { "start": [ 232 ], "end": [ 248 ] } ], "token_spans": [ { "start": [ 42 ], "end": [ 46 ] } ] }
[ "The \"Dover House\"" ]
SQuAD
Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%.
{ "tokens": [ "Phase", "change", "materials", "such", "as", "paraffin", "wax", "and", "Glauber", "'s", "salt", "are", "another", "thermal", "storage", "media", ".", "These", "materials", "are", "inexpensive", ",", "readily", "available", ",", "and", "can", "deliver", "domestically", "useful", "temperatures", "(", "approximately", "64", "°", "C", "or", "147", "°", "F", ")", ".", "The", "\"", "Dover", "House", "\"", "(", "in", "Dover", ",", "Massachusetts", ")", "was", "the", "first", "to", "use", "a", "Glauber", "'s", "salt", "heating", "system", ",", "in", "1948", ".", "Solar", "energy", "can", "also", "be", "stored", "at", "high", "temperatures", "using", "molten", "salts", ".", "Salts", "are", "an", "effective", "storage", "medium", "because", "they", "are", "low", "-", "cost", ",", "have", "a", "high", "specific", "heat", "capacity", "and", "can", "deliver", "heat", "at", "temperatures", "compatible", "with", "conventional", "power", "systems", ".", "The", "Solar", "Two", "used", "this", "method", "of", "energy", "storage", ",", "allowing", "it", "to", "store", "1.44", "terajoules", "(", "400,000", "kWh", ")", "in", "its", "68", "cubic", "metres", "storage", "tank", "with", "an", "annual", "storage", "efficiency", "of", "about", "99", "%", "." ], "offsets": [ 0, 6, 13, 23, 28, 31, 40, 44, 48, 55, 58, 63, 67, 75, 83, 91, 96, 98, 104, 114, 118, 129, 131, 139, 148, 150, 154, 158, 166, 179, 186, 199, 200, 214, 217, 218, 220, 223, 227, 228, 229, 230, 232, 236, 237, 243, 248, 250, 251, 254, 259, 261, 274, 276, 280, 284, 290, 293, 297, 299, 306, 309, 314, 322, 328, 330, 333, 337, 339, 345, 352, 356, 361, 364, 371, 374, 379, 392, 398, 405, 410, 412, 418, 422, 425, 435, 443, 450, 458, 463, 467, 470, 471, 475, 477, 482, 484, 489, 498, 503, 512, 516, 520, 528, 533, 536, 549, 560, 565, 578, 584, 591, 593, 597, 603, 607, 612, 617, 624, 627, 634, 641, 643, 652, 655, 658, 664, 669, 680, 681, 689, 692, 694, 697, 701, 704, 710, 717, 725, 730, 735, 738, 745, 753, 764, 767, 773, 775, 776 ] }
715824755bd24cd99c65fa85c121edf4
What are some examples of phase change materials?
{ "tokens": [ "What", "are", "some", "examples", "of", "phase", "change", "materials", "?" ], "offsets": [ 0, 5, 9, 14, 23, 26, 32, 39, 48 ] }
{ "text": [ "paraffin wax and Glauber's salt" ], "char_spans": [ { "start": [ 31 ], "end": [ 61 ] } ], "token_spans": [ { "start": [ 5 ], "end": [ 10 ] } ] }
[ "paraffin wax and Glauber's salt" ]
SQuAD
Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%.
{ "tokens": [ "Phase", "change", "materials", "such", "as", "paraffin", "wax", "and", "Glauber", "'s", "salt", "are", "another", "thermal", "storage", "media", ".", "These", "materials", "are", "inexpensive", ",", "readily", "available", ",", "and", "can", "deliver", "domestically", "useful", "temperatures", "(", "approximately", "64", "°", "C", "or", "147", "°", "F", ")", ".", "The", "\"", "Dover", "House", "\"", "(", "in", "Dover", ",", "Massachusetts", ")", "was", "the", "first", "to", "use", "a", "Glauber", "'s", "salt", "heating", "system", ",", "in", "1948", ".", "Solar", "energy", "can", "also", "be", "stored", "at", "high", "temperatures", "using", "molten", "salts", ".", "Salts", "are", "an", "effective", "storage", "medium", "because", "they", "are", "low", "-", "cost", ",", "have", "a", "high", "specific", "heat", "capacity", "and", "can", "deliver", "heat", "at", "temperatures", "compatible", "with", "conventional", "power", "systems", ".", "The", "Solar", "Two", "used", "this", "method", "of", "energy", "storage", ",", "allowing", "it", "to", "store", "1.44", "terajoules", "(", "400,000", "kWh", ")", "in", "its", "68", "cubic", "metres", "storage", "tank", "with", "an", "annual", "storage", "efficiency", "of", "about", "99", "%", "." ], "offsets": [ 0, 6, 13, 23, 28, 31, 40, 44, 48, 55, 58, 63, 67, 75, 83, 91, 96, 98, 104, 114, 118, 129, 131, 139, 148, 150, 154, 158, 166, 179, 186, 199, 200, 214, 217, 218, 220, 223, 227, 228, 229, 230, 232, 236, 237, 243, 248, 250, 251, 254, 259, 261, 274, 276, 280, 284, 290, 293, 297, 299, 306, 309, 314, 322, 328, 330, 333, 337, 339, 345, 352, 356, 361, 364, 371, 374, 379, 392, 398, 405, 410, 412, 418, 422, 425, 435, 443, 450, 458, 463, 467, 470, 471, 475, 477, 482, 484, 489, 498, 503, 512, 516, 520, 528, 533, 536, 549, 560, 565, 578, 584, 591, 593, 597, 603, 607, 612, 617, 624, 627, 634, 641, 643, 652, 655, 658, 664, 669, 680, 681, 689, 692, 694, 697, 701, 704, 710, 717, 725, 730, 735, 738, 745, 753, 764, 767, 773, 775, 776 ] }
65fe41b0a23f4654b051e50f7fb4cc46
What are the approximate temperatures that can be delivered by phase change materials?
{ "tokens": [ "What", "are", "the", "approximate", "temperatures", "that", "can", "be", "delivered", "by", "phase", "change", "materials", "?" ], "offsets": [ 0, 5, 9, 13, 25, 38, 43, 47, 50, 60, 63, 69, 76, 85 ] }
{ "text": [ "64 °C or 147 °F" ], "char_spans": [ { "start": [ 214 ], "end": [ 228 ] } ], "token_spans": [ { "start": [ 33 ], "end": [ 39 ] } ] }
[ "64 °C or 147 °F" ]
SQuAD
Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%.
{ "tokens": [ "Phase", "change", "materials", "such", "as", "paraffin", "wax", "and", "Glauber", "'s", "salt", "are", "another", "thermal", "storage", "media", ".", "These", "materials", "are", "inexpensive", ",", "readily", "available", ",", "and", "can", "deliver", "domestically", "useful", "temperatures", "(", "approximately", "64", "°", "C", "or", "147", "°", "F", ")", ".", "The", "\"", "Dover", "House", "\"", "(", "in", "Dover", ",", "Massachusetts", ")", "was", "the", "first", "to", "use", "a", "Glauber", "'s", "salt", "heating", "system", ",", "in", "1948", ".", "Solar", "energy", "can", "also", "be", "stored", "at", "high", "temperatures", "using", "molten", "salts", ".", "Salts", "are", "an", "effective", "storage", "medium", "because", "they", "are", "low", "-", "cost", ",", "have", "a", "high", "specific", "heat", "capacity", "and", "can", "deliver", "heat", "at", "temperatures", "compatible", "with", "conventional", "power", "systems", ".", "The", "Solar", "Two", "used", "this", "method", "of", "energy", "storage", ",", "allowing", "it", "to", "store", "1.44", "terajoules", "(", "400,000", "kWh", ")", "in", "its", "68", "cubic", "metres", "storage", "tank", "with", "an", "annual", "storage", "efficiency", "of", "about", "99", "%", "." ], "offsets": [ 0, 6, 13, 23, 28, 31, 40, 44, 48, 55, 58, 63, 67, 75, 83, 91, 96, 98, 104, 114, 118, 129, 131, 139, 148, 150, 154, 158, 166, 179, 186, 199, 200, 214, 217, 218, 220, 223, 227, 228, 229, 230, 232, 236, 237, 243, 248, 250, 251, 254, 259, 261, 274, 276, 280, 284, 290, 293, 297, 299, 306, 309, 314, 322, 328, 330, 333, 337, 339, 345, 352, 356, 361, 364, 371, 374, 379, 392, 398, 405, 410, 412, 418, 422, 425, 435, 443, 450, 458, 463, 467, 470, 471, 475, 477, 482, 484, 489, 498, 503, 512, 516, 520, 528, 533, 536, 549, 560, 565, 578, 584, 591, 593, 597, 603, 607, 612, 617, 624, 627, 634, 641, 643, 652, 655, 658, 664, 669, 680, 681, 689, 692, 694, 697, 701, 704, 710, 717, 725, 730, 735, 738, 745, 753, 764, 767, 773, 775, 776 ] }
8d147afd119347bebafb4a78831b3bef
What was the name of the heating system that first used Glauber's salt?
{ "tokens": [ "What", "was", "the", "name", "of", "the", "heating", "system", "that", "first", "used", "Glauber", "'s", "salt", "?" ], "offsets": [ 0, 5, 9, 13, 18, 21, 25, 33, 40, 45, 51, 56, 63, 66, 70 ] }
{ "text": [ "Dover House" ], "char_spans": [ { "start": [ 237 ], "end": [ 247 ] } ], "token_spans": [ { "start": [ 44 ], "end": [ 45 ] } ] }
[ "Dover House" ]
SQuAD
Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%.
{ "tokens": [ "Phase", "change", "materials", "such", "as", "paraffin", "wax", "and", "Glauber", "'s", "salt", "are", "another", "thermal", "storage", "media", ".", "These", "materials", "are", "inexpensive", ",", "readily", "available", ",", "and", "can", "deliver", "domestically", "useful", "temperatures", "(", "approximately", "64", "°", "C", "or", "147", "°", "F", ")", ".", "The", "\"", "Dover", "House", "\"", "(", "in", "Dover", ",", "Massachusetts", ")", "was", "the", "first", "to", "use", "a", "Glauber", "'s", "salt", "heating", "system", ",", "in", "1948", ".", "Solar", "energy", "can", "also", "be", "stored", "at", "high", "temperatures", "using", "molten", "salts", ".", "Salts", "are", "an", "effective", "storage", "medium", "because", "they", "are", "low", "-", "cost", ",", "have", "a", "high", "specific", "heat", "capacity", "and", "can", "deliver", "heat", "at", "temperatures", "compatible", "with", "conventional", "power", "systems", ".", "The", "Solar", "Two", "used", "this", "method", "of", "energy", "storage", ",", "allowing", "it", "to", "store", "1.44", "terajoules", "(", "400,000", "kWh", ")", "in", "its", "68", "cubic", "metres", "storage", "tank", "with", "an", "annual", "storage", "efficiency", "of", "about", "99", "%", "." ], "offsets": [ 0, 6, 13, 23, 28, 31, 40, 44, 48, 55, 58, 63, 67, 75, 83, 91, 96, 98, 104, 114, 118, 129, 131, 139, 148, 150, 154, 158, 166, 179, 186, 199, 200, 214, 217, 218, 220, 223, 227, 228, 229, 230, 232, 236, 237, 243, 248, 250, 251, 254, 259, 261, 274, 276, 280, 284, 290, 293, 297, 299, 306, 309, 314, 322, 328, 330, 333, 337, 339, 345, 352, 356, 361, 364, 371, 374, 379, 392, 398, 405, 410, 412, 418, 422, 425, 435, 443, 450, 458, 463, 467, 470, 471, 475, 477, 482, 484, 489, 498, 503, 512, 516, 520, 528, 533, 536, 549, 560, 565, 578, 584, 591, 593, 597, 603, 607, 612, 617, 624, 627, 634, 641, 643, 652, 655, 658, 664, 669, 680, 681, 689, 692, 694, 697, 701, 704, 710, 717, 725, 730, 735, 738, 745, 753, 764, 767, 773, 775, 776 ] }
c6e9d55ab9bc485ab588411e15f6323c
Why are salts good for thermal storage?
{ "tokens": [ "Why", "are", "salts", "good", " ", "for", "thermal", "storage", "?" ], "offsets": [ 0, 4, 8, 14, 19, 20, 24, 32, 39 ] }
{ "text": [ "they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems" ], "char_spans": [ { "start": [ 458 ], "end": [ 590 ] } ], "token_spans": [ { "start": [ 88 ], "end": [ 110 ] } ] }
[ "they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems" ]
SQuAD
Phase change materials such as paraffin wax and Glauber's salt are another thermal storage media. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 cubic metres storage tank with an annual storage efficiency of about 99%.
{ "tokens": [ "Phase", "change", "materials", "such", "as", "paraffin", "wax", "and", "Glauber", "'s", "salt", "are", "another", "thermal", "storage", "media", ".", "These", "materials", "are", "inexpensive", ",", "readily", "available", ",", "and", "can", "deliver", "domestically", "useful", "temperatures", "(", "approximately", "64", "°", "C", "or", "147", "°", "F", ")", ".", "The", "\"", "Dover", "House", "\"", "(", "in", "Dover", ",", "Massachusetts", ")", "was", "the", "first", "to", "use", "a", "Glauber", "'s", "salt", "heating", "system", ",", "in", "1948", ".", "Solar", "energy", "can", "also", "be", "stored", "at", "high", "temperatures", "using", "molten", "salts", ".", "Salts", "are", "an", "effective", "storage", "medium", "because", "they", "are", "low", "-", "cost", ",", "have", "a", "high", "specific", "heat", "capacity", "and", "can", "deliver", "heat", "at", "temperatures", "compatible", "with", "conventional", "power", "systems", ".", "The", "Solar", "Two", "used", "this", "method", "of", "energy", "storage", ",", "allowing", "it", "to", "store", "1.44", "terajoules", "(", "400,000", "kWh", ")", "in", "its", "68", "cubic", "metres", "storage", "tank", "with", "an", "annual", "storage", "efficiency", "of", "about", "99", "%", "." ], "offsets": [ 0, 6, 13, 23, 28, 31, 40, 44, 48, 55, 58, 63, 67, 75, 83, 91, 96, 98, 104, 114, 118, 129, 131, 139, 148, 150, 154, 158, 166, 179, 186, 199, 200, 214, 217, 218, 220, 223, 227, 228, 229, 230, 232, 236, 237, 243, 248, 250, 251, 254, 259, 261, 274, 276, 280, 284, 290, 293, 297, 299, 306, 309, 314, 322, 328, 330, 333, 337, 339, 345, 352, 356, 361, 364, 371, 374, 379, 392, 398, 405, 410, 412, 418, 422, 425, 435, 443, 450, 458, 463, 467, 470, 471, 475, 477, 482, 484, 489, 498, 503, 512, 516, 520, 528, 533, 536, 549, 560, 565, 578, 584, 591, 593, 597, 603, 607, 612, 617, 624, 627, 634, 641, 643, 652, 655, 658, 664, 669, 680, 681, 689, 692, 694, 697, 701, 704, 710, 717, 725, 730, 735, 738, 745, 753, 764, 767, 773, 775, 776 ] }
55baad8273ac4d5884621e8756691f1a
How much energy was the Solar Two able to store using salts?
{ "tokens": [ "How", "much", "energy", "was", "the", "Solar", "Two", "able", "to", "store", "using", "salts", "?" ], "offsets": [ 0, 4, 9, 16, 20, 24, 30, 34, 39, 42, 48, 54, 59 ] }
{ "text": [ "1.44 terajoules (400,000 kWh)" ], "char_spans": [ { "start": [ 664 ], "end": [ 692 ] } ], "token_spans": [ { "start": [ 126 ], "end": [ 131 ] } ] }
[ "1.44 terajoules (400,000 kWh)" ]
SQuAD
Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect.
{ "tokens": [ "Solar", "power", "is", "the", "conversion", "of", "sunlight", "into", "electricity", ",", "either", "directly", "using", "photovoltaics", "(", "PV", ")", ",", "or", "indirectly", "using", "concentrated", "solar", "power", "(", "CSP", ")", ".", "CSP", "systems", "use", "lenses", "or", "mirrors", "and", "tracking", "systems", "to", "focus", "a", "large", "area", "of", "sunlight", "into", "a", "small", "beam", ".", "PV", "converts", "light", "into", "electric", "current", "using", "the", "photoelectric", "effect", "." ], "offsets": [ 0, 6, 12, 15, 19, 30, 33, 42, 47, 58, 60, 67, 76, 82, 96, 97, 99, 100, 102, 105, 116, 122, 135, 141, 147, 148, 151, 152, 154, 158, 166, 170, 177, 180, 188, 192, 201, 209, 212, 218, 220, 226, 231, 234, 243, 248, 250, 256, 260, 262, 265, 274, 280, 285, 294, 302, 308, 312, 326, 332 ] }
9e230dfd77084baab3dfb50599bb45bf
What is solar power?
{ "tokens": [ "What", "is", "solar", "power", "?" ], "offsets": [ 0, 5, 8, 14, 19 ] }
{ "text": [ "conversion of sunlight into electricity" ], "char_spans": [ { "start": [ 19 ], "end": [ 57 ] } ], "token_spans": [ { "start": [ 4 ], "end": [ 8 ] } ] }
[ "conversion of sunlight into electricity" ]
SQuAD
Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect.
{ "tokens": [ "Solar", "power", "is", "the", "conversion", "of", "sunlight", "into", "electricity", ",", "either", "directly", "using", "photovoltaics", "(", "PV", ")", ",", "or", "indirectly", "using", "concentrated", "solar", "power", "(", "CSP", ")", ".", "CSP", "systems", "use", "lenses", "or", "mirrors", "and", "tracking", "systems", "to", "focus", "a", "large", "area", "of", "sunlight", "into", "a", "small", "beam", ".", "PV", "converts", "light", "into", "electric", "current", "using", "the", "photoelectric", "effect", "." ], "offsets": [ 0, 6, 12, 15, 19, 30, 33, 42, 47, 58, 60, 67, 76, 82, 96, 97, 99, 100, 102, 105, 116, 122, 135, 141, 147, 148, 151, 152, 154, 158, 166, 170, 177, 180, 188, 192, 201, 209, 212, 218, 220, 226, 231, 234, 243, 248, 250, 256, 260, 262, 265, 274, 280, 285, 294, 302, 308, 312, 326, 332 ] }
a63562a9d8e945e69d041f643c8872b4
How is sunlight converted into electricity?
{ "tokens": [ "How", "is", "sunlight", "converted", "into", "electricity", "?" ], "offsets": [ 0, 4, 7, 16, 26, 31, 42 ] }
{ "text": [ "either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP)" ], "char_spans": [ { "start": [ 60 ], "end": [ 151 ] } ], "token_spans": [ { "start": [ 10 ], "end": [ 26 ] } ] }
[ "either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP)" ]
SQuAD
Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect.
{ "tokens": [ "Solar", "power", "is", "the", "conversion", "of", "sunlight", "into", "electricity", ",", "either", "directly", "using", "photovoltaics", "(", "PV", ")", ",", "or", "indirectly", "using", "concentrated", "solar", "power", "(", "CSP", ")", ".", "CSP", "systems", "use", "lenses", "or", "mirrors", "and", "tracking", "systems", "to", "focus", "a", "large", "area", "of", "sunlight", "into", "a", "small", "beam", ".", "PV", "converts", "light", "into", "electric", "current", "using", "the", "photoelectric", "effect", "." ], "offsets": [ 0, 6, 12, 15, 19, 30, 33, 42, 47, 58, 60, 67, 76, 82, 96, 97, 99, 100, 102, 105, 116, 122, 135, 141, 147, 148, 151, 152, 154, 158, 166, 170, 177, 180, 188, 192, 201, 209, 212, 218, 220, 226, 231, 234, 243, 248, 250, 256, 260, 262, 265, 274, 280, 285, 294, 302, 308, 312, 326, 332 ] }
f6710fb63c2c40a1af0c1b55d2b5d459
What does a concentrated solar power system use?
{ "tokens": [ "What", "does", "a", "concentrated", "solar", "power", "system", "use", "?" ], "offsets": [ 0, 5, 10, 12, 25, 31, 37, 44, 47 ] }
{ "text": [ "lenses or mirrors and tracking systems" ], "char_spans": [ { "start": [ 170 ], "end": [ 207 ] } ], "token_spans": [ { "start": [ 31 ], "end": [ 36 ] } ] }
[ "lenses or mirrors and tracking systems" ]
SQuAD
Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect.
{ "tokens": [ "Solar", "power", "is", "the", "conversion", "of", "sunlight", "into", "electricity", ",", "either", "directly", "using", "photovoltaics", "(", "PV", ")", ",", "or", "indirectly", "using", "concentrated", "solar", "power", "(", "CSP", ")", ".", "CSP", "systems", "use", "lenses", "or", "mirrors", "and", "tracking", "systems", "to", "focus", "a", "large", "area", "of", "sunlight", "into", "a", "small", "beam", ".", "PV", "converts", "light", "into", "electric", "current", "using", "the", "photoelectric", "effect", "." ], "offsets": [ 0, 6, 12, 15, 19, 30, 33, 42, 47, 58, 60, 67, 76, 82, 96, 97, 99, 100, 102, 105, 116, 122, 135, 141, 147, 148, 151, 152, 154, 158, 166, 170, 177, 180, 188, 192, 201, 209, 212, 218, 220, 226, 231, 234, 243, 248, 250, 256, 260, 262, 265, 274, 280, 285, 294, 302, 308, 312, 326, 332 ] }
8af9af98003a4c178970c16b2b2aed3e
What is the purpose of a concentrated solar power system?
{ "tokens": [ "What", "is", "the", "purpose", "of", "a", "concentrated", "solar", "power", "system", "?" ], "offsets": [ 0, 5, 8, 12, 20, 23, 25, 38, 44, 50, 56 ] }
{ "text": [ "focus a large area of sunlight into a small beam" ], "char_spans": [ { "start": [ 212 ], "end": [ 259 ] } ], "token_spans": [ { "start": [ 38 ], "end": [ 47 ] } ] }
[ "focus a large area of sunlight into a small beam" ]
SQuAD
Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect.
{ "tokens": [ "Solar", "power", "is", "the", "conversion", "of", "sunlight", "into", "electricity", ",", "either", "directly", "using", "photovoltaics", "(", "PV", ")", ",", "or", "indirectly", "using", "concentrated", "solar", "power", "(", "CSP", ")", ".", "CSP", "systems", "use", "lenses", "or", "mirrors", "and", "tracking", "systems", "to", "focus", "a", "large", "area", "of", "sunlight", "into", "a", "small", "beam", ".", "PV", "converts", "light", "into", "electric", "current", "using", "the", "photoelectric", "effect", "." ], "offsets": [ 0, 6, 12, 15, 19, 30, 33, 42, 47, 58, 60, 67, 76, 82, 96, 97, 99, 100, 102, 105, 116, 122, 135, 141, 147, 148, 151, 152, 154, 158, 166, 170, 177, 180, 188, 192, 201, 209, 212, 218, 220, 226, 231, 234, 243, 248, 250, 256, 260, 262, 265, 274, 280, 285, 294, 302, 308, 312, 326, 332 ] }
e079f2650e2840cf857d6b0d9149b7b0
What method does the photovoltaics system use to turn light into electricity?
{ "tokens": [ "What", "method", "does", "the", "photovoltaics", "system", "use", "to", "turn", "light", "into", "electricity", "?" ], "offsets": [ 0, 5, 12, 17, 21, 35, 42, 46, 49, 54, 60, 65, 76 ] }
{ "text": [ "photoelectric effect" ], "char_spans": [ { "start": [ 312 ], "end": [ 331 ] } ], "token_spans": [ { "start": [ 57 ], "end": [ 58 ] } ] }
[ "photoelectric effect" ]
SQuAD
Beginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.
{ "tokens": [ "Beginning", "with", "the", "surge", "in", "coal", "use", "which", "accompanied", "the", "Industrial", "Revolution", ",", "energy", "consumption", "has", "steadily", "transitioned", "from", "wood", "and", "biomass", "to", "fossil", "fuels", ".", "The", "early", "development", "of", "solar", "technologies", "starting", "in", "the", "1860s", "was", "driven", "by", "an", "expectation", "that", "coal", "would", "soon", "become", "scarce", ".", "However", ",", "development", "of", "solar", "technologies", "stagnated", "in", "the", "early", "20th", "century", "in", "the", "face", "of", "the", "increasing", "availability", ",", "economy", ",", "and", "utility", "of", "coal", "and", "petroleum", "." ], "offsets": [ 0, 10, 15, 19, 25, 28, 33, 37, 43, 55, 59, 70, 80, 82, 89, 101, 105, 114, 127, 132, 137, 141, 149, 152, 159, 164, 166, 170, 176, 188, 191, 197, 210, 219, 222, 226, 232, 236, 243, 246, 249, 261, 266, 271, 277, 282, 289, 295, 297, 304, 306, 318, 321, 327, 340, 350, 353, 357, 363, 368, 376, 379, 383, 388, 391, 395, 406, 418, 420, 427, 429, 433, 441, 444, 449, 453, 462 ] }
d84e11a6e36b4e739f16aeb2473af37f
Why was solar technology developed in the 1860s?
{ "tokens": [ "Why", "was", "solar", "technology", "developed", "in", "the", "1860s", "?" ], "offsets": [ 0, 4, 8, 14, 25, 35, 38, 42, 47 ] }
{ "text": [ "driven by an expectation that coal would soon become scarce" ], "char_spans": [ { "start": [ 236 ], "end": [ 294 ] } ], "token_spans": [ { "start": [ 37 ], "end": [ 46 ] } ] }
[ "driven by an expectation that coal would soon become scarce" ]
SQuAD
Beginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.
{ "tokens": [ "Beginning", "with", "the", "surge", "in", "coal", "use", "which", "accompanied", "the", "Industrial", "Revolution", ",", "energy", "consumption", "has", "steadily", "transitioned", "from", "wood", "and", "biomass", "to", "fossil", "fuels", ".", "The", "early", "development", "of", "solar", "technologies", "starting", "in", "the", "1860s", "was", "driven", "by", "an", "expectation", "that", "coal", "would", "soon", "become", "scarce", ".", "However", ",", "development", "of", "solar", "technologies", "stagnated", "in", "the", "early", "20th", "century", "in", "the", "face", "of", "the", "increasing", "availability", ",", "economy", ",", "and", "utility", "of", "coal", "and", "petroleum", "." ], "offsets": [ 0, 10, 15, 19, 25, 28, 33, 37, 43, 55, 59, 70, 80, 82, 89, 101, 105, 114, 127, 132, 137, 141, 149, 152, 159, 164, 166, 170, 176, 188, 191, 197, 210, 219, 222, 226, 232, 236, 243, 246, 249, 261, 266, 271, 277, 282, 289, 295, 297, 304, 306, 318, 321, 327, 340, 350, 353, 357, 363, 368, 376, 379, 383, 388, 391, 395, 406, 418, 420, 427, 429, 433, 441, 444, 449, 453, 462 ] }
57bec4264cf14a838db6c42e0ce993af
What slowed the development of solar technologies in the early 20th century?
{ "tokens": [ "What", "slowed", "the", "development", "of", "solar", "technologies", "in", "the", "early", "20th", "century", "?" ], "offsets": [ 0, 5, 12, 16, 28, 31, 37, 50, 53, 57, 63, 68, 75 ] }
{ "text": [ "increasing availability, economy, and utility of coal and petroleum" ], "char_spans": [ { "start": [ 395 ], "end": [ 461 ] } ], "token_spans": [ { "start": [ 65 ], "end": [ 75 ] } ] }
[ "increasing availability, economy, and utility of coal and petroleum" ]
SQuAD
Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from a fossil fuel source and can also convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical. A variety of fuels can be produced by artificial photosynthesis. The multielectron catalytic chemistry involved in making carbon-based fuels (such as methanol) from reduction of carbon dioxide is challenging; a feasible alternative is hydrogen production from protons, though use of water as the source of electrons (as plants do) requires mastering the multielectron oxidation of two water molecules to molecular oxygen. Some have envisaged working solar fuel plants in coastal metropolitan areas by 2050 – the splitting of sea water providing hydrogen to be run through adjacent fuel-cell electric power plants and the pure water by-product going directly into the municipal water system. Another vision involves all human structures covering the earth's surface (i.e., roads, vehicles and buildings) doing photosynthesis more efficiently than plants.
{ "tokens": [ "Solar", "chemical", "processes", "use", "solar", "energy", "to", "drive", "chemical", "reactions", ".", "These", "processes", "offset", "energy", "that", "would", "otherwise", "come", "from", "a", "fossil", "fuel", "source", "and", "can", "also", "convert", "solar", "energy", "into", "storable", "and", "transportable", "fuels", ".", "Solar", "induced", "chemical", "reactions", "can", "be", "divided", "into", "thermochemical", "or", "photochemical", ".", "A", "variety", "of", "fuels", "can", "be", "produced", "by", "artificial", "photosynthesis", ".", "The", "multielectron", "catalytic", "chemistry", "involved", "in", "making", "carbon", "-", "based", "fuels", "(", "such", "as", "methanol", ")", "from", "reduction", "of", "carbon", "dioxide", "is", "challenging", ";", "a", "feasible", "alternative", "is", "hydrogen", "production", "from", "protons", ",", "though", "use", "of", "water", "as", "the", "source", "of", "electrons", "(", "as", "plants", "do", ")", "requires", "mastering", "the", "multielectron", "oxidation", "of", "two", "water", "molecules", "to", "molecular", "oxygen", ".", "Some", "have", "envisaged", "working", "solar", "fuel", "plants", "in", "coastal", "metropolitan", "areas", "by", "2050", "–", "the", "splitting", "of", "sea", "water", "providing", "hydrogen", "to", "be", "run", "through", "adjacent", "fuel", "-", "cell", "electric", "power", "plants", "and", "the", "pure", "water", "by", "-", "product", "going", "directly", "into", "the", "municipal", "water", "system", ".", "Another", "vision", "involves", "all", "human", "structures", "covering", "the", "earth", "'s", "surface", "(", "i.e.", ",", "roads", ",", "vehicles", "and", "buildings", ")", "doing", "photosynthesis", "more", "efficiently", "than", "plants", "." ], "offsets": [ 0, 6, 15, 25, 29, 35, 42, 45, 51, 60, 69, 71, 77, 87, 94, 101, 106, 112, 122, 127, 132, 134, 141, 146, 153, 157, 161, 166, 174, 180, 187, 192, 201, 205, 219, 224, 226, 232, 240, 249, 259, 263, 266, 274, 279, 294, 297, 310, 312, 314, 322, 325, 331, 335, 338, 347, 350, 361, 375, 377, 381, 395, 405, 415, 424, 427, 434, 440, 441, 447, 453, 454, 459, 462, 470, 472, 477, 487, 490, 497, 505, 508, 519, 521, 523, 532, 544, 547, 556, 567, 572, 579, 581, 588, 592, 595, 601, 604, 608, 615, 618, 628, 629, 632, 639, 641, 643, 652, 662, 666, 680, 690, 693, 697, 703, 713, 716, 726, 732, 734, 739, 744, 754, 762, 768, 773, 780, 783, 791, 804, 810, 813, 818, 821, 825, 835, 838, 842, 848, 858, 867, 870, 873, 877, 885, 894, 898, 899, 904, 913, 919, 926, 930, 934, 939, 945, 947, 948, 956, 962, 971, 976, 980, 990, 996, 1002, 1004, 1012, 1019, 1028, 1032, 1038, 1049, 1058, 1062, 1067, 1070, 1078, 1079, 1083, 1085, 1090, 1092, 1101, 1105, 1114, 1116, 1122, 1137, 1142, 1154, 1159, 1165 ] }
af4687acf7d44893b0d0557a90b92a9b
What is a possible alternative to making carbon-based fuels from reduction of carbon dioxide?
{ "tokens": [ "What", "is", "a", "possible", "alternative", "to", "making", "carbon", "-", "based", "fuels", "from", "reduction", "of", "carbon", "dioxide", "?" ], "offsets": [ 0, 5, 8, 10, 19, 31, 34, 41, 47, 48, 54, 60, 65, 75, 78, 85, 92 ] }
{ "text": [ "hydrogen production from protons" ], "char_spans": [ { "start": [ 547 ], "end": [ 578 ] } ], "token_spans": [ { "start": [ 87 ], "end": [ 90 ] } ] }
[ "hydrogen production from protons" ]
SQuAD
Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from a fossil fuel source and can also convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical. A variety of fuels can be produced by artificial photosynthesis. The multielectron catalytic chemistry involved in making carbon-based fuels (such as methanol) from reduction of carbon dioxide is challenging; a feasible alternative is hydrogen production from protons, though use of water as the source of electrons (as plants do) requires mastering the multielectron oxidation of two water molecules to molecular oxygen. Some have envisaged working solar fuel plants in coastal metropolitan areas by 2050 – the splitting of sea water providing hydrogen to be run through adjacent fuel-cell electric power plants and the pure water by-product going directly into the municipal water system. Another vision involves all human structures covering the earth's surface (i.e., roads, vehicles and buildings) doing photosynthesis more efficiently than plants.
{ "tokens": [ "Solar", "chemical", "processes", "use", "solar", "energy", "to", "drive", "chemical", "reactions", ".", "These", "processes", "offset", "energy", "that", "would", "otherwise", "come", "from", "a", "fossil", "fuel", "source", "and", "can", "also", "convert", "solar", "energy", "into", "storable", "and", "transportable", "fuels", ".", "Solar", "induced", "chemical", "reactions", "can", "be", "divided", "into", "thermochemical", "or", "photochemical", ".", "A", "variety", "of", "fuels", "can", "be", "produced", "by", "artificial", "photosynthesis", ".", "The", "multielectron", "catalytic", "chemistry", "involved", "in", "making", "carbon", "-", "based", "fuels", "(", "such", "as", "methanol", ")", "from", "reduction", "of", "carbon", "dioxide", "is", "challenging", ";", "a", "feasible", "alternative", "is", "hydrogen", "production", "from", "protons", ",", "though", "use", "of", "water", "as", "the", "source", "of", "electrons", "(", "as", "plants", "do", ")", "requires", "mastering", "the", "multielectron", "oxidation", "of", "two", "water", "molecules", "to", "molecular", "oxygen", ".", "Some", "have", "envisaged", "working", "solar", "fuel", "plants", "in", "coastal", "metropolitan", "areas", "by", "2050", "–", "the", "splitting", "of", "sea", "water", "providing", "hydrogen", "to", "be", "run", "through", "adjacent", "fuel", "-", "cell", "electric", "power", "plants", "and", "the", "pure", "water", "by", "-", "product", "going", "directly", "into", "the", "municipal", "water", "system", ".", "Another", "vision", "involves", "all", "human", "structures", "covering", "the", "earth", "'s", "surface", "(", "i.e.", ",", "roads", ",", "vehicles", "and", "buildings", ")", "doing", "photosynthesis", "more", "efficiently", "than", "plants", "." ], "offsets": [ 0, 6, 15, 25, 29, 35, 42, 45, 51, 60, 69, 71, 77, 87, 94, 101, 106, 112, 122, 127, 132, 134, 141, 146, 153, 157, 161, 166, 174, 180, 187, 192, 201, 205, 219, 224, 226, 232, 240, 249, 259, 263, 266, 274, 279, 294, 297, 310, 312, 314, 322, 325, 331, 335, 338, 347, 350, 361, 375, 377, 381, 395, 405, 415, 424, 427, 434, 440, 441, 447, 453, 454, 459, 462, 470, 472, 477, 487, 490, 497, 505, 508, 519, 521, 523, 532, 544, 547, 556, 567, 572, 579, 581, 588, 592, 595, 601, 604, 608, 615, 618, 628, 629, 632, 639, 641, 643, 652, 662, 666, 680, 690, 693, 697, 703, 713, 716, 726, 732, 734, 739, 744, 754, 762, 768, 773, 780, 783, 791, 804, 810, 813, 818, 821, 825, 835, 838, 842, 848, 858, 867, 870, 873, 877, 885, 894, 898, 899, 904, 913, 919, 926, 930, 934, 939, 945, 947, 948, 956, 962, 971, 976, 980, 990, 996, 1002, 1004, 1012, 1019, 1028, 1032, 1038, 1049, 1058, 1062, 1067, 1070, 1078, 1079, 1083, 1085, 1090, 1092, 1101, 1105, 1114, 1116, 1122, 1137, 1142, 1154, 1159, 1165 ] }
fb8868e0f5e9449090e19b525752d68e
What process converts solar energy into storable and transportable fuels?
{ "tokens": [ "What", "process", "converts", "solar", "energy", "into", "storable", "and", "transportable", "fuels", "?" ], "offsets": [ 0, 5, 13, 22, 28, 35, 40, 49, 53, 67, 72 ] }
{ "text": [ "Solar chemical processes" ], "char_spans": [ { "start": [ 0 ], "end": [ 23 ] } ], "token_spans": [ { "start": [ 0 ], "end": [ 2 ] } ] }
[ "Solar chemical processes" ]
SQuAD
Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from a fossil fuel source and can also convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical. A variety of fuels can be produced by artificial photosynthesis. The multielectron catalytic chemistry involved in making carbon-based fuels (such as methanol) from reduction of carbon dioxide is challenging; a feasible alternative is hydrogen production from protons, though use of water as the source of electrons (as plants do) requires mastering the multielectron oxidation of two water molecules to molecular oxygen. Some have envisaged working solar fuel plants in coastal metropolitan areas by 2050 – the splitting of sea water providing hydrogen to be run through adjacent fuel-cell electric power plants and the pure water by-product going directly into the municipal water system. Another vision involves all human structures covering the earth's surface (i.e., roads, vehicles and buildings) doing photosynthesis more efficiently than plants.
{ "tokens": [ "Solar", "chemical", "processes", "use", "solar", "energy", "to", "drive", "chemical", "reactions", ".", "These", "processes", "offset", "energy", "that", "would", "otherwise", "come", "from", "a", "fossil", "fuel", "source", "and", "can", "also", "convert", "solar", "energy", "into", "storable", "and", "transportable", "fuels", ".", "Solar", "induced", "chemical", "reactions", "can", "be", "divided", "into", "thermochemical", "or", "photochemical", ".", "A", "variety", "of", "fuels", "can", "be", "produced", "by", "artificial", "photosynthesis", ".", "The", "multielectron", "catalytic", "chemistry", "involved", "in", "making", "carbon", "-", "based", "fuels", "(", "such", "as", "methanol", ")", "from", "reduction", "of", "carbon", "dioxide", "is", "challenging", ";", "a", "feasible", "alternative", "is", "hydrogen", "production", "from", "protons", ",", "though", "use", "of", "water", "as", "the", "source", "of", "electrons", "(", "as", "plants", "do", ")", "requires", "mastering", "the", "multielectron", "oxidation", "of", "two", "water", "molecules", "to", "molecular", "oxygen", ".", "Some", "have", "envisaged", "working", "solar", "fuel", "plants", "in", "coastal", "metropolitan", "areas", "by", "2050", "–", "the", "splitting", "of", "sea", "water", "providing", "hydrogen", "to", "be", "run", "through", "adjacent", "fuel", "-", "cell", "electric", "power", "plants", "and", "the", "pure", "water", "by", "-", "product", "going", "directly", "into", "the", "municipal", "water", "system", ".", "Another", "vision", "involves", "all", "human", "structures", "covering", "the", "earth", "'s", "surface", "(", "i.e.", ",", "roads", ",", "vehicles", "and", "buildings", ")", "doing", "photosynthesis", "more", "efficiently", "than", "plants", "." ], "offsets": [ 0, 6, 15, 25, 29, 35, 42, 45, 51, 60, 69, 71, 77, 87, 94, 101, 106, 112, 122, 127, 132, 134, 141, 146, 153, 157, 161, 166, 174, 180, 187, 192, 201, 205, 219, 224, 226, 232, 240, 249, 259, 263, 266, 274, 279, 294, 297, 310, 312, 314, 322, 325, 331, 335, 338, 347, 350, 361, 375, 377, 381, 395, 405, 415, 424, 427, 434, 440, 441, 447, 453, 454, 459, 462, 470, 472, 477, 487, 490, 497, 505, 508, 519, 521, 523, 532, 544, 547, 556, 567, 572, 579, 581, 588, 592, 595, 601, 604, 608, 615, 618, 628, 629, 632, 639, 641, 643, 652, 662, 666, 680, 690, 693, 697, 703, 713, 716, 726, 732, 734, 739, 744, 754, 762, 768, 773, 780, 783, 791, 804, 810, 813, 818, 821, 825, 835, 838, 842, 848, 858, 867, 870, 873, 877, 885, 894, 898, 899, 904, 913, 919, 926, 930, 934, 939, 945, 947, 948, 956, 962, 971, 976, 980, 990, 996, 1002, 1004, 1012, 1019, 1028, 1032, 1038, 1049, 1058, 1062, 1067, 1070, 1078, 1079, 1083, 1085, 1090, 1092, 1101, 1105, 1114, 1116, 1122, 1137, 1142, 1154, 1159, 1165 ] }
d341d6d32d1f40419001d9a6e6b4b74a
What solar process can be used to produce different fuels?
{ "tokens": [ "What", "solar", "process", "can", "be", "used", "to", "produce", "different", "fuels", "?" ], "offsets": [ 0, 5, 11, 19, 23, 26, 31, 34, 42, 52, 57 ] }
{ "text": [ "artificial photosynthesis" ], "char_spans": [ { "start": [ 350 ], "end": [ 374 ] } ], "token_spans": [ { "start": [ 56 ], "end": [ 57 ] } ] }
[ "artificial photosynthesis" ]
SQuAD
Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007.
{ "tokens": [ "Commercial", "solar", "water", "heaters", "began", "appearing", "in", "the", "United", "States", "in", "the", "1890s", ".", "These", "systems", "saw", "increasing", "use", "until", "the", "1920s", "but", "were", "gradually", "replaced", "by", "cheaper", "and", "more", "reliable", "heating", "fuels", ".", "As", "with", "photovoltaics", ",", "solar", "water", "heating", "attracted", "renewed", "attention", "as", "a", "result", "of", "the", "oil", "crises", "in", "the", "1970s", "but", "interest", "subsided", "in", "the", "1980s", "due", "to", "falling", "petroleum", "prices", ".", "Development", "in", "the", "solar", "water", "heating", "sector", "progressed", "steadily", "throughout", "the", "1990s", "and", "growth", "rates", "have", "averaged", "20", "%", "per", "year", "since", "1999", ".", "Although", "generally", "underestimated", ",", "solar", "water", "heating", "and", "cooling", "is", "by", "far", "the", "most", "widely", "deployed", "solar", "technology", "with", "an", "estimated", "capacity", "of", "154", "GW", "as", "of", "2007", "." ], "offsets": [ 0, 11, 17, 23, 31, 37, 47, 50, 54, 61, 68, 71, 75, 80, 82, 88, 96, 100, 111, 115, 121, 125, 131, 135, 140, 150, 159, 162, 170, 174, 179, 188, 196, 201, 203, 206, 211, 224, 226, 232, 238, 246, 256, 264, 274, 277, 279, 286, 289, 293, 297, 304, 307, 311, 317, 321, 330, 339, 342, 346, 352, 356, 359, 367, 377, 383, 385, 397, 400, 404, 410, 416, 424, 431, 442, 451, 462, 466, 472, 476, 483, 489, 494, 503, 505, 507, 511, 516, 522, 526, 528, 537, 547, 561, 563, 569, 575, 583, 587, 595, 598, 601, 605, 609, 614, 621, 630, 636, 647, 652, 655, 665, 674, 677, 681, 684, 687, 690, 694 ] }
fd5e3dcbf4b14af7839fc9a1af369a70
The solar water heaters introduced in the US in the 1890s saw growth until what time period?
{ "tokens": [ "The", "solar", "water", "heaters", "introduced", "in", "the", "US", "in", "the", "1890s", "saw", "growth", "until", "what", "time", "period", "?" ], "offsets": [ 0, 4, 10, 16, 24, 35, 38, 42, 45, 48, 52, 58, 62, 69, 75, 80, 85, 91 ] }
{ "text": [ "the 1920s" ], "char_spans": [ { "start": [ 121 ], "end": [ 129 ] } ], "token_spans": [ { "start": [ 20 ], "end": [ 21 ] } ] }
[ "the 1920s" ]
SQuAD
Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007.
{ "tokens": [ "Commercial", "solar", "water", "heaters", "began", "appearing", "in", "the", "United", "States", "in", "the", "1890s", ".", "These", "systems", "saw", "increasing", "use", "until", "the", "1920s", "but", "were", "gradually", "replaced", "by", "cheaper", "and", "more", "reliable", "heating", "fuels", ".", "As", "with", "photovoltaics", ",", "solar", "water", "heating", "attracted", "renewed", "attention", "as", "a", "result", "of", "the", "oil", "crises", "in", "the", "1970s", "but", "interest", "subsided", "in", "the", "1980s", "due", "to", "falling", "petroleum", "prices", ".", "Development", "in", "the", "solar", "water", "heating", "sector", "progressed", "steadily", "throughout", "the", "1990s", "and", "growth", "rates", "have", "averaged", "20", "%", "per", "year", "since", "1999", ".", "Although", "generally", "underestimated", ",", "solar", "water", "heating", "and", "cooling", "is", "by", "far", "the", "most", "widely", "deployed", "solar", "technology", "with", "an", "estimated", "capacity", "of", "154", "GW", "as", "of", "2007", "." ], "offsets": [ 0, 11, 17, 23, 31, 37, 47, 50, 54, 61, 68, 71, 75, 80, 82, 88, 96, 100, 111, 115, 121, 125, 131, 135, 140, 150, 159, 162, 170, 174, 179, 188, 196, 201, 203, 206, 211, 224, 226, 232, 238, 246, 256, 264, 274, 277, 279, 286, 289, 293, 297, 304, 307, 311, 317, 321, 330, 339, 342, 346, 352, 356, 359, 367, 377, 383, 385, 397, 400, 404, 410, 416, 424, 431, 442, 451, 462, 466, 472, 476, 483, 489, 494, 503, 505, 507, 511, 516, 522, 526, 528, 537, 547, 561, 563, 569, 575, 583, 587, 595, 598, 601, 605, 609, 614, 621, 630, 636, 647, 652, 655, 665, 674, 677, 681, 684, 687, 690, 694 ] }
7ff4370938804c7dba00c07704182809
Since 1999, what average rate has the solar water heating sector progressed at?
{ "tokens": [ "Since", "1999", ",", "what", "average", "rate", "has", "the", "solar", "water", "heating", "sector", "progressed", "at", "?" ], "offsets": [ 0, 6, 10, 12, 17, 25, 30, 34, 38, 44, 50, 58, 65, 76, 78 ] }
{ "text": [ "20% per year" ], "char_spans": [ { "start": [ 503 ], "end": [ 514 ] } ], "token_spans": [ { "start": [ 83 ], "end": [ 86 ] } ] }
[ "20% per year" ]
SQuAD
Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007.
{ "tokens": [ "Commercial", "solar", "water", "heaters", "began", "appearing", "in", "the", "United", "States", "in", "the", "1890s", ".", "These", "systems", "saw", "increasing", "use", "until", "the", "1920s", "but", "were", "gradually", "replaced", "by", "cheaper", "and", "more", "reliable", "heating", "fuels", ".", "As", "with", "photovoltaics", ",", "solar", "water", "heating", "attracted", "renewed", "attention", "as", "a", "result", "of", "the", "oil", "crises", "in", "the", "1970s", "but", "interest", "subsided", "in", "the", "1980s", "due", "to", "falling", "petroleum", "prices", ".", "Development", "in", "the", "solar", "water", "heating", "sector", "progressed", "steadily", "throughout", "the", "1990s", "and", "growth", "rates", "have", "averaged", "20", "%", "per", "year", "since", "1999", ".", "Although", "generally", "underestimated", ",", "solar", "water", "heating", "and", "cooling", "is", "by", "far", "the", "most", "widely", "deployed", "solar", "technology", "with", "an", "estimated", "capacity", "of", "154", "GW", "as", "of", "2007", "." ], "offsets": [ 0, 11, 17, 23, 31, 37, 47, 50, 54, 61, 68, 71, 75, 80, 82, 88, 96, 100, 111, 115, 121, 125, 131, 135, 140, 150, 159, 162, 170, 174, 179, 188, 196, 201, 203, 206, 211, 224, 226, 232, 238, 246, 256, 264, 274, 277, 279, 286, 289, 293, 297, 304, 307, 311, 317, 321, 330, 339, 342, 346, 352, 356, 359, 367, 377, 383, 385, 397, 400, 404, 410, 416, 424, 431, 442, 451, 462, 466, 472, 476, 483, 489, 494, 503, 505, 507, 511, 516, 522, 526, 528, 537, 547, 561, 563, 569, 575, 583, 587, 595, 598, 601, 605, 609, 614, 621, 630, 636, 647, 652, 655, 665, 674, 677, 681, 684, 687, 690, 694 ] }
7ebdad65c9334e14b58a9249a4244058
When did the use of solar water heaters in the US first begin?
{ "tokens": [ "When", "did", "the", "use", "of", "solar", "water", "heaters", "in", "the", "US", "first", "begin", "?" ], "offsets": [ 0, 5, 9, 13, 17, 20, 26, 32, 40, 43, 47, 50, 56, 61 ] }
{ "text": [ "in the 1890s" ], "char_spans": [ { "start": [ 68 ], "end": [ 79 ] } ], "token_spans": [ { "start": [ 10 ], "end": [ 12 ] } ] }
[ "in the 1890s" ]
SQuAD
Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007.
{ "tokens": [ "Commercial", "solar", "water", "heaters", "began", "appearing", "in", "the", "United", "States", "in", "the", "1890s", ".", "These", "systems", "saw", "increasing", "use", "until", "the", "1920s", "but", "were", "gradually", "replaced", "by", "cheaper", "and", "more", "reliable", "heating", "fuels", ".", "As", "with", "photovoltaics", ",", "solar", "water", "heating", "attracted", "renewed", "attention", "as", "a", "result", "of", "the", "oil", "crises", "in", "the", "1970s", "but", "interest", "subsided", "in", "the", "1980s", "due", "to", "falling", "petroleum", "prices", ".", "Development", "in", "the", "solar", "water", "heating", "sector", "progressed", "steadily", "throughout", "the", "1990s", "and", "growth", "rates", "have", "averaged", "20", "%", "per", "year", "since", "1999", ".", "Although", "generally", "underestimated", ",", "solar", "water", "heating", "and", "cooling", "is", "by", "far", "the", "most", "widely", "deployed", "solar", "technology", "with", "an", "estimated", "capacity", "of", "154", "GW", "as", "of", "2007", "." ], "offsets": [ 0, 11, 17, 23, 31, 37, 47, 50, 54, 61, 68, 71, 75, 80, 82, 88, 96, 100, 111, 115, 121, 125, 131, 135, 140, 150, 159, 162, 170, 174, 179, 188, 196, 201, 203, 206, 211, 224, 226, 232, 238, 246, 256, 264, 274, 277, 279, 286, 289, 293, 297, 304, 307, 311, 317, 321, 330, 339, 342, 346, 352, 356, 359, 367, 377, 383, 385, 397, 400, 404, 410, 416, 424, 431, 442, 451, 462, 466, 472, 476, 483, 489, 494, 503, 505, 507, 511, 516, 522, 526, 528, 537, 547, 561, 563, 569, 575, 583, 587, 595, 598, 601, 605, 609, 614, 621, 630, 636, 647, 652, 655, 665, 674, 677, 681, 684, 687, 690, 694 ] }
e22400c2e213448493d9f58d9cab1eed
Why did interest in solar water heating decrease in the 1980s?
{ "tokens": [ "Why", "did", "interest", "in", "solar", "water", "heating", "decrease", "in", "the", "1980s", "?" ], "offsets": [ 0, 4, 8, 17, 20, 26, 32, 40, 49, 52, 56, 61 ] }
{ "text": [ "falling petroleum prices" ], "char_spans": [ { "start": [ 359 ], "end": [ 382 ] } ], "token_spans": [ { "start": [ 62 ], "end": [ 64 ] } ] }
[ "falling petroleum prices" ]
SQuAD
Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007.
{ "tokens": [ "Commercial", "solar", "water", "heaters", "began", "appearing", "in", "the", "United", "States", "in", "the", "1890s", ".", "These", "systems", "saw", "increasing", "use", "until", "the", "1920s", "but", "were", "gradually", "replaced", "by", "cheaper", "and", "more", "reliable", "heating", "fuels", ".", "As", "with", "photovoltaics", ",", "solar", "water", "heating", "attracted", "renewed", "attention", "as", "a", "result", "of", "the", "oil", "crises", "in", "the", "1970s", "but", "interest", "subsided", "in", "the", "1980s", "due", "to", "falling", "petroleum", "prices", ".", "Development", "in", "the", "solar", "water", "heating", "sector", "progressed", "steadily", "throughout", "the", "1990s", "and", "growth", "rates", "have", "averaged", "20", "%", "per", "year", "since", "1999", ".", "Although", "generally", "underestimated", ",", "solar", "water", "heating", "and", "cooling", "is", "by", "far", "the", "most", "widely", "deployed", "solar", "technology", "with", "an", "estimated", "capacity", "of", "154", "GW", "as", "of", "2007", "." ], "offsets": [ 0, 11, 17, 23, 31, 37, 47, 50, 54, 61, 68, 71, 75, 80, 82, 88, 96, 100, 111, 115, 121, 125, 131, 135, 140, 150, 159, 162, 170, 174, 179, 188, 196, 201, 203, 206, 211, 224, 226, 232, 238, 246, 256, 264, 274, 277, 279, 286, 289, 293, 297, 304, 307, 311, 317, 321, 330, 339, 342, 346, 352, 356, 359, 367, 377, 383, 385, 397, 400, 404, 410, 416, 424, 431, 442, 451, 462, 466, 472, 476, 483, 489, 494, 503, 505, 507, 511, 516, 522, 526, 528, 537, 547, 561, 563, 569, 575, 583, 587, 595, 598, 601, 605, 609, 614, 621, 630, 636, 647, 652, 655, 665, 674, 677, 681, 684, 687, 690, 694 ] }
8d7999ae17bb4b489fe2c889bcc94ba4
Growth of solar water heating development has averaged how much per year since 1999
{ "tokens": [ "Growth", "of", "solar", "water", "heating", "development", "has", "averaged", "how", "much", "per", "year", "since", "1999" ], "offsets": [ 0, 7, 10, 16, 22, 30, 42, 46, 55, 59, 64, 68, 73, 79 ] }
{ "text": [ "20%" ], "char_spans": [ { "start": [ 503 ], "end": [ 505 ] } ], "token_spans": [ { "start": [ 83 ], "end": [ 84 ] } ] }
[ "20%" ]
SQuAD
Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and growth rates have averaged 20% per year since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007.
{ "tokens": [ "Commercial", "solar", "water", "heaters", "began", "appearing", "in", "the", "United", "States", "in", "the", "1890s", ".", "These", "systems", "saw", "increasing", "use", "until", "the", "1920s", "but", "were", "gradually", "replaced", "by", "cheaper", "and", "more", "reliable", "heating", "fuels", ".", "As", "with", "photovoltaics", ",", "solar", "water", "heating", "attracted", "renewed", "attention", "as", "a", "result", "of", "the", "oil", "crises", "in", "the", "1970s", "but", "interest", "subsided", "in", "the", "1980s", "due", "to", "falling", "petroleum", "prices", ".", "Development", "in", "the", "solar", "water", "heating", "sector", "progressed", "steadily", "throughout", "the", "1990s", "and", "growth", "rates", "have", "averaged", "20", "%", "per", "year", "since", "1999", ".", "Although", "generally", "underestimated", ",", "solar", "water", "heating", "and", "cooling", "is", "by", "far", "the", "most", "widely", "deployed", "solar", "technology", "with", "an", "estimated", "capacity", "of", "154", "GW", "as", "of", "2007", "." ], "offsets": [ 0, 11, 17, 23, 31, 37, 47, 50, 54, 61, 68, 71, 75, 80, 82, 88, 96, 100, 111, 115, 121, 125, 131, 135, 140, 150, 159, 162, 170, 174, 179, 188, 196, 201, 203, 206, 211, 224, 226, 232, 238, 246, 256, 264, 274, 277, 279, 286, 289, 293, 297, 304, 307, 311, 317, 321, 330, 339, 342, 346, 352, 356, 359, 367, 377, 383, 385, 397, 400, 404, 410, 416, 424, 431, 442, 451, 462, 466, 472, 476, 483, 489, 494, 503, 505, 507, 511, 516, 522, 526, 528, 537, 547, 561, 563, 569, 575, 583, 587, 595, 598, 601, 605, 609, 614, 621, 630, 636, 647, 652, 655, 665, 674, 677, 681, 684, 687, 690, 694 ] }
6b3a5e23f2f94f8aadc61db4ea2cb6ee
What was the estimated capacity of solar water heating and cooling in 2007?
{ "tokens": [ "What", "was", "the", "estimated", "capacity", "of", "solar", "water", "heating", "and", "cooling", "in", "2007", "?" ], "offsets": [ 0, 5, 9, 13, 23, 32, 35, 41, 47, 55, 59, 67, 70, 74 ] }
{ "text": [ "154 GW" ], "char_spans": [ { "start": [ 677 ], "end": [ 682 ] } ], "token_spans": [ { "start": [ 113 ], "end": [ 114 ] } ] }
[ "154 GW" ]
SQuAD
A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high.
{ "tokens": [ "A", "solar", "balloon", "is", "a", "black", "balloon", "that", "is", "filled", "with", "ordinary", "air", ".", "As", "sunlight", "shines", "on", "the", "balloon", ",", "the", "air", "inside", "is", "heated", "and", "expands", "causing", "an", "upward", "buoyancy", "force", ",", "much", "like", "an", "artificially", "heated", "hot", "air", "balloon", ".", "Some", "solar", "balloons", "are", "large", "enough", "for", "human", "flight", ",", "but", "usage", "is", "generally", "limited", "to", "the", "toy", "market", "as", "the", "surface", "-", "area", "to", "payload", "-", "weight", "ratio", "is", "relatively", "high", "." ], "offsets": [ 0, 2, 8, 16, 19, 21, 27, 35, 40, 43, 50, 55, 64, 67, 69, 72, 81, 88, 91, 95, 102, 104, 108, 112, 119, 122, 129, 133, 141, 149, 152, 159, 168, 173, 175, 180, 185, 188, 201, 208, 212, 216, 223, 225, 230, 236, 245, 249, 255, 262, 266, 272, 278, 280, 284, 290, 293, 303, 311, 314, 318, 322, 329, 332, 336, 343, 344, 349, 352, 359, 360, 367, 373, 376, 387, 391 ] }
4d4bd730da6049558c9f4cd478ea8367
What is a solar balloon?
{ "tokens": [ "What", "is", "a", "solar", "balloon", "?" ], "offsets": [ 0, 5, 8, 10, 16, 23 ] }
{ "text": [ "a black balloon that is filled with ordinary air" ], "char_spans": [ { "start": [ 19 ], "end": [ 66 ] } ], "token_spans": [ { "start": [ 4 ], "end": [ 12 ] } ] }
[ "a black balloon that is filled with ordinary air" ]
SQuAD
A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high.
{ "tokens": [ "A", "solar", "balloon", "is", "a", "black", "balloon", "that", "is", "filled", "with", "ordinary", "air", ".", "As", "sunlight", "shines", "on", "the", "balloon", ",", "the", "air", "inside", "is", "heated", "and", "expands", "causing", "an", "upward", "buoyancy", "force", ",", "much", "like", "an", "artificially", "heated", "hot", "air", "balloon", ".", "Some", "solar", "balloons", "are", "large", "enough", "for", "human", "flight", ",", "but", "usage", "is", "generally", "limited", "to", "the", "toy", "market", "as", "the", "surface", "-", "area", "to", "payload", "-", "weight", "ratio", "is", "relatively", "high", "." ], "offsets": [ 0, 2, 8, 16, 19, 21, 27, 35, 40, 43, 50, 55, 64, 67, 69, 72, 81, 88, 91, 95, 102, 104, 108, 112, 119, 122, 129, 133, 141, 149, 152, 159, 168, 173, 175, 180, 185, 188, 201, 208, 212, 216, 223, 225, 230, 236, 245, 249, 255, 262, 266, 272, 278, 280, 284, 290, 293, 303, 311, 314, 318, 322, 329, 332, 336, 343, 344, 349, 352, 359, 360, 367, 373, 376, 387, 391 ] }
557220fa26de4e71babc24c785c70635
What happens when sunlight shines on a solar balloon?
{ "tokens": [ "What", "happens", "when", "sunlight", "shines", "on", "a", "solar", "balloon", "?" ], "offsets": [ 0, 5, 13, 18, 27, 34, 37, 39, 45, 52 ] }
{ "text": [ "the air inside is heated and expands causing an upward buoyancy force" ], "char_spans": [ { "start": [ 104 ], "end": [ 172 ] } ], "token_spans": [ { "start": [ 21 ], "end": [ 32 ] } ] }
[ "the air inside is heated and expands causing an upward buoyancy force" ]
SQuAD
A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high.
{ "tokens": [ "A", "solar", "balloon", "is", "a", "black", "balloon", "that", "is", "filled", "with", "ordinary", "air", ".", "As", "sunlight", "shines", "on", "the", "balloon", ",", "the", "air", "inside", "is", "heated", "and", "expands", "causing", "an", "upward", "buoyancy", "force", ",", "much", "like", "an", "artificially", "heated", "hot", "air", "balloon", ".", "Some", "solar", "balloons", "are", "large", "enough", "for", "human", "flight", ",", "but", "usage", "is", "generally", "limited", "to", "the", "toy", "market", "as", "the", "surface", "-", "area", "to", "payload", "-", "weight", "ratio", "is", "relatively", "high", "." ], "offsets": [ 0, 2, 8, 16, 19, 21, 27, 35, 40, 43, 50, 55, 64, 67, 69, 72, 81, 88, 91, 95, 102, 104, 108, 112, 119, 122, 129, 133, 141, 149, 152, 159, 168, 173, 175, 180, 185, 188, 201, 208, 212, 216, 223, 225, 230, 236, 245, 249, 255, 262, 266, 272, 278, 280, 284, 290, 293, 303, 311, 314, 318, 322, 329, 332, 336, 343, 344, 349, 352, 359, 360, 367, 373, 376, 387, 391 ] }
8118ae33e9394898b28760b8503e331c
What is the use of solar balloons typically limited to?
{ "tokens": [ "What", "is", "the", "use", "of", "solar", "balloons", "typically", "limited", "to", "?" ], "offsets": [ 0, 5, 8, 12, 16, 19, 25, 34, 44, 52, 54 ] }
{ "text": [ "the toy market" ], "char_spans": [ { "start": [ 314 ], "end": [ 327 ] } ], "token_spans": [ { "start": [ 59 ], "end": [ 61 ] } ] }
[ "the toy market" ]
SQuAD
A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high.
{ "tokens": [ "A", "solar", "balloon", "is", "a", "black", "balloon", "that", "is", "filled", "with", "ordinary", "air", ".", "As", "sunlight", "shines", "on", "the", "balloon", ",", "the", "air", "inside", "is", "heated", "and", "expands", "causing", "an", "upward", "buoyancy", "force", ",", "much", "like", "an", "artificially", "heated", "hot", "air", "balloon", ".", "Some", "solar", "balloons", "are", "large", "enough", "for", "human", "flight", ",", "but", "usage", "is", "generally", "limited", "to", "the", "toy", "market", "as", "the", "surface", "-", "area", "to", "payload", "-", "weight", "ratio", "is", "relatively", "high", "." ], "offsets": [ 0, 2, 8, 16, 19, 21, 27, 35, 40, 43, 50, 55, 64, 67, 69, 72, 81, 88, 91, 95, 102, 104, 108, 112, 119, 122, 129, 133, 141, 149, 152, 159, 168, 173, 175, 180, 185, 188, 201, 208, 212, 216, 223, 225, 230, 236, 245, 249, 255, 262, 266, 272, 278, 280, 284, 290, 293, 303, 311, 314, 318, 322, 329, 332, 336, 343, 344, 349, 352, 359, 360, 367, 373, 376, 387, 391 ] }
77e1fffc2b0b4b21bee834d9cfa83797
Why is the use of solar balloons typically limited to the toy market?
{ "tokens": [ "Why", "is", "the", "use", "of", "solar", "balloons", "typically", "limited", "to", "the", "toy", "market", "?" ], "offsets": [ 0, 4, 7, 11, 15, 18, 24, 33, 43, 51, 54, 58, 62, 68 ] }
{ "text": [ "the surface-area to payload-weight ratio is relatively high" ], "char_spans": [ { "start": [ 332 ], "end": [ 390 ] } ], "token_spans": [ { "start": [ 63 ], "end": [ 74 ] } ] }
[ "the surface-area to payload-weight ratio is relatively high" ]
SQuAD
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".
{ "tokens": [ "In", "2011", ",", "the", "International", "Energy", "Agency", "said", "that", "\"", "the", "development", "of", "affordable", ",", "inexhaustible", "and", "clean", "solar", "energy", "technologies", "will", "have", "huge", "longer", "-", "term", "benefits", ".", "It", "will", "increase", "countries", "’", "energy", "security", "through", "reliance", "on", "an", "indigenous", ",", "inexhaustible", "and", "mostly", "import", "-", "independent", "resource", ",", "enhance", "sustainability", ",", "reduce", "pollution", ",", "lower", "the", "costs", "of", "mitigating", "global", "warming", ",", "and", "keep", "fossil", "fuel", "prices", "lower", "than", "otherwise", ".", "These", "advantages", "are", "global", ".", "Hence", "the", "additional", "costs", "of", "the", "incentives", "for", "early", "deployment", "should", "be", "considered", "learning", "investments", ";", "they", "must", "be", "wisely", "spent", "and", "need", "to", "be", "widely", "shared", "\"", "." ], "offsets": [ 0, 3, 7, 9, 13, 27, 34, 41, 46, 51, 52, 56, 68, 71, 81, 83, 97, 101, 107, 113, 120, 133, 138, 143, 148, 154, 155, 160, 168, 170, 173, 178, 187, 196, 198, 205, 214, 222, 231, 234, 237, 247, 249, 263, 267, 274, 280, 281, 293, 301, 303, 311, 325, 327, 334, 343, 345, 351, 355, 361, 364, 375, 382, 389, 391, 395, 400, 407, 412, 419, 425, 430, 439, 441, 447, 458, 462, 468, 470, 476, 480, 491, 497, 500, 504, 515, 519, 525, 536, 543, 546, 557, 566, 577, 579, 584, 589, 592, 599, 605, 609, 614, 617, 620, 627, 633, 634 ] }
3ce2288415a54a64bb97b0bebb2cbe12
How will solar energy increase energy security?
{ "tokens": [ "How", "will", "solar", "energy", "increase", "energy", "security", "?" ], "offsets": [ 0, 4, 9, 15, 22, 31, 38, 46 ] }
{ "text": [ "through reliance on an indigenous, inexhaustible and mostly import-independent resource" ], "char_spans": [ { "start": [ 214 ], "end": [ 300 ] } ], "token_spans": [ { "start": [ 36 ], "end": [ 48 ] } ] }
[ "through reliance on an indigenous, inexhaustible and mostly import-independent resource" ]
SQuAD
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".
{ "tokens": [ "In", "2011", ",", "the", "International", "Energy", "Agency", "said", "that", "\"", "the", "development", "of", "affordable", ",", "inexhaustible", "and", "clean", "solar", "energy", "technologies", "will", "have", "huge", "longer", "-", "term", "benefits", ".", "It", "will", "increase", "countries", "’", "energy", "security", "through", "reliance", "on", "an", "indigenous", ",", "inexhaustible", "and", "mostly", "import", "-", "independent", "resource", ",", "enhance", "sustainability", ",", "reduce", "pollution", ",", "lower", "the", "costs", "of", "mitigating", "global", "warming", ",", "and", "keep", "fossil", "fuel", "prices", "lower", "than", "otherwise", ".", "These", "advantages", "are", "global", ".", "Hence", "the", "additional", "costs", "of", "the", "incentives", "for", "early", "deployment", "should", "be", "considered", "learning", "investments", ";", "they", "must", "be", "wisely", "spent", "and", "need", "to", "be", "widely", "shared", "\"", "." ], "offsets": [ 0, 3, 7, 9, 13, 27, 34, 41, 46, 51, 52, 56, 68, 71, 81, 83, 97, 101, 107, 113, 120, 133, 138, 143, 148, 154, 155, 160, 168, 170, 173, 178, 187, 196, 198, 205, 214, 222, 231, 234, 237, 247, 249, 263, 267, 274, 280, 281, 293, 301, 303, 311, 325, 327, 334, 343, 345, 351, 355, 361, 364, 375, 382, 389, 391, 395, 400, 407, 412, 419, 425, 430, 439, 441, 447, 458, 462, 468, 470, 476, 480, 491, 497, 500, 504, 515, 519, 525, 536, 543, 546, 557, 566, 577, 579, 584, 589, 592, 599, 605, 609, 614, 617, 620, 627, 633, 634 ] }
bbed2c643f594c69969830c073963712
What costs will solar energy lower?
{ "tokens": [ "What", "costs", "will", "solar", "energy", "lower", "?" ], "offsets": [ 0, 5, 11, 16, 22, 29, 34 ] }
{ "text": [ "the costs of mitigating global warming" ], "char_spans": [ { "start": [ 351 ], "end": [ 388 ] } ], "token_spans": [ { "start": [ 57 ], "end": [ 62 ] } ] }
[ "the costs of mitigating global warming" ]
SQuAD
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".
{ "tokens": [ "In", "2011", ",", "the", "International", "Energy", "Agency", "said", "that", "\"", "the", "development", "of", "affordable", ",", "inexhaustible", "and", "clean", "solar", "energy", "technologies", "will", "have", "huge", "longer", "-", "term", "benefits", ".", "It", "will", "increase", "countries", "’", "energy", "security", "through", "reliance", "on", "an", "indigenous", ",", "inexhaustible", "and", "mostly", "import", "-", "independent", "resource", ",", "enhance", "sustainability", ",", "reduce", "pollution", ",", "lower", "the", "costs", "of", "mitigating", "global", "warming", ",", "and", "keep", "fossil", "fuel", "prices", "lower", "than", "otherwise", ".", "These", "advantages", "are", "global", ".", "Hence", "the", "additional", "costs", "of", "the", "incentives", "for", "early", "deployment", "should", "be", "considered", "learning", "investments", ";", "they", "must", "be", "wisely", "spent", "and", "need", "to", "be", "widely", "shared", "\"", "." ], "offsets": [ 0, 3, 7, 9, 13, 27, 34, 41, 46, 51, 52, 56, 68, 71, 81, 83, 97, 101, 107, 113, 120, 133, 138, 143, 148, 154, 155, 160, 168, 170, 173, 178, 187, 196, 198, 205, 214, 222, 231, 234, 237, 247, 249, 263, 267, 274, 280, 281, 293, 301, 303, 311, 325, 327, 334, 343, 345, 351, 355, 361, 364, 375, 382, 389, 391, 395, 400, 407, 412, 419, 425, 430, 439, 441, 447, 458, 462, 468, 470, 476, 480, 491, 497, 500, 504, 515, 519, 525, 536, 543, 546, 557, 566, 577, 579, 584, 589, 592, 599, 605, 609, 614, 617, 620, 627, 633, 634 ] }
de4ad854fdaf4d4db935194349b01adc
What should the cost of incentives for producing solar energy be considered?
{ "tokens": [ "What", "should", "the", "cost", "of", "incentives", "for", "producing", "solar", "energy", "be", "considered", "?" ], "offsets": [ 0, 5, 12, 16, 21, 24, 35, 39, 49, 55, 62, 65, 75 ] }
{ "text": [ "learning investments" ], "char_spans": [ { "start": [ 557 ], "end": [ 576 ] } ], "token_spans": [ { "start": [ 91 ], "end": [ 92 ] } ] }
[ "learning investments" ]
SQuAD
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".
{ "tokens": [ "In", "2011", ",", "the", "International", "Energy", "Agency", "said", "that", "\"", "the", "development", "of", "affordable", ",", "inexhaustible", "and", "clean", "solar", "energy", "technologies", "will", "have", "huge", "longer", "-", "term", "benefits", ".", "It", "will", "increase", "countries", "’", "energy", "security", "through", "reliance", "on", "an", "indigenous", ",", "inexhaustible", "and", "mostly", "import", "-", "independent", "resource", ",", "enhance", "sustainability", ",", "reduce", "pollution", ",", "lower", "the", "costs", "of", "mitigating", "global", "warming", ",", "and", "keep", "fossil", "fuel", "prices", "lower", "than", "otherwise", ".", "These", "advantages", "are", "global", ".", "Hence", "the", "additional", "costs", "of", "the", "incentives", "for", "early", "deployment", "should", "be", "considered", "learning", "investments", ";", "they", "must", "be", "wisely", "spent", "and", "need", "to", "be", "widely", "shared", "\"", "." ], "offsets": [ 0, 3, 7, 9, 13, 27, 34, 41, 46, 51, 52, 56, 68, 71, 81, 83, 97, 101, 107, 113, 120, 133, 138, 143, 148, 154, 155, 160, 168, 170, 173, 178, 187, 196, 198, 205, 214, 222, 231, 234, 237, 247, 249, 263, 267, 274, 280, 281, 293, 301, 303, 311, 325, 327, 334, 343, 345, 351, 355, 361, 364, 375, 382, 389, 391, 395, 400, 407, 412, 419, 425, 430, 439, 441, 447, 458, 462, 468, 470, 476, 480, 491, 497, 500, 504, 515, 519, 525, 536, 543, 546, 557, 566, 577, 579, 584, 589, 592, 599, 605, 609, 614, 617, 620, 627, 633, 634 ] }
d4a980653f184dac968ab4a30b26372d
What effect will solar energy have on the price of fossil fuels?
{ "tokens": [ "What", "effect", "will", "solar", "energy", "have", "on", "the", "price", "of", "fossil", "fuels", "?" ], "offsets": [ 0, 5, 12, 17, 23, 30, 35, 38, 42, 48, 51, 58, 63 ] }
{ "text": [ "keep fossil fuel prices lower than otherwise" ], "char_spans": [ { "start": [ 395 ], "end": [ 438 ] } ], "token_spans": [ { "start": [ 65 ], "end": [ 71 ] } ] }
[ "keep fossil fuel prices lower than otherwise" ]
SQuAD
In 2011, a report by the International Energy Agency found that solar energy technologies such as photovoltaics, solar hot water and concentrated solar power could provide a third of the world’s energy by 2060 if politicians commit to limiting climate change. The energy from the sun could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters. "The strength of solar is the incredible variety and flexibility of applications, from small scale to big scale".
{ "tokens": [ "In", "2011", ",", "a", "report", "by", "the", "International", "Energy", "Agency", "found", "that", "solar", "energy", "technologies", "such", "as", "photovoltaics", ",", "solar", "hot", "water", "and", "concentrated", "solar", "power", "could", "provide", "a", "third", "of", "the", "world", "’s", "energy", "by", "2060", "if", "politicians", "commit", "to", "limiting", "climate", "change", ".", "The", "energy", "from", "the", "sun", "could", "play", "a", "key", "role", "in", "de", "-", "carbonizing", "the", "global", "economy", "alongside", "improvements", "in", "energy", "efficiency", "and", "imposing", "costs", "on", "greenhouse", "gas", "emitters", ".", "\"", "The", "strength", "of", "solar", "is", "the", "incredible", "variety", "and", "flexibility", "of", "applications", ",", "from", "small", "scale", "to", "big", "scale", "\"", "." ], "offsets": [ 0, 3, 7, 9, 11, 18, 21, 25, 39, 46, 53, 59, 64, 70, 77, 90, 95, 98, 111, 113, 119, 123, 129, 133, 146, 152, 158, 164, 172, 174, 180, 183, 187, 192, 195, 202, 205, 210, 213, 225, 232, 235, 244, 252, 258, 260, 264, 271, 276, 280, 284, 290, 295, 297, 301, 306, 309, 311, 312, 324, 328, 335, 343, 353, 366, 369, 376, 387, 391, 400, 406, 409, 420, 424, 432, 434, 435, 439, 448, 451, 457, 460, 464, 475, 483, 487, 499, 502, 514, 516, 521, 527, 533, 536, 540, 545, 546 ] }
c3049f913da04ccfa9ded8f80c33cc46
According to a report in 2011, by what year could solar energy provide a third of the world's energy?
{ "tokens": [ "According", "to", "a", "report", "in", "2011", ",", "by", "what", "year", "could", "solar", "energy", "provide", "a", "third", "of", "the", "world", "'s", "energy", "?" ], "offsets": [ 0, 10, 13, 15, 22, 25, 29, 31, 34, 39, 44, 50, 56, 63, 71, 73, 79, 82, 86, 91, 94, 100 ] }
{ "text": [ "2060" ], "char_spans": [ { "start": [ 205 ], "end": [ 208 ] } ], "token_spans": [ { "start": [ 36 ], "end": [ 36 ] } ] }
[ "2060" ]
SQuAD
In 2011, a report by the International Energy Agency found that solar energy technologies such as photovoltaics, solar hot water and concentrated solar power could provide a third of the world’s energy by 2060 if politicians commit to limiting climate change. The energy from the sun could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters. "The strength of solar is the incredible variety and flexibility of applications, from small scale to big scale".
{ "tokens": [ "In", "2011", ",", "a", "report", "by", "the", "International", "Energy", "Agency", "found", "that", "solar", "energy", "technologies", "such", "as", "photovoltaics", ",", "solar", "hot", "water", "and", "concentrated", "solar", "power", "could", "provide", "a", "third", "of", "the", "world", "’s", "energy", "by", "2060", "if", "politicians", "commit", "to", "limiting", "climate", "change", ".", "The", "energy", "from", "the", "sun", "could", "play", "a", "key", "role", "in", "de", "-", "carbonizing", "the", "global", "economy", "alongside", "improvements", "in", "energy", "efficiency", "and", "imposing", "costs", "on", "greenhouse", "gas", "emitters", ".", "\"", "The", "strength", "of", "solar", "is", "the", "incredible", "variety", "and", "flexibility", "of", "applications", ",", "from", "small", "scale", "to", "big", "scale", "\"", "." ], "offsets": [ 0, 3, 7, 9, 11, 18, 21, 25, 39, 46, 53, 59, 64, 70, 77, 90, 95, 98, 111, 113, 119, 123, 129, 133, 146, 152, 158, 164, 172, 174, 180, 183, 187, 192, 195, 202, 205, 210, 213, 225, 232, 235, 244, 252, 258, 260, 264, 271, 276, 280, 284, 290, 295, 297, 301, 306, 309, 311, 312, 324, 328, 335, 343, 353, 366, 369, 376, 387, 391, 400, 406, 409, 420, 424, 432, 434, 435, 439, 448, 451, 457, 460, 464, 475, 483, 487, 499, 502, 514, 516, 521, 527, 533, 536, 540, 545, 546 ] }
67c4bfb11fb443e4a0c312f247f84e68
What could the sun's energy do to help limit climate change?
{ "tokens": [ "What", "could", "the", "sun", "'s", "energy", "do", "to", "help", "limit", "climate", "change", "?" ], "offsets": [ 0, 5, 11, 15, 18, 21, 28, 31, 34, 39, 45, 53, 59 ] }
{ "text": [ "could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters" ], "char_spans": [ { "start": [ 284 ], "end": [ 431 ] } ], "token_spans": [ { "start": [ 50 ], "end": [ 73 ] } ] }
[ "could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters" ]
SQuAD
Geography effects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can effect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells.
{ "tokens": [ "Geography", "effects", "solar", "energy", "potential", "because", "areas", "that", "are", "closer", "to", "the", "equator", "have", "a", "greater", "amount", "of", "solar", "radiation", ".", "However", ",", "the", "use", "of", "photovoltaics", "that", "can", "follow", "the", "position", "of", "the", "sun", "can", "significantly", "increase", "the", "solar", "energy", "potential", "in", "areas", "that", "are", "farther", "from", "the", "equator", ".", "Time", "variation", "effects", "the", "potential", "of", "solar", "energy", "because", "during", "the", "nighttime", "there", "is", "little", "solar", "radiation", "on", "the", "surface", "of", "the", "Earth", "for", "solar", "panels", "to", "absorb", ".", "This", "limits", "the", "amount", "of", "energy", "that", "solar", "panels", "can", "absorb", "in", "one", "day", ".", "Cloud", "cover", "can", "effect", "the", "potential", "of", "solar", "panels", "because", "clouds", "block", "incoming", "light", "from", "the", "sun", "and", "reduce", "the", "light", "available", "for", "solar", "cells", "." ], "offsets": [ 0, 10, 18, 24, 31, 41, 49, 55, 60, 64, 71, 74, 78, 86, 91, 93, 101, 108, 111, 117, 126, 128, 135, 137, 141, 145, 148, 162, 167, 171, 178, 182, 191, 194, 198, 202, 206, 220, 229, 233, 239, 246, 256, 259, 265, 270, 274, 282, 287, 291, 298, 300, 305, 315, 323, 327, 337, 340, 346, 353, 361, 368, 372, 382, 388, 391, 398, 404, 414, 417, 421, 429, 432, 436, 442, 446, 452, 459, 462, 468, 470, 475, 482, 486, 493, 496, 503, 508, 514, 521, 525, 532, 535, 539, 542, 544, 550, 556, 560, 567, 571, 581, 584, 590, 597, 605, 612, 618, 627, 633, 638, 642, 646, 650, 657, 661, 667, 677, 681, 687, 692 ] }
6bc88ec096ff461ea8eb89b3903d9a84
Why does geography have an effect of the amount of solar energy available?
{ "tokens": [ "Why", "does", "geography", "have", "an", "effect", "of", "the", "amount", "of", "solar", "energy", "available", "?" ], "offsets": [ 0, 4, 9, 19, 24, 27, 34, 37, 41, 48, 51, 57, 64, 73 ] }
{ "text": [ "areas that are closer to the equator have a greater amount of solar radiation" ], "char_spans": [ { "start": [ 49 ], "end": [ 125 ] } ], "token_spans": [ { "start": [ 6 ], "end": [ 19 ] } ] }
[ "areas that are closer to the equator have a greater amount of solar radiation" ]
SQuAD
Geography effects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can effect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells.
{ "tokens": [ "Geography", "effects", "solar", "energy", "potential", "because", "areas", "that", "are", "closer", "to", "the", "equator", "have", "a", "greater", "amount", "of", "solar", "radiation", ".", "However", ",", "the", "use", "of", "photovoltaics", "that", "can", "follow", "the", "position", "of", "the", "sun", "can", "significantly", "increase", "the", "solar", "energy", "potential", "in", "areas", "that", "are", "farther", "from", "the", "equator", ".", "Time", "variation", "effects", "the", "potential", "of", "solar", "energy", "because", "during", "the", "nighttime", "there", "is", "little", "solar", "radiation", "on", "the", "surface", "of", "the", "Earth", "for", "solar", "panels", "to", "absorb", ".", "This", "limits", "the", "amount", "of", "energy", "that", "solar", "panels", "can", "absorb", "in", "one", "day", ".", "Cloud", "cover", "can", "effect", "the", "potential", "of", "solar", "panels", "because", "clouds", "block", "incoming", "light", "from", "the", "sun", "and", "reduce", "the", "light", "available", "for", "solar", "cells", "." ], "offsets": [ 0, 10, 18, 24, 31, 41, 49, 55, 60, 64, 71, 74, 78, 86, 91, 93, 101, 108, 111, 117, 126, 128, 135, 137, 141, 145, 148, 162, 167, 171, 178, 182, 191, 194, 198, 202, 206, 220, 229, 233, 239, 246, 256, 259, 265, 270, 274, 282, 287, 291, 298, 300, 305, 315, 323, 327, 337, 340, 346, 353, 361, 368, 372, 382, 388, 391, 398, 404, 414, 417, 421, 429, 432, 436, 442, 446, 452, 459, 462, 468, 470, 475, 482, 486, 493, 496, 503, 508, 514, 521, 525, 532, 535, 539, 542, 544, 550, 556, 560, 567, 571, 581, 584, 590, 597, 605, 612, 618, 627, 633, 638, 642, 646, 650, 657, 661, 667, 677, 681, 687, 692 ] }
7504712091024a4a9f9f25bf9cbb573f
What is the process called that can increase solar energy in areas further away from the earth's equator?
{ "tokens": [ "What", "is", "the", "process", "called", "that", "can", "increase", "solar", "energy", "in", "areas", "further", "away", "from", "the", "earth", "'s", "equator", "?" ], "offsets": [ 0, 5, 8, 12, 20, 27, 32, 36, 45, 51, 58, 61, 67, 75, 80, 85, 89, 94, 97, 104 ] }
{ "text": [ "photovoltaics" ], "char_spans": [ { "start": [ 148 ], "end": [ 160 ] } ], "token_spans": [ { "start": [ 26 ], "end": [ 26 ] } ] }
[ "photovoltaics" ]
SQuAD
Geography effects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can effect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells.
{ "tokens": [ "Geography", "effects", "solar", "energy", "potential", "because", "areas", "that", "are", "closer", "to", "the", "equator", "have", "a", "greater", "amount", "of", "solar", "radiation", ".", "However", ",", "the", "use", "of", "photovoltaics", "that", "can", "follow", "the", "position", "of", "the", "sun", "can", "significantly", "increase", "the", "solar", "energy", "potential", "in", "areas", "that", "are", "farther", "from", "the", "equator", ".", "Time", "variation", "effects", "the", "potential", "of", "solar", "energy", "because", "during", "the", "nighttime", "there", "is", "little", "solar", "radiation", "on", "the", "surface", "of", "the", "Earth", "for", "solar", "panels", "to", "absorb", ".", "This", "limits", "the", "amount", "of", "energy", "that", "solar", "panels", "can", "absorb", "in", "one", "day", ".", "Cloud", "cover", "can", "effect", "the", "potential", "of", "solar", "panels", "because", "clouds", "block", "incoming", "light", "from", "the", "sun", "and", "reduce", "the", "light", "available", "for", "solar", "cells", "." ], "offsets": [ 0, 10, 18, 24, 31, 41, 49, 55, 60, 64, 71, 74, 78, 86, 91, 93, 101, 108, 111, 117, 126, 128, 135, 137, 141, 145, 148, 162, 167, 171, 178, 182, 191, 194, 198, 202, 206, 220, 229, 233, 239, 246, 256, 259, 265, 270, 274, 282, 287, 291, 298, 300, 305, 315, 323, 327, 337, 340, 346, 353, 361, 368, 372, 382, 388, 391, 398, 404, 414, 417, 421, 429, 432, 436, 442, 446, 452, 459, 462, 468, 470, 475, 482, 486, 493, 496, 503, 508, 514, 521, 525, 532, 535, 539, 542, 544, 550, 556, 560, 567, 571, 581, 584, 590, 597, 605, 612, 618, 627, 633, 638, 642, 646, 650, 657, 661, 667, 677, 681, 687, 692 ] }
12b5d12a0bea4a8fbf9631cfe436c857
Why does time have an effect of the amount of available solar energy?
{ "tokens": [ "Why", "does", "time", "have", "an", "effect", "of", "the", "amount", "of", "available", "solar", "energy", "?" ], "offsets": [ 0, 4, 9, 14, 19, 22, 29, 32, 36, 43, 46, 56, 62, 68 ] }
{ "text": [ "during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb" ], "char_spans": [ { "start": [ 361 ], "end": [ 467 ] } ], "token_spans": [ { "start": [ 60 ], "end": [ 78 ] } ] }
[ "during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb" ]
SQuAD
Geography effects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can effect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells.
{ "tokens": [ "Geography", "effects", "solar", "energy", "potential", "because", "areas", "that", "are", "closer", "to", "the", "equator", "have", "a", "greater", "amount", "of", "solar", "radiation", ".", "However", ",", "the", "use", "of", "photovoltaics", "that", "can", "follow", "the", "position", "of", "the", "sun", "can", "significantly", "increase", "the", "solar", "energy", "potential", "in", "areas", "that", "are", "farther", "from", "the", "equator", ".", "Time", "variation", "effects", "the", "potential", "of", "solar", "energy", "because", "during", "the", "nighttime", "there", "is", "little", "solar", "radiation", "on", "the", "surface", "of", "the", "Earth", "for", "solar", "panels", "to", "absorb", ".", "This", "limits", "the", "amount", "of", "energy", "that", "solar", "panels", "can", "absorb", "in", "one", "day", ".", "Cloud", "cover", "can", "effect", "the", "potential", "of", "solar", "panels", "because", "clouds", "block", "incoming", "light", "from", "the", "sun", "and", "reduce", "the", "light", "available", "for", "solar", "cells", "." ], "offsets": [ 0, 10, 18, 24, 31, 41, 49, 55, 60, 64, 71, 74, 78, 86, 91, 93, 101, 108, 111, 117, 126, 128, 135, 137, 141, 145, 148, 162, 167, 171, 178, 182, 191, 194, 198, 202, 206, 220, 229, 233, 239, 246, 256, 259, 265, 270, 274, 282, 287, 291, 298, 300, 305, 315, 323, 327, 337, 340, 346, 353, 361, 368, 372, 382, 388, 391, 398, 404, 414, 417, 421, 429, 432, 436, 442, 446, 452, 459, 462, 468, 470, 475, 482, 486, 493, 496, 503, 508, 514, 521, 525, 532, 535, 539, 542, 544, 550, 556, 560, 567, 571, 581, 584, 590, 597, 605, 612, 618, 627, 633, 638, 642, 646, 650, 657, 661, 667, 677, 681, 687, 692 ] }
21955410e1ca4b76ba1d69fabdad2b86
What effect does cloud coverage have on the amount of solar energy available?
{ "tokens": [ "What", "effect", "does", "cloud", "coverage", "have", "on", "the", "amount", "of", "solar", "energy", "available", "?" ], "offsets": [ 0, 5, 12, 17, 23, 32, 37, 40, 44, 51, 54, 60, 67, 76 ] }
{ "text": [ "clouds block incoming light from the sun and reduce the light available for solar cells" ], "char_spans": [ { "start": [ 605 ], "end": [ 691 ] } ], "token_spans": [ { "start": [ 105 ], "end": [ 119 ] } ] }
[ "clouds block incoming light from the sun and reduce the light available for solar cells" ]
SQuAD
Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.
{ "tokens": [ "Solar", "concentrating", "technologies", "such", "as", "parabolic", "dish", ",", "trough", "and", "Scheffler", "reflectors", "can", "provide", "process", "heat", "for", "commercial", "and", "industrial", "applications", ".", "The", "first", "commercial", "system", "was", "the", "Solar", "Total", "Energy", "Project", "(", "STEP", ")", "in", "Shenandoah", ",", "Georgia", ",", "USA", "where", "a", "field", "of", "114", "parabolic", "dishes", "provided", "50", "%", "of", "the", "process", "heating", ",", "air", "conditioning", "and", "electrical", "requirements", "for", "a", "clothing", "factory", ".", "This", "grid", "-", "connected", "cogeneration", "system", "provided", "400", "kW", "of", "electricity", "plus", "thermal", "energy", "in", "the", "form", "of", "401", "kW", "steam", "and", "468", "kW", "chilled", "water", ",", "and", "had", "a", "one", "-", "hour", "peak", "load", "thermal", "storage", ".", "Evaporation", "ponds", "are", "shallow", "pools", "that", "concentrate", "dissolved", "solids", "through", "evaporation", ".", "The", "use", "of", "evaporation", "ponds", "to", "obtain", "salt", "from", "sea", "water", "is", "one", "of", "the", "oldest", "applications", "of", "solar", "energy", ".", "Modern", "uses", "include", "concentrating", "brine", "solutions", "used", "in", "leach", "mining", "and", "removing", "dissolved", "solids", "from", "waste", "streams", ".", "Clothes", "lines", ",", "clotheshorses", ",", "and", "clothes", "racks", "dry", "clothes", "through", "evaporation", "by", "wind", "and", "sunlight", "without", "consuming", "electricity", "or", "gas", ".", "In", "some", "states", "of", "the", "United", "States", "legislation", "protects", "the", "\"", "right", "to", "dry", "\"", "clothes", ".", "Unglazed", "transpired", "collectors", "(", "UTC", ")", "are", "perforated", "sun", "-", "facing", "walls", "used", "for", "preheating", "ventilation", "air", ".", "UTCs", "can", "raise", "the", "incoming", "air", "temperature", "up", "to", "22", "°", "C", "(", "40", "°", "F", ")", "and", "deliver", "outlet", "temperatures", "of", "45–60", "°", "C", "(", "113–140", "°", "F", ")", ".", "The", "short", "payback", "period", "of", "transpired", "collectors", "(", "3", "to", "12", "years", ")", "makes", "them", "a", "more", "cost", "-", "effective", "alternative", "than", "glazed", "collection", "systems", ".", "As", "of", "2003", ",", "over", "80", "systems", "with", "a", "combined", "collector", "area", "of", "35,000", "square", "metres", "(", "380,000", "sq", "ft", ")", "had", "been", "installed", "worldwide", ",", "including", "an", "860", "m2", "(", "9,300", "sq", "ft", ")", "collector", "in", "Costa", "Rica", "used", "for", "drying", "coffee", "beans", "and", "a", "1,300", "m2", "(", "14,000", "sq", "ft", ")", "collector", "in", "Coimbatore", ",", "India", ",", "used", "for", "drying", "marigolds", "." ], "offsets": [ 0, 6, 20, 33, 38, 41, 51, 55, 57, 64, 68, 78, 89, 93, 101, 109, 114, 118, 129, 133, 144, 156, 158, 162, 168, 179, 186, 190, 194, 200, 206, 213, 221, 222, 226, 228, 231, 241, 243, 250, 252, 256, 262, 264, 270, 273, 277, 287, 294, 303, 305, 307, 310, 314, 322, 329, 331, 335, 348, 352, 363, 376, 380, 382, 391, 398, 400, 405, 409, 410, 420, 433, 440, 449, 453, 456, 459, 471, 476, 484, 491, 494, 498, 503, 506, 510, 513, 519, 523, 527, 530, 538, 543, 545, 549, 553, 555, 558, 559, 564, 569, 574, 582, 589, 591, 603, 609, 613, 621, 627, 632, 644, 654, 661, 669, 680, 682, 686, 690, 693, 705, 711, 714, 721, 726, 731, 735, 741, 744, 748, 751, 755, 762, 775, 778, 784, 790, 792, 799, 804, 812, 826, 832, 842, 847, 850, 856, 863, 867, 876, 886, 893, 898, 904, 911, 913, 921, 926, 928, 941, 943, 947, 955, 961, 965, 973, 981, 993, 996, 1001, 1005, 1014, 1022, 1032, 1044, 1047, 1050, 1052, 1055, 1060, 1067, 1070, 1074, 1081, 1088, 1100, 1109, 1113, 1114, 1120, 1123, 1126, 1128, 1135, 1137, 1146, 1157, 1168, 1169, 1172, 1174, 1178, 1189, 1192, 1193, 1200, 1206, 1211, 1215, 1226, 1238, 1241, 1243, 1248, 1252, 1258, 1262, 1271, 1275, 1287, 1290, 1293, 1296, 1297, 1299, 1300, 1303, 1304, 1305, 1307, 1311, 1319, 1326, 1339, 1342, 1348, 1349, 1351, 1352, 1360, 1361, 1362, 1363, 1365, 1369, 1375, 1383, 1390, 1393, 1404, 1415, 1416, 1418, 1421, 1424, 1429, 1431, 1437, 1442, 1444, 1449, 1453, 1454, 1464, 1476, 1481, 1488, 1499, 1506, 1508, 1511, 1514, 1518, 1520, 1525, 1528, 1536, 1541, 1543, 1552, 1562, 1567, 1570, 1577, 1584, 1591, 1592, 1600, 1603, 1605, 1607, 1611, 1616, 1626, 1635, 1637, 1647, 1650, 1654, 1657, 1658, 1664, 1667, 1669, 1671, 1681, 1684, 1690, 1695, 1700, 1704, 1711, 1718, 1724, 1728, 1730, 1736, 1739, 1740, 1747, 1750, 1752, 1754, 1764, 1767, 1777, 1779, 1784, 1786, 1791, 1795, 1802, 1811 ] }
3318a33ef60c44ca9bddea8b71a17f73
The Solar Total Energy Project had a field of how many parabolic dishes?
{ "tokens": [ "The", "Solar", "Total", "Energy", "Project", "had", "a", "field", "of", "how", "many", "parabolic", "dishes", "?" ], "offsets": [ 0, 4, 10, 16, 23, 31, 35, 37, 43, 46, 50, 55, 65, 71 ] }
{ "text": [ "114" ], "char_spans": [ { "start": [ 273 ], "end": [ 275 ] } ], "token_spans": [ { "start": [ 45 ], "end": [ 45 ] } ] }
[ "114" ]
SQuAD
Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.
{ "tokens": [ "Solar", "concentrating", "technologies", "such", "as", "parabolic", "dish", ",", "trough", "and", "Scheffler", "reflectors", "can", "provide", "process", "heat", "for", "commercial", "and", "industrial", "applications", ".", "The", "first", "commercial", "system", "was", "the", "Solar", "Total", "Energy", "Project", "(", "STEP", ")", "in", "Shenandoah", ",", "Georgia", ",", "USA", "where", "a", "field", "of", "114", "parabolic", "dishes", "provided", "50", "%", "of", "the", "process", "heating", ",", "air", "conditioning", "and", "electrical", "requirements", "for", "a", "clothing", "factory", ".", "This", "grid", "-", "connected", "cogeneration", "system", "provided", "400", "kW", "of", "electricity", "plus", "thermal", "energy", "in", "the", "form", "of", "401", "kW", "steam", "and", "468", "kW", "chilled", "water", ",", "and", "had", "a", "one", "-", "hour", "peak", "load", "thermal", "storage", ".", "Evaporation", "ponds", "are", "shallow", "pools", "that", "concentrate", "dissolved", "solids", "through", "evaporation", ".", "The", "use", "of", "evaporation", "ponds", "to", "obtain", "salt", "from", "sea", "water", "is", "one", "of", "the", "oldest", "applications", "of", "solar", "energy", ".", "Modern", "uses", "include", "concentrating", "brine", "solutions", "used", "in", "leach", "mining", "and", "removing", "dissolved", "solids", "from", "waste", "streams", ".", "Clothes", "lines", ",", "clotheshorses", ",", "and", "clothes", "racks", "dry", "clothes", "through", "evaporation", "by", "wind", "and", "sunlight", "without", "consuming", "electricity", "or", "gas", ".", "In", "some", "states", "of", "the", "United", "States", "legislation", "protects", "the", "\"", "right", "to", "dry", "\"", "clothes", ".", "Unglazed", "transpired", "collectors", "(", "UTC", ")", "are", "perforated", "sun", "-", "facing", "walls", "used", "for", "preheating", "ventilation", "air", ".", "UTCs", "can", "raise", "the", "incoming", "air", "temperature", "up", "to", "22", "°", "C", "(", "40", "°", "F", ")", "and", "deliver", "outlet", "temperatures", "of", "45–60", "°", "C", "(", "113–140", "°", "F", ")", ".", "The", "short", "payback", "period", "of", "transpired", "collectors", "(", "3", "to", "12", "years", ")", "makes", "them", "a", "more", "cost", "-", "effective", "alternative", "than", "glazed", "collection", "systems", ".", "As", "of", "2003", ",", "over", "80", "systems", "with", "a", "combined", "collector", "area", "of", "35,000", "square", "metres", "(", "380,000", "sq", "ft", ")", "had", "been", "installed", "worldwide", ",", "including", "an", "860", "m2", "(", "9,300", "sq", "ft", ")", "collector", "in", "Costa", "Rica", "used", "for", "drying", "coffee", "beans", "and", "a", "1,300", "m2", "(", "14,000", "sq", "ft", ")", "collector", "in", "Coimbatore", ",", "India", ",", "used", "for", "drying", "marigolds", "." ], "offsets": [ 0, 6, 20, 33, 38, 41, 51, 55, 57, 64, 68, 78, 89, 93, 101, 109, 114, 118, 129, 133, 144, 156, 158, 162, 168, 179, 186, 190, 194, 200, 206, 213, 221, 222, 226, 228, 231, 241, 243, 250, 252, 256, 262, 264, 270, 273, 277, 287, 294, 303, 305, 307, 310, 314, 322, 329, 331, 335, 348, 352, 363, 376, 380, 382, 391, 398, 400, 405, 409, 410, 420, 433, 440, 449, 453, 456, 459, 471, 476, 484, 491, 494, 498, 503, 506, 510, 513, 519, 523, 527, 530, 538, 543, 545, 549, 553, 555, 558, 559, 564, 569, 574, 582, 589, 591, 603, 609, 613, 621, 627, 632, 644, 654, 661, 669, 680, 682, 686, 690, 693, 705, 711, 714, 721, 726, 731, 735, 741, 744, 748, 751, 755, 762, 775, 778, 784, 790, 792, 799, 804, 812, 826, 832, 842, 847, 850, 856, 863, 867, 876, 886, 893, 898, 904, 911, 913, 921, 926, 928, 941, 943, 947, 955, 961, 965, 973, 981, 993, 996, 1001, 1005, 1014, 1022, 1032, 1044, 1047, 1050, 1052, 1055, 1060, 1067, 1070, 1074, 1081, 1088, 1100, 1109, 1113, 1114, 1120, 1123, 1126, 1128, 1135, 1137, 1146, 1157, 1168, 1169, 1172, 1174, 1178, 1189, 1192, 1193, 1200, 1206, 1211, 1215, 1226, 1238, 1241, 1243, 1248, 1252, 1258, 1262, 1271, 1275, 1287, 1290, 1293, 1296, 1297, 1299, 1300, 1303, 1304, 1305, 1307, 1311, 1319, 1326, 1339, 1342, 1348, 1349, 1351, 1352, 1360, 1361, 1362, 1363, 1365, 1369, 1375, 1383, 1390, 1393, 1404, 1415, 1416, 1418, 1421, 1424, 1429, 1431, 1437, 1442, 1444, 1449, 1453, 1454, 1464, 1476, 1481, 1488, 1499, 1506, 1508, 1511, 1514, 1518, 1520, 1525, 1528, 1536, 1541, 1543, 1552, 1562, 1567, 1570, 1577, 1584, 1591, 1592, 1600, 1603, 1605, 1607, 1611, 1616, 1626, 1635, 1637, 1647, 1650, 1654, 1657, 1658, 1664, 1667, 1669, 1671, 1681, 1684, 1690, 1695, 1700, 1704, 1711, 1718, 1724, 1728, 1730, 1736, 1739, 1740, 1747, 1750, 1752, 1754, 1764, 1767, 1777, 1779, 1784, 1786, 1791, 1795, 1802, 1811 ] }
ceb83cccf6114cf7bd5d2c9cecac573e
Are transpired collectors more or less cost-effective than glazed collection systems?
{ "tokens": [ "Are", "transpired", "collectors", "more", "or", "less", "cost", "-", "effective", "than", "glazed", "collection", "systems", "?" ], "offsets": [ 0, 4, 15, 26, 31, 34, 39, 43, 44, 54, 59, 66, 77, 84 ] }
{ "text": [ "more" ], "char_spans": [ { "start": [ 1444 ], "end": [ 1447 ] } ], "token_spans": [ { "start": [ 259 ], "end": [ 259 ] } ] }
[ "more" ]
SQuAD
Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.
{ "tokens": [ "Solar", "concentrating", "technologies", "such", "as", "parabolic", "dish", ",", "trough", "and", "Scheffler", "reflectors", "can", "provide", "process", "heat", "for", "commercial", "and", "industrial", "applications", ".", "The", "first", "commercial", "system", "was", "the", "Solar", "Total", "Energy", "Project", "(", "STEP", ")", "in", "Shenandoah", ",", "Georgia", ",", "USA", "where", "a", "field", "of", "114", "parabolic", "dishes", "provided", "50", "%", "of", "the", "process", "heating", ",", "air", "conditioning", "and", "electrical", "requirements", "for", "a", "clothing", "factory", ".", "This", "grid", "-", "connected", "cogeneration", "system", "provided", "400", "kW", "of", "electricity", "plus", "thermal", "energy", "in", "the", "form", "of", "401", "kW", "steam", "and", "468", "kW", "chilled", "water", ",", "and", "had", "a", "one", "-", "hour", "peak", "load", "thermal", "storage", ".", "Evaporation", "ponds", "are", "shallow", "pools", "that", "concentrate", "dissolved", "solids", "through", "evaporation", ".", "The", "use", "of", "evaporation", "ponds", "to", "obtain", "salt", "from", "sea", "water", "is", "one", "of", "the", "oldest", "applications", "of", "solar", "energy", ".", "Modern", "uses", "include", "concentrating", "brine", "solutions", "used", "in", "leach", "mining", "and", "removing", "dissolved", "solids", "from", "waste", "streams", ".", "Clothes", "lines", ",", "clotheshorses", ",", "and", "clothes", "racks", "dry", "clothes", "through", "evaporation", "by", "wind", "and", "sunlight", "without", "consuming", "electricity", "or", "gas", ".", "In", "some", "states", "of", "the", "United", "States", "legislation", "protects", "the", "\"", "right", "to", "dry", "\"", "clothes", ".", "Unglazed", "transpired", "collectors", "(", "UTC", ")", "are", "perforated", "sun", "-", "facing", "walls", "used", "for", "preheating", "ventilation", "air", ".", "UTCs", "can", "raise", "the", "incoming", "air", "temperature", "up", "to", "22", "°", "C", "(", "40", "°", "F", ")", "and", "deliver", "outlet", "temperatures", "of", "45–60", "°", "C", "(", "113–140", "°", "F", ")", ".", "The", "short", "payback", "period", "of", "transpired", "collectors", "(", "3", "to", "12", "years", ")", "makes", "them", "a", "more", "cost", "-", "effective", "alternative", "than", "glazed", "collection", "systems", ".", "As", "of", "2003", ",", "over", "80", "systems", "with", "a", "combined", "collector", "area", "of", "35,000", "square", "metres", "(", "380,000", "sq", "ft", ")", "had", "been", "installed", "worldwide", ",", "including", "an", "860", "m2", "(", "9,300", "sq", "ft", ")", "collector", "in", "Costa", "Rica", "used", "for", "drying", "coffee", "beans", "and", "a", "1,300", "m2", "(", "14,000", "sq", "ft", ")", "collector", "in", "Coimbatore", ",", "India", ",", "used", "for", "drying", "marigolds", "." ], "offsets": [ 0, 6, 20, 33, 38, 41, 51, 55, 57, 64, 68, 78, 89, 93, 101, 109, 114, 118, 129, 133, 144, 156, 158, 162, 168, 179, 186, 190, 194, 200, 206, 213, 221, 222, 226, 228, 231, 241, 243, 250, 252, 256, 262, 264, 270, 273, 277, 287, 294, 303, 305, 307, 310, 314, 322, 329, 331, 335, 348, 352, 363, 376, 380, 382, 391, 398, 400, 405, 409, 410, 420, 433, 440, 449, 453, 456, 459, 471, 476, 484, 491, 494, 498, 503, 506, 510, 513, 519, 523, 527, 530, 538, 543, 545, 549, 553, 555, 558, 559, 564, 569, 574, 582, 589, 591, 603, 609, 613, 621, 627, 632, 644, 654, 661, 669, 680, 682, 686, 690, 693, 705, 711, 714, 721, 726, 731, 735, 741, 744, 748, 751, 755, 762, 775, 778, 784, 790, 792, 799, 804, 812, 826, 832, 842, 847, 850, 856, 863, 867, 876, 886, 893, 898, 904, 911, 913, 921, 926, 928, 941, 943, 947, 955, 961, 965, 973, 981, 993, 996, 1001, 1005, 1014, 1022, 1032, 1044, 1047, 1050, 1052, 1055, 1060, 1067, 1070, 1074, 1081, 1088, 1100, 1109, 1113, 1114, 1120, 1123, 1126, 1128, 1135, 1137, 1146, 1157, 1168, 1169, 1172, 1174, 1178, 1189, 1192, 1193, 1200, 1206, 1211, 1215, 1226, 1238, 1241, 1243, 1248, 1252, 1258, 1262, 1271, 1275, 1287, 1290, 1293, 1296, 1297, 1299, 1300, 1303, 1304, 1305, 1307, 1311, 1319, 1326, 1339, 1342, 1348, 1349, 1351, 1352, 1360, 1361, 1362, 1363, 1365, 1369, 1375, 1383, 1390, 1393, 1404, 1415, 1416, 1418, 1421, 1424, 1429, 1431, 1437, 1442, 1444, 1449, 1453, 1454, 1464, 1476, 1481, 1488, 1499, 1506, 1508, 1511, 1514, 1518, 1520, 1525, 1528, 1536, 1541, 1543, 1552, 1562, 1567, 1570, 1577, 1584, 1591, 1592, 1600, 1603, 1605, 1607, 1611, 1616, 1626, 1635, 1637, 1647, 1650, 1654, 1657, 1658, 1664, 1667, 1669, 1671, 1681, 1684, 1690, 1695, 1700, 1704, 1711, 1718, 1724, 1728, 1730, 1736, 1739, 1740, 1747, 1750, 1752, 1754, 1764, 1767, 1777, 1779, 1784, 1786, 1791, 1795, 1802, 1811 ] }
17c83973dd57412e9753c23e40266c86
What are some examples of solar concentrating technologies?
{ "tokens": [ "What", "are", "some", "examples", "of", "solar", "concentrating", "technologies", "?" ], "offsets": [ 0, 5, 9, 14, 23, 26, 32, 46, 58 ] }
{ "text": [ "parabolic dish, trough and Scheffler reflectors" ], "char_spans": [ { "start": [ 41 ], "end": [ 87 ] } ], "token_spans": [ { "start": [ 5 ], "end": [ 11 ] } ] }
[ "parabolic dish, trough and Scheffler reflectors" ]
SQuAD
Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.
{ "tokens": [ "Solar", "concentrating", "technologies", "such", "as", "parabolic", "dish", ",", "trough", "and", "Scheffler", "reflectors", "can", "provide", "process", "heat", "for", "commercial", "and", "industrial", "applications", ".", "The", "first", "commercial", "system", "was", "the", "Solar", "Total", "Energy", "Project", "(", "STEP", ")", "in", "Shenandoah", ",", "Georgia", ",", "USA", "where", "a", "field", "of", "114", "parabolic", "dishes", "provided", "50", "%", "of", "the", "process", "heating", ",", "air", "conditioning", "and", "electrical", "requirements", "for", "a", "clothing", "factory", ".", "This", "grid", "-", "connected", "cogeneration", "system", "provided", "400", "kW", "of", "electricity", "plus", "thermal", "energy", "in", "the", "form", "of", "401", "kW", "steam", "and", "468", "kW", "chilled", "water", ",", "and", "had", "a", "one", "-", "hour", "peak", "load", "thermal", "storage", ".", "Evaporation", "ponds", "are", "shallow", "pools", "that", "concentrate", "dissolved", "solids", "through", "evaporation", ".", "The", "use", "of", "evaporation", "ponds", "to", "obtain", "salt", "from", "sea", "water", "is", "one", "of", "the", "oldest", "applications", "of", "solar", "energy", ".", "Modern", "uses", "include", "concentrating", "brine", "solutions", "used", "in", "leach", "mining", "and", "removing", "dissolved", "solids", "from", "waste", "streams", ".", "Clothes", "lines", ",", "clotheshorses", ",", "and", "clothes", "racks", "dry", "clothes", "through", "evaporation", "by", "wind", "and", "sunlight", "without", "consuming", "electricity", "or", "gas", ".", "In", "some", "states", "of", "the", "United", "States", "legislation", "protects", "the", "\"", "right", "to", "dry", "\"", "clothes", ".", "Unglazed", "transpired", "collectors", "(", "UTC", ")", "are", "perforated", "sun", "-", "facing", "walls", "used", "for", "preheating", "ventilation", "air", ".", "UTCs", "can", "raise", "the", "incoming", "air", "temperature", "up", "to", "22", "°", "C", "(", "40", "°", "F", ")", "and", "deliver", "outlet", "temperatures", "of", "45–60", "°", "C", "(", "113–140", "°", "F", ")", ".", "The", "short", "payback", "period", "of", "transpired", "collectors", "(", "3", "to", "12", "years", ")", "makes", "them", "a", "more", "cost", "-", "effective", "alternative", "than", "glazed", "collection", "systems", ".", "As", "of", "2003", ",", "over", "80", "systems", "with", "a", "combined", "collector", "area", "of", "35,000", "square", "metres", "(", "380,000", "sq", "ft", ")", "had", "been", "installed", "worldwide", ",", "including", "an", "860", "m2", "(", "9,300", "sq", "ft", ")", "collector", "in", "Costa", "Rica", "used", "for", "drying", "coffee", "beans", "and", "a", "1,300", "m2", "(", "14,000", "sq", "ft", ")", "collector", "in", "Coimbatore", ",", "India", ",", "used", "for", "drying", "marigolds", "." ], "offsets": [ 0, 6, 20, 33, 38, 41, 51, 55, 57, 64, 68, 78, 89, 93, 101, 109, 114, 118, 129, 133, 144, 156, 158, 162, 168, 179, 186, 190, 194, 200, 206, 213, 221, 222, 226, 228, 231, 241, 243, 250, 252, 256, 262, 264, 270, 273, 277, 287, 294, 303, 305, 307, 310, 314, 322, 329, 331, 335, 348, 352, 363, 376, 380, 382, 391, 398, 400, 405, 409, 410, 420, 433, 440, 449, 453, 456, 459, 471, 476, 484, 491, 494, 498, 503, 506, 510, 513, 519, 523, 527, 530, 538, 543, 545, 549, 553, 555, 558, 559, 564, 569, 574, 582, 589, 591, 603, 609, 613, 621, 627, 632, 644, 654, 661, 669, 680, 682, 686, 690, 693, 705, 711, 714, 721, 726, 731, 735, 741, 744, 748, 751, 755, 762, 775, 778, 784, 790, 792, 799, 804, 812, 826, 832, 842, 847, 850, 856, 863, 867, 876, 886, 893, 898, 904, 911, 913, 921, 926, 928, 941, 943, 947, 955, 961, 965, 973, 981, 993, 996, 1001, 1005, 1014, 1022, 1032, 1044, 1047, 1050, 1052, 1055, 1060, 1067, 1070, 1074, 1081, 1088, 1100, 1109, 1113, 1114, 1120, 1123, 1126, 1128, 1135, 1137, 1146, 1157, 1168, 1169, 1172, 1174, 1178, 1189, 1192, 1193, 1200, 1206, 1211, 1215, 1226, 1238, 1241, 1243, 1248, 1252, 1258, 1262, 1271, 1275, 1287, 1290, 1293, 1296, 1297, 1299, 1300, 1303, 1304, 1305, 1307, 1311, 1319, 1326, 1339, 1342, 1348, 1349, 1351, 1352, 1360, 1361, 1362, 1363, 1365, 1369, 1375, 1383, 1390, 1393, 1404, 1415, 1416, 1418, 1421, 1424, 1429, 1431, 1437, 1442, 1444, 1449, 1453, 1454, 1464, 1476, 1481, 1488, 1499, 1506, 1508, 1511, 1514, 1518, 1520, 1525, 1528, 1536, 1541, 1543, 1552, 1562, 1567, 1570, 1577, 1584, 1591, 1592, 1600, 1603, 1605, 1607, 1611, 1616, 1626, 1635, 1637, 1647, 1650, 1654, 1657, 1658, 1664, 1667, 1669, 1671, 1681, 1684, 1690, 1695, 1700, 1704, 1711, 1718, 1724, 1728, 1730, 1736, 1739, 1740, 1747, 1750, 1752, 1754, 1764, 1767, 1777, 1779, 1784, 1786, 1791, 1795, 1802, 1811 ] }
087f2e06110e48c2b4bc0e9c71e43fa2
What was the first commercial solar concentrating system?
{ "tokens": [ "What", "was", "the", "first", "commercial", "solar", "concentrating", "system", "?" ], "offsets": [ 0, 5, 9, 13, 19, 30, 36, 50, 56 ] }
{ "text": [ "Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA" ], "char_spans": [ { "start": [ 194 ], "end": [ 254 ] } ], "token_spans": [ { "start": [ 28 ], "end": [ 40 ] } ] }
[ "Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA" ]
SQuAD
Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.
{ "tokens": [ "Solar", "concentrating", "technologies", "such", "as", "parabolic", "dish", ",", "trough", "and", "Scheffler", "reflectors", "can", "provide", "process", "heat", "for", "commercial", "and", "industrial", "applications", ".", "The", "first", "commercial", "system", "was", "the", "Solar", "Total", "Energy", "Project", "(", "STEP", ")", "in", "Shenandoah", ",", "Georgia", ",", "USA", "where", "a", "field", "of", "114", "parabolic", "dishes", "provided", "50", "%", "of", "the", "process", "heating", ",", "air", "conditioning", "and", "electrical", "requirements", "for", "a", "clothing", "factory", ".", "This", "grid", "-", "connected", "cogeneration", "system", "provided", "400", "kW", "of", "electricity", "plus", "thermal", "energy", "in", "the", "form", "of", "401", "kW", "steam", "and", "468", "kW", "chilled", "water", ",", "and", "had", "a", "one", "-", "hour", "peak", "load", "thermal", "storage", ".", "Evaporation", "ponds", "are", "shallow", "pools", "that", "concentrate", "dissolved", "solids", "through", "evaporation", ".", "The", "use", "of", "evaporation", "ponds", "to", "obtain", "salt", "from", "sea", "water", "is", "one", "of", "the", "oldest", "applications", "of", "solar", "energy", ".", "Modern", "uses", "include", "concentrating", "brine", "solutions", "used", "in", "leach", "mining", "and", "removing", "dissolved", "solids", "from", "waste", "streams", ".", "Clothes", "lines", ",", "clotheshorses", ",", "and", "clothes", "racks", "dry", "clothes", "through", "evaporation", "by", "wind", "and", "sunlight", "without", "consuming", "electricity", "or", "gas", ".", "In", "some", "states", "of", "the", "United", "States", "legislation", "protects", "the", "\"", "right", "to", "dry", "\"", "clothes", ".", "Unglazed", "transpired", "collectors", "(", "UTC", ")", "are", "perforated", "sun", "-", "facing", "walls", "used", "for", "preheating", "ventilation", "air", ".", "UTCs", "can", "raise", "the", "incoming", "air", "temperature", "up", "to", "22", "°", "C", "(", "40", "°", "F", ")", "and", "deliver", "outlet", "temperatures", "of", "45–60", "°", "C", "(", "113–140", "°", "F", ")", ".", "The", "short", "payback", "period", "of", "transpired", "collectors", "(", "3", "to", "12", "years", ")", "makes", "them", "a", "more", "cost", "-", "effective", "alternative", "than", "glazed", "collection", "systems", ".", "As", "of", "2003", ",", "over", "80", "systems", "with", "a", "combined", "collector", "area", "of", "35,000", "square", "metres", "(", "380,000", "sq", "ft", ")", "had", "been", "installed", "worldwide", ",", "including", "an", "860", "m2", "(", "9,300", "sq", "ft", ")", "collector", "in", "Costa", "Rica", "used", "for", "drying", "coffee", "beans", "and", "a", "1,300", "m2", "(", "14,000", "sq", "ft", ")", "collector", "in", "Coimbatore", ",", "India", ",", "used", "for", "drying", "marigolds", "." ], "offsets": [ 0, 6, 20, 33, 38, 41, 51, 55, 57, 64, 68, 78, 89, 93, 101, 109, 114, 118, 129, 133, 144, 156, 158, 162, 168, 179, 186, 190, 194, 200, 206, 213, 221, 222, 226, 228, 231, 241, 243, 250, 252, 256, 262, 264, 270, 273, 277, 287, 294, 303, 305, 307, 310, 314, 322, 329, 331, 335, 348, 352, 363, 376, 380, 382, 391, 398, 400, 405, 409, 410, 420, 433, 440, 449, 453, 456, 459, 471, 476, 484, 491, 494, 498, 503, 506, 510, 513, 519, 523, 527, 530, 538, 543, 545, 549, 553, 555, 558, 559, 564, 569, 574, 582, 589, 591, 603, 609, 613, 621, 627, 632, 644, 654, 661, 669, 680, 682, 686, 690, 693, 705, 711, 714, 721, 726, 731, 735, 741, 744, 748, 751, 755, 762, 775, 778, 784, 790, 792, 799, 804, 812, 826, 832, 842, 847, 850, 856, 863, 867, 876, 886, 893, 898, 904, 911, 913, 921, 926, 928, 941, 943, 947, 955, 961, 965, 973, 981, 993, 996, 1001, 1005, 1014, 1022, 1032, 1044, 1047, 1050, 1052, 1055, 1060, 1067, 1070, 1074, 1081, 1088, 1100, 1109, 1113, 1114, 1120, 1123, 1126, 1128, 1135, 1137, 1146, 1157, 1168, 1169, 1172, 1174, 1178, 1189, 1192, 1193, 1200, 1206, 1211, 1215, 1226, 1238, 1241, 1243, 1248, 1252, 1258, 1262, 1271, 1275, 1287, 1290, 1293, 1296, 1297, 1299, 1300, 1303, 1304, 1305, 1307, 1311, 1319, 1326, 1339, 1342, 1348, 1349, 1351, 1352, 1360, 1361, 1362, 1363, 1365, 1369, 1375, 1383, 1390, 1393, 1404, 1415, 1416, 1418, 1421, 1424, 1429, 1431, 1437, 1442, 1444, 1449, 1453, 1454, 1464, 1476, 1481, 1488, 1499, 1506, 1508, 1511, 1514, 1518, 1520, 1525, 1528, 1536, 1541, 1543, 1552, 1562, 1567, 1570, 1577, 1584, 1591, 1592, 1600, 1603, 1605, 1607, 1611, 1616, 1626, 1635, 1637, 1647, 1650, 1654, 1657, 1658, 1664, 1667, 1669, 1671, 1681, 1684, 1690, 1695, 1700, 1704, 1711, 1718, 1724, 1728, 1730, 1736, 1739, 1740, 1747, 1750, 1752, 1754, 1764, 1767, 1777, 1779, 1784, 1786, 1791, 1795, 1802, 1811 ] }
adb25681ad7c4ba89832f9f4256f4ad4
What is one of the oldest uses of solar energy?
{ "tokens": [ "What", "is", "one", "of", "the", "oldest", "uses", "of", "solar", "energy", "?" ], "offsets": [ 0, 5, 8, 12, 15, 19, 26, 31, 34, 40, 46 ] }
{ "text": [ "use of evaporation ponds to obtain salt from sea water" ], "char_spans": [ { "start": [ 686 ], "end": [ 739 ] } ], "token_spans": [ { "start": [ 117 ], "end": [ 126 ] } ] }
[ "use of evaporation ponds to obtain salt from sea water" ]
SQuAD
Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.
{ "tokens": [ "Solar", "concentrating", "technologies", "such", "as", "parabolic", "dish", ",", "trough", "and", "Scheffler", "reflectors", "can", "provide", "process", "heat", "for", "commercial", "and", "industrial", "applications", ".", "The", "first", "commercial", "system", "was", "the", "Solar", "Total", "Energy", "Project", "(", "STEP", ")", "in", "Shenandoah", ",", "Georgia", ",", "USA", "where", "a", "field", "of", "114", "parabolic", "dishes", "provided", "50", "%", "of", "the", "process", "heating", ",", "air", "conditioning", "and", "electrical", "requirements", "for", "a", "clothing", "factory", ".", "This", "grid", "-", "connected", "cogeneration", "system", "provided", "400", "kW", "of", "electricity", "plus", "thermal", "energy", "in", "the", "form", "of", "401", "kW", "steam", "and", "468", "kW", "chilled", "water", ",", "and", "had", "a", "one", "-", "hour", "peak", "load", "thermal", "storage", ".", "Evaporation", "ponds", "are", "shallow", "pools", "that", "concentrate", "dissolved", "solids", "through", "evaporation", ".", "The", "use", "of", "evaporation", "ponds", "to", "obtain", "salt", "from", "sea", "water", "is", "one", "of", "the", "oldest", "applications", "of", "solar", "energy", ".", "Modern", "uses", "include", "concentrating", "brine", "solutions", "used", "in", "leach", "mining", "and", "removing", "dissolved", "solids", "from", "waste", "streams", ".", "Clothes", "lines", ",", "clotheshorses", ",", "and", "clothes", "racks", "dry", "clothes", "through", "evaporation", "by", "wind", "and", "sunlight", "without", "consuming", "electricity", "or", "gas", ".", "In", "some", "states", "of", "the", "United", "States", "legislation", "protects", "the", "\"", "right", "to", "dry", "\"", "clothes", ".", "Unglazed", "transpired", "collectors", "(", "UTC", ")", "are", "perforated", "sun", "-", "facing", "walls", "used", "for", "preheating", "ventilation", "air", ".", "UTCs", "can", "raise", "the", "incoming", "air", "temperature", "up", "to", "22", "°", "C", "(", "40", "°", "F", ")", "and", "deliver", "outlet", "temperatures", "of", "45–60", "°", "C", "(", "113–140", "°", "F", ")", ".", "The", "short", "payback", "period", "of", "transpired", "collectors", "(", "3", "to", "12", "years", ")", "makes", "them", "a", "more", "cost", "-", "effective", "alternative", "than", "glazed", "collection", "systems", ".", "As", "of", "2003", ",", "over", "80", "systems", "with", "a", "combined", "collector", "area", "of", "35,000", "square", "metres", "(", "380,000", "sq", "ft", ")", "had", "been", "installed", "worldwide", ",", "including", "an", "860", "m2", "(", "9,300", "sq", "ft", ")", "collector", "in", "Costa", "Rica", "used", "for", "drying", "coffee", "beans", "and", "a", "1,300", "m2", "(", "14,000", "sq", "ft", ")", "collector", "in", "Coimbatore", ",", "India", ",", "used", "for", "drying", "marigolds", "." ], "offsets": [ 0, 6, 20, 33, 38, 41, 51, 55, 57, 64, 68, 78, 89, 93, 101, 109, 114, 118, 129, 133, 144, 156, 158, 162, 168, 179, 186, 190, 194, 200, 206, 213, 221, 222, 226, 228, 231, 241, 243, 250, 252, 256, 262, 264, 270, 273, 277, 287, 294, 303, 305, 307, 310, 314, 322, 329, 331, 335, 348, 352, 363, 376, 380, 382, 391, 398, 400, 405, 409, 410, 420, 433, 440, 449, 453, 456, 459, 471, 476, 484, 491, 494, 498, 503, 506, 510, 513, 519, 523, 527, 530, 538, 543, 545, 549, 553, 555, 558, 559, 564, 569, 574, 582, 589, 591, 603, 609, 613, 621, 627, 632, 644, 654, 661, 669, 680, 682, 686, 690, 693, 705, 711, 714, 721, 726, 731, 735, 741, 744, 748, 751, 755, 762, 775, 778, 784, 790, 792, 799, 804, 812, 826, 832, 842, 847, 850, 856, 863, 867, 876, 886, 893, 898, 904, 911, 913, 921, 926, 928, 941, 943, 947, 955, 961, 965, 973, 981, 993, 996, 1001, 1005, 1014, 1022, 1032, 1044, 1047, 1050, 1052, 1055, 1060, 1067, 1070, 1074, 1081, 1088, 1100, 1109, 1113, 1114, 1120, 1123, 1126, 1128, 1135, 1137, 1146, 1157, 1168, 1169, 1172, 1174, 1178, 1189, 1192, 1193, 1200, 1206, 1211, 1215, 1226, 1238, 1241, 1243, 1248, 1252, 1258, 1262, 1271, 1275, 1287, 1290, 1293, 1296, 1297, 1299, 1300, 1303, 1304, 1305, 1307, 1311, 1319, 1326, 1339, 1342, 1348, 1349, 1351, 1352, 1360, 1361, 1362, 1363, 1365, 1369, 1375, 1383, 1390, 1393, 1404, 1415, 1416, 1418, 1421, 1424, 1429, 1431, 1437, 1442, 1444, 1449, 1453, 1454, 1464, 1476, 1481, 1488, 1499, 1506, 1508, 1511, 1514, 1518, 1520, 1525, 1528, 1536, 1541, 1543, 1552, 1562, 1567, 1570, 1577, 1584, 1591, 1592, 1600, 1603, 1605, 1607, 1611, 1616, 1626, 1635, 1637, 1647, 1650, 1654, 1657, 1658, 1664, 1667, 1669, 1671, 1681, 1684, 1690, 1695, 1700, 1704, 1711, 1718, 1724, 1728, 1730, 1736, 1739, 1740, 1747, 1750, 1752, 1754, 1764, 1767, 1777, 1779, 1784, 1786, 1791, 1795, 1802, 1811 ] }
1c892d6fc4b4455aa2d0ed4b697021f7
What are some items used to dry clothes without the use of electricity?
{ "tokens": [ "What", "are", "some", "items", "used", "to", "dry", "clothes", "without", "the", "use", "of", "electricity", "?" ], "offsets": [ 0, 5, 9, 14, 20, 25, 28, 32, 40, 48, 52, 56, 59, 70 ] }
{ "text": [ "Clothes lines, clotheshorses, and clothes racks" ], "char_spans": [ { "start": [ 913 ], "end": [ 959 ] } ], "token_spans": [ { "start": [ 155 ], "end": [ 162 ] } ] }
[ "Clothes lines, clotheshorses, and clothes racks" ]
SQuAD
Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.
{ "tokens": [ "Solar", "concentrating", "technologies", "such", "as", "parabolic", "dish", ",", "trough", "and", "Scheffler", "reflectors", "can", "provide", "process", "heat", "for", "commercial", "and", "industrial", "applications", ".", "The", "first", "commercial", "system", "was", "the", "Solar", "Total", "Energy", "Project", "(", "STEP", ")", "in", "Shenandoah", ",", "Georgia", ",", "USA", "where", "a", "field", "of", "114", "parabolic", "dishes", "provided", "50", "%", "of", "the", "process", "heating", ",", "air", "conditioning", "and", "electrical", "requirements", "for", "a", "clothing", "factory", ".", "This", "grid", "-", "connected", "cogeneration", "system", "provided", "400", "kW", "of", "electricity", "plus", "thermal", "energy", "in", "the", "form", "of", "401", "kW", "steam", "and", "468", "kW", "chilled", "water", ",", "and", "had", "a", "one", "-", "hour", "peak", "load", "thermal", "storage", ".", "Evaporation", "ponds", "are", "shallow", "pools", "that", "concentrate", "dissolved", "solids", "through", "evaporation", ".", "The", "use", "of", "evaporation", "ponds", "to", "obtain", "salt", "from", "sea", "water", "is", "one", "of", "the", "oldest", "applications", "of", "solar", "energy", ".", "Modern", "uses", "include", "concentrating", "brine", "solutions", "used", "in", "leach", "mining", "and", "removing", "dissolved", "solids", "from", "waste", "streams", ".", "Clothes", "lines", ",", "clotheshorses", ",", "and", "clothes", "racks", "dry", "clothes", "through", "evaporation", "by", "wind", "and", "sunlight", "without", "consuming", "electricity", "or", "gas", ".", "In", "some", "states", "of", "the", "United", "States", "legislation", "protects", "the", "\"", "right", "to", "dry", "\"", "clothes", ".", "Unglazed", "transpired", "collectors", "(", "UTC", ")", "are", "perforated", "sun", "-", "facing", "walls", "used", "for", "preheating", "ventilation", "air", ".", "UTCs", "can", "raise", "the", "incoming", "air", "temperature", "up", "to", "22", "°", "C", "(", "40", "°", "F", ")", "and", "deliver", "outlet", "temperatures", "of", "45–60", "°", "C", "(", "113–140", "°", "F", ")", ".", "The", "short", "payback", "period", "of", "transpired", "collectors", "(", "3", "to", "12", "years", ")", "makes", "them", "a", "more", "cost", "-", "effective", "alternative", "than", "glazed", "collection", "systems", ".", "As", "of", "2003", ",", "over", "80", "systems", "with", "a", "combined", "collector", "area", "of", "35,000", "square", "metres", "(", "380,000", "sq", "ft", ")", "had", "been", "installed", "worldwide", ",", "including", "an", "860", "m2", "(", "9,300", "sq", "ft", ")", "collector", "in", "Costa", "Rica", "used", "for", "drying", "coffee", "beans", "and", "a", "1,300", "m2", "(", "14,000", "sq", "ft", ")", "collector", "in", "Coimbatore", ",", "India", ",", "used", "for", "drying", "marigolds", "." ], "offsets": [ 0, 6, 20, 33, 38, 41, 51, 55, 57, 64, 68, 78, 89, 93, 101, 109, 114, 118, 129, 133, 144, 156, 158, 162, 168, 179, 186, 190, 194, 200, 206, 213, 221, 222, 226, 228, 231, 241, 243, 250, 252, 256, 262, 264, 270, 273, 277, 287, 294, 303, 305, 307, 310, 314, 322, 329, 331, 335, 348, 352, 363, 376, 380, 382, 391, 398, 400, 405, 409, 410, 420, 433, 440, 449, 453, 456, 459, 471, 476, 484, 491, 494, 498, 503, 506, 510, 513, 519, 523, 527, 530, 538, 543, 545, 549, 553, 555, 558, 559, 564, 569, 574, 582, 589, 591, 603, 609, 613, 621, 627, 632, 644, 654, 661, 669, 680, 682, 686, 690, 693, 705, 711, 714, 721, 726, 731, 735, 741, 744, 748, 751, 755, 762, 775, 778, 784, 790, 792, 799, 804, 812, 826, 832, 842, 847, 850, 856, 863, 867, 876, 886, 893, 898, 904, 911, 913, 921, 926, 928, 941, 943, 947, 955, 961, 965, 973, 981, 993, 996, 1001, 1005, 1014, 1022, 1032, 1044, 1047, 1050, 1052, 1055, 1060, 1067, 1070, 1074, 1081, 1088, 1100, 1109, 1113, 1114, 1120, 1123, 1126, 1128, 1135, 1137, 1146, 1157, 1168, 1169, 1172, 1174, 1178, 1189, 1192, 1193, 1200, 1206, 1211, 1215, 1226, 1238, 1241, 1243, 1248, 1252, 1258, 1262, 1271, 1275, 1287, 1290, 1293, 1296, 1297, 1299, 1300, 1303, 1304, 1305, 1307, 1311, 1319, 1326, 1339, 1342, 1348, 1349, 1351, 1352, 1360, 1361, 1362, 1363, 1365, 1369, 1375, 1383, 1390, 1393, 1404, 1415, 1416, 1418, 1421, 1424, 1429, 1431, 1437, 1442, 1444, 1449, 1453, 1454, 1464, 1476, 1481, 1488, 1499, 1506, 1508, 1511, 1514, 1518, 1520, 1525, 1528, 1536, 1541, 1543, 1552, 1562, 1567, 1570, 1577, 1584, 1591, 1592, 1600, 1603, 1605, 1607, 1611, 1616, 1626, 1635, 1637, 1647, 1650, 1654, 1657, 1658, 1664, 1667, 1669, 1671, 1681, 1684, 1690, 1695, 1700, 1704, 1711, 1718, 1724, 1728, 1730, 1736, 1739, 1740, 1747, 1750, 1752, 1754, 1764, 1767, 1777, 1779, 1784, 1786, 1791, 1795, 1802, 1811 ] }
e84464b2dcd24e3bbf45436020663f9c
What are Unglazed transpired collectors?
{ "tokens": [ "What", "are", "Unglazed", "transpired", "collectors", "?" ], "offsets": [ 0, 5, 9, 18, 29, 39 ] }
{ "text": [ "perforated sun-facing walls used for preheating ventilation air" ], "char_spans": [ { "start": [ 1178 ], "end": [ 1240 ] } ], "token_spans": [ { "start": [ 201 ], "end": [ 210 ] } ] }
[ "perforated sun-facing walls used for preheating ventilation air" ]
SQuAD
Tajiks began to be conscripted into the Soviet Army in 1939 and during World War II around 260,000 Tajik citizens fought against Germany, Finland and Japan. Between 60,000(4%) and 120,000(8%) of Tajikistan's 1,530,000 citizens were killed during World War II. Following the war and Stalin's reign attempts were made to further expand the agriculture and industry of Tajikistan. During 1957–58 Nikita Khrushchev's Virgin Lands Campaign focused attention on Tajikistan, where living conditions, education and industry lagged behind the other Soviet Republics. In the 1980s, Tajikistan had the lowest household saving rate in the USSR, the lowest percentage of households in the two top per capita income groups, and the lowest rate of university graduates per 1000 people. By the late 1980s Tajik nationalists were calling for increased rights. Real disturbances did not occur within the republic until 1990. The following year, the Soviet Union collapsed, and Tajikistan declared its independence.
{ "tokens": [ "Tajiks", "began", "to", "be", "conscripted", "into", "the", "Soviet", "Army", "in", "1939", "and", "during", "World", "War", "II", "around", "260,000", "Tajik", "citizens", "fought", "against", "Germany", ",", "Finland", "and", "Japan", ".", "Between", "60,000(4", "%", ")", "and", "120,000(8", "%", ")", "of", "Tajikistan", "'s", "1,530,000", "citizens", "were", "killed", "during", "World", "War", "II", ".", "Following", "the", "war", "and", "Stalin", "'s", "reign", "attempts", "were", "made", "to", "further", "expand", "the", "agriculture", "and", "industry", "of", "Tajikistan", ".", "During", "1957–58", "Nikita", "Khrushchev", "'s", "Virgin", "Lands", "Campaign", "focused", "attention", "on", "Tajikistan", ",", "where", "living", "conditions", ",", "education", "and", "industry", "lagged", "behind", "the", "other", "Soviet", "Republics", ".", "In", "the", "1980s", ",", "Tajikistan", "had", "the", "lowest", "household", "saving", "rate", "in", "the", "USSR", ",", "the", "lowest", "percentage", "of", "households", "in", "the", "two", "top", "per", "capita", "income", "groups", ",", "and", "the", "lowest", "rate", "of", "university", "graduates", "per", "1000", "people", ".", "By", "the", "late", "1980s", "Tajik", "nationalists", "were", "calling", "for", "increased", "rights", ".", "Real", "disturbances", "did", "not", "occur", "within", "the", "republic", "until", "1990", ".", "The", "following", "year", ",", "the", "Soviet", "Union", "collapsed", ",", "and", "Tajikistan", "declared", "its", "independence", "." ], "offsets": [ 0, 7, 13, 16, 19, 31, 36, 40, 47, 52, 55, 60, 64, 71, 77, 81, 84, 91, 99, 105, 114, 121, 129, 136, 138, 146, 150, 155, 157, 165, 173, 174, 176, 180, 189, 190, 192, 195, 205, 208, 218, 227, 232, 239, 246, 252, 256, 258, 260, 270, 274, 278, 282, 288, 291, 297, 306, 311, 316, 319, 327, 334, 338, 350, 354, 363, 366, 376, 378, 385, 393, 400, 410, 413, 420, 426, 435, 443, 453, 456, 466, 468, 474, 481, 491, 493, 503, 507, 516, 523, 530, 534, 540, 547, 556, 558, 561, 565, 570, 572, 583, 587, 591, 598, 608, 615, 620, 623, 627, 631, 633, 637, 644, 655, 658, 669, 672, 676, 680, 684, 688, 695, 702, 708, 710, 714, 718, 725, 730, 733, 744, 754, 758, 763, 769, 771, 774, 778, 783, 789, 795, 808, 813, 821, 825, 835, 841, 843, 848, 861, 865, 869, 875, 882, 886, 895, 901, 905, 907, 911, 921, 925, 927, 931, 938, 944, 953, 955, 959, 970, 979, 983, 995 ] }
aacb1ed153db4c1081927f74abf52188
When did Tajiks start being part of the Soviet Army?
{ "tokens": [ "When", "did", "Tajiks", "start", "being", "part", "of", "the", "Soviet", "Army", "?" ], "offsets": [ 0, 5, 9, 16, 22, 28, 33, 36, 40, 47, 51 ] }
{ "text": [ "1939" ], "char_spans": [ { "start": [ 55 ], "end": [ 58 ] } ], "token_spans": [ { "start": [ 10 ], "end": [ 10 ] } ] }
[ "1939" ]