repository_name
stringlengths 7
55
| func_path_in_repository
stringlengths 4
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 75
104k
| language
stringclasses 1
value | func_code_string
stringlengths 75
104k
| func_code_tokens
sequencelengths 19
28.4k
| func_documentation_string
stringlengths 1
46.9k
| func_documentation_tokens
sequencelengths 1
1.97k
| split_name
stringclasses 1
value | func_code_url
stringlengths 87
315
|
---|---|---|---|---|---|---|---|---|---|---|
cgarciae/phi | phi/dsl.py | Expression.Seq | def Seq(self, *sequence, **kwargs):
"""
`Seq` is used to express function composition. The expression
Seq(f, g)
be equivalent to
lambda x: g(f(x))
As you see, its a little different from the mathematical definition. Excecution order flow from left to right, this makes reading and reasoning about code way more easy. This bahaviour is based upon the `|>` (pipe) operator found in languages like F#, Elixir and Elm. You can pack as many expressions as you like and they will be applied in order to the data that is passed through them when compiled an excecuted.
In general, the following rules apply for Seq:
**General Sequence**
Seq(f0, f1, ..., fn-1, fn)
is equivalent to
lambda x: fn(fn-1(...(f1(f0(x)))))
**Single Function**
Seq(f)
is equivalent to
f
**Identity**
The empty Seq
Seq()
is equivalent to
lambda x: x
### Examples
from phi import P, Seq
f = Seq(
P * 2,
P + 1,
P ** 2
)
assert f(1) == 9 # ((1 * 2) + 1) ** 2
The previous example using `P.Pipe`
from phi import P
assert 9 == P.Pipe(
1,
P * 2, #1 * 2 == 2
P + 1, #2 + 1 == 3
P ** 2 #3 ** 2 == 9
)
"""
fs = [ _parse(elem)._f for elem in sequence ]
def g(x, state):
return functools.reduce(lambda args, f: f(*args), fs, (x, state))
return self.__then__(g, **kwargs) | python | def Seq(self, *sequence, **kwargs):
"""
`Seq` is used to express function composition. The expression
Seq(f, g)
be equivalent to
lambda x: g(f(x))
As you see, its a little different from the mathematical definition. Excecution order flow from left to right, this makes reading and reasoning about code way more easy. This bahaviour is based upon the `|>` (pipe) operator found in languages like F#, Elixir and Elm. You can pack as many expressions as you like and they will be applied in order to the data that is passed through them when compiled an excecuted.
In general, the following rules apply for Seq:
**General Sequence**
Seq(f0, f1, ..., fn-1, fn)
is equivalent to
lambda x: fn(fn-1(...(f1(f0(x)))))
**Single Function**
Seq(f)
is equivalent to
f
**Identity**
The empty Seq
Seq()
is equivalent to
lambda x: x
### Examples
from phi import P, Seq
f = Seq(
P * 2,
P + 1,
P ** 2
)
assert f(1) == 9 # ((1 * 2) + 1) ** 2
The previous example using `P.Pipe`
from phi import P
assert 9 == P.Pipe(
1,
P * 2, #1 * 2 == 2
P + 1, #2 + 1 == 3
P ** 2 #3 ** 2 == 9
)
"""
fs = [ _parse(elem)._f for elem in sequence ]
def g(x, state):
return functools.reduce(lambda args, f: f(*args), fs, (x, state))
return self.__then__(g, **kwargs) | [
"def",
"Seq",
"(",
"self",
",",
"*",
"sequence",
",",
"*",
"*",
"kwargs",
")",
":",
"fs",
"=",
"[",
"_parse",
"(",
"elem",
")",
".",
"_f",
"for",
"elem",
"in",
"sequence",
"]",
"def",
"g",
"(",
"x",
",",
"state",
")",
":",
"return",
"functools",
".",
"reduce",
"(",
"lambda",
"args",
",",
"f",
":",
"f",
"(",
"*",
"args",
")",
",",
"fs",
",",
"(",
"x",
",",
"state",
")",
")",
"return",
"self",
".",
"__then__",
"(",
"g",
",",
"*",
"*",
"kwargs",
")"
] | `Seq` is used to express function composition. The expression
Seq(f, g)
be equivalent to
lambda x: g(f(x))
As you see, its a little different from the mathematical definition. Excecution order flow from left to right, this makes reading and reasoning about code way more easy. This bahaviour is based upon the `|>` (pipe) operator found in languages like F#, Elixir and Elm. You can pack as many expressions as you like and they will be applied in order to the data that is passed through them when compiled an excecuted.
In general, the following rules apply for Seq:
**General Sequence**
Seq(f0, f1, ..., fn-1, fn)
is equivalent to
lambda x: fn(fn-1(...(f1(f0(x)))))
**Single Function**
Seq(f)
is equivalent to
f
**Identity**
The empty Seq
Seq()
is equivalent to
lambda x: x
### Examples
from phi import P, Seq
f = Seq(
P * 2,
P + 1,
P ** 2
)
assert f(1) == 9 # ((1 * 2) + 1) ** 2
The previous example using `P.Pipe`
from phi import P
assert 9 == P.Pipe(
1,
P * 2, #1 * 2 == 2
P + 1, #2 + 1 == 3
P ** 2 #3 ** 2 == 9
) | [
"Seq",
"is",
"used",
"to",
"express",
"function",
"composition",
".",
"The",
"expression"
] | train | https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L801-L869 |
cgarciae/phi | phi/dsl.py | Expression.With | def With(self, context_manager, *body, **kwargs):
"""
**With**
def With(context_manager, *body):
**Arguments**
* **context_manager**: a [context manager](https://docs.python.org/2/reference/datamodel.html#context-managers) object or valid expression from the DSL that returns a context manager.
* ***body**: any valid expression of the DSL to be evaluated inside the context. `*body` is interpreted as a tuple so all expression contained are composed.
As with normal python programs you sometimes might want to create a context for a block of code. You normally give a [context manager](https://docs.python.org/2/reference/datamodel.html#context-managers) to the [with](https://docs.python.org/2/reference/compound_stmts.html#the-with-statement) statemente, in Phi you use `P.With` or `phi.With`
**Context**
Python's `with` statemente returns a context object through `as` keyword, in the DSL this object can be obtained using the `P.Context` method or the `phi.Context` function.
### Examples
from phi import P, Obj, Context, With, Pipe
text = Pipe(
"text.txt",
With( open, Context,
Obj.read()
)
)
The previous is equivalent to
with open("text.txt") as f:
text = f.read()
"""
context_f = _parse(context_manager)._f
body_f = E.Seq(*body)._f
def g(x, state):
context, state = context_f(x, state)
with context as scope:
with _WithContextManager(scope):
return body_f(x, state)
return self.__then__(g, **kwargs) | python | def With(self, context_manager, *body, **kwargs):
"""
**With**
def With(context_manager, *body):
**Arguments**
* **context_manager**: a [context manager](https://docs.python.org/2/reference/datamodel.html#context-managers) object or valid expression from the DSL that returns a context manager.
* ***body**: any valid expression of the DSL to be evaluated inside the context. `*body` is interpreted as a tuple so all expression contained are composed.
As with normal python programs you sometimes might want to create a context for a block of code. You normally give a [context manager](https://docs.python.org/2/reference/datamodel.html#context-managers) to the [with](https://docs.python.org/2/reference/compound_stmts.html#the-with-statement) statemente, in Phi you use `P.With` or `phi.With`
**Context**
Python's `with` statemente returns a context object through `as` keyword, in the DSL this object can be obtained using the `P.Context` method or the `phi.Context` function.
### Examples
from phi import P, Obj, Context, With, Pipe
text = Pipe(
"text.txt",
With( open, Context,
Obj.read()
)
)
The previous is equivalent to
with open("text.txt") as f:
text = f.read()
"""
context_f = _parse(context_manager)._f
body_f = E.Seq(*body)._f
def g(x, state):
context, state = context_f(x, state)
with context as scope:
with _WithContextManager(scope):
return body_f(x, state)
return self.__then__(g, **kwargs) | [
"def",
"With",
"(",
"self",
",",
"context_manager",
",",
"*",
"body",
",",
"*",
"*",
"kwargs",
")",
":",
"context_f",
"=",
"_parse",
"(",
"context_manager",
")",
".",
"_f",
"body_f",
"=",
"E",
".",
"Seq",
"(",
"*",
"body",
")",
".",
"_f",
"def",
"g",
"(",
"x",
",",
"state",
")",
":",
"context",
",",
"state",
"=",
"context_f",
"(",
"x",
",",
"state",
")",
"with",
"context",
"as",
"scope",
":",
"with",
"_WithContextManager",
"(",
"scope",
")",
":",
"return",
"body_f",
"(",
"x",
",",
"state",
")",
"return",
"self",
".",
"__then__",
"(",
"g",
",",
"*",
"*",
"kwargs",
")"
] | **With**
def With(context_manager, *body):
**Arguments**
* **context_manager**: a [context manager](https://docs.python.org/2/reference/datamodel.html#context-managers) object or valid expression from the DSL that returns a context manager.
* ***body**: any valid expression of the DSL to be evaluated inside the context. `*body` is interpreted as a tuple so all expression contained are composed.
As with normal python programs you sometimes might want to create a context for a block of code. You normally give a [context manager](https://docs.python.org/2/reference/datamodel.html#context-managers) to the [with](https://docs.python.org/2/reference/compound_stmts.html#the-with-statement) statemente, in Phi you use `P.With` or `phi.With`
**Context**
Python's `with` statemente returns a context object through `as` keyword, in the DSL this object can be obtained using the `P.Context` method or the `phi.Context` function.
### Examples
from phi import P, Obj, Context, With, Pipe
text = Pipe(
"text.txt",
With( open, Context,
Obj.read()
)
)
The previous is equivalent to
with open("text.txt") as f:
text = f.read() | [
"**",
"With",
"**"
] | train | https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L930-L973 |
cgarciae/phi | phi/dsl.py | Expression.ReadList | def ReadList(self, *branches, **kwargs):
"""
Same as `phi.dsl.Expression.List` but any string argument `x` is translated to `Read(x)`.
"""
branches = map(lambda x: E.Read(x) if isinstance(x, str) else x, branches)
return self.List(*branches, **kwargs) | python | def ReadList(self, *branches, **kwargs):
"""
Same as `phi.dsl.Expression.List` but any string argument `x` is translated to `Read(x)`.
"""
branches = map(lambda x: E.Read(x) if isinstance(x, str) else x, branches)
return self.List(*branches, **kwargs) | [
"def",
"ReadList",
"(",
"self",
",",
"*",
"branches",
",",
"*",
"*",
"kwargs",
")",
":",
"branches",
"=",
"map",
"(",
"lambda",
"x",
":",
"E",
".",
"Read",
"(",
"x",
")",
"if",
"isinstance",
"(",
"x",
",",
"str",
")",
"else",
"x",
",",
"branches",
")",
"return",
"self",
".",
"List",
"(",
"*",
"branches",
",",
"*",
"*",
"kwargs",
")"
] | Same as `phi.dsl.Expression.List` but any string argument `x` is translated to `Read(x)`. | [
"Same",
"as",
"phi",
".",
"dsl",
".",
"Expression",
".",
"List",
"but",
"any",
"string",
"argument",
"x",
"is",
"translated",
"to",
"Read",
"(",
"x",
")",
"."
] | train | https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L1021-L1027 |
cgarciae/phi | phi/dsl.py | Expression.Write | def Write(self, *state_args, **state_dict):
"""See `phi.dsl.Expression.Read`"""
if len(state_dict) + len(state_args) < 1:
raise Exception("Please include at-least 1 state variable, got {0} and {1}".format(state_args, state_dict))
if len(state_dict) > 1:
raise Exception("Please include at-most 1 keyword argument expression, got {0}".format(state_dict))
if len(state_dict) > 0:
state_key = next(iter(state_dict.keys()))
write_expr = state_dict[state_key]
state_args += (state_key,)
expr = self >> write_expr
else:
expr = self
def g(x, state):
update = { key: x for key in state_args }
state = utils.merge(state, update)
#side effect for convenience
_StateContextManager.REFS.update(state)
return x, state
return expr.__then__(g) | python | def Write(self, *state_args, **state_dict):
"""See `phi.dsl.Expression.Read`"""
if len(state_dict) + len(state_args) < 1:
raise Exception("Please include at-least 1 state variable, got {0} and {1}".format(state_args, state_dict))
if len(state_dict) > 1:
raise Exception("Please include at-most 1 keyword argument expression, got {0}".format(state_dict))
if len(state_dict) > 0:
state_key = next(iter(state_dict.keys()))
write_expr = state_dict[state_key]
state_args += (state_key,)
expr = self >> write_expr
else:
expr = self
def g(x, state):
update = { key: x for key in state_args }
state = utils.merge(state, update)
#side effect for convenience
_StateContextManager.REFS.update(state)
return x, state
return expr.__then__(g) | [
"def",
"Write",
"(",
"self",
",",
"*",
"state_args",
",",
"*",
"*",
"state_dict",
")",
":",
"if",
"len",
"(",
"state_dict",
")",
"+",
"len",
"(",
"state_args",
")",
"<",
"1",
":",
"raise",
"Exception",
"(",
"\"Please include at-least 1 state variable, got {0} and {1}\"",
".",
"format",
"(",
"state_args",
",",
"state_dict",
")",
")",
"if",
"len",
"(",
"state_dict",
")",
">",
"1",
":",
"raise",
"Exception",
"(",
"\"Please include at-most 1 keyword argument expression, got {0}\"",
".",
"format",
"(",
"state_dict",
")",
")",
"if",
"len",
"(",
"state_dict",
")",
">",
"0",
":",
"state_key",
"=",
"next",
"(",
"iter",
"(",
"state_dict",
".",
"keys",
"(",
")",
")",
")",
"write_expr",
"=",
"state_dict",
"[",
"state_key",
"]",
"state_args",
"+=",
"(",
"state_key",
",",
")",
"expr",
"=",
"self",
">>",
"write_expr",
"else",
":",
"expr",
"=",
"self",
"def",
"g",
"(",
"x",
",",
"state",
")",
":",
"update",
"=",
"{",
"key",
":",
"x",
"for",
"key",
"in",
"state_args",
"}",
"state",
"=",
"utils",
".",
"merge",
"(",
"state",
",",
"update",
")",
"#side effect for convenience",
"_StateContextManager",
".",
"REFS",
".",
"update",
"(",
"state",
")",
"return",
"x",
",",
"state",
"return",
"expr",
".",
"__then__",
"(",
"g",
")"
] | See `phi.dsl.Expression.Read` | [
"See",
"phi",
".",
"dsl",
".",
"Expression",
".",
"Read"
] | train | https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L1030-L1061 |
cgarciae/phi | phi/dsl.py | Expression.Val | def Val(self, val, **kwargs):
"""
The expression
Val(a)
is equivalent to the constant function
lambda x: a
All expression in this module interprete values that are not functions as constant functions using `Val`, for example
Seq(1, P + 1)
is equivalent to
Seq(Val(1), P + 1)
The previous expression as a whole is a constant function since it will return `2` no matter what input you give it.
"""
f = utils.lift(lambda z: val)
return self.__then__(f, **kwargs) | python | def Val(self, val, **kwargs):
"""
The expression
Val(a)
is equivalent to the constant function
lambda x: a
All expression in this module interprete values that are not functions as constant functions using `Val`, for example
Seq(1, P + 1)
is equivalent to
Seq(Val(1), P + 1)
The previous expression as a whole is a constant function since it will return `2` no matter what input you give it.
"""
f = utils.lift(lambda z: val)
return self.__then__(f, **kwargs) | [
"def",
"Val",
"(",
"self",
",",
"val",
",",
"*",
"*",
"kwargs",
")",
":",
"f",
"=",
"utils",
".",
"lift",
"(",
"lambda",
"z",
":",
"val",
")",
"return",
"self",
".",
"__then__",
"(",
"f",
",",
"*",
"*",
"kwargs",
")"
] | The expression
Val(a)
is equivalent to the constant function
lambda x: a
All expression in this module interprete values that are not functions as constant functions using `Val`, for example
Seq(1, P + 1)
is equivalent to
Seq(Val(1), P + 1)
The previous expression as a whole is a constant function since it will return `2` no matter what input you give it. | [
"The",
"expression"
] | train | https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L1181-L1203 |
cgarciae/phi | phi/dsl.py | Expression.If | def If(self, condition, *then, **kwargs):
"""
**If**
If(Predicate, *Then)
Having conditionals expressions a necesity in every language, Phi includes the `If` expression for such a purpose.
**Arguments**
* **Predicate** : a predicate expression uses to determine if the `Then` or `Else` branches should be used.
* ***Then** : an expression to be excecuted if the `Predicate` yields `True`, since this parameter is variadic you can stack expression and they will be interpreted as a tuple `phi.dsl.Seq`.
This class also includes the `Elif` and `Else` methods which let you write branched conditionals in sequence, however the following rules apply
* If no branch is entered the whole expression behaves like the identity
* `Elif` can only be used after an `If` or another `Elif` expression
* Many `Elif` expressions can be stacked sequentially
* `Else` can only be used after an `If` or `Elif` expression
** Examples **
from phi import P, If
assert "Between 2 and 10" == P.Pipe(
5,
If(P > 10,
"Greater than 10"
).Elif(P < 2,
"Less than 2"
).Else(
"Between 2 and 10"
)
)
"""
cond_f = _parse(condition)._f
then_f = E.Seq(*then)._f
else_f = utils.state_identity
ast = (cond_f, then_f, else_f)
g = _compile_if(ast)
expr = self.__then__(g, **kwargs)
expr._ast = ast
expr._root = self
return expr | python | def If(self, condition, *then, **kwargs):
"""
**If**
If(Predicate, *Then)
Having conditionals expressions a necesity in every language, Phi includes the `If` expression for such a purpose.
**Arguments**
* **Predicate** : a predicate expression uses to determine if the `Then` or `Else` branches should be used.
* ***Then** : an expression to be excecuted if the `Predicate` yields `True`, since this parameter is variadic you can stack expression and they will be interpreted as a tuple `phi.dsl.Seq`.
This class also includes the `Elif` and `Else` methods which let you write branched conditionals in sequence, however the following rules apply
* If no branch is entered the whole expression behaves like the identity
* `Elif` can only be used after an `If` or another `Elif` expression
* Many `Elif` expressions can be stacked sequentially
* `Else` can only be used after an `If` or `Elif` expression
** Examples **
from phi import P, If
assert "Between 2 and 10" == P.Pipe(
5,
If(P > 10,
"Greater than 10"
).Elif(P < 2,
"Less than 2"
).Else(
"Between 2 and 10"
)
)
"""
cond_f = _parse(condition)._f
then_f = E.Seq(*then)._f
else_f = utils.state_identity
ast = (cond_f, then_f, else_f)
g = _compile_if(ast)
expr = self.__then__(g, **kwargs)
expr._ast = ast
expr._root = self
return expr | [
"def",
"If",
"(",
"self",
",",
"condition",
",",
"*",
"then",
",",
"*",
"*",
"kwargs",
")",
":",
"cond_f",
"=",
"_parse",
"(",
"condition",
")",
".",
"_f",
"then_f",
"=",
"E",
".",
"Seq",
"(",
"*",
"then",
")",
".",
"_f",
"else_f",
"=",
"utils",
".",
"state_identity",
"ast",
"=",
"(",
"cond_f",
",",
"then_f",
",",
"else_f",
")",
"g",
"=",
"_compile_if",
"(",
"ast",
")",
"expr",
"=",
"self",
".",
"__then__",
"(",
"g",
",",
"*",
"*",
"kwargs",
")",
"expr",
".",
"_ast",
"=",
"ast",
"expr",
".",
"_root",
"=",
"self",
"return",
"expr"
] | **If**
If(Predicate, *Then)
Having conditionals expressions a necesity in every language, Phi includes the `If` expression for such a purpose.
**Arguments**
* **Predicate** : a predicate expression uses to determine if the `Then` or `Else` branches should be used.
* ***Then** : an expression to be excecuted if the `Predicate` yields `True`, since this parameter is variadic you can stack expression and they will be interpreted as a tuple `phi.dsl.Seq`.
This class also includes the `Elif` and `Else` methods which let you write branched conditionals in sequence, however the following rules apply
* If no branch is entered the whole expression behaves like the identity
* `Elif` can only be used after an `If` or another `Elif` expression
* Many `Elif` expressions can be stacked sequentially
* `Else` can only be used after an `If` or `Elif` expression
** Examples **
from phi import P, If
assert "Between 2 and 10" == P.Pipe(
5,
If(P > 10,
"Greater than 10"
).Elif(P < 2,
"Less than 2"
).Else(
"Between 2 and 10"
)
) | [
"**",
"If",
"**"
] | train | https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L1206-L1253 |
cgarciae/phi | phi/dsl.py | Expression.Else | def Else(self, *Else, **kwargs):
"""See `phi.dsl.Expression.If`"""
root = self._root
ast = self._ast
next_else = E.Seq(*Else)._f
ast = _add_else(ast, next_else)
g = _compile_if(ast)
return root.__then__(g, **kwargs) | python | def Else(self, *Else, **kwargs):
"""See `phi.dsl.Expression.If`"""
root = self._root
ast = self._ast
next_else = E.Seq(*Else)._f
ast = _add_else(ast, next_else)
g = _compile_if(ast)
return root.__then__(g, **kwargs) | [
"def",
"Else",
"(",
"self",
",",
"*",
"Else",
",",
"*",
"*",
"kwargs",
")",
":",
"root",
"=",
"self",
".",
"_root",
"ast",
"=",
"self",
".",
"_ast",
"next_else",
"=",
"E",
".",
"Seq",
"(",
"*",
"Else",
")",
".",
"_f",
"ast",
"=",
"_add_else",
"(",
"ast",
",",
"next_else",
")",
"g",
"=",
"_compile_if",
"(",
"ast",
")",
"return",
"root",
".",
"__then__",
"(",
"g",
",",
"*",
"*",
"kwargs",
")"
] | See `phi.dsl.Expression.If` | [
"See",
"phi",
".",
"dsl",
".",
"Expression",
".",
"If"
] | train | https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L1255-L1265 |
alvinlindstam/grapheme | grapheme/api.py | length | def length(string, until=None):
"""
Returns the number of graphemes in the string.
Note that this functions needs to traverse the full string to calculate the length,
unlike `len(string)` and it's time consumption is linear to the length of the string
(up to the `until` value).
Only counts up to the `until` argument, if given. This is useful when testing
the length of a string against some limit and the excess length is not interesting.
>>> rainbow_flag = "🏳️🌈"
>>> len(rainbow_flag)
4
>>> graphemes.length(rainbow_flag)
1
>>> graphemes.length("".join(str(i) for i in range(100)), 30)
30
"""
if until is None:
return sum(1 for _ in GraphemeIterator(string))
iterator = graphemes(string)
count = 0
while True:
try:
if count >= until:
break
next(iterator)
except StopIteration:
break
else:
count += 1
return count | python | def length(string, until=None):
"""
Returns the number of graphemes in the string.
Note that this functions needs to traverse the full string to calculate the length,
unlike `len(string)` and it's time consumption is linear to the length of the string
(up to the `until` value).
Only counts up to the `until` argument, if given. This is useful when testing
the length of a string against some limit and the excess length is not interesting.
>>> rainbow_flag = "🏳️🌈"
>>> len(rainbow_flag)
4
>>> graphemes.length(rainbow_flag)
1
>>> graphemes.length("".join(str(i) for i in range(100)), 30)
30
"""
if until is None:
return sum(1 for _ in GraphemeIterator(string))
iterator = graphemes(string)
count = 0
while True:
try:
if count >= until:
break
next(iterator)
except StopIteration:
break
else:
count += 1
return count | [
"def",
"length",
"(",
"string",
",",
"until",
"=",
"None",
")",
":",
"if",
"until",
"is",
"None",
":",
"return",
"sum",
"(",
"1",
"for",
"_",
"in",
"GraphemeIterator",
"(",
"string",
")",
")",
"iterator",
"=",
"graphemes",
"(",
"string",
")",
"count",
"=",
"0",
"while",
"True",
":",
"try",
":",
"if",
"count",
">=",
"until",
":",
"break",
"next",
"(",
"iterator",
")",
"except",
"StopIteration",
":",
"break",
"else",
":",
"count",
"+=",
"1",
"return",
"count"
] | Returns the number of graphemes in the string.
Note that this functions needs to traverse the full string to calculate the length,
unlike `len(string)` and it's time consumption is linear to the length of the string
(up to the `until` value).
Only counts up to the `until` argument, if given. This is useful when testing
the length of a string against some limit and the excess length is not interesting.
>>> rainbow_flag = "🏳️🌈"
>>> len(rainbow_flag)
4
>>> graphemes.length(rainbow_flag)
1
>>> graphemes.length("".join(str(i) for i in range(100)), 30)
30 | [
"Returns",
"the",
"number",
"of",
"graphemes",
"in",
"the",
"string",
"."
] | train | https://github.com/alvinlindstam/grapheme/blob/45cd9b8326ddf96d2618406724a7ebf273cbde03/grapheme/api.py#L21-L55 |
alvinlindstam/grapheme | grapheme/api.py | slice | def slice(string, start=None, end=None):
"""
Returns a substring of the given string, counting graphemes instead of codepoints.
Negative indices is currently not supported.
>>> string = "tamil நி (ni)"
>>> string[:7]
'tamil ந'
>>> grapheme.slice(string, end=7)
'tamil நி'
>>> string[7:]
'ி (ni)'
>>> grapheme.slice(string, 7)
' (ni)'
"""
if start is None:
start = 0
if end is not None and start >= end:
return ""
if start < 0:
raise NotImplementedError("Negative indexing is currently not supported.")
sum_ = 0
start_index = None
for grapheme_index, grapheme_length in enumerate(grapheme_lengths(string)):
if grapheme_index == start:
start_index = sum_
elif grapheme_index == end:
return string[start_index:sum_]
sum_ += grapheme_length
if start_index is not None:
return string[start_index:]
return "" | python | def slice(string, start=None, end=None):
"""
Returns a substring of the given string, counting graphemes instead of codepoints.
Negative indices is currently not supported.
>>> string = "tamil நி (ni)"
>>> string[:7]
'tamil ந'
>>> grapheme.slice(string, end=7)
'tamil நி'
>>> string[7:]
'ி (ni)'
>>> grapheme.slice(string, 7)
' (ni)'
"""
if start is None:
start = 0
if end is not None and start >= end:
return ""
if start < 0:
raise NotImplementedError("Negative indexing is currently not supported.")
sum_ = 0
start_index = None
for grapheme_index, grapheme_length in enumerate(grapheme_lengths(string)):
if grapheme_index == start:
start_index = sum_
elif grapheme_index == end:
return string[start_index:sum_]
sum_ += grapheme_length
if start_index is not None:
return string[start_index:]
return "" | [
"def",
"slice",
"(",
"string",
",",
"start",
"=",
"None",
",",
"end",
"=",
"None",
")",
":",
"if",
"start",
"is",
"None",
":",
"start",
"=",
"0",
"if",
"end",
"is",
"not",
"None",
"and",
"start",
">=",
"end",
":",
"return",
"\"\"",
"if",
"start",
"<",
"0",
":",
"raise",
"NotImplementedError",
"(",
"\"Negative indexing is currently not supported.\"",
")",
"sum_",
"=",
"0",
"start_index",
"=",
"None",
"for",
"grapheme_index",
",",
"grapheme_length",
"in",
"enumerate",
"(",
"grapheme_lengths",
"(",
"string",
")",
")",
":",
"if",
"grapheme_index",
"==",
"start",
":",
"start_index",
"=",
"sum_",
"elif",
"grapheme_index",
"==",
"end",
":",
"return",
"string",
"[",
"start_index",
":",
"sum_",
"]",
"sum_",
"+=",
"grapheme_length",
"if",
"start_index",
"is",
"not",
"None",
":",
"return",
"string",
"[",
"start_index",
":",
"]",
"return",
"\"\""
] | Returns a substring of the given string, counting graphemes instead of codepoints.
Negative indices is currently not supported.
>>> string = "tamil நி (ni)"
>>> string[:7]
'tamil ந'
>>> grapheme.slice(string, end=7)
'tamil நி'
>>> string[7:]
'ி (ni)'
>>> grapheme.slice(string, 7)
' (ni)' | [
"Returns",
"a",
"substring",
"of",
"the",
"given",
"string",
"counting",
"graphemes",
"instead",
"of",
"codepoints",
"."
] | train | https://github.com/alvinlindstam/grapheme/blob/45cd9b8326ddf96d2618406724a7ebf273cbde03/grapheme/api.py#L66-L103 |
alvinlindstam/grapheme | grapheme/api.py | contains | def contains(string, substring):
"""
Returns true if the sequence of graphemes in substring is also present in string.
This differs from the normal python `in` operator, since the python operator will return
true if the sequence of codepoints are withing the other string without considering
grapheme boundaries.
Performance notes: Very fast if `substring not in string`, since that also means that
the same graphemes can not be in the two strings. Otherwise this function has linear time
complexity in relation to the string length. It will traverse the sequence of graphemes until
a match is found, so it will generally perform better for grapheme sequences that match early.
>>> "🇸🇪" in "🇪🇸🇪🇪"
True
>>> grapheme.contains("🇪🇸🇪🇪", "🇸🇪")
False
"""
if substring not in string:
return False
substr_graphemes = list(graphemes(substring))
if len(substr_graphemes) == 0:
return True
elif len(substr_graphemes) == 1:
return substr_graphemes[0] in graphemes(string)
else:
str_iter = graphemes(string)
str_sub_part = []
for _ in range(len(substr_graphemes)):
try:
str_sub_part.append(next(str_iter))
except StopIteration:
return False
for g in str_iter:
if str_sub_part == substr_graphemes:
return True
str_sub_part.append(g)
str_sub_part.pop(0)
return str_sub_part == substr_graphemes | python | def contains(string, substring):
"""
Returns true if the sequence of graphemes in substring is also present in string.
This differs from the normal python `in` operator, since the python operator will return
true if the sequence of codepoints are withing the other string without considering
grapheme boundaries.
Performance notes: Very fast if `substring not in string`, since that also means that
the same graphemes can not be in the two strings. Otherwise this function has linear time
complexity in relation to the string length. It will traverse the sequence of graphemes until
a match is found, so it will generally perform better for grapheme sequences that match early.
>>> "🇸🇪" in "🇪🇸🇪🇪"
True
>>> grapheme.contains("🇪🇸🇪🇪", "🇸🇪")
False
"""
if substring not in string:
return False
substr_graphemes = list(graphemes(substring))
if len(substr_graphemes) == 0:
return True
elif len(substr_graphemes) == 1:
return substr_graphemes[0] in graphemes(string)
else:
str_iter = graphemes(string)
str_sub_part = []
for _ in range(len(substr_graphemes)):
try:
str_sub_part.append(next(str_iter))
except StopIteration:
return False
for g in str_iter:
if str_sub_part == substr_graphemes:
return True
str_sub_part.append(g)
str_sub_part.pop(0)
return str_sub_part == substr_graphemes | [
"def",
"contains",
"(",
"string",
",",
"substring",
")",
":",
"if",
"substring",
"not",
"in",
"string",
":",
"return",
"False",
"substr_graphemes",
"=",
"list",
"(",
"graphemes",
"(",
"substring",
")",
")",
"if",
"len",
"(",
"substr_graphemes",
")",
"==",
"0",
":",
"return",
"True",
"elif",
"len",
"(",
"substr_graphemes",
")",
"==",
"1",
":",
"return",
"substr_graphemes",
"[",
"0",
"]",
"in",
"graphemes",
"(",
"string",
")",
"else",
":",
"str_iter",
"=",
"graphemes",
"(",
"string",
")",
"str_sub_part",
"=",
"[",
"]",
"for",
"_",
"in",
"range",
"(",
"len",
"(",
"substr_graphemes",
")",
")",
":",
"try",
":",
"str_sub_part",
".",
"append",
"(",
"next",
"(",
"str_iter",
")",
")",
"except",
"StopIteration",
":",
"return",
"False",
"for",
"g",
"in",
"str_iter",
":",
"if",
"str_sub_part",
"==",
"substr_graphemes",
":",
"return",
"True",
"str_sub_part",
".",
"append",
"(",
"g",
")",
"str_sub_part",
".",
"pop",
"(",
"0",
")",
"return",
"str_sub_part",
"==",
"substr_graphemes"
] | Returns true if the sequence of graphemes in substring is also present in string.
This differs from the normal python `in` operator, since the python operator will return
true if the sequence of codepoints are withing the other string without considering
grapheme boundaries.
Performance notes: Very fast if `substring not in string`, since that also means that
the same graphemes can not be in the two strings. Otherwise this function has linear time
complexity in relation to the string length. It will traverse the sequence of graphemes until
a match is found, so it will generally perform better for grapheme sequences that match early.
>>> "🇸🇪" in "🇪🇸🇪🇪"
True
>>> grapheme.contains("🇪🇸🇪🇪", "🇸🇪")
False | [
"Returns",
"true",
"if",
"the",
"sequence",
"of",
"graphemes",
"in",
"substring",
"is",
"also",
"present",
"in",
"string",
"."
] | train | https://github.com/alvinlindstam/grapheme/blob/45cd9b8326ddf96d2618406724a7ebf273cbde03/grapheme/api.py#L105-L147 |
alvinlindstam/grapheme | grapheme/api.py | startswith | def startswith(string, prefix):
"""
Like str.startswith, but also checks that the string starts with the given prefixes sequence of graphemes.
str.startswith may return true for a prefix that is not visually represented as a prefix if a grapheme cluster
is continued after the prefix ends.
>>> grapheme.startswith("✊🏾", "✊")
False
>>> "✊🏾".startswith("✊")
True
"""
return string.startswith(prefix) and safe_split_index(string, len(prefix)) == len(prefix) | python | def startswith(string, prefix):
"""
Like str.startswith, but also checks that the string starts with the given prefixes sequence of graphemes.
str.startswith may return true for a prefix that is not visually represented as a prefix if a grapheme cluster
is continued after the prefix ends.
>>> grapheme.startswith("✊🏾", "✊")
False
>>> "✊🏾".startswith("✊")
True
"""
return string.startswith(prefix) and safe_split_index(string, len(prefix)) == len(prefix) | [
"def",
"startswith",
"(",
"string",
",",
"prefix",
")",
":",
"return",
"string",
".",
"startswith",
"(",
"prefix",
")",
"and",
"safe_split_index",
"(",
"string",
",",
"len",
"(",
"prefix",
")",
")",
"==",
"len",
"(",
"prefix",
")"
] | Like str.startswith, but also checks that the string starts with the given prefixes sequence of graphemes.
str.startswith may return true for a prefix that is not visually represented as a prefix if a grapheme cluster
is continued after the prefix ends.
>>> grapheme.startswith("✊🏾", "✊")
False
>>> "✊🏾".startswith("✊")
True | [
"Like",
"str",
".",
"startswith",
"but",
"also",
"checks",
"that",
"the",
"string",
"starts",
"with",
"the",
"given",
"prefixes",
"sequence",
"of",
"graphemes",
"."
] | train | https://github.com/alvinlindstam/grapheme/blob/45cd9b8326ddf96d2618406724a7ebf273cbde03/grapheme/api.py#L150-L162 |
alvinlindstam/grapheme | grapheme/api.py | endswith | def endswith(string, suffix):
"""
Like str.endswith, but also checks that the string ends with the given prefixes sequence of graphemes.
str.endswith may return true for a suffix that is not visually represented as a suffix if a grapheme cluster
is initiated before the suffix starts.
>>> grapheme.endswith("🏳️🌈", "🌈")
False
>>> "🏳️🌈".endswith("🌈")
True
"""
expected_index = len(string) - len(suffix)
return string.endswith(suffix) and safe_split_index(string, expected_index) == expected_index | python | def endswith(string, suffix):
"""
Like str.endswith, but also checks that the string ends with the given prefixes sequence of graphemes.
str.endswith may return true for a suffix that is not visually represented as a suffix if a grapheme cluster
is initiated before the suffix starts.
>>> grapheme.endswith("🏳️🌈", "🌈")
False
>>> "🏳️🌈".endswith("🌈")
True
"""
expected_index = len(string) - len(suffix)
return string.endswith(suffix) and safe_split_index(string, expected_index) == expected_index | [
"def",
"endswith",
"(",
"string",
",",
"suffix",
")",
":",
"expected_index",
"=",
"len",
"(",
"string",
")",
"-",
"len",
"(",
"suffix",
")",
"return",
"string",
".",
"endswith",
"(",
"suffix",
")",
"and",
"safe_split_index",
"(",
"string",
",",
"expected_index",
")",
"==",
"expected_index"
] | Like str.endswith, but also checks that the string ends with the given prefixes sequence of graphemes.
str.endswith may return true for a suffix that is not visually represented as a suffix if a grapheme cluster
is initiated before the suffix starts.
>>> grapheme.endswith("🏳️🌈", "🌈")
False
>>> "🏳️🌈".endswith("🌈")
True | [
"Like",
"str",
".",
"endswith",
"but",
"also",
"checks",
"that",
"the",
"string",
"ends",
"with",
"the",
"given",
"prefixes",
"sequence",
"of",
"graphemes",
"."
] | train | https://github.com/alvinlindstam/grapheme/blob/45cd9b8326ddf96d2618406724a7ebf273cbde03/grapheme/api.py#L165-L178 |
alvinlindstam/grapheme | grapheme/api.py | safe_split_index | def safe_split_index(string, max_len):
"""
Returns the highest index up to `max_len` at which the given string can be sliced, without breaking a grapheme.
This is useful for when you want to split or take a substring from a string, and don't really care about
the exact grapheme length, but don't want to risk breaking existing graphemes.
This function does normally not traverse the full grapheme sequence up to the given length, so it can be used
for arbitrarily long strings and high `max_len`s. However, some grapheme boundaries depend on the previous state,
so the worst case performance is O(n). In practice, it's only very long non-broken sequences of country flags
(represented as Regional Indicators) that will perform badly.
The return value will always be between `0` and `len(string)`.
>>> string = "tamil நி (ni)"
>>> i = grapheme.safe_split_index(string, 7)
>>> i
6
>>> string[:i]
'tamil '
>>> string[i:]
'நி (ni)'
"""
last_index = get_last_certain_break_index(string, max_len)
for l in grapheme_lengths(string[last_index:]):
if last_index + l > max_len:
break
last_index += l
return last_index | python | def safe_split_index(string, max_len):
"""
Returns the highest index up to `max_len` at which the given string can be sliced, without breaking a grapheme.
This is useful for when you want to split or take a substring from a string, and don't really care about
the exact grapheme length, but don't want to risk breaking existing graphemes.
This function does normally not traverse the full grapheme sequence up to the given length, so it can be used
for arbitrarily long strings and high `max_len`s. However, some grapheme boundaries depend on the previous state,
so the worst case performance is O(n). In practice, it's only very long non-broken sequences of country flags
(represented as Regional Indicators) that will perform badly.
The return value will always be between `0` and `len(string)`.
>>> string = "tamil நி (ni)"
>>> i = grapheme.safe_split_index(string, 7)
>>> i
6
>>> string[:i]
'tamil '
>>> string[i:]
'நி (ni)'
"""
last_index = get_last_certain_break_index(string, max_len)
for l in grapheme_lengths(string[last_index:]):
if last_index + l > max_len:
break
last_index += l
return last_index | [
"def",
"safe_split_index",
"(",
"string",
",",
"max_len",
")",
":",
"last_index",
"=",
"get_last_certain_break_index",
"(",
"string",
",",
"max_len",
")",
"for",
"l",
"in",
"grapheme_lengths",
"(",
"string",
"[",
"last_index",
":",
"]",
")",
":",
"if",
"last_index",
"+",
"l",
">",
"max_len",
":",
"break",
"last_index",
"+=",
"l",
"return",
"last_index"
] | Returns the highest index up to `max_len` at which the given string can be sliced, without breaking a grapheme.
This is useful for when you want to split or take a substring from a string, and don't really care about
the exact grapheme length, but don't want to risk breaking existing graphemes.
This function does normally not traverse the full grapheme sequence up to the given length, so it can be used
for arbitrarily long strings and high `max_len`s. However, some grapheme boundaries depend on the previous state,
so the worst case performance is O(n). In practice, it's only very long non-broken sequences of country flags
(represented as Regional Indicators) that will perform badly.
The return value will always be between `0` and `len(string)`.
>>> string = "tamil நி (ni)"
>>> i = grapheme.safe_split_index(string, 7)
>>> i
6
>>> string[:i]
'tamil '
>>> string[i:]
'நி (ni)' | [
"Returns",
"the",
"highest",
"index",
"up",
"to",
"max_len",
"at",
"which",
"the",
"given",
"string",
"can",
"be",
"sliced",
"without",
"breaking",
"a",
"grapheme",
"."
] | train | https://github.com/alvinlindstam/grapheme/blob/45cd9b8326ddf96d2618406724a7ebf273cbde03/grapheme/api.py#L181-L209 |
awacha/sastool | sastool/io/header.py | readB1logfile | def readB1logfile(filename):
"""Read B1 logfile (*.log)
Inputs:
filename: the file name
Output: A dictionary.
"""
dic = dict()
# try to open. If this fails, an exception is raised
with open(filename, 'rt', encoding='utf-8') as f:
for l in f:
l = l.strip()
if l[0] in '#!%\'':
continue # treat this line as a comment
try:
# find the first tuple in _logfile_data where the first element of the
# tuple is the starting of the line.
ld = [ld_ for ld_ in _logfile_data if l.split(
':', 1)[0].strip() == ld_[0]][0]
except IndexError:
# line is not recognized. We can still try to load it: find the first
# semicolon. If found, the part of the line before it is stripped
# from whitespaces and will be the key. The part after it is stripped
# from whitespaces and parsed with misc.parse_number(). If no
if ':' in l:
key, val = [x.strip() for x in l.split(':', 1)]
val = misc.parse_number(val)
dic[key] = val
try:
# fix the character encoding in files written by a
# previous version of this software.
dic[key] = dic[key].encode('latin2').decode('utf-8')
except (UnicodeDecodeError, UnicodeEncodeError, AttributeError):
pass
else:
dic[l.strip()] = True
continue
try:
reader = ld[3]
except IndexError:
reader = str
rhs = l.split(':', 1)[1].strip()
try:
vals = reader(rhs)
except ValueError:
if rhs.lower() == 'none':
vals = None
else:
raise
if isinstance(ld[1], tuple):
# more than one field names. The reader function should return a
# tuple here, a value for each field.
if len(vals) != len(ld[1]):
raise ValueError(
'Cannot read %d values from line %s in file!' % (len(ld[1]), l))
dic.update(dict(list(zip(ld[1], vals))))
else:
dic[ld[1]] = vals
dic['__Origin__'] = 'B1 log'
dic['__particle__'] = 'photon'
return dic | python | def readB1logfile(filename):
"""Read B1 logfile (*.log)
Inputs:
filename: the file name
Output: A dictionary.
"""
dic = dict()
# try to open. If this fails, an exception is raised
with open(filename, 'rt', encoding='utf-8') as f:
for l in f:
l = l.strip()
if l[0] in '#!%\'':
continue # treat this line as a comment
try:
# find the first tuple in _logfile_data where the first element of the
# tuple is the starting of the line.
ld = [ld_ for ld_ in _logfile_data if l.split(
':', 1)[0].strip() == ld_[0]][0]
except IndexError:
# line is not recognized. We can still try to load it: find the first
# semicolon. If found, the part of the line before it is stripped
# from whitespaces and will be the key. The part after it is stripped
# from whitespaces and parsed with misc.parse_number(). If no
if ':' in l:
key, val = [x.strip() for x in l.split(':', 1)]
val = misc.parse_number(val)
dic[key] = val
try:
# fix the character encoding in files written by a
# previous version of this software.
dic[key] = dic[key].encode('latin2').decode('utf-8')
except (UnicodeDecodeError, UnicodeEncodeError, AttributeError):
pass
else:
dic[l.strip()] = True
continue
try:
reader = ld[3]
except IndexError:
reader = str
rhs = l.split(':', 1)[1].strip()
try:
vals = reader(rhs)
except ValueError:
if rhs.lower() == 'none':
vals = None
else:
raise
if isinstance(ld[1], tuple):
# more than one field names. The reader function should return a
# tuple here, a value for each field.
if len(vals) != len(ld[1]):
raise ValueError(
'Cannot read %d values from line %s in file!' % (len(ld[1]), l))
dic.update(dict(list(zip(ld[1], vals))))
else:
dic[ld[1]] = vals
dic['__Origin__'] = 'B1 log'
dic['__particle__'] = 'photon'
return dic | [
"def",
"readB1logfile",
"(",
"filename",
")",
":",
"dic",
"=",
"dict",
"(",
")",
"# try to open. If this fails, an exception is raised",
"with",
"open",
"(",
"filename",
",",
"'rt'",
",",
"encoding",
"=",
"'utf-8'",
")",
"as",
"f",
":",
"for",
"l",
"in",
"f",
":",
"l",
"=",
"l",
".",
"strip",
"(",
")",
"if",
"l",
"[",
"0",
"]",
"in",
"'#!%\\''",
":",
"continue",
"# treat this line as a comment",
"try",
":",
"# find the first tuple in _logfile_data where the first element of the",
"# tuple is the starting of the line.",
"ld",
"=",
"[",
"ld_",
"for",
"ld_",
"in",
"_logfile_data",
"if",
"l",
".",
"split",
"(",
"':'",
",",
"1",
")",
"[",
"0",
"]",
".",
"strip",
"(",
")",
"==",
"ld_",
"[",
"0",
"]",
"]",
"[",
"0",
"]",
"except",
"IndexError",
":",
"# line is not recognized. We can still try to load it: find the first",
"# semicolon. If found, the part of the line before it is stripped",
"# from whitespaces and will be the key. The part after it is stripped",
"# from whitespaces and parsed with misc.parse_number(). If no",
"if",
"':'",
"in",
"l",
":",
"key",
",",
"val",
"=",
"[",
"x",
".",
"strip",
"(",
")",
"for",
"x",
"in",
"l",
".",
"split",
"(",
"':'",
",",
"1",
")",
"]",
"val",
"=",
"misc",
".",
"parse_number",
"(",
"val",
")",
"dic",
"[",
"key",
"]",
"=",
"val",
"try",
":",
"# fix the character encoding in files written by a",
"# previous version of this software.",
"dic",
"[",
"key",
"]",
"=",
"dic",
"[",
"key",
"]",
".",
"encode",
"(",
"'latin2'",
")",
".",
"decode",
"(",
"'utf-8'",
")",
"except",
"(",
"UnicodeDecodeError",
",",
"UnicodeEncodeError",
",",
"AttributeError",
")",
":",
"pass",
"else",
":",
"dic",
"[",
"l",
".",
"strip",
"(",
")",
"]",
"=",
"True",
"continue",
"try",
":",
"reader",
"=",
"ld",
"[",
"3",
"]",
"except",
"IndexError",
":",
"reader",
"=",
"str",
"rhs",
"=",
"l",
".",
"split",
"(",
"':'",
",",
"1",
")",
"[",
"1",
"]",
".",
"strip",
"(",
")",
"try",
":",
"vals",
"=",
"reader",
"(",
"rhs",
")",
"except",
"ValueError",
":",
"if",
"rhs",
".",
"lower",
"(",
")",
"==",
"'none'",
":",
"vals",
"=",
"None",
"else",
":",
"raise",
"if",
"isinstance",
"(",
"ld",
"[",
"1",
"]",
",",
"tuple",
")",
":",
"# more than one field names. The reader function should return a",
"# tuple here, a value for each field.",
"if",
"len",
"(",
"vals",
")",
"!=",
"len",
"(",
"ld",
"[",
"1",
"]",
")",
":",
"raise",
"ValueError",
"(",
"'Cannot read %d values from line %s in file!'",
"%",
"(",
"len",
"(",
"ld",
"[",
"1",
"]",
")",
",",
"l",
")",
")",
"dic",
".",
"update",
"(",
"dict",
"(",
"list",
"(",
"zip",
"(",
"ld",
"[",
"1",
"]",
",",
"vals",
")",
")",
")",
")",
"else",
":",
"dic",
"[",
"ld",
"[",
"1",
"]",
"]",
"=",
"vals",
"dic",
"[",
"'__Origin__'",
"]",
"=",
"'B1 log'",
"dic",
"[",
"'__particle__'",
"]",
"=",
"'photon'",
"return",
"dic"
] | Read B1 logfile (*.log)
Inputs:
filename: the file name
Output: A dictionary. | [
"Read",
"B1",
"logfile",
"(",
"*",
".",
"log",
")"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/header.py#L142-L203 |
awacha/sastool | sastool/io/header.py | writeB1logfile | def writeB1logfile(filename, data):
"""Write a header structure into a B1 logfile.
Inputs:
filename: name of the file.
data: header dictionary
Notes:
exceptions pass through to the caller.
"""
allkeys = list(data.keys())
f = open(filename, 'wt', encoding='utf-8')
for ld in _logfile_data: # process each line
linebegin = ld[0]
fieldnames = ld[1]
# set the default formatter if it is not given
if len(ld) < 3:
formatter = str
elif ld[2] is None:
formatter = str
else:
formatter = ld[2]
# this will contain the formatted values.
formatted = ''
if isinstance(fieldnames, str):
# scalar field name, just one field. Formatter should be a
# callable.
if fieldnames not in allkeys:
# this field has already been processed
continue
try:
formatted = formatter(data[fieldnames])
except KeyError:
# field not found in param structure
continue
elif isinstance(fieldnames, tuple):
# more than one field names in a tuple. In this case, formatter can
# be a tuple of callables...
if all([(fn not in allkeys) for fn in fieldnames]):
# if all the fields have been processed:
continue
if isinstance(formatter, tuple) and len(formatter) == len(fieldnames):
formatted = ' '.join([ft(data[fn])
for ft, fn in zip(formatter, fieldnames)])
# ...or a single callable...
elif not isinstance(formatter, tuple):
formatted = formatter([data[fn] for fn in fieldnames])
# ...otherwise raise an exception.
else:
raise SyntaxError('Programming error: formatter should be a scalar or a tuple\
of the same length as the field names in logfile_data.')
else: # fieldnames is neither a string, nor a tuple.
raise SyntaxError(
'Invalid syntax (programming error) in logfile_data in writeparamfile().')
# try to get the values
linetowrite = linebegin + ':\t' + formatted + '\n'
f.write(linetowrite)
if isinstance(fieldnames, tuple):
for fn in fieldnames: # remove the params treated.
if fn in allkeys:
allkeys.remove(fn)
else:
if fieldnames in allkeys:
allkeys.remove(fieldnames)
# write untreated params
for k in allkeys:
linetowrite = k + ':\t' + str(data[k]) + '\n'
f.write(linetowrite)
f.close() | python | def writeB1logfile(filename, data):
"""Write a header structure into a B1 logfile.
Inputs:
filename: name of the file.
data: header dictionary
Notes:
exceptions pass through to the caller.
"""
allkeys = list(data.keys())
f = open(filename, 'wt', encoding='utf-8')
for ld in _logfile_data: # process each line
linebegin = ld[0]
fieldnames = ld[1]
# set the default formatter if it is not given
if len(ld) < 3:
formatter = str
elif ld[2] is None:
formatter = str
else:
formatter = ld[2]
# this will contain the formatted values.
formatted = ''
if isinstance(fieldnames, str):
# scalar field name, just one field. Formatter should be a
# callable.
if fieldnames not in allkeys:
# this field has already been processed
continue
try:
formatted = formatter(data[fieldnames])
except KeyError:
# field not found in param structure
continue
elif isinstance(fieldnames, tuple):
# more than one field names in a tuple. In this case, formatter can
# be a tuple of callables...
if all([(fn not in allkeys) for fn in fieldnames]):
# if all the fields have been processed:
continue
if isinstance(formatter, tuple) and len(formatter) == len(fieldnames):
formatted = ' '.join([ft(data[fn])
for ft, fn in zip(formatter, fieldnames)])
# ...or a single callable...
elif not isinstance(formatter, tuple):
formatted = formatter([data[fn] for fn in fieldnames])
# ...otherwise raise an exception.
else:
raise SyntaxError('Programming error: formatter should be a scalar or a tuple\
of the same length as the field names in logfile_data.')
else: # fieldnames is neither a string, nor a tuple.
raise SyntaxError(
'Invalid syntax (programming error) in logfile_data in writeparamfile().')
# try to get the values
linetowrite = linebegin + ':\t' + formatted + '\n'
f.write(linetowrite)
if isinstance(fieldnames, tuple):
for fn in fieldnames: # remove the params treated.
if fn in allkeys:
allkeys.remove(fn)
else:
if fieldnames in allkeys:
allkeys.remove(fieldnames)
# write untreated params
for k in allkeys:
linetowrite = k + ':\t' + str(data[k]) + '\n'
f.write(linetowrite)
f.close() | [
"def",
"writeB1logfile",
"(",
"filename",
",",
"data",
")",
":",
"allkeys",
"=",
"list",
"(",
"data",
".",
"keys",
"(",
")",
")",
"f",
"=",
"open",
"(",
"filename",
",",
"'wt'",
",",
"encoding",
"=",
"'utf-8'",
")",
"for",
"ld",
"in",
"_logfile_data",
":",
"# process each line",
"linebegin",
"=",
"ld",
"[",
"0",
"]",
"fieldnames",
"=",
"ld",
"[",
"1",
"]",
"# set the default formatter if it is not given",
"if",
"len",
"(",
"ld",
")",
"<",
"3",
":",
"formatter",
"=",
"str",
"elif",
"ld",
"[",
"2",
"]",
"is",
"None",
":",
"formatter",
"=",
"str",
"else",
":",
"formatter",
"=",
"ld",
"[",
"2",
"]",
"# this will contain the formatted values.",
"formatted",
"=",
"''",
"if",
"isinstance",
"(",
"fieldnames",
",",
"str",
")",
":",
"# scalar field name, just one field. Formatter should be a",
"# callable.",
"if",
"fieldnames",
"not",
"in",
"allkeys",
":",
"# this field has already been processed",
"continue",
"try",
":",
"formatted",
"=",
"formatter",
"(",
"data",
"[",
"fieldnames",
"]",
")",
"except",
"KeyError",
":",
"# field not found in param structure",
"continue",
"elif",
"isinstance",
"(",
"fieldnames",
",",
"tuple",
")",
":",
"# more than one field names in a tuple. In this case, formatter can",
"# be a tuple of callables...",
"if",
"all",
"(",
"[",
"(",
"fn",
"not",
"in",
"allkeys",
")",
"for",
"fn",
"in",
"fieldnames",
"]",
")",
":",
"# if all the fields have been processed:",
"continue",
"if",
"isinstance",
"(",
"formatter",
",",
"tuple",
")",
"and",
"len",
"(",
"formatter",
")",
"==",
"len",
"(",
"fieldnames",
")",
":",
"formatted",
"=",
"' '",
".",
"join",
"(",
"[",
"ft",
"(",
"data",
"[",
"fn",
"]",
")",
"for",
"ft",
",",
"fn",
"in",
"zip",
"(",
"formatter",
",",
"fieldnames",
")",
"]",
")",
"# ...or a single callable...",
"elif",
"not",
"isinstance",
"(",
"formatter",
",",
"tuple",
")",
":",
"formatted",
"=",
"formatter",
"(",
"[",
"data",
"[",
"fn",
"]",
"for",
"fn",
"in",
"fieldnames",
"]",
")",
"# ...otherwise raise an exception.",
"else",
":",
"raise",
"SyntaxError",
"(",
"'Programming error: formatter should be a scalar or a tuple\\\nof the same length as the field names in logfile_data.'",
")",
"else",
":",
"# fieldnames is neither a string, nor a tuple.",
"raise",
"SyntaxError",
"(",
"'Invalid syntax (programming error) in logfile_data in writeparamfile().'",
")",
"# try to get the values",
"linetowrite",
"=",
"linebegin",
"+",
"':\\t'",
"+",
"formatted",
"+",
"'\\n'",
"f",
".",
"write",
"(",
"linetowrite",
")",
"if",
"isinstance",
"(",
"fieldnames",
",",
"tuple",
")",
":",
"for",
"fn",
"in",
"fieldnames",
":",
"# remove the params treated.",
"if",
"fn",
"in",
"allkeys",
":",
"allkeys",
".",
"remove",
"(",
"fn",
")",
"else",
":",
"if",
"fieldnames",
"in",
"allkeys",
":",
"allkeys",
".",
"remove",
"(",
"fieldnames",
")",
"# write untreated params",
"for",
"k",
"in",
"allkeys",
":",
"linetowrite",
"=",
"k",
"+",
"':\\t'",
"+",
"str",
"(",
"data",
"[",
"k",
"]",
")",
"+",
"'\\n'",
"f",
".",
"write",
"(",
"linetowrite",
")",
"f",
".",
"close",
"(",
")"
] | Write a header structure into a B1 logfile.
Inputs:
filename: name of the file.
data: header dictionary
Notes:
exceptions pass through to the caller. | [
"Write",
"a",
"header",
"structure",
"into",
"a",
"B1",
"logfile",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/header.py#L206-L275 |
awacha/sastool | sastool/io/header.py | readB1header | def readB1header(filename):
"""Read beamline B1 (HASYLAB, Hamburg) header data
Input
-----
filename: string
the file name. If ends with ``.gz``, it is fed through a ``gunzip``
filter
Output
------
A header dictionary.
Examples
--------
read header data from 'ORG000123.DAT'::
header=readB1header('ORG00123.DAT')
"""
# Planck's constant times speed of light: incorrect
# constant in the old program on hasjusi1, which was
# taken over by the measurement program, to keep
# compatibility with that.
hed = {}
if libconfig.LENGTH_UNIT == 'A':
jusifaHC = 12396.4
elif libconfig.LENGTH_UNIT == 'nm':
jusifaHC = 1239.64
else:
raise NotImplementedError(
'Invalid length unit: ' + str(libconfig.LENGTH_UNIT))
if filename.upper().endswith('.GZ'):
fid = gzip.GzipFile(filename, 'r')
else:
fid = open(filename, 'rt')
lines = fid.readlines()
fid.close()
hed['FSN'] = int(lines[0].strip())
hed['Hour'] = int(lines[17].strip())
hed['Minutes'] = int(lines[18].strip())
hed['Month'] = int(lines[19].strip())
hed['Day'] = int(lines[20].strip())
hed['Year'] = int(lines[21].strip()) + 2000
hed['FSNref1'] = int(lines[23].strip())
hed['FSNdc'] = int(lines[24].strip())
hed['FSNsensitivity'] = int(lines[25].strip())
hed['FSNempty'] = int(lines[26].strip())
hed['FSNref2'] = int(lines[27].strip())
hed['Monitor'] = float(lines[31].strip())
hed['Anode'] = float(lines[32].strip())
hed['MeasTime'] = float(lines[33].strip())
hed['Temperature'] = float(lines[34].strip())
hed['BeamPosX'] = float(lines[36].strip())
hed['BeamPosY'] = float(lines[37].strip())
hed['Transm'] = float(lines[41].strip())
hed['Wavelength'] = float(lines[43].strip())
hed['Energy'] = jusifaHC / hed['Wavelength']
hed['Dist'] = float(lines[46].strip())
hed['XPixel'] = 1 / float(lines[49].strip())
hed['YPixel'] = 1 / float(lines[50].strip())
hed['Title'] = lines[53].strip().replace(' ', '_').replace('-', '_')
hed['MonitorDORIS'] = float(lines[56].strip()) # aka. DORIS counter
hed['Owner'] = lines[57].strip()
hed['RotXSample'] = float(lines[59].strip())
hed['RotYSample'] = float(lines[60].strip())
hed['PosSample'] = float(lines[61].strip())
hed['DetPosX'] = float(lines[62].strip())
hed['DetPosY'] = float(lines[63].strip())
hed['MonitorPIEZO'] = float(lines[64].strip()) # aka. PIEZO counter
hed['BeamsizeX'] = float(lines[66].strip())
hed['BeamsizeY'] = float(lines[67].strip())
hed['PosRef'] = float(lines[70].strip())
hed['Monochromator1Rot'] = float(lines[77].strip())
hed['Monochromator2Rot'] = float(lines[78].strip())
hed['Heidenhain1'] = float(lines[79].strip())
hed['Heidenhain2'] = float(lines[80].strip())
hed['Current1'] = float(lines[81].strip())
hed['Current2'] = float(lines[82].strip())
hed['Detector'] = 'Unknown'
hed['PixelSize'] = (hed['XPixel'] + hed['YPixel']) / 2.0
hed['AnodeError'] = math.sqrt(hed['Anode'])
hed['TransmError'] = 0
hed['MonitorError'] = math.sqrt(hed['Monitor'])
hed['MonitorPIEZOError'] = math.sqrt(hed['MonitorPIEZO'])
hed['MonitorDORISError'] = math.sqrt(hed['MonitorDORIS'])
hed['Date'] = datetime.datetime(
hed['Year'], hed['Month'], hed['Day'], hed['Hour'], hed['Minutes'])
hed['__Origin__'] = 'B1 original'
hed['__particle__'] = 'photon'
return hed | python | def readB1header(filename):
"""Read beamline B1 (HASYLAB, Hamburg) header data
Input
-----
filename: string
the file name. If ends with ``.gz``, it is fed through a ``gunzip``
filter
Output
------
A header dictionary.
Examples
--------
read header data from 'ORG000123.DAT'::
header=readB1header('ORG00123.DAT')
"""
# Planck's constant times speed of light: incorrect
# constant in the old program on hasjusi1, which was
# taken over by the measurement program, to keep
# compatibility with that.
hed = {}
if libconfig.LENGTH_UNIT == 'A':
jusifaHC = 12396.4
elif libconfig.LENGTH_UNIT == 'nm':
jusifaHC = 1239.64
else:
raise NotImplementedError(
'Invalid length unit: ' + str(libconfig.LENGTH_UNIT))
if filename.upper().endswith('.GZ'):
fid = gzip.GzipFile(filename, 'r')
else:
fid = open(filename, 'rt')
lines = fid.readlines()
fid.close()
hed['FSN'] = int(lines[0].strip())
hed['Hour'] = int(lines[17].strip())
hed['Minutes'] = int(lines[18].strip())
hed['Month'] = int(lines[19].strip())
hed['Day'] = int(lines[20].strip())
hed['Year'] = int(lines[21].strip()) + 2000
hed['FSNref1'] = int(lines[23].strip())
hed['FSNdc'] = int(lines[24].strip())
hed['FSNsensitivity'] = int(lines[25].strip())
hed['FSNempty'] = int(lines[26].strip())
hed['FSNref2'] = int(lines[27].strip())
hed['Monitor'] = float(lines[31].strip())
hed['Anode'] = float(lines[32].strip())
hed['MeasTime'] = float(lines[33].strip())
hed['Temperature'] = float(lines[34].strip())
hed['BeamPosX'] = float(lines[36].strip())
hed['BeamPosY'] = float(lines[37].strip())
hed['Transm'] = float(lines[41].strip())
hed['Wavelength'] = float(lines[43].strip())
hed['Energy'] = jusifaHC / hed['Wavelength']
hed['Dist'] = float(lines[46].strip())
hed['XPixel'] = 1 / float(lines[49].strip())
hed['YPixel'] = 1 / float(lines[50].strip())
hed['Title'] = lines[53].strip().replace(' ', '_').replace('-', '_')
hed['MonitorDORIS'] = float(lines[56].strip()) # aka. DORIS counter
hed['Owner'] = lines[57].strip()
hed['RotXSample'] = float(lines[59].strip())
hed['RotYSample'] = float(lines[60].strip())
hed['PosSample'] = float(lines[61].strip())
hed['DetPosX'] = float(lines[62].strip())
hed['DetPosY'] = float(lines[63].strip())
hed['MonitorPIEZO'] = float(lines[64].strip()) # aka. PIEZO counter
hed['BeamsizeX'] = float(lines[66].strip())
hed['BeamsizeY'] = float(lines[67].strip())
hed['PosRef'] = float(lines[70].strip())
hed['Monochromator1Rot'] = float(lines[77].strip())
hed['Monochromator2Rot'] = float(lines[78].strip())
hed['Heidenhain1'] = float(lines[79].strip())
hed['Heidenhain2'] = float(lines[80].strip())
hed['Current1'] = float(lines[81].strip())
hed['Current2'] = float(lines[82].strip())
hed['Detector'] = 'Unknown'
hed['PixelSize'] = (hed['XPixel'] + hed['YPixel']) / 2.0
hed['AnodeError'] = math.sqrt(hed['Anode'])
hed['TransmError'] = 0
hed['MonitorError'] = math.sqrt(hed['Monitor'])
hed['MonitorPIEZOError'] = math.sqrt(hed['MonitorPIEZO'])
hed['MonitorDORISError'] = math.sqrt(hed['MonitorDORIS'])
hed['Date'] = datetime.datetime(
hed['Year'], hed['Month'], hed['Day'], hed['Hour'], hed['Minutes'])
hed['__Origin__'] = 'B1 original'
hed['__particle__'] = 'photon'
return hed | [
"def",
"readB1header",
"(",
"filename",
")",
":",
"# Planck's constant times speed of light: incorrect",
"# constant in the old program on hasjusi1, which was",
"# taken over by the measurement program, to keep",
"# compatibility with that.",
"hed",
"=",
"{",
"}",
"if",
"libconfig",
".",
"LENGTH_UNIT",
"==",
"'A'",
":",
"jusifaHC",
"=",
"12396.4",
"elif",
"libconfig",
".",
"LENGTH_UNIT",
"==",
"'nm'",
":",
"jusifaHC",
"=",
"1239.64",
"else",
":",
"raise",
"NotImplementedError",
"(",
"'Invalid length unit: '",
"+",
"str",
"(",
"libconfig",
".",
"LENGTH_UNIT",
")",
")",
"if",
"filename",
".",
"upper",
"(",
")",
".",
"endswith",
"(",
"'.GZ'",
")",
":",
"fid",
"=",
"gzip",
".",
"GzipFile",
"(",
"filename",
",",
"'r'",
")",
"else",
":",
"fid",
"=",
"open",
"(",
"filename",
",",
"'rt'",
")",
"lines",
"=",
"fid",
".",
"readlines",
"(",
")",
"fid",
".",
"close",
"(",
")",
"hed",
"[",
"'FSN'",
"]",
"=",
"int",
"(",
"lines",
"[",
"0",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Hour'",
"]",
"=",
"int",
"(",
"lines",
"[",
"17",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Minutes'",
"]",
"=",
"int",
"(",
"lines",
"[",
"18",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Month'",
"]",
"=",
"int",
"(",
"lines",
"[",
"19",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Day'",
"]",
"=",
"int",
"(",
"lines",
"[",
"20",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Year'",
"]",
"=",
"int",
"(",
"lines",
"[",
"21",
"]",
".",
"strip",
"(",
")",
")",
"+",
"2000",
"hed",
"[",
"'FSNref1'",
"]",
"=",
"int",
"(",
"lines",
"[",
"23",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'FSNdc'",
"]",
"=",
"int",
"(",
"lines",
"[",
"24",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'FSNsensitivity'",
"]",
"=",
"int",
"(",
"lines",
"[",
"25",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'FSNempty'",
"]",
"=",
"int",
"(",
"lines",
"[",
"26",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'FSNref2'",
"]",
"=",
"int",
"(",
"lines",
"[",
"27",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Monitor'",
"]",
"=",
"float",
"(",
"lines",
"[",
"31",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Anode'",
"]",
"=",
"float",
"(",
"lines",
"[",
"32",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'MeasTime'",
"]",
"=",
"float",
"(",
"lines",
"[",
"33",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Temperature'",
"]",
"=",
"float",
"(",
"lines",
"[",
"34",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'BeamPosX'",
"]",
"=",
"float",
"(",
"lines",
"[",
"36",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'BeamPosY'",
"]",
"=",
"float",
"(",
"lines",
"[",
"37",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Transm'",
"]",
"=",
"float",
"(",
"lines",
"[",
"41",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Wavelength'",
"]",
"=",
"float",
"(",
"lines",
"[",
"43",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Energy'",
"]",
"=",
"jusifaHC",
"/",
"hed",
"[",
"'Wavelength'",
"]",
"hed",
"[",
"'Dist'",
"]",
"=",
"float",
"(",
"lines",
"[",
"46",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'XPixel'",
"]",
"=",
"1",
"/",
"float",
"(",
"lines",
"[",
"49",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'YPixel'",
"]",
"=",
"1",
"/",
"float",
"(",
"lines",
"[",
"50",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Title'",
"]",
"=",
"lines",
"[",
"53",
"]",
".",
"strip",
"(",
")",
".",
"replace",
"(",
"' '",
",",
"'_'",
")",
".",
"replace",
"(",
"'-'",
",",
"'_'",
")",
"hed",
"[",
"'MonitorDORIS'",
"]",
"=",
"float",
"(",
"lines",
"[",
"56",
"]",
".",
"strip",
"(",
")",
")",
"# aka. DORIS counter",
"hed",
"[",
"'Owner'",
"]",
"=",
"lines",
"[",
"57",
"]",
".",
"strip",
"(",
")",
"hed",
"[",
"'RotXSample'",
"]",
"=",
"float",
"(",
"lines",
"[",
"59",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'RotYSample'",
"]",
"=",
"float",
"(",
"lines",
"[",
"60",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'PosSample'",
"]",
"=",
"float",
"(",
"lines",
"[",
"61",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'DetPosX'",
"]",
"=",
"float",
"(",
"lines",
"[",
"62",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'DetPosY'",
"]",
"=",
"float",
"(",
"lines",
"[",
"63",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'MonitorPIEZO'",
"]",
"=",
"float",
"(",
"lines",
"[",
"64",
"]",
".",
"strip",
"(",
")",
")",
"# aka. PIEZO counter",
"hed",
"[",
"'BeamsizeX'",
"]",
"=",
"float",
"(",
"lines",
"[",
"66",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'BeamsizeY'",
"]",
"=",
"float",
"(",
"lines",
"[",
"67",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'PosRef'",
"]",
"=",
"float",
"(",
"lines",
"[",
"70",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Monochromator1Rot'",
"]",
"=",
"float",
"(",
"lines",
"[",
"77",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Monochromator2Rot'",
"]",
"=",
"float",
"(",
"lines",
"[",
"78",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Heidenhain1'",
"]",
"=",
"float",
"(",
"lines",
"[",
"79",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Heidenhain2'",
"]",
"=",
"float",
"(",
"lines",
"[",
"80",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Current1'",
"]",
"=",
"float",
"(",
"lines",
"[",
"81",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Current2'",
"]",
"=",
"float",
"(",
"lines",
"[",
"82",
"]",
".",
"strip",
"(",
")",
")",
"hed",
"[",
"'Detector'",
"]",
"=",
"'Unknown'",
"hed",
"[",
"'PixelSize'",
"]",
"=",
"(",
"hed",
"[",
"'XPixel'",
"]",
"+",
"hed",
"[",
"'YPixel'",
"]",
")",
"/",
"2.0",
"hed",
"[",
"'AnodeError'",
"]",
"=",
"math",
".",
"sqrt",
"(",
"hed",
"[",
"'Anode'",
"]",
")",
"hed",
"[",
"'TransmError'",
"]",
"=",
"0",
"hed",
"[",
"'MonitorError'",
"]",
"=",
"math",
".",
"sqrt",
"(",
"hed",
"[",
"'Monitor'",
"]",
")",
"hed",
"[",
"'MonitorPIEZOError'",
"]",
"=",
"math",
".",
"sqrt",
"(",
"hed",
"[",
"'MonitorPIEZO'",
"]",
")",
"hed",
"[",
"'MonitorDORISError'",
"]",
"=",
"math",
".",
"sqrt",
"(",
"hed",
"[",
"'MonitorDORIS'",
"]",
")",
"hed",
"[",
"'Date'",
"]",
"=",
"datetime",
".",
"datetime",
"(",
"hed",
"[",
"'Year'",
"]",
",",
"hed",
"[",
"'Month'",
"]",
",",
"hed",
"[",
"'Day'",
"]",
",",
"hed",
"[",
"'Hour'",
"]",
",",
"hed",
"[",
"'Minutes'",
"]",
")",
"hed",
"[",
"'__Origin__'",
"]",
"=",
"'B1 original'",
"hed",
"[",
"'__particle__'",
"]",
"=",
"'photon'",
"return",
"hed"
] | Read beamline B1 (HASYLAB, Hamburg) header data
Input
-----
filename: string
the file name. If ends with ``.gz``, it is fed through a ``gunzip``
filter
Output
------
A header dictionary.
Examples
--------
read header data from 'ORG000123.DAT'::
header=readB1header('ORG00123.DAT') | [
"Read",
"beamline",
"B1",
"(",
"HASYLAB",
"Hamburg",
")",
"header",
"data"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/header.py#L278-L369 |
awacha/sastool | sastool/io/header.py | _readedf_extractline | def _readedf_extractline(left, right):
"""Helper function to interpret lines in an EDF file header.
"""
functions = [int, float, lambda l:float(l.split(None, 1)[0]),
lambda l:int(l.split(None, 1)[0]),
dateutil.parser.parse, lambda x:str(x)]
for f in functions:
try:
right = f(right)
break
except ValueError:
continue
return right | python | def _readedf_extractline(left, right):
"""Helper function to interpret lines in an EDF file header.
"""
functions = [int, float, lambda l:float(l.split(None, 1)[0]),
lambda l:int(l.split(None, 1)[0]),
dateutil.parser.parse, lambda x:str(x)]
for f in functions:
try:
right = f(right)
break
except ValueError:
continue
return right | [
"def",
"_readedf_extractline",
"(",
"left",
",",
"right",
")",
":",
"functions",
"=",
"[",
"int",
",",
"float",
",",
"lambda",
"l",
":",
"float",
"(",
"l",
".",
"split",
"(",
"None",
",",
"1",
")",
"[",
"0",
"]",
")",
",",
"lambda",
"l",
":",
"int",
"(",
"l",
".",
"split",
"(",
"None",
",",
"1",
")",
"[",
"0",
"]",
")",
",",
"dateutil",
".",
"parser",
".",
"parse",
",",
"lambda",
"x",
":",
"str",
"(",
"x",
")",
"]",
"for",
"f",
"in",
"functions",
":",
"try",
":",
"right",
"=",
"f",
"(",
"right",
")",
"break",
"except",
"ValueError",
":",
"continue",
"return",
"right"
] | Helper function to interpret lines in an EDF file header. | [
"Helper",
"function",
"to",
"interpret",
"lines",
"in",
"an",
"EDF",
"file",
"header",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/header.py#L372-L384 |
awacha/sastool | sastool/io/header.py | readehf | def readehf(filename):
"""Read EDF header (ESRF data format, as of beamline ID01 and ID02)
Input
-----
filename: string
the file name to load
Output
------
the EDF header structure in a dictionary
"""
f = open(filename, 'r')
edf = {}
if not f.readline().strip().startswith('{'):
raise ValueError('Invalid file format.')
for l in f:
l = l.strip()
if not l:
continue
if l.endswith('}'):
break # last line of header
try:
left, right = l.split('=', 1)
except ValueError:
raise ValueError('Invalid line: ' + l)
left = left.strip()
right = right.strip()
if not right.endswith(';'):
raise ValueError(
'Invalid line (does not end with a semicolon): ' + l)
right = right[:-1].strip()
m = re.match('^(?P<left>.*)~(?P<continuation>\d+)$', left)
if m is not None:
edf[m.group('left')] = edf[m.group('left')] + right
else:
edf[left] = _readedf_extractline(left, right)
f.close()
edf['FileName'] = filename
edf['__Origin__'] = 'EDF ID02'
edf['__particle__'] = 'photon'
return edf | python | def readehf(filename):
"""Read EDF header (ESRF data format, as of beamline ID01 and ID02)
Input
-----
filename: string
the file name to load
Output
------
the EDF header structure in a dictionary
"""
f = open(filename, 'r')
edf = {}
if not f.readline().strip().startswith('{'):
raise ValueError('Invalid file format.')
for l in f:
l = l.strip()
if not l:
continue
if l.endswith('}'):
break # last line of header
try:
left, right = l.split('=', 1)
except ValueError:
raise ValueError('Invalid line: ' + l)
left = left.strip()
right = right.strip()
if not right.endswith(';'):
raise ValueError(
'Invalid line (does not end with a semicolon): ' + l)
right = right[:-1].strip()
m = re.match('^(?P<left>.*)~(?P<continuation>\d+)$', left)
if m is not None:
edf[m.group('left')] = edf[m.group('left')] + right
else:
edf[left] = _readedf_extractline(left, right)
f.close()
edf['FileName'] = filename
edf['__Origin__'] = 'EDF ID02'
edf['__particle__'] = 'photon'
return edf | [
"def",
"readehf",
"(",
"filename",
")",
":",
"f",
"=",
"open",
"(",
"filename",
",",
"'r'",
")",
"edf",
"=",
"{",
"}",
"if",
"not",
"f",
".",
"readline",
"(",
")",
".",
"strip",
"(",
")",
".",
"startswith",
"(",
"'{'",
")",
":",
"raise",
"ValueError",
"(",
"'Invalid file format.'",
")",
"for",
"l",
"in",
"f",
":",
"l",
"=",
"l",
".",
"strip",
"(",
")",
"if",
"not",
"l",
":",
"continue",
"if",
"l",
".",
"endswith",
"(",
"'}'",
")",
":",
"break",
"# last line of header",
"try",
":",
"left",
",",
"right",
"=",
"l",
".",
"split",
"(",
"'='",
",",
"1",
")",
"except",
"ValueError",
":",
"raise",
"ValueError",
"(",
"'Invalid line: '",
"+",
"l",
")",
"left",
"=",
"left",
".",
"strip",
"(",
")",
"right",
"=",
"right",
".",
"strip",
"(",
")",
"if",
"not",
"right",
".",
"endswith",
"(",
"';'",
")",
":",
"raise",
"ValueError",
"(",
"'Invalid line (does not end with a semicolon): '",
"+",
"l",
")",
"right",
"=",
"right",
"[",
":",
"-",
"1",
"]",
".",
"strip",
"(",
")",
"m",
"=",
"re",
".",
"match",
"(",
"'^(?P<left>.*)~(?P<continuation>\\d+)$'",
",",
"left",
")",
"if",
"m",
"is",
"not",
"None",
":",
"edf",
"[",
"m",
".",
"group",
"(",
"'left'",
")",
"]",
"=",
"edf",
"[",
"m",
".",
"group",
"(",
"'left'",
")",
"]",
"+",
"right",
"else",
":",
"edf",
"[",
"left",
"]",
"=",
"_readedf_extractline",
"(",
"left",
",",
"right",
")",
"f",
".",
"close",
"(",
")",
"edf",
"[",
"'FileName'",
"]",
"=",
"filename",
"edf",
"[",
"'__Origin__'",
"]",
"=",
"'EDF ID02'",
"edf",
"[",
"'__particle__'",
"]",
"=",
"'photon'",
"return",
"edf"
] | Read EDF header (ESRF data format, as of beamline ID01 and ID02)
Input
-----
filename: string
the file name to load
Output
------
the EDF header structure in a dictionary | [
"Read",
"EDF",
"header",
"(",
"ESRF",
"data",
"format",
"as",
"of",
"beamline",
"ID01",
"and",
"ID02",
")"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/header.py#L387-L428 |
awacha/sastool | sastool/io/header.py | readbhfv1 | def readbhfv1(filename, load_data=False, bdfext='.bdf', bhfext='.bhf'):
"""Read header data from bdf/bhf file (Bessy Data Format v1)
Input:
filename: the name of the file
load_data: if the matrices are to be loaded
Output:
bdf: the BDF header structure
Adapted the bdf_read.m macro from Sylvio Haas.
"""
# strip the bhf or bdf extension if there.
if filename.endswith(bdfext):
basename = filename[:-len(bdfext)]
elif filename.endswith(bhfext):
basename = filename[:-len(bhfext)]
else: # assume a single file of header and data.
basename, bhfext = os.path.splitext(filename)
bdfext = bhfext
headername = basename + bhfext
dataname = basename + bdfext
bdf = {}
bdf['his'] = [] # empty list for history
bdf['C'] = {} # empty list for bdf file descriptions
namelists = {}
valuelists = {}
with open(headername, 'rb') as fid: # if fails, an exception is raised
for line in fid:
if not line.strip():
continue # empty line
mat = line.split(None, 1)
prefix = mat[0]
if prefix == '#C':
left, right = mat[1].split('=', 1)
left = left.strip()
right = right.strip()
if left in ['xdim', 'ydim']:
bdf[left] = int(right)
elif left in ['type', 'bdf']:
bdf[left] = right
if left in ['Sendtime']:
bdf['C'][left] = float(right)
elif left in ['xdim', 'ydim']:
bdf['C'][left] = int(right)
else:
bdf['C'][left] = misc.parse_number(right)
elif prefix.startswith("#H"):
bdf['his'].append(mat[1])
# elif prefix.startswith("#DATA"):
# if not load_data:
# break
# darray = np.fromfile(fid, dtype = bdf['type'], count = int(bdf['xdim'] * bdf['ydim']))
# bdf['data'] = np.rot90((darray.reshape(bdf['xdim'], bdf['ydim'])).astype('double').T, 1).copy() # this weird transformation is needed to get the matrix in the same form as bdf_read.m gets it.
# elif prefix.startswith('#ERROR'):
# if not load_data:
# break
# darray = np.fromfile(fid, dtype = bdf['type'], count = int(bdf['xdim'] * bdf['ydim']))
# bdf['error'] = np.rot90((darray.reshape(bdf['xdim'], bdf['ydim'])).astype('double').T, 1).copy()
else:
for prf in ['M', 'G', 'S', 'T']:
if prefix.startswith('#C%sL' % prf):
if prf not in namelists:
namelists[prf] = []
namelists[prf].extend(mat[1].split())
elif prefix.startswith('#C%sV' % prf):
if prf not in valuelists:
valuelists[prf] = []
valuelists[prf].extend([float(x)
for x in mat[1].split()])
else:
continue
for dictname, prfname in zip(['M', 'CG', 'CS', 'CT'], ['M', 'G', 'S', 'T']):
bdf[dictname] = dict(
list(zip(namelists[prfname], valuelists[prfname])))
bdf['__Origin__'] = 'BDFv1'
bdf['__particle__'] = 'photon'
if load_data:
f = open(dataname, 'r')
try:
s = f.read()
except IOError as ioe:
# an ugly bug (M$ KB899149) in W!nd0w$ causes an error if loading too
# large a file from a network drive and opening it read-only.
if ioe.errno == 22:
f.close()
try:
# one work-around is to open it read-write.
f = open(dataname, 'r+b')
s = f.read()
except IOError:
# if this does not work, inform the user to either obtain
# write permission for that file or copy it to a local
# drive
f.close()
raise IOError(22, """
You were probably trying to open a read-only file from a network drive on
Windows, weren\'t you? There is a bug in Windows causing this error
(see http://support.microsoft.com/default.aspx?scid=kb;en-us;899149).
To work around this, please either obtain write permission for that file
(I won't write anything to it, I promise!!!) or copy it to a local drive.
Sorry for the inconvenience.""", ioe.filename)
datasets = re.findall(
'#\s*(?P<name>\w+)\[(?P<xsize>\d+):(?P<ysize>\d+)\]', s)
names = [d[0] for d in datasets]
xsize = [int(d[1]) for d in datasets]
ysize = [int(d[2]) for d in datasets]
dt = np.dtype(bdf['type'])
for i in range(len(datasets)):
start = s.find('#%s' % names[i])
if i < len(datasets) - 1:
end = s.find('#%s' % (names[i + 1]))
else:
end = len(s)
s1 = s[start:end]
datasize = xsize[i] * ysize[i] * dt.itemsize
if datasize > len(s1):
# assume we are dealing with a BOOL matrix
bdf[names[i]] = np.fromstring(
s1[-xsize[i] * ysize[i]:], dtype=np.uint8)
else:
bdf[names[i]] = np.fromstring(
s1[-xsize[i] * ysize[i] * dt.itemsize:], dtype=dt)
# conversion: Matlab saves the array in Fortran-style ordering (columns first).
# Python however loads in C-style: rows first. We need to take care:
# 1) reshape from linear to (ysize,xsize) and not (xsize,ysize)
# 2) transpose (swaps columns and rows)
# After these operations, we only have to rotate this counter-clockwise by 90
# degrees because bdf2_write rotates by +270 degrees before saving.
bdf[names[i]] = np.rot90(
bdf[names[i]].reshape((ysize[i], xsize[i]), order='F'), 1)
return bdf | python | def readbhfv1(filename, load_data=False, bdfext='.bdf', bhfext='.bhf'):
"""Read header data from bdf/bhf file (Bessy Data Format v1)
Input:
filename: the name of the file
load_data: if the matrices are to be loaded
Output:
bdf: the BDF header structure
Adapted the bdf_read.m macro from Sylvio Haas.
"""
# strip the bhf or bdf extension if there.
if filename.endswith(bdfext):
basename = filename[:-len(bdfext)]
elif filename.endswith(bhfext):
basename = filename[:-len(bhfext)]
else: # assume a single file of header and data.
basename, bhfext = os.path.splitext(filename)
bdfext = bhfext
headername = basename + bhfext
dataname = basename + bdfext
bdf = {}
bdf['his'] = [] # empty list for history
bdf['C'] = {} # empty list for bdf file descriptions
namelists = {}
valuelists = {}
with open(headername, 'rb') as fid: # if fails, an exception is raised
for line in fid:
if not line.strip():
continue # empty line
mat = line.split(None, 1)
prefix = mat[0]
if prefix == '#C':
left, right = mat[1].split('=', 1)
left = left.strip()
right = right.strip()
if left in ['xdim', 'ydim']:
bdf[left] = int(right)
elif left in ['type', 'bdf']:
bdf[left] = right
if left in ['Sendtime']:
bdf['C'][left] = float(right)
elif left in ['xdim', 'ydim']:
bdf['C'][left] = int(right)
else:
bdf['C'][left] = misc.parse_number(right)
elif prefix.startswith("#H"):
bdf['his'].append(mat[1])
# elif prefix.startswith("#DATA"):
# if not load_data:
# break
# darray = np.fromfile(fid, dtype = bdf['type'], count = int(bdf['xdim'] * bdf['ydim']))
# bdf['data'] = np.rot90((darray.reshape(bdf['xdim'], bdf['ydim'])).astype('double').T, 1).copy() # this weird transformation is needed to get the matrix in the same form as bdf_read.m gets it.
# elif prefix.startswith('#ERROR'):
# if not load_data:
# break
# darray = np.fromfile(fid, dtype = bdf['type'], count = int(bdf['xdim'] * bdf['ydim']))
# bdf['error'] = np.rot90((darray.reshape(bdf['xdim'], bdf['ydim'])).astype('double').T, 1).copy()
else:
for prf in ['M', 'G', 'S', 'T']:
if prefix.startswith('#C%sL' % prf):
if prf not in namelists:
namelists[prf] = []
namelists[prf].extend(mat[1].split())
elif prefix.startswith('#C%sV' % prf):
if prf not in valuelists:
valuelists[prf] = []
valuelists[prf].extend([float(x)
for x in mat[1].split()])
else:
continue
for dictname, prfname in zip(['M', 'CG', 'CS', 'CT'], ['M', 'G', 'S', 'T']):
bdf[dictname] = dict(
list(zip(namelists[prfname], valuelists[prfname])))
bdf['__Origin__'] = 'BDFv1'
bdf['__particle__'] = 'photon'
if load_data:
f = open(dataname, 'r')
try:
s = f.read()
except IOError as ioe:
# an ugly bug (M$ KB899149) in W!nd0w$ causes an error if loading too
# large a file from a network drive and opening it read-only.
if ioe.errno == 22:
f.close()
try:
# one work-around is to open it read-write.
f = open(dataname, 'r+b')
s = f.read()
except IOError:
# if this does not work, inform the user to either obtain
# write permission for that file or copy it to a local
# drive
f.close()
raise IOError(22, """
You were probably trying to open a read-only file from a network drive on
Windows, weren\'t you? There is a bug in Windows causing this error
(see http://support.microsoft.com/default.aspx?scid=kb;en-us;899149).
To work around this, please either obtain write permission for that file
(I won't write anything to it, I promise!!!) or copy it to a local drive.
Sorry for the inconvenience.""", ioe.filename)
datasets = re.findall(
'#\s*(?P<name>\w+)\[(?P<xsize>\d+):(?P<ysize>\d+)\]', s)
names = [d[0] for d in datasets]
xsize = [int(d[1]) for d in datasets]
ysize = [int(d[2]) for d in datasets]
dt = np.dtype(bdf['type'])
for i in range(len(datasets)):
start = s.find('#%s' % names[i])
if i < len(datasets) - 1:
end = s.find('#%s' % (names[i + 1]))
else:
end = len(s)
s1 = s[start:end]
datasize = xsize[i] * ysize[i] * dt.itemsize
if datasize > len(s1):
# assume we are dealing with a BOOL matrix
bdf[names[i]] = np.fromstring(
s1[-xsize[i] * ysize[i]:], dtype=np.uint8)
else:
bdf[names[i]] = np.fromstring(
s1[-xsize[i] * ysize[i] * dt.itemsize:], dtype=dt)
# conversion: Matlab saves the array in Fortran-style ordering (columns first).
# Python however loads in C-style: rows first. We need to take care:
# 1) reshape from linear to (ysize,xsize) and not (xsize,ysize)
# 2) transpose (swaps columns and rows)
# After these operations, we only have to rotate this counter-clockwise by 90
# degrees because bdf2_write rotates by +270 degrees before saving.
bdf[names[i]] = np.rot90(
bdf[names[i]].reshape((ysize[i], xsize[i]), order='F'), 1)
return bdf | [
"def",
"readbhfv1",
"(",
"filename",
",",
"load_data",
"=",
"False",
",",
"bdfext",
"=",
"'.bdf'",
",",
"bhfext",
"=",
"'.bhf'",
")",
":",
"# strip the bhf or bdf extension if there.",
"if",
"filename",
".",
"endswith",
"(",
"bdfext",
")",
":",
"basename",
"=",
"filename",
"[",
":",
"-",
"len",
"(",
"bdfext",
")",
"]",
"elif",
"filename",
".",
"endswith",
"(",
"bhfext",
")",
":",
"basename",
"=",
"filename",
"[",
":",
"-",
"len",
"(",
"bhfext",
")",
"]",
"else",
":",
"# assume a single file of header and data.",
"basename",
",",
"bhfext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"filename",
")",
"bdfext",
"=",
"bhfext",
"headername",
"=",
"basename",
"+",
"bhfext",
"dataname",
"=",
"basename",
"+",
"bdfext",
"bdf",
"=",
"{",
"}",
"bdf",
"[",
"'his'",
"]",
"=",
"[",
"]",
"# empty list for history",
"bdf",
"[",
"'C'",
"]",
"=",
"{",
"}",
"# empty list for bdf file descriptions",
"namelists",
"=",
"{",
"}",
"valuelists",
"=",
"{",
"}",
"with",
"open",
"(",
"headername",
",",
"'rb'",
")",
"as",
"fid",
":",
"# if fails, an exception is raised",
"for",
"line",
"in",
"fid",
":",
"if",
"not",
"line",
".",
"strip",
"(",
")",
":",
"continue",
"# empty line",
"mat",
"=",
"line",
".",
"split",
"(",
"None",
",",
"1",
")",
"prefix",
"=",
"mat",
"[",
"0",
"]",
"if",
"prefix",
"==",
"'#C'",
":",
"left",
",",
"right",
"=",
"mat",
"[",
"1",
"]",
".",
"split",
"(",
"'='",
",",
"1",
")",
"left",
"=",
"left",
".",
"strip",
"(",
")",
"right",
"=",
"right",
".",
"strip",
"(",
")",
"if",
"left",
"in",
"[",
"'xdim'",
",",
"'ydim'",
"]",
":",
"bdf",
"[",
"left",
"]",
"=",
"int",
"(",
"right",
")",
"elif",
"left",
"in",
"[",
"'type'",
",",
"'bdf'",
"]",
":",
"bdf",
"[",
"left",
"]",
"=",
"right",
"if",
"left",
"in",
"[",
"'Sendtime'",
"]",
":",
"bdf",
"[",
"'C'",
"]",
"[",
"left",
"]",
"=",
"float",
"(",
"right",
")",
"elif",
"left",
"in",
"[",
"'xdim'",
",",
"'ydim'",
"]",
":",
"bdf",
"[",
"'C'",
"]",
"[",
"left",
"]",
"=",
"int",
"(",
"right",
")",
"else",
":",
"bdf",
"[",
"'C'",
"]",
"[",
"left",
"]",
"=",
"misc",
".",
"parse_number",
"(",
"right",
")",
"elif",
"prefix",
".",
"startswith",
"(",
"\"#H\"",
")",
":",
"bdf",
"[",
"'his'",
"]",
".",
"append",
"(",
"mat",
"[",
"1",
"]",
")",
"# elif prefix.startswith(\"#DATA\"):",
"# if not load_data:",
"# break",
"# darray = np.fromfile(fid, dtype = bdf['type'], count = int(bdf['xdim'] * bdf['ydim']))",
"# bdf['data'] = np.rot90((darray.reshape(bdf['xdim'], bdf['ydim'])).astype('double').T, 1).copy() # this weird transformation is needed to get the matrix in the same form as bdf_read.m gets it.",
"# elif prefix.startswith('#ERROR'):",
"# if not load_data:",
"# break",
"# darray = np.fromfile(fid, dtype = bdf['type'], count = int(bdf['xdim'] * bdf['ydim']))",
"# bdf['error'] = np.rot90((darray.reshape(bdf['xdim'], bdf['ydim'])).astype('double').T, 1).copy()",
"else",
":",
"for",
"prf",
"in",
"[",
"'M'",
",",
"'G'",
",",
"'S'",
",",
"'T'",
"]",
":",
"if",
"prefix",
".",
"startswith",
"(",
"'#C%sL'",
"%",
"prf",
")",
":",
"if",
"prf",
"not",
"in",
"namelists",
":",
"namelists",
"[",
"prf",
"]",
"=",
"[",
"]",
"namelists",
"[",
"prf",
"]",
".",
"extend",
"(",
"mat",
"[",
"1",
"]",
".",
"split",
"(",
")",
")",
"elif",
"prefix",
".",
"startswith",
"(",
"'#C%sV'",
"%",
"prf",
")",
":",
"if",
"prf",
"not",
"in",
"valuelists",
":",
"valuelists",
"[",
"prf",
"]",
"=",
"[",
"]",
"valuelists",
"[",
"prf",
"]",
".",
"extend",
"(",
"[",
"float",
"(",
"x",
")",
"for",
"x",
"in",
"mat",
"[",
"1",
"]",
".",
"split",
"(",
")",
"]",
")",
"else",
":",
"continue",
"for",
"dictname",
",",
"prfname",
"in",
"zip",
"(",
"[",
"'M'",
",",
"'CG'",
",",
"'CS'",
",",
"'CT'",
"]",
",",
"[",
"'M'",
",",
"'G'",
",",
"'S'",
",",
"'T'",
"]",
")",
":",
"bdf",
"[",
"dictname",
"]",
"=",
"dict",
"(",
"list",
"(",
"zip",
"(",
"namelists",
"[",
"prfname",
"]",
",",
"valuelists",
"[",
"prfname",
"]",
")",
")",
")",
"bdf",
"[",
"'__Origin__'",
"]",
"=",
"'BDFv1'",
"bdf",
"[",
"'__particle__'",
"]",
"=",
"'photon'",
"if",
"load_data",
":",
"f",
"=",
"open",
"(",
"dataname",
",",
"'r'",
")",
"try",
":",
"s",
"=",
"f",
".",
"read",
"(",
")",
"except",
"IOError",
"as",
"ioe",
":",
"# an ugly bug (M$ KB899149) in W!nd0w$ causes an error if loading too",
"# large a file from a network drive and opening it read-only.",
"if",
"ioe",
".",
"errno",
"==",
"22",
":",
"f",
".",
"close",
"(",
")",
"try",
":",
"# one work-around is to open it read-write.",
"f",
"=",
"open",
"(",
"dataname",
",",
"'r+b'",
")",
"s",
"=",
"f",
".",
"read",
"(",
")",
"except",
"IOError",
":",
"# if this does not work, inform the user to either obtain",
"# write permission for that file or copy it to a local",
"# drive",
"f",
".",
"close",
"(",
")",
"raise",
"IOError",
"(",
"22",
",",
"\"\"\"\nYou were probably trying to open a read-only file from a network drive on\nWindows, weren\\'t you? There is a bug in Windows causing this error\n(see http://support.microsoft.com/default.aspx?scid=kb;en-us;899149).\nTo work around this, please either obtain write permission for that file\n(I won't write anything to it, I promise!!!) or copy it to a local drive.\nSorry for the inconvenience.\"\"\"",
",",
"ioe",
".",
"filename",
")",
"datasets",
"=",
"re",
".",
"findall",
"(",
"'#\\s*(?P<name>\\w+)\\[(?P<xsize>\\d+):(?P<ysize>\\d+)\\]'",
",",
"s",
")",
"names",
"=",
"[",
"d",
"[",
"0",
"]",
"for",
"d",
"in",
"datasets",
"]",
"xsize",
"=",
"[",
"int",
"(",
"d",
"[",
"1",
"]",
")",
"for",
"d",
"in",
"datasets",
"]",
"ysize",
"=",
"[",
"int",
"(",
"d",
"[",
"2",
"]",
")",
"for",
"d",
"in",
"datasets",
"]",
"dt",
"=",
"np",
".",
"dtype",
"(",
"bdf",
"[",
"'type'",
"]",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"datasets",
")",
")",
":",
"start",
"=",
"s",
".",
"find",
"(",
"'#%s'",
"%",
"names",
"[",
"i",
"]",
")",
"if",
"i",
"<",
"len",
"(",
"datasets",
")",
"-",
"1",
":",
"end",
"=",
"s",
".",
"find",
"(",
"'#%s'",
"%",
"(",
"names",
"[",
"i",
"+",
"1",
"]",
")",
")",
"else",
":",
"end",
"=",
"len",
"(",
"s",
")",
"s1",
"=",
"s",
"[",
"start",
":",
"end",
"]",
"datasize",
"=",
"xsize",
"[",
"i",
"]",
"*",
"ysize",
"[",
"i",
"]",
"*",
"dt",
".",
"itemsize",
"if",
"datasize",
">",
"len",
"(",
"s1",
")",
":",
"# assume we are dealing with a BOOL matrix",
"bdf",
"[",
"names",
"[",
"i",
"]",
"]",
"=",
"np",
".",
"fromstring",
"(",
"s1",
"[",
"-",
"xsize",
"[",
"i",
"]",
"*",
"ysize",
"[",
"i",
"]",
":",
"]",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"else",
":",
"bdf",
"[",
"names",
"[",
"i",
"]",
"]",
"=",
"np",
".",
"fromstring",
"(",
"s1",
"[",
"-",
"xsize",
"[",
"i",
"]",
"*",
"ysize",
"[",
"i",
"]",
"*",
"dt",
".",
"itemsize",
":",
"]",
",",
"dtype",
"=",
"dt",
")",
"# conversion: Matlab saves the array in Fortran-style ordering (columns first).",
"# Python however loads in C-style: rows first. We need to take care:",
"# 1) reshape from linear to (ysize,xsize) and not (xsize,ysize)",
"# 2) transpose (swaps columns and rows)",
"# After these operations, we only have to rotate this counter-clockwise by 90",
"# degrees because bdf2_write rotates by +270 degrees before saving.",
"bdf",
"[",
"names",
"[",
"i",
"]",
"]",
"=",
"np",
".",
"rot90",
"(",
"bdf",
"[",
"names",
"[",
"i",
"]",
"]",
".",
"reshape",
"(",
"(",
"ysize",
"[",
"i",
"]",
",",
"xsize",
"[",
"i",
"]",
")",
",",
"order",
"=",
"'F'",
")",
",",
"1",
")",
"return",
"bdf"
] | Read header data from bdf/bhf file (Bessy Data Format v1)
Input:
filename: the name of the file
load_data: if the matrices are to be loaded
Output:
bdf: the BDF header structure
Adapted the bdf_read.m macro from Sylvio Haas. | [
"Read",
"header",
"data",
"from",
"bdf",
"/",
"bhf",
"file",
"(",
"Bessy",
"Data",
"Format",
"v1",
")"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/header.py#L545-L678 |
awacha/sastool | sastool/io/header.py | readmarheader | def readmarheader(filename):
"""Read a header from a MarResearch .image file."""
with open(filename, 'rb') as f:
intheader = np.fromstring(f.read(10 * 4), np.int32)
floatheader = np.fromstring(f.read(15 * 4), '<f4')
strheader = f.read(24)
f.read(4)
otherstrings = [f.read(16) for i in range(29)]
return {'Xsize': intheader[0], 'Ysize': intheader[1], 'MeasTime': intheader[8],
'BeamPosX': floatheader[7], 'BeamPosY': floatheader[8],
'Wavelength': floatheader[9], 'Dist': floatheader[10],
'__Origin__': 'MarResearch .image', 'recordlength': intheader[2],
'highintensitypixels': intheader[4],
'highintensityrecords': intheader[5],
'Date': dateutil.parser.parse(strheader),
'Detector': 'MARCCD', '__particle__': 'photon'} | python | def readmarheader(filename):
"""Read a header from a MarResearch .image file."""
with open(filename, 'rb') as f:
intheader = np.fromstring(f.read(10 * 4), np.int32)
floatheader = np.fromstring(f.read(15 * 4), '<f4')
strheader = f.read(24)
f.read(4)
otherstrings = [f.read(16) for i in range(29)]
return {'Xsize': intheader[0], 'Ysize': intheader[1], 'MeasTime': intheader[8],
'BeamPosX': floatheader[7], 'BeamPosY': floatheader[8],
'Wavelength': floatheader[9], 'Dist': floatheader[10],
'__Origin__': 'MarResearch .image', 'recordlength': intheader[2],
'highintensitypixels': intheader[4],
'highintensityrecords': intheader[5],
'Date': dateutil.parser.parse(strheader),
'Detector': 'MARCCD', '__particle__': 'photon'} | [
"def",
"readmarheader",
"(",
"filename",
")",
":",
"with",
"open",
"(",
"filename",
",",
"'rb'",
")",
"as",
"f",
":",
"intheader",
"=",
"np",
".",
"fromstring",
"(",
"f",
".",
"read",
"(",
"10",
"*",
"4",
")",
",",
"np",
".",
"int32",
")",
"floatheader",
"=",
"np",
".",
"fromstring",
"(",
"f",
".",
"read",
"(",
"15",
"*",
"4",
")",
",",
"'<f4'",
")",
"strheader",
"=",
"f",
".",
"read",
"(",
"24",
")",
"f",
".",
"read",
"(",
"4",
")",
"otherstrings",
"=",
"[",
"f",
".",
"read",
"(",
"16",
")",
"for",
"i",
"in",
"range",
"(",
"29",
")",
"]",
"return",
"{",
"'Xsize'",
":",
"intheader",
"[",
"0",
"]",
",",
"'Ysize'",
":",
"intheader",
"[",
"1",
"]",
",",
"'MeasTime'",
":",
"intheader",
"[",
"8",
"]",
",",
"'BeamPosX'",
":",
"floatheader",
"[",
"7",
"]",
",",
"'BeamPosY'",
":",
"floatheader",
"[",
"8",
"]",
",",
"'Wavelength'",
":",
"floatheader",
"[",
"9",
"]",
",",
"'Dist'",
":",
"floatheader",
"[",
"10",
"]",
",",
"'__Origin__'",
":",
"'MarResearch .image'",
",",
"'recordlength'",
":",
"intheader",
"[",
"2",
"]",
",",
"'highintensitypixels'",
":",
"intheader",
"[",
"4",
"]",
",",
"'highintensityrecords'",
":",
"intheader",
"[",
"5",
"]",
",",
"'Date'",
":",
"dateutil",
".",
"parser",
".",
"parse",
"(",
"strheader",
")",
",",
"'Detector'",
":",
"'MARCCD'",
",",
"'__particle__'",
":",
"'photon'",
"}"
] | Read a header from a MarResearch .image file. | [
"Read",
"a",
"header",
"from",
"a",
"MarResearch",
".",
"image",
"file",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/header.py#L745-L760 |
awacha/sastool | sastool/io/header.py | readBerSANS | def readBerSANS(filename):
"""Read a header from a SANS file (produced usually by BerSANS)"""
hed = {'Comment': ''}
translate = {'Lambda': 'Wavelength',
'Title': 'Owner',
'SampleName': 'Title',
'BeamcenterX': 'BeamPosY',
'BeamcenterY': 'BeamPosX',
'Time': 'MeasTime',
'TotalTime': 'MeasTime',
'Moni1': 'Monitor',
'Moni2': 'Monitor',
'Moni': 'Monitor',
'Transmission': 'Transm',
}
with open(filename, 'rt') as f:
comment_next = False
for l in f:
l = l.strip()
if comment_next:
hed['Comment'] = hed['Comment'] + '\n' + l
comment_next = False
elif l.startswith('%Counts'):
break
elif l.startswith('%Comment'):
comment_next = True
elif l.startswith('%'):
continue
elif l.split('=', 1)[0] in translate:
hed[translate[l.split('=', 1)[0]]] = misc.parse_number(
l.split('=', 1)[1])
else:
try:
hed[l.split('=', 1)[0]] = misc.parse_number(
l.split('=', 1)[1])
except IndexError:
print(l.split('=', 1))
if 'FileName' in hed:
m = re.match('D(\d+)\.(\d+)', hed['FileName'])
if m is not None:
hed['FSN'] = int(m.groups()[0])
hed['suffix'] = int(m.groups()[1])
if 'FileDate' in hed:
hed['Date'] = dateutil.parser.parse(hed['FileDate'])
if 'FileTime' in hed:
hed['Date'] = datetime.datetime.combine(
hed['Date'].date(), dateutil.parser.parse(hed['FileTime']).time())
hed['__Origin__'] = 'BerSANS'
if 'SD' in hed:
hed['Dist'] = hed['SD'] * 1000
if hed['Comment'].startswith('\n'):
hed['Comment'] = hed['Comment'][1:]
hed['__particle__'] = 'neutron'
hed['Wavelength'] *= 10 # convert from nanometres to Angstroems
return hed | python | def readBerSANS(filename):
"""Read a header from a SANS file (produced usually by BerSANS)"""
hed = {'Comment': ''}
translate = {'Lambda': 'Wavelength',
'Title': 'Owner',
'SampleName': 'Title',
'BeamcenterX': 'BeamPosY',
'BeamcenterY': 'BeamPosX',
'Time': 'MeasTime',
'TotalTime': 'MeasTime',
'Moni1': 'Monitor',
'Moni2': 'Monitor',
'Moni': 'Monitor',
'Transmission': 'Transm',
}
with open(filename, 'rt') as f:
comment_next = False
for l in f:
l = l.strip()
if comment_next:
hed['Comment'] = hed['Comment'] + '\n' + l
comment_next = False
elif l.startswith('%Counts'):
break
elif l.startswith('%Comment'):
comment_next = True
elif l.startswith('%'):
continue
elif l.split('=', 1)[0] in translate:
hed[translate[l.split('=', 1)[0]]] = misc.parse_number(
l.split('=', 1)[1])
else:
try:
hed[l.split('=', 1)[0]] = misc.parse_number(
l.split('=', 1)[1])
except IndexError:
print(l.split('=', 1))
if 'FileName' in hed:
m = re.match('D(\d+)\.(\d+)', hed['FileName'])
if m is not None:
hed['FSN'] = int(m.groups()[0])
hed['suffix'] = int(m.groups()[1])
if 'FileDate' in hed:
hed['Date'] = dateutil.parser.parse(hed['FileDate'])
if 'FileTime' in hed:
hed['Date'] = datetime.datetime.combine(
hed['Date'].date(), dateutil.parser.parse(hed['FileTime']).time())
hed['__Origin__'] = 'BerSANS'
if 'SD' in hed:
hed['Dist'] = hed['SD'] * 1000
if hed['Comment'].startswith('\n'):
hed['Comment'] = hed['Comment'][1:]
hed['__particle__'] = 'neutron'
hed['Wavelength'] *= 10 # convert from nanometres to Angstroems
return hed | [
"def",
"readBerSANS",
"(",
"filename",
")",
":",
"hed",
"=",
"{",
"'Comment'",
":",
"''",
"}",
"translate",
"=",
"{",
"'Lambda'",
":",
"'Wavelength'",
",",
"'Title'",
":",
"'Owner'",
",",
"'SampleName'",
":",
"'Title'",
",",
"'BeamcenterX'",
":",
"'BeamPosY'",
",",
"'BeamcenterY'",
":",
"'BeamPosX'",
",",
"'Time'",
":",
"'MeasTime'",
",",
"'TotalTime'",
":",
"'MeasTime'",
",",
"'Moni1'",
":",
"'Monitor'",
",",
"'Moni2'",
":",
"'Monitor'",
",",
"'Moni'",
":",
"'Monitor'",
",",
"'Transmission'",
":",
"'Transm'",
",",
"}",
"with",
"open",
"(",
"filename",
",",
"'rt'",
")",
"as",
"f",
":",
"comment_next",
"=",
"False",
"for",
"l",
"in",
"f",
":",
"l",
"=",
"l",
".",
"strip",
"(",
")",
"if",
"comment_next",
":",
"hed",
"[",
"'Comment'",
"]",
"=",
"hed",
"[",
"'Comment'",
"]",
"+",
"'\\n'",
"+",
"l",
"comment_next",
"=",
"False",
"elif",
"l",
".",
"startswith",
"(",
"'%Counts'",
")",
":",
"break",
"elif",
"l",
".",
"startswith",
"(",
"'%Comment'",
")",
":",
"comment_next",
"=",
"True",
"elif",
"l",
".",
"startswith",
"(",
"'%'",
")",
":",
"continue",
"elif",
"l",
".",
"split",
"(",
"'='",
",",
"1",
")",
"[",
"0",
"]",
"in",
"translate",
":",
"hed",
"[",
"translate",
"[",
"l",
".",
"split",
"(",
"'='",
",",
"1",
")",
"[",
"0",
"]",
"]",
"]",
"=",
"misc",
".",
"parse_number",
"(",
"l",
".",
"split",
"(",
"'='",
",",
"1",
")",
"[",
"1",
"]",
")",
"else",
":",
"try",
":",
"hed",
"[",
"l",
".",
"split",
"(",
"'='",
",",
"1",
")",
"[",
"0",
"]",
"]",
"=",
"misc",
".",
"parse_number",
"(",
"l",
".",
"split",
"(",
"'='",
",",
"1",
")",
"[",
"1",
"]",
")",
"except",
"IndexError",
":",
"print",
"(",
"l",
".",
"split",
"(",
"'='",
",",
"1",
")",
")",
"if",
"'FileName'",
"in",
"hed",
":",
"m",
"=",
"re",
".",
"match",
"(",
"'D(\\d+)\\.(\\d+)'",
",",
"hed",
"[",
"'FileName'",
"]",
")",
"if",
"m",
"is",
"not",
"None",
":",
"hed",
"[",
"'FSN'",
"]",
"=",
"int",
"(",
"m",
".",
"groups",
"(",
")",
"[",
"0",
"]",
")",
"hed",
"[",
"'suffix'",
"]",
"=",
"int",
"(",
"m",
".",
"groups",
"(",
")",
"[",
"1",
"]",
")",
"if",
"'FileDate'",
"in",
"hed",
":",
"hed",
"[",
"'Date'",
"]",
"=",
"dateutil",
".",
"parser",
".",
"parse",
"(",
"hed",
"[",
"'FileDate'",
"]",
")",
"if",
"'FileTime'",
"in",
"hed",
":",
"hed",
"[",
"'Date'",
"]",
"=",
"datetime",
".",
"datetime",
".",
"combine",
"(",
"hed",
"[",
"'Date'",
"]",
".",
"date",
"(",
")",
",",
"dateutil",
".",
"parser",
".",
"parse",
"(",
"hed",
"[",
"'FileTime'",
"]",
")",
".",
"time",
"(",
")",
")",
"hed",
"[",
"'__Origin__'",
"]",
"=",
"'BerSANS'",
"if",
"'SD'",
"in",
"hed",
":",
"hed",
"[",
"'Dist'",
"]",
"=",
"hed",
"[",
"'SD'",
"]",
"*",
"1000",
"if",
"hed",
"[",
"'Comment'",
"]",
".",
"startswith",
"(",
"'\\n'",
")",
":",
"hed",
"[",
"'Comment'",
"]",
"=",
"hed",
"[",
"'Comment'",
"]",
"[",
"1",
":",
"]",
"hed",
"[",
"'__particle__'",
"]",
"=",
"'neutron'",
"hed",
"[",
"'Wavelength'",
"]",
"*=",
"10",
"# convert from nanometres to Angstroems",
"return",
"hed"
] | Read a header from a SANS file (produced usually by BerSANS) | [
"Read",
"a",
"header",
"from",
"a",
"SANS",
"file",
"(",
"produced",
"usually",
"by",
"BerSANS",
")"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/header.py#L763-L817 |
awacha/sastool | sastool/fitting/fitfunctions/basic.py | Sine | def Sine(x, a, omega, phi, y0):
"""Sine function
Inputs:
-------
``x``: independent variable
``a``: amplitude
``omega``: circular frequency
``phi``: phase
``y0``: offset
Formula:
--------
``a*sin(x*omega + phi)+y0``
"""
return a * np.sin(x * omega + phi) + y0 | python | def Sine(x, a, omega, phi, y0):
"""Sine function
Inputs:
-------
``x``: independent variable
``a``: amplitude
``omega``: circular frequency
``phi``: phase
``y0``: offset
Formula:
--------
``a*sin(x*omega + phi)+y0``
"""
return a * np.sin(x * omega + phi) + y0 | [
"def",
"Sine",
"(",
"x",
",",
"a",
",",
"omega",
",",
"phi",
",",
"y0",
")",
":",
"return",
"a",
"*",
"np",
".",
"sin",
"(",
"x",
"*",
"omega",
"+",
"phi",
")",
"+",
"y0"
] | Sine function
Inputs:
-------
``x``: independent variable
``a``: amplitude
``omega``: circular frequency
``phi``: phase
``y0``: offset
Formula:
--------
``a*sin(x*omega + phi)+y0`` | [
"Sine",
"function"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/fitfunctions/basic.py#L23-L38 |
awacha/sastool | sastool/fitting/fitfunctions/basic.py | Cosine | def Cosine(x, a, omega, phi, y0):
"""Cosine function
Inputs:
-------
``x``: independent variable
``a``: amplitude
``omega``: circular frequency
``phi``: phase
``y0``: offset
Formula:
--------
``a*cos(x*omega + phi)+y0``
"""
return a * np.cos(x * omega + phi) + y0 | python | def Cosine(x, a, omega, phi, y0):
"""Cosine function
Inputs:
-------
``x``: independent variable
``a``: amplitude
``omega``: circular frequency
``phi``: phase
``y0``: offset
Formula:
--------
``a*cos(x*omega + phi)+y0``
"""
return a * np.cos(x * omega + phi) + y0 | [
"def",
"Cosine",
"(",
"x",
",",
"a",
",",
"omega",
",",
"phi",
",",
"y0",
")",
":",
"return",
"a",
"*",
"np",
".",
"cos",
"(",
"x",
"*",
"omega",
"+",
"phi",
")",
"+",
"y0"
] | Cosine function
Inputs:
-------
``x``: independent variable
``a``: amplitude
``omega``: circular frequency
``phi``: phase
``y0``: offset
Formula:
--------
``a*cos(x*omega + phi)+y0`` | [
"Cosine",
"function"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/fitfunctions/basic.py#L41-L56 |
awacha/sastool | sastool/fitting/fitfunctions/basic.py | Square | def Square(x, a, b, c):
"""Second order polynomial
Inputs:
-------
``x``: independent variable
``a``: coefficient of the second-order term
``b``: coefficient of the first-order term
``c``: additive constant
Formula:
--------
``a*x^2 + b*x + c``
"""
return a * x ** 2 + b * x + c | python | def Square(x, a, b, c):
"""Second order polynomial
Inputs:
-------
``x``: independent variable
``a``: coefficient of the second-order term
``b``: coefficient of the first-order term
``c``: additive constant
Formula:
--------
``a*x^2 + b*x + c``
"""
return a * x ** 2 + b * x + c | [
"def",
"Square",
"(",
"x",
",",
"a",
",",
"b",
",",
"c",
")",
":",
"return",
"a",
"*",
"x",
"**",
"2",
"+",
"b",
"*",
"x",
"+",
"c"
] | Second order polynomial
Inputs:
-------
``x``: independent variable
``a``: coefficient of the second-order term
``b``: coefficient of the first-order term
``c``: additive constant
Formula:
--------
``a*x^2 + b*x + c`` | [
"Second",
"order",
"polynomial"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/fitfunctions/basic.py#L59-L73 |
awacha/sastool | sastool/fitting/fitfunctions/basic.py | Cube | def Cube(x, a, b, c, d):
"""Third order polynomial
Inputs:
-------
``x``: independent variable
``a``: coefficient of the third-order term
``b``: coefficient of the second-order term
``c``: coefficient of the first-order term
``d``: additive constant
Formula:
--------
``a*x^3 + b*x^2 + c*x + d``
"""
return a * x ** 3 + b * x ** 2 + c * x + d | python | def Cube(x, a, b, c, d):
"""Third order polynomial
Inputs:
-------
``x``: independent variable
``a``: coefficient of the third-order term
``b``: coefficient of the second-order term
``c``: coefficient of the first-order term
``d``: additive constant
Formula:
--------
``a*x^3 + b*x^2 + c*x + d``
"""
return a * x ** 3 + b * x ** 2 + c * x + d | [
"def",
"Cube",
"(",
"x",
",",
"a",
",",
"b",
",",
"c",
",",
"d",
")",
":",
"return",
"a",
"*",
"x",
"**",
"3",
"+",
"b",
"*",
"x",
"**",
"2",
"+",
"c",
"*",
"x",
"+",
"d"
] | Third order polynomial
Inputs:
-------
``x``: independent variable
``a``: coefficient of the third-order term
``b``: coefficient of the second-order term
``c``: coefficient of the first-order term
``d``: additive constant
Formula:
--------
``a*x^3 + b*x^2 + c*x + d`` | [
"Third",
"order",
"polynomial"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/fitfunctions/basic.py#L76-L91 |
awacha/sastool | sastool/fitting/fitfunctions/basic.py | Exponential | def Exponential(x, a, tau, y0):
"""Exponential function
Inputs:
-------
``x``: independent variable
``a``: scaling factor
``tau``: time constant
``y0``: additive constant
Formula:
--------
``a*exp(x/tau)+y0``
"""
return np.exp(x / tau) * a + y0 | python | def Exponential(x, a, tau, y0):
"""Exponential function
Inputs:
-------
``x``: independent variable
``a``: scaling factor
``tau``: time constant
``y0``: additive constant
Formula:
--------
``a*exp(x/tau)+y0``
"""
return np.exp(x / tau) * a + y0 | [
"def",
"Exponential",
"(",
"x",
",",
"a",
",",
"tau",
",",
"y0",
")",
":",
"return",
"np",
".",
"exp",
"(",
"x",
"/",
"tau",
")",
"*",
"a",
"+",
"y0"
] | Exponential function
Inputs:
-------
``x``: independent variable
``a``: scaling factor
``tau``: time constant
``y0``: additive constant
Formula:
--------
``a*exp(x/tau)+y0`` | [
"Exponential",
"function"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/fitfunctions/basic.py#L110-L124 |
awacha/sastool | sastool/fitting/fitfunctions/basic.py | Lorentzian | def Lorentzian(x, a, x0, sigma, y0):
"""Lorentzian peak
Inputs:
-------
``x``: independent variable
``a``: scaling factor (extremal value)
``x0``: center
``sigma``: half width at half maximum
``y0``: additive constant
Formula:
--------
``a/(1+((x-x0)/sigma)^2)+y0``
"""
return a / (1 + ((x - x0) / sigma) ** 2) + y0 | python | def Lorentzian(x, a, x0, sigma, y0):
"""Lorentzian peak
Inputs:
-------
``x``: independent variable
``a``: scaling factor (extremal value)
``x0``: center
``sigma``: half width at half maximum
``y0``: additive constant
Formula:
--------
``a/(1+((x-x0)/sigma)^2)+y0``
"""
return a / (1 + ((x - x0) / sigma) ** 2) + y0 | [
"def",
"Lorentzian",
"(",
"x",
",",
"a",
",",
"x0",
",",
"sigma",
",",
"y0",
")",
":",
"return",
"a",
"/",
"(",
"1",
"+",
"(",
"(",
"x",
"-",
"x0",
")",
"/",
"sigma",
")",
"**",
"2",
")",
"+",
"y0"
] | Lorentzian peak
Inputs:
-------
``x``: independent variable
``a``: scaling factor (extremal value)
``x0``: center
``sigma``: half width at half maximum
``y0``: additive constant
Formula:
--------
``a/(1+((x-x0)/sigma)^2)+y0`` | [
"Lorentzian",
"peak"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/fitfunctions/basic.py#L127-L142 |
awacha/sastool | sastool/fitting/fitfunctions/basic.py | Gaussian | def Gaussian(x, a, x0, sigma, y0):
"""Gaussian peak
Inputs:
-------
``x``: independent variable
``a``: scaling factor (extremal value)
``x0``: center
``sigma``: half width at half maximum
``y0``: additive constant
Formula:
--------
``a*exp(-(x-x0)^2)/(2*sigma^2)+y0``
"""
return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) + y0 | python | def Gaussian(x, a, x0, sigma, y0):
"""Gaussian peak
Inputs:
-------
``x``: independent variable
``a``: scaling factor (extremal value)
``x0``: center
``sigma``: half width at half maximum
``y0``: additive constant
Formula:
--------
``a*exp(-(x-x0)^2)/(2*sigma^2)+y0``
"""
return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) + y0 | [
"def",
"Gaussian",
"(",
"x",
",",
"a",
",",
"x0",
",",
"sigma",
",",
"y0",
")",
":",
"return",
"a",
"*",
"np",
".",
"exp",
"(",
"-",
"(",
"x",
"-",
"x0",
")",
"**",
"2",
"/",
"(",
"2",
"*",
"sigma",
"**",
"2",
")",
")",
"+",
"y0"
] | Gaussian peak
Inputs:
-------
``x``: independent variable
``a``: scaling factor (extremal value)
``x0``: center
``sigma``: half width at half maximum
``y0``: additive constant
Formula:
--------
``a*exp(-(x-x0)^2)/(2*sigma^2)+y0`` | [
"Gaussian",
"peak"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/fitfunctions/basic.py#L145-L160 |
awacha/sastool | sastool/fitting/fitfunctions/basic.py | LogNormal | def LogNormal(x, a, mu, sigma):
"""PDF of a log-normal distribution
Inputs:
-------
``x``: independent variable
``a``: amplitude
``mu``: center parameter
``sigma``: width parameter
Formula:
--------
``a/ (2*pi*sigma^2*x^2)^0.5 * exp(-(log(x)-mu)^2/(2*sigma^2))
"""
return a / np.sqrt(2 * np.pi * sigma ** 2 * x ** 2) *\
np.exp(-(np.log(x) - mu) ** 2 / (2 * sigma ** 2)) | python | def LogNormal(x, a, mu, sigma):
"""PDF of a log-normal distribution
Inputs:
-------
``x``: independent variable
``a``: amplitude
``mu``: center parameter
``sigma``: width parameter
Formula:
--------
``a/ (2*pi*sigma^2*x^2)^0.5 * exp(-(log(x)-mu)^2/(2*sigma^2))
"""
return a / np.sqrt(2 * np.pi * sigma ** 2 * x ** 2) *\
np.exp(-(np.log(x) - mu) ** 2 / (2 * sigma ** 2)) | [
"def",
"LogNormal",
"(",
"x",
",",
"a",
",",
"mu",
",",
"sigma",
")",
":",
"return",
"a",
"/",
"np",
".",
"sqrt",
"(",
"2",
"*",
"np",
".",
"pi",
"*",
"sigma",
"**",
"2",
"*",
"x",
"**",
"2",
")",
"*",
"np",
".",
"exp",
"(",
"-",
"(",
"np",
".",
"log",
"(",
"x",
")",
"-",
"mu",
")",
"**",
"2",
"/",
"(",
"2",
"*",
"sigma",
"**",
"2",
")",
")"
] | PDF of a log-normal distribution
Inputs:
-------
``x``: independent variable
``a``: amplitude
``mu``: center parameter
``sigma``: width parameter
Formula:
--------
``a/ (2*pi*sigma^2*x^2)^0.5 * exp(-(log(x)-mu)^2/(2*sigma^2)) | [
"PDF",
"of",
"a",
"log",
"-",
"normal",
"distribution"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/fitfunctions/basic.py#L163-L178 |
awacha/sastool | sastool/utils2d/integrate.py | radintpix | def radintpix(data, dataerr, bcx, bcy, mask=None, pix=None, returnavgpix=False,
phi0=0, dphi=0, returnmask=False, symmetric_sector=False,
doslice=False, errorpropagation=2, autoqrange_linear=True):
"""Radial integration (averaging) on the detector plane
Inputs:
data: scattering pattern matrix (np.ndarray, dtype: np.double)
dataerr: error matrix (np.ndarray, dtype: np.double; or None)
bcx, bcy: beam position, counting from 1
mask: mask matrix (np.ndarray, dtype: np.uint8)
pix: pixel distance values (abscissa) from origin. If None,
auto-determine.
returnavgpix: if the averaged pixel values should be returned
phi0: starting angle (radian) for sector integration. If doslice is True,
this is the angle of the slice.
dphi: angular width (radian) of the sector or width (pixels) of the
slice. If negative or zero, full radial average is requested.
returnmask: if the effective mask matrix is to be returned
symmetric_sector: the sector defined by phi0+pi is also to be used for
integration.
doslice: if slicing is to be done instead of sector averaging.
autoqrange_linear: if the automatically determined q-range is to be
linspace-d. Otherwise log10 spacing will be applied.
Outputs: pix, Intensity, [Error], Area, [mask]
Error is only returned if dataerr is not None
mask is only returned if returnmask is True
Relies heavily (completely) on radint().
"""
if isinstance(data, np.ndarray):
data = data.astype(np.double)
if isinstance(dataerr, np.ndarray):
dataerr = dataerr.astype(np.double)
if isinstance(mask, np.ndarray):
mask = mask.astype(np.uint8)
return radint(data, dataerr, -1, -1, -1,
1.0 * bcx, 1.0 * bcy, mask, pix, returnavgpix,
phi0, dphi, returnmask, symmetric_sector, doslice, False, errorpropagation, autoqrange_linear) | python | def radintpix(data, dataerr, bcx, bcy, mask=None, pix=None, returnavgpix=False,
phi0=0, dphi=0, returnmask=False, symmetric_sector=False,
doslice=False, errorpropagation=2, autoqrange_linear=True):
"""Radial integration (averaging) on the detector plane
Inputs:
data: scattering pattern matrix (np.ndarray, dtype: np.double)
dataerr: error matrix (np.ndarray, dtype: np.double; or None)
bcx, bcy: beam position, counting from 1
mask: mask matrix (np.ndarray, dtype: np.uint8)
pix: pixel distance values (abscissa) from origin. If None,
auto-determine.
returnavgpix: if the averaged pixel values should be returned
phi0: starting angle (radian) for sector integration. If doslice is True,
this is the angle of the slice.
dphi: angular width (radian) of the sector or width (pixels) of the
slice. If negative or zero, full radial average is requested.
returnmask: if the effective mask matrix is to be returned
symmetric_sector: the sector defined by phi0+pi is also to be used for
integration.
doslice: if slicing is to be done instead of sector averaging.
autoqrange_linear: if the automatically determined q-range is to be
linspace-d. Otherwise log10 spacing will be applied.
Outputs: pix, Intensity, [Error], Area, [mask]
Error is only returned if dataerr is not None
mask is only returned if returnmask is True
Relies heavily (completely) on radint().
"""
if isinstance(data, np.ndarray):
data = data.astype(np.double)
if isinstance(dataerr, np.ndarray):
dataerr = dataerr.astype(np.double)
if isinstance(mask, np.ndarray):
mask = mask.astype(np.uint8)
return radint(data, dataerr, -1, -1, -1,
1.0 * bcx, 1.0 * bcy, mask, pix, returnavgpix,
phi0, dphi, returnmask, symmetric_sector, doslice, False, errorpropagation, autoqrange_linear) | [
"def",
"radintpix",
"(",
"data",
",",
"dataerr",
",",
"bcx",
",",
"bcy",
",",
"mask",
"=",
"None",
",",
"pix",
"=",
"None",
",",
"returnavgpix",
"=",
"False",
",",
"phi0",
"=",
"0",
",",
"dphi",
"=",
"0",
",",
"returnmask",
"=",
"False",
",",
"symmetric_sector",
"=",
"False",
",",
"doslice",
"=",
"False",
",",
"errorpropagation",
"=",
"2",
",",
"autoqrange_linear",
"=",
"True",
")",
":",
"if",
"isinstance",
"(",
"data",
",",
"np",
".",
"ndarray",
")",
":",
"data",
"=",
"data",
".",
"astype",
"(",
"np",
".",
"double",
")",
"if",
"isinstance",
"(",
"dataerr",
",",
"np",
".",
"ndarray",
")",
":",
"dataerr",
"=",
"dataerr",
".",
"astype",
"(",
"np",
".",
"double",
")",
"if",
"isinstance",
"(",
"mask",
",",
"np",
".",
"ndarray",
")",
":",
"mask",
"=",
"mask",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
"return",
"radint",
"(",
"data",
",",
"dataerr",
",",
"-",
"1",
",",
"-",
"1",
",",
"-",
"1",
",",
"1.0",
"*",
"bcx",
",",
"1.0",
"*",
"bcy",
",",
"mask",
",",
"pix",
",",
"returnavgpix",
",",
"phi0",
",",
"dphi",
",",
"returnmask",
",",
"symmetric_sector",
",",
"doslice",
",",
"False",
",",
"errorpropagation",
",",
"autoqrange_linear",
")"
] | Radial integration (averaging) on the detector plane
Inputs:
data: scattering pattern matrix (np.ndarray, dtype: np.double)
dataerr: error matrix (np.ndarray, dtype: np.double; or None)
bcx, bcy: beam position, counting from 1
mask: mask matrix (np.ndarray, dtype: np.uint8)
pix: pixel distance values (abscissa) from origin. If None,
auto-determine.
returnavgpix: if the averaged pixel values should be returned
phi0: starting angle (radian) for sector integration. If doslice is True,
this is the angle of the slice.
dphi: angular width (radian) of the sector or width (pixels) of the
slice. If negative or zero, full radial average is requested.
returnmask: if the effective mask matrix is to be returned
symmetric_sector: the sector defined by phi0+pi is also to be used for
integration.
doslice: if slicing is to be done instead of sector averaging.
autoqrange_linear: if the automatically determined q-range is to be
linspace-d. Otherwise log10 spacing will be applied.
Outputs: pix, Intensity, [Error], Area, [mask]
Error is only returned if dataerr is not None
mask is only returned if returnmask is True
Relies heavily (completely) on radint(). | [
"Radial",
"integration",
"(",
"averaging",
")",
"on",
"the",
"detector",
"plane"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/integrate.py#L10-L48 |
awacha/sastool | sastool/utils2d/integrate.py | azimintpix | def azimintpix(data, dataerr, bcx, bcy, mask=None, Ntheta=100, pixmin=0,
pixmax=np.inf, returnmask=False, errorpropagation=2):
"""Azimuthal integration (averaging) on the detector plane
Inputs:
data: scattering pattern matrix (np.ndarray, dtype: np.double)
dataerr: error matrix (np.ndarray, dtype: np.double; or None)
bcx, bcy: beam position, counting from 1
mask: mask matrix (np.ndarray, dtype: np.uint8)
Ntheta: Number of points in the abscissa (azimuth angle)
pixmin: smallest distance from the origin in pixels
pixmax: largest distance from the origin in pixels
returnmask: if the effective mask matrix is to be returned
Outputs: theta, Intensity, [Error], Area, [mask]
Error is only returned if dataerr is not None
mask is only returned if returnmask is True
Relies heavily (completely) on azimint().
"""
if isinstance(data, np.ndarray):
data = data.astype(np.double)
if isinstance(dataerr, np.ndarray):
dataerr = dataerr.astype(np.double)
if isinstance(mask, np.ndarray):
mask = mask.astype(np.uint8)
return azimint(data, dataerr, -1, -1,
- 1, bcx, bcy, mask, Ntheta, pixmin,
pixmax, returnmask, errorpropagation) | python | def azimintpix(data, dataerr, bcx, bcy, mask=None, Ntheta=100, pixmin=0,
pixmax=np.inf, returnmask=False, errorpropagation=2):
"""Azimuthal integration (averaging) on the detector plane
Inputs:
data: scattering pattern matrix (np.ndarray, dtype: np.double)
dataerr: error matrix (np.ndarray, dtype: np.double; or None)
bcx, bcy: beam position, counting from 1
mask: mask matrix (np.ndarray, dtype: np.uint8)
Ntheta: Number of points in the abscissa (azimuth angle)
pixmin: smallest distance from the origin in pixels
pixmax: largest distance from the origin in pixels
returnmask: if the effective mask matrix is to be returned
Outputs: theta, Intensity, [Error], Area, [mask]
Error is only returned if dataerr is not None
mask is only returned if returnmask is True
Relies heavily (completely) on azimint().
"""
if isinstance(data, np.ndarray):
data = data.astype(np.double)
if isinstance(dataerr, np.ndarray):
dataerr = dataerr.astype(np.double)
if isinstance(mask, np.ndarray):
mask = mask.astype(np.uint8)
return azimint(data, dataerr, -1, -1,
- 1, bcx, bcy, mask, Ntheta, pixmin,
pixmax, returnmask, errorpropagation) | [
"def",
"azimintpix",
"(",
"data",
",",
"dataerr",
",",
"bcx",
",",
"bcy",
",",
"mask",
"=",
"None",
",",
"Ntheta",
"=",
"100",
",",
"pixmin",
"=",
"0",
",",
"pixmax",
"=",
"np",
".",
"inf",
",",
"returnmask",
"=",
"False",
",",
"errorpropagation",
"=",
"2",
")",
":",
"if",
"isinstance",
"(",
"data",
",",
"np",
".",
"ndarray",
")",
":",
"data",
"=",
"data",
".",
"astype",
"(",
"np",
".",
"double",
")",
"if",
"isinstance",
"(",
"dataerr",
",",
"np",
".",
"ndarray",
")",
":",
"dataerr",
"=",
"dataerr",
".",
"astype",
"(",
"np",
".",
"double",
")",
"if",
"isinstance",
"(",
"mask",
",",
"np",
".",
"ndarray",
")",
":",
"mask",
"=",
"mask",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
"return",
"azimint",
"(",
"data",
",",
"dataerr",
",",
"-",
"1",
",",
"-",
"1",
",",
"-",
"1",
",",
"bcx",
",",
"bcy",
",",
"mask",
",",
"Ntheta",
",",
"pixmin",
",",
"pixmax",
",",
"returnmask",
",",
"errorpropagation",
")"
] | Azimuthal integration (averaging) on the detector plane
Inputs:
data: scattering pattern matrix (np.ndarray, dtype: np.double)
dataerr: error matrix (np.ndarray, dtype: np.double; or None)
bcx, bcy: beam position, counting from 1
mask: mask matrix (np.ndarray, dtype: np.uint8)
Ntheta: Number of points in the abscissa (azimuth angle)
pixmin: smallest distance from the origin in pixels
pixmax: largest distance from the origin in pixels
returnmask: if the effective mask matrix is to be returned
Outputs: theta, Intensity, [Error], Area, [mask]
Error is only returned if dataerr is not None
mask is only returned if returnmask is True
Relies heavily (completely) on azimint(). | [
"Azimuthal",
"integration",
"(",
"averaging",
")",
"on",
"the",
"detector",
"plane"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/integrate.py#L51-L79 |
awacha/sastool | sastool/misc/searchpath.py | find_subdirs | def find_subdirs(startdir='.', recursion_depth=None):
"""Find all subdirectory of a directory.
Inputs:
startdir: directory to start with. Defaults to the current folder.
recursion_depth: number of levels to traverse. None is infinite.
Output: a list of absolute names of subfolders.
Examples:
>>> find_subdirs('dir',0) # returns just ['dir']
>>> find_subdirs('dir',1) # returns all direct (first-level) subdirs
# of 'dir'.
"""
startdir = os.path.expanduser(startdir)
direct_subdirs = [os.path.join(startdir, x) for x in os.listdir(
startdir) if os.path.isdir(os.path.join(startdir, x))]
if recursion_depth is None:
next_recursion_depth = None
else:
next_recursion_depth = recursion_depth - 1
if (recursion_depth is not None) and (recursion_depth <= 1):
return [startdir] + direct_subdirs
else:
subdirs = []
for d in direct_subdirs:
subdirs.extend(find_subdirs(d, next_recursion_depth))
return [startdir] + subdirs | python | def find_subdirs(startdir='.', recursion_depth=None):
"""Find all subdirectory of a directory.
Inputs:
startdir: directory to start with. Defaults to the current folder.
recursion_depth: number of levels to traverse. None is infinite.
Output: a list of absolute names of subfolders.
Examples:
>>> find_subdirs('dir',0) # returns just ['dir']
>>> find_subdirs('dir',1) # returns all direct (first-level) subdirs
# of 'dir'.
"""
startdir = os.path.expanduser(startdir)
direct_subdirs = [os.path.join(startdir, x) for x in os.listdir(
startdir) if os.path.isdir(os.path.join(startdir, x))]
if recursion_depth is None:
next_recursion_depth = None
else:
next_recursion_depth = recursion_depth - 1
if (recursion_depth is not None) and (recursion_depth <= 1):
return [startdir] + direct_subdirs
else:
subdirs = []
for d in direct_subdirs:
subdirs.extend(find_subdirs(d, next_recursion_depth))
return [startdir] + subdirs | [
"def",
"find_subdirs",
"(",
"startdir",
"=",
"'.'",
",",
"recursion_depth",
"=",
"None",
")",
":",
"startdir",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"startdir",
")",
"direct_subdirs",
"=",
"[",
"os",
".",
"path",
".",
"join",
"(",
"startdir",
",",
"x",
")",
"for",
"x",
"in",
"os",
".",
"listdir",
"(",
"startdir",
")",
"if",
"os",
".",
"path",
".",
"isdir",
"(",
"os",
".",
"path",
".",
"join",
"(",
"startdir",
",",
"x",
")",
")",
"]",
"if",
"recursion_depth",
"is",
"None",
":",
"next_recursion_depth",
"=",
"None",
"else",
":",
"next_recursion_depth",
"=",
"recursion_depth",
"-",
"1",
"if",
"(",
"recursion_depth",
"is",
"not",
"None",
")",
"and",
"(",
"recursion_depth",
"<=",
"1",
")",
":",
"return",
"[",
"startdir",
"]",
"+",
"direct_subdirs",
"else",
":",
"subdirs",
"=",
"[",
"]",
"for",
"d",
"in",
"direct_subdirs",
":",
"subdirs",
".",
"extend",
"(",
"find_subdirs",
"(",
"d",
",",
"next_recursion_depth",
")",
")",
"return",
"[",
"startdir",
"]",
"+",
"subdirs"
] | Find all subdirectory of a directory.
Inputs:
startdir: directory to start with. Defaults to the current folder.
recursion_depth: number of levels to traverse. None is infinite.
Output: a list of absolute names of subfolders.
Examples:
>>> find_subdirs('dir',0) # returns just ['dir']
>>> find_subdirs('dir',1) # returns all direct (first-level) subdirs
# of 'dir'. | [
"Find",
"all",
"subdirectory",
"of",
"a",
"directory",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/searchpath.py#L107-L135 |
awacha/sastool | sastool/misc/basicfit.py | findpeak | def findpeak(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=None, curve='Lorentz'):
"""Find a (positive) peak in the dataset.
This function is deprecated, please consider using findpeak_single() instead.
Inputs:
x, y, dy: abscissa, ordinate and the error of the ordinate (can be None)
position, hwhm, baseline, amplitude: first guesses for the named parameters
curve: 'Gauss' or 'Lorentz' (default)
Outputs:
peak position, error of peak position, hwhm, error of hwhm, baseline,
error of baseline, amplitude, error of amplitude.
Notes:
A Gauss or a Lorentz curve is fitted, depending on the value of 'curve'.
"""
warnings.warn('Function findpeak() is deprecated, please use findpeak_single() instead.', DeprecationWarning)
pos, hwhm, baseline, ampl = findpeak_single(x, y, dy, position, hwhm, baseline, amplitude, curve)
return pos.val, pos.err, hwhm.val, hwhm.err, baseline.val, baseline.err, ampl.val, ampl.err | python | def findpeak(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=None, curve='Lorentz'):
"""Find a (positive) peak in the dataset.
This function is deprecated, please consider using findpeak_single() instead.
Inputs:
x, y, dy: abscissa, ordinate and the error of the ordinate (can be None)
position, hwhm, baseline, amplitude: first guesses for the named parameters
curve: 'Gauss' or 'Lorentz' (default)
Outputs:
peak position, error of peak position, hwhm, error of hwhm, baseline,
error of baseline, amplitude, error of amplitude.
Notes:
A Gauss or a Lorentz curve is fitted, depending on the value of 'curve'.
"""
warnings.warn('Function findpeak() is deprecated, please use findpeak_single() instead.', DeprecationWarning)
pos, hwhm, baseline, ampl = findpeak_single(x, y, dy, position, hwhm, baseline, amplitude, curve)
return pos.val, pos.err, hwhm.val, hwhm.err, baseline.val, baseline.err, ampl.val, ampl.err | [
"def",
"findpeak",
"(",
"x",
",",
"y",
",",
"dy",
"=",
"None",
",",
"position",
"=",
"None",
",",
"hwhm",
"=",
"None",
",",
"baseline",
"=",
"None",
",",
"amplitude",
"=",
"None",
",",
"curve",
"=",
"'Lorentz'",
")",
":",
"warnings",
".",
"warn",
"(",
"'Function findpeak() is deprecated, please use findpeak_single() instead.'",
",",
"DeprecationWarning",
")",
"pos",
",",
"hwhm",
",",
"baseline",
",",
"ampl",
"=",
"findpeak_single",
"(",
"x",
",",
"y",
",",
"dy",
",",
"position",
",",
"hwhm",
",",
"baseline",
",",
"amplitude",
",",
"curve",
")",
"return",
"pos",
".",
"val",
",",
"pos",
".",
"err",
",",
"hwhm",
".",
"val",
",",
"hwhm",
".",
"err",
",",
"baseline",
".",
"val",
",",
"baseline",
".",
"err",
",",
"ampl",
".",
"val",
",",
"ampl",
".",
"err"
] | Find a (positive) peak in the dataset.
This function is deprecated, please consider using findpeak_single() instead.
Inputs:
x, y, dy: abscissa, ordinate and the error of the ordinate (can be None)
position, hwhm, baseline, amplitude: first guesses for the named parameters
curve: 'Gauss' or 'Lorentz' (default)
Outputs:
peak position, error of peak position, hwhm, error of hwhm, baseline,
error of baseline, amplitude, error of amplitude.
Notes:
A Gauss or a Lorentz curve is fitted, depending on the value of 'curve'. | [
"Find",
"a",
"(",
"positive",
")",
"peak",
"in",
"the",
"dataset",
".",
"This",
"function",
"is",
"deprecated",
"please",
"consider",
"using",
"findpeak_single",
"()",
"instead",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/basicfit.py#L18-L38 |
awacha/sastool | sastool/misc/basicfit.py | findpeak_single | def findpeak_single(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=None, curve='Lorentz',
return_stat=False, signs=(-1, 1), return_x=None):
"""Find a (positive or negative) peak in the dataset.
Inputs:
x, y, dy: abscissa, ordinate and the error of the ordinate (can be None)
position, hwhm, baseline, amplitude: first guesses for the named parameters
curve: 'Gauss' or 'Lorentz' (default)
return_stat: return fitting statistics from easylsq.nlsq_fit()
signs: a tuple, can be (1,), (-1,), (1,-1). Will try these signs for the peak amplitude
return_x: abscissa on which the fitted function form has to be evaluated
Outputs:
peak position, hwhm, baseline, amplitude[, stat][, peakfunction]
where:
peak position, hwhm, baseline, amplitude are ErrorValue instances.
stat is the statistics dictionary, returned only if return_stat is True
peakfunction is the fitted peak evaluated at return_x if it is not None.
Notes:
A Gauss or a Lorentz curve is fitted, depending on the value of 'curve'. The abscissa
should be sorted, ascending.
"""
y_orig=y
if dy is None: dy = np.ones_like(x)
if curve.upper().startswith('GAUSS'):
def fitfunc(x_, amplitude_, position_, hwhm_, baseline_):
return amplitude_ * np.exp(-0.5 * (x_ - position_) ** 2 / hwhm_ ** 2) + baseline_
elif curve.upper().startswith('LORENTZ'):
def fitfunc(x_, amplitude_, position_, hwhm_, baseline_):
return amplitude_ * hwhm_ ** 2 / (hwhm_ ** 2 + (position_ - x_) ** 2) + baseline_
else:
raise ValueError('Invalid curve type: {}'.format(curve))
results=[]
# we try fitting a positive and a negative peak and return the better fit (where R2 is larger)
for sign in signs:
init_params={'position':position,'hwhm':hwhm,'baseline':baseline,'amplitude':amplitude}
y = y_orig * sign
if init_params['position'] is None: init_params['position'] = x[y == y.max()][0]
if init_params['hwhm'] is None: init_params['hwhm'] = 0.5 * (x.max() - x.min())
if init_params['baseline'] is None: init_params['baseline'] = y.min()
if init_params['amplitude'] is None: init_params['amplitude'] = y.max() - init_params['baseline']
results.append(nlsq_fit(x, y, dy, fitfunc, (init_params['amplitude'],
init_params['position'],
init_params['hwhm'],
init_params['baseline']))+(sign,))
max_R2=max([r[2]['R2'] for r in results])
p,dp,stat,sign=[r for r in results if r[2]['R2']==max_R2][0]
retval = [ErrorValue(p[1], dp[1]), ErrorValue(abs(p[2]), dp[2]), sign * ErrorValue(p[3], dp[3]),
sign * ErrorValue(p[0], dp[0])]
if return_stat:
stat['func_value'] = stat['func_value'] * sign
retval.append(stat)
if return_x is not None:
retval.append(sign * fitfunc(return_x, p[0], p[1], p[2], p[3]))
return tuple(retval) | python | def findpeak_single(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=None, curve='Lorentz',
return_stat=False, signs=(-1, 1), return_x=None):
"""Find a (positive or negative) peak in the dataset.
Inputs:
x, y, dy: abscissa, ordinate and the error of the ordinate (can be None)
position, hwhm, baseline, amplitude: first guesses for the named parameters
curve: 'Gauss' or 'Lorentz' (default)
return_stat: return fitting statistics from easylsq.nlsq_fit()
signs: a tuple, can be (1,), (-1,), (1,-1). Will try these signs for the peak amplitude
return_x: abscissa on which the fitted function form has to be evaluated
Outputs:
peak position, hwhm, baseline, amplitude[, stat][, peakfunction]
where:
peak position, hwhm, baseline, amplitude are ErrorValue instances.
stat is the statistics dictionary, returned only if return_stat is True
peakfunction is the fitted peak evaluated at return_x if it is not None.
Notes:
A Gauss or a Lorentz curve is fitted, depending on the value of 'curve'. The abscissa
should be sorted, ascending.
"""
y_orig=y
if dy is None: dy = np.ones_like(x)
if curve.upper().startswith('GAUSS'):
def fitfunc(x_, amplitude_, position_, hwhm_, baseline_):
return amplitude_ * np.exp(-0.5 * (x_ - position_) ** 2 / hwhm_ ** 2) + baseline_
elif curve.upper().startswith('LORENTZ'):
def fitfunc(x_, amplitude_, position_, hwhm_, baseline_):
return amplitude_ * hwhm_ ** 2 / (hwhm_ ** 2 + (position_ - x_) ** 2) + baseline_
else:
raise ValueError('Invalid curve type: {}'.format(curve))
results=[]
# we try fitting a positive and a negative peak and return the better fit (where R2 is larger)
for sign in signs:
init_params={'position':position,'hwhm':hwhm,'baseline':baseline,'amplitude':amplitude}
y = y_orig * sign
if init_params['position'] is None: init_params['position'] = x[y == y.max()][0]
if init_params['hwhm'] is None: init_params['hwhm'] = 0.5 * (x.max() - x.min())
if init_params['baseline'] is None: init_params['baseline'] = y.min()
if init_params['amplitude'] is None: init_params['amplitude'] = y.max() - init_params['baseline']
results.append(nlsq_fit(x, y, dy, fitfunc, (init_params['amplitude'],
init_params['position'],
init_params['hwhm'],
init_params['baseline']))+(sign,))
max_R2=max([r[2]['R2'] for r in results])
p,dp,stat,sign=[r for r in results if r[2]['R2']==max_R2][0]
retval = [ErrorValue(p[1], dp[1]), ErrorValue(abs(p[2]), dp[2]), sign * ErrorValue(p[3], dp[3]),
sign * ErrorValue(p[0], dp[0])]
if return_stat:
stat['func_value'] = stat['func_value'] * sign
retval.append(stat)
if return_x is not None:
retval.append(sign * fitfunc(return_x, p[0], p[1], p[2], p[3]))
return tuple(retval) | [
"def",
"findpeak_single",
"(",
"x",
",",
"y",
",",
"dy",
"=",
"None",
",",
"position",
"=",
"None",
",",
"hwhm",
"=",
"None",
",",
"baseline",
"=",
"None",
",",
"amplitude",
"=",
"None",
",",
"curve",
"=",
"'Lorentz'",
",",
"return_stat",
"=",
"False",
",",
"signs",
"=",
"(",
"-",
"1",
",",
"1",
")",
",",
"return_x",
"=",
"None",
")",
":",
"y_orig",
"=",
"y",
"if",
"dy",
"is",
"None",
":",
"dy",
"=",
"np",
".",
"ones_like",
"(",
"x",
")",
"if",
"curve",
".",
"upper",
"(",
")",
".",
"startswith",
"(",
"'GAUSS'",
")",
":",
"def",
"fitfunc",
"(",
"x_",
",",
"amplitude_",
",",
"position_",
",",
"hwhm_",
",",
"baseline_",
")",
":",
"return",
"amplitude_",
"*",
"np",
".",
"exp",
"(",
"-",
"0.5",
"*",
"(",
"x_",
"-",
"position_",
")",
"**",
"2",
"/",
"hwhm_",
"**",
"2",
")",
"+",
"baseline_",
"elif",
"curve",
".",
"upper",
"(",
")",
".",
"startswith",
"(",
"'LORENTZ'",
")",
":",
"def",
"fitfunc",
"(",
"x_",
",",
"amplitude_",
",",
"position_",
",",
"hwhm_",
",",
"baseline_",
")",
":",
"return",
"amplitude_",
"*",
"hwhm_",
"**",
"2",
"/",
"(",
"hwhm_",
"**",
"2",
"+",
"(",
"position_",
"-",
"x_",
")",
"**",
"2",
")",
"+",
"baseline_",
"else",
":",
"raise",
"ValueError",
"(",
"'Invalid curve type: {}'",
".",
"format",
"(",
"curve",
")",
")",
"results",
"=",
"[",
"]",
"# we try fitting a positive and a negative peak and return the better fit (where R2 is larger)",
"for",
"sign",
"in",
"signs",
":",
"init_params",
"=",
"{",
"'position'",
":",
"position",
",",
"'hwhm'",
":",
"hwhm",
",",
"'baseline'",
":",
"baseline",
",",
"'amplitude'",
":",
"amplitude",
"}",
"y",
"=",
"y_orig",
"*",
"sign",
"if",
"init_params",
"[",
"'position'",
"]",
"is",
"None",
":",
"init_params",
"[",
"'position'",
"]",
"=",
"x",
"[",
"y",
"==",
"y",
".",
"max",
"(",
")",
"]",
"[",
"0",
"]",
"if",
"init_params",
"[",
"'hwhm'",
"]",
"is",
"None",
":",
"init_params",
"[",
"'hwhm'",
"]",
"=",
"0.5",
"*",
"(",
"x",
".",
"max",
"(",
")",
"-",
"x",
".",
"min",
"(",
")",
")",
"if",
"init_params",
"[",
"'baseline'",
"]",
"is",
"None",
":",
"init_params",
"[",
"'baseline'",
"]",
"=",
"y",
".",
"min",
"(",
")",
"if",
"init_params",
"[",
"'amplitude'",
"]",
"is",
"None",
":",
"init_params",
"[",
"'amplitude'",
"]",
"=",
"y",
".",
"max",
"(",
")",
"-",
"init_params",
"[",
"'baseline'",
"]",
"results",
".",
"append",
"(",
"nlsq_fit",
"(",
"x",
",",
"y",
",",
"dy",
",",
"fitfunc",
",",
"(",
"init_params",
"[",
"'amplitude'",
"]",
",",
"init_params",
"[",
"'position'",
"]",
",",
"init_params",
"[",
"'hwhm'",
"]",
",",
"init_params",
"[",
"'baseline'",
"]",
")",
")",
"+",
"(",
"sign",
",",
")",
")",
"max_R2",
"=",
"max",
"(",
"[",
"r",
"[",
"2",
"]",
"[",
"'R2'",
"]",
"for",
"r",
"in",
"results",
"]",
")",
"p",
",",
"dp",
",",
"stat",
",",
"sign",
"=",
"[",
"r",
"for",
"r",
"in",
"results",
"if",
"r",
"[",
"2",
"]",
"[",
"'R2'",
"]",
"==",
"max_R2",
"]",
"[",
"0",
"]",
"retval",
"=",
"[",
"ErrorValue",
"(",
"p",
"[",
"1",
"]",
",",
"dp",
"[",
"1",
"]",
")",
",",
"ErrorValue",
"(",
"abs",
"(",
"p",
"[",
"2",
"]",
")",
",",
"dp",
"[",
"2",
"]",
")",
",",
"sign",
"*",
"ErrorValue",
"(",
"p",
"[",
"3",
"]",
",",
"dp",
"[",
"3",
"]",
")",
",",
"sign",
"*",
"ErrorValue",
"(",
"p",
"[",
"0",
"]",
",",
"dp",
"[",
"0",
"]",
")",
"]",
"if",
"return_stat",
":",
"stat",
"[",
"'func_value'",
"]",
"=",
"stat",
"[",
"'func_value'",
"]",
"*",
"sign",
"retval",
".",
"append",
"(",
"stat",
")",
"if",
"return_x",
"is",
"not",
"None",
":",
"retval",
".",
"append",
"(",
"sign",
"*",
"fitfunc",
"(",
"return_x",
",",
"p",
"[",
"0",
"]",
",",
"p",
"[",
"1",
"]",
",",
"p",
"[",
"2",
"]",
",",
"p",
"[",
"3",
"]",
")",
")",
"return",
"tuple",
"(",
"retval",
")"
] | Find a (positive or negative) peak in the dataset.
Inputs:
x, y, dy: abscissa, ordinate and the error of the ordinate (can be None)
position, hwhm, baseline, amplitude: first guesses for the named parameters
curve: 'Gauss' or 'Lorentz' (default)
return_stat: return fitting statistics from easylsq.nlsq_fit()
signs: a tuple, can be (1,), (-1,), (1,-1). Will try these signs for the peak amplitude
return_x: abscissa on which the fitted function form has to be evaluated
Outputs:
peak position, hwhm, baseline, amplitude[, stat][, peakfunction]
where:
peak position, hwhm, baseline, amplitude are ErrorValue instances.
stat is the statistics dictionary, returned only if return_stat is True
peakfunction is the fitted peak evaluated at return_x if it is not None.
Notes:
A Gauss or a Lorentz curve is fitted, depending on the value of 'curve'. The abscissa
should be sorted, ascending. | [
"Find",
"a",
"(",
"positive",
"or",
"negative",
")",
"peak",
"in",
"the",
"dataset",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/basicfit.py#L41-L97 |
awacha/sastool | sastool/misc/basicfit.py | findpeak_multi | def findpeak_multi(x, y, dy, N, Ntolerance, Nfit=None, curve='Lorentz', return_xfit=False, return_stat=False):
"""Find multiple peaks in the dataset given by vectors x and y.
Points are searched for in the dataset where the N points before and
after have strictly lower values than them. To get rid of false
negatives caused by fluctuations, Ntolerance is introduced. It is the
number of outlier points to be tolerated, i.e. points on the left-hand
side of the peak where the growing tendency breaks or on the right-hand
side where the diminishing tendency breaks. Increasing this number,
however gives rise to false positives.
Inputs:
x, y, dy: vectors defining the data-set. dy can be None.
N, Ntolerance: the parameters of the peak-finding routines
Nfit: the number of points on the left and on the right of
the peak to be used for least squares refinement of the
peak positions.
curve: the type of the curve to be fitted to the peaks. Can be
'Lorentz' or 'Gauss'
return_xfit: if the abscissa used for fitting is to be returned.
return_stat: if the fitting statistics is to be returned for each
peak.
Outputs:
position, hwhm, baseline, amplitude, (xfit): lists
Notes:
Peaks are identified where the curve grows N points before and
decreases N points after. On noisy curves Ntolerance may improve
the results, i.e. decreases the 2*N above mentioned criteria.
"""
if Nfit is None:
Nfit = N
# find points where the curve grows for N points before them and
# decreases for N points after them. To accomplish this, we create
# an indicator array of the sign of the first derivative.
sgndiff = np.sign(np.diff(y))
xdiff = x[:-1] # associate difference values to the lower 'x' value.
pix = np.arange(len(x) - 1) # pixel coordinates create an indicator
# array as the sum of sgndiff shifted left and right. whenever an
# element of this is 2*N, it fulfills the criteria above.
indicator = np.zeros(len(sgndiff) - 2 * N)
for i in range(2 * N):
indicator += np.sign(N - i) * sgndiff[i:-2 * N + i]
# add the last one, since the indexing is different (would be
# [2*N:0], which is not what we want)
indicator += -sgndiff[2 * N:]
# find the positions (indices) of the peak. The strict criteria is
# relaxed somewhat by using the Ntolerance value. Note the use of
# 2*Ntolerance, since each outlier point creates two outliers in
# sgndiff (-1 insted of +1 and vice versa).
peakpospix = pix[N:-N][indicator >= 2 * N - 2 * Ntolerance]
ypeak = y[peakpospix]
# Now refine the found positions by least-squares fitting. But
# first we have to sort out other non-peaks, i.e. found points
# which have other found points with higher values in their [-N,N]
# neighbourhood.
pos = []; ampl = []; hwhm = []; baseline = []; xfit = []; stat = []
dy1 = None
for i in range(len(ypeak)):
if not [j for j in list(range(i + 1, len(ypeak))) + list(range(0, i)) if abs(peakpospix[j] - peakpospix[i]) <= N and ypeak[i] < ypeak[j]]:
# only leave maxima.
idx = peakpospix[i]
if dy is not None:
dy1 = dy[(idx - Nfit):(idx + Nfit + 1)]
xfit_ = x[(idx - Nfit):(idx + Nfit + 1)]
pos_, hwhm_, baseline_, ampl_, stat_ = findpeak_single(xfit_, y[(idx - Nfit):(idx + Nfit + 1)], dy1, position=x[idx], return_stat=True)
stat.append(stat_)
xfit.append(xfit_)
pos.append(pos_)
ampl.append(ampl_)
hwhm.append(hwhm_)
baseline.append(baseline_)
results = [pos, hwhm, baseline, ampl]
if return_xfit:
results.append(xfit)
if return_stat:
results.append(stat)
return tuple(results) | python | def findpeak_multi(x, y, dy, N, Ntolerance, Nfit=None, curve='Lorentz', return_xfit=False, return_stat=False):
"""Find multiple peaks in the dataset given by vectors x and y.
Points are searched for in the dataset where the N points before and
after have strictly lower values than them. To get rid of false
negatives caused by fluctuations, Ntolerance is introduced. It is the
number of outlier points to be tolerated, i.e. points on the left-hand
side of the peak where the growing tendency breaks or on the right-hand
side where the diminishing tendency breaks. Increasing this number,
however gives rise to false positives.
Inputs:
x, y, dy: vectors defining the data-set. dy can be None.
N, Ntolerance: the parameters of the peak-finding routines
Nfit: the number of points on the left and on the right of
the peak to be used for least squares refinement of the
peak positions.
curve: the type of the curve to be fitted to the peaks. Can be
'Lorentz' or 'Gauss'
return_xfit: if the abscissa used for fitting is to be returned.
return_stat: if the fitting statistics is to be returned for each
peak.
Outputs:
position, hwhm, baseline, amplitude, (xfit): lists
Notes:
Peaks are identified where the curve grows N points before and
decreases N points after. On noisy curves Ntolerance may improve
the results, i.e. decreases the 2*N above mentioned criteria.
"""
if Nfit is None:
Nfit = N
# find points where the curve grows for N points before them and
# decreases for N points after them. To accomplish this, we create
# an indicator array of the sign of the first derivative.
sgndiff = np.sign(np.diff(y))
xdiff = x[:-1] # associate difference values to the lower 'x' value.
pix = np.arange(len(x) - 1) # pixel coordinates create an indicator
# array as the sum of sgndiff shifted left and right. whenever an
# element of this is 2*N, it fulfills the criteria above.
indicator = np.zeros(len(sgndiff) - 2 * N)
for i in range(2 * N):
indicator += np.sign(N - i) * sgndiff[i:-2 * N + i]
# add the last one, since the indexing is different (would be
# [2*N:0], which is not what we want)
indicator += -sgndiff[2 * N:]
# find the positions (indices) of the peak. The strict criteria is
# relaxed somewhat by using the Ntolerance value. Note the use of
# 2*Ntolerance, since each outlier point creates two outliers in
# sgndiff (-1 insted of +1 and vice versa).
peakpospix = pix[N:-N][indicator >= 2 * N - 2 * Ntolerance]
ypeak = y[peakpospix]
# Now refine the found positions by least-squares fitting. But
# first we have to sort out other non-peaks, i.e. found points
# which have other found points with higher values in their [-N,N]
# neighbourhood.
pos = []; ampl = []; hwhm = []; baseline = []; xfit = []; stat = []
dy1 = None
for i in range(len(ypeak)):
if not [j for j in list(range(i + 1, len(ypeak))) + list(range(0, i)) if abs(peakpospix[j] - peakpospix[i]) <= N and ypeak[i] < ypeak[j]]:
# only leave maxima.
idx = peakpospix[i]
if dy is not None:
dy1 = dy[(idx - Nfit):(idx + Nfit + 1)]
xfit_ = x[(idx - Nfit):(idx + Nfit + 1)]
pos_, hwhm_, baseline_, ampl_, stat_ = findpeak_single(xfit_, y[(idx - Nfit):(idx + Nfit + 1)], dy1, position=x[idx], return_stat=True)
stat.append(stat_)
xfit.append(xfit_)
pos.append(pos_)
ampl.append(ampl_)
hwhm.append(hwhm_)
baseline.append(baseline_)
results = [pos, hwhm, baseline, ampl]
if return_xfit:
results.append(xfit)
if return_stat:
results.append(stat)
return tuple(results) | [
"def",
"findpeak_multi",
"(",
"x",
",",
"y",
",",
"dy",
",",
"N",
",",
"Ntolerance",
",",
"Nfit",
"=",
"None",
",",
"curve",
"=",
"'Lorentz'",
",",
"return_xfit",
"=",
"False",
",",
"return_stat",
"=",
"False",
")",
":",
"if",
"Nfit",
"is",
"None",
":",
"Nfit",
"=",
"N",
"# find points where the curve grows for N points before them and",
"# decreases for N points after them. To accomplish this, we create",
"# an indicator array of the sign of the first derivative.",
"sgndiff",
"=",
"np",
".",
"sign",
"(",
"np",
".",
"diff",
"(",
"y",
")",
")",
"xdiff",
"=",
"x",
"[",
":",
"-",
"1",
"]",
"# associate difference values to the lower 'x' value.",
"pix",
"=",
"np",
".",
"arange",
"(",
"len",
"(",
"x",
")",
"-",
"1",
")",
"# pixel coordinates create an indicator",
"# array as the sum of sgndiff shifted left and right. whenever an",
"# element of this is 2*N, it fulfills the criteria above.",
"indicator",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"sgndiff",
")",
"-",
"2",
"*",
"N",
")",
"for",
"i",
"in",
"range",
"(",
"2",
"*",
"N",
")",
":",
"indicator",
"+=",
"np",
".",
"sign",
"(",
"N",
"-",
"i",
")",
"*",
"sgndiff",
"[",
"i",
":",
"-",
"2",
"*",
"N",
"+",
"i",
"]",
"# add the last one, since the indexing is different (would be",
"# [2*N:0], which is not what we want)",
"indicator",
"+=",
"-",
"sgndiff",
"[",
"2",
"*",
"N",
":",
"]",
"# find the positions (indices) of the peak. The strict criteria is",
"# relaxed somewhat by using the Ntolerance value. Note the use of",
"# 2*Ntolerance, since each outlier point creates two outliers in",
"# sgndiff (-1 insted of +1 and vice versa).",
"peakpospix",
"=",
"pix",
"[",
"N",
":",
"-",
"N",
"]",
"[",
"indicator",
">=",
"2",
"*",
"N",
"-",
"2",
"*",
"Ntolerance",
"]",
"ypeak",
"=",
"y",
"[",
"peakpospix",
"]",
"# Now refine the found positions by least-squares fitting. But",
"# first we have to sort out other non-peaks, i.e. found points",
"# which have other found points with higher values in their [-N,N]",
"# neighbourhood.",
"pos",
"=",
"[",
"]",
"ampl",
"=",
"[",
"]",
"hwhm",
"=",
"[",
"]",
"baseline",
"=",
"[",
"]",
"xfit",
"=",
"[",
"]",
"stat",
"=",
"[",
"]",
"dy1",
"=",
"None",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"ypeak",
")",
")",
":",
"if",
"not",
"[",
"j",
"for",
"j",
"in",
"list",
"(",
"range",
"(",
"i",
"+",
"1",
",",
"len",
"(",
"ypeak",
")",
")",
")",
"+",
"list",
"(",
"range",
"(",
"0",
",",
"i",
")",
")",
"if",
"abs",
"(",
"peakpospix",
"[",
"j",
"]",
"-",
"peakpospix",
"[",
"i",
"]",
")",
"<=",
"N",
"and",
"ypeak",
"[",
"i",
"]",
"<",
"ypeak",
"[",
"j",
"]",
"]",
":",
"# only leave maxima.",
"idx",
"=",
"peakpospix",
"[",
"i",
"]",
"if",
"dy",
"is",
"not",
"None",
":",
"dy1",
"=",
"dy",
"[",
"(",
"idx",
"-",
"Nfit",
")",
":",
"(",
"idx",
"+",
"Nfit",
"+",
"1",
")",
"]",
"xfit_",
"=",
"x",
"[",
"(",
"idx",
"-",
"Nfit",
")",
":",
"(",
"idx",
"+",
"Nfit",
"+",
"1",
")",
"]",
"pos_",
",",
"hwhm_",
",",
"baseline_",
",",
"ampl_",
",",
"stat_",
"=",
"findpeak_single",
"(",
"xfit_",
",",
"y",
"[",
"(",
"idx",
"-",
"Nfit",
")",
":",
"(",
"idx",
"+",
"Nfit",
"+",
"1",
")",
"]",
",",
"dy1",
",",
"position",
"=",
"x",
"[",
"idx",
"]",
",",
"return_stat",
"=",
"True",
")",
"stat",
".",
"append",
"(",
"stat_",
")",
"xfit",
".",
"append",
"(",
"xfit_",
")",
"pos",
".",
"append",
"(",
"pos_",
")",
"ampl",
".",
"append",
"(",
"ampl_",
")",
"hwhm",
".",
"append",
"(",
"hwhm_",
")",
"baseline",
".",
"append",
"(",
"baseline_",
")",
"results",
"=",
"[",
"pos",
",",
"hwhm",
",",
"baseline",
",",
"ampl",
"]",
"if",
"return_xfit",
":",
"results",
".",
"append",
"(",
"xfit",
")",
"if",
"return_stat",
":",
"results",
".",
"append",
"(",
"stat",
")",
"return",
"tuple",
"(",
"results",
")"
] | Find multiple peaks in the dataset given by vectors x and y.
Points are searched for in the dataset where the N points before and
after have strictly lower values than them. To get rid of false
negatives caused by fluctuations, Ntolerance is introduced. It is the
number of outlier points to be tolerated, i.e. points on the left-hand
side of the peak where the growing tendency breaks or on the right-hand
side where the diminishing tendency breaks. Increasing this number,
however gives rise to false positives.
Inputs:
x, y, dy: vectors defining the data-set. dy can be None.
N, Ntolerance: the parameters of the peak-finding routines
Nfit: the number of points on the left and on the right of
the peak to be used for least squares refinement of the
peak positions.
curve: the type of the curve to be fitted to the peaks. Can be
'Lorentz' or 'Gauss'
return_xfit: if the abscissa used for fitting is to be returned.
return_stat: if the fitting statistics is to be returned for each
peak.
Outputs:
position, hwhm, baseline, amplitude, (xfit): lists
Notes:
Peaks are identified where the curve grows N points before and
decreases N points after. On noisy curves Ntolerance may improve
the results, i.e. decreases the 2*N above mentioned criteria. | [
"Find",
"multiple",
"peaks",
"in",
"the",
"dataset",
"given",
"by",
"vectors",
"x",
"and",
"y",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/basicfit.py#L99-L178 |
awacha/sastool | sastool/misc/basicfit.py | findpeak_asymmetric | def findpeak_asymmetric(x, y, dy=None, curve='Lorentz', return_x=None, init_parameters=None):
"""Find an asymmetric Lorentzian peak.
Inputs:
x: numpy array of the abscissa
y: numpy array of the ordinate
dy: numpy array of the errors in y (or None if not present)
curve: string (case insensitive): if starts with "Lorentz",
a Lorentzian curve will be fitted. If starts with "Gauss",
a Gaussian will be fitted. Otherwise error.
return_x: numpy array of the x values at which the best
fitting peak function should be evaluated and returned
init_parameters: either None, or a list of [amplitude, center,
hwhm_left, hwhm_right, baseline]: initial parameters to
start fitting from.
Results: center, hwhm_left, hwhm_right, baseline, amplitude [, y_fitted]
The fitted parameters are returned as floats if dy was None or
ErrorValue instances if dy was not None.
y_fitted is only returned if return_x was not None
Note:
1) The dataset must contain only the peak.
2) A positive peak will be fitted
3) The peak center must be in the given range
"""
idx = np.logical_and(np.isfinite(x), np.isfinite(y))
if dy is not None:
idx = np.logical_and(idx, np.isfinite(dy))
x=x[idx]
y=y[idx]
if dy is not None:
dy=dy[idx]
if curve.lower().startswith('loren'):
lorentzian = True
elif curve.lower().startswith('gauss'):
lorentzian = False
else:
raise ValueError('Unknown peak type {}'.format(curve))
def peakfunc(pars, x, lorentzian=True):
x0, sigma1, sigma2, C, A = pars
result = np.empty_like(x)
if lorentzian:
result[x < x0] = A * sigma1 ** 2 / (sigma1 ** 2 + (x0 - x[x < x0]) ** 2) + C
result[x >= x0] = A * sigma2 ** 2 / (sigma2 ** 2 + (x0 - x[x >= x0]) ** 2) + C
else:
result[x < x0] = A * np.exp(-(x[x < x0] - x0) ** 2 / (2 * sigma1 ** 2))
result[x >= x0] = A * np.exp(-(x[x >= x0] - x0) ** 2 / (2 * sigma1 ** 2))
return result
def fitfunc(pars, x, y, dy, lorentzian=True):
yfit = peakfunc(pars, x, lorentzian)
if dy is None:
return yfit - y
else:
return (yfit - y) / dy
if init_parameters is not None:
pos, hwhmleft, hwhmright, baseline, amplitude = [float(x) for x in init_parameters]
else:
baseline = y.min()
amplitude = y.max() - baseline
hwhmleft = hwhmright = (x.max() - x.min()) * 0.5
pos = x[np.argmax(y)]
#print([pos,hwhm,hwhm,baseline,amplitude])
result = scipy.optimize.least_squares(fitfunc, [pos, hwhmleft, hwhmright, baseline, amplitude],
args=(x, y, dy, lorentzian),
bounds=([x.min(), 0, 0, -np.inf, 0],
[x.max(), np.inf, np.inf, np.inf, np.inf]))
# print(result.x[0], result.x[1], result.x[2], result.x[3], result.x[4], result.message, result.success)
if not result.success:
raise RuntimeError('Error while peak fitting: {}'.format(result.message))
if dy is None:
ret = (result.x[0], result.x[1], result.x[2], result.x[3], result.x[4])
else:
# noinspection PyTupleAssignmentBalance
_, s, VT = svd(result.jac, full_matrices=False)
threshold = np.finfo(float).eps * max(result.jac.shape) * s[0]
s = s[s > threshold]
VT = VT[:s.size]
pcov = np.dot(VT.T / s ** 2, VT)
ret = tuple([ErrorValue(result.x[i], pcov[i, i] ** 0.5) for i in range(5)])
if return_x is not None:
ret = ret + (peakfunc([float(x) for x in ret], return_x, lorentzian),)
return ret | python | def findpeak_asymmetric(x, y, dy=None, curve='Lorentz', return_x=None, init_parameters=None):
"""Find an asymmetric Lorentzian peak.
Inputs:
x: numpy array of the abscissa
y: numpy array of the ordinate
dy: numpy array of the errors in y (or None if not present)
curve: string (case insensitive): if starts with "Lorentz",
a Lorentzian curve will be fitted. If starts with "Gauss",
a Gaussian will be fitted. Otherwise error.
return_x: numpy array of the x values at which the best
fitting peak function should be evaluated and returned
init_parameters: either None, or a list of [amplitude, center,
hwhm_left, hwhm_right, baseline]: initial parameters to
start fitting from.
Results: center, hwhm_left, hwhm_right, baseline, amplitude [, y_fitted]
The fitted parameters are returned as floats if dy was None or
ErrorValue instances if dy was not None.
y_fitted is only returned if return_x was not None
Note:
1) The dataset must contain only the peak.
2) A positive peak will be fitted
3) The peak center must be in the given range
"""
idx = np.logical_and(np.isfinite(x), np.isfinite(y))
if dy is not None:
idx = np.logical_and(idx, np.isfinite(dy))
x=x[idx]
y=y[idx]
if dy is not None:
dy=dy[idx]
if curve.lower().startswith('loren'):
lorentzian = True
elif curve.lower().startswith('gauss'):
lorentzian = False
else:
raise ValueError('Unknown peak type {}'.format(curve))
def peakfunc(pars, x, lorentzian=True):
x0, sigma1, sigma2, C, A = pars
result = np.empty_like(x)
if lorentzian:
result[x < x0] = A * sigma1 ** 2 / (sigma1 ** 2 + (x0 - x[x < x0]) ** 2) + C
result[x >= x0] = A * sigma2 ** 2 / (sigma2 ** 2 + (x0 - x[x >= x0]) ** 2) + C
else:
result[x < x0] = A * np.exp(-(x[x < x0] - x0) ** 2 / (2 * sigma1 ** 2))
result[x >= x0] = A * np.exp(-(x[x >= x0] - x0) ** 2 / (2 * sigma1 ** 2))
return result
def fitfunc(pars, x, y, dy, lorentzian=True):
yfit = peakfunc(pars, x, lorentzian)
if dy is None:
return yfit - y
else:
return (yfit - y) / dy
if init_parameters is not None:
pos, hwhmleft, hwhmright, baseline, amplitude = [float(x) for x in init_parameters]
else:
baseline = y.min()
amplitude = y.max() - baseline
hwhmleft = hwhmright = (x.max() - x.min()) * 0.5
pos = x[np.argmax(y)]
#print([pos,hwhm,hwhm,baseline,amplitude])
result = scipy.optimize.least_squares(fitfunc, [pos, hwhmleft, hwhmright, baseline, amplitude],
args=(x, y, dy, lorentzian),
bounds=([x.min(), 0, 0, -np.inf, 0],
[x.max(), np.inf, np.inf, np.inf, np.inf]))
# print(result.x[0], result.x[1], result.x[2], result.x[3], result.x[4], result.message, result.success)
if not result.success:
raise RuntimeError('Error while peak fitting: {}'.format(result.message))
if dy is None:
ret = (result.x[0], result.x[1], result.x[2], result.x[3], result.x[4])
else:
# noinspection PyTupleAssignmentBalance
_, s, VT = svd(result.jac, full_matrices=False)
threshold = np.finfo(float).eps * max(result.jac.shape) * s[0]
s = s[s > threshold]
VT = VT[:s.size]
pcov = np.dot(VT.T / s ** 2, VT)
ret = tuple([ErrorValue(result.x[i], pcov[i, i] ** 0.5) for i in range(5)])
if return_x is not None:
ret = ret + (peakfunc([float(x) for x in ret], return_x, lorentzian),)
return ret | [
"def",
"findpeak_asymmetric",
"(",
"x",
",",
"y",
",",
"dy",
"=",
"None",
",",
"curve",
"=",
"'Lorentz'",
",",
"return_x",
"=",
"None",
",",
"init_parameters",
"=",
"None",
")",
":",
"idx",
"=",
"np",
".",
"logical_and",
"(",
"np",
".",
"isfinite",
"(",
"x",
")",
",",
"np",
".",
"isfinite",
"(",
"y",
")",
")",
"if",
"dy",
"is",
"not",
"None",
":",
"idx",
"=",
"np",
".",
"logical_and",
"(",
"idx",
",",
"np",
".",
"isfinite",
"(",
"dy",
")",
")",
"x",
"=",
"x",
"[",
"idx",
"]",
"y",
"=",
"y",
"[",
"idx",
"]",
"if",
"dy",
"is",
"not",
"None",
":",
"dy",
"=",
"dy",
"[",
"idx",
"]",
"if",
"curve",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"'loren'",
")",
":",
"lorentzian",
"=",
"True",
"elif",
"curve",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"'gauss'",
")",
":",
"lorentzian",
"=",
"False",
"else",
":",
"raise",
"ValueError",
"(",
"'Unknown peak type {}'",
".",
"format",
"(",
"curve",
")",
")",
"def",
"peakfunc",
"(",
"pars",
",",
"x",
",",
"lorentzian",
"=",
"True",
")",
":",
"x0",
",",
"sigma1",
",",
"sigma2",
",",
"C",
",",
"A",
"=",
"pars",
"result",
"=",
"np",
".",
"empty_like",
"(",
"x",
")",
"if",
"lorentzian",
":",
"result",
"[",
"x",
"<",
"x0",
"]",
"=",
"A",
"*",
"sigma1",
"**",
"2",
"/",
"(",
"sigma1",
"**",
"2",
"+",
"(",
"x0",
"-",
"x",
"[",
"x",
"<",
"x0",
"]",
")",
"**",
"2",
")",
"+",
"C",
"result",
"[",
"x",
">=",
"x0",
"]",
"=",
"A",
"*",
"sigma2",
"**",
"2",
"/",
"(",
"sigma2",
"**",
"2",
"+",
"(",
"x0",
"-",
"x",
"[",
"x",
">=",
"x0",
"]",
")",
"**",
"2",
")",
"+",
"C",
"else",
":",
"result",
"[",
"x",
"<",
"x0",
"]",
"=",
"A",
"*",
"np",
".",
"exp",
"(",
"-",
"(",
"x",
"[",
"x",
"<",
"x0",
"]",
"-",
"x0",
")",
"**",
"2",
"/",
"(",
"2",
"*",
"sigma1",
"**",
"2",
")",
")",
"result",
"[",
"x",
">=",
"x0",
"]",
"=",
"A",
"*",
"np",
".",
"exp",
"(",
"-",
"(",
"x",
"[",
"x",
">=",
"x0",
"]",
"-",
"x0",
")",
"**",
"2",
"/",
"(",
"2",
"*",
"sigma1",
"**",
"2",
")",
")",
"return",
"result",
"def",
"fitfunc",
"(",
"pars",
",",
"x",
",",
"y",
",",
"dy",
",",
"lorentzian",
"=",
"True",
")",
":",
"yfit",
"=",
"peakfunc",
"(",
"pars",
",",
"x",
",",
"lorentzian",
")",
"if",
"dy",
"is",
"None",
":",
"return",
"yfit",
"-",
"y",
"else",
":",
"return",
"(",
"yfit",
"-",
"y",
")",
"/",
"dy",
"if",
"init_parameters",
"is",
"not",
"None",
":",
"pos",
",",
"hwhmleft",
",",
"hwhmright",
",",
"baseline",
",",
"amplitude",
"=",
"[",
"float",
"(",
"x",
")",
"for",
"x",
"in",
"init_parameters",
"]",
"else",
":",
"baseline",
"=",
"y",
".",
"min",
"(",
")",
"amplitude",
"=",
"y",
".",
"max",
"(",
")",
"-",
"baseline",
"hwhmleft",
"=",
"hwhmright",
"=",
"(",
"x",
".",
"max",
"(",
")",
"-",
"x",
".",
"min",
"(",
")",
")",
"*",
"0.5",
"pos",
"=",
"x",
"[",
"np",
".",
"argmax",
"(",
"y",
")",
"]",
"#print([pos,hwhm,hwhm,baseline,amplitude])",
"result",
"=",
"scipy",
".",
"optimize",
".",
"least_squares",
"(",
"fitfunc",
",",
"[",
"pos",
",",
"hwhmleft",
",",
"hwhmright",
",",
"baseline",
",",
"amplitude",
"]",
",",
"args",
"=",
"(",
"x",
",",
"y",
",",
"dy",
",",
"lorentzian",
")",
",",
"bounds",
"=",
"(",
"[",
"x",
".",
"min",
"(",
")",
",",
"0",
",",
"0",
",",
"-",
"np",
".",
"inf",
",",
"0",
"]",
",",
"[",
"x",
".",
"max",
"(",
")",
",",
"np",
".",
"inf",
",",
"np",
".",
"inf",
",",
"np",
".",
"inf",
",",
"np",
".",
"inf",
"]",
")",
")",
"# print(result.x[0], result.x[1], result.x[2], result.x[3], result.x[4], result.message, result.success)",
"if",
"not",
"result",
".",
"success",
":",
"raise",
"RuntimeError",
"(",
"'Error while peak fitting: {}'",
".",
"format",
"(",
"result",
".",
"message",
")",
")",
"if",
"dy",
"is",
"None",
":",
"ret",
"=",
"(",
"result",
".",
"x",
"[",
"0",
"]",
",",
"result",
".",
"x",
"[",
"1",
"]",
",",
"result",
".",
"x",
"[",
"2",
"]",
",",
"result",
".",
"x",
"[",
"3",
"]",
",",
"result",
".",
"x",
"[",
"4",
"]",
")",
"else",
":",
"# noinspection PyTupleAssignmentBalance",
"_",
",",
"s",
",",
"VT",
"=",
"svd",
"(",
"result",
".",
"jac",
",",
"full_matrices",
"=",
"False",
")",
"threshold",
"=",
"np",
".",
"finfo",
"(",
"float",
")",
".",
"eps",
"*",
"max",
"(",
"result",
".",
"jac",
".",
"shape",
")",
"*",
"s",
"[",
"0",
"]",
"s",
"=",
"s",
"[",
"s",
">",
"threshold",
"]",
"VT",
"=",
"VT",
"[",
":",
"s",
".",
"size",
"]",
"pcov",
"=",
"np",
".",
"dot",
"(",
"VT",
".",
"T",
"/",
"s",
"**",
"2",
",",
"VT",
")",
"ret",
"=",
"tuple",
"(",
"[",
"ErrorValue",
"(",
"result",
".",
"x",
"[",
"i",
"]",
",",
"pcov",
"[",
"i",
",",
"i",
"]",
"**",
"0.5",
")",
"for",
"i",
"in",
"range",
"(",
"5",
")",
"]",
")",
"if",
"return_x",
"is",
"not",
"None",
":",
"ret",
"=",
"ret",
"+",
"(",
"peakfunc",
"(",
"[",
"float",
"(",
"x",
")",
"for",
"x",
"in",
"ret",
"]",
",",
"return_x",
",",
"lorentzian",
")",
",",
")",
"return",
"ret"
] | Find an asymmetric Lorentzian peak.
Inputs:
x: numpy array of the abscissa
y: numpy array of the ordinate
dy: numpy array of the errors in y (or None if not present)
curve: string (case insensitive): if starts with "Lorentz",
a Lorentzian curve will be fitted. If starts with "Gauss",
a Gaussian will be fitted. Otherwise error.
return_x: numpy array of the x values at which the best
fitting peak function should be evaluated and returned
init_parameters: either None, or a list of [amplitude, center,
hwhm_left, hwhm_right, baseline]: initial parameters to
start fitting from.
Results: center, hwhm_left, hwhm_right, baseline, amplitude [, y_fitted]
The fitted parameters are returned as floats if dy was None or
ErrorValue instances if dy was not None.
y_fitted is only returned if return_x was not None
Note:
1) The dataset must contain only the peak.
2) A positive peak will be fitted
3) The peak center must be in the given range | [
"Find",
"an",
"asymmetric",
"Lorentzian",
"peak",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/basicfit.py#L181-L265 |
awacha/sastool | sastool/io/onedim.py | readspecscan | def readspecscan(f, number=None):
"""Read the next spec scan in the file, which starts at the current position."""
scan = None
scannumber = None
while True:
l = f.readline()
if l.startswith('#S'):
scannumber = int(l[2:].split()[0])
if not ((number is None) or (number == scannumber)):
# break the loop, will skip to the next empty line after this
# loop
break
if scan is None:
scan = {}
scan['number'] = scannumber
scan['command'] = l[2:].split(None, 1)[1].strip()
scan['data'] = []
elif l.startswith('#C'):
scan['comment'] = l[2:].strip()
elif l.startswith('#D'):
scan['datestring'] = l[2:].strip()
elif l.startswith('#T'):
scan['countingtime'] = float(l[2:].split()[0])
scan['scantimeunits'] = l[2:].split()[1].strip()
elif l.startswith('#M'):
scan['countingcounts'] = float(l[2:].split()[0])
elif l.startswith('#G'):
if 'G' not in scan:
scan['G'] = []
scan['G'].extend([float(x) for x in l.split()[1:]])
elif l.startswith('#P'):
if 'positions' not in scan:
scan['positions'] = []
scan['positions'].extend([float(x) for x in l.split()[1:]])
elif l.startswith('#Q'):
pass
elif l.startswith('#N'):
n = [float(x) for x in l[2:].strip().split()]
if len(n) == 1:
scan['N'] = n[0]
else:
scan['N'] = n
elif l.startswith('#L'):
scan['Columns'] = [x.strip() for x in l[3:].split(' ')]
elif not l:
# end of file
if scan is None:
raise SpecFileEOF
else:
break
elif not l.strip():
break # empty line, end of scan in file.
elif l.startswith('#'):
# ignore other lines starting with a hashmark.
continue
else:
scan['data'].append(tuple(float(x) for x in l.split()))
while l.strip():
l = f.readline()
if scan is not None:
scan['data'] = np.array(
scan['data'], dtype=list(zip(scan['Columns'], itertools.repeat(np.float))))
return scan
else:
return scannumber | python | def readspecscan(f, number=None):
"""Read the next spec scan in the file, which starts at the current position."""
scan = None
scannumber = None
while True:
l = f.readline()
if l.startswith('#S'):
scannumber = int(l[2:].split()[0])
if not ((number is None) or (number == scannumber)):
# break the loop, will skip to the next empty line after this
# loop
break
if scan is None:
scan = {}
scan['number'] = scannumber
scan['command'] = l[2:].split(None, 1)[1].strip()
scan['data'] = []
elif l.startswith('#C'):
scan['comment'] = l[2:].strip()
elif l.startswith('#D'):
scan['datestring'] = l[2:].strip()
elif l.startswith('#T'):
scan['countingtime'] = float(l[2:].split()[0])
scan['scantimeunits'] = l[2:].split()[1].strip()
elif l.startswith('#M'):
scan['countingcounts'] = float(l[2:].split()[0])
elif l.startswith('#G'):
if 'G' not in scan:
scan['G'] = []
scan['G'].extend([float(x) for x in l.split()[1:]])
elif l.startswith('#P'):
if 'positions' not in scan:
scan['positions'] = []
scan['positions'].extend([float(x) for x in l.split()[1:]])
elif l.startswith('#Q'):
pass
elif l.startswith('#N'):
n = [float(x) for x in l[2:].strip().split()]
if len(n) == 1:
scan['N'] = n[0]
else:
scan['N'] = n
elif l.startswith('#L'):
scan['Columns'] = [x.strip() for x in l[3:].split(' ')]
elif not l:
# end of file
if scan is None:
raise SpecFileEOF
else:
break
elif not l.strip():
break # empty line, end of scan in file.
elif l.startswith('#'):
# ignore other lines starting with a hashmark.
continue
else:
scan['data'].append(tuple(float(x) for x in l.split()))
while l.strip():
l = f.readline()
if scan is not None:
scan['data'] = np.array(
scan['data'], dtype=list(zip(scan['Columns'], itertools.repeat(np.float))))
return scan
else:
return scannumber | [
"def",
"readspecscan",
"(",
"f",
",",
"number",
"=",
"None",
")",
":",
"scan",
"=",
"None",
"scannumber",
"=",
"None",
"while",
"True",
":",
"l",
"=",
"f",
".",
"readline",
"(",
")",
"if",
"l",
".",
"startswith",
"(",
"'#S'",
")",
":",
"scannumber",
"=",
"int",
"(",
"l",
"[",
"2",
":",
"]",
".",
"split",
"(",
")",
"[",
"0",
"]",
")",
"if",
"not",
"(",
"(",
"number",
"is",
"None",
")",
"or",
"(",
"number",
"==",
"scannumber",
")",
")",
":",
"# break the loop, will skip to the next empty line after this",
"# loop",
"break",
"if",
"scan",
"is",
"None",
":",
"scan",
"=",
"{",
"}",
"scan",
"[",
"'number'",
"]",
"=",
"scannumber",
"scan",
"[",
"'command'",
"]",
"=",
"l",
"[",
"2",
":",
"]",
".",
"split",
"(",
"None",
",",
"1",
")",
"[",
"1",
"]",
".",
"strip",
"(",
")",
"scan",
"[",
"'data'",
"]",
"=",
"[",
"]",
"elif",
"l",
".",
"startswith",
"(",
"'#C'",
")",
":",
"scan",
"[",
"'comment'",
"]",
"=",
"l",
"[",
"2",
":",
"]",
".",
"strip",
"(",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#D'",
")",
":",
"scan",
"[",
"'datestring'",
"]",
"=",
"l",
"[",
"2",
":",
"]",
".",
"strip",
"(",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#T'",
")",
":",
"scan",
"[",
"'countingtime'",
"]",
"=",
"float",
"(",
"l",
"[",
"2",
":",
"]",
".",
"split",
"(",
")",
"[",
"0",
"]",
")",
"scan",
"[",
"'scantimeunits'",
"]",
"=",
"l",
"[",
"2",
":",
"]",
".",
"split",
"(",
")",
"[",
"1",
"]",
".",
"strip",
"(",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#M'",
")",
":",
"scan",
"[",
"'countingcounts'",
"]",
"=",
"float",
"(",
"l",
"[",
"2",
":",
"]",
".",
"split",
"(",
")",
"[",
"0",
"]",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#G'",
")",
":",
"if",
"'G'",
"not",
"in",
"scan",
":",
"scan",
"[",
"'G'",
"]",
"=",
"[",
"]",
"scan",
"[",
"'G'",
"]",
".",
"extend",
"(",
"[",
"float",
"(",
"x",
")",
"for",
"x",
"in",
"l",
".",
"split",
"(",
")",
"[",
"1",
":",
"]",
"]",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#P'",
")",
":",
"if",
"'positions'",
"not",
"in",
"scan",
":",
"scan",
"[",
"'positions'",
"]",
"=",
"[",
"]",
"scan",
"[",
"'positions'",
"]",
".",
"extend",
"(",
"[",
"float",
"(",
"x",
")",
"for",
"x",
"in",
"l",
".",
"split",
"(",
")",
"[",
"1",
":",
"]",
"]",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#Q'",
")",
":",
"pass",
"elif",
"l",
".",
"startswith",
"(",
"'#N'",
")",
":",
"n",
"=",
"[",
"float",
"(",
"x",
")",
"for",
"x",
"in",
"l",
"[",
"2",
":",
"]",
".",
"strip",
"(",
")",
".",
"split",
"(",
")",
"]",
"if",
"len",
"(",
"n",
")",
"==",
"1",
":",
"scan",
"[",
"'N'",
"]",
"=",
"n",
"[",
"0",
"]",
"else",
":",
"scan",
"[",
"'N'",
"]",
"=",
"n",
"elif",
"l",
".",
"startswith",
"(",
"'#L'",
")",
":",
"scan",
"[",
"'Columns'",
"]",
"=",
"[",
"x",
".",
"strip",
"(",
")",
"for",
"x",
"in",
"l",
"[",
"3",
":",
"]",
".",
"split",
"(",
"' '",
")",
"]",
"elif",
"not",
"l",
":",
"# end of file",
"if",
"scan",
"is",
"None",
":",
"raise",
"SpecFileEOF",
"else",
":",
"break",
"elif",
"not",
"l",
".",
"strip",
"(",
")",
":",
"break",
"# empty line, end of scan in file.",
"elif",
"l",
".",
"startswith",
"(",
"'#'",
")",
":",
"# ignore other lines starting with a hashmark.",
"continue",
"else",
":",
"scan",
"[",
"'data'",
"]",
".",
"append",
"(",
"tuple",
"(",
"float",
"(",
"x",
")",
"for",
"x",
"in",
"l",
".",
"split",
"(",
")",
")",
")",
"while",
"l",
".",
"strip",
"(",
")",
":",
"l",
"=",
"f",
".",
"readline",
"(",
")",
"if",
"scan",
"is",
"not",
"None",
":",
"scan",
"[",
"'data'",
"]",
"=",
"np",
".",
"array",
"(",
"scan",
"[",
"'data'",
"]",
",",
"dtype",
"=",
"list",
"(",
"zip",
"(",
"scan",
"[",
"'Columns'",
"]",
",",
"itertools",
".",
"repeat",
"(",
"np",
".",
"float",
")",
")",
")",
")",
"return",
"scan",
"else",
":",
"return",
"scannumber"
] | Read the next spec scan in the file, which starts at the current position. | [
"Read",
"the",
"next",
"spec",
"scan",
"in",
"the",
"file",
"which",
"starts",
"at",
"the",
"current",
"position",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/onedim.py#L18-L82 |
awacha/sastool | sastool/io/onedim.py | readspec | def readspec(filename, read_scan=None):
"""Open a SPEC file and read its content
Inputs:
filename: string
the file to open
read_scan: None, 'all' or integer
the index of scan to be read from the file. If None, no scan should be read. If
'all', all scans should be read. If a number, just the scan with that number
should be read.
Output:
the data in the spec file in a dict.
"""
with open(filename, 'rt') as f:
sf = {'motors': [], 'maxscannumber': 0}
sf['originalfilename'] = filename
lastscannumber = None
while True:
l = f.readline()
if l.startswith('#F'):
sf['filename'] = l[2:].strip()
elif l.startswith('#E'):
sf['epoch'] = int(l[2:].strip())
sf['datetime'] = datetime.datetime.fromtimestamp(sf['epoch'])
elif l.startswith('#D'):
sf['datestring'] = l[2:].strip()
elif l.startswith('#C'):
sf['comment'] = l[2:].strip()
elif l.startswith('#O'):
try:
l = l.split(None, 1)[1]
except IndexError:
continue
if 'motors' not in list(sf.keys()):
sf['motors'] = []
sf['motors'].extend([x.strip() for x in l.split(' ')])
elif not l.strip():
# empty line, signifies the end of the header part. The next
# line will be a scan.
break
sf['scans'] = {}
if read_scan is not None:
if read_scan == 'all':
nr = None
else:
nr = read_scan
try:
while True:
s = readspecscan(f, nr)
if isinstance(s, dict):
sf['scans'][s['number']] = s
if nr is not None:
break
sf['maxscannumber'] = max(
sf['maxscannumber'], s['number'])
elif s is not None:
sf['maxscannumber'] = max(sf['maxscannumber'], s)
except SpecFileEOF:
pass
else:
while True:
l = f.readline()
if not l:
break
if l.startswith('#S'):
n = int(l[2:].split()[0])
sf['maxscannumber'] = max(sf['maxscannumber'], n)
for n in sf['scans']:
s = sf['scans'][n]
s['motors'] = sf['motors']
if 'comment' not in s:
s['comment'] = sf['comment']
if 'positions' not in s:
s['positions'] = [None] * len(sf['motors'])
return sf | python | def readspec(filename, read_scan=None):
"""Open a SPEC file and read its content
Inputs:
filename: string
the file to open
read_scan: None, 'all' or integer
the index of scan to be read from the file. If None, no scan should be read. If
'all', all scans should be read. If a number, just the scan with that number
should be read.
Output:
the data in the spec file in a dict.
"""
with open(filename, 'rt') as f:
sf = {'motors': [], 'maxscannumber': 0}
sf['originalfilename'] = filename
lastscannumber = None
while True:
l = f.readline()
if l.startswith('#F'):
sf['filename'] = l[2:].strip()
elif l.startswith('#E'):
sf['epoch'] = int(l[2:].strip())
sf['datetime'] = datetime.datetime.fromtimestamp(sf['epoch'])
elif l.startswith('#D'):
sf['datestring'] = l[2:].strip()
elif l.startswith('#C'):
sf['comment'] = l[2:].strip()
elif l.startswith('#O'):
try:
l = l.split(None, 1)[1]
except IndexError:
continue
if 'motors' not in list(sf.keys()):
sf['motors'] = []
sf['motors'].extend([x.strip() for x in l.split(' ')])
elif not l.strip():
# empty line, signifies the end of the header part. The next
# line will be a scan.
break
sf['scans'] = {}
if read_scan is not None:
if read_scan == 'all':
nr = None
else:
nr = read_scan
try:
while True:
s = readspecscan(f, nr)
if isinstance(s, dict):
sf['scans'][s['number']] = s
if nr is not None:
break
sf['maxscannumber'] = max(
sf['maxscannumber'], s['number'])
elif s is not None:
sf['maxscannumber'] = max(sf['maxscannumber'], s)
except SpecFileEOF:
pass
else:
while True:
l = f.readline()
if not l:
break
if l.startswith('#S'):
n = int(l[2:].split()[0])
sf['maxscannumber'] = max(sf['maxscannumber'], n)
for n in sf['scans']:
s = sf['scans'][n]
s['motors'] = sf['motors']
if 'comment' not in s:
s['comment'] = sf['comment']
if 'positions' not in s:
s['positions'] = [None] * len(sf['motors'])
return sf | [
"def",
"readspec",
"(",
"filename",
",",
"read_scan",
"=",
"None",
")",
":",
"with",
"open",
"(",
"filename",
",",
"'rt'",
")",
"as",
"f",
":",
"sf",
"=",
"{",
"'motors'",
":",
"[",
"]",
",",
"'maxscannumber'",
":",
"0",
"}",
"sf",
"[",
"'originalfilename'",
"]",
"=",
"filename",
"lastscannumber",
"=",
"None",
"while",
"True",
":",
"l",
"=",
"f",
".",
"readline",
"(",
")",
"if",
"l",
".",
"startswith",
"(",
"'#F'",
")",
":",
"sf",
"[",
"'filename'",
"]",
"=",
"l",
"[",
"2",
":",
"]",
".",
"strip",
"(",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#E'",
")",
":",
"sf",
"[",
"'epoch'",
"]",
"=",
"int",
"(",
"l",
"[",
"2",
":",
"]",
".",
"strip",
"(",
")",
")",
"sf",
"[",
"'datetime'",
"]",
"=",
"datetime",
".",
"datetime",
".",
"fromtimestamp",
"(",
"sf",
"[",
"'epoch'",
"]",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#D'",
")",
":",
"sf",
"[",
"'datestring'",
"]",
"=",
"l",
"[",
"2",
":",
"]",
".",
"strip",
"(",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#C'",
")",
":",
"sf",
"[",
"'comment'",
"]",
"=",
"l",
"[",
"2",
":",
"]",
".",
"strip",
"(",
")",
"elif",
"l",
".",
"startswith",
"(",
"'#O'",
")",
":",
"try",
":",
"l",
"=",
"l",
".",
"split",
"(",
"None",
",",
"1",
")",
"[",
"1",
"]",
"except",
"IndexError",
":",
"continue",
"if",
"'motors'",
"not",
"in",
"list",
"(",
"sf",
".",
"keys",
"(",
")",
")",
":",
"sf",
"[",
"'motors'",
"]",
"=",
"[",
"]",
"sf",
"[",
"'motors'",
"]",
".",
"extend",
"(",
"[",
"x",
".",
"strip",
"(",
")",
"for",
"x",
"in",
"l",
".",
"split",
"(",
"' '",
")",
"]",
")",
"elif",
"not",
"l",
".",
"strip",
"(",
")",
":",
"# empty line, signifies the end of the header part. The next",
"# line will be a scan.",
"break",
"sf",
"[",
"'scans'",
"]",
"=",
"{",
"}",
"if",
"read_scan",
"is",
"not",
"None",
":",
"if",
"read_scan",
"==",
"'all'",
":",
"nr",
"=",
"None",
"else",
":",
"nr",
"=",
"read_scan",
"try",
":",
"while",
"True",
":",
"s",
"=",
"readspecscan",
"(",
"f",
",",
"nr",
")",
"if",
"isinstance",
"(",
"s",
",",
"dict",
")",
":",
"sf",
"[",
"'scans'",
"]",
"[",
"s",
"[",
"'number'",
"]",
"]",
"=",
"s",
"if",
"nr",
"is",
"not",
"None",
":",
"break",
"sf",
"[",
"'maxscannumber'",
"]",
"=",
"max",
"(",
"sf",
"[",
"'maxscannumber'",
"]",
",",
"s",
"[",
"'number'",
"]",
")",
"elif",
"s",
"is",
"not",
"None",
":",
"sf",
"[",
"'maxscannumber'",
"]",
"=",
"max",
"(",
"sf",
"[",
"'maxscannumber'",
"]",
",",
"s",
")",
"except",
"SpecFileEOF",
":",
"pass",
"else",
":",
"while",
"True",
":",
"l",
"=",
"f",
".",
"readline",
"(",
")",
"if",
"not",
"l",
":",
"break",
"if",
"l",
".",
"startswith",
"(",
"'#S'",
")",
":",
"n",
"=",
"int",
"(",
"l",
"[",
"2",
":",
"]",
".",
"split",
"(",
")",
"[",
"0",
"]",
")",
"sf",
"[",
"'maxscannumber'",
"]",
"=",
"max",
"(",
"sf",
"[",
"'maxscannumber'",
"]",
",",
"n",
")",
"for",
"n",
"in",
"sf",
"[",
"'scans'",
"]",
":",
"s",
"=",
"sf",
"[",
"'scans'",
"]",
"[",
"n",
"]",
"s",
"[",
"'motors'",
"]",
"=",
"sf",
"[",
"'motors'",
"]",
"if",
"'comment'",
"not",
"in",
"s",
":",
"s",
"[",
"'comment'",
"]",
"=",
"sf",
"[",
"'comment'",
"]",
"if",
"'positions'",
"not",
"in",
"s",
":",
"s",
"[",
"'positions'",
"]",
"=",
"[",
"None",
"]",
"*",
"len",
"(",
"sf",
"[",
"'motors'",
"]",
")",
"return",
"sf"
] | Open a SPEC file and read its content
Inputs:
filename: string
the file to open
read_scan: None, 'all' or integer
the index of scan to be read from the file. If None, no scan should be read. If
'all', all scans should be read. If a number, just the scan with that number
should be read.
Output:
the data in the spec file in a dict. | [
"Open",
"a",
"SPEC",
"file",
"and",
"read",
"its",
"content"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/onedim.py#L85-L162 |
awacha/sastool | sastool/io/onedim.py | readabt | def readabt(filename, dirs='.'):
"""Read abt_*.fio type files from beamline B1, HASYLAB.
Input:
filename: the name of the file.
dirs: directories to search for files in
Output:
A dictionary. The fields are self-explanatory.
"""
# resolve filename
filename = misc.findfileindirs(filename, dirs)
f = open(filename, 'rt')
abt = {'offsetcorrected': False, 'params': {}, 'columns': [], 'data': [], 'title': '<no_title>',
'offsets': {}, 'filename': filename}
readingmode = ''
for l in f:
l = l.strip()
if l.startswith('!') or len(l) == 0:
continue
elif l.startswith('%c'):
readingmode = 'comments'
elif l.startswith('%p'):
readingmode = 'params'
elif l.startswith('%d'):
readingmode = 'data'
elif readingmode == 'comments':
m = re.match(
r'(?P<scantype>\w+)-Scan started at (?P<startdate>\d+-\w+-\d+) (?P<starttime>\d+:\d+:\d+), ended (?P<endtime>\d+:\d+:\d+)', l)
if m:
abt.update(m.groupdict())
continue
else:
m = re.match(r'Name: (?P<name>\w+)', l)
if m:
abt.update(m.groupdict())
m1 = re.search(r'from (?P<from>\d+(?:.\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search(r'to (?P<to>\d+(?:.\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search(r'by (?P<by>\d+(?:.\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search(r'sampling (?P<sampling>\d+(?:.\d+)?)', l)
if m1:
abt.update(m1.groupdict())
continue
if l.find('Counter readings are offset corrected') >= 0:
abt['offsetcorrected'] = True
readingmode = 'offsets'
continue
# if we reach here in 'comments' mode, this is the title line
abt['title'] = l
continue
elif readingmode == 'offsets':
m = re.findall(r'(\w+)\s(\d+(?:.\d+)?)', l)
if m:
abt['offsets'].update(dict(m))
for k in abt['offsets']:
abt['offsets'][k] = float(abt['offsets'][k])
elif readingmode == 'params':
abt['params'][l.split('=')[0].strip()] = float(
l.split('=')[1].strip())
elif readingmode == 'data':
if l.startswith('Col'):
abt['columns'].append(l.split()[2])
else:
abt['data'].append([float(x) for x in l.split()])
f.close()
# some post-processing
# remove common prefix from column names
maxcolnamelen = max(len(c) for c in abt['columns'])
l = 1
for l in range(1, maxcolnamelen):
if len(set([c[:l] for c in abt['columns']])) > 1:
break
abt['columns'] = [c[l - 1:] for c in abt['columns']]
# represent data as a structured array
dt = np.dtype(list(zip(abt['columns'], itertools.repeat(np.double))))
abt['data'] = np.array(abt['data'], dtype=np.double).view(dt)
# dates and times in datetime formats
monthnames = ['Jan', 'Feb', 'Mar', 'Apr', 'May',
'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
for m, i in zip(monthnames, itertools.count(1)):
abt['startdate'] = abt['startdate'].replace(m, str(i))
abt['startdate'] = datetime.date(
*reversed([int(x) for x in abt['startdate'].split('-')]))
abt['starttime'] = datetime.time(
*[int(x) for x in abt['starttime'].split(':')])
abt['endtime'] = datetime.time(
*[int(x) for x in abt['endtime'].split(':')])
abt['start'] = datetime.datetime.combine(
abt['startdate'], abt['starttime'])
if abt['endtime'] <= abt['starttime']:
abt['end'] = datetime.datetime.combine(
abt['startdate'] + datetime.timedelta(1), abt['endtime'])
else:
abt['end'] = datetime.datetime.combine(
abt['startdate'], abt['endtime'])
del abt['starttime']
del abt['startdate']
del abt['endtime']
# convert some fields to float
for k in ['from', 'to', 'by', 'sampling']:
if k in abt:
abt[k] = float(abt[k])
# change space and dash in title to underscore
abt['title'] = abt['title'].replace('-', '_').replace(' ', '_')
return abt | python | def readabt(filename, dirs='.'):
"""Read abt_*.fio type files from beamline B1, HASYLAB.
Input:
filename: the name of the file.
dirs: directories to search for files in
Output:
A dictionary. The fields are self-explanatory.
"""
# resolve filename
filename = misc.findfileindirs(filename, dirs)
f = open(filename, 'rt')
abt = {'offsetcorrected': False, 'params': {}, 'columns': [], 'data': [], 'title': '<no_title>',
'offsets': {}, 'filename': filename}
readingmode = ''
for l in f:
l = l.strip()
if l.startswith('!') or len(l) == 0:
continue
elif l.startswith('%c'):
readingmode = 'comments'
elif l.startswith('%p'):
readingmode = 'params'
elif l.startswith('%d'):
readingmode = 'data'
elif readingmode == 'comments':
m = re.match(
r'(?P<scantype>\w+)-Scan started at (?P<startdate>\d+-\w+-\d+) (?P<starttime>\d+:\d+:\d+), ended (?P<endtime>\d+:\d+:\d+)', l)
if m:
abt.update(m.groupdict())
continue
else:
m = re.match(r'Name: (?P<name>\w+)', l)
if m:
abt.update(m.groupdict())
m1 = re.search(r'from (?P<from>\d+(?:.\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search(r'to (?P<to>\d+(?:.\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search(r'by (?P<by>\d+(?:.\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search(r'sampling (?P<sampling>\d+(?:.\d+)?)', l)
if m1:
abt.update(m1.groupdict())
continue
if l.find('Counter readings are offset corrected') >= 0:
abt['offsetcorrected'] = True
readingmode = 'offsets'
continue
# if we reach here in 'comments' mode, this is the title line
abt['title'] = l
continue
elif readingmode == 'offsets':
m = re.findall(r'(\w+)\s(\d+(?:.\d+)?)', l)
if m:
abt['offsets'].update(dict(m))
for k in abt['offsets']:
abt['offsets'][k] = float(abt['offsets'][k])
elif readingmode == 'params':
abt['params'][l.split('=')[0].strip()] = float(
l.split('=')[1].strip())
elif readingmode == 'data':
if l.startswith('Col'):
abt['columns'].append(l.split()[2])
else:
abt['data'].append([float(x) for x in l.split()])
f.close()
# some post-processing
# remove common prefix from column names
maxcolnamelen = max(len(c) for c in abt['columns'])
l = 1
for l in range(1, maxcolnamelen):
if len(set([c[:l] for c in abt['columns']])) > 1:
break
abt['columns'] = [c[l - 1:] for c in abt['columns']]
# represent data as a structured array
dt = np.dtype(list(zip(abt['columns'], itertools.repeat(np.double))))
abt['data'] = np.array(abt['data'], dtype=np.double).view(dt)
# dates and times in datetime formats
monthnames = ['Jan', 'Feb', 'Mar', 'Apr', 'May',
'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
for m, i in zip(monthnames, itertools.count(1)):
abt['startdate'] = abt['startdate'].replace(m, str(i))
abt['startdate'] = datetime.date(
*reversed([int(x) for x in abt['startdate'].split('-')]))
abt['starttime'] = datetime.time(
*[int(x) for x in abt['starttime'].split(':')])
abt['endtime'] = datetime.time(
*[int(x) for x in abt['endtime'].split(':')])
abt['start'] = datetime.datetime.combine(
abt['startdate'], abt['starttime'])
if abt['endtime'] <= abt['starttime']:
abt['end'] = datetime.datetime.combine(
abt['startdate'] + datetime.timedelta(1), abt['endtime'])
else:
abt['end'] = datetime.datetime.combine(
abt['startdate'], abt['endtime'])
del abt['starttime']
del abt['startdate']
del abt['endtime']
# convert some fields to float
for k in ['from', 'to', 'by', 'sampling']:
if k in abt:
abt[k] = float(abt[k])
# change space and dash in title to underscore
abt['title'] = abt['title'].replace('-', '_').replace(' ', '_')
return abt | [
"def",
"readabt",
"(",
"filename",
",",
"dirs",
"=",
"'.'",
")",
":",
"# resolve filename",
"filename",
"=",
"misc",
".",
"findfileindirs",
"(",
"filename",
",",
"dirs",
")",
"f",
"=",
"open",
"(",
"filename",
",",
"'rt'",
")",
"abt",
"=",
"{",
"'offsetcorrected'",
":",
"False",
",",
"'params'",
":",
"{",
"}",
",",
"'columns'",
":",
"[",
"]",
",",
"'data'",
":",
"[",
"]",
",",
"'title'",
":",
"'<no_title>'",
",",
"'offsets'",
":",
"{",
"}",
",",
"'filename'",
":",
"filename",
"}",
"readingmode",
"=",
"''",
"for",
"l",
"in",
"f",
":",
"l",
"=",
"l",
".",
"strip",
"(",
")",
"if",
"l",
".",
"startswith",
"(",
"'!'",
")",
"or",
"len",
"(",
"l",
")",
"==",
"0",
":",
"continue",
"elif",
"l",
".",
"startswith",
"(",
"'%c'",
")",
":",
"readingmode",
"=",
"'comments'",
"elif",
"l",
".",
"startswith",
"(",
"'%p'",
")",
":",
"readingmode",
"=",
"'params'",
"elif",
"l",
".",
"startswith",
"(",
"'%d'",
")",
":",
"readingmode",
"=",
"'data'",
"elif",
"readingmode",
"==",
"'comments'",
":",
"m",
"=",
"re",
".",
"match",
"(",
"r'(?P<scantype>\\w+)-Scan started at (?P<startdate>\\d+-\\w+-\\d+) (?P<starttime>\\d+:\\d+:\\d+), ended (?P<endtime>\\d+:\\d+:\\d+)'",
",",
"l",
")",
"if",
"m",
":",
"abt",
".",
"update",
"(",
"m",
".",
"groupdict",
"(",
")",
")",
"continue",
"else",
":",
"m",
"=",
"re",
".",
"match",
"(",
"r'Name: (?P<name>\\w+)'",
",",
"l",
")",
"if",
"m",
":",
"abt",
".",
"update",
"(",
"m",
".",
"groupdict",
"(",
")",
")",
"m1",
"=",
"re",
".",
"search",
"(",
"r'from (?P<from>\\d+(?:.\\d+)?)'",
",",
"l",
")",
"if",
"m1",
":",
"abt",
".",
"update",
"(",
"m1",
".",
"groupdict",
"(",
")",
")",
"m1",
"=",
"re",
".",
"search",
"(",
"r'to (?P<to>\\d+(?:.\\d+)?)'",
",",
"l",
")",
"if",
"m1",
":",
"abt",
".",
"update",
"(",
"m1",
".",
"groupdict",
"(",
")",
")",
"m1",
"=",
"re",
".",
"search",
"(",
"r'by (?P<by>\\d+(?:.\\d+)?)'",
",",
"l",
")",
"if",
"m1",
":",
"abt",
".",
"update",
"(",
"m1",
".",
"groupdict",
"(",
")",
")",
"m1",
"=",
"re",
".",
"search",
"(",
"r'sampling (?P<sampling>\\d+(?:.\\d+)?)'",
",",
"l",
")",
"if",
"m1",
":",
"abt",
".",
"update",
"(",
"m1",
".",
"groupdict",
"(",
")",
")",
"continue",
"if",
"l",
".",
"find",
"(",
"'Counter readings are offset corrected'",
")",
">=",
"0",
":",
"abt",
"[",
"'offsetcorrected'",
"]",
"=",
"True",
"readingmode",
"=",
"'offsets'",
"continue",
"# if we reach here in 'comments' mode, this is the title line",
"abt",
"[",
"'title'",
"]",
"=",
"l",
"continue",
"elif",
"readingmode",
"==",
"'offsets'",
":",
"m",
"=",
"re",
".",
"findall",
"(",
"r'(\\w+)\\s(\\d+(?:.\\d+)?)'",
",",
"l",
")",
"if",
"m",
":",
"abt",
"[",
"'offsets'",
"]",
".",
"update",
"(",
"dict",
"(",
"m",
")",
")",
"for",
"k",
"in",
"abt",
"[",
"'offsets'",
"]",
":",
"abt",
"[",
"'offsets'",
"]",
"[",
"k",
"]",
"=",
"float",
"(",
"abt",
"[",
"'offsets'",
"]",
"[",
"k",
"]",
")",
"elif",
"readingmode",
"==",
"'params'",
":",
"abt",
"[",
"'params'",
"]",
"[",
"l",
".",
"split",
"(",
"'='",
")",
"[",
"0",
"]",
".",
"strip",
"(",
")",
"]",
"=",
"float",
"(",
"l",
".",
"split",
"(",
"'='",
")",
"[",
"1",
"]",
".",
"strip",
"(",
")",
")",
"elif",
"readingmode",
"==",
"'data'",
":",
"if",
"l",
".",
"startswith",
"(",
"'Col'",
")",
":",
"abt",
"[",
"'columns'",
"]",
".",
"append",
"(",
"l",
".",
"split",
"(",
")",
"[",
"2",
"]",
")",
"else",
":",
"abt",
"[",
"'data'",
"]",
".",
"append",
"(",
"[",
"float",
"(",
"x",
")",
"for",
"x",
"in",
"l",
".",
"split",
"(",
")",
"]",
")",
"f",
".",
"close",
"(",
")",
"# some post-processing",
"# remove common prefix from column names",
"maxcolnamelen",
"=",
"max",
"(",
"len",
"(",
"c",
")",
"for",
"c",
"in",
"abt",
"[",
"'columns'",
"]",
")",
"l",
"=",
"1",
"for",
"l",
"in",
"range",
"(",
"1",
",",
"maxcolnamelen",
")",
":",
"if",
"len",
"(",
"set",
"(",
"[",
"c",
"[",
":",
"l",
"]",
"for",
"c",
"in",
"abt",
"[",
"'columns'",
"]",
"]",
")",
")",
">",
"1",
":",
"break",
"abt",
"[",
"'columns'",
"]",
"=",
"[",
"c",
"[",
"l",
"-",
"1",
":",
"]",
"for",
"c",
"in",
"abt",
"[",
"'columns'",
"]",
"]",
"# represent data as a structured array",
"dt",
"=",
"np",
".",
"dtype",
"(",
"list",
"(",
"zip",
"(",
"abt",
"[",
"'columns'",
"]",
",",
"itertools",
".",
"repeat",
"(",
"np",
".",
"double",
")",
")",
")",
")",
"abt",
"[",
"'data'",
"]",
"=",
"np",
".",
"array",
"(",
"abt",
"[",
"'data'",
"]",
",",
"dtype",
"=",
"np",
".",
"double",
")",
".",
"view",
"(",
"dt",
")",
"# dates and times in datetime formats",
"monthnames",
"=",
"[",
"'Jan'",
",",
"'Feb'",
",",
"'Mar'",
",",
"'Apr'",
",",
"'May'",
",",
"'Jun'",
",",
"'Jul'",
",",
"'Aug'",
",",
"'Sep'",
",",
"'Oct'",
",",
"'Nov'",
",",
"'Dec'",
"]",
"for",
"m",
",",
"i",
"in",
"zip",
"(",
"monthnames",
",",
"itertools",
".",
"count",
"(",
"1",
")",
")",
":",
"abt",
"[",
"'startdate'",
"]",
"=",
"abt",
"[",
"'startdate'",
"]",
".",
"replace",
"(",
"m",
",",
"str",
"(",
"i",
")",
")",
"abt",
"[",
"'startdate'",
"]",
"=",
"datetime",
".",
"date",
"(",
"*",
"reversed",
"(",
"[",
"int",
"(",
"x",
")",
"for",
"x",
"in",
"abt",
"[",
"'startdate'",
"]",
".",
"split",
"(",
"'-'",
")",
"]",
")",
")",
"abt",
"[",
"'starttime'",
"]",
"=",
"datetime",
".",
"time",
"(",
"*",
"[",
"int",
"(",
"x",
")",
"for",
"x",
"in",
"abt",
"[",
"'starttime'",
"]",
".",
"split",
"(",
"':'",
")",
"]",
")",
"abt",
"[",
"'endtime'",
"]",
"=",
"datetime",
".",
"time",
"(",
"*",
"[",
"int",
"(",
"x",
")",
"for",
"x",
"in",
"abt",
"[",
"'endtime'",
"]",
".",
"split",
"(",
"':'",
")",
"]",
")",
"abt",
"[",
"'start'",
"]",
"=",
"datetime",
".",
"datetime",
".",
"combine",
"(",
"abt",
"[",
"'startdate'",
"]",
",",
"abt",
"[",
"'starttime'",
"]",
")",
"if",
"abt",
"[",
"'endtime'",
"]",
"<=",
"abt",
"[",
"'starttime'",
"]",
":",
"abt",
"[",
"'end'",
"]",
"=",
"datetime",
".",
"datetime",
".",
"combine",
"(",
"abt",
"[",
"'startdate'",
"]",
"+",
"datetime",
".",
"timedelta",
"(",
"1",
")",
",",
"abt",
"[",
"'endtime'",
"]",
")",
"else",
":",
"abt",
"[",
"'end'",
"]",
"=",
"datetime",
".",
"datetime",
".",
"combine",
"(",
"abt",
"[",
"'startdate'",
"]",
",",
"abt",
"[",
"'endtime'",
"]",
")",
"del",
"abt",
"[",
"'starttime'",
"]",
"del",
"abt",
"[",
"'startdate'",
"]",
"del",
"abt",
"[",
"'endtime'",
"]",
"# convert some fields to float",
"for",
"k",
"in",
"[",
"'from'",
",",
"'to'",
",",
"'by'",
",",
"'sampling'",
"]",
":",
"if",
"k",
"in",
"abt",
":",
"abt",
"[",
"k",
"]",
"=",
"float",
"(",
"abt",
"[",
"k",
"]",
")",
"# change space and dash in title to underscore",
"abt",
"[",
"'title'",
"]",
"=",
"abt",
"[",
"'title'",
"]",
".",
"replace",
"(",
"'-'",
",",
"'_'",
")",
".",
"replace",
"(",
"' '",
",",
"'_'",
")",
"return",
"abt"
] | Read abt_*.fio type files from beamline B1, HASYLAB.
Input:
filename: the name of the file.
dirs: directories to search for files in
Output:
A dictionary. The fields are self-explanatory. | [
"Read",
"abt_",
"*",
".",
"fio",
"type",
"files",
"from",
"beamline",
"B1",
"HASYLAB",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/onedim.py#L165-L275 |
awacha/sastool | sastool/io/credo_cpth5/header.py | Header.energy | def energy(self) -> ErrorValue:
"""X-ray energy"""
return (ErrorValue(*(scipy.constants.physical_constants['speed of light in vacuum'][0::2])) *
ErrorValue(*(scipy.constants.physical_constants['Planck constant in eV s'][0::2])) /
scipy.constants.nano /
self.wavelength) | python | def energy(self) -> ErrorValue:
"""X-ray energy"""
return (ErrorValue(*(scipy.constants.physical_constants['speed of light in vacuum'][0::2])) *
ErrorValue(*(scipy.constants.physical_constants['Planck constant in eV s'][0::2])) /
scipy.constants.nano /
self.wavelength) | [
"def",
"energy",
"(",
"self",
")",
"->",
"ErrorValue",
":",
"return",
"(",
"ErrorValue",
"(",
"*",
"(",
"scipy",
".",
"constants",
".",
"physical_constants",
"[",
"'speed of light in vacuum'",
"]",
"[",
"0",
":",
":",
"2",
"]",
")",
")",
"*",
"ErrorValue",
"(",
"*",
"(",
"scipy",
".",
"constants",
".",
"physical_constants",
"[",
"'Planck constant in eV s'",
"]",
"[",
"0",
":",
":",
"2",
"]",
")",
")",
"/",
"scipy",
".",
"constants",
".",
"nano",
"/",
"self",
".",
"wavelength",
")"
] | X-ray energy | [
"X",
"-",
"ray",
"energy"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_cpth5/header.py#L50-L55 |
awacha/sastool | sastool/io/credo_cpth5/header.py | Header.maskname | def maskname(self) -> Optional[str]:
"""Name of the mask matrix file."""
try:
maskid = self._data['maskname']
if not maskid.endswith('.mat'):
maskid = maskid + '.mat'
return maskid
except KeyError:
return None | python | def maskname(self) -> Optional[str]:
"""Name of the mask matrix file."""
try:
maskid = self._data['maskname']
if not maskid.endswith('.mat'):
maskid = maskid + '.mat'
return maskid
except KeyError:
return None | [
"def",
"maskname",
"(",
"self",
")",
"->",
"Optional",
"[",
"str",
"]",
":",
"try",
":",
"maskid",
"=",
"self",
".",
"_data",
"[",
"'maskname'",
"]",
"if",
"not",
"maskid",
".",
"endswith",
"(",
"'.mat'",
")",
":",
"maskid",
"=",
"maskid",
"+",
"'.mat'",
"return",
"maskid",
"except",
"KeyError",
":",
"return",
"None"
] | Name of the mask matrix file. | [
"Name",
"of",
"the",
"mask",
"matrix",
"file",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_cpth5/header.py#L191-L199 |
awacha/sastool | sastool/utils2d/centering.py | findbeam_gravity | def findbeam_gravity(data, mask):
"""Find beam center with the "gravity" method
Inputs:
data: scattering image
mask: mask matrix
Output:
a vector of length 2 with the x (row) and y (column) coordinates
of the origin, starting from 1
"""
# for each row and column find the center of gravity
data1 = data.copy() # take a copy, because elements will be tampered with
data1[mask == 0] = 0 # set masked elements to zero
# vector of x (row) coordinates
x = np.arange(data1.shape[0])
# vector of y (column) coordinates
y = np.arange(data1.shape[1])
# two column vectors, both containing ones. The length of onex and
# oney corresponds to length of x and y, respectively.
onex = np.ones_like(x)
oney = np.ones_like(y)
# Multiply the matrix with x. Each element of the resulting column
# vector will contain the center of gravity of the corresponding row
# in the matrix, multiplied by the "weight". Thus: nix_i=sum_j( A_ij
# * x_j). If we divide this by spamx_i=sum_j(A_ij), then we get the
# center of gravity. The length of this column vector is len(y).
nix = np.dot(x, data1)
spamx = np.dot(onex, data1)
# indices where both nix and spamx is nonzero.
goodx = ((nix != 0) & (spamx != 0))
# trim y, nix and spamx by goodx, eliminate invalid points.
nix = nix[goodx]
spamx = spamx[goodx]
# now do the same for the column direction.
niy = np.dot(data1, y)
spamy = np.dot(data1, oney)
goody = ((niy != 0) & (spamy != 0))
niy = niy[goody]
spamy = spamy[goody]
# column coordinate of the center in each row will be contained in
# ycent, the row coordinate of the center in each column will be
# in xcent.
ycent = nix / spamx
xcent = niy / spamy
# return the mean values as the centers.
return [xcent.mean(), ycent.mean()] | python | def findbeam_gravity(data, mask):
"""Find beam center with the "gravity" method
Inputs:
data: scattering image
mask: mask matrix
Output:
a vector of length 2 with the x (row) and y (column) coordinates
of the origin, starting from 1
"""
# for each row and column find the center of gravity
data1 = data.copy() # take a copy, because elements will be tampered with
data1[mask == 0] = 0 # set masked elements to zero
# vector of x (row) coordinates
x = np.arange(data1.shape[0])
# vector of y (column) coordinates
y = np.arange(data1.shape[1])
# two column vectors, both containing ones. The length of onex and
# oney corresponds to length of x and y, respectively.
onex = np.ones_like(x)
oney = np.ones_like(y)
# Multiply the matrix with x. Each element of the resulting column
# vector will contain the center of gravity of the corresponding row
# in the matrix, multiplied by the "weight". Thus: nix_i=sum_j( A_ij
# * x_j). If we divide this by spamx_i=sum_j(A_ij), then we get the
# center of gravity. The length of this column vector is len(y).
nix = np.dot(x, data1)
spamx = np.dot(onex, data1)
# indices where both nix and spamx is nonzero.
goodx = ((nix != 0) & (spamx != 0))
# trim y, nix and spamx by goodx, eliminate invalid points.
nix = nix[goodx]
spamx = spamx[goodx]
# now do the same for the column direction.
niy = np.dot(data1, y)
spamy = np.dot(data1, oney)
goody = ((niy != 0) & (spamy != 0))
niy = niy[goody]
spamy = spamy[goody]
# column coordinate of the center in each row will be contained in
# ycent, the row coordinate of the center in each column will be
# in xcent.
ycent = nix / spamx
xcent = niy / spamy
# return the mean values as the centers.
return [xcent.mean(), ycent.mean()] | [
"def",
"findbeam_gravity",
"(",
"data",
",",
"mask",
")",
":",
"# for each row and column find the center of gravity",
"data1",
"=",
"data",
".",
"copy",
"(",
")",
"# take a copy, because elements will be tampered with",
"data1",
"[",
"mask",
"==",
"0",
"]",
"=",
"0",
"# set masked elements to zero",
"# vector of x (row) coordinates",
"x",
"=",
"np",
".",
"arange",
"(",
"data1",
".",
"shape",
"[",
"0",
"]",
")",
"# vector of y (column) coordinates",
"y",
"=",
"np",
".",
"arange",
"(",
"data1",
".",
"shape",
"[",
"1",
"]",
")",
"# two column vectors, both containing ones. The length of onex and",
"# oney corresponds to length of x and y, respectively.",
"onex",
"=",
"np",
".",
"ones_like",
"(",
"x",
")",
"oney",
"=",
"np",
".",
"ones_like",
"(",
"y",
")",
"# Multiply the matrix with x. Each element of the resulting column",
"# vector will contain the center of gravity of the corresponding row",
"# in the matrix, multiplied by the \"weight\". Thus: nix_i=sum_j( A_ij",
"# * x_j). If we divide this by spamx_i=sum_j(A_ij), then we get the",
"# center of gravity. The length of this column vector is len(y).",
"nix",
"=",
"np",
".",
"dot",
"(",
"x",
",",
"data1",
")",
"spamx",
"=",
"np",
".",
"dot",
"(",
"onex",
",",
"data1",
")",
"# indices where both nix and spamx is nonzero.",
"goodx",
"=",
"(",
"(",
"nix",
"!=",
"0",
")",
"&",
"(",
"spamx",
"!=",
"0",
")",
")",
"# trim y, nix and spamx by goodx, eliminate invalid points.",
"nix",
"=",
"nix",
"[",
"goodx",
"]",
"spamx",
"=",
"spamx",
"[",
"goodx",
"]",
"# now do the same for the column direction.",
"niy",
"=",
"np",
".",
"dot",
"(",
"data1",
",",
"y",
")",
"spamy",
"=",
"np",
".",
"dot",
"(",
"data1",
",",
"oney",
")",
"goody",
"=",
"(",
"(",
"niy",
"!=",
"0",
")",
"&",
"(",
"spamy",
"!=",
"0",
")",
")",
"niy",
"=",
"niy",
"[",
"goody",
"]",
"spamy",
"=",
"spamy",
"[",
"goody",
"]",
"# column coordinate of the center in each row will be contained in",
"# ycent, the row coordinate of the center in each column will be",
"# in xcent.",
"ycent",
"=",
"nix",
"/",
"spamx",
"xcent",
"=",
"niy",
"/",
"spamy",
"# return the mean values as the centers.",
"return",
"[",
"xcent",
".",
"mean",
"(",
")",
",",
"ycent",
".",
"mean",
"(",
")",
"]"
] | Find beam center with the "gravity" method
Inputs:
data: scattering image
mask: mask matrix
Output:
a vector of length 2 with the x (row) and y (column) coordinates
of the origin, starting from 1 | [
"Find",
"beam",
"center",
"with",
"the",
"gravity",
"method"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/centering.py#L11-L58 |
awacha/sastool | sastool/utils2d/centering.py | findbeam_slices | def findbeam_slices(data, orig_initial, mask=None, maxiter=0, epsfcn=0.001,
dmin=0, dmax=np.inf, sector_width=np.pi / 9.0, extent=10, callback=None):
"""Find beam center with the "slices" method
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.leastsq
epsfcn: input for scipy.optimize.leastsq
dmin: disregard pixels nearer to the origin than this
dmax: disregard pixels farther from the origin than this
sector_width: width of sectors in radians
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x (row) and y (column) coordinates
of the origin.
"""
if mask is None:
mask = np.ones(data.shape)
data = data.astype(np.double)
def targetfunc(orig, data, mask, orig_orig, callback):
# integrate four sectors
I = [None] * 4
p, Ints, A = radint_nsector(data, None, -1, -1, -1, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask=mask,
phi0=np.pi / 4 - 0.5 * sector_width, dphi=sector_width,
Nsector=4)
minpix = max(max(p.min(0).tolist()), dmin)
maxpix = min(min(p.max(0).tolist()), dmax)
if (maxpix < minpix):
raise ValueError('The four slices do not overlap! Please give a\
better approximation for the origin or use another centering method.')
for i in range(4):
I[i] = Ints[:, i][(p[:, i] >= minpix) & (p[:, i] <= maxpix)]
ret = ((I[0] - I[2]) ** 2 + (I[1] - I[3]) ** 2) / (maxpix - minpix)
if callback is not None:
callback()
return ret
orig = scipy.optimize.leastsq(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask.astype(np.uint8),
np.array(orig_initial) - extent, callback),
maxfev=maxiter, epsfcn=0.01)
return orig[0] + np.array(orig_initial) - extent | python | def findbeam_slices(data, orig_initial, mask=None, maxiter=0, epsfcn=0.001,
dmin=0, dmax=np.inf, sector_width=np.pi / 9.0, extent=10, callback=None):
"""Find beam center with the "slices" method
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.leastsq
epsfcn: input for scipy.optimize.leastsq
dmin: disregard pixels nearer to the origin than this
dmax: disregard pixels farther from the origin than this
sector_width: width of sectors in radians
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x (row) and y (column) coordinates
of the origin.
"""
if mask is None:
mask = np.ones(data.shape)
data = data.astype(np.double)
def targetfunc(orig, data, mask, orig_orig, callback):
# integrate four sectors
I = [None] * 4
p, Ints, A = radint_nsector(data, None, -1, -1, -1, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask=mask,
phi0=np.pi / 4 - 0.5 * sector_width, dphi=sector_width,
Nsector=4)
minpix = max(max(p.min(0).tolist()), dmin)
maxpix = min(min(p.max(0).tolist()), dmax)
if (maxpix < minpix):
raise ValueError('The four slices do not overlap! Please give a\
better approximation for the origin or use another centering method.')
for i in range(4):
I[i] = Ints[:, i][(p[:, i] >= minpix) & (p[:, i] <= maxpix)]
ret = ((I[0] - I[2]) ** 2 + (I[1] - I[3]) ** 2) / (maxpix - minpix)
if callback is not None:
callback()
return ret
orig = scipy.optimize.leastsq(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask.astype(np.uint8),
np.array(orig_initial) - extent, callback),
maxfev=maxiter, epsfcn=0.01)
return orig[0] + np.array(orig_initial) - extent | [
"def",
"findbeam_slices",
"(",
"data",
",",
"orig_initial",
",",
"mask",
"=",
"None",
",",
"maxiter",
"=",
"0",
",",
"epsfcn",
"=",
"0.001",
",",
"dmin",
"=",
"0",
",",
"dmax",
"=",
"np",
".",
"inf",
",",
"sector_width",
"=",
"np",
".",
"pi",
"/",
"9.0",
",",
"extent",
"=",
"10",
",",
"callback",
"=",
"None",
")",
":",
"if",
"mask",
"is",
"None",
":",
"mask",
"=",
"np",
".",
"ones",
"(",
"data",
".",
"shape",
")",
"data",
"=",
"data",
".",
"astype",
"(",
"np",
".",
"double",
")",
"def",
"targetfunc",
"(",
"orig",
",",
"data",
",",
"mask",
",",
"orig_orig",
",",
"callback",
")",
":",
"# integrate four sectors",
"I",
"=",
"[",
"None",
"]",
"*",
"4",
"p",
",",
"Ints",
",",
"A",
"=",
"radint_nsector",
"(",
"data",
",",
"None",
",",
"-",
"1",
",",
"-",
"1",
",",
"-",
"1",
",",
"orig",
"[",
"0",
"]",
"+",
"orig_orig",
"[",
"0",
"]",
",",
"orig",
"[",
"1",
"]",
"+",
"orig_orig",
"[",
"1",
"]",
",",
"mask",
"=",
"mask",
",",
"phi0",
"=",
"np",
".",
"pi",
"/",
"4",
"-",
"0.5",
"*",
"sector_width",
",",
"dphi",
"=",
"sector_width",
",",
"Nsector",
"=",
"4",
")",
"minpix",
"=",
"max",
"(",
"max",
"(",
"p",
".",
"min",
"(",
"0",
")",
".",
"tolist",
"(",
")",
")",
",",
"dmin",
")",
"maxpix",
"=",
"min",
"(",
"min",
"(",
"p",
".",
"max",
"(",
"0",
")",
".",
"tolist",
"(",
")",
")",
",",
"dmax",
")",
"if",
"(",
"maxpix",
"<",
"minpix",
")",
":",
"raise",
"ValueError",
"(",
"'The four slices do not overlap! Please give a\\\n better approximation for the origin or use another centering method.'",
")",
"for",
"i",
"in",
"range",
"(",
"4",
")",
":",
"I",
"[",
"i",
"]",
"=",
"Ints",
"[",
":",
",",
"i",
"]",
"[",
"(",
"p",
"[",
":",
",",
"i",
"]",
">=",
"minpix",
")",
"&",
"(",
"p",
"[",
":",
",",
"i",
"]",
"<=",
"maxpix",
")",
"]",
"ret",
"=",
"(",
"(",
"I",
"[",
"0",
"]",
"-",
"I",
"[",
"2",
"]",
")",
"**",
"2",
"+",
"(",
"I",
"[",
"1",
"]",
"-",
"I",
"[",
"3",
"]",
")",
"**",
"2",
")",
"/",
"(",
"maxpix",
"-",
"minpix",
")",
"if",
"callback",
"is",
"not",
"None",
":",
"callback",
"(",
")",
"return",
"ret",
"orig",
"=",
"scipy",
".",
"optimize",
".",
"leastsq",
"(",
"targetfunc",
",",
"np",
".",
"array",
"(",
"[",
"extent",
",",
"extent",
"]",
")",
",",
"args",
"=",
"(",
"data",
",",
"1",
"-",
"mask",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
",",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent",
",",
"callback",
")",
",",
"maxfev",
"=",
"maxiter",
",",
"epsfcn",
"=",
"0.01",
")",
"return",
"orig",
"[",
"0",
"]",
"+",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent"
] | Find beam center with the "slices" method
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.leastsq
epsfcn: input for scipy.optimize.leastsq
dmin: disregard pixels nearer to the origin than this
dmax: disregard pixels farther from the origin than this
sector_width: width of sectors in radians
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x (row) and y (column) coordinates
of the origin. | [
"Find",
"beam",
"center",
"with",
"the",
"slices",
"method"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/centering.py#L61-L110 |
awacha/sastool | sastool/utils2d/centering.py | findbeam_azimuthal | def findbeam_azimuthal(data, orig_initial, mask=None, maxiter=100, Ntheta=50,
dmin=0, dmax=np.inf, extent=10, callback=None):
"""Find beam center using azimuthal integration
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.fmin
Ntheta: the number of theta points for the azimuthal integration
dmin: pixels nearer to the origin than this will be excluded from
the azimuthal integration
dmax: pixels farther from the origin than this will be excluded from
the azimuthal integration
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x and y coordinates of the origin,
starting from 1
"""
if mask is None:
mask = np.ones(data.shape)
data = data.astype(np.double)
def targetfunc(orig, data, mask, orig_orig, callback):
def sinfun(p, x, y):
return (y - np.sin(x + p[1]) * p[0] - p[2]) / np.sqrt(len(x))
t, I, a = azimintpix(data, None, orig[
0] + orig_orig[0], orig[1] + orig_orig[1], mask.astype('uint8'), Ntheta, dmin, dmax)
if len(a) > (a > 0).sum():
raise ValueError('findbeam_azimuthal: non-complete azimuthal average, please consider changing dmin, dmax and/or orig_initial!')
p = ((I.max() - I.min()) / 2.0, t[I == I.max()][0], I.mean())
p = scipy.optimize.leastsq(sinfun, p, (t, I))[0]
# print "findbeam_azimuthal: orig=",orig,"amplitude=",abs(p[0])
if callback is not None:
callback()
return abs(p[0])
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask, np.array(orig_initial) - extent,
callback), maxiter=maxiter, disp=0)
return orig1 + np.array(orig_initial) - extent | python | def findbeam_azimuthal(data, orig_initial, mask=None, maxiter=100, Ntheta=50,
dmin=0, dmax=np.inf, extent=10, callback=None):
"""Find beam center using azimuthal integration
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.fmin
Ntheta: the number of theta points for the azimuthal integration
dmin: pixels nearer to the origin than this will be excluded from
the azimuthal integration
dmax: pixels farther from the origin than this will be excluded from
the azimuthal integration
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x and y coordinates of the origin,
starting from 1
"""
if mask is None:
mask = np.ones(data.shape)
data = data.astype(np.double)
def targetfunc(orig, data, mask, orig_orig, callback):
def sinfun(p, x, y):
return (y - np.sin(x + p[1]) * p[0] - p[2]) / np.sqrt(len(x))
t, I, a = azimintpix(data, None, orig[
0] + orig_orig[0], orig[1] + orig_orig[1], mask.astype('uint8'), Ntheta, dmin, dmax)
if len(a) > (a > 0).sum():
raise ValueError('findbeam_azimuthal: non-complete azimuthal average, please consider changing dmin, dmax and/or orig_initial!')
p = ((I.max() - I.min()) / 2.0, t[I == I.max()][0], I.mean())
p = scipy.optimize.leastsq(sinfun, p, (t, I))[0]
# print "findbeam_azimuthal: orig=",orig,"amplitude=",abs(p[0])
if callback is not None:
callback()
return abs(p[0])
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask, np.array(orig_initial) - extent,
callback), maxiter=maxiter, disp=0)
return orig1 + np.array(orig_initial) - extent | [
"def",
"findbeam_azimuthal",
"(",
"data",
",",
"orig_initial",
",",
"mask",
"=",
"None",
",",
"maxiter",
"=",
"100",
",",
"Ntheta",
"=",
"50",
",",
"dmin",
"=",
"0",
",",
"dmax",
"=",
"np",
".",
"inf",
",",
"extent",
"=",
"10",
",",
"callback",
"=",
"None",
")",
":",
"if",
"mask",
"is",
"None",
":",
"mask",
"=",
"np",
".",
"ones",
"(",
"data",
".",
"shape",
")",
"data",
"=",
"data",
".",
"astype",
"(",
"np",
".",
"double",
")",
"def",
"targetfunc",
"(",
"orig",
",",
"data",
",",
"mask",
",",
"orig_orig",
",",
"callback",
")",
":",
"def",
"sinfun",
"(",
"p",
",",
"x",
",",
"y",
")",
":",
"return",
"(",
"y",
"-",
"np",
".",
"sin",
"(",
"x",
"+",
"p",
"[",
"1",
"]",
")",
"*",
"p",
"[",
"0",
"]",
"-",
"p",
"[",
"2",
"]",
")",
"/",
"np",
".",
"sqrt",
"(",
"len",
"(",
"x",
")",
")",
"t",
",",
"I",
",",
"a",
"=",
"azimintpix",
"(",
"data",
",",
"None",
",",
"orig",
"[",
"0",
"]",
"+",
"orig_orig",
"[",
"0",
"]",
",",
"orig",
"[",
"1",
"]",
"+",
"orig_orig",
"[",
"1",
"]",
",",
"mask",
".",
"astype",
"(",
"'uint8'",
")",
",",
"Ntheta",
",",
"dmin",
",",
"dmax",
")",
"if",
"len",
"(",
"a",
")",
">",
"(",
"a",
">",
"0",
")",
".",
"sum",
"(",
")",
":",
"raise",
"ValueError",
"(",
"'findbeam_azimuthal: non-complete azimuthal average, please consider changing dmin, dmax and/or orig_initial!'",
")",
"p",
"=",
"(",
"(",
"I",
".",
"max",
"(",
")",
"-",
"I",
".",
"min",
"(",
")",
")",
"/",
"2.0",
",",
"t",
"[",
"I",
"==",
"I",
".",
"max",
"(",
")",
"]",
"[",
"0",
"]",
",",
"I",
".",
"mean",
"(",
")",
")",
"p",
"=",
"scipy",
".",
"optimize",
".",
"leastsq",
"(",
"sinfun",
",",
"p",
",",
"(",
"t",
",",
"I",
")",
")",
"[",
"0",
"]",
"# print \"findbeam_azimuthal: orig=\",orig,\"amplitude=\",abs(p[0])",
"if",
"callback",
"is",
"not",
"None",
":",
"callback",
"(",
")",
"return",
"abs",
"(",
"p",
"[",
"0",
"]",
")",
"orig1",
"=",
"scipy",
".",
"optimize",
".",
"fmin",
"(",
"targetfunc",
",",
"np",
".",
"array",
"(",
"[",
"extent",
",",
"extent",
"]",
")",
",",
"args",
"=",
"(",
"data",
",",
"1",
"-",
"mask",
",",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent",
",",
"callback",
")",
",",
"maxiter",
"=",
"maxiter",
",",
"disp",
"=",
"0",
")",
"return",
"orig1",
"+",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent"
] | Find beam center using azimuthal integration
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.fmin
Ntheta: the number of theta points for the azimuthal integration
dmin: pixels nearer to the origin than this will be excluded from
the azimuthal integration
dmax: pixels farther from the origin than this will be excluded from
the azimuthal integration
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x and y coordinates of the origin,
starting from 1 | [
"Find",
"beam",
"center",
"using",
"azimuthal",
"integration"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/centering.py#L113-L157 |
awacha/sastool | sastool/utils2d/centering.py | findbeam_azimuthal_fold | def findbeam_azimuthal_fold(data, orig_initial, mask=None, maxiter=100,
Ntheta=50, dmin=0, dmax=np.inf, extent=10, callback=None):
"""Find beam center using azimuthal integration and folding
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.fmin
Ntheta: the number of theta points for the azimuthal integration.
Should be even!
dmin: pixels nearer to the origin than this will be excluded from
the azimuthal integration
dmax: pixels farther from the origin than this will be excluded from
the azimuthal integration
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x and y coordinates of the origin,
starting from 1
"""
if Ntheta % 2:
raise ValueError('Ntheta should be even!')
if mask is None:
mask = np.ones_like(data).astype(np.uint8)
data = data.astype(np.double)
# the function to minimize is the sum of squared difference of two halves of
# the azimuthal integral.
def targetfunc(orig, data, mask, orig_orig, callback):
I = azimintpix(data, None, orig[
0] + orig_orig[0], orig[1] + orig_orig[1], mask, Ntheta, dmin, dmax)[1]
if callback is not None:
callback()
return np.sum((I[:Ntheta / 2] - I[Ntheta / 2:]) ** 2) / Ntheta
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask, np.array(orig_initial) - extent, callback), maxiter=maxiter, disp=0)
return orig1 + np.array(orig_initial) - extent | python | def findbeam_azimuthal_fold(data, orig_initial, mask=None, maxiter=100,
Ntheta=50, dmin=0, dmax=np.inf, extent=10, callback=None):
"""Find beam center using azimuthal integration and folding
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.fmin
Ntheta: the number of theta points for the azimuthal integration.
Should be even!
dmin: pixels nearer to the origin than this will be excluded from
the azimuthal integration
dmax: pixels farther from the origin than this will be excluded from
the azimuthal integration
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x and y coordinates of the origin,
starting from 1
"""
if Ntheta % 2:
raise ValueError('Ntheta should be even!')
if mask is None:
mask = np.ones_like(data).astype(np.uint8)
data = data.astype(np.double)
# the function to minimize is the sum of squared difference of two halves of
# the azimuthal integral.
def targetfunc(orig, data, mask, orig_orig, callback):
I = azimintpix(data, None, orig[
0] + orig_orig[0], orig[1] + orig_orig[1], mask, Ntheta, dmin, dmax)[1]
if callback is not None:
callback()
return np.sum((I[:Ntheta / 2] - I[Ntheta / 2:]) ** 2) / Ntheta
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask, np.array(orig_initial) - extent, callback), maxiter=maxiter, disp=0)
return orig1 + np.array(orig_initial) - extent | [
"def",
"findbeam_azimuthal_fold",
"(",
"data",
",",
"orig_initial",
",",
"mask",
"=",
"None",
",",
"maxiter",
"=",
"100",
",",
"Ntheta",
"=",
"50",
",",
"dmin",
"=",
"0",
",",
"dmax",
"=",
"np",
".",
"inf",
",",
"extent",
"=",
"10",
",",
"callback",
"=",
"None",
")",
":",
"if",
"Ntheta",
"%",
"2",
":",
"raise",
"ValueError",
"(",
"'Ntheta should be even!'",
")",
"if",
"mask",
"is",
"None",
":",
"mask",
"=",
"np",
".",
"ones_like",
"(",
"data",
")",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
"data",
"=",
"data",
".",
"astype",
"(",
"np",
".",
"double",
")",
"# the function to minimize is the sum of squared difference of two halves of",
"# the azimuthal integral.",
"def",
"targetfunc",
"(",
"orig",
",",
"data",
",",
"mask",
",",
"orig_orig",
",",
"callback",
")",
":",
"I",
"=",
"azimintpix",
"(",
"data",
",",
"None",
",",
"orig",
"[",
"0",
"]",
"+",
"orig_orig",
"[",
"0",
"]",
",",
"orig",
"[",
"1",
"]",
"+",
"orig_orig",
"[",
"1",
"]",
",",
"mask",
",",
"Ntheta",
",",
"dmin",
",",
"dmax",
")",
"[",
"1",
"]",
"if",
"callback",
"is",
"not",
"None",
":",
"callback",
"(",
")",
"return",
"np",
".",
"sum",
"(",
"(",
"I",
"[",
":",
"Ntheta",
"/",
"2",
"]",
"-",
"I",
"[",
"Ntheta",
"/",
"2",
":",
"]",
")",
"**",
"2",
")",
"/",
"Ntheta",
"orig1",
"=",
"scipy",
".",
"optimize",
".",
"fmin",
"(",
"targetfunc",
",",
"np",
".",
"array",
"(",
"[",
"extent",
",",
"extent",
"]",
")",
",",
"args",
"=",
"(",
"data",
",",
"1",
"-",
"mask",
",",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent",
",",
"callback",
")",
",",
"maxiter",
"=",
"maxiter",
",",
"disp",
"=",
"0",
")",
"return",
"orig1",
"+",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent"
] | Find beam center using azimuthal integration and folding
Inputs:
data: scattering matrix
orig_initial: estimated value for x (row) and y (column)
coordinates of the beam center, starting from 1.
mask: mask matrix. If None, nothing will be masked. Otherwise it
should be of the same size as data. Nonzero means non-masked.
maxiter: maximum number of iterations for scipy.optimize.fmin
Ntheta: the number of theta points for the azimuthal integration.
Should be even!
dmin: pixels nearer to the origin than this will be excluded from
the azimuthal integration
dmax: pixels farther from the origin than this will be excluded from
the azimuthal integration
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Output:
a vector of length 2 with the x and y coordinates of the origin,
starting from 1 | [
"Find",
"beam",
"center",
"using",
"azimuthal",
"integration",
"and",
"folding"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/centering.py#L160-L201 |
awacha/sastool | sastool/utils2d/centering.py | findbeam_semitransparent | def findbeam_semitransparent(data, pri, threshold=0.05):
"""Find beam with 2D weighting of semitransparent beamstop area
Inputs:
data: scattering matrix
pri: list of four: [xmin,xmax,ymin,ymax] for the borders of the beam
area under the semitransparent beamstop. X corresponds to the column
index (ie. A[Y,X] is the element of A from the Xth column and the
Yth row). You can get these by zooming on the figure and retrieving
the result of axis() (like in Matlab)
threshold: do not count pixels if their intensity falls below
max_intensity*threshold. max_intensity is the highest count rate
in the current row or column, respectively. Set None to disable
this feature.
Outputs: bcx,bcy
the x and y coordinates of the primary beam
"""
rowmin = np.floor(min(pri[2:]))
rowmax = np.ceil(max(pri[2:]))
colmin = np.floor(min(pri[:2]))
colmax = np.ceil(max(pri[:2]))
if threshold is not None:
# beam area on the scattering image
B = data[rowmin:rowmax, colmin:colmax]
# print B.shape
# row and column indices
Ri = np.arange(rowmin, rowmax)
Ci = np.arange(colmin, colmax)
# print len(Ri)
# print len(Ci)
Ravg = B.mean(1) # average over column index, will be a concave curve
Cavg = B.mean(0) # average over row index, will be a concave curve
# find the maxima im both directions and their positions
maxR = Ravg.max()
maxRpos = Ravg.argmax()
maxC = Cavg.max()
maxCpos = Cavg.argmax()
# cut off pixels which are smaller than threshold*peak_height
Rmin = Ri[
((Ravg - Ravg[0]) >= ((maxR - Ravg[0]) * threshold)) & (Ri < maxRpos)][0]
Rmax = Ri[
((Ravg - Ravg[-1]) >= ((maxR - Ravg[-1]) * threshold)) & (Ri > maxRpos)][-1]
Cmin = Ci[
((Cavg - Cavg[0]) >= ((maxC - Cavg[0]) * threshold)) & (Ci < maxCpos)][0]
Cmax = Ci[
((Cavg - Cavg[-1]) >= ((maxC - Cavg[-1]) * threshold)) & (Ci > maxCpos)][-1]
else:
Rmin = rowmin
Rmax = rowmax
Cmin = colmin
Cmax = colmax
d = data[Rmin:Rmax + 1, Cmin:Cmax + 1]
x = np.arange(Rmin, Rmax + 1)
y = np.arange(Cmin, Cmax + 1)
bcx = (d.sum(1) * x).sum() / d.sum()
bcy = (d.sum(0) * y).sum() / d.sum()
return bcx, bcy | python | def findbeam_semitransparent(data, pri, threshold=0.05):
"""Find beam with 2D weighting of semitransparent beamstop area
Inputs:
data: scattering matrix
pri: list of four: [xmin,xmax,ymin,ymax] for the borders of the beam
area under the semitransparent beamstop. X corresponds to the column
index (ie. A[Y,X] is the element of A from the Xth column and the
Yth row). You can get these by zooming on the figure and retrieving
the result of axis() (like in Matlab)
threshold: do not count pixels if their intensity falls below
max_intensity*threshold. max_intensity is the highest count rate
in the current row or column, respectively. Set None to disable
this feature.
Outputs: bcx,bcy
the x and y coordinates of the primary beam
"""
rowmin = np.floor(min(pri[2:]))
rowmax = np.ceil(max(pri[2:]))
colmin = np.floor(min(pri[:2]))
colmax = np.ceil(max(pri[:2]))
if threshold is not None:
# beam area on the scattering image
B = data[rowmin:rowmax, colmin:colmax]
# print B.shape
# row and column indices
Ri = np.arange(rowmin, rowmax)
Ci = np.arange(colmin, colmax)
# print len(Ri)
# print len(Ci)
Ravg = B.mean(1) # average over column index, will be a concave curve
Cavg = B.mean(0) # average over row index, will be a concave curve
# find the maxima im both directions and their positions
maxR = Ravg.max()
maxRpos = Ravg.argmax()
maxC = Cavg.max()
maxCpos = Cavg.argmax()
# cut off pixels which are smaller than threshold*peak_height
Rmin = Ri[
((Ravg - Ravg[0]) >= ((maxR - Ravg[0]) * threshold)) & (Ri < maxRpos)][0]
Rmax = Ri[
((Ravg - Ravg[-1]) >= ((maxR - Ravg[-1]) * threshold)) & (Ri > maxRpos)][-1]
Cmin = Ci[
((Cavg - Cavg[0]) >= ((maxC - Cavg[0]) * threshold)) & (Ci < maxCpos)][0]
Cmax = Ci[
((Cavg - Cavg[-1]) >= ((maxC - Cavg[-1]) * threshold)) & (Ci > maxCpos)][-1]
else:
Rmin = rowmin
Rmax = rowmax
Cmin = colmin
Cmax = colmax
d = data[Rmin:Rmax + 1, Cmin:Cmax + 1]
x = np.arange(Rmin, Rmax + 1)
y = np.arange(Cmin, Cmax + 1)
bcx = (d.sum(1) * x).sum() / d.sum()
bcy = (d.sum(0) * y).sum() / d.sum()
return bcx, bcy | [
"def",
"findbeam_semitransparent",
"(",
"data",
",",
"pri",
",",
"threshold",
"=",
"0.05",
")",
":",
"rowmin",
"=",
"np",
".",
"floor",
"(",
"min",
"(",
"pri",
"[",
"2",
":",
"]",
")",
")",
"rowmax",
"=",
"np",
".",
"ceil",
"(",
"max",
"(",
"pri",
"[",
"2",
":",
"]",
")",
")",
"colmin",
"=",
"np",
".",
"floor",
"(",
"min",
"(",
"pri",
"[",
":",
"2",
"]",
")",
")",
"colmax",
"=",
"np",
".",
"ceil",
"(",
"max",
"(",
"pri",
"[",
":",
"2",
"]",
")",
")",
"if",
"threshold",
"is",
"not",
"None",
":",
"# beam area on the scattering image",
"B",
"=",
"data",
"[",
"rowmin",
":",
"rowmax",
",",
"colmin",
":",
"colmax",
"]",
"# print B.shape",
"# row and column indices",
"Ri",
"=",
"np",
".",
"arange",
"(",
"rowmin",
",",
"rowmax",
")",
"Ci",
"=",
"np",
".",
"arange",
"(",
"colmin",
",",
"colmax",
")",
"# print len(Ri)",
"# print len(Ci)",
"Ravg",
"=",
"B",
".",
"mean",
"(",
"1",
")",
"# average over column index, will be a concave curve",
"Cavg",
"=",
"B",
".",
"mean",
"(",
"0",
")",
"# average over row index, will be a concave curve",
"# find the maxima im both directions and their positions",
"maxR",
"=",
"Ravg",
".",
"max",
"(",
")",
"maxRpos",
"=",
"Ravg",
".",
"argmax",
"(",
")",
"maxC",
"=",
"Cavg",
".",
"max",
"(",
")",
"maxCpos",
"=",
"Cavg",
".",
"argmax",
"(",
")",
"# cut off pixels which are smaller than threshold*peak_height",
"Rmin",
"=",
"Ri",
"[",
"(",
"(",
"Ravg",
"-",
"Ravg",
"[",
"0",
"]",
")",
">=",
"(",
"(",
"maxR",
"-",
"Ravg",
"[",
"0",
"]",
")",
"*",
"threshold",
")",
")",
"&",
"(",
"Ri",
"<",
"maxRpos",
")",
"]",
"[",
"0",
"]",
"Rmax",
"=",
"Ri",
"[",
"(",
"(",
"Ravg",
"-",
"Ravg",
"[",
"-",
"1",
"]",
")",
">=",
"(",
"(",
"maxR",
"-",
"Ravg",
"[",
"-",
"1",
"]",
")",
"*",
"threshold",
")",
")",
"&",
"(",
"Ri",
">",
"maxRpos",
")",
"]",
"[",
"-",
"1",
"]",
"Cmin",
"=",
"Ci",
"[",
"(",
"(",
"Cavg",
"-",
"Cavg",
"[",
"0",
"]",
")",
">=",
"(",
"(",
"maxC",
"-",
"Cavg",
"[",
"0",
"]",
")",
"*",
"threshold",
")",
")",
"&",
"(",
"Ci",
"<",
"maxCpos",
")",
"]",
"[",
"0",
"]",
"Cmax",
"=",
"Ci",
"[",
"(",
"(",
"Cavg",
"-",
"Cavg",
"[",
"-",
"1",
"]",
")",
">=",
"(",
"(",
"maxC",
"-",
"Cavg",
"[",
"-",
"1",
"]",
")",
"*",
"threshold",
")",
")",
"&",
"(",
"Ci",
">",
"maxCpos",
")",
"]",
"[",
"-",
"1",
"]",
"else",
":",
"Rmin",
"=",
"rowmin",
"Rmax",
"=",
"rowmax",
"Cmin",
"=",
"colmin",
"Cmax",
"=",
"colmax",
"d",
"=",
"data",
"[",
"Rmin",
":",
"Rmax",
"+",
"1",
",",
"Cmin",
":",
"Cmax",
"+",
"1",
"]",
"x",
"=",
"np",
".",
"arange",
"(",
"Rmin",
",",
"Rmax",
"+",
"1",
")",
"y",
"=",
"np",
".",
"arange",
"(",
"Cmin",
",",
"Cmax",
"+",
"1",
")",
"bcx",
"=",
"(",
"d",
".",
"sum",
"(",
"1",
")",
"*",
"x",
")",
".",
"sum",
"(",
")",
"/",
"d",
".",
"sum",
"(",
")",
"bcy",
"=",
"(",
"d",
".",
"sum",
"(",
"0",
")",
"*",
"y",
")",
".",
"sum",
"(",
")",
"/",
"d",
".",
"sum",
"(",
")",
"return",
"bcx",
",",
"bcy"
] | Find beam with 2D weighting of semitransparent beamstop area
Inputs:
data: scattering matrix
pri: list of four: [xmin,xmax,ymin,ymax] for the borders of the beam
area under the semitransparent beamstop. X corresponds to the column
index (ie. A[Y,X] is the element of A from the Xth column and the
Yth row). You can get these by zooming on the figure and retrieving
the result of axis() (like in Matlab)
threshold: do not count pixels if their intensity falls below
max_intensity*threshold. max_intensity is the highest count rate
in the current row or column, respectively. Set None to disable
this feature.
Outputs: bcx,bcy
the x and y coordinates of the primary beam | [
"Find",
"beam",
"with",
"2D",
"weighting",
"of",
"semitransparent",
"beamstop",
"area"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/centering.py#L204-L262 |
awacha/sastool | sastool/utils2d/centering.py | findbeam_radialpeak | def findbeam_radialpeak(data, orig_initial, mask, rmin, rmax, maxiter=100,
drive_by='amplitude', extent=10, callback=None):
"""Find the beam by minimizing the width of a peak in the radial average.
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the peak range.
drive_by: 'hwhm' to minimize the hwhm of the peak or 'amplitude' to
maximize the peak amplitude
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A Gaussian will be fitted.
"""
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
if drive_by.lower() == 'hwhm':
def targetfunc(orig, data, mask, orig_orig, callback):
I = radintpix(
data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1]
hwhm = float(misc.findpeak_single(pix, I)[1])
# print orig[0] + orig_orig[0], orig[1] + orig_orig[1], p
if callback is not None:
callback()
return abs(hwhm)
elif drive_by.lower() == 'amplitude':
def targetfunc(orig, data, mask, orig_orig, callback):
I = radintpix(
data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1]
fp = misc.findpeak_single(pix, I)
height = -float(fp[2] + fp[3])
# print orig[0] + orig_orig[0], orig[1] + orig_orig[1], p
if callback is not None:
callback()
return height
else:
raise ValueError('Invalid argument for drive_by %s' % drive_by)
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(
data, mask, orig_initial - extent, callback),
maxiter=maxiter, disp=0)
return np.array(orig_initial) - extent + orig1 | python | def findbeam_radialpeak(data, orig_initial, mask, rmin, rmax, maxiter=100,
drive_by='amplitude', extent=10, callback=None):
"""Find the beam by minimizing the width of a peak in the radial average.
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the peak range.
drive_by: 'hwhm' to minimize the hwhm of the peak or 'amplitude' to
maximize the peak amplitude
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A Gaussian will be fitted.
"""
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
if drive_by.lower() == 'hwhm':
def targetfunc(orig, data, mask, orig_orig, callback):
I = radintpix(
data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1]
hwhm = float(misc.findpeak_single(pix, I)[1])
# print orig[0] + orig_orig[0], orig[1] + orig_orig[1], p
if callback is not None:
callback()
return abs(hwhm)
elif drive_by.lower() == 'amplitude':
def targetfunc(orig, data, mask, orig_orig, callback):
I = radintpix(
data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1]
fp = misc.findpeak_single(pix, I)
height = -float(fp[2] + fp[3])
# print orig[0] + orig_orig[0], orig[1] + orig_orig[1], p
if callback is not None:
callback()
return height
else:
raise ValueError('Invalid argument for drive_by %s' % drive_by)
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(
data, mask, orig_initial - extent, callback),
maxiter=maxiter, disp=0)
return np.array(orig_initial) - extent + orig1 | [
"def",
"findbeam_radialpeak",
"(",
"data",
",",
"orig_initial",
",",
"mask",
",",
"rmin",
",",
"rmax",
",",
"maxiter",
"=",
"100",
",",
"drive_by",
"=",
"'amplitude'",
",",
"extent",
"=",
"10",
",",
"callback",
"=",
"None",
")",
":",
"orig_initial",
"=",
"np",
".",
"array",
"(",
"orig_initial",
")",
"mask",
"=",
"1",
"-",
"mask",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
"data",
"=",
"data",
".",
"astype",
"(",
"np",
".",
"double",
")",
"pix",
"=",
"np",
".",
"arange",
"(",
"rmin",
"*",
"1.0",
",",
"rmax",
"*",
"1.0",
",",
"1",
")",
"if",
"drive_by",
".",
"lower",
"(",
")",
"==",
"'hwhm'",
":",
"def",
"targetfunc",
"(",
"orig",
",",
"data",
",",
"mask",
",",
"orig_orig",
",",
"callback",
")",
":",
"I",
"=",
"radintpix",
"(",
"data",
",",
"None",
",",
"orig",
"[",
"0",
"]",
"+",
"orig_orig",
"[",
"0",
"]",
",",
"orig",
"[",
"1",
"]",
"+",
"orig_orig",
"[",
"1",
"]",
",",
"mask",
",",
"pix",
")",
"[",
"1",
"]",
"hwhm",
"=",
"float",
"(",
"misc",
".",
"findpeak_single",
"(",
"pix",
",",
"I",
")",
"[",
"1",
"]",
")",
"# print orig[0] + orig_orig[0], orig[1] + orig_orig[1], p",
"if",
"callback",
"is",
"not",
"None",
":",
"callback",
"(",
")",
"return",
"abs",
"(",
"hwhm",
")",
"elif",
"drive_by",
".",
"lower",
"(",
")",
"==",
"'amplitude'",
":",
"def",
"targetfunc",
"(",
"orig",
",",
"data",
",",
"mask",
",",
"orig_orig",
",",
"callback",
")",
":",
"I",
"=",
"radintpix",
"(",
"data",
",",
"None",
",",
"orig",
"[",
"0",
"]",
"+",
"orig_orig",
"[",
"0",
"]",
",",
"orig",
"[",
"1",
"]",
"+",
"orig_orig",
"[",
"1",
"]",
",",
"mask",
",",
"pix",
")",
"[",
"1",
"]",
"fp",
"=",
"misc",
".",
"findpeak_single",
"(",
"pix",
",",
"I",
")",
"height",
"=",
"-",
"float",
"(",
"fp",
"[",
"2",
"]",
"+",
"fp",
"[",
"3",
"]",
")",
"# print orig[0] + orig_orig[0], orig[1] + orig_orig[1], p",
"if",
"callback",
"is",
"not",
"None",
":",
"callback",
"(",
")",
"return",
"height",
"else",
":",
"raise",
"ValueError",
"(",
"'Invalid argument for drive_by %s'",
"%",
"drive_by",
")",
"orig1",
"=",
"scipy",
".",
"optimize",
".",
"fmin",
"(",
"targetfunc",
",",
"np",
".",
"array",
"(",
"[",
"extent",
",",
"extent",
"]",
")",
",",
"args",
"=",
"(",
"data",
",",
"mask",
",",
"orig_initial",
"-",
"extent",
",",
"callback",
")",
",",
"maxiter",
"=",
"maxiter",
",",
"disp",
"=",
"0",
")",
"return",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent",
"+",
"orig1"
] | Find the beam by minimizing the width of a peak in the radial average.
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the peak range.
drive_by: 'hwhm' to minimize the hwhm of the peak or 'amplitude' to
maximize the peak amplitude
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A Gaussian will be fitted. | [
"Find",
"the",
"beam",
"by",
"minimizing",
"the",
"width",
"of",
"a",
"peak",
"in",
"the",
"radial",
"average",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/centering.py#L265-L315 |
awacha/sastool | sastool/utils2d/centering.py | findbeam_Guinier | def findbeam_Guinier(data, orig_initial, mask, rmin, rmax, maxiter=100,
extent=10, callback=None):
"""Find the beam by minimizing the width of a Gaussian centered at the
origin (i.e. maximizing the radius of gyration in a Guinier scattering).
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the Guinier range.
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A Gaussian with its will be fitted.
"""
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
pix2 = pix ** 2
def targetfunc(orig, data, mask, orig_orig, callback):
I = radintpix(
data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1]
p = np.polyfit(pix2, np.log(I), 1)[0]
if callback is not None:
callback()
return p
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(
data, mask, orig_initial - extent, callback),
maxiter=maxiter, disp=0)
return np.array(orig_initial) - extent + orig1 | python | def findbeam_Guinier(data, orig_initial, mask, rmin, rmax, maxiter=100,
extent=10, callback=None):
"""Find the beam by minimizing the width of a Gaussian centered at the
origin (i.e. maximizing the radius of gyration in a Guinier scattering).
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the Guinier range.
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A Gaussian with its will be fitted.
"""
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
pix2 = pix ** 2
def targetfunc(orig, data, mask, orig_orig, callback):
I = radintpix(
data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1]
p = np.polyfit(pix2, np.log(I), 1)[0]
if callback is not None:
callback()
return p
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(
data, mask, orig_initial - extent, callback),
maxiter=maxiter, disp=0)
return np.array(orig_initial) - extent + orig1 | [
"def",
"findbeam_Guinier",
"(",
"data",
",",
"orig_initial",
",",
"mask",
",",
"rmin",
",",
"rmax",
",",
"maxiter",
"=",
"100",
",",
"extent",
"=",
"10",
",",
"callback",
"=",
"None",
")",
":",
"orig_initial",
"=",
"np",
".",
"array",
"(",
"orig_initial",
")",
"mask",
"=",
"1",
"-",
"mask",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
"data",
"=",
"data",
".",
"astype",
"(",
"np",
".",
"double",
")",
"pix",
"=",
"np",
".",
"arange",
"(",
"rmin",
"*",
"1.0",
",",
"rmax",
"*",
"1.0",
",",
"1",
")",
"pix2",
"=",
"pix",
"**",
"2",
"def",
"targetfunc",
"(",
"orig",
",",
"data",
",",
"mask",
",",
"orig_orig",
",",
"callback",
")",
":",
"I",
"=",
"radintpix",
"(",
"data",
",",
"None",
",",
"orig",
"[",
"0",
"]",
"+",
"orig_orig",
"[",
"0",
"]",
",",
"orig",
"[",
"1",
"]",
"+",
"orig_orig",
"[",
"1",
"]",
",",
"mask",
",",
"pix",
")",
"[",
"1",
"]",
"p",
"=",
"np",
".",
"polyfit",
"(",
"pix2",
",",
"np",
".",
"log",
"(",
"I",
")",
",",
"1",
")",
"[",
"0",
"]",
"if",
"callback",
"is",
"not",
"None",
":",
"callback",
"(",
")",
"return",
"p",
"orig1",
"=",
"scipy",
".",
"optimize",
".",
"fmin",
"(",
"targetfunc",
",",
"np",
".",
"array",
"(",
"[",
"extent",
",",
"extent",
"]",
")",
",",
"args",
"=",
"(",
"data",
",",
"mask",
",",
"orig_initial",
"-",
"extent",
",",
"callback",
")",
",",
"maxiter",
"=",
"maxiter",
",",
"disp",
"=",
"0",
")",
"return",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent",
"+",
"orig1"
] | Find the beam by minimizing the width of a Gaussian centered at the
origin (i.e. maximizing the radius of gyration in a Guinier scattering).
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the Guinier range.
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A Gaussian with its will be fitted. | [
"Find",
"the",
"beam",
"by",
"minimizing",
"the",
"width",
"of",
"a",
"Gaussian",
"centered",
"at",
"the",
"origin",
"(",
"i",
".",
"e",
".",
"maximizing",
"the",
"radius",
"of",
"gyration",
"in",
"a",
"Guinier",
"scattering",
")",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/centering.py#L318-L355 |
awacha/sastool | sastool/utils2d/centering.py | findbeam_powerlaw | def findbeam_powerlaw(data, orig_initial, mask, rmin, rmax, maxiter=100,
drive_by='R2', extent=10, callback=None):
"""Find the beam by minimizing the width of a Gaussian centered at the
origin (i.e. maximizing the radius of gyration in a Guinier scattering).
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the fitting range
drive_by: 'R2' or 'Chi2'
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A power-law will be fitted
"""
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
def targetfunc(orig, data, mask, orig_orig, callback):
I, E = radintpix(
data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1:3]
p, dp, stat = misc.easylsq.nlsq_fit(
pix, I, E, lambda q, A, alpha: A * q ** alpha, [1.0, -3.0])
if callback is not None:
callback()
# print(orig, orig_orig, orig + orig_orig, stat[drive_by])
if drive_by == 'R2':
return 1 - stat['R2']
elif drive_by.startswith('Chi2'):
return stat[drive_by]
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(
data, mask, orig_initial - extent, callback),
maxiter=maxiter, disp=False)
return np.array(orig_initial) - extent + orig1 | python | def findbeam_powerlaw(data, orig_initial, mask, rmin, rmax, maxiter=100,
drive_by='R2', extent=10, callback=None):
"""Find the beam by minimizing the width of a Gaussian centered at the
origin (i.e. maximizing the radius of gyration in a Guinier scattering).
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the fitting range
drive_by: 'R2' or 'Chi2'
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A power-law will be fitted
"""
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
def targetfunc(orig, data, mask, orig_orig, callback):
I, E = radintpix(
data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1:3]
p, dp, stat = misc.easylsq.nlsq_fit(
pix, I, E, lambda q, A, alpha: A * q ** alpha, [1.0, -3.0])
if callback is not None:
callback()
# print(orig, orig_orig, orig + orig_orig, stat[drive_by])
if drive_by == 'R2':
return 1 - stat['R2']
elif drive_by.startswith('Chi2'):
return stat[drive_by]
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(
data, mask, orig_initial - extent, callback),
maxiter=maxiter, disp=False)
return np.array(orig_initial) - extent + orig1 | [
"def",
"findbeam_powerlaw",
"(",
"data",
",",
"orig_initial",
",",
"mask",
",",
"rmin",
",",
"rmax",
",",
"maxiter",
"=",
"100",
",",
"drive_by",
"=",
"'R2'",
",",
"extent",
"=",
"10",
",",
"callback",
"=",
"None",
")",
":",
"orig_initial",
"=",
"np",
".",
"array",
"(",
"orig_initial",
")",
"mask",
"=",
"1",
"-",
"mask",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
"data",
"=",
"data",
".",
"astype",
"(",
"np",
".",
"double",
")",
"pix",
"=",
"np",
".",
"arange",
"(",
"rmin",
"*",
"1.0",
",",
"rmax",
"*",
"1.0",
",",
"1",
")",
"def",
"targetfunc",
"(",
"orig",
",",
"data",
",",
"mask",
",",
"orig_orig",
",",
"callback",
")",
":",
"I",
",",
"E",
"=",
"radintpix",
"(",
"data",
",",
"None",
",",
"orig",
"[",
"0",
"]",
"+",
"orig_orig",
"[",
"0",
"]",
",",
"orig",
"[",
"1",
"]",
"+",
"orig_orig",
"[",
"1",
"]",
",",
"mask",
",",
"pix",
")",
"[",
"1",
":",
"3",
"]",
"p",
",",
"dp",
",",
"stat",
"=",
"misc",
".",
"easylsq",
".",
"nlsq_fit",
"(",
"pix",
",",
"I",
",",
"E",
",",
"lambda",
"q",
",",
"A",
",",
"alpha",
":",
"A",
"*",
"q",
"**",
"alpha",
",",
"[",
"1.0",
",",
"-",
"3.0",
"]",
")",
"if",
"callback",
"is",
"not",
"None",
":",
"callback",
"(",
")",
"# print(orig, orig_orig, orig + orig_orig, stat[drive_by])",
"if",
"drive_by",
"==",
"'R2'",
":",
"return",
"1",
"-",
"stat",
"[",
"'R2'",
"]",
"elif",
"drive_by",
".",
"startswith",
"(",
"'Chi2'",
")",
":",
"return",
"stat",
"[",
"drive_by",
"]",
"orig1",
"=",
"scipy",
".",
"optimize",
".",
"fmin",
"(",
"targetfunc",
",",
"np",
".",
"array",
"(",
"[",
"extent",
",",
"extent",
"]",
")",
",",
"args",
"=",
"(",
"data",
",",
"mask",
",",
"orig_initial",
"-",
"extent",
",",
"callback",
")",
",",
"maxiter",
"=",
"maxiter",
",",
"disp",
"=",
"False",
")",
"return",
"np",
".",
"array",
"(",
"orig_initial",
")",
"-",
"extent",
"+",
"orig1"
] | Find the beam by minimizing the width of a Gaussian centered at the
origin (i.e. maximizing the radius of gyration in a Guinier scattering).
Inputs:
data: scattering matrix
orig_initial: first guess for the origin
mask: mask matrix. Nonzero is non-masked.
rmin,rmax: distance from the origin (in pixels) of the fitting range
drive_by: 'R2' or 'Chi2'
extent: approximate distance of the current and the real origin in pixels.
Too high a value makes the fitting procedure unstable. Too low a value
does not permit to move away the current origin.
callback: callback function (expects no arguments)
Outputs:
the beam coordinates
Notes:
A power-law will be fitted | [
"Find",
"the",
"beam",
"by",
"minimizing",
"the",
"width",
"of",
"a",
"Gaussian",
"centered",
"at",
"the",
"origin",
"(",
"i",
".",
"e",
".",
"maximizing",
"the",
"radius",
"of",
"gyration",
"in",
"a",
"Guinier",
"scattering",
")",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/centering.py#L358-L400 |
awacha/sastool | sastool/io/credo_cct/header.py | Header.beamcenterx | def beamcenterx(self) -> ErrorValue:
"""X (column) coordinate of the beam center, pixel units, 0-based."""
try:
return ErrorValue(self._data['geometry']['beamposy'],
self._data['geometry']['beamposy.err'])
except KeyError:
return ErrorValue(self._data['geometry']['beamposy'],
0.0) | python | def beamcenterx(self) -> ErrorValue:
"""X (column) coordinate of the beam center, pixel units, 0-based."""
try:
return ErrorValue(self._data['geometry']['beamposy'],
self._data['geometry']['beamposy.err'])
except KeyError:
return ErrorValue(self._data['geometry']['beamposy'],
0.0) | [
"def",
"beamcenterx",
"(",
"self",
")",
"->",
"ErrorValue",
":",
"try",
":",
"return",
"ErrorValue",
"(",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposy'",
"]",
",",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposy.err'",
"]",
")",
"except",
"KeyError",
":",
"return",
"ErrorValue",
"(",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposy'",
"]",
",",
"0.0",
")"
] | X (column) coordinate of the beam center, pixel units, 0-based. | [
"X",
"(",
"column",
")",
"coordinate",
"of",
"the",
"beam",
"center",
"pixel",
"units",
"0",
"-",
"based",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_cct/header.py#L106-L113 |
awacha/sastool | sastool/io/credo_cct/header.py | Header.beamcentery | def beamcentery(self) -> ErrorValue:
"""Y (row) coordinate of the beam center, pixel units, 0-based."""
try:
return ErrorValue(self._data['geometry']['beamposx'],
self._data['geometry']['beamposx.err'])
except KeyError:
return ErrorValue(self._data['geometry']['beamposx'],
0.0) | python | def beamcentery(self) -> ErrorValue:
"""Y (row) coordinate of the beam center, pixel units, 0-based."""
try:
return ErrorValue(self._data['geometry']['beamposx'],
self._data['geometry']['beamposx.err'])
except KeyError:
return ErrorValue(self._data['geometry']['beamposx'],
0.0) | [
"def",
"beamcentery",
"(",
"self",
")",
"->",
"ErrorValue",
":",
"try",
":",
"return",
"ErrorValue",
"(",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposx'",
"]",
",",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposx.err'",
"]",
")",
"except",
"KeyError",
":",
"return",
"ErrorValue",
"(",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposx'",
"]",
",",
"0.0",
")"
] | Y (row) coordinate of the beam center, pixel units, 0-based. | [
"Y",
"(",
"row",
")",
"coordinate",
"of",
"the",
"beam",
"center",
"pixel",
"units",
"0",
"-",
"based",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_cct/header.py#L124-L131 |
awacha/sastool | sastool/io/credo_cct/header.py | Header.maskname | def maskname(self) -> Optional[str]:
"""Name of the mask matrix file."""
mask = self._data['geometry']['mask']
if os.path.abspath(mask):
mask = os.path.split(mask)[-1]
return mask | python | def maskname(self) -> Optional[str]:
"""Name of the mask matrix file."""
mask = self._data['geometry']['mask']
if os.path.abspath(mask):
mask = os.path.split(mask)[-1]
return mask | [
"def",
"maskname",
"(",
"self",
")",
"->",
"Optional",
"[",
"str",
"]",
":",
"mask",
"=",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'mask'",
"]",
"if",
"os",
".",
"path",
".",
"abspath",
"(",
"mask",
")",
":",
"mask",
"=",
"os",
".",
"path",
".",
"split",
"(",
"mask",
")",
"[",
"-",
"1",
"]",
"return",
"mask"
] | Name of the mask matrix file. | [
"Name",
"of",
"the",
"mask",
"matrix",
"file",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_cct/header.py#L197-L202 |
awacha/sastool | sastool/classes2/curve.py | errtrapz | def errtrapz(x, yerr):
"""Error of the trapezoid formula
Inputs:
x: the abscissa
yerr: the error of the dependent variable
Outputs:
the error of the integral
"""
x = np.array(x)
assert isinstance(x, np.ndarray)
yerr = np.array(yerr)
return 0.5 * np.sqrt((x[1] - x[0]) ** 2 * yerr[0] ** 2 +
np.sum((x[2:] - x[:-2]) ** 2 * yerr[1:-1] ** 2) +
(x[-1] - x[-2]) ** 2 * yerr[-1] ** 2) | python | def errtrapz(x, yerr):
"""Error of the trapezoid formula
Inputs:
x: the abscissa
yerr: the error of the dependent variable
Outputs:
the error of the integral
"""
x = np.array(x)
assert isinstance(x, np.ndarray)
yerr = np.array(yerr)
return 0.5 * np.sqrt((x[1] - x[0]) ** 2 * yerr[0] ** 2 +
np.sum((x[2:] - x[:-2]) ** 2 * yerr[1:-1] ** 2) +
(x[-1] - x[-2]) ** 2 * yerr[-1] ** 2) | [
"def",
"errtrapz",
"(",
"x",
",",
"yerr",
")",
":",
"x",
"=",
"np",
".",
"array",
"(",
"x",
")",
"assert",
"isinstance",
"(",
"x",
",",
"np",
".",
"ndarray",
")",
"yerr",
"=",
"np",
".",
"array",
"(",
"yerr",
")",
"return",
"0.5",
"*",
"np",
".",
"sqrt",
"(",
"(",
"x",
"[",
"1",
"]",
"-",
"x",
"[",
"0",
"]",
")",
"**",
"2",
"*",
"yerr",
"[",
"0",
"]",
"**",
"2",
"+",
"np",
".",
"sum",
"(",
"(",
"x",
"[",
"2",
":",
"]",
"-",
"x",
"[",
":",
"-",
"2",
"]",
")",
"**",
"2",
"*",
"yerr",
"[",
"1",
":",
"-",
"1",
"]",
"**",
"2",
")",
"+",
"(",
"x",
"[",
"-",
"1",
"]",
"-",
"x",
"[",
"-",
"2",
"]",
")",
"**",
"2",
"*",
"yerr",
"[",
"-",
"1",
"]",
"**",
"2",
")"
] | Error of the trapezoid formula
Inputs:
x: the abscissa
yerr: the error of the dependent variable
Outputs:
the error of the integral | [
"Error",
"of",
"the",
"trapezoid",
"formula",
"Inputs",
":",
"x",
":",
"the",
"abscissa",
"yerr",
":",
"the",
"error",
"of",
"the",
"dependent",
"variable"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/curve.py#L15-L29 |
awacha/sastool | sastool/classes2/curve.py | Curve.fit | def fit(self, fitfunction, parinit, unfittableparameters=(), *args, **kwargs):
"""Perform a nonlinear least-squares fit, using sastool.misc.fitter.Fitter()
Other arguments and keyword arguments will be passed through to the
__init__ method of Fitter. For example, these are:
- lbounds
- ubounds
- ytransform
- loss
- method
Returns: the final parameters as ErrorValue instances, the stats
dictionary and the fitted curve instance of the same type as
this)
"""
kwargs['otherparameters'] = unfittableparameters
fitter = Fitter(fitfunction, parinit, self.q, self.Intensity, self.qError, self.Error, *args, **kwargs)
fixedvalues = [[None, p][isinstance(p, FixedParameter)] for p in parinit]
fitter.fixparameters(fixedvalues)
fitter.fit()
pars = fitter.parameters()
uncs = fitter.uncertainties()
stats = fitter.stats()
results = [ErrorValue(p, u) for p, u in zip(pars, uncs)] + [stats, type(self)(self.q, stats['func_value'])]
return results | python | def fit(self, fitfunction, parinit, unfittableparameters=(), *args, **kwargs):
"""Perform a nonlinear least-squares fit, using sastool.misc.fitter.Fitter()
Other arguments and keyword arguments will be passed through to the
__init__ method of Fitter. For example, these are:
- lbounds
- ubounds
- ytransform
- loss
- method
Returns: the final parameters as ErrorValue instances, the stats
dictionary and the fitted curve instance of the same type as
this)
"""
kwargs['otherparameters'] = unfittableparameters
fitter = Fitter(fitfunction, parinit, self.q, self.Intensity, self.qError, self.Error, *args, **kwargs)
fixedvalues = [[None, p][isinstance(p, FixedParameter)] for p in parinit]
fitter.fixparameters(fixedvalues)
fitter.fit()
pars = fitter.parameters()
uncs = fitter.uncertainties()
stats = fitter.stats()
results = [ErrorValue(p, u) for p, u in zip(pars, uncs)] + [stats, type(self)(self.q, stats['func_value'])]
return results | [
"def",
"fit",
"(",
"self",
",",
"fitfunction",
",",
"parinit",
",",
"unfittableparameters",
"=",
"(",
")",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"kwargs",
"[",
"'otherparameters'",
"]",
"=",
"unfittableparameters",
"fitter",
"=",
"Fitter",
"(",
"fitfunction",
",",
"parinit",
",",
"self",
".",
"q",
",",
"self",
".",
"Intensity",
",",
"self",
".",
"qError",
",",
"self",
".",
"Error",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"fixedvalues",
"=",
"[",
"[",
"None",
",",
"p",
"]",
"[",
"isinstance",
"(",
"p",
",",
"FixedParameter",
")",
"]",
"for",
"p",
"in",
"parinit",
"]",
"fitter",
".",
"fixparameters",
"(",
"fixedvalues",
")",
"fitter",
".",
"fit",
"(",
")",
"pars",
"=",
"fitter",
".",
"parameters",
"(",
")",
"uncs",
"=",
"fitter",
".",
"uncertainties",
"(",
")",
"stats",
"=",
"fitter",
".",
"stats",
"(",
")",
"results",
"=",
"[",
"ErrorValue",
"(",
"p",
",",
"u",
")",
"for",
"p",
",",
"u",
"in",
"zip",
"(",
"pars",
",",
"uncs",
")",
"]",
"+",
"[",
"stats",
",",
"type",
"(",
"self",
")",
"(",
"self",
".",
"q",
",",
"stats",
"[",
"'func_value'",
"]",
")",
"]",
"return",
"results"
] | Perform a nonlinear least-squares fit, using sastool.misc.fitter.Fitter()
Other arguments and keyword arguments will be passed through to the
__init__ method of Fitter. For example, these are:
- lbounds
- ubounds
- ytransform
- loss
- method
Returns: the final parameters as ErrorValue instances, the stats
dictionary and the fitted curve instance of the same type as
this) | [
"Perform",
"a",
"nonlinear",
"least",
"-",
"squares",
"fit",
"using",
"sastool",
".",
"misc",
".",
"fitter",
".",
"Fitter",
"()"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/curve.py#L63-L87 |
awacha/sastool | sastool/classes2/curve.py | Curve.momentum | def momentum(self, exponent=1, errorrequested=True):
"""Calculate momenta (integral of y times x^exponent)
The integration is done by the trapezoid formula (np.trapz).
Inputs:
exponent: the exponent of q in the integration.
errorrequested: True if error should be returned (true Gaussian
error-propagation of the trapezoid formula)
"""
y = self.Intensity * self.q ** exponent
m = np.trapz(y, self.q)
if errorrequested:
err = self.Error * self.q ** exponent
dm = errtrapz(self.q, err)
return ErrorValue(m, dm)
else:
return m | python | def momentum(self, exponent=1, errorrequested=True):
"""Calculate momenta (integral of y times x^exponent)
The integration is done by the trapezoid formula (np.trapz).
Inputs:
exponent: the exponent of q in the integration.
errorrequested: True if error should be returned (true Gaussian
error-propagation of the trapezoid formula)
"""
y = self.Intensity * self.q ** exponent
m = np.trapz(y, self.q)
if errorrequested:
err = self.Error * self.q ** exponent
dm = errtrapz(self.q, err)
return ErrorValue(m, dm)
else:
return m | [
"def",
"momentum",
"(",
"self",
",",
"exponent",
"=",
"1",
",",
"errorrequested",
"=",
"True",
")",
":",
"y",
"=",
"self",
".",
"Intensity",
"*",
"self",
".",
"q",
"**",
"exponent",
"m",
"=",
"np",
".",
"trapz",
"(",
"y",
",",
"self",
".",
"q",
")",
"if",
"errorrequested",
":",
"err",
"=",
"self",
".",
"Error",
"*",
"self",
".",
"q",
"**",
"exponent",
"dm",
"=",
"errtrapz",
"(",
"self",
".",
"q",
",",
"err",
")",
"return",
"ErrorValue",
"(",
"m",
",",
"dm",
")",
"else",
":",
"return",
"m"
] | Calculate momenta (integral of y times x^exponent)
The integration is done by the trapezoid formula (np.trapz).
Inputs:
exponent: the exponent of q in the integration.
errorrequested: True if error should be returned (true Gaussian
error-propagation of the trapezoid formula) | [
"Calculate",
"momenta",
"(",
"integral",
"of",
"y",
"times",
"x^exponent",
")",
"The",
"integration",
"is",
"done",
"by",
"the",
"trapezoid",
"formula",
"(",
"np",
".",
"trapz",
")",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/curve.py#L238-L254 |
awacha/sastool | sastool/classes2/curve.py | Curve.scalefactor | def scalefactor(self, other, qmin=None, qmax=None, Npoints=None):
"""Calculate a scaling factor, by which this curve is to be multiplied to best fit the other one.
Inputs:
other: the other curve (an instance of GeneralCurve or of a subclass of it)
qmin: lower cut-off (None to determine the common range automatically)
qmax: upper cut-off (None to determine the common range automatically)
Npoints: number of points to use in the common x-range (None defaults to the lowest value among
the two datasets)
Outputs:
The scaling factor determined by interpolating both datasets to the same abscissa and calculating
the ratio of their integrals, calculated by the trapezoid formula. Error propagation is
taken into account.
"""
if qmin is None:
qmin = max(self.q.min(), other.q.min())
if qmax is None:
xmax = min(self.q.max(), other.q.max())
data1 = self.trim(qmin, qmax)
data2 = other.trim(qmin, qmax)
if Npoints is None:
Npoints = min(len(data1), len(data2))
commonx = np.linspace(
max(data1.q.min(), data2.q.min()), min(data2.q.max(), data1.q.max()), Npoints)
data1 = data1.interpolate(commonx)
data2 = data2.interpolate(commonx)
return nonlinear_odr(data1.Intensity, data2.Intensity, data1.Error, data2.Error, lambda x, a: a * x, [1])[0] | python | def scalefactor(self, other, qmin=None, qmax=None, Npoints=None):
"""Calculate a scaling factor, by which this curve is to be multiplied to best fit the other one.
Inputs:
other: the other curve (an instance of GeneralCurve or of a subclass of it)
qmin: lower cut-off (None to determine the common range automatically)
qmax: upper cut-off (None to determine the common range automatically)
Npoints: number of points to use in the common x-range (None defaults to the lowest value among
the two datasets)
Outputs:
The scaling factor determined by interpolating both datasets to the same abscissa and calculating
the ratio of their integrals, calculated by the trapezoid formula. Error propagation is
taken into account.
"""
if qmin is None:
qmin = max(self.q.min(), other.q.min())
if qmax is None:
xmax = min(self.q.max(), other.q.max())
data1 = self.trim(qmin, qmax)
data2 = other.trim(qmin, qmax)
if Npoints is None:
Npoints = min(len(data1), len(data2))
commonx = np.linspace(
max(data1.q.min(), data2.q.min()), min(data2.q.max(), data1.q.max()), Npoints)
data1 = data1.interpolate(commonx)
data2 = data2.interpolate(commonx)
return nonlinear_odr(data1.Intensity, data2.Intensity, data1.Error, data2.Error, lambda x, a: a * x, [1])[0] | [
"def",
"scalefactor",
"(",
"self",
",",
"other",
",",
"qmin",
"=",
"None",
",",
"qmax",
"=",
"None",
",",
"Npoints",
"=",
"None",
")",
":",
"if",
"qmin",
"is",
"None",
":",
"qmin",
"=",
"max",
"(",
"self",
".",
"q",
".",
"min",
"(",
")",
",",
"other",
".",
"q",
".",
"min",
"(",
")",
")",
"if",
"qmax",
"is",
"None",
":",
"xmax",
"=",
"min",
"(",
"self",
".",
"q",
".",
"max",
"(",
")",
",",
"other",
".",
"q",
".",
"max",
"(",
")",
")",
"data1",
"=",
"self",
".",
"trim",
"(",
"qmin",
",",
"qmax",
")",
"data2",
"=",
"other",
".",
"trim",
"(",
"qmin",
",",
"qmax",
")",
"if",
"Npoints",
"is",
"None",
":",
"Npoints",
"=",
"min",
"(",
"len",
"(",
"data1",
")",
",",
"len",
"(",
"data2",
")",
")",
"commonx",
"=",
"np",
".",
"linspace",
"(",
"max",
"(",
"data1",
".",
"q",
".",
"min",
"(",
")",
",",
"data2",
".",
"q",
".",
"min",
"(",
")",
")",
",",
"min",
"(",
"data2",
".",
"q",
".",
"max",
"(",
")",
",",
"data1",
".",
"q",
".",
"max",
"(",
")",
")",
",",
"Npoints",
")",
"data1",
"=",
"data1",
".",
"interpolate",
"(",
"commonx",
")",
"data2",
"=",
"data2",
".",
"interpolate",
"(",
"commonx",
")",
"return",
"nonlinear_odr",
"(",
"data1",
".",
"Intensity",
",",
"data2",
".",
"Intensity",
",",
"data1",
".",
"Error",
",",
"data2",
".",
"Error",
",",
"lambda",
"x",
",",
"a",
":",
"a",
"*",
"x",
",",
"[",
"1",
"]",
")",
"[",
"0",
"]"
] | Calculate a scaling factor, by which this curve is to be multiplied to best fit the other one.
Inputs:
other: the other curve (an instance of GeneralCurve or of a subclass of it)
qmin: lower cut-off (None to determine the common range automatically)
qmax: upper cut-off (None to determine the common range automatically)
Npoints: number of points to use in the common x-range (None defaults to the lowest value among
the two datasets)
Outputs:
The scaling factor determined by interpolating both datasets to the same abscissa and calculating
the ratio of their integrals, calculated by the trapezoid formula. Error propagation is
taken into account. | [
"Calculate",
"a",
"scaling",
"factor",
"by",
"which",
"this",
"curve",
"is",
"to",
"be",
"multiplied",
"to",
"best",
"fit",
"the",
"other",
"one",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/curve.py#L279-L306 |
awacha/sastool | sastool/misc/fitter.py | Fitter._substitute_fixed_parameters_covar | def _substitute_fixed_parameters_covar(self, covar):
"""Insert fixed parameters in a covariance matrix"""
covar_resolved = np.empty((len(self._fixed_parameters), len(self._fixed_parameters)))
indices_of_fixed_parameters = [i for i in range(len(self.parameters())) if
self._fixed_parameters[i] is not None]
indices_of_free_parameters = [i for i in range(len(self.parameters())) if self._fixed_parameters[i] is None]
for i in range(covar_resolved.shape[0]):
if i in indices_of_fixed_parameters:
# the i-eth argument was fixed. This means that the row and column corresponding to this argument
# must be None
covar_resolved[i, :] = 0
continue
for j in range(covar_resolved.shape[1]):
if j in indices_of_fixed_parameters:
covar_resolved[:, j] = 0
continue
covar_resolved[i, j] = covar[indices_of_free_parameters.index(i), indices_of_free_parameters.index(j)]
return covar_resolved | python | def _substitute_fixed_parameters_covar(self, covar):
"""Insert fixed parameters in a covariance matrix"""
covar_resolved = np.empty((len(self._fixed_parameters), len(self._fixed_parameters)))
indices_of_fixed_parameters = [i for i in range(len(self.parameters())) if
self._fixed_parameters[i] is not None]
indices_of_free_parameters = [i for i in range(len(self.parameters())) if self._fixed_parameters[i] is None]
for i in range(covar_resolved.shape[0]):
if i in indices_of_fixed_parameters:
# the i-eth argument was fixed. This means that the row and column corresponding to this argument
# must be None
covar_resolved[i, :] = 0
continue
for j in range(covar_resolved.shape[1]):
if j in indices_of_fixed_parameters:
covar_resolved[:, j] = 0
continue
covar_resolved[i, j] = covar[indices_of_free_parameters.index(i), indices_of_free_parameters.index(j)]
return covar_resolved | [
"def",
"_substitute_fixed_parameters_covar",
"(",
"self",
",",
"covar",
")",
":",
"covar_resolved",
"=",
"np",
".",
"empty",
"(",
"(",
"len",
"(",
"self",
".",
"_fixed_parameters",
")",
",",
"len",
"(",
"self",
".",
"_fixed_parameters",
")",
")",
")",
"indices_of_fixed_parameters",
"=",
"[",
"i",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"parameters",
"(",
")",
")",
")",
"if",
"self",
".",
"_fixed_parameters",
"[",
"i",
"]",
"is",
"not",
"None",
"]",
"indices_of_free_parameters",
"=",
"[",
"i",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"parameters",
"(",
")",
")",
")",
"if",
"self",
".",
"_fixed_parameters",
"[",
"i",
"]",
"is",
"None",
"]",
"for",
"i",
"in",
"range",
"(",
"covar_resolved",
".",
"shape",
"[",
"0",
"]",
")",
":",
"if",
"i",
"in",
"indices_of_fixed_parameters",
":",
"# the i-eth argument was fixed. This means that the row and column corresponding to this argument",
"# must be None",
"covar_resolved",
"[",
"i",
",",
":",
"]",
"=",
"0",
"continue",
"for",
"j",
"in",
"range",
"(",
"covar_resolved",
".",
"shape",
"[",
"1",
"]",
")",
":",
"if",
"j",
"in",
"indices_of_fixed_parameters",
":",
"covar_resolved",
"[",
":",
",",
"j",
"]",
"=",
"0",
"continue",
"covar_resolved",
"[",
"i",
",",
"j",
"]",
"=",
"covar",
"[",
"indices_of_free_parameters",
".",
"index",
"(",
"i",
")",
",",
"indices_of_free_parameters",
".",
"index",
"(",
"j",
")",
"]",
"return",
"covar_resolved"
] | Insert fixed parameters in a covariance matrix | [
"Insert",
"fixed",
"parameters",
"in",
"a",
"covariance",
"matrix"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/fitter.py#L209-L226 |
awacha/sastool | sastool/io/credo_cct/loader.py | Loader.loadmask | def loadmask(self, filename: str) -> np.ndarray:
"""Load a mask file."""
mask = scipy.io.loadmat(self.find_file(filename, what='mask'))
maskkey = [k for k in mask.keys() if not (k.startswith('_') or k.endswith('_'))][0]
return mask[maskkey].astype(np.bool) | python | def loadmask(self, filename: str) -> np.ndarray:
"""Load a mask file."""
mask = scipy.io.loadmat(self.find_file(filename, what='mask'))
maskkey = [k for k in mask.keys() if not (k.startswith('_') or k.endswith('_'))][0]
return mask[maskkey].astype(np.bool) | [
"def",
"loadmask",
"(",
"self",
",",
"filename",
":",
"str",
")",
"->",
"np",
".",
"ndarray",
":",
"mask",
"=",
"scipy",
".",
"io",
".",
"loadmat",
"(",
"self",
".",
"find_file",
"(",
"filename",
",",
"what",
"=",
"'mask'",
")",
")",
"maskkey",
"=",
"[",
"k",
"for",
"k",
"in",
"mask",
".",
"keys",
"(",
")",
"if",
"not",
"(",
"k",
".",
"startswith",
"(",
"'_'",
")",
"or",
"k",
".",
"endswith",
"(",
"'_'",
")",
")",
"]",
"[",
"0",
"]",
"return",
"mask",
"[",
"maskkey",
"]",
".",
"astype",
"(",
"np",
".",
"bool",
")"
] | Load a mask file. | [
"Load",
"a",
"mask",
"file",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_cct/loader.py#L57-L61 |
awacha/sastool | sastool/io/credo_cct/loader.py | Loader.loadcurve | def loadcurve(self, fsn: int) -> classes2.Curve:
"""Load a radial scattering curve"""
return classes2.Curve.new_from_file(self.find_file(self._exposureclass + '_%05d.txt' % fsn)) | python | def loadcurve(self, fsn: int) -> classes2.Curve:
"""Load a radial scattering curve"""
return classes2.Curve.new_from_file(self.find_file(self._exposureclass + '_%05d.txt' % fsn)) | [
"def",
"loadcurve",
"(",
"self",
",",
"fsn",
":",
"int",
")",
"->",
"classes2",
".",
"Curve",
":",
"return",
"classes2",
".",
"Curve",
".",
"new_from_file",
"(",
"self",
".",
"find_file",
"(",
"self",
".",
"_exposureclass",
"+",
"'_%05d.txt'",
"%",
"fsn",
")",
")"
] | Load a radial scattering curve | [
"Load",
"a",
"radial",
"scattering",
"curve"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_cct/loader.py#L63-L65 |
awacha/sastool | sastool/io/twodim.py | readcbf | def readcbf(name, load_header=False, load_data=True, for_nexus=False):
"""Read a cbf (crystallographic binary format) file from a Dectris PILATUS
detector.
Inputs
------
name: string
the file name
load_header: bool
if the header data is to be loaded.
load_data: bool
if the binary data is to be loaded.
for_nexus: bool
if the array should be opened with NeXus ordering.
Output
------
a numpy array of the scattering data
Notes
-----
currently only Little endian, "signed 32-bit integer" type and
byte-offset compressed data are accepted.
"""
with open(name, 'rb') as f:
cbfbin = f.read()
datastart = cbfbin.find(b'\x0c\x1a\x04\xd5') + 4
hed = [x.strip() for x in cbfbin[:datastart].split(b'\n')]
header = {}
readingmode = None
for i in range(len(hed)):
if not hed[i]:
# skip empty header lines
continue
elif hed[i] == b';':
continue
elif hed[i].startswith(b'_array_data.header_convention'):
header['CBF_header_convention'] = str(hed[i][
len(b'_array_data.header_convention'):].strip().replace(b'"', b''), encoding='utf-8')
elif hed[i].startswith(b'_array_data.header_contents'):
readingmode = 'PilatusHeader'
elif hed[i].startswith(b'_array_data.data'):
readingmode = 'CIFHeader'
elif readingmode == 'PilatusHeader':
if not hed[i].startswith(b'#'):
continue
line = hed[i].strip()[1:].strip()
try:
# try to interpret the line as the date.
header['CBF_Date'] = dateutil.parser.parse(line)
header['Date'] = header['CBF_Date']
continue
except (ValueError, TypeError):
# eat exception: if we cannot parse this line as a date, try
# another format.
pass
treated = False
for sep in (b':', b'='):
if treated:
continue
if line.count(sep) == 1:
name, value = tuple(x.strip() for x in line.split(sep, 1))
try:
m = re.match(
b'^(?P<number>-?(\d+(.\d+)?(e-?\d+)?))\s+(?P<unit>m|s|counts|eV)$', value).groupdict()
value = float(m['number'])
m['unit'] = str(m['unit'], encoding='utf-8')
except AttributeError:
# the regex did not match the string, thus re.match()
# returned None.
pass
header[str(name, 'utf-8')] = value
treated = True
if treated:
continue
if line.startswith(b'Pixel_size'):
header['XPixel'], header['YPixel'] = tuple(
[float(a.strip().split(b' ')[0]) * 1000 for a in line[len(b'Pixel_size'):].split(b'x')])
else:
try:
m = re.match(
b'^(?P<label>[a-zA-Z0-9,_\.\-!\?\ ]*?)\s+(?P<number>-?(\d+(.\d+)?(e-?\d+)?))\s+(?P<unit>m|s|counts|eV)$', line).groupdict()
except AttributeError:
pass
else:
m['label'] = str(m['label'], 'utf-8')
m['unit'] = str(m['unit'], encoding='utf-8')
if m['unit'] == b'counts':
header[m['label']] = int(m['number'])
else:
header[m['label']] = float(m['number'])
if 'sensor' in m['label'] and 'thickness' in m['label']:
header[m['label']] *= 1e6
elif readingmode == 'CIFHeader':
line = hed[i]
for sep in (b':', b'='):
if line.count(sep) == 1:
label, content = tuple(x.strip()
for x in line.split(sep, 1))
if b'"' in content:
content = content.replace(b'"', b'')
try:
content = int(content)
except ValueError:
content = str(content, encoding='utf-8')
header['CBF_' + str(label, encoding='utf-8')] = content
else:
pass
ret = []
if load_data:
if header['CBF_X-Binary-Element-Type'] != 'signed 32-bit integer':
raise NotImplementedError(
'element type is not "signed 32-bit integer" in CBF, but %s.' % header['CBF_X-Binary-Element-Type'])
if header['CBF_conversions'] != 'x-CBF_BYTE_OFFSET':
raise NotImplementedError(
'compression is not "x-CBF_BYTE_OFFSET" in CBF!')
dim1 = header['CBF_X-Binary-Size-Fastest-Dimension']
dim2 = header['CBF_X-Binary-Size-Second-Dimension']
nbytes = header['CBF_X-Binary-Size']
cbfdata = cbfdecompress(
bytearray(cbfbin[datastart:datastart + nbytes]), dim1, dim2, for_nexus)
ret.append(cbfdata)
if load_header:
ret.append(header)
return tuple(ret) | python | def readcbf(name, load_header=False, load_data=True, for_nexus=False):
"""Read a cbf (crystallographic binary format) file from a Dectris PILATUS
detector.
Inputs
------
name: string
the file name
load_header: bool
if the header data is to be loaded.
load_data: bool
if the binary data is to be loaded.
for_nexus: bool
if the array should be opened with NeXus ordering.
Output
------
a numpy array of the scattering data
Notes
-----
currently only Little endian, "signed 32-bit integer" type and
byte-offset compressed data are accepted.
"""
with open(name, 'rb') as f:
cbfbin = f.read()
datastart = cbfbin.find(b'\x0c\x1a\x04\xd5') + 4
hed = [x.strip() for x in cbfbin[:datastart].split(b'\n')]
header = {}
readingmode = None
for i in range(len(hed)):
if not hed[i]:
# skip empty header lines
continue
elif hed[i] == b';':
continue
elif hed[i].startswith(b'_array_data.header_convention'):
header['CBF_header_convention'] = str(hed[i][
len(b'_array_data.header_convention'):].strip().replace(b'"', b''), encoding='utf-8')
elif hed[i].startswith(b'_array_data.header_contents'):
readingmode = 'PilatusHeader'
elif hed[i].startswith(b'_array_data.data'):
readingmode = 'CIFHeader'
elif readingmode == 'PilatusHeader':
if not hed[i].startswith(b'#'):
continue
line = hed[i].strip()[1:].strip()
try:
# try to interpret the line as the date.
header['CBF_Date'] = dateutil.parser.parse(line)
header['Date'] = header['CBF_Date']
continue
except (ValueError, TypeError):
# eat exception: if we cannot parse this line as a date, try
# another format.
pass
treated = False
for sep in (b':', b'='):
if treated:
continue
if line.count(sep) == 1:
name, value = tuple(x.strip() for x in line.split(sep, 1))
try:
m = re.match(
b'^(?P<number>-?(\d+(.\d+)?(e-?\d+)?))\s+(?P<unit>m|s|counts|eV)$', value).groupdict()
value = float(m['number'])
m['unit'] = str(m['unit'], encoding='utf-8')
except AttributeError:
# the regex did not match the string, thus re.match()
# returned None.
pass
header[str(name, 'utf-8')] = value
treated = True
if treated:
continue
if line.startswith(b'Pixel_size'):
header['XPixel'], header['YPixel'] = tuple(
[float(a.strip().split(b' ')[0]) * 1000 for a in line[len(b'Pixel_size'):].split(b'x')])
else:
try:
m = re.match(
b'^(?P<label>[a-zA-Z0-9,_\.\-!\?\ ]*?)\s+(?P<number>-?(\d+(.\d+)?(e-?\d+)?))\s+(?P<unit>m|s|counts|eV)$', line).groupdict()
except AttributeError:
pass
else:
m['label'] = str(m['label'], 'utf-8')
m['unit'] = str(m['unit'], encoding='utf-8')
if m['unit'] == b'counts':
header[m['label']] = int(m['number'])
else:
header[m['label']] = float(m['number'])
if 'sensor' in m['label'] and 'thickness' in m['label']:
header[m['label']] *= 1e6
elif readingmode == 'CIFHeader':
line = hed[i]
for sep in (b':', b'='):
if line.count(sep) == 1:
label, content = tuple(x.strip()
for x in line.split(sep, 1))
if b'"' in content:
content = content.replace(b'"', b'')
try:
content = int(content)
except ValueError:
content = str(content, encoding='utf-8')
header['CBF_' + str(label, encoding='utf-8')] = content
else:
pass
ret = []
if load_data:
if header['CBF_X-Binary-Element-Type'] != 'signed 32-bit integer':
raise NotImplementedError(
'element type is not "signed 32-bit integer" in CBF, but %s.' % header['CBF_X-Binary-Element-Type'])
if header['CBF_conversions'] != 'x-CBF_BYTE_OFFSET':
raise NotImplementedError(
'compression is not "x-CBF_BYTE_OFFSET" in CBF!')
dim1 = header['CBF_X-Binary-Size-Fastest-Dimension']
dim2 = header['CBF_X-Binary-Size-Second-Dimension']
nbytes = header['CBF_X-Binary-Size']
cbfdata = cbfdecompress(
bytearray(cbfbin[datastart:datastart + nbytes]), dim1, dim2, for_nexus)
ret.append(cbfdata)
if load_header:
ret.append(header)
return tuple(ret) | [
"def",
"readcbf",
"(",
"name",
",",
"load_header",
"=",
"False",
",",
"load_data",
"=",
"True",
",",
"for_nexus",
"=",
"False",
")",
":",
"with",
"open",
"(",
"name",
",",
"'rb'",
")",
"as",
"f",
":",
"cbfbin",
"=",
"f",
".",
"read",
"(",
")",
"datastart",
"=",
"cbfbin",
".",
"find",
"(",
"b'\\x0c\\x1a\\x04\\xd5'",
")",
"+",
"4",
"hed",
"=",
"[",
"x",
".",
"strip",
"(",
")",
"for",
"x",
"in",
"cbfbin",
"[",
":",
"datastart",
"]",
".",
"split",
"(",
"b'\\n'",
")",
"]",
"header",
"=",
"{",
"}",
"readingmode",
"=",
"None",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"hed",
")",
")",
":",
"if",
"not",
"hed",
"[",
"i",
"]",
":",
"# skip empty header lines",
"continue",
"elif",
"hed",
"[",
"i",
"]",
"==",
"b';'",
":",
"continue",
"elif",
"hed",
"[",
"i",
"]",
".",
"startswith",
"(",
"b'_array_data.header_convention'",
")",
":",
"header",
"[",
"'CBF_header_convention'",
"]",
"=",
"str",
"(",
"hed",
"[",
"i",
"]",
"[",
"len",
"(",
"b'_array_data.header_convention'",
")",
":",
"]",
".",
"strip",
"(",
")",
".",
"replace",
"(",
"b'\"'",
",",
"b''",
")",
",",
"encoding",
"=",
"'utf-8'",
")",
"elif",
"hed",
"[",
"i",
"]",
".",
"startswith",
"(",
"b'_array_data.header_contents'",
")",
":",
"readingmode",
"=",
"'PilatusHeader'",
"elif",
"hed",
"[",
"i",
"]",
".",
"startswith",
"(",
"b'_array_data.data'",
")",
":",
"readingmode",
"=",
"'CIFHeader'",
"elif",
"readingmode",
"==",
"'PilatusHeader'",
":",
"if",
"not",
"hed",
"[",
"i",
"]",
".",
"startswith",
"(",
"b'#'",
")",
":",
"continue",
"line",
"=",
"hed",
"[",
"i",
"]",
".",
"strip",
"(",
")",
"[",
"1",
":",
"]",
".",
"strip",
"(",
")",
"try",
":",
"# try to interpret the line as the date.",
"header",
"[",
"'CBF_Date'",
"]",
"=",
"dateutil",
".",
"parser",
".",
"parse",
"(",
"line",
")",
"header",
"[",
"'Date'",
"]",
"=",
"header",
"[",
"'CBF_Date'",
"]",
"continue",
"except",
"(",
"ValueError",
",",
"TypeError",
")",
":",
"# eat exception: if we cannot parse this line as a date, try",
"# another format.",
"pass",
"treated",
"=",
"False",
"for",
"sep",
"in",
"(",
"b':'",
",",
"b'='",
")",
":",
"if",
"treated",
":",
"continue",
"if",
"line",
".",
"count",
"(",
"sep",
")",
"==",
"1",
":",
"name",
",",
"value",
"=",
"tuple",
"(",
"x",
".",
"strip",
"(",
")",
"for",
"x",
"in",
"line",
".",
"split",
"(",
"sep",
",",
"1",
")",
")",
"try",
":",
"m",
"=",
"re",
".",
"match",
"(",
"b'^(?P<number>-?(\\d+(.\\d+)?(e-?\\d+)?))\\s+(?P<unit>m|s|counts|eV)$'",
",",
"value",
")",
".",
"groupdict",
"(",
")",
"value",
"=",
"float",
"(",
"m",
"[",
"'number'",
"]",
")",
"m",
"[",
"'unit'",
"]",
"=",
"str",
"(",
"m",
"[",
"'unit'",
"]",
",",
"encoding",
"=",
"'utf-8'",
")",
"except",
"AttributeError",
":",
"# the regex did not match the string, thus re.match()",
"# returned None.",
"pass",
"header",
"[",
"str",
"(",
"name",
",",
"'utf-8'",
")",
"]",
"=",
"value",
"treated",
"=",
"True",
"if",
"treated",
":",
"continue",
"if",
"line",
".",
"startswith",
"(",
"b'Pixel_size'",
")",
":",
"header",
"[",
"'XPixel'",
"]",
",",
"header",
"[",
"'YPixel'",
"]",
"=",
"tuple",
"(",
"[",
"float",
"(",
"a",
".",
"strip",
"(",
")",
".",
"split",
"(",
"b' '",
")",
"[",
"0",
"]",
")",
"*",
"1000",
"for",
"a",
"in",
"line",
"[",
"len",
"(",
"b'Pixel_size'",
")",
":",
"]",
".",
"split",
"(",
"b'x'",
")",
"]",
")",
"else",
":",
"try",
":",
"m",
"=",
"re",
".",
"match",
"(",
"b'^(?P<label>[a-zA-Z0-9,_\\.\\-!\\?\\ ]*?)\\s+(?P<number>-?(\\d+(.\\d+)?(e-?\\d+)?))\\s+(?P<unit>m|s|counts|eV)$'",
",",
"line",
")",
".",
"groupdict",
"(",
")",
"except",
"AttributeError",
":",
"pass",
"else",
":",
"m",
"[",
"'label'",
"]",
"=",
"str",
"(",
"m",
"[",
"'label'",
"]",
",",
"'utf-8'",
")",
"m",
"[",
"'unit'",
"]",
"=",
"str",
"(",
"m",
"[",
"'unit'",
"]",
",",
"encoding",
"=",
"'utf-8'",
")",
"if",
"m",
"[",
"'unit'",
"]",
"==",
"b'counts'",
":",
"header",
"[",
"m",
"[",
"'label'",
"]",
"]",
"=",
"int",
"(",
"m",
"[",
"'number'",
"]",
")",
"else",
":",
"header",
"[",
"m",
"[",
"'label'",
"]",
"]",
"=",
"float",
"(",
"m",
"[",
"'number'",
"]",
")",
"if",
"'sensor'",
"in",
"m",
"[",
"'label'",
"]",
"and",
"'thickness'",
"in",
"m",
"[",
"'label'",
"]",
":",
"header",
"[",
"m",
"[",
"'label'",
"]",
"]",
"*=",
"1e6",
"elif",
"readingmode",
"==",
"'CIFHeader'",
":",
"line",
"=",
"hed",
"[",
"i",
"]",
"for",
"sep",
"in",
"(",
"b':'",
",",
"b'='",
")",
":",
"if",
"line",
".",
"count",
"(",
"sep",
")",
"==",
"1",
":",
"label",
",",
"content",
"=",
"tuple",
"(",
"x",
".",
"strip",
"(",
")",
"for",
"x",
"in",
"line",
".",
"split",
"(",
"sep",
",",
"1",
")",
")",
"if",
"b'\"'",
"in",
"content",
":",
"content",
"=",
"content",
".",
"replace",
"(",
"b'\"'",
",",
"b''",
")",
"try",
":",
"content",
"=",
"int",
"(",
"content",
")",
"except",
"ValueError",
":",
"content",
"=",
"str",
"(",
"content",
",",
"encoding",
"=",
"'utf-8'",
")",
"header",
"[",
"'CBF_'",
"+",
"str",
"(",
"label",
",",
"encoding",
"=",
"'utf-8'",
")",
"]",
"=",
"content",
"else",
":",
"pass",
"ret",
"=",
"[",
"]",
"if",
"load_data",
":",
"if",
"header",
"[",
"'CBF_X-Binary-Element-Type'",
"]",
"!=",
"'signed 32-bit integer'",
":",
"raise",
"NotImplementedError",
"(",
"'element type is not \"signed 32-bit integer\" in CBF, but %s.'",
"%",
"header",
"[",
"'CBF_X-Binary-Element-Type'",
"]",
")",
"if",
"header",
"[",
"'CBF_conversions'",
"]",
"!=",
"'x-CBF_BYTE_OFFSET'",
":",
"raise",
"NotImplementedError",
"(",
"'compression is not \"x-CBF_BYTE_OFFSET\" in CBF!'",
")",
"dim1",
"=",
"header",
"[",
"'CBF_X-Binary-Size-Fastest-Dimension'",
"]",
"dim2",
"=",
"header",
"[",
"'CBF_X-Binary-Size-Second-Dimension'",
"]",
"nbytes",
"=",
"header",
"[",
"'CBF_X-Binary-Size'",
"]",
"cbfdata",
"=",
"cbfdecompress",
"(",
"bytearray",
"(",
"cbfbin",
"[",
"datastart",
":",
"datastart",
"+",
"nbytes",
"]",
")",
",",
"dim1",
",",
"dim2",
",",
"for_nexus",
")",
"ret",
".",
"append",
"(",
"cbfdata",
")",
"if",
"load_header",
":",
"ret",
".",
"append",
"(",
"header",
")",
"return",
"tuple",
"(",
"ret",
")"
] | Read a cbf (crystallographic binary format) file from a Dectris PILATUS
detector.
Inputs
------
name: string
the file name
load_header: bool
if the header data is to be loaded.
load_data: bool
if the binary data is to be loaded.
for_nexus: bool
if the array should be opened with NeXus ordering.
Output
------
a numpy array of the scattering data
Notes
-----
currently only Little endian, "signed 32-bit integer" type and
byte-offset compressed data are accepted. | [
"Read",
"a",
"cbf",
"(",
"crystallographic",
"binary",
"format",
")",
"file",
"from",
"a",
"Dectris",
"PILATUS",
"detector",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L87-L212 |
awacha/sastool | sastool/io/twodim.py | readbdfv1 | def readbdfv1(filename, bdfext='.bdf', bhfext='.bhf'):
"""Read bdf file (Bessy Data Format v1)
Input
-----
filename: string
the name of the file
Output
------
the BDF structure in a dict
Notes
-----
This is an adaptation of the bdf_read.m macro of Sylvio Haas.
"""
return header.readbhfv1(filename, True, bdfext, bhfext) | python | def readbdfv1(filename, bdfext='.bdf', bhfext='.bhf'):
"""Read bdf file (Bessy Data Format v1)
Input
-----
filename: string
the name of the file
Output
------
the BDF structure in a dict
Notes
-----
This is an adaptation of the bdf_read.m macro of Sylvio Haas.
"""
return header.readbhfv1(filename, True, bdfext, bhfext) | [
"def",
"readbdfv1",
"(",
"filename",
",",
"bdfext",
"=",
"'.bdf'",
",",
"bhfext",
"=",
"'.bhf'",
")",
":",
"return",
"header",
".",
"readbhfv1",
"(",
"filename",
",",
"True",
",",
"bdfext",
",",
"bhfext",
")"
] | Read bdf file (Bessy Data Format v1)
Input
-----
filename: string
the name of the file
Output
------
the BDF structure in a dict
Notes
-----
This is an adaptation of the bdf_read.m macro of Sylvio Haas. | [
"Read",
"bdf",
"file",
"(",
"Bessy",
"Data",
"Format",
"v1",
")"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L215-L231 |
awacha/sastool | sastool/io/twodim.py | readint2dnorm | def readint2dnorm(filename):
"""Read corrected intensity and error matrices (Matlab mat or numpy npz
format for Beamline B1 (HASYLAB/DORISIII))
Input
-----
filename: string
the name of the file
Outputs
-------
two ``np.ndarray``-s, the Intensity and the Error matrices
File formats supported:
-----------------------
``.mat``
Matlab MAT file, with (at least) two fields: Intensity and Error
``.npz``
Numpy zip file, with (at least) two fields: Intensity and Error
other
the file is opened with ``np.loadtxt``. The error matrix is tried
to be loaded from the file ``<name>_error<ext>`` where the intensity was
loaded from file ``<name><ext>``. I.e. if ``somedir/matrix.dat`` is given,
the existence of ``somedir/matrix_error.dat`` is checked. If not found,
None is returned for the error matrix.
Notes
-----
The non-existence of the Intensity matrix results in an exception. If the
Error matrix does not exist, None is returned for it.
"""
# the core of read2dintfile
if filename.upper().endswith('.MAT'): # Matlab
m = scipy.io.loadmat(filename)
elif filename.upper().endswith('.NPZ'): # Numpy
m = np.load(filename)
else: # loadtxt
m = {'Intensity': np.loadtxt(filename)}
name, ext = os.path.splitext(filename)
errorfilename = name + '_error' + ext
if os.path.exists(errorfilename):
m['Error'] = np.loadtxt(errorfilename)
Intensity = m['Intensity']
try:
Error = m['Error']
return Intensity, Error
except:
return Intensity, None | python | def readint2dnorm(filename):
"""Read corrected intensity and error matrices (Matlab mat or numpy npz
format for Beamline B1 (HASYLAB/DORISIII))
Input
-----
filename: string
the name of the file
Outputs
-------
two ``np.ndarray``-s, the Intensity and the Error matrices
File formats supported:
-----------------------
``.mat``
Matlab MAT file, with (at least) two fields: Intensity and Error
``.npz``
Numpy zip file, with (at least) two fields: Intensity and Error
other
the file is opened with ``np.loadtxt``. The error matrix is tried
to be loaded from the file ``<name>_error<ext>`` where the intensity was
loaded from file ``<name><ext>``. I.e. if ``somedir/matrix.dat`` is given,
the existence of ``somedir/matrix_error.dat`` is checked. If not found,
None is returned for the error matrix.
Notes
-----
The non-existence of the Intensity matrix results in an exception. If the
Error matrix does not exist, None is returned for it.
"""
# the core of read2dintfile
if filename.upper().endswith('.MAT'): # Matlab
m = scipy.io.loadmat(filename)
elif filename.upper().endswith('.NPZ'): # Numpy
m = np.load(filename)
else: # loadtxt
m = {'Intensity': np.loadtxt(filename)}
name, ext = os.path.splitext(filename)
errorfilename = name + '_error' + ext
if os.path.exists(errorfilename):
m['Error'] = np.loadtxt(errorfilename)
Intensity = m['Intensity']
try:
Error = m['Error']
return Intensity, Error
except:
return Intensity, None | [
"def",
"readint2dnorm",
"(",
"filename",
")",
":",
"# the core of read2dintfile",
"if",
"filename",
".",
"upper",
"(",
")",
".",
"endswith",
"(",
"'.MAT'",
")",
":",
"# Matlab",
"m",
"=",
"scipy",
".",
"io",
".",
"loadmat",
"(",
"filename",
")",
"elif",
"filename",
".",
"upper",
"(",
")",
".",
"endswith",
"(",
"'.NPZ'",
")",
":",
"# Numpy",
"m",
"=",
"np",
".",
"load",
"(",
"filename",
")",
"else",
":",
"# loadtxt",
"m",
"=",
"{",
"'Intensity'",
":",
"np",
".",
"loadtxt",
"(",
"filename",
")",
"}",
"name",
",",
"ext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"filename",
")",
"errorfilename",
"=",
"name",
"+",
"'_error'",
"+",
"ext",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"errorfilename",
")",
":",
"m",
"[",
"'Error'",
"]",
"=",
"np",
".",
"loadtxt",
"(",
"errorfilename",
")",
"Intensity",
"=",
"m",
"[",
"'Intensity'",
"]",
"try",
":",
"Error",
"=",
"m",
"[",
"'Error'",
"]",
"return",
"Intensity",
",",
"Error",
"except",
":",
"return",
"Intensity",
",",
"None"
] | Read corrected intensity and error matrices (Matlab mat or numpy npz
format for Beamline B1 (HASYLAB/DORISIII))
Input
-----
filename: string
the name of the file
Outputs
-------
two ``np.ndarray``-s, the Intensity and the Error matrices
File formats supported:
-----------------------
``.mat``
Matlab MAT file, with (at least) two fields: Intensity and Error
``.npz``
Numpy zip file, with (at least) two fields: Intensity and Error
other
the file is opened with ``np.loadtxt``. The error matrix is tried
to be loaded from the file ``<name>_error<ext>`` where the intensity was
loaded from file ``<name><ext>``. I.e. if ``somedir/matrix.dat`` is given,
the existence of ``somedir/matrix_error.dat`` is checked. If not found,
None is returned for the error matrix.
Notes
-----
The non-existence of the Intensity matrix results in an exception. If the
Error matrix does not exist, None is returned for it. | [
"Read",
"corrected",
"intensity",
"and",
"error",
"matrices",
"(",
"Matlab",
"mat",
"or",
"numpy",
"npz",
"format",
"for",
"Beamline",
"B1",
"(",
"HASYLAB",
"/",
"DORISIII",
"))"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L253-L303 |
awacha/sastool | sastool/io/twodim.py | writeint2dnorm | def writeint2dnorm(filename, Intensity, Error=None):
"""Save the intensity and error matrices to a file
Inputs
------
filename: string
the name of the file
Intensity: np.ndarray
the intensity matrix
Error: np.ndarray, optional
the error matrix (can be ``None``, if no error matrix is to be saved)
Output
------
None
"""
whattosave = {'Intensity': Intensity}
if Error is not None:
whattosave['Error'] = Error
if filename.upper().endswith('.NPZ'):
np.savez(filename, **whattosave)
elif filename.upper().endswith('.MAT'):
scipy.io.savemat(filename, whattosave)
else: # text file
np.savetxt(filename, Intensity)
if Error is not None:
name, ext = os.path.splitext(filename)
np.savetxt(name + '_error' + ext, Error) | python | def writeint2dnorm(filename, Intensity, Error=None):
"""Save the intensity and error matrices to a file
Inputs
------
filename: string
the name of the file
Intensity: np.ndarray
the intensity matrix
Error: np.ndarray, optional
the error matrix (can be ``None``, if no error matrix is to be saved)
Output
------
None
"""
whattosave = {'Intensity': Intensity}
if Error is not None:
whattosave['Error'] = Error
if filename.upper().endswith('.NPZ'):
np.savez(filename, **whattosave)
elif filename.upper().endswith('.MAT'):
scipy.io.savemat(filename, whattosave)
else: # text file
np.savetxt(filename, Intensity)
if Error is not None:
name, ext = os.path.splitext(filename)
np.savetxt(name + '_error' + ext, Error) | [
"def",
"writeint2dnorm",
"(",
"filename",
",",
"Intensity",
",",
"Error",
"=",
"None",
")",
":",
"whattosave",
"=",
"{",
"'Intensity'",
":",
"Intensity",
"}",
"if",
"Error",
"is",
"not",
"None",
":",
"whattosave",
"[",
"'Error'",
"]",
"=",
"Error",
"if",
"filename",
".",
"upper",
"(",
")",
".",
"endswith",
"(",
"'.NPZ'",
")",
":",
"np",
".",
"savez",
"(",
"filename",
",",
"*",
"*",
"whattosave",
")",
"elif",
"filename",
".",
"upper",
"(",
")",
".",
"endswith",
"(",
"'.MAT'",
")",
":",
"scipy",
".",
"io",
".",
"savemat",
"(",
"filename",
",",
"whattosave",
")",
"else",
":",
"# text file",
"np",
".",
"savetxt",
"(",
"filename",
",",
"Intensity",
")",
"if",
"Error",
"is",
"not",
"None",
":",
"name",
",",
"ext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"filename",
")",
"np",
".",
"savetxt",
"(",
"name",
"+",
"'_error'",
"+",
"ext",
",",
"Error",
")"
] | Save the intensity and error matrices to a file
Inputs
------
filename: string
the name of the file
Intensity: np.ndarray
the intensity matrix
Error: np.ndarray, optional
the error matrix (can be ``None``, if no error matrix is to be saved)
Output
------
None | [
"Save",
"the",
"intensity",
"and",
"error",
"matrices",
"to",
"a",
"file"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L306-L333 |
awacha/sastool | sastool/io/twodim.py | readmask | def readmask(filename, fieldname=None):
"""Try to load a maskfile from a matlab(R) matrix file
Inputs
------
filename: string
the input file name
fieldname: string, optional
field in the mat file. None to autodetect.
Outputs
-------
the mask in a numpy array of type np.uint8
"""
f = scipy.io.loadmat(filename)
if fieldname is not None:
return f[fieldname].astype(np.uint8)
else:
validkeys = [
k for k in list(f.keys()) if not (k.startswith('_') and k.endswith('_'))]
if len(validkeys) < 1:
raise ValueError('mask file contains no masks!')
if len(validkeys) > 1:
raise ValueError('mask file contains multiple masks!')
return f[validkeys[0]].astype(np.uint8) | python | def readmask(filename, fieldname=None):
"""Try to load a maskfile from a matlab(R) matrix file
Inputs
------
filename: string
the input file name
fieldname: string, optional
field in the mat file. None to autodetect.
Outputs
-------
the mask in a numpy array of type np.uint8
"""
f = scipy.io.loadmat(filename)
if fieldname is not None:
return f[fieldname].astype(np.uint8)
else:
validkeys = [
k for k in list(f.keys()) if not (k.startswith('_') and k.endswith('_'))]
if len(validkeys) < 1:
raise ValueError('mask file contains no masks!')
if len(validkeys) > 1:
raise ValueError('mask file contains multiple masks!')
return f[validkeys[0]].astype(np.uint8) | [
"def",
"readmask",
"(",
"filename",
",",
"fieldname",
"=",
"None",
")",
":",
"f",
"=",
"scipy",
".",
"io",
".",
"loadmat",
"(",
"filename",
")",
"if",
"fieldname",
"is",
"not",
"None",
":",
"return",
"f",
"[",
"fieldname",
"]",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
"else",
":",
"validkeys",
"=",
"[",
"k",
"for",
"k",
"in",
"list",
"(",
"f",
".",
"keys",
"(",
")",
")",
"if",
"not",
"(",
"k",
".",
"startswith",
"(",
"'_'",
")",
"and",
"k",
".",
"endswith",
"(",
"'_'",
")",
")",
"]",
"if",
"len",
"(",
"validkeys",
")",
"<",
"1",
":",
"raise",
"ValueError",
"(",
"'mask file contains no masks!'",
")",
"if",
"len",
"(",
"validkeys",
")",
">",
"1",
":",
"raise",
"ValueError",
"(",
"'mask file contains multiple masks!'",
")",
"return",
"f",
"[",
"validkeys",
"[",
"0",
"]",
"]",
".",
"astype",
"(",
"np",
".",
"uint8",
")"
] | Try to load a maskfile from a matlab(R) matrix file
Inputs
------
filename: string
the input file name
fieldname: string, optional
field in the mat file. None to autodetect.
Outputs
-------
the mask in a numpy array of type np.uint8 | [
"Try",
"to",
"load",
"a",
"maskfile",
"from",
"a",
"matlab",
"(",
"R",
")",
"matrix",
"file"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L336-L360 |
awacha/sastool | sastool/io/twodim.py | readedf | def readedf(filename):
"""Read an ESRF data file (measured at beamlines ID01 or ID02)
Inputs
------
filename: string
the input file name
Output
------
the imported EDF structure in a dict. The scattering pattern is under key
'data'.
Notes
-----
Only datatype ``FloatValue`` is supported right now.
"""
edf = header.readehf(filename)
f = open(filename, 'rb')
f.read(edf['EDF_HeaderSize']) # skip header.
if edf['DataType'] == 'FloatValue':
dtype = np.float32
else:
raise NotImplementedError(
'Not supported data type: %s' % edf['DataType'])
edf['data'] = np.fromstring(f.read(edf['EDF_BinarySize']), dtype).reshape(
edf['Dim_1'], edf['Dim_2'])
return edf | python | def readedf(filename):
"""Read an ESRF data file (measured at beamlines ID01 or ID02)
Inputs
------
filename: string
the input file name
Output
------
the imported EDF structure in a dict. The scattering pattern is under key
'data'.
Notes
-----
Only datatype ``FloatValue`` is supported right now.
"""
edf = header.readehf(filename)
f = open(filename, 'rb')
f.read(edf['EDF_HeaderSize']) # skip header.
if edf['DataType'] == 'FloatValue':
dtype = np.float32
else:
raise NotImplementedError(
'Not supported data type: %s' % edf['DataType'])
edf['data'] = np.fromstring(f.read(edf['EDF_BinarySize']), dtype).reshape(
edf['Dim_1'], edf['Dim_2'])
return edf | [
"def",
"readedf",
"(",
"filename",
")",
":",
"edf",
"=",
"header",
".",
"readehf",
"(",
"filename",
")",
"f",
"=",
"open",
"(",
"filename",
",",
"'rb'",
")",
"f",
".",
"read",
"(",
"edf",
"[",
"'EDF_HeaderSize'",
"]",
")",
"# skip header.",
"if",
"edf",
"[",
"'DataType'",
"]",
"==",
"'FloatValue'",
":",
"dtype",
"=",
"np",
".",
"float32",
"else",
":",
"raise",
"NotImplementedError",
"(",
"'Not supported data type: %s'",
"%",
"edf",
"[",
"'DataType'",
"]",
")",
"edf",
"[",
"'data'",
"]",
"=",
"np",
".",
"fromstring",
"(",
"f",
".",
"read",
"(",
"edf",
"[",
"'EDF_BinarySize'",
"]",
")",
",",
"dtype",
")",
".",
"reshape",
"(",
"edf",
"[",
"'Dim_1'",
"]",
",",
"edf",
"[",
"'Dim_2'",
"]",
")",
"return",
"edf"
] | Read an ESRF data file (measured at beamlines ID01 or ID02)
Inputs
------
filename: string
the input file name
Output
------
the imported EDF structure in a dict. The scattering pattern is under key
'data'.
Notes
-----
Only datatype ``FloatValue`` is supported right now. | [
"Read",
"an",
"ESRF",
"data",
"file",
"(",
"measured",
"at",
"beamlines",
"ID01",
"or",
"ID02",
")"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L363-L390 |
awacha/sastool | sastool/io/twodim.py | readbdfv2 | def readbdfv2(filename, bdfext='.bdf', bhfext='.bhf'):
"""Read a version 2 Bessy Data File
Inputs
------
filename: string
the name of the input file. One can give the complete header or datafile
name or just the base name without the extensions.
bdfext: string, optional
the extension of the data file
bhfext: string, optional
the extension of the header file
Output
------
the data structure in a dict. Header is loaded implicitely.
Notes
-----
BDFv2 header and scattering data are stored separately in the header and
the data files. Given the file name both are loaded.
"""
datas = header.readbhfv2(filename, True, bdfext, bhfext)
return datas | python | def readbdfv2(filename, bdfext='.bdf', bhfext='.bhf'):
"""Read a version 2 Bessy Data File
Inputs
------
filename: string
the name of the input file. One can give the complete header or datafile
name or just the base name without the extensions.
bdfext: string, optional
the extension of the data file
bhfext: string, optional
the extension of the header file
Output
------
the data structure in a dict. Header is loaded implicitely.
Notes
-----
BDFv2 header and scattering data are stored separately in the header and
the data files. Given the file name both are loaded.
"""
datas = header.readbhfv2(filename, True, bdfext, bhfext)
return datas | [
"def",
"readbdfv2",
"(",
"filename",
",",
"bdfext",
"=",
"'.bdf'",
",",
"bhfext",
"=",
"'.bhf'",
")",
":",
"datas",
"=",
"header",
".",
"readbhfv2",
"(",
"filename",
",",
"True",
",",
"bdfext",
",",
"bhfext",
")",
"return",
"datas"
] | Read a version 2 Bessy Data File
Inputs
------
filename: string
the name of the input file. One can give the complete header or datafile
name or just the base name without the extensions.
bdfext: string, optional
the extension of the data file
bhfext: string, optional
the extension of the header file
Output
------
the data structure in a dict. Header is loaded implicitely.
Notes
-----
BDFv2 header and scattering data are stored separately in the header and
the data files. Given the file name both are loaded. | [
"Read",
"a",
"version",
"2",
"Bessy",
"Data",
"File"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L393-L416 |
awacha/sastool | sastool/io/twodim.py | readmar | def readmar(filename):
"""Read a two-dimensional scattering pattern from a MarResearch .image file.
"""
hed = header.readmarheader(filename)
with open(filename, 'rb') as f:
h = f.read(hed['recordlength'])
data = np.fromstring(
f.read(2 * hed['Xsize'] * hed['Ysize']), '<u2').astype(np.float64)
if hed['highintensitypixels'] > 0:
raise NotImplementedError(
'Intensities over 65535 are not yet supported!')
data = data.reshape(hed['Xsize'], hed['Ysize'])
return data, hed | python | def readmar(filename):
"""Read a two-dimensional scattering pattern from a MarResearch .image file.
"""
hed = header.readmarheader(filename)
with open(filename, 'rb') as f:
h = f.read(hed['recordlength'])
data = np.fromstring(
f.read(2 * hed['Xsize'] * hed['Ysize']), '<u2').astype(np.float64)
if hed['highintensitypixels'] > 0:
raise NotImplementedError(
'Intensities over 65535 are not yet supported!')
data = data.reshape(hed['Xsize'], hed['Ysize'])
return data, hed | [
"def",
"readmar",
"(",
"filename",
")",
":",
"hed",
"=",
"header",
".",
"readmarheader",
"(",
"filename",
")",
"with",
"open",
"(",
"filename",
",",
"'rb'",
")",
"as",
"f",
":",
"h",
"=",
"f",
".",
"read",
"(",
"hed",
"[",
"'recordlength'",
"]",
")",
"data",
"=",
"np",
".",
"fromstring",
"(",
"f",
".",
"read",
"(",
"2",
"*",
"hed",
"[",
"'Xsize'",
"]",
"*",
"hed",
"[",
"'Ysize'",
"]",
")",
",",
"'<u2'",
")",
".",
"astype",
"(",
"np",
".",
"float64",
")",
"if",
"hed",
"[",
"'highintensitypixels'",
"]",
">",
"0",
":",
"raise",
"NotImplementedError",
"(",
"'Intensities over 65535 are not yet supported!'",
")",
"data",
"=",
"data",
".",
"reshape",
"(",
"hed",
"[",
"'Xsize'",
"]",
",",
"hed",
"[",
"'Ysize'",
"]",
")",
"return",
"data",
",",
"hed"
] | Read a two-dimensional scattering pattern from a MarResearch .image file. | [
"Read",
"a",
"two",
"-",
"dimensional",
"scattering",
"pattern",
"from",
"a",
"MarResearch",
".",
"image",
"file",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L423-L435 |
awacha/sastool | sastool/io/twodim.py | writebdfv2 | def writebdfv2(filename, bdf, bdfext='.bdf', bhfext='.bhf'):
"""Write a version 2 Bessy Data File
Inputs
------
filename: string
the name of the output file. One can give the complete header or
datafile name or just the base name without the extensions.
bdf: dict
the BDF structure (in the same format as loaded by ``readbdfv2()``
bdfext: string, optional
the extension of the data file
bhfext: string, optional
the extension of the header file
Output
------
None
Notes
-----
BDFv2 header and scattering data are stored separately in the header and
the data files. Given the file name both are saved.
"""
if filename.endswith(bdfext):
basename = filename[:-len(bdfext)]
elif filename.endswith(bhfext):
basename = filename[:-len(bhfext)]
else:
basename = filename
header.writebhfv2(basename + '.bhf', bdf)
f = open(basename + '.bdf', 'wb')
keys = ['RAWDATA', 'RAWERROR', 'CORRDATA', 'CORRERROR', 'NANDATA']
keys.extend(
[x for x in list(bdf.keys()) if isinstance(bdf[x], np.ndarray) and x not in keys])
for k in keys:
if k not in list(bdf.keys()):
continue
f.write('#%s[%d:%d]\n' % (k, bdf['xdim'], bdf['ydim']))
f.write(np.rot90(bdf[k], 3).astype('float32').tostring(order='F'))
f.close() | python | def writebdfv2(filename, bdf, bdfext='.bdf', bhfext='.bhf'):
"""Write a version 2 Bessy Data File
Inputs
------
filename: string
the name of the output file. One can give the complete header or
datafile name or just the base name without the extensions.
bdf: dict
the BDF structure (in the same format as loaded by ``readbdfv2()``
bdfext: string, optional
the extension of the data file
bhfext: string, optional
the extension of the header file
Output
------
None
Notes
-----
BDFv2 header and scattering data are stored separately in the header and
the data files. Given the file name both are saved.
"""
if filename.endswith(bdfext):
basename = filename[:-len(bdfext)]
elif filename.endswith(bhfext):
basename = filename[:-len(bhfext)]
else:
basename = filename
header.writebhfv2(basename + '.bhf', bdf)
f = open(basename + '.bdf', 'wb')
keys = ['RAWDATA', 'RAWERROR', 'CORRDATA', 'CORRERROR', 'NANDATA']
keys.extend(
[x for x in list(bdf.keys()) if isinstance(bdf[x], np.ndarray) and x not in keys])
for k in keys:
if k not in list(bdf.keys()):
continue
f.write('#%s[%d:%d]\n' % (k, bdf['xdim'], bdf['ydim']))
f.write(np.rot90(bdf[k], 3).astype('float32').tostring(order='F'))
f.close() | [
"def",
"writebdfv2",
"(",
"filename",
",",
"bdf",
",",
"bdfext",
"=",
"'.bdf'",
",",
"bhfext",
"=",
"'.bhf'",
")",
":",
"if",
"filename",
".",
"endswith",
"(",
"bdfext",
")",
":",
"basename",
"=",
"filename",
"[",
":",
"-",
"len",
"(",
"bdfext",
")",
"]",
"elif",
"filename",
".",
"endswith",
"(",
"bhfext",
")",
":",
"basename",
"=",
"filename",
"[",
":",
"-",
"len",
"(",
"bhfext",
")",
"]",
"else",
":",
"basename",
"=",
"filename",
"header",
".",
"writebhfv2",
"(",
"basename",
"+",
"'.bhf'",
",",
"bdf",
")",
"f",
"=",
"open",
"(",
"basename",
"+",
"'.bdf'",
",",
"'wb'",
")",
"keys",
"=",
"[",
"'RAWDATA'",
",",
"'RAWERROR'",
",",
"'CORRDATA'",
",",
"'CORRERROR'",
",",
"'NANDATA'",
"]",
"keys",
".",
"extend",
"(",
"[",
"x",
"for",
"x",
"in",
"list",
"(",
"bdf",
".",
"keys",
"(",
")",
")",
"if",
"isinstance",
"(",
"bdf",
"[",
"x",
"]",
",",
"np",
".",
"ndarray",
")",
"and",
"x",
"not",
"in",
"keys",
"]",
")",
"for",
"k",
"in",
"keys",
":",
"if",
"k",
"not",
"in",
"list",
"(",
"bdf",
".",
"keys",
"(",
")",
")",
":",
"continue",
"f",
".",
"write",
"(",
"'#%s[%d:%d]\\n'",
"%",
"(",
"k",
",",
"bdf",
"[",
"'xdim'",
"]",
",",
"bdf",
"[",
"'ydim'",
"]",
")",
")",
"f",
".",
"write",
"(",
"np",
".",
"rot90",
"(",
"bdf",
"[",
"k",
"]",
",",
"3",
")",
".",
"astype",
"(",
"'float32'",
")",
".",
"tostring",
"(",
"order",
"=",
"'F'",
")",
")",
"f",
".",
"close",
"(",
")"
] | Write a version 2 Bessy Data File
Inputs
------
filename: string
the name of the output file. One can give the complete header or
datafile name or just the base name without the extensions.
bdf: dict
the BDF structure (in the same format as loaded by ``readbdfv2()``
bdfext: string, optional
the extension of the data file
bhfext: string, optional
the extension of the header file
Output
------
None
Notes
-----
BDFv2 header and scattering data are stored separately in the header and
the data files. Given the file name both are saved. | [
"Write",
"a",
"version",
"2",
"Bessy",
"Data",
"File"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L438-L478 |
awacha/sastool | sastool/io/twodim.py | rebinmask | def rebinmask(mask, binx, biny, enlarge=False):
"""Re-bin (shrink or enlarge) a mask matrix.
Inputs
------
mask: np.ndarray
mask matrix.
binx: integer
binning along the 0th axis
biny: integer
binning along the 1st axis
enlarge: bool, optional
direction of binning. If True, the matrix will be enlarged, otherwise
shrinked (this is the default)
Output
------
the binned mask matrix, of shape ``M/binx`` times ``N/biny`` or ``M*binx``
times ``N*biny``, depending on the value of ``enlarge`` (if ``mask`` is
``M`` times ``N`` pixels).
Notes
-----
one is nonmasked, zero is masked.
"""
if not enlarge and ((mask.shape[0] % binx) or (mask.shape[1] % biny)):
raise ValueError(
'The number of pixels of the mask matrix should be divisible by the binning in each direction!')
if enlarge:
return mask.repeat(binx, axis=0).repeat(biny, axis=1)
else:
return mask[::binx, ::biny] | python | def rebinmask(mask, binx, biny, enlarge=False):
"""Re-bin (shrink or enlarge) a mask matrix.
Inputs
------
mask: np.ndarray
mask matrix.
binx: integer
binning along the 0th axis
biny: integer
binning along the 1st axis
enlarge: bool, optional
direction of binning. If True, the matrix will be enlarged, otherwise
shrinked (this is the default)
Output
------
the binned mask matrix, of shape ``M/binx`` times ``N/biny`` or ``M*binx``
times ``N*biny``, depending on the value of ``enlarge`` (if ``mask`` is
``M`` times ``N`` pixels).
Notes
-----
one is nonmasked, zero is masked.
"""
if not enlarge and ((mask.shape[0] % binx) or (mask.shape[1] % biny)):
raise ValueError(
'The number of pixels of the mask matrix should be divisible by the binning in each direction!')
if enlarge:
return mask.repeat(binx, axis=0).repeat(biny, axis=1)
else:
return mask[::binx, ::biny] | [
"def",
"rebinmask",
"(",
"mask",
",",
"binx",
",",
"biny",
",",
"enlarge",
"=",
"False",
")",
":",
"if",
"not",
"enlarge",
"and",
"(",
"(",
"mask",
".",
"shape",
"[",
"0",
"]",
"%",
"binx",
")",
"or",
"(",
"mask",
".",
"shape",
"[",
"1",
"]",
"%",
"biny",
")",
")",
":",
"raise",
"ValueError",
"(",
"'The number of pixels of the mask matrix should be divisible by the binning in each direction!'",
")",
"if",
"enlarge",
":",
"return",
"mask",
".",
"repeat",
"(",
"binx",
",",
"axis",
"=",
"0",
")",
".",
"repeat",
"(",
"biny",
",",
"axis",
"=",
"1",
")",
"else",
":",
"return",
"mask",
"[",
":",
":",
"binx",
",",
":",
":",
"biny",
"]"
] | Re-bin (shrink or enlarge) a mask matrix.
Inputs
------
mask: np.ndarray
mask matrix.
binx: integer
binning along the 0th axis
biny: integer
binning along the 1st axis
enlarge: bool, optional
direction of binning. If True, the matrix will be enlarged, otherwise
shrinked (this is the default)
Output
------
the binned mask matrix, of shape ``M/binx`` times ``N/biny`` or ``M*binx``
times ``N*biny``, depending on the value of ``enlarge`` (if ``mask`` is
``M`` times ``N`` pixels).
Notes
-----
one is nonmasked, zero is masked. | [
"Re",
"-",
"bin",
"(",
"shrink",
"or",
"enlarge",
")",
"a",
"mask",
"matrix",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/twodim.py#L481-L512 |
ClearcodeHQ/querystringsafe_base64 | src/querystringsafe_base64/__init__.py | fill_padding | def fill_padding(padded_string):
# type: (bytes) -> bytes
"""
Fill up missing padding in a string.
This function makes sure that the string has length which is multiplication of 4,
and if not, fills the missing places with dots.
:param str padded_string: string to be decoded that might miss padding dots.
:return: properly padded string
:rtype: str
"""
length = len(padded_string)
reminder = len(padded_string) % 4
if reminder:
return padded_string.ljust(length + 4 - reminder, b'.')
return padded_string | python | def fill_padding(padded_string):
# type: (bytes) -> bytes
"""
Fill up missing padding in a string.
This function makes sure that the string has length which is multiplication of 4,
and if not, fills the missing places with dots.
:param str padded_string: string to be decoded that might miss padding dots.
:return: properly padded string
:rtype: str
"""
length = len(padded_string)
reminder = len(padded_string) % 4
if reminder:
return padded_string.ljust(length + 4 - reminder, b'.')
return padded_string | [
"def",
"fill_padding",
"(",
"padded_string",
")",
":",
"# type: (bytes) -> bytes",
"length",
"=",
"len",
"(",
"padded_string",
")",
"reminder",
"=",
"len",
"(",
"padded_string",
")",
"%",
"4",
"if",
"reminder",
":",
"return",
"padded_string",
".",
"ljust",
"(",
"length",
"+",
"4",
"-",
"reminder",
",",
"b'.'",
")",
"return",
"padded_string"
] | Fill up missing padding in a string.
This function makes sure that the string has length which is multiplication of 4,
and if not, fills the missing places with dots.
:param str padded_string: string to be decoded that might miss padding dots.
:return: properly padded string
:rtype: str | [
"Fill",
"up",
"missing",
"padding",
"in",
"a",
"string",
"."
] | train | https://github.com/ClearcodeHQ/querystringsafe_base64/blob/5353c4a8e275435d9d38356a0db64e5c43198ccd/src/querystringsafe_base64/__init__.py#L27-L43 |
ClearcodeHQ/querystringsafe_base64 | src/querystringsafe_base64/__init__.py | decode | def decode(encoded):
# type: (bytes) -> bytes
"""
Decode the result of querystringsafe_base64_encode or a regular base64.
.. note ::
As a regular base64 string does not contain dots, replacing dots with
equal signs does basically noting to it. Also,
base64.urlsafe_b64decode allows to decode both safe and unsafe base64.
Therefore this function may also be used to decode the regular base64.
:param (str, unicode) encoded: querystringsafe_base64 string or unicode
:rtype: str, bytes
:return: decoded string
"""
padded_string = fill_padding(encoded)
return urlsafe_b64decode(padded_string.replace(b'.', b'=')) | python | def decode(encoded):
# type: (bytes) -> bytes
"""
Decode the result of querystringsafe_base64_encode or a regular base64.
.. note ::
As a regular base64 string does not contain dots, replacing dots with
equal signs does basically noting to it. Also,
base64.urlsafe_b64decode allows to decode both safe and unsafe base64.
Therefore this function may also be used to decode the regular base64.
:param (str, unicode) encoded: querystringsafe_base64 string or unicode
:rtype: str, bytes
:return: decoded string
"""
padded_string = fill_padding(encoded)
return urlsafe_b64decode(padded_string.replace(b'.', b'=')) | [
"def",
"decode",
"(",
"encoded",
")",
":",
"# type: (bytes) -> bytes",
"padded_string",
"=",
"fill_padding",
"(",
"encoded",
")",
"return",
"urlsafe_b64decode",
"(",
"padded_string",
".",
"replace",
"(",
"b'.'",
",",
"b'='",
")",
")"
] | Decode the result of querystringsafe_base64_encode or a regular base64.
.. note ::
As a regular base64 string does not contain dots, replacing dots with
equal signs does basically noting to it. Also,
base64.urlsafe_b64decode allows to decode both safe and unsafe base64.
Therefore this function may also be used to decode the regular base64.
:param (str, unicode) encoded: querystringsafe_base64 string or unicode
:rtype: str, bytes
:return: decoded string | [
"Decode",
"the",
"result",
"of",
"querystringsafe_base64_encode",
"or",
"a",
"regular",
"base64",
"."
] | train | https://github.com/ClearcodeHQ/querystringsafe_base64/blob/5353c4a8e275435d9d38356a0db64e5c43198ccd/src/querystringsafe_base64/__init__.py#L63-L79 |
awacha/sastool | sastool/misc/utils.py | normalize_listargument | def normalize_listargument(arg):
"""Check if arg is an iterable (list, tuple, set, dict, np.ndarray, except
string!). If not, make a list of it. Numpy arrays are flattened and
converted to lists."""
if isinstance(arg, np.ndarray):
return arg.flatten()
if isinstance(arg, str):
return [arg]
if isinstance(arg, list) or isinstance(arg, tuple) or isinstance(arg, dict) or isinstance(arg, set):
return list(arg)
return [arg] | python | def normalize_listargument(arg):
"""Check if arg is an iterable (list, tuple, set, dict, np.ndarray, except
string!). If not, make a list of it. Numpy arrays are flattened and
converted to lists."""
if isinstance(arg, np.ndarray):
return arg.flatten()
if isinstance(arg, str):
return [arg]
if isinstance(arg, list) or isinstance(arg, tuple) or isinstance(arg, dict) or isinstance(arg, set):
return list(arg)
return [arg] | [
"def",
"normalize_listargument",
"(",
"arg",
")",
":",
"if",
"isinstance",
"(",
"arg",
",",
"np",
".",
"ndarray",
")",
":",
"return",
"arg",
".",
"flatten",
"(",
")",
"if",
"isinstance",
"(",
"arg",
",",
"str",
")",
":",
"return",
"[",
"arg",
"]",
"if",
"isinstance",
"(",
"arg",
",",
"list",
")",
"or",
"isinstance",
"(",
"arg",
",",
"tuple",
")",
"or",
"isinstance",
"(",
"arg",
",",
"dict",
")",
"or",
"isinstance",
"(",
"arg",
",",
"set",
")",
":",
"return",
"list",
"(",
"arg",
")",
"return",
"[",
"arg",
"]"
] | Check if arg is an iterable (list, tuple, set, dict, np.ndarray, except
string!). If not, make a list of it. Numpy arrays are flattened and
converted to lists. | [
"Check",
"if",
"arg",
"is",
"an",
"iterable",
"(",
"list",
"tuple",
"set",
"dict",
"np",
".",
"ndarray",
"except",
"string!",
")",
".",
"If",
"not",
"make",
"a",
"list",
"of",
"it",
".",
"Numpy",
"arrays",
"are",
"flattened",
"and",
"converted",
"to",
"lists",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/utils.py#L27-L37 |
awacha/sastool | sastool/misc/utils.py | parse_number | def parse_number(val, use_dateutilparser=False):
"""Try to auto-detect the numeric type of the value. First a conversion to
int is tried. If this fails float is tried, and if that fails too, unicode()
is executed. If this also fails, a ValueError is raised.
"""
if use_dateutilparser:
funcs = [int, float, parse_list_from_string,
dateutil.parser.parse, str]
else:
funcs = [int, float, parse_list_from_string, str]
if (val.strip().startswith("'") and val.strip().endswith("'")) or (val.strip().startswith('"') and val.strip().endswith('"')):
return val[1:-1]
for f in funcs:
try:
return f(val)
# eat exception
except (ValueError, UnicodeEncodeError, UnicodeDecodeError) as ve:
pass
raise ValueError('Cannot parse number:', val) | python | def parse_number(val, use_dateutilparser=False):
"""Try to auto-detect the numeric type of the value. First a conversion to
int is tried. If this fails float is tried, and if that fails too, unicode()
is executed. If this also fails, a ValueError is raised.
"""
if use_dateutilparser:
funcs = [int, float, parse_list_from_string,
dateutil.parser.parse, str]
else:
funcs = [int, float, parse_list_from_string, str]
if (val.strip().startswith("'") and val.strip().endswith("'")) or (val.strip().startswith('"') and val.strip().endswith('"')):
return val[1:-1]
for f in funcs:
try:
return f(val)
# eat exception
except (ValueError, UnicodeEncodeError, UnicodeDecodeError) as ve:
pass
raise ValueError('Cannot parse number:', val) | [
"def",
"parse_number",
"(",
"val",
",",
"use_dateutilparser",
"=",
"False",
")",
":",
"if",
"use_dateutilparser",
":",
"funcs",
"=",
"[",
"int",
",",
"float",
",",
"parse_list_from_string",
",",
"dateutil",
".",
"parser",
".",
"parse",
",",
"str",
"]",
"else",
":",
"funcs",
"=",
"[",
"int",
",",
"float",
",",
"parse_list_from_string",
",",
"str",
"]",
"if",
"(",
"val",
".",
"strip",
"(",
")",
".",
"startswith",
"(",
"\"'\"",
")",
"and",
"val",
".",
"strip",
"(",
")",
".",
"endswith",
"(",
"\"'\"",
")",
")",
"or",
"(",
"val",
".",
"strip",
"(",
")",
".",
"startswith",
"(",
"'\"'",
")",
"and",
"val",
".",
"strip",
"(",
")",
".",
"endswith",
"(",
"'\"'",
")",
")",
":",
"return",
"val",
"[",
"1",
":",
"-",
"1",
"]",
"for",
"f",
"in",
"funcs",
":",
"try",
":",
"return",
"f",
"(",
"val",
")",
"# eat exception",
"except",
"(",
"ValueError",
",",
"UnicodeEncodeError",
",",
"UnicodeDecodeError",
")",
"as",
"ve",
":",
"pass",
"raise",
"ValueError",
"(",
"'Cannot parse number:'",
",",
"val",
")"
] | Try to auto-detect the numeric type of the value. First a conversion to
int is tried. If this fails float is tried, and if that fails too, unicode()
is executed. If this also fails, a ValueError is raised. | [
"Try",
"to",
"auto",
"-",
"detect",
"the",
"numeric",
"type",
"of",
"the",
"value",
".",
"First",
"a",
"conversion",
"to",
"int",
"is",
"tried",
".",
"If",
"this",
"fails",
"float",
"is",
"tried",
"and",
"if",
"that",
"fails",
"too",
"unicode",
"()",
"is",
"executed",
".",
"If",
"this",
"also",
"fails",
"a",
"ValueError",
"is",
"raised",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/utils.py#L40-L58 |
awacha/sastool | sastool/misc/utils.py | flatten_hierarchical_dict | def flatten_hierarchical_dict(original_dict, separator='.', max_recursion_depth=None):
"""Flatten a dict.
Inputs
------
original_dict: dict
the dictionary to flatten
separator: string, optional
the separator item in the keys of the flattened dictionary
max_recursion_depth: positive integer, optional
the number of recursions to be done. None is infinte.
Output
------
the flattened dictionary
Notes
-----
Each element of `original_dict` which is not an instance of `dict` (or of a
subclass of it) is kept as is. The others are treated as follows. If
``original_dict['key_dict']`` is an instance of `dict` (or of a subclass of
`dict`), a corresponding key of the form
``key_dict<separator><key_in_key_dict>`` will be created in
``original_dict`` with the value of
``original_dict['key_dict']['key_in_key_dict']``.
If that value is a subclass of `dict` as well, the same procedure is
repeated until the maximum recursion depth is reached.
Only string keys are supported.
"""
if max_recursion_depth is not None and max_recursion_depth <= 0:
# we reached the maximum recursion depth, refuse to go further
return original_dict
if max_recursion_depth is None:
next_recursion_depth = None
else:
next_recursion_depth = max_recursion_depth - 1
dict1 = {}
for k in original_dict:
if not isinstance(original_dict[k], dict):
dict1[k] = original_dict[k]
else:
dict_recursed = flatten_hierarchical_dict(
original_dict[k], separator, next_recursion_depth)
dict1.update(
dict([(k + separator + x, dict_recursed[x]) for x in dict_recursed]))
return dict1 | python | def flatten_hierarchical_dict(original_dict, separator='.', max_recursion_depth=None):
"""Flatten a dict.
Inputs
------
original_dict: dict
the dictionary to flatten
separator: string, optional
the separator item in the keys of the flattened dictionary
max_recursion_depth: positive integer, optional
the number of recursions to be done. None is infinte.
Output
------
the flattened dictionary
Notes
-----
Each element of `original_dict` which is not an instance of `dict` (or of a
subclass of it) is kept as is. The others are treated as follows. If
``original_dict['key_dict']`` is an instance of `dict` (or of a subclass of
`dict`), a corresponding key of the form
``key_dict<separator><key_in_key_dict>`` will be created in
``original_dict`` with the value of
``original_dict['key_dict']['key_in_key_dict']``.
If that value is a subclass of `dict` as well, the same procedure is
repeated until the maximum recursion depth is reached.
Only string keys are supported.
"""
if max_recursion_depth is not None and max_recursion_depth <= 0:
# we reached the maximum recursion depth, refuse to go further
return original_dict
if max_recursion_depth is None:
next_recursion_depth = None
else:
next_recursion_depth = max_recursion_depth - 1
dict1 = {}
for k in original_dict:
if not isinstance(original_dict[k], dict):
dict1[k] = original_dict[k]
else:
dict_recursed = flatten_hierarchical_dict(
original_dict[k], separator, next_recursion_depth)
dict1.update(
dict([(k + separator + x, dict_recursed[x]) for x in dict_recursed]))
return dict1 | [
"def",
"flatten_hierarchical_dict",
"(",
"original_dict",
",",
"separator",
"=",
"'.'",
",",
"max_recursion_depth",
"=",
"None",
")",
":",
"if",
"max_recursion_depth",
"is",
"not",
"None",
"and",
"max_recursion_depth",
"<=",
"0",
":",
"# we reached the maximum recursion depth, refuse to go further",
"return",
"original_dict",
"if",
"max_recursion_depth",
"is",
"None",
":",
"next_recursion_depth",
"=",
"None",
"else",
":",
"next_recursion_depth",
"=",
"max_recursion_depth",
"-",
"1",
"dict1",
"=",
"{",
"}",
"for",
"k",
"in",
"original_dict",
":",
"if",
"not",
"isinstance",
"(",
"original_dict",
"[",
"k",
"]",
",",
"dict",
")",
":",
"dict1",
"[",
"k",
"]",
"=",
"original_dict",
"[",
"k",
"]",
"else",
":",
"dict_recursed",
"=",
"flatten_hierarchical_dict",
"(",
"original_dict",
"[",
"k",
"]",
",",
"separator",
",",
"next_recursion_depth",
")",
"dict1",
".",
"update",
"(",
"dict",
"(",
"[",
"(",
"k",
"+",
"separator",
"+",
"x",
",",
"dict_recursed",
"[",
"x",
"]",
")",
"for",
"x",
"in",
"dict_recursed",
"]",
")",
")",
"return",
"dict1"
] | Flatten a dict.
Inputs
------
original_dict: dict
the dictionary to flatten
separator: string, optional
the separator item in the keys of the flattened dictionary
max_recursion_depth: positive integer, optional
the number of recursions to be done. None is infinte.
Output
------
the flattened dictionary
Notes
-----
Each element of `original_dict` which is not an instance of `dict` (or of a
subclass of it) is kept as is. The others are treated as follows. If
``original_dict['key_dict']`` is an instance of `dict` (or of a subclass of
`dict`), a corresponding key of the form
``key_dict<separator><key_in_key_dict>`` will be created in
``original_dict`` with the value of
``original_dict['key_dict']['key_in_key_dict']``.
If that value is a subclass of `dict` as well, the same procedure is
repeated until the maximum recursion depth is reached.
Only string keys are supported. | [
"Flatten",
"a",
"dict",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/utils.py#L61-L107 |
awacha/sastool | sastool/misc/utils.py | random_str | def random_str(Nchars=6, randstrbase='0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'):
"""Return a random string of <Nchars> characters. Characters are sampled
uniformly from <randstrbase>.
"""
return ''.join([randstrbase[random.randint(0, len(randstrbase) - 1)] for i in range(Nchars)]) | python | def random_str(Nchars=6, randstrbase='0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'):
"""Return a random string of <Nchars> characters. Characters are sampled
uniformly from <randstrbase>.
"""
return ''.join([randstrbase[random.randint(0, len(randstrbase) - 1)] for i in range(Nchars)]) | [
"def",
"random_str",
"(",
"Nchars",
"=",
"6",
",",
"randstrbase",
"=",
"'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'",
")",
":",
"return",
"''",
".",
"join",
"(",
"[",
"randstrbase",
"[",
"random",
".",
"randint",
"(",
"0",
",",
"len",
"(",
"randstrbase",
")",
"-",
"1",
")",
"]",
"for",
"i",
"in",
"range",
"(",
"Nchars",
")",
"]",
")"
] | Return a random string of <Nchars> characters. Characters are sampled
uniformly from <randstrbase>. | [
"Return",
"a",
"random",
"string",
"of",
"<Nchars",
">",
"characters",
".",
"Characters",
"are",
"sampled",
"uniformly",
"from",
"<randstrbase",
">",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/utils.py#L115-L119 |
awacha/sastool | sastool/io/statistics.py | listB1 | def listB1(fsns, xlsname, dirs, whattolist = None, headerformat = 'org_%05d.header'):
""" getsamplenames revisited, XLS output.
Inputs:
fsns: FSN sequence
xlsname: XLS file name to output listing
dirs: either a single directory (string) or a list of directories, a la readheader()
whattolist: format specifier for listing. Should be a list of tuples. Each tuple
corresponds to a column in the worksheet, in sequence. The first element of
each tuple is the column title, eg. 'Distance' or 'Calibrated energy (eV)'.
The second element is either the corresponding field in the header dictionary
('Dist' or 'EnergyCalibrated'), or a tuple of them, eg. ('FSN', 'Title', 'Energy').
If the column-descriptor tuple does not have a third element, the string
representation of each field (str(param[i][fieldname])) will be written
in the corresponding cell. If a third element is present, it is treated as a
format string, and the values of the fields are substituted.
headerformat: C-style format string of header file names (e.g. org_%05d.header)
Outputs:
an XLS workbook is saved.
Notes:
if whattolist is not specified exactly (ie. is None), then the output
is similar to getsamplenames().
module xlwt is needed in order for this function to work. If it cannot
be imported, the other functions may work, only this function will
raise a NotImplementedError.
"""
if whattolist is None:
whattolist = [('FSN', 'FSN'), ('Time', 'MeasTime'), ('Energy', 'Energy'),
('Distance', 'Dist'), ('Position', 'PosSample'),
('Transmission', 'Transm'), ('Temperature', 'Temperature'),
('Title', 'Title'), ('Date', ('Day', 'Month', 'Year', 'Hour', 'Minutes'), '%02d.%02d.%04d %02d:%02d')]
wb = xlwt.Workbook(encoding = 'utf8')
ws = wb.add_sheet('Measurements')
for i in range(len(whattolist)):
ws.write(0, i, whattolist[i][0])
i = 1
for fsn in fsns:
try:
hed = readB1header(findfileindirs(headerformat % fsn, dirs))
except IOError:
continue
# for each param structure create a line in the table
for j in range(len(whattolist)):
# for each parameter to be listed, create a column
if np.isscalar(whattolist[j][1]):
# if the parameter is a scalar, make it a list
fields = tuple([whattolist[j][1]])
else:
fields = whattolist[j][1]
if len(whattolist[j]) == 2:
if len(fields) >= 2:
strtowrite = ''.join([str(hed[f]) for f in fields])
else:
strtowrite = hed[fields[0]]
elif len(whattolist[j]) >= 3:
strtowrite = whattolist[j][2] % tuple([hed[f] for f in fields])
else:
assert False
ws.write(i, j, strtowrite)
i += 1
wb.save(xlsname) | python | def listB1(fsns, xlsname, dirs, whattolist = None, headerformat = 'org_%05d.header'):
""" getsamplenames revisited, XLS output.
Inputs:
fsns: FSN sequence
xlsname: XLS file name to output listing
dirs: either a single directory (string) or a list of directories, a la readheader()
whattolist: format specifier for listing. Should be a list of tuples. Each tuple
corresponds to a column in the worksheet, in sequence. The first element of
each tuple is the column title, eg. 'Distance' or 'Calibrated energy (eV)'.
The second element is either the corresponding field in the header dictionary
('Dist' or 'EnergyCalibrated'), or a tuple of them, eg. ('FSN', 'Title', 'Energy').
If the column-descriptor tuple does not have a third element, the string
representation of each field (str(param[i][fieldname])) will be written
in the corresponding cell. If a third element is present, it is treated as a
format string, and the values of the fields are substituted.
headerformat: C-style format string of header file names (e.g. org_%05d.header)
Outputs:
an XLS workbook is saved.
Notes:
if whattolist is not specified exactly (ie. is None), then the output
is similar to getsamplenames().
module xlwt is needed in order for this function to work. If it cannot
be imported, the other functions may work, only this function will
raise a NotImplementedError.
"""
if whattolist is None:
whattolist = [('FSN', 'FSN'), ('Time', 'MeasTime'), ('Energy', 'Energy'),
('Distance', 'Dist'), ('Position', 'PosSample'),
('Transmission', 'Transm'), ('Temperature', 'Temperature'),
('Title', 'Title'), ('Date', ('Day', 'Month', 'Year', 'Hour', 'Minutes'), '%02d.%02d.%04d %02d:%02d')]
wb = xlwt.Workbook(encoding = 'utf8')
ws = wb.add_sheet('Measurements')
for i in range(len(whattolist)):
ws.write(0, i, whattolist[i][0])
i = 1
for fsn in fsns:
try:
hed = readB1header(findfileindirs(headerformat % fsn, dirs))
except IOError:
continue
# for each param structure create a line in the table
for j in range(len(whattolist)):
# for each parameter to be listed, create a column
if np.isscalar(whattolist[j][1]):
# if the parameter is a scalar, make it a list
fields = tuple([whattolist[j][1]])
else:
fields = whattolist[j][1]
if len(whattolist[j]) == 2:
if len(fields) >= 2:
strtowrite = ''.join([str(hed[f]) for f in fields])
else:
strtowrite = hed[fields[0]]
elif len(whattolist[j]) >= 3:
strtowrite = whattolist[j][2] % tuple([hed[f] for f in fields])
else:
assert False
ws.write(i, j, strtowrite)
i += 1
wb.save(xlsname) | [
"def",
"listB1",
"(",
"fsns",
",",
"xlsname",
",",
"dirs",
",",
"whattolist",
"=",
"None",
",",
"headerformat",
"=",
"'org_%05d.header'",
")",
":",
"if",
"whattolist",
"is",
"None",
":",
"whattolist",
"=",
"[",
"(",
"'FSN'",
",",
"'FSN'",
")",
",",
"(",
"'Time'",
",",
"'MeasTime'",
")",
",",
"(",
"'Energy'",
",",
"'Energy'",
")",
",",
"(",
"'Distance'",
",",
"'Dist'",
")",
",",
"(",
"'Position'",
",",
"'PosSample'",
")",
",",
"(",
"'Transmission'",
",",
"'Transm'",
")",
",",
"(",
"'Temperature'",
",",
"'Temperature'",
")",
",",
"(",
"'Title'",
",",
"'Title'",
")",
",",
"(",
"'Date'",
",",
"(",
"'Day'",
",",
"'Month'",
",",
"'Year'",
",",
"'Hour'",
",",
"'Minutes'",
")",
",",
"'%02d.%02d.%04d %02d:%02d'",
")",
"]",
"wb",
"=",
"xlwt",
".",
"Workbook",
"(",
"encoding",
"=",
"'utf8'",
")",
"ws",
"=",
"wb",
".",
"add_sheet",
"(",
"'Measurements'",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"whattolist",
")",
")",
":",
"ws",
".",
"write",
"(",
"0",
",",
"i",
",",
"whattolist",
"[",
"i",
"]",
"[",
"0",
"]",
")",
"i",
"=",
"1",
"for",
"fsn",
"in",
"fsns",
":",
"try",
":",
"hed",
"=",
"readB1header",
"(",
"findfileindirs",
"(",
"headerformat",
"%",
"fsn",
",",
"dirs",
")",
")",
"except",
"IOError",
":",
"continue",
"# for each param structure create a line in the table",
"for",
"j",
"in",
"range",
"(",
"len",
"(",
"whattolist",
")",
")",
":",
"# for each parameter to be listed, create a column",
"if",
"np",
".",
"isscalar",
"(",
"whattolist",
"[",
"j",
"]",
"[",
"1",
"]",
")",
":",
"# if the parameter is a scalar, make it a list",
"fields",
"=",
"tuple",
"(",
"[",
"whattolist",
"[",
"j",
"]",
"[",
"1",
"]",
"]",
")",
"else",
":",
"fields",
"=",
"whattolist",
"[",
"j",
"]",
"[",
"1",
"]",
"if",
"len",
"(",
"whattolist",
"[",
"j",
"]",
")",
"==",
"2",
":",
"if",
"len",
"(",
"fields",
")",
">=",
"2",
":",
"strtowrite",
"=",
"''",
".",
"join",
"(",
"[",
"str",
"(",
"hed",
"[",
"f",
"]",
")",
"for",
"f",
"in",
"fields",
"]",
")",
"else",
":",
"strtowrite",
"=",
"hed",
"[",
"fields",
"[",
"0",
"]",
"]",
"elif",
"len",
"(",
"whattolist",
"[",
"j",
"]",
")",
">=",
"3",
":",
"strtowrite",
"=",
"whattolist",
"[",
"j",
"]",
"[",
"2",
"]",
"%",
"tuple",
"(",
"[",
"hed",
"[",
"f",
"]",
"for",
"f",
"in",
"fields",
"]",
")",
"else",
":",
"assert",
"False",
"ws",
".",
"write",
"(",
"i",
",",
"j",
",",
"strtowrite",
")",
"i",
"+=",
"1",
"wb",
".",
"save",
"(",
"xlsname",
")"
] | getsamplenames revisited, XLS output.
Inputs:
fsns: FSN sequence
xlsname: XLS file name to output listing
dirs: either a single directory (string) or a list of directories, a la readheader()
whattolist: format specifier for listing. Should be a list of tuples. Each tuple
corresponds to a column in the worksheet, in sequence. The first element of
each tuple is the column title, eg. 'Distance' or 'Calibrated energy (eV)'.
The second element is either the corresponding field in the header dictionary
('Dist' or 'EnergyCalibrated'), or a tuple of them, eg. ('FSN', 'Title', 'Energy').
If the column-descriptor tuple does not have a third element, the string
representation of each field (str(param[i][fieldname])) will be written
in the corresponding cell. If a third element is present, it is treated as a
format string, and the values of the fields are substituted.
headerformat: C-style format string of header file names (e.g. org_%05d.header)
Outputs:
an XLS workbook is saved.
Notes:
if whattolist is not specified exactly (ie. is None), then the output
is similar to getsamplenames().
module xlwt is needed in order for this function to work. If it cannot
be imported, the other functions may work, only this function will
raise a NotImplementedError. | [
"getsamplenames",
"revisited",
"XLS",
"output",
".",
"Inputs",
":",
"fsns",
":",
"FSN",
"sequence",
"xlsname",
":",
"XLS",
"file",
"name",
"to",
"output",
"listing",
"dirs",
":",
"either",
"a",
"single",
"directory",
"(",
"string",
")",
"or",
"a",
"list",
"of",
"directories",
"a",
"la",
"readheader",
"()",
"whattolist",
":",
"format",
"specifier",
"for",
"listing",
".",
"Should",
"be",
"a",
"list",
"of",
"tuples",
".",
"Each",
"tuple",
"corresponds",
"to",
"a",
"column",
"in",
"the",
"worksheet",
"in",
"sequence",
".",
"The",
"first",
"element",
"of",
"each",
"tuple",
"is",
"the",
"column",
"title",
"eg",
".",
"Distance",
"or",
"Calibrated",
"energy",
"(",
"eV",
")",
".",
"The",
"second",
"element",
"is",
"either",
"the",
"corresponding",
"field",
"in",
"the",
"header",
"dictionary",
"(",
"Dist",
"or",
"EnergyCalibrated",
")",
"or",
"a",
"tuple",
"of",
"them",
"eg",
".",
"(",
"FSN",
"Title",
"Energy",
")",
".",
"If",
"the",
"column",
"-",
"descriptor",
"tuple",
"does",
"not",
"have",
"a",
"third",
"element",
"the",
"string",
"representation",
"of",
"each",
"field",
"(",
"str",
"(",
"param",
"[",
"i",
"]",
"[",
"fieldname",
"]",
"))",
"will",
"be",
"written",
"in",
"the",
"corresponding",
"cell",
".",
"If",
"a",
"third",
"element",
"is",
"present",
"it",
"is",
"treated",
"as",
"a",
"format",
"string",
"and",
"the",
"values",
"of",
"the",
"fields",
"are",
"substituted",
".",
"headerformat",
":",
"C",
"-",
"style",
"format",
"string",
"of",
"header",
"file",
"names",
"(",
"e",
".",
"g",
".",
"org_%05d",
".",
"header",
")",
"Outputs",
":",
"an",
"XLS",
"workbook",
"is",
"saved",
".",
"Notes",
":",
"if",
"whattolist",
"is",
"not",
"specified",
"exactly",
"(",
"ie",
".",
"is",
"None",
")",
"then",
"the",
"output",
"is",
"similar",
"to",
"getsamplenames",
"()",
".",
"module",
"xlwt",
"is",
"needed",
"in",
"order",
"for",
"this",
"function",
"to",
"work",
".",
"If",
"it",
"cannot",
"be",
"imported",
"the",
"other",
"functions",
"may",
"work",
"only",
"this",
"function",
"will",
"raise",
"a",
"NotImplementedError",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/statistics.py#L105-L167 |
awacha/sastool | sastool/fitting/standalone.py | fit_shullroess | def fit_shullroess(q, Intensity, Error, R0=None, r=None):
"""Do a Shull-Roess fitting on the scattering data.
Inputs:
q: np.ndarray[ndim=1]
vector of the q values (4*pi*sin(theta)/lambda)
Intensity: np.ndarray[ndim=1]
Intensity vector
Error: np.ndarray[ndim=1]
Error of the intensity (absolute uncertainty, 1sigma)
R0: scalar
first guess for the mean radius (None to autodetermine, default)
r: np.ndarray[ndim=1]
vector of the abscissa of the resulting size distribution (None to
autodetermine, default)
Output:
A: ErrorValue
the fitted value of the intensity scaling factor
r0: the r0 parameter of the maxwellian size distribution
n: the n parameter of the maxwellian size distribution
r: the abscissa of the fitted size distribution
maxw: the size distribution
stat: the statistics dictionary, returned by nlsq_fit()
Note: This first searches for r0, which best linearizes the
log(Intensity) vs. log(q**2+3/r0**2) relation.
After this is found, the parameters of the fitted line give the
parameters of a Maxwellian-like particle size distribution function.
After it a proper least squares fitting is carried out, using the
obtained values as initial parameters.
"""
q = np.array(q)
Intensity = np.array(Intensity)
Error = np.array(Error)
if R0 is None:
r0s = np.linspace(1, 2 * np.pi / q.min(), 1000)
def naive_fit_chi2(q, Intensity, r0):
p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)
return ((np.polyval(p, q) - Intensity) ** 2).sum() / (len(q) - 3)
chi2 = np.array([naive_fit_chi2(q, Intensity, r0) for r0 in r0s.tolist()])
R0 = r0s[chi2 == chi2.min()][0]
def naive_fit(q, Intensity, r0):
p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)
return np.exp(p[1]), -2 * p[0] - 4
K, n = naive_fit(q, Intensity, R0)
def SR_function(q, A, r0, n):
return A * (q ** 2 + 3 / r0 ** 2) ** (-(n + 4.) * 0.5)
p, dp, statdict = easylsq.nlsq_fit(q, Intensity, Error, SR_function, (K, R0, n))
n = ErrorValue(p[2], dp[2])
r0 = ErrorValue(p[1], dp[1])
A = ErrorValue(p[0], dp[0])
if r is None:
r = np.linspace(np.pi / q.max(), np.pi / q.min(), 1000)
return A, r0, n, r, maxwellian(r, r0, n), statdict | python | def fit_shullroess(q, Intensity, Error, R0=None, r=None):
"""Do a Shull-Roess fitting on the scattering data.
Inputs:
q: np.ndarray[ndim=1]
vector of the q values (4*pi*sin(theta)/lambda)
Intensity: np.ndarray[ndim=1]
Intensity vector
Error: np.ndarray[ndim=1]
Error of the intensity (absolute uncertainty, 1sigma)
R0: scalar
first guess for the mean radius (None to autodetermine, default)
r: np.ndarray[ndim=1]
vector of the abscissa of the resulting size distribution (None to
autodetermine, default)
Output:
A: ErrorValue
the fitted value of the intensity scaling factor
r0: the r0 parameter of the maxwellian size distribution
n: the n parameter of the maxwellian size distribution
r: the abscissa of the fitted size distribution
maxw: the size distribution
stat: the statistics dictionary, returned by nlsq_fit()
Note: This first searches for r0, which best linearizes the
log(Intensity) vs. log(q**2+3/r0**2) relation.
After this is found, the parameters of the fitted line give the
parameters of a Maxwellian-like particle size distribution function.
After it a proper least squares fitting is carried out, using the
obtained values as initial parameters.
"""
q = np.array(q)
Intensity = np.array(Intensity)
Error = np.array(Error)
if R0 is None:
r0s = np.linspace(1, 2 * np.pi / q.min(), 1000)
def naive_fit_chi2(q, Intensity, r0):
p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)
return ((np.polyval(p, q) - Intensity) ** 2).sum() / (len(q) - 3)
chi2 = np.array([naive_fit_chi2(q, Intensity, r0) for r0 in r0s.tolist()])
R0 = r0s[chi2 == chi2.min()][0]
def naive_fit(q, Intensity, r0):
p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)
return np.exp(p[1]), -2 * p[0] - 4
K, n = naive_fit(q, Intensity, R0)
def SR_function(q, A, r0, n):
return A * (q ** 2 + 3 / r0 ** 2) ** (-(n + 4.) * 0.5)
p, dp, statdict = easylsq.nlsq_fit(q, Intensity, Error, SR_function, (K, R0, n))
n = ErrorValue(p[2], dp[2])
r0 = ErrorValue(p[1], dp[1])
A = ErrorValue(p[0], dp[0])
if r is None:
r = np.linspace(np.pi / q.max(), np.pi / q.min(), 1000)
return A, r0, n, r, maxwellian(r, r0, n), statdict | [
"def",
"fit_shullroess",
"(",
"q",
",",
"Intensity",
",",
"Error",
",",
"R0",
"=",
"None",
",",
"r",
"=",
"None",
")",
":",
"q",
"=",
"np",
".",
"array",
"(",
"q",
")",
"Intensity",
"=",
"np",
".",
"array",
"(",
"Intensity",
")",
"Error",
"=",
"np",
".",
"array",
"(",
"Error",
")",
"if",
"R0",
"is",
"None",
":",
"r0s",
"=",
"np",
".",
"linspace",
"(",
"1",
",",
"2",
"*",
"np",
".",
"pi",
"/",
"q",
".",
"min",
"(",
")",
",",
"1000",
")",
"def",
"naive_fit_chi2",
"(",
"q",
",",
"Intensity",
",",
"r0",
")",
":",
"p",
"=",
"np",
".",
"polyfit",
"(",
"np",
".",
"log",
"(",
"q",
"**",
"2",
"+",
"3",
"/",
"r0",
"**",
"2",
")",
",",
"np",
".",
"log",
"(",
"Intensity",
")",
",",
"1",
")",
"return",
"(",
"(",
"np",
".",
"polyval",
"(",
"p",
",",
"q",
")",
"-",
"Intensity",
")",
"**",
"2",
")",
".",
"sum",
"(",
")",
"/",
"(",
"len",
"(",
"q",
")",
"-",
"3",
")",
"chi2",
"=",
"np",
".",
"array",
"(",
"[",
"naive_fit_chi2",
"(",
"q",
",",
"Intensity",
",",
"r0",
")",
"for",
"r0",
"in",
"r0s",
".",
"tolist",
"(",
")",
"]",
")",
"R0",
"=",
"r0s",
"[",
"chi2",
"==",
"chi2",
".",
"min",
"(",
")",
"]",
"[",
"0",
"]",
"def",
"naive_fit",
"(",
"q",
",",
"Intensity",
",",
"r0",
")",
":",
"p",
"=",
"np",
".",
"polyfit",
"(",
"np",
".",
"log",
"(",
"q",
"**",
"2",
"+",
"3",
"/",
"r0",
"**",
"2",
")",
",",
"np",
".",
"log",
"(",
"Intensity",
")",
",",
"1",
")",
"return",
"np",
".",
"exp",
"(",
"p",
"[",
"1",
"]",
")",
",",
"-",
"2",
"*",
"p",
"[",
"0",
"]",
"-",
"4",
"K",
",",
"n",
"=",
"naive_fit",
"(",
"q",
",",
"Intensity",
",",
"R0",
")",
"def",
"SR_function",
"(",
"q",
",",
"A",
",",
"r0",
",",
"n",
")",
":",
"return",
"A",
"*",
"(",
"q",
"**",
"2",
"+",
"3",
"/",
"r0",
"**",
"2",
")",
"**",
"(",
"-",
"(",
"n",
"+",
"4.",
")",
"*",
"0.5",
")",
"p",
",",
"dp",
",",
"statdict",
"=",
"easylsq",
".",
"nlsq_fit",
"(",
"q",
",",
"Intensity",
",",
"Error",
",",
"SR_function",
",",
"(",
"K",
",",
"R0",
",",
"n",
")",
")",
"n",
"=",
"ErrorValue",
"(",
"p",
"[",
"2",
"]",
",",
"dp",
"[",
"2",
"]",
")",
"r0",
"=",
"ErrorValue",
"(",
"p",
"[",
"1",
"]",
",",
"dp",
"[",
"1",
"]",
")",
"A",
"=",
"ErrorValue",
"(",
"p",
"[",
"0",
"]",
",",
"dp",
"[",
"0",
"]",
")",
"if",
"r",
"is",
"None",
":",
"r",
"=",
"np",
".",
"linspace",
"(",
"np",
".",
"pi",
"/",
"q",
".",
"max",
"(",
")",
",",
"np",
".",
"pi",
"/",
"q",
".",
"min",
"(",
")",
",",
"1000",
")",
"return",
"A",
",",
"r0",
",",
"n",
",",
"r",
",",
"maxwellian",
"(",
"r",
",",
"r0",
",",
"n",
")",
",",
"statdict"
] | Do a Shull-Roess fitting on the scattering data.
Inputs:
q: np.ndarray[ndim=1]
vector of the q values (4*pi*sin(theta)/lambda)
Intensity: np.ndarray[ndim=1]
Intensity vector
Error: np.ndarray[ndim=1]
Error of the intensity (absolute uncertainty, 1sigma)
R0: scalar
first guess for the mean radius (None to autodetermine, default)
r: np.ndarray[ndim=1]
vector of the abscissa of the resulting size distribution (None to
autodetermine, default)
Output:
A: ErrorValue
the fitted value of the intensity scaling factor
r0: the r0 parameter of the maxwellian size distribution
n: the n parameter of the maxwellian size distribution
r: the abscissa of the fitted size distribution
maxw: the size distribution
stat: the statistics dictionary, returned by nlsq_fit()
Note: This first searches for r0, which best linearizes the
log(Intensity) vs. log(q**2+3/r0**2) relation.
After this is found, the parameters of the fitted line give the
parameters of a Maxwellian-like particle size distribution function.
After it a proper least squares fitting is carried out, using the
obtained values as initial parameters. | [
"Do",
"a",
"Shull",
"-",
"Roess",
"fitting",
"on",
"the",
"scattering",
"data",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/standalone.py#L11-L65 |
awacha/sastool | sastool/fitting/standalone.py | maxwellian | def maxwellian(r, r0, n):
"""Maxwellian-like distribution of spherical particles
Inputs:
-------
r: np.ndarray or scalar
radii
r0: positive scalar or ErrorValue
mean radius
n: positive scalar or ErrorValue
"n" parameter
Output:
-------
the distribution function and its uncertainty as an ErrorValue containing arrays.
The uncertainty of 'r0' and 'n' is taken into account.
Notes:
------
M(r)=2*r^n/r0^(n+1)*exp(-r^2/r0^2) / gamma((n+1)/2)
"""
r0 = ErrorValue(r0)
n = ErrorValue(n)
expterm = np.exp(-r ** 2 / r0.val ** 2)
dmaxdr0 = -2 * r ** n.val * r0.val ** (-n.val - 4) * ((n.val + 1) * r0.val ** 2 - 2 * r ** 2) * expterm / gamma((n.val + 1) * 0.5)
dmaxdn = -r ** n.val * r0.val ** (-n.val - 1) * expterm * (2 * np.log(r0.val) - 2 * np.log(r) + psi((n.val + 1) * 0.5)) / gamma((n.val + 1) * 0.5)
maxwellian = 2 * r ** n.val * r0.val ** (-n.val - 1) * expterm / gamma((n.val + 1) * 0.5)
dmaxwellian = (dmaxdn ** 2 * n.err ** 2 + dmaxdr0 ** 2 * r0.err ** 2) ** 0.5
return ErrorValue(maxwellian, dmaxwellian) | python | def maxwellian(r, r0, n):
"""Maxwellian-like distribution of spherical particles
Inputs:
-------
r: np.ndarray or scalar
radii
r0: positive scalar or ErrorValue
mean radius
n: positive scalar or ErrorValue
"n" parameter
Output:
-------
the distribution function and its uncertainty as an ErrorValue containing arrays.
The uncertainty of 'r0' and 'n' is taken into account.
Notes:
------
M(r)=2*r^n/r0^(n+1)*exp(-r^2/r0^2) / gamma((n+1)/2)
"""
r0 = ErrorValue(r0)
n = ErrorValue(n)
expterm = np.exp(-r ** 2 / r0.val ** 2)
dmaxdr0 = -2 * r ** n.val * r0.val ** (-n.val - 4) * ((n.val + 1) * r0.val ** 2 - 2 * r ** 2) * expterm / gamma((n.val + 1) * 0.5)
dmaxdn = -r ** n.val * r0.val ** (-n.val - 1) * expterm * (2 * np.log(r0.val) - 2 * np.log(r) + psi((n.val + 1) * 0.5)) / gamma((n.val + 1) * 0.5)
maxwellian = 2 * r ** n.val * r0.val ** (-n.val - 1) * expterm / gamma((n.val + 1) * 0.5)
dmaxwellian = (dmaxdn ** 2 * n.err ** 2 + dmaxdr0 ** 2 * r0.err ** 2) ** 0.5
return ErrorValue(maxwellian, dmaxwellian) | [
"def",
"maxwellian",
"(",
"r",
",",
"r0",
",",
"n",
")",
":",
"r0",
"=",
"ErrorValue",
"(",
"r0",
")",
"n",
"=",
"ErrorValue",
"(",
"n",
")",
"expterm",
"=",
"np",
".",
"exp",
"(",
"-",
"r",
"**",
"2",
"/",
"r0",
".",
"val",
"**",
"2",
")",
"dmaxdr0",
"=",
"-",
"2",
"*",
"r",
"**",
"n",
".",
"val",
"*",
"r0",
".",
"val",
"**",
"(",
"-",
"n",
".",
"val",
"-",
"4",
")",
"*",
"(",
"(",
"n",
".",
"val",
"+",
"1",
")",
"*",
"r0",
".",
"val",
"**",
"2",
"-",
"2",
"*",
"r",
"**",
"2",
")",
"*",
"expterm",
"/",
"gamma",
"(",
"(",
"n",
".",
"val",
"+",
"1",
")",
"*",
"0.5",
")",
"dmaxdn",
"=",
"-",
"r",
"**",
"n",
".",
"val",
"*",
"r0",
".",
"val",
"**",
"(",
"-",
"n",
".",
"val",
"-",
"1",
")",
"*",
"expterm",
"*",
"(",
"2",
"*",
"np",
".",
"log",
"(",
"r0",
".",
"val",
")",
"-",
"2",
"*",
"np",
".",
"log",
"(",
"r",
")",
"+",
"psi",
"(",
"(",
"n",
".",
"val",
"+",
"1",
")",
"*",
"0.5",
")",
")",
"/",
"gamma",
"(",
"(",
"n",
".",
"val",
"+",
"1",
")",
"*",
"0.5",
")",
"maxwellian",
"=",
"2",
"*",
"r",
"**",
"n",
".",
"val",
"*",
"r0",
".",
"val",
"**",
"(",
"-",
"n",
".",
"val",
"-",
"1",
")",
"*",
"expterm",
"/",
"gamma",
"(",
"(",
"n",
".",
"val",
"+",
"1",
")",
"*",
"0.5",
")",
"dmaxwellian",
"=",
"(",
"dmaxdn",
"**",
"2",
"*",
"n",
".",
"err",
"**",
"2",
"+",
"dmaxdr0",
"**",
"2",
"*",
"r0",
".",
"err",
"**",
"2",
")",
"**",
"0.5",
"return",
"ErrorValue",
"(",
"maxwellian",
",",
"dmaxwellian",
")"
] | Maxwellian-like distribution of spherical particles
Inputs:
-------
r: np.ndarray or scalar
radii
r0: positive scalar or ErrorValue
mean radius
n: positive scalar or ErrorValue
"n" parameter
Output:
-------
the distribution function and its uncertainty as an ErrorValue containing arrays.
The uncertainty of 'r0' and 'n' is taken into account.
Notes:
------
M(r)=2*r^n/r0^(n+1)*exp(-r^2/r0^2) / gamma((n+1)/2) | [
"Maxwellian",
"-",
"like",
"distribution",
"of",
"spherical",
"particles",
"Inputs",
":",
"-------",
"r",
":",
"np",
".",
"ndarray",
"or",
"scalar",
"radii",
"r0",
":",
"positive",
"scalar",
"or",
"ErrorValue",
"mean",
"radius",
"n",
":",
"positive",
"scalar",
"or",
"ErrorValue",
"n",
"parameter",
"Output",
":",
"-------",
"the",
"distribution",
"function",
"and",
"its",
"uncertainty",
"as",
"an",
"ErrorValue",
"containing",
"arrays",
".",
"The",
"uncertainty",
"of",
"r0",
"and",
"n",
"is",
"taken",
"into",
"account",
".",
"Notes",
":",
"------",
"M",
"(",
"r",
")",
"=",
"2",
"*",
"r^n",
"/",
"r0^",
"(",
"n",
"+",
"1",
")",
"*",
"exp",
"(",
"-",
"r^2",
"/",
"r0^2",
")",
"/",
"gamma",
"((",
"n",
"+",
"1",
")",
"/",
"2",
")"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/fitting/standalone.py#L67-L97 |
awacha/sastool | sastool/misc/pathutils.py | findfileindirs | def findfileindirs(filename, dirs=None, use_pythonpath=True, use_searchpath=True, notfound_is_fatal=True, notfound_val=None):
"""Find file in multiple directories.
Inputs:
filename: the file name to be searched for.
dirs: list of folders or None
use_pythonpath: use the Python module search path
use_searchpath: use the sastool search path.
notfound_is_fatal: if an exception is to be raised if the file cannot be
found.
notfound_val: the value which should be returned if the file is not
found (only relevant if notfound_is_fatal is False)
Outputs: the full path of the file.
Notes:
if filename is an absolute path by itself, folders in 'dir' won't be
checked, only the existence of the file will be verified.
"""
if os.path.isabs(filename):
if os.path.exists(filename):
return filename
elif notfound_is_fatal:
raise IOError('File ' + filename + ' not found.')
else:
return notfound_val
if dirs is None:
dirs = []
dirs = normalize_listargument(dirs)
if not dirs: # dirs is empty
dirs = ['.']
if use_pythonpath:
dirs.extend(sys.path)
if use_searchpath:
dirs.extend(sastool_search_path)
# expand ~ and ~user constructs
dirs = [os.path.expanduser(d) for d in dirs]
logger.debug('Searching for file %s in several folders: %s' % (filename, ', '.join(dirs)))
for d in dirs:
if os.path.exists(os.path.join(d, filename)):
logger.debug('Found file %s in folder %s.' % (filename, d))
return os.path.join(d, filename)
logger.debug('Not found file %s in any folders.' % filename)
if notfound_is_fatal:
raise IOError('File %s not found in any of the directories.' % filename)
else:
return notfound_val | python | def findfileindirs(filename, dirs=None, use_pythonpath=True, use_searchpath=True, notfound_is_fatal=True, notfound_val=None):
"""Find file in multiple directories.
Inputs:
filename: the file name to be searched for.
dirs: list of folders or None
use_pythonpath: use the Python module search path
use_searchpath: use the sastool search path.
notfound_is_fatal: if an exception is to be raised if the file cannot be
found.
notfound_val: the value which should be returned if the file is not
found (only relevant if notfound_is_fatal is False)
Outputs: the full path of the file.
Notes:
if filename is an absolute path by itself, folders in 'dir' won't be
checked, only the existence of the file will be verified.
"""
if os.path.isabs(filename):
if os.path.exists(filename):
return filename
elif notfound_is_fatal:
raise IOError('File ' + filename + ' not found.')
else:
return notfound_val
if dirs is None:
dirs = []
dirs = normalize_listargument(dirs)
if not dirs: # dirs is empty
dirs = ['.']
if use_pythonpath:
dirs.extend(sys.path)
if use_searchpath:
dirs.extend(sastool_search_path)
# expand ~ and ~user constructs
dirs = [os.path.expanduser(d) for d in dirs]
logger.debug('Searching for file %s in several folders: %s' % (filename, ', '.join(dirs)))
for d in dirs:
if os.path.exists(os.path.join(d, filename)):
logger.debug('Found file %s in folder %s.' % (filename, d))
return os.path.join(d, filename)
logger.debug('Not found file %s in any folders.' % filename)
if notfound_is_fatal:
raise IOError('File %s not found in any of the directories.' % filename)
else:
return notfound_val | [
"def",
"findfileindirs",
"(",
"filename",
",",
"dirs",
"=",
"None",
",",
"use_pythonpath",
"=",
"True",
",",
"use_searchpath",
"=",
"True",
",",
"notfound_is_fatal",
"=",
"True",
",",
"notfound_val",
"=",
"None",
")",
":",
"if",
"os",
".",
"path",
".",
"isabs",
"(",
"filename",
")",
":",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"filename",
")",
":",
"return",
"filename",
"elif",
"notfound_is_fatal",
":",
"raise",
"IOError",
"(",
"'File '",
"+",
"filename",
"+",
"' not found.'",
")",
"else",
":",
"return",
"notfound_val",
"if",
"dirs",
"is",
"None",
":",
"dirs",
"=",
"[",
"]",
"dirs",
"=",
"normalize_listargument",
"(",
"dirs",
")",
"if",
"not",
"dirs",
":",
"# dirs is empty",
"dirs",
"=",
"[",
"'.'",
"]",
"if",
"use_pythonpath",
":",
"dirs",
".",
"extend",
"(",
"sys",
".",
"path",
")",
"if",
"use_searchpath",
":",
"dirs",
".",
"extend",
"(",
"sastool_search_path",
")",
"# expand ~ and ~user constructs",
"dirs",
"=",
"[",
"os",
".",
"path",
".",
"expanduser",
"(",
"d",
")",
"for",
"d",
"in",
"dirs",
"]",
"logger",
".",
"debug",
"(",
"'Searching for file %s in several folders: %s'",
"%",
"(",
"filename",
",",
"', '",
".",
"join",
"(",
"dirs",
")",
")",
")",
"for",
"d",
"in",
"dirs",
":",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"os",
".",
"path",
".",
"join",
"(",
"d",
",",
"filename",
")",
")",
":",
"logger",
".",
"debug",
"(",
"'Found file %s in folder %s.'",
"%",
"(",
"filename",
",",
"d",
")",
")",
"return",
"os",
".",
"path",
".",
"join",
"(",
"d",
",",
"filename",
")",
"logger",
".",
"debug",
"(",
"'Not found file %s in any folders.'",
"%",
"filename",
")",
"if",
"notfound_is_fatal",
":",
"raise",
"IOError",
"(",
"'File %s not found in any of the directories.'",
"%",
"filename",
")",
"else",
":",
"return",
"notfound_val"
] | Find file in multiple directories.
Inputs:
filename: the file name to be searched for.
dirs: list of folders or None
use_pythonpath: use the Python module search path
use_searchpath: use the sastool search path.
notfound_is_fatal: if an exception is to be raised if the file cannot be
found.
notfound_val: the value which should be returned if the file is not
found (only relevant if notfound_is_fatal is False)
Outputs: the full path of the file.
Notes:
if filename is an absolute path by itself, folders in 'dir' won't be
checked, only the existence of the file will be verified. | [
"Find",
"file",
"in",
"multiple",
"directories",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/misc/pathutils.py#L17-L63 |
awacha/sastool | sastool/utils2d/corrections.py | twotheta | def twotheta(matrix, bcx, bcy, pixsizeperdist):
"""Calculate the two-theta matrix for a scattering matrix
Inputs:
matrix: only the shape of it is needed
bcx, bcy: beam position (counting from 0; x is row, y is column index)
pixsizeperdist: the pixel size divided by the sample-to-detector
distance
Outputs:
the two theta matrix, same shape as 'matrix'.
"""
col, row = np.meshgrid(list(range(matrix.shape[1])), list(range(matrix.shape[0])))
return np.arctan(np.sqrt((row - bcx) ** 2 + (col - bcy) ** 2) * pixsizeperdist) | python | def twotheta(matrix, bcx, bcy, pixsizeperdist):
"""Calculate the two-theta matrix for a scattering matrix
Inputs:
matrix: only the shape of it is needed
bcx, bcy: beam position (counting from 0; x is row, y is column index)
pixsizeperdist: the pixel size divided by the sample-to-detector
distance
Outputs:
the two theta matrix, same shape as 'matrix'.
"""
col, row = np.meshgrid(list(range(matrix.shape[1])), list(range(matrix.shape[0])))
return np.arctan(np.sqrt((row - bcx) ** 2 + (col - bcy) ** 2) * pixsizeperdist) | [
"def",
"twotheta",
"(",
"matrix",
",",
"bcx",
",",
"bcy",
",",
"pixsizeperdist",
")",
":",
"col",
",",
"row",
"=",
"np",
".",
"meshgrid",
"(",
"list",
"(",
"range",
"(",
"matrix",
".",
"shape",
"[",
"1",
"]",
")",
")",
",",
"list",
"(",
"range",
"(",
"matrix",
".",
"shape",
"[",
"0",
"]",
")",
")",
")",
"return",
"np",
".",
"arctan",
"(",
"np",
".",
"sqrt",
"(",
"(",
"row",
"-",
"bcx",
")",
"**",
"2",
"+",
"(",
"col",
"-",
"bcy",
")",
"**",
"2",
")",
"*",
"pixsizeperdist",
")"
] | Calculate the two-theta matrix for a scattering matrix
Inputs:
matrix: only the shape of it is needed
bcx, bcy: beam position (counting from 0; x is row, y is column index)
pixsizeperdist: the pixel size divided by the sample-to-detector
distance
Outputs:
the two theta matrix, same shape as 'matrix'. | [
"Calculate",
"the",
"two",
"-",
"theta",
"matrix",
"for",
"a",
"scattering",
"matrix"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/corrections.py#L10-L23 |
awacha/sastool | sastool/utils2d/corrections.py | solidangle | def solidangle(twotheta, sampletodetectordistance, pixelsize=None):
"""Solid-angle correction for two-dimensional SAS images
Inputs:
twotheta: matrix of two-theta values
sampletodetectordistance: sample-to-detector distance
pixelsize: the pixel size in mm
The output matrix is of the same shape as twotheta. The scattering intensity
matrix should be multiplied by it.
"""
if pixelsize is None:
pixelsize = 1
return sampletodetectordistance ** 2 / np.cos(twotheta) ** 3 / pixelsize ** 2 | python | def solidangle(twotheta, sampletodetectordistance, pixelsize=None):
"""Solid-angle correction for two-dimensional SAS images
Inputs:
twotheta: matrix of two-theta values
sampletodetectordistance: sample-to-detector distance
pixelsize: the pixel size in mm
The output matrix is of the same shape as twotheta. The scattering intensity
matrix should be multiplied by it.
"""
if pixelsize is None:
pixelsize = 1
return sampletodetectordistance ** 2 / np.cos(twotheta) ** 3 / pixelsize ** 2 | [
"def",
"solidangle",
"(",
"twotheta",
",",
"sampletodetectordistance",
",",
"pixelsize",
"=",
"None",
")",
":",
"if",
"pixelsize",
"is",
"None",
":",
"pixelsize",
"=",
"1",
"return",
"sampletodetectordistance",
"**",
"2",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
"**",
"3",
"/",
"pixelsize",
"**",
"2"
] | Solid-angle correction for two-dimensional SAS images
Inputs:
twotheta: matrix of two-theta values
sampletodetectordistance: sample-to-detector distance
pixelsize: the pixel size in mm
The output matrix is of the same shape as twotheta. The scattering intensity
matrix should be multiplied by it. | [
"Solid",
"-",
"angle",
"correction",
"for",
"two",
"-",
"dimensional",
"SAS",
"images"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/corrections.py#L26-L39 |
awacha/sastool | sastool/utils2d/corrections.py | solidangle_errorprop | def solidangle_errorprop(twotheta, dtwotheta, sampletodetectordistance, dsampletodetectordistance, pixelsize=None):
"""Solid-angle correction for two-dimensional SAS images with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: matrix of absolute error of two-theta values
sampletodetectordistance: sample-to-detector distance
dsampletodetectordistance: absolute error of sample-to-detector distance
Outputs two matrices of the same shape as twotheta. The scattering intensity
matrix should be multiplied by the first one. The second one is the propagated
error of the first one.
"""
SAC = solidangle(twotheta, sampletodetectordistance, pixelsize)
if pixelsize is None:
pixelsize = 1
return (SAC,
(sampletodetectordistance * (4 * dsampletodetectordistance ** 2 * np.cos(twotheta) ** 2 +
9 * dtwotheta ** 2 * sampletodetectordistance ** 2 * np.sin(twotheta) ** 2) ** 0.5
/ np.cos(twotheta) ** 4) / pixelsize ** 2) | python | def solidangle_errorprop(twotheta, dtwotheta, sampletodetectordistance, dsampletodetectordistance, pixelsize=None):
"""Solid-angle correction for two-dimensional SAS images with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: matrix of absolute error of two-theta values
sampletodetectordistance: sample-to-detector distance
dsampletodetectordistance: absolute error of sample-to-detector distance
Outputs two matrices of the same shape as twotheta. The scattering intensity
matrix should be multiplied by the first one. The second one is the propagated
error of the first one.
"""
SAC = solidangle(twotheta, sampletodetectordistance, pixelsize)
if pixelsize is None:
pixelsize = 1
return (SAC,
(sampletodetectordistance * (4 * dsampletodetectordistance ** 2 * np.cos(twotheta) ** 2 +
9 * dtwotheta ** 2 * sampletodetectordistance ** 2 * np.sin(twotheta) ** 2) ** 0.5
/ np.cos(twotheta) ** 4) / pixelsize ** 2) | [
"def",
"solidangle_errorprop",
"(",
"twotheta",
",",
"dtwotheta",
",",
"sampletodetectordistance",
",",
"dsampletodetectordistance",
",",
"pixelsize",
"=",
"None",
")",
":",
"SAC",
"=",
"solidangle",
"(",
"twotheta",
",",
"sampletodetectordistance",
",",
"pixelsize",
")",
"if",
"pixelsize",
"is",
"None",
":",
"pixelsize",
"=",
"1",
"return",
"(",
"SAC",
",",
"(",
"sampletodetectordistance",
"*",
"(",
"4",
"*",
"dsampletodetectordistance",
"**",
"2",
"*",
"np",
".",
"cos",
"(",
"twotheta",
")",
"**",
"2",
"+",
"9",
"*",
"dtwotheta",
"**",
"2",
"*",
"sampletodetectordistance",
"**",
"2",
"*",
"np",
".",
"sin",
"(",
"twotheta",
")",
"**",
"2",
")",
"**",
"0.5",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
"**",
"4",
")",
"/",
"pixelsize",
"**",
"2",
")"
] | Solid-angle correction for two-dimensional SAS images with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: matrix of absolute error of two-theta values
sampletodetectordistance: sample-to-detector distance
dsampletodetectordistance: absolute error of sample-to-detector distance
Outputs two matrices of the same shape as twotheta. The scattering intensity
matrix should be multiplied by the first one. The second one is the propagated
error of the first one. | [
"Solid",
"-",
"angle",
"correction",
"for",
"two",
"-",
"dimensional",
"SAS",
"images",
"with",
"error",
"propagation"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/corrections.py#L42-L61 |
awacha/sastool | sastool/utils2d/corrections.py | angledependentabsorption | def angledependentabsorption(twotheta, transmission):
"""Correction for angle-dependent absorption of the sample
Inputs:
twotheta: matrix of two-theta values
transmission: the transmission of the sample (I_after/I_before, or
exp(-mu*d))
The output matrix is of the same shape as twotheta. The scattering intensity
matrix should be multiplied by it. Note, that this does not corrects for
sample transmission by itself, as the 2*theta -> 0 limit of this matrix
is unity. Twotheta==0 and transmission==1 cases are handled correctly
(the limit is 1 in both cases).
"""
cor = np.ones(twotheta.shape)
if transmission == 1:
return cor
mud = -np.log(transmission)
cor[twotheta > 0] = transmission * mud * (1 - 1 / np.cos(twotheta[twotheta > 0])) / (np.exp(-mud / np.cos(twotheta[twotheta > 0])) - np.exp(-mud))
return cor | python | def angledependentabsorption(twotheta, transmission):
"""Correction for angle-dependent absorption of the sample
Inputs:
twotheta: matrix of two-theta values
transmission: the transmission of the sample (I_after/I_before, or
exp(-mu*d))
The output matrix is of the same shape as twotheta. The scattering intensity
matrix should be multiplied by it. Note, that this does not corrects for
sample transmission by itself, as the 2*theta -> 0 limit of this matrix
is unity. Twotheta==0 and transmission==1 cases are handled correctly
(the limit is 1 in both cases).
"""
cor = np.ones(twotheta.shape)
if transmission == 1:
return cor
mud = -np.log(transmission)
cor[twotheta > 0] = transmission * mud * (1 - 1 / np.cos(twotheta[twotheta > 0])) / (np.exp(-mud / np.cos(twotheta[twotheta > 0])) - np.exp(-mud))
return cor | [
"def",
"angledependentabsorption",
"(",
"twotheta",
",",
"transmission",
")",
":",
"cor",
"=",
"np",
".",
"ones",
"(",
"twotheta",
".",
"shape",
")",
"if",
"transmission",
"==",
"1",
":",
"return",
"cor",
"mud",
"=",
"-",
"np",
".",
"log",
"(",
"transmission",
")",
"cor",
"[",
"twotheta",
">",
"0",
"]",
"=",
"transmission",
"*",
"mud",
"*",
"(",
"1",
"-",
"1",
"/",
"np",
".",
"cos",
"(",
"twotheta",
"[",
"twotheta",
">",
"0",
"]",
")",
")",
"/",
"(",
"np",
".",
"exp",
"(",
"-",
"mud",
"/",
"np",
".",
"cos",
"(",
"twotheta",
"[",
"twotheta",
">",
"0",
"]",
")",
")",
"-",
"np",
".",
"exp",
"(",
"-",
"mud",
")",
")",
"return",
"cor"
] | Correction for angle-dependent absorption of the sample
Inputs:
twotheta: matrix of two-theta values
transmission: the transmission of the sample (I_after/I_before, or
exp(-mu*d))
The output matrix is of the same shape as twotheta. The scattering intensity
matrix should be multiplied by it. Note, that this does not corrects for
sample transmission by itself, as the 2*theta -> 0 limit of this matrix
is unity. Twotheta==0 and transmission==1 cases are handled correctly
(the limit is 1 in both cases). | [
"Correction",
"for",
"angle",
"-",
"dependent",
"absorption",
"of",
"the",
"sample"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/corrections.py#L63-L83 |
awacha/sastool | sastool/utils2d/corrections.py | angledependentabsorption_errorprop | def angledependentabsorption_errorprop(twotheta, dtwotheta, transmission, dtransmission):
"""Correction for angle-dependent absorption of the sample with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: matrix of absolute error of two-theta values
transmission: the transmission of the sample (I_after/I_before, or
exp(-mu*d))
dtransmission: the absolute error of the transmission of the sample
Two matrices are returned: the first one is the correction (intensity matrix
should be multiplied by it), the second is its absolute error.
"""
# error propagation formula calculated using sympy
return (angledependentabsorption(twotheta, transmission),
_calc_angledependentabsorption_error(twotheta, dtwotheta, transmission, dtransmission)) | python | def angledependentabsorption_errorprop(twotheta, dtwotheta, transmission, dtransmission):
"""Correction for angle-dependent absorption of the sample with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: matrix of absolute error of two-theta values
transmission: the transmission of the sample (I_after/I_before, or
exp(-mu*d))
dtransmission: the absolute error of the transmission of the sample
Two matrices are returned: the first one is the correction (intensity matrix
should be multiplied by it), the second is its absolute error.
"""
# error propagation formula calculated using sympy
return (angledependentabsorption(twotheta, transmission),
_calc_angledependentabsorption_error(twotheta, dtwotheta, transmission, dtransmission)) | [
"def",
"angledependentabsorption_errorprop",
"(",
"twotheta",
",",
"dtwotheta",
",",
"transmission",
",",
"dtransmission",
")",
":",
"# error propagation formula calculated using sympy",
"return",
"(",
"angledependentabsorption",
"(",
"twotheta",
",",
"transmission",
")",
",",
"_calc_angledependentabsorption_error",
"(",
"twotheta",
",",
"dtwotheta",
",",
"transmission",
",",
"dtransmission",
")",
")"
] | Correction for angle-dependent absorption of the sample with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: matrix of absolute error of two-theta values
transmission: the transmission of the sample (I_after/I_before, or
exp(-mu*d))
dtransmission: the absolute error of the transmission of the sample
Two matrices are returned: the first one is the correction (intensity matrix
should be multiplied by it), the second is its absolute error. | [
"Correction",
"for",
"angle",
"-",
"dependent",
"absorption",
"of",
"the",
"sample",
"with",
"error",
"propagation"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/corrections.py#L108-L123 |
awacha/sastool | sastool/utils2d/corrections.py | angledependentairtransmission | def angledependentairtransmission(twotheta, mu_air, sampletodetectordistance):
"""Correction for the angle dependent absorption of air in the scattered
beam path.
Inputs:
twotheta: matrix of two-theta values
mu_air: the linear absorption coefficient of air
sampletodetectordistance: sample-to-detector distance
1/mu_air and sampletodetectordistance should have the same dimension
The scattering intensity matrix should be multiplied by the resulting
correction matrix."""
return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta)) | python | def angledependentairtransmission(twotheta, mu_air, sampletodetectordistance):
"""Correction for the angle dependent absorption of air in the scattered
beam path.
Inputs:
twotheta: matrix of two-theta values
mu_air: the linear absorption coefficient of air
sampletodetectordistance: sample-to-detector distance
1/mu_air and sampletodetectordistance should have the same dimension
The scattering intensity matrix should be multiplied by the resulting
correction matrix."""
return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta)) | [
"def",
"angledependentairtransmission",
"(",
"twotheta",
",",
"mu_air",
",",
"sampletodetectordistance",
")",
":",
"return",
"np",
".",
"exp",
"(",
"mu_air",
"*",
"sampletodetectordistance",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
")"
] | Correction for the angle dependent absorption of air in the scattered
beam path.
Inputs:
twotheta: matrix of two-theta values
mu_air: the linear absorption coefficient of air
sampletodetectordistance: sample-to-detector distance
1/mu_air and sampletodetectordistance should have the same dimension
The scattering intensity matrix should be multiplied by the resulting
correction matrix. | [
"Correction",
"for",
"the",
"angle",
"dependent",
"absorption",
"of",
"air",
"in",
"the",
"scattered",
"beam",
"path",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/corrections.py#L125-L138 |
awacha/sastool | sastool/utils2d/corrections.py | angledependentairtransmission_errorprop | def angledependentairtransmission_errorprop(twotheta, dtwotheta, mu_air,
dmu_air, sampletodetectordistance,
dsampletodetectordistance):
"""Correction for the angle dependent absorption of air in the scattered
beam path, with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: absolute error matrix of two-theta
mu_air: the linear absorption coefficient of air
dmu_air: error of the linear absorption coefficient of air
sampletodetectordistance: sample-to-detector distance
dsampletodetectordistance: error of the sample-to-detector distance
1/mu_air and sampletodetectordistance should have the same dimension
The scattering intensity matrix should be multiplied by the resulting
correction matrix."""
return (np.exp(mu_air * sampletodetectordistance / np.cos(twotheta)),
np.sqrt(dmu_air ** 2 * sampletodetectordistance ** 2 *
np.exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta))
/ np.cos(twotheta) ** 2 + dsampletodetectordistance ** 2 *
mu_air ** 2 * np.exp(2 * mu_air * sampletodetectordistance /
np.cos(twotheta)) /
np.cos(twotheta) ** 2 + dtwotheta ** 2 * mu_air ** 2 *
sampletodetectordistance ** 2 *
np.exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta))
* np.sin(twotheta) ** 2 / np.cos(twotheta) ** 4)
) | python | def angledependentairtransmission_errorprop(twotheta, dtwotheta, mu_air,
dmu_air, sampletodetectordistance,
dsampletodetectordistance):
"""Correction for the angle dependent absorption of air in the scattered
beam path, with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: absolute error matrix of two-theta
mu_air: the linear absorption coefficient of air
dmu_air: error of the linear absorption coefficient of air
sampletodetectordistance: sample-to-detector distance
dsampletodetectordistance: error of the sample-to-detector distance
1/mu_air and sampletodetectordistance should have the same dimension
The scattering intensity matrix should be multiplied by the resulting
correction matrix."""
return (np.exp(mu_air * sampletodetectordistance / np.cos(twotheta)),
np.sqrt(dmu_air ** 2 * sampletodetectordistance ** 2 *
np.exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta))
/ np.cos(twotheta) ** 2 + dsampletodetectordistance ** 2 *
mu_air ** 2 * np.exp(2 * mu_air * sampletodetectordistance /
np.cos(twotheta)) /
np.cos(twotheta) ** 2 + dtwotheta ** 2 * mu_air ** 2 *
sampletodetectordistance ** 2 *
np.exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta))
* np.sin(twotheta) ** 2 / np.cos(twotheta) ** 4)
) | [
"def",
"angledependentairtransmission_errorprop",
"(",
"twotheta",
",",
"dtwotheta",
",",
"mu_air",
",",
"dmu_air",
",",
"sampletodetectordistance",
",",
"dsampletodetectordistance",
")",
":",
"return",
"(",
"np",
".",
"exp",
"(",
"mu_air",
"*",
"sampletodetectordistance",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
")",
",",
"np",
".",
"sqrt",
"(",
"dmu_air",
"**",
"2",
"*",
"sampletodetectordistance",
"**",
"2",
"*",
"np",
".",
"exp",
"(",
"2",
"*",
"mu_air",
"*",
"sampletodetectordistance",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
")",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
"**",
"2",
"+",
"dsampletodetectordistance",
"**",
"2",
"*",
"mu_air",
"**",
"2",
"*",
"np",
".",
"exp",
"(",
"2",
"*",
"mu_air",
"*",
"sampletodetectordistance",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
")",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
"**",
"2",
"+",
"dtwotheta",
"**",
"2",
"*",
"mu_air",
"**",
"2",
"*",
"sampletodetectordistance",
"**",
"2",
"*",
"np",
".",
"exp",
"(",
"2",
"*",
"mu_air",
"*",
"sampletodetectordistance",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
")",
"*",
"np",
".",
"sin",
"(",
"twotheta",
")",
"**",
"2",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
"**",
"4",
")",
")"
] | Correction for the angle dependent absorption of air in the scattered
beam path, with error propagation
Inputs:
twotheta: matrix of two-theta values
dtwotheta: absolute error matrix of two-theta
mu_air: the linear absorption coefficient of air
dmu_air: error of the linear absorption coefficient of air
sampletodetectordistance: sample-to-detector distance
dsampletodetectordistance: error of the sample-to-detector distance
1/mu_air and sampletodetectordistance should have the same dimension
The scattering intensity matrix should be multiplied by the resulting
correction matrix. | [
"Correction",
"for",
"the",
"angle",
"dependent",
"absorption",
"of",
"air",
"in",
"the",
"scattered",
"beam",
"path",
"with",
"error",
"propagation"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/corrections.py#L140-L168 |
awacha/sastool | sastool/classes2/loader.py | Loader.find_file | def find_file(self, filename: str, strip_path: bool = True, what='exposure') -> str:
"""Find file in the path"""
if what == 'exposure':
path = self._path
elif what == 'header':
path = self._headerpath
elif what == 'mask':
path = self._maskpath
else:
path = self._path
tried = []
if strip_path:
filename = os.path.split(filename)[-1]
for d in path:
if os.path.exists(os.path.join(d, filename)):
tried.append(os.path.join(d, filename))
return os.path.join(d, filename)
raise FileNotFoundError('Not found: {}. Tried: {}'.format(filename, ', '.join(tried))) | python | def find_file(self, filename: str, strip_path: bool = True, what='exposure') -> str:
"""Find file in the path"""
if what == 'exposure':
path = self._path
elif what == 'header':
path = self._headerpath
elif what == 'mask':
path = self._maskpath
else:
path = self._path
tried = []
if strip_path:
filename = os.path.split(filename)[-1]
for d in path:
if os.path.exists(os.path.join(d, filename)):
tried.append(os.path.join(d, filename))
return os.path.join(d, filename)
raise FileNotFoundError('Not found: {}. Tried: {}'.format(filename, ', '.join(tried))) | [
"def",
"find_file",
"(",
"self",
",",
"filename",
":",
"str",
",",
"strip_path",
":",
"bool",
"=",
"True",
",",
"what",
"=",
"'exposure'",
")",
"->",
"str",
":",
"if",
"what",
"==",
"'exposure'",
":",
"path",
"=",
"self",
".",
"_path",
"elif",
"what",
"==",
"'header'",
":",
"path",
"=",
"self",
".",
"_headerpath",
"elif",
"what",
"==",
"'mask'",
":",
"path",
"=",
"self",
".",
"_maskpath",
"else",
":",
"path",
"=",
"self",
".",
"_path",
"tried",
"=",
"[",
"]",
"if",
"strip_path",
":",
"filename",
"=",
"os",
".",
"path",
".",
"split",
"(",
"filename",
")",
"[",
"-",
"1",
"]",
"for",
"d",
"in",
"path",
":",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"os",
".",
"path",
".",
"join",
"(",
"d",
",",
"filename",
")",
")",
":",
"tried",
".",
"append",
"(",
"os",
".",
"path",
".",
"join",
"(",
"d",
",",
"filename",
")",
")",
"return",
"os",
".",
"path",
".",
"join",
"(",
"d",
",",
"filename",
")",
"raise",
"FileNotFoundError",
"(",
"'Not found: {}. Tried: {}'",
".",
"format",
"(",
"filename",
",",
"', '",
".",
"join",
"(",
"tried",
")",
")",
")"
] | Find file in the path | [
"Find",
"file",
"in",
"the",
"path"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/loader.py#L69-L86 |
awacha/sastool | sastool/classes2/loader.py | Loader.get_subpath | def get_subpath(self, subpath: str):
"""Search a file or directory relative to the base path"""
for d in self._path:
if os.path.exists(os.path.join(d, subpath)):
return os.path.join(d, subpath)
raise FileNotFoundError | python | def get_subpath(self, subpath: str):
"""Search a file or directory relative to the base path"""
for d in self._path:
if os.path.exists(os.path.join(d, subpath)):
return os.path.join(d, subpath)
raise FileNotFoundError | [
"def",
"get_subpath",
"(",
"self",
",",
"subpath",
":",
"str",
")",
":",
"for",
"d",
"in",
"self",
".",
"_path",
":",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"os",
".",
"path",
".",
"join",
"(",
"d",
",",
"subpath",
")",
")",
":",
"return",
"os",
".",
"path",
".",
"join",
"(",
"d",
",",
"subpath",
")",
"raise",
"FileNotFoundError"
] | Search a file or directory relative to the base path | [
"Search",
"a",
"file",
"or",
"directory",
"relative",
"to",
"the",
"base",
"path"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/loader.py#L96-L101 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.new_from_file | def new_from_file(self, filename: str, header_data: Optional[Header] = None,
mask_data: Optional[np.ndarray] = None):
"""Load an exposure from a file.""" | python | def new_from_file(self, filename: str, header_data: Optional[Header] = None,
mask_data: Optional[np.ndarray] = None):
"""Load an exposure from a file.""" | [
"def",
"new_from_file",
"(",
"self",
",",
"filename",
":",
"str",
",",
"header_data",
":",
"Optional",
"[",
"Header",
"]",
"=",
"None",
",",
"mask_data",
":",
"Optional",
"[",
"np",
".",
"ndarray",
"]",
"=",
"None",
")",
":"
] | Load an exposure from a file. | [
"Load",
"an",
"exposure",
"from",
"a",
"file",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L47-L49 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.sum | def sum(self, only_valid=True) -> ErrorValue:
"""Calculate the sum of pixels, not counting the masked ones if only_valid is True."""
if not only_valid:
mask = 1
else:
mask = self.mask
return ErrorValue((self.intensity * mask).sum(),
((self.error * mask) ** 2).sum() ** 0.5) | python | def sum(self, only_valid=True) -> ErrorValue:
"""Calculate the sum of pixels, not counting the masked ones if only_valid is True."""
if not only_valid:
mask = 1
else:
mask = self.mask
return ErrorValue((self.intensity * mask).sum(),
((self.error * mask) ** 2).sum() ** 0.5) | [
"def",
"sum",
"(",
"self",
",",
"only_valid",
"=",
"True",
")",
"->",
"ErrorValue",
":",
"if",
"not",
"only_valid",
":",
"mask",
"=",
"1",
"else",
":",
"mask",
"=",
"self",
".",
"mask",
"return",
"ErrorValue",
"(",
"(",
"self",
".",
"intensity",
"*",
"mask",
")",
".",
"sum",
"(",
")",
",",
"(",
"(",
"self",
".",
"error",
"*",
"mask",
")",
"**",
"2",
")",
".",
"sum",
"(",
")",
"**",
"0.5",
")"
] | Calculate the sum of pixels, not counting the masked ones if only_valid is True. | [
"Calculate",
"the",
"sum",
"of",
"pixels",
"not",
"counting",
"the",
"masked",
"ones",
"if",
"only_valid",
"is",
"True",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L51-L58 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.mean | def mean(self, only_valid=True) -> ErrorValue:
"""Calculate the mean of the pixels, not counting the masked ones if only_valid is True."""
if not only_valid:
intensity = self.intensity
error = self.error
else:
intensity = self.intensity[self.mask]
error = self.error[self.mask]
return ErrorValue(intensity.mean(),
(error ** 2).mean() ** 0.5) | python | def mean(self, only_valid=True) -> ErrorValue:
"""Calculate the mean of the pixels, not counting the masked ones if only_valid is True."""
if not only_valid:
intensity = self.intensity
error = self.error
else:
intensity = self.intensity[self.mask]
error = self.error[self.mask]
return ErrorValue(intensity.mean(),
(error ** 2).mean() ** 0.5) | [
"def",
"mean",
"(",
"self",
",",
"only_valid",
"=",
"True",
")",
"->",
"ErrorValue",
":",
"if",
"not",
"only_valid",
":",
"intensity",
"=",
"self",
".",
"intensity",
"error",
"=",
"self",
".",
"error",
"else",
":",
"intensity",
"=",
"self",
".",
"intensity",
"[",
"self",
".",
"mask",
"]",
"error",
"=",
"self",
".",
"error",
"[",
"self",
".",
"mask",
"]",
"return",
"ErrorValue",
"(",
"intensity",
".",
"mean",
"(",
")",
",",
"(",
"error",
"**",
"2",
")",
".",
"mean",
"(",
")",
"**",
"0.5",
")"
] | Calculate the mean of the pixels, not counting the masked ones if only_valid is True. | [
"Calculate",
"the",
"mean",
"of",
"the",
"pixels",
"not",
"counting",
"the",
"masked",
"ones",
"if",
"only_valid",
"is",
"True",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L60-L69 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.twotheta | def twotheta(self) -> ErrorValue:
"""Calculate the two-theta array"""
row, column = np.ogrid[0:self.shape[0], 0:self.shape[1]]
rho = (((self.header.beamcentery - row) * self.header.pixelsizey) ** 2 +
((self.header.beamcenterx - column) * self.header.pixelsizex) ** 2) ** 0.5
assert isinstance(self.header.pixelsizex, ErrorValue)
assert isinstance(self.header.pixelsizey, ErrorValue)
assert isinstance(rho, ErrorValue)
return (rho / self.header.distance).arctan() | python | def twotheta(self) -> ErrorValue:
"""Calculate the two-theta array"""
row, column = np.ogrid[0:self.shape[0], 0:self.shape[1]]
rho = (((self.header.beamcentery - row) * self.header.pixelsizey) ** 2 +
((self.header.beamcenterx - column) * self.header.pixelsizex) ** 2) ** 0.5
assert isinstance(self.header.pixelsizex, ErrorValue)
assert isinstance(self.header.pixelsizey, ErrorValue)
assert isinstance(rho, ErrorValue)
return (rho / self.header.distance).arctan() | [
"def",
"twotheta",
"(",
"self",
")",
"->",
"ErrorValue",
":",
"row",
",",
"column",
"=",
"np",
".",
"ogrid",
"[",
"0",
":",
"self",
".",
"shape",
"[",
"0",
"]",
",",
"0",
":",
"self",
".",
"shape",
"[",
"1",
"]",
"]",
"rho",
"=",
"(",
"(",
"(",
"self",
".",
"header",
".",
"beamcentery",
"-",
"row",
")",
"*",
"self",
".",
"header",
".",
"pixelsizey",
")",
"**",
"2",
"+",
"(",
"(",
"self",
".",
"header",
".",
"beamcenterx",
"-",
"column",
")",
"*",
"self",
".",
"header",
".",
"pixelsizex",
")",
"**",
"2",
")",
"**",
"0.5",
"assert",
"isinstance",
"(",
"self",
".",
"header",
".",
"pixelsizex",
",",
"ErrorValue",
")",
"assert",
"isinstance",
"(",
"self",
".",
"header",
".",
"pixelsizey",
",",
"ErrorValue",
")",
"assert",
"isinstance",
"(",
"rho",
",",
"ErrorValue",
")",
"return",
"(",
"rho",
"/",
"self",
".",
"header",
".",
"distance",
")",
".",
"arctan",
"(",
")"
] | Calculate the two-theta array | [
"Calculate",
"the",
"two",
"-",
"theta",
"array"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L72-L80 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.pixel_to_q | def pixel_to_q(self, row: float, column: float):
"""Return the q coordinates of a given pixel.
Inputs:
row: float
the row (vertical) coordinate of the pixel
column: float
the column (horizontal) coordinate of the pixel
Coordinates are 0-based and calculated from the top left corner.
"""
qrow = 4 * np.pi * np.sin(
0.5 * np.arctan(
(row - float(self.header.beamcentery)) *
float(self.header.pixelsizey) /
float(self.header.distance))) / float(self.header.wavelength)
qcol = 4 * np.pi * np.sin(0.5 * np.arctan(
(column - float(self.header.beamcenterx)) *
float(self.header.pixelsizex) /
float(self.header.distance))) / float(self.header.wavelength)
return qrow, qcol | python | def pixel_to_q(self, row: float, column: float):
"""Return the q coordinates of a given pixel.
Inputs:
row: float
the row (vertical) coordinate of the pixel
column: float
the column (horizontal) coordinate of the pixel
Coordinates are 0-based and calculated from the top left corner.
"""
qrow = 4 * np.pi * np.sin(
0.5 * np.arctan(
(row - float(self.header.beamcentery)) *
float(self.header.pixelsizey) /
float(self.header.distance))) / float(self.header.wavelength)
qcol = 4 * np.pi * np.sin(0.5 * np.arctan(
(column - float(self.header.beamcenterx)) *
float(self.header.pixelsizex) /
float(self.header.distance))) / float(self.header.wavelength)
return qrow, qcol | [
"def",
"pixel_to_q",
"(",
"self",
",",
"row",
":",
"float",
",",
"column",
":",
"float",
")",
":",
"qrow",
"=",
"4",
"*",
"np",
".",
"pi",
"*",
"np",
".",
"sin",
"(",
"0.5",
"*",
"np",
".",
"arctan",
"(",
"(",
"row",
"-",
"float",
"(",
"self",
".",
"header",
".",
"beamcentery",
")",
")",
"*",
"float",
"(",
"self",
".",
"header",
".",
"pixelsizey",
")",
"/",
"float",
"(",
"self",
".",
"header",
".",
"distance",
")",
")",
")",
"/",
"float",
"(",
"self",
".",
"header",
".",
"wavelength",
")",
"qcol",
"=",
"4",
"*",
"np",
".",
"pi",
"*",
"np",
".",
"sin",
"(",
"0.5",
"*",
"np",
".",
"arctan",
"(",
"(",
"column",
"-",
"float",
"(",
"self",
".",
"header",
".",
"beamcenterx",
")",
")",
"*",
"float",
"(",
"self",
".",
"header",
".",
"pixelsizex",
")",
"/",
"float",
"(",
"self",
".",
"header",
".",
"distance",
")",
")",
")",
"/",
"float",
"(",
"self",
".",
"header",
".",
"wavelength",
")",
"return",
"qrow",
",",
"qcol"
] | Return the q coordinates of a given pixel.
Inputs:
row: float
the row (vertical) coordinate of the pixel
column: float
the column (horizontal) coordinate of the pixel
Coordinates are 0-based and calculated from the top left corner. | [
"Return",
"the",
"q",
"coordinates",
"of",
"a",
"given",
"pixel",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L87-L107 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.imshow | def imshow(self, *args, show_crosshair=True, show_mask=True,
show_qscale=True, axes=None, invalid_color='black',
mask_opacity=0.8, show_colorbar=True, **kwargs):
"""Plot the matrix (imshow)
Keyword arguments [and their default values]:
show_crosshair [True]: if a cross-hair marking the beam position is
to be plotted.
show_mask [True]: if the mask is to be plotted.
show_qscale [True]: if the horizontal and vertical axes are to be
scaled into q
axes [None]: the axes into which the image should be plotted. If
None, defaults to the currently active axes (returned by plt.gca())
invalid_color ['black']: the color for invalid (NaN or infinite) pixels
mask_opacity [0.8]: the opacity of the overlaid mask (1 is fully
opaque, 0 is fully transparent)
show_colorbar [True]: if a colorbar is to be added. Can be a boolean
value (True or False) or an instance of matplotlib.axes.Axes, into
which the color bar should be drawn.
All other keywords are forwarded to plt.imshow() or
matplotlib.Axes.imshow()
Returns: the image instance returned by imshow()
"""
if 'aspect' not in kwargs:
kwargs['aspect'] = 'equal'
if 'interpolation' not in kwargs:
kwargs['interpolation'] = 'nearest'
if 'origin' not in kwargs:
kwargs['origin'] = 'upper'
if show_qscale:
ymin, xmin = self.pixel_to_q(0, 0)
ymax, xmax = self.pixel_to_q(*self.shape)
if kwargs['origin'].upper() == 'UPPER':
kwargs['extent'] = [xmin, xmax, -ymax, -ymin]
else:
kwargs['extent'] = [xmin, xmax, ymin, ymax]
bcx = 0
bcy = 0
else:
bcx = self.header.beamcenterx
bcy = self.header.beamcentery
xmin = 0
xmax = self.shape[1]
ymin = 0
ymax = self.shape[0]
if kwargs['origin'].upper() == 'UPPER':
kwargs['extent'] = [0, self.shape[1], self.shape[0], 0]
else:
kwargs['extent'] = [0, self.shape[1], 0, self.shape[0]]
if axes is None:
axes = plt.gca()
ret = axes.imshow(self.intensity, **kwargs)
if show_mask:
# workaround: because of the colour-scaling we do here, full one and
# full zero masks look the SAME, i.e. all the image is shaded.
# Thus if we have a fully unmasked matrix, skip this section.
# This also conserves memory.
if (self.mask == 0).sum(): # there are some masked pixels
# we construct another representation of the mask, where the masked pixels are 1.0, and the
# unmasked ones will be np.nan. They will thus be not rendered.
mf = np.ones(self.mask.shape, np.float)
mf[self.mask != 0] = np.nan
kwargs['cmap'] = matplotlib.cm.gray_r
kwargs['alpha'] = mask_opacity
kwargs['norm'] = matplotlib.colors.Normalize()
axes.imshow(mf, **kwargs)
if show_crosshair:
ax = axes.axis() # save zoom state
axes.plot([xmin, xmax], [bcy] * 2, 'w-')
axes.plot([bcx] * 2, [ymin, ymax], 'w-')
axes.axis(ax) # restore zoom state
axes.set_facecolor(invalid_color)
if show_colorbar:
if isinstance(show_colorbar, matplotlib.axes.Axes):
axes.figure.colorbar(
ret, cax=show_colorbar)
else:
# try to find a suitable colorbar axes: check if the plot target axes already
# contains some images, then check if their colorbars exist as
# axes.
cax = [i.colorbar[1]
for i in axes.images if i.colorbar is not None]
cax = [c for c in cax if c in c.figure.axes]
if cax:
cax = cax[0]
else:
cax = None
axes.figure.colorbar(ret, cax=cax, ax=axes)
axes.figure.canvas.draw()
return ret | python | def imshow(self, *args, show_crosshair=True, show_mask=True,
show_qscale=True, axes=None, invalid_color='black',
mask_opacity=0.8, show_colorbar=True, **kwargs):
"""Plot the matrix (imshow)
Keyword arguments [and their default values]:
show_crosshair [True]: if a cross-hair marking the beam position is
to be plotted.
show_mask [True]: if the mask is to be plotted.
show_qscale [True]: if the horizontal and vertical axes are to be
scaled into q
axes [None]: the axes into which the image should be plotted. If
None, defaults to the currently active axes (returned by plt.gca())
invalid_color ['black']: the color for invalid (NaN or infinite) pixels
mask_opacity [0.8]: the opacity of the overlaid mask (1 is fully
opaque, 0 is fully transparent)
show_colorbar [True]: if a colorbar is to be added. Can be a boolean
value (True or False) or an instance of matplotlib.axes.Axes, into
which the color bar should be drawn.
All other keywords are forwarded to plt.imshow() or
matplotlib.Axes.imshow()
Returns: the image instance returned by imshow()
"""
if 'aspect' not in kwargs:
kwargs['aspect'] = 'equal'
if 'interpolation' not in kwargs:
kwargs['interpolation'] = 'nearest'
if 'origin' not in kwargs:
kwargs['origin'] = 'upper'
if show_qscale:
ymin, xmin = self.pixel_to_q(0, 0)
ymax, xmax = self.pixel_to_q(*self.shape)
if kwargs['origin'].upper() == 'UPPER':
kwargs['extent'] = [xmin, xmax, -ymax, -ymin]
else:
kwargs['extent'] = [xmin, xmax, ymin, ymax]
bcx = 0
bcy = 0
else:
bcx = self.header.beamcenterx
bcy = self.header.beamcentery
xmin = 0
xmax = self.shape[1]
ymin = 0
ymax = self.shape[0]
if kwargs['origin'].upper() == 'UPPER':
kwargs['extent'] = [0, self.shape[1], self.shape[0], 0]
else:
kwargs['extent'] = [0, self.shape[1], 0, self.shape[0]]
if axes is None:
axes = plt.gca()
ret = axes.imshow(self.intensity, **kwargs)
if show_mask:
# workaround: because of the colour-scaling we do here, full one and
# full zero masks look the SAME, i.e. all the image is shaded.
# Thus if we have a fully unmasked matrix, skip this section.
# This also conserves memory.
if (self.mask == 0).sum(): # there are some masked pixels
# we construct another representation of the mask, where the masked pixels are 1.0, and the
# unmasked ones will be np.nan. They will thus be not rendered.
mf = np.ones(self.mask.shape, np.float)
mf[self.mask != 0] = np.nan
kwargs['cmap'] = matplotlib.cm.gray_r
kwargs['alpha'] = mask_opacity
kwargs['norm'] = matplotlib.colors.Normalize()
axes.imshow(mf, **kwargs)
if show_crosshair:
ax = axes.axis() # save zoom state
axes.plot([xmin, xmax], [bcy] * 2, 'w-')
axes.plot([bcx] * 2, [ymin, ymax], 'w-')
axes.axis(ax) # restore zoom state
axes.set_facecolor(invalid_color)
if show_colorbar:
if isinstance(show_colorbar, matplotlib.axes.Axes):
axes.figure.colorbar(
ret, cax=show_colorbar)
else:
# try to find a suitable colorbar axes: check if the plot target axes already
# contains some images, then check if their colorbars exist as
# axes.
cax = [i.colorbar[1]
for i in axes.images if i.colorbar is not None]
cax = [c for c in cax if c in c.figure.axes]
if cax:
cax = cax[0]
else:
cax = None
axes.figure.colorbar(ret, cax=cax, ax=axes)
axes.figure.canvas.draw()
return ret | [
"def",
"imshow",
"(",
"self",
",",
"*",
"args",
",",
"show_crosshair",
"=",
"True",
",",
"show_mask",
"=",
"True",
",",
"show_qscale",
"=",
"True",
",",
"axes",
"=",
"None",
",",
"invalid_color",
"=",
"'black'",
",",
"mask_opacity",
"=",
"0.8",
",",
"show_colorbar",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"'aspect'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'aspect'",
"]",
"=",
"'equal'",
"if",
"'interpolation'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'interpolation'",
"]",
"=",
"'nearest'",
"if",
"'origin'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'origin'",
"]",
"=",
"'upper'",
"if",
"show_qscale",
":",
"ymin",
",",
"xmin",
"=",
"self",
".",
"pixel_to_q",
"(",
"0",
",",
"0",
")",
"ymax",
",",
"xmax",
"=",
"self",
".",
"pixel_to_q",
"(",
"*",
"self",
".",
"shape",
")",
"if",
"kwargs",
"[",
"'origin'",
"]",
".",
"upper",
"(",
")",
"==",
"'UPPER'",
":",
"kwargs",
"[",
"'extent'",
"]",
"=",
"[",
"xmin",
",",
"xmax",
",",
"-",
"ymax",
",",
"-",
"ymin",
"]",
"else",
":",
"kwargs",
"[",
"'extent'",
"]",
"=",
"[",
"xmin",
",",
"xmax",
",",
"ymin",
",",
"ymax",
"]",
"bcx",
"=",
"0",
"bcy",
"=",
"0",
"else",
":",
"bcx",
"=",
"self",
".",
"header",
".",
"beamcenterx",
"bcy",
"=",
"self",
".",
"header",
".",
"beamcentery",
"xmin",
"=",
"0",
"xmax",
"=",
"self",
".",
"shape",
"[",
"1",
"]",
"ymin",
"=",
"0",
"ymax",
"=",
"self",
".",
"shape",
"[",
"0",
"]",
"if",
"kwargs",
"[",
"'origin'",
"]",
".",
"upper",
"(",
")",
"==",
"'UPPER'",
":",
"kwargs",
"[",
"'extent'",
"]",
"=",
"[",
"0",
",",
"self",
".",
"shape",
"[",
"1",
"]",
",",
"self",
".",
"shape",
"[",
"0",
"]",
",",
"0",
"]",
"else",
":",
"kwargs",
"[",
"'extent'",
"]",
"=",
"[",
"0",
",",
"self",
".",
"shape",
"[",
"1",
"]",
",",
"0",
",",
"self",
".",
"shape",
"[",
"0",
"]",
"]",
"if",
"axes",
"is",
"None",
":",
"axes",
"=",
"plt",
".",
"gca",
"(",
")",
"ret",
"=",
"axes",
".",
"imshow",
"(",
"self",
".",
"intensity",
",",
"*",
"*",
"kwargs",
")",
"if",
"show_mask",
":",
"# workaround: because of the colour-scaling we do here, full one and",
"# full zero masks look the SAME, i.e. all the image is shaded.",
"# Thus if we have a fully unmasked matrix, skip this section.",
"# This also conserves memory.",
"if",
"(",
"self",
".",
"mask",
"==",
"0",
")",
".",
"sum",
"(",
")",
":",
"# there are some masked pixels",
"# we construct another representation of the mask, where the masked pixels are 1.0, and the",
"# unmasked ones will be np.nan. They will thus be not rendered.",
"mf",
"=",
"np",
".",
"ones",
"(",
"self",
".",
"mask",
".",
"shape",
",",
"np",
".",
"float",
")",
"mf",
"[",
"self",
".",
"mask",
"!=",
"0",
"]",
"=",
"np",
".",
"nan",
"kwargs",
"[",
"'cmap'",
"]",
"=",
"matplotlib",
".",
"cm",
".",
"gray_r",
"kwargs",
"[",
"'alpha'",
"]",
"=",
"mask_opacity",
"kwargs",
"[",
"'norm'",
"]",
"=",
"matplotlib",
".",
"colors",
".",
"Normalize",
"(",
")",
"axes",
".",
"imshow",
"(",
"mf",
",",
"*",
"*",
"kwargs",
")",
"if",
"show_crosshair",
":",
"ax",
"=",
"axes",
".",
"axis",
"(",
")",
"# save zoom state",
"axes",
".",
"plot",
"(",
"[",
"xmin",
",",
"xmax",
"]",
",",
"[",
"bcy",
"]",
"*",
"2",
",",
"'w-'",
")",
"axes",
".",
"plot",
"(",
"[",
"bcx",
"]",
"*",
"2",
",",
"[",
"ymin",
",",
"ymax",
"]",
",",
"'w-'",
")",
"axes",
".",
"axis",
"(",
"ax",
")",
"# restore zoom state",
"axes",
".",
"set_facecolor",
"(",
"invalid_color",
")",
"if",
"show_colorbar",
":",
"if",
"isinstance",
"(",
"show_colorbar",
",",
"matplotlib",
".",
"axes",
".",
"Axes",
")",
":",
"axes",
".",
"figure",
".",
"colorbar",
"(",
"ret",
",",
"cax",
"=",
"show_colorbar",
")",
"else",
":",
"# try to find a suitable colorbar axes: check if the plot target axes already",
"# contains some images, then check if their colorbars exist as",
"# axes.",
"cax",
"=",
"[",
"i",
".",
"colorbar",
"[",
"1",
"]",
"for",
"i",
"in",
"axes",
".",
"images",
"if",
"i",
".",
"colorbar",
"is",
"not",
"None",
"]",
"cax",
"=",
"[",
"c",
"for",
"c",
"in",
"cax",
"if",
"c",
"in",
"c",
".",
"figure",
".",
"axes",
"]",
"if",
"cax",
":",
"cax",
"=",
"cax",
"[",
"0",
"]",
"else",
":",
"cax",
"=",
"None",
"axes",
".",
"figure",
".",
"colorbar",
"(",
"ret",
",",
"cax",
"=",
"cax",
",",
"ax",
"=",
"axes",
")",
"axes",
".",
"figure",
".",
"canvas",
".",
"draw",
"(",
")",
"return",
"ret"
] | Plot the matrix (imshow)
Keyword arguments [and their default values]:
show_crosshair [True]: if a cross-hair marking the beam position is
to be plotted.
show_mask [True]: if the mask is to be plotted.
show_qscale [True]: if the horizontal and vertical axes are to be
scaled into q
axes [None]: the axes into which the image should be plotted. If
None, defaults to the currently active axes (returned by plt.gca())
invalid_color ['black']: the color for invalid (NaN or infinite) pixels
mask_opacity [0.8]: the opacity of the overlaid mask (1 is fully
opaque, 0 is fully transparent)
show_colorbar [True]: if a colorbar is to be added. Can be a boolean
value (True or False) or an instance of matplotlib.axes.Axes, into
which the color bar should be drawn.
All other keywords are forwarded to plt.imshow() or
matplotlib.Axes.imshow()
Returns: the image instance returned by imshow() | [
"Plot",
"the",
"matrix",
"(",
"imshow",
")"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L109-L201 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.radial_average | def radial_average(self, qrange=None, pixel=False, returnmask=False,
errorpropagation=3, abscissa_errorpropagation=3,
raw_result=False) -> Curve:
"""Do a radial averaging
Inputs:
qrange: the q-range. If None, auto-determine. If 'linear', auto-determine
with linear spacing (same as None). If 'log', auto-determine
with log10 spacing.
pixel: do a pixel-integration (instead of q)
returnmask: if the effective mask matrix is to be returned.
errorpropagation: the type of error propagation (3: highest of squared or
std-dev, 2: squared, 1: linear, 0: independent measurements of
the same quantity)
abscissa_errorpropagation: the type of the error propagation in the
abscissa (3: highest of squared or std-dev, 2: squared, 1: linear,
0: independent measurements of the same quantity)
raw_result: if True, do not pack the result in a SASCurve, return the
individual np.ndarrays.
Outputs:
the one-dimensional curve as an instance of SASCurve (if pixel is
False) or SASPixelCurve (if pixel is True), if raw_result was True.
otherwise the q (or pixel), dq (or dpixel), I, dI, area vectors
the mask matrix (if returnmask was True)
"""
retmask = None
if isinstance(qrange, str):
if qrange == 'linear':
qrange = None
autoqrange_linear = True
elif qrange == 'log':
qrange = None
autoqrange_linear = False
else:
raise ValueError(
'Value given for qrange (''%s'') not understood.' % qrange)
else:
autoqrange_linear = True # whatever
if pixel:
abscissa_kind = 3
else:
abscissa_kind = 0
res = radint_fullq_errorprop(self.intensity, self.error, self.header.wavelength.val,
self.header.wavelength.err, self.header.distance.val,
self.header.distance.err, self.header.pixelsizey.val,
self.header.pixelsizex.val, self.header.beamcentery.val,
self.header.beamcentery.err, self.header.beamcenterx.val,
self.header.beamcenterx.err, (self.mask == 0).astype(np.uint8),
qrange, returnmask=returnmask, errorpropagation=errorpropagation,
autoqrange_linear=autoqrange_linear, abscissa_kind=abscissa_kind,
abscissa_errorpropagation=abscissa_errorpropagation)
q, dq, I, E, area = res[:5]
if not raw_result:
c = Curve(q, I, E, dq)
if returnmask:
return c, res[5]
else:
return c
else:
if returnmask:
return q, dq, I, E, area, res[5]
else:
return q, dq, I, E, area | python | def radial_average(self, qrange=None, pixel=False, returnmask=False,
errorpropagation=3, abscissa_errorpropagation=3,
raw_result=False) -> Curve:
"""Do a radial averaging
Inputs:
qrange: the q-range. If None, auto-determine. If 'linear', auto-determine
with linear spacing (same as None). If 'log', auto-determine
with log10 spacing.
pixel: do a pixel-integration (instead of q)
returnmask: if the effective mask matrix is to be returned.
errorpropagation: the type of error propagation (3: highest of squared or
std-dev, 2: squared, 1: linear, 0: independent measurements of
the same quantity)
abscissa_errorpropagation: the type of the error propagation in the
abscissa (3: highest of squared or std-dev, 2: squared, 1: linear,
0: independent measurements of the same quantity)
raw_result: if True, do not pack the result in a SASCurve, return the
individual np.ndarrays.
Outputs:
the one-dimensional curve as an instance of SASCurve (if pixel is
False) or SASPixelCurve (if pixel is True), if raw_result was True.
otherwise the q (or pixel), dq (or dpixel), I, dI, area vectors
the mask matrix (if returnmask was True)
"""
retmask = None
if isinstance(qrange, str):
if qrange == 'linear':
qrange = None
autoqrange_linear = True
elif qrange == 'log':
qrange = None
autoqrange_linear = False
else:
raise ValueError(
'Value given for qrange (''%s'') not understood.' % qrange)
else:
autoqrange_linear = True # whatever
if pixel:
abscissa_kind = 3
else:
abscissa_kind = 0
res = radint_fullq_errorprop(self.intensity, self.error, self.header.wavelength.val,
self.header.wavelength.err, self.header.distance.val,
self.header.distance.err, self.header.pixelsizey.val,
self.header.pixelsizex.val, self.header.beamcentery.val,
self.header.beamcentery.err, self.header.beamcenterx.val,
self.header.beamcenterx.err, (self.mask == 0).astype(np.uint8),
qrange, returnmask=returnmask, errorpropagation=errorpropagation,
autoqrange_linear=autoqrange_linear, abscissa_kind=abscissa_kind,
abscissa_errorpropagation=abscissa_errorpropagation)
q, dq, I, E, area = res[:5]
if not raw_result:
c = Curve(q, I, E, dq)
if returnmask:
return c, res[5]
else:
return c
else:
if returnmask:
return q, dq, I, E, area, res[5]
else:
return q, dq, I, E, area | [
"def",
"radial_average",
"(",
"self",
",",
"qrange",
"=",
"None",
",",
"pixel",
"=",
"False",
",",
"returnmask",
"=",
"False",
",",
"errorpropagation",
"=",
"3",
",",
"abscissa_errorpropagation",
"=",
"3",
",",
"raw_result",
"=",
"False",
")",
"->",
"Curve",
":",
"retmask",
"=",
"None",
"if",
"isinstance",
"(",
"qrange",
",",
"str",
")",
":",
"if",
"qrange",
"==",
"'linear'",
":",
"qrange",
"=",
"None",
"autoqrange_linear",
"=",
"True",
"elif",
"qrange",
"==",
"'log'",
":",
"qrange",
"=",
"None",
"autoqrange_linear",
"=",
"False",
"else",
":",
"raise",
"ValueError",
"(",
"'Value given for qrange ('",
"'%s'",
"') not understood.'",
"%",
"qrange",
")",
"else",
":",
"autoqrange_linear",
"=",
"True",
"# whatever",
"if",
"pixel",
":",
"abscissa_kind",
"=",
"3",
"else",
":",
"abscissa_kind",
"=",
"0",
"res",
"=",
"radint_fullq_errorprop",
"(",
"self",
".",
"intensity",
",",
"self",
".",
"error",
",",
"self",
".",
"header",
".",
"wavelength",
".",
"val",
",",
"self",
".",
"header",
".",
"wavelength",
".",
"err",
",",
"self",
".",
"header",
".",
"distance",
".",
"val",
",",
"self",
".",
"header",
".",
"distance",
".",
"err",
",",
"self",
".",
"header",
".",
"pixelsizey",
".",
"val",
",",
"self",
".",
"header",
".",
"pixelsizex",
".",
"val",
",",
"self",
".",
"header",
".",
"beamcentery",
".",
"val",
",",
"self",
".",
"header",
".",
"beamcentery",
".",
"err",
",",
"self",
".",
"header",
".",
"beamcenterx",
".",
"val",
",",
"self",
".",
"header",
".",
"beamcenterx",
".",
"err",
",",
"(",
"self",
".",
"mask",
"==",
"0",
")",
".",
"astype",
"(",
"np",
".",
"uint8",
")",
",",
"qrange",
",",
"returnmask",
"=",
"returnmask",
",",
"errorpropagation",
"=",
"errorpropagation",
",",
"autoqrange_linear",
"=",
"autoqrange_linear",
",",
"abscissa_kind",
"=",
"abscissa_kind",
",",
"abscissa_errorpropagation",
"=",
"abscissa_errorpropagation",
")",
"q",
",",
"dq",
",",
"I",
",",
"E",
",",
"area",
"=",
"res",
"[",
":",
"5",
"]",
"if",
"not",
"raw_result",
":",
"c",
"=",
"Curve",
"(",
"q",
",",
"I",
",",
"E",
",",
"dq",
")",
"if",
"returnmask",
":",
"return",
"c",
",",
"res",
"[",
"5",
"]",
"else",
":",
"return",
"c",
"else",
":",
"if",
"returnmask",
":",
"return",
"q",
",",
"dq",
",",
"I",
",",
"E",
",",
"area",
",",
"res",
"[",
"5",
"]",
"else",
":",
"return",
"q",
",",
"dq",
",",
"I",
",",
"E",
",",
"area"
] | Do a radial averaging
Inputs:
qrange: the q-range. If None, auto-determine. If 'linear', auto-determine
with linear spacing (same as None). If 'log', auto-determine
with log10 spacing.
pixel: do a pixel-integration (instead of q)
returnmask: if the effective mask matrix is to be returned.
errorpropagation: the type of error propagation (3: highest of squared or
std-dev, 2: squared, 1: linear, 0: independent measurements of
the same quantity)
abscissa_errorpropagation: the type of the error propagation in the
abscissa (3: highest of squared or std-dev, 2: squared, 1: linear,
0: independent measurements of the same quantity)
raw_result: if True, do not pack the result in a SASCurve, return the
individual np.ndarrays.
Outputs:
the one-dimensional curve as an instance of SASCurve (if pixel is
False) or SASPixelCurve (if pixel is True), if raw_result was True.
otherwise the q (or pixel), dq (or dpixel), I, dI, area vectors
the mask matrix (if returnmask was True) | [
"Do",
"a",
"radial",
"averaging"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L257-L320 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.mask_negative | def mask_negative(self):
"""Extend the mask with the image elements where the intensity is negative."""
self.mask = np.logical_and(self.mask, ~(self.intensity < 0)) | python | def mask_negative(self):
"""Extend the mask with the image elements where the intensity is negative."""
self.mask = np.logical_and(self.mask, ~(self.intensity < 0)) | [
"def",
"mask_negative",
"(",
"self",
")",
":",
"self",
".",
"mask",
"=",
"np",
".",
"logical_and",
"(",
"self",
".",
"mask",
",",
"~",
"(",
"self",
".",
"intensity",
"<",
"0",
")",
")"
] | Extend the mask with the image elements where the intensity is negative. | [
"Extend",
"the",
"mask",
"with",
"the",
"image",
"elements",
"where",
"the",
"intensity",
"is",
"negative",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L331-L333 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.mask_nan | def mask_nan(self):
"""Extend the mask with the image elements where the intensity is NaN."""
self.mask = np.logical_and(self.mask, ~(np.isnan(self.intensity))) | python | def mask_nan(self):
"""Extend the mask with the image elements where the intensity is NaN."""
self.mask = np.logical_and(self.mask, ~(np.isnan(self.intensity))) | [
"def",
"mask_nan",
"(",
"self",
")",
":",
"self",
".",
"mask",
"=",
"np",
".",
"logical_and",
"(",
"self",
".",
"mask",
",",
"~",
"(",
"np",
".",
"isnan",
"(",
"self",
".",
"intensity",
")",
")",
")"
] | Extend the mask with the image elements where the intensity is NaN. | [
"Extend",
"the",
"mask",
"with",
"the",
"image",
"elements",
"where",
"the",
"intensity",
"is",
"NaN",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L335-L337 |
awacha/sastool | sastool/classes2/exposure.py | Exposure.mask_nonfinite | def mask_nonfinite(self):
"""Extend the mask with the image elements where the intensity is NaN."""
self.mask = np.logical_and(self.mask, (np.isfinite(self.intensity))) | python | def mask_nonfinite(self):
"""Extend the mask with the image elements where the intensity is NaN."""
self.mask = np.logical_and(self.mask, (np.isfinite(self.intensity))) | [
"def",
"mask_nonfinite",
"(",
"self",
")",
":",
"self",
".",
"mask",
"=",
"np",
".",
"logical_and",
"(",
"self",
".",
"mask",
",",
"(",
"np",
".",
"isfinite",
"(",
"self",
".",
"intensity",
")",
")",
")"
] | Extend the mask with the image elements where the intensity is NaN. | [
"Extend",
"the",
"mask",
"with",
"the",
"image",
"elements",
"where",
"the",
"intensity",
"is",
"NaN",
"."
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/classes2/exposure.py#L339-L341 |
awacha/sastool | sastool/io/credo_saxsctrl/header.py | Header.distance | def distance(self) -> ErrorValue:
"""Sample-to-detector distance"""
if 'DistCalibrated' in self._data:
dist = self._data['DistCalibrated']
else:
dist = self._data["Dist"]
if 'DistCalibratedError' in self._data:
disterr = self._data['DistCalibratedError']
elif 'DistError' in self._data:
disterr = self._data['DistError']
else:
disterr = 0.0
return ErrorValue(dist, disterr) | python | def distance(self) -> ErrorValue:
"""Sample-to-detector distance"""
if 'DistCalibrated' in self._data:
dist = self._data['DistCalibrated']
else:
dist = self._data["Dist"]
if 'DistCalibratedError' in self._data:
disterr = self._data['DistCalibratedError']
elif 'DistError' in self._data:
disterr = self._data['DistError']
else:
disterr = 0.0
return ErrorValue(dist, disterr) | [
"def",
"distance",
"(",
"self",
")",
"->",
"ErrorValue",
":",
"if",
"'DistCalibrated'",
"in",
"self",
".",
"_data",
":",
"dist",
"=",
"self",
".",
"_data",
"[",
"'DistCalibrated'",
"]",
"else",
":",
"dist",
"=",
"self",
".",
"_data",
"[",
"\"Dist\"",
"]",
"if",
"'DistCalibratedError'",
"in",
"self",
".",
"_data",
":",
"disterr",
"=",
"self",
".",
"_data",
"[",
"'DistCalibratedError'",
"]",
"elif",
"'DistError'",
"in",
"self",
".",
"_data",
":",
"disterr",
"=",
"self",
".",
"_data",
"[",
"'DistError'",
"]",
"else",
":",
"disterr",
"=",
"0.0",
"return",
"ErrorValue",
"(",
"dist",
",",
"disterr",
")"
] | Sample-to-detector distance | [
"Sample",
"-",
"to",
"-",
"detector",
"distance"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_saxsctrl/header.py#L114-L126 |
awacha/sastool | sastool/io/credo_saxsctrl/header.py | Header.temperature | def temperature(self) -> Optional[ErrorValue]:
"""Sample temperature"""
try:
return ErrorValue(self._data['Temperature'], self._data.setdefault('TemperatureError', 0.0))
except KeyError:
return None | python | def temperature(self) -> Optional[ErrorValue]:
"""Sample temperature"""
try:
return ErrorValue(self._data['Temperature'], self._data.setdefault('TemperatureError', 0.0))
except KeyError:
return None | [
"def",
"temperature",
"(",
"self",
")",
"->",
"Optional",
"[",
"ErrorValue",
"]",
":",
"try",
":",
"return",
"ErrorValue",
"(",
"self",
".",
"_data",
"[",
"'Temperature'",
"]",
",",
"self",
".",
"_data",
".",
"setdefault",
"(",
"'TemperatureError'",
",",
"0.0",
")",
")",
"except",
"KeyError",
":",
"return",
"None"
] | Sample temperature | [
"Sample",
"temperature"
] | train | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_saxsctrl/header.py#L136-L141 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.