repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
annayqho/TheCannon
code/aaomega/aaomega_munge_data.py
make_full_ivar
def make_full_ivar(): """ take the scatters and skylines and make final ivars """ # skylines come as an ivar # don't use them for now, because I don't really trust them... # skylines = np.load("%s/skylines.npz" %DATA_DIR)['arr_0'] ref_flux = np.load("%s/ref_flux_all.npz" %DATA_DIR)['arr_0'] ref_scat = np.load("%s/ref_spec_scat_all.npz" %DATA_DIR)['arr_0'] test_flux = np.load("%s/test_flux.npz" %DATA_DIR)['arr_0'] test_scat = np.load("%s/test_spec_scat.npz" %DATA_DIR)['arr_0'] ref_ivar = np.ones(ref_flux.shape) / ref_scat[:,None]**2 test_ivar = np.ones(test_flux.shape) / test_scat[:,None]**2 # ref_ivar = (ref_ivar_temp * skylines[None,:]) / (ref_ivar_temp + skylines) # test_ivar = (test_ivar_temp * skylines[None,:]) / (test_ivar_temp + skylines) ref_bad = np.logical_or(ref_flux <= 0, ref_flux > 1.1) test_bad = np.logical_or(test_flux <= 0, test_flux > 1.1) SMALL = 1.0 / 1000000000.0 ref_ivar[ref_bad] = SMALL test_ivar[test_bad] = SMALL np.savez("%s/ref_ivar_corr.npz" %DATA_DIR, ref_ivar) np.savez("%s/test_ivar_corr.npz" %DATA_DIR, test_ivar)
python
def make_full_ivar(): """ take the scatters and skylines and make final ivars """ # skylines come as an ivar # don't use them for now, because I don't really trust them... # skylines = np.load("%s/skylines.npz" %DATA_DIR)['arr_0'] ref_flux = np.load("%s/ref_flux_all.npz" %DATA_DIR)['arr_0'] ref_scat = np.load("%s/ref_spec_scat_all.npz" %DATA_DIR)['arr_0'] test_flux = np.load("%s/test_flux.npz" %DATA_DIR)['arr_0'] test_scat = np.load("%s/test_spec_scat.npz" %DATA_DIR)['arr_0'] ref_ivar = np.ones(ref_flux.shape) / ref_scat[:,None]**2 test_ivar = np.ones(test_flux.shape) / test_scat[:,None]**2 # ref_ivar = (ref_ivar_temp * skylines[None,:]) / (ref_ivar_temp + skylines) # test_ivar = (test_ivar_temp * skylines[None,:]) / (test_ivar_temp + skylines) ref_bad = np.logical_or(ref_flux <= 0, ref_flux > 1.1) test_bad = np.logical_or(test_flux <= 0, test_flux > 1.1) SMALL = 1.0 / 1000000000.0 ref_ivar[ref_bad] = SMALL test_ivar[test_bad] = SMALL np.savez("%s/ref_ivar_corr.npz" %DATA_DIR, ref_ivar) np.savez("%s/test_ivar_corr.npz" %DATA_DIR, test_ivar)
[ "def", "make_full_ivar", "(", ")", ":", "# skylines come as an ivar", "# don't use them for now, because I don't really trust them...", "# skylines = np.load(\"%s/skylines.npz\" %DATA_DIR)['arr_0']", "ref_flux", "=", "np", ".", "load", "(", "\"%s/ref_flux_all.npz\"", "%", "DATA_DIR", ")", "[", "'arr_0'", "]", "ref_scat", "=", "np", ".", "load", "(", "\"%s/ref_spec_scat_all.npz\"", "%", "DATA_DIR", ")", "[", "'arr_0'", "]", "test_flux", "=", "np", ".", "load", "(", "\"%s/test_flux.npz\"", "%", "DATA_DIR", ")", "[", "'arr_0'", "]", "test_scat", "=", "np", ".", "load", "(", "\"%s/test_spec_scat.npz\"", "%", "DATA_DIR", ")", "[", "'arr_0'", "]", "ref_ivar", "=", "np", ".", "ones", "(", "ref_flux", ".", "shape", ")", "/", "ref_scat", "[", ":", ",", "None", "]", "**", "2", "test_ivar", "=", "np", ".", "ones", "(", "test_flux", ".", "shape", ")", "/", "test_scat", "[", ":", ",", "None", "]", "**", "2", "# ref_ivar = (ref_ivar_temp * skylines[None,:]) / (ref_ivar_temp + skylines)", "# test_ivar = (test_ivar_temp * skylines[None,:]) / (test_ivar_temp + skylines)", "ref_bad", "=", "np", ".", "logical_or", "(", "ref_flux", "<=", "0", ",", "ref_flux", ">", "1.1", ")", "test_bad", "=", "np", ".", "logical_or", "(", "test_flux", "<=", "0", ",", "test_flux", ">", "1.1", ")", "SMALL", "=", "1.0", "/", "1000000000.0", "ref_ivar", "[", "ref_bad", "]", "=", "SMALL", "test_ivar", "[", "test_bad", "]", "=", "SMALL", "np", ".", "savez", "(", "\"%s/ref_ivar_corr.npz\"", "%", "DATA_DIR", ",", "ref_ivar", ")", "np", ".", "savez", "(", "\"%s/test_ivar_corr.npz\"", "%", "DATA_DIR", ",", "test_ivar", ")" ]
take the scatters and skylines and make final ivars
[ "take", "the", "scatters", "and", "skylines", "and", "make", "final", "ivars" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/aaomega/aaomega_munge_data.py#L160-L183
annayqho/TheCannon
TheCannon/normalization.py
_sinusoid
def _sinusoid(x, p, L, y): """ Return the sinusoid cont func evaluated at input x for the continuum. Parameters ---------- x: float or np.array data, input to function p: ndarray coefficients of fitting function L: float width of x data y: float or np.array output data corresponding to input x Returns ------- func: float function evaluated for the input x """ N = int(len(p)/2) n = np.linspace(0, N, N+1) k = n*np.pi/L func = 0 for n in range(0, N): func += p[2*n]*np.sin(k[n]*x)+p[2*n+1]*np.cos(k[n]*x) return func
python
def _sinusoid(x, p, L, y): """ Return the sinusoid cont func evaluated at input x for the continuum. Parameters ---------- x: float or np.array data, input to function p: ndarray coefficients of fitting function L: float width of x data y: float or np.array output data corresponding to input x Returns ------- func: float function evaluated for the input x """ N = int(len(p)/2) n = np.linspace(0, N, N+1) k = n*np.pi/L func = 0 for n in range(0, N): func += p[2*n]*np.sin(k[n]*x)+p[2*n+1]*np.cos(k[n]*x) return func
[ "def", "_sinusoid", "(", "x", ",", "p", ",", "L", ",", "y", ")", ":", "N", "=", "int", "(", "len", "(", "p", ")", "/", "2", ")", "n", "=", "np", ".", "linspace", "(", "0", ",", "N", ",", "N", "+", "1", ")", "k", "=", "n", "*", "np", ".", "pi", "/", "L", "func", "=", "0", "for", "n", "in", "range", "(", "0", ",", "N", ")", ":", "func", "+=", "p", "[", "2", "*", "n", "]", "*", "np", ".", "sin", "(", "k", "[", "n", "]", "*", "x", ")", "+", "p", "[", "2", "*", "n", "+", "1", "]", "*", "np", ".", "cos", "(", "k", "[", "n", "]", "*", "x", ")", "return", "func" ]
Return the sinusoid cont func evaluated at input x for the continuum. Parameters ---------- x: float or np.array data, input to function p: ndarray coefficients of fitting function L: float width of x data y: float or np.array output data corresponding to input x Returns ------- func: float function evaluated for the input x
[ "Return", "the", "sinusoid", "cont", "func", "evaluated", "at", "input", "x", "for", "the", "continuum", "." ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L33-L58
annayqho/TheCannon
TheCannon/normalization.py
_weighted_median
def _weighted_median(values, weights, quantile): """ Calculate a weighted median for values above a particular quantile cut Used in pseudo continuum normalization Parameters ---------- values: np ndarray of floats the values to take the median of weights: np ndarray of floats the weights associated with the values quantile: float the cut applied to the input data Returns ------ the weighted median """ sindx = np.argsort(values) cvalues = 1. * np.cumsum(weights[sindx]) if cvalues[-1] == 0: # means all the values are 0 return values[0] cvalues = cvalues / cvalues[-1] # div by largest value foo = sindx[cvalues > quantile] if len(foo) == 0: return values[0] indx = foo[0] return values[indx]
python
def _weighted_median(values, weights, quantile): """ Calculate a weighted median for values above a particular quantile cut Used in pseudo continuum normalization Parameters ---------- values: np ndarray of floats the values to take the median of weights: np ndarray of floats the weights associated with the values quantile: float the cut applied to the input data Returns ------ the weighted median """ sindx = np.argsort(values) cvalues = 1. * np.cumsum(weights[sindx]) if cvalues[-1] == 0: # means all the values are 0 return values[0] cvalues = cvalues / cvalues[-1] # div by largest value foo = sindx[cvalues > quantile] if len(foo) == 0: return values[0] indx = foo[0] return values[indx]
[ "def", "_weighted_median", "(", "values", ",", "weights", ",", "quantile", ")", ":", "sindx", "=", "np", ".", "argsort", "(", "values", ")", "cvalues", "=", "1.", "*", "np", ".", "cumsum", "(", "weights", "[", "sindx", "]", ")", "if", "cvalues", "[", "-", "1", "]", "==", "0", ":", "# means all the values are 0", "return", "values", "[", "0", "]", "cvalues", "=", "cvalues", "/", "cvalues", "[", "-", "1", "]", "# div by largest value", "foo", "=", "sindx", "[", "cvalues", ">", "quantile", "]", "if", "len", "(", "foo", ")", "==", "0", ":", "return", "values", "[", "0", "]", "indx", "=", "foo", "[", "0", "]", "return", "values", "[", "indx", "]" ]
Calculate a weighted median for values above a particular quantile cut Used in pseudo continuum normalization Parameters ---------- values: np ndarray of floats the values to take the median of weights: np ndarray of floats the weights associated with the values quantile: float the cut applied to the input data Returns ------ the weighted median
[ "Calculate", "a", "weighted", "median", "for", "values", "above", "a", "particular", "quantile", "cut" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L61-L88
annayqho/TheCannon
TheCannon/normalization.py
_find_cont_gaussian_smooth
def _find_cont_gaussian_smooth(wl, fluxes, ivars, w): """ Returns the weighted mean block of spectra Parameters ---------- wl: numpy ndarray wavelength vector flux: numpy ndarray block of flux values ivar: numpy ndarray block of ivar values L: float width of Gaussian used to assign weights Returns ------- smoothed_fluxes: numpy ndarray block of smoothed flux values, mean spectra """ print("Finding the continuum") bot = np.dot(ivars, w.T) top = np.dot(fluxes*ivars, w.T) bad = bot == 0 cont = np.zeros(top.shape) cont[~bad] = top[~bad] / bot[~bad] return cont
python
def _find_cont_gaussian_smooth(wl, fluxes, ivars, w): """ Returns the weighted mean block of spectra Parameters ---------- wl: numpy ndarray wavelength vector flux: numpy ndarray block of flux values ivar: numpy ndarray block of ivar values L: float width of Gaussian used to assign weights Returns ------- smoothed_fluxes: numpy ndarray block of smoothed flux values, mean spectra """ print("Finding the continuum") bot = np.dot(ivars, w.T) top = np.dot(fluxes*ivars, w.T) bad = bot == 0 cont = np.zeros(top.shape) cont[~bad] = top[~bad] / bot[~bad] return cont
[ "def", "_find_cont_gaussian_smooth", "(", "wl", ",", "fluxes", ",", "ivars", ",", "w", ")", ":", "print", "(", "\"Finding the continuum\"", ")", "bot", "=", "np", ".", "dot", "(", "ivars", ",", "w", ".", "T", ")", "top", "=", "np", ".", "dot", "(", "fluxes", "*", "ivars", ",", "w", ".", "T", ")", "bad", "=", "bot", "==", "0", "cont", "=", "np", ".", "zeros", "(", "top", ".", "shape", ")", "cont", "[", "~", "bad", "]", "=", "top", "[", "~", "bad", "]", "/", "bot", "[", "~", "bad", "]", "return", "cont" ]
Returns the weighted mean block of spectra Parameters ---------- wl: numpy ndarray wavelength vector flux: numpy ndarray block of flux values ivar: numpy ndarray block of ivar values L: float width of Gaussian used to assign weights Returns ------- smoothed_fluxes: numpy ndarray block of smoothed flux values, mean spectra
[ "Returns", "the", "weighted", "mean", "block", "of", "spectra" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L91-L116
annayqho/TheCannon
TheCannon/normalization.py
_cont_norm_gaussian_smooth
def _cont_norm_gaussian_smooth(dataset, L): """ Continuum normalize by dividing by a Gaussian-weighted smoothed spectrum Parameters ---------- dataset: Dataset the dataset to continuum normalize L: float the width of the Gaussian used for weighting Returns ------- dataset: Dataset updated dataset """ print("Gaussian smoothing the entire dataset...") w = gaussian_weight_matrix(dataset.wl, L) print("Gaussian smoothing the training set") cont = _find_cont_gaussian_smooth( dataset.wl, dataset.tr_flux, dataset.tr_ivar, w) norm_tr_flux, norm_tr_ivar = _cont_norm( dataset.tr_flux, dataset.tr_ivar, cont) print("Gaussian smoothing the test set") cont = _find_cont_gaussian_smooth( dataset.wl, dataset.test_flux, dataset.test_ivar, w) norm_test_flux, norm_test_ivar = _cont_norm( dataset.test_flux, dataset.test_ivar, cont) return norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar
python
def _cont_norm_gaussian_smooth(dataset, L): """ Continuum normalize by dividing by a Gaussian-weighted smoothed spectrum Parameters ---------- dataset: Dataset the dataset to continuum normalize L: float the width of the Gaussian used for weighting Returns ------- dataset: Dataset updated dataset """ print("Gaussian smoothing the entire dataset...") w = gaussian_weight_matrix(dataset.wl, L) print("Gaussian smoothing the training set") cont = _find_cont_gaussian_smooth( dataset.wl, dataset.tr_flux, dataset.tr_ivar, w) norm_tr_flux, norm_tr_ivar = _cont_norm( dataset.tr_flux, dataset.tr_ivar, cont) print("Gaussian smoothing the test set") cont = _find_cont_gaussian_smooth( dataset.wl, dataset.test_flux, dataset.test_ivar, w) norm_test_flux, norm_test_ivar = _cont_norm( dataset.test_flux, dataset.test_ivar, cont) return norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar
[ "def", "_cont_norm_gaussian_smooth", "(", "dataset", ",", "L", ")", ":", "print", "(", "\"Gaussian smoothing the entire dataset...\"", ")", "w", "=", "gaussian_weight_matrix", "(", "dataset", ".", "wl", ",", "L", ")", "print", "(", "\"Gaussian smoothing the training set\"", ")", "cont", "=", "_find_cont_gaussian_smooth", "(", "dataset", ".", "wl", ",", "dataset", ".", "tr_flux", ",", "dataset", ".", "tr_ivar", ",", "w", ")", "norm_tr_flux", ",", "norm_tr_ivar", "=", "_cont_norm", "(", "dataset", ".", "tr_flux", ",", "dataset", ".", "tr_ivar", ",", "cont", ")", "print", "(", "\"Gaussian smoothing the test set\"", ")", "cont", "=", "_find_cont_gaussian_smooth", "(", "dataset", ".", "wl", ",", "dataset", ".", "test_flux", ",", "dataset", ".", "test_ivar", ",", "w", ")", "norm_test_flux", ",", "norm_test_ivar", "=", "_cont_norm", "(", "dataset", ".", "test_flux", ",", "dataset", ".", "test_ivar", ",", "cont", ")", "return", "norm_tr_flux", ",", "norm_tr_ivar", ",", "norm_test_flux", ",", "norm_test_ivar" ]
Continuum normalize by dividing by a Gaussian-weighted smoothed spectrum Parameters ---------- dataset: Dataset the dataset to continuum normalize L: float the width of the Gaussian used for weighting Returns ------- dataset: Dataset updated dataset
[ "Continuum", "normalize", "by", "dividing", "by", "a", "Gaussian", "-", "weighted", "smoothed", "spectrum" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L119-L147
annayqho/TheCannon
TheCannon/normalization.py
_find_cont_fitfunc
def _find_cont_fitfunc(fluxes, ivars, contmask, deg, ffunc, n_proc=1): """ Fit a continuum to a continuum pixels in a segment of spectra Functional form can be either sinusoid or chebyshev, with specified degree Parameters ---------- fluxes: numpy ndarray of shape (nstars, npixels) training set or test set pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes contmask: numpy ndarray of length (npixels) boolean pixel mask, True indicates that pixel is continuum deg: int degree of fitting function ffunc: str type of fitting function, chebyshev or sinusoid Returns ------- cont: numpy ndarray of shape (nstars, npixels) the continuum, parallel to fluxes """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] cont = np.zeros(fluxes.shape) if n_proc == 1: for jj in range(nstars): flux = fluxes[jj,:] ivar = ivars[jj,:] pix = np.arange(0, npixels) y = flux[contmask] x = pix[contmask] yivar = ivar[contmask] yivar[yivar == 0] = SMALL**2 if ffunc=="sinusoid": p0 = np.ones(deg*2) # one for cos, one for sin L = max(x)-min(x) pcont_func = _partial_func(_sinusoid, L=L, y=flux) popt, pcov = opt.curve_fit(pcont_func, x, y, p0=p0, sigma=1./np.sqrt(yivar)) elif ffunc=="chebyshev": fit = np.polynomial.chebyshev.Chebyshev.fit(x=x,y=y,w=yivar,deg=deg) for element in pix: if ffunc=="sinusoid": cont[jj,element] = _sinusoid(element, popt, L=L, y=flux) elif ffunc=="chebyshev": cont[jj,element] = fit(element) else: # start mp.Pool pool = mp.Pool(processes=n_proc) mp_results = [] for i in xrange(nstars): mp_results.append(pool.apply_async(\ _find_cont_fitfunc, (fluxes[i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), contmask[:]), {'deg':deg, 'ffunc':ffunc})) # close mp.Pool pool.close() pool.join() cont = np.array([mp_results[i].get().flatten() for i in xrange(nstars)]) return cont
python
def _find_cont_fitfunc(fluxes, ivars, contmask, deg, ffunc, n_proc=1): """ Fit a continuum to a continuum pixels in a segment of spectra Functional form can be either sinusoid or chebyshev, with specified degree Parameters ---------- fluxes: numpy ndarray of shape (nstars, npixels) training set or test set pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes contmask: numpy ndarray of length (npixels) boolean pixel mask, True indicates that pixel is continuum deg: int degree of fitting function ffunc: str type of fitting function, chebyshev or sinusoid Returns ------- cont: numpy ndarray of shape (nstars, npixels) the continuum, parallel to fluxes """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] cont = np.zeros(fluxes.shape) if n_proc == 1: for jj in range(nstars): flux = fluxes[jj,:] ivar = ivars[jj,:] pix = np.arange(0, npixels) y = flux[contmask] x = pix[contmask] yivar = ivar[contmask] yivar[yivar == 0] = SMALL**2 if ffunc=="sinusoid": p0 = np.ones(deg*2) # one for cos, one for sin L = max(x)-min(x) pcont_func = _partial_func(_sinusoid, L=L, y=flux) popt, pcov = opt.curve_fit(pcont_func, x, y, p0=p0, sigma=1./np.sqrt(yivar)) elif ffunc=="chebyshev": fit = np.polynomial.chebyshev.Chebyshev.fit(x=x,y=y,w=yivar,deg=deg) for element in pix: if ffunc=="sinusoid": cont[jj,element] = _sinusoid(element, popt, L=L, y=flux) elif ffunc=="chebyshev": cont[jj,element] = fit(element) else: # start mp.Pool pool = mp.Pool(processes=n_proc) mp_results = [] for i in xrange(nstars): mp_results.append(pool.apply_async(\ _find_cont_fitfunc, (fluxes[i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), contmask[:]), {'deg':deg, 'ffunc':ffunc})) # close mp.Pool pool.close() pool.join() cont = np.array([mp_results[i].get().flatten() for i in xrange(nstars)]) return cont
[ "def", "_find_cont_fitfunc", "(", "fluxes", ",", "ivars", ",", "contmask", ",", "deg", ",", "ffunc", ",", "n_proc", "=", "1", ")", ":", "nstars", "=", "fluxes", ".", "shape", "[", "0", "]", "npixels", "=", "fluxes", ".", "shape", "[", "1", "]", "cont", "=", "np", ".", "zeros", "(", "fluxes", ".", "shape", ")", "if", "n_proc", "==", "1", ":", "for", "jj", "in", "range", "(", "nstars", ")", ":", "flux", "=", "fluxes", "[", "jj", ",", ":", "]", "ivar", "=", "ivars", "[", "jj", ",", ":", "]", "pix", "=", "np", ".", "arange", "(", "0", ",", "npixels", ")", "y", "=", "flux", "[", "contmask", "]", "x", "=", "pix", "[", "contmask", "]", "yivar", "=", "ivar", "[", "contmask", "]", "yivar", "[", "yivar", "==", "0", "]", "=", "SMALL", "**", "2", "if", "ffunc", "==", "\"sinusoid\"", ":", "p0", "=", "np", ".", "ones", "(", "deg", "*", "2", ")", "# one for cos, one for sin", "L", "=", "max", "(", "x", ")", "-", "min", "(", "x", ")", "pcont_func", "=", "_partial_func", "(", "_sinusoid", ",", "L", "=", "L", ",", "y", "=", "flux", ")", "popt", ",", "pcov", "=", "opt", ".", "curve_fit", "(", "pcont_func", ",", "x", ",", "y", ",", "p0", "=", "p0", ",", "sigma", "=", "1.", "/", "np", ".", "sqrt", "(", "yivar", ")", ")", "elif", "ffunc", "==", "\"chebyshev\"", ":", "fit", "=", "np", ".", "polynomial", ".", "chebyshev", ".", "Chebyshev", ".", "fit", "(", "x", "=", "x", ",", "y", "=", "y", ",", "w", "=", "yivar", ",", "deg", "=", "deg", ")", "for", "element", "in", "pix", ":", "if", "ffunc", "==", "\"sinusoid\"", ":", "cont", "[", "jj", ",", "element", "]", "=", "_sinusoid", "(", "element", ",", "popt", ",", "L", "=", "L", ",", "y", "=", "flux", ")", "elif", "ffunc", "==", "\"chebyshev\"", ":", "cont", "[", "jj", ",", "element", "]", "=", "fit", "(", "element", ")", "else", ":", "# start mp.Pool", "pool", "=", "mp", ".", "Pool", "(", "processes", "=", "n_proc", ")", "mp_results", "=", "[", "]", "for", "i", "in", "xrange", "(", "nstars", ")", ":", "mp_results", ".", "append", "(", "pool", ".", "apply_async", "(", "_find_cont_fitfunc", ",", "(", "fluxes", "[", "i", ",", ":", "]", ".", "reshape", "(", "(", "1", ",", "-", "1", ")", ")", ",", "ivars", "[", "i", ",", ":", "]", ".", "reshape", "(", "(", "1", ",", "-", "1", ")", ")", ",", "contmask", "[", ":", "]", ")", ",", "{", "'deg'", ":", "deg", ",", "'ffunc'", ":", "ffunc", "}", ")", ")", "# close mp.Pool", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "cont", "=", "np", ".", "array", "(", "[", "mp_results", "[", "i", "]", ".", "get", "(", ")", ".", "flatten", "(", ")", "for", "i", "in", "xrange", "(", "nstars", ")", "]", ")", "return", "cont" ]
Fit a continuum to a continuum pixels in a segment of spectra Functional form can be either sinusoid or chebyshev, with specified degree Parameters ---------- fluxes: numpy ndarray of shape (nstars, npixels) training set or test set pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes contmask: numpy ndarray of length (npixels) boolean pixel mask, True indicates that pixel is continuum deg: int degree of fitting function ffunc: str type of fitting function, chebyshev or sinusoid Returns ------- cont: numpy ndarray of shape (nstars, npixels) the continuum, parallel to fluxes
[ "Fit", "a", "continuum", "to", "a", "continuum", "pixels", "in", "a", "segment", "of", "spectra" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L150-L220
annayqho/TheCannon
TheCannon/normalization.py
_find_cont_fitfunc_regions
def _find_cont_fitfunc_regions(fluxes, ivars, contmask, deg, ranges, ffunc, n_proc=1): """ Run fit_cont, dealing with spectrum in regions or chunks This is useful if a spectrum has gaps. Parameters ---------- fluxes: ndarray of shape (nstars, npixels) training set or test set pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes contmask: numpy ndarray of length (npixels) boolean pixel mask, True indicates that pixel is continuum deg: int degree of fitting function ffunc: str type of fitting function, chebyshev or sinusoid Returns ------- cont: numpy ndarray of shape (nstars, npixels) the continuum, parallel to fluxes """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] cont = np.zeros(fluxes.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] if ffunc=="chebyshev": output = _find_cont_fitfunc(fluxes[:,start:stop], ivars[:,start:stop], contmask[start:stop], deg=deg, ffunc="chebyshev", n_proc=n_proc) elif ffunc=="sinusoid": output = _find_cont_fitfunc(fluxes[:,start:stop], ivars[:,start:stop], contmask[start:stop], deg=deg, ffunc="sinusoid", n_proc=n_proc) cont[:, start:stop] = output return cont
python
def _find_cont_fitfunc_regions(fluxes, ivars, contmask, deg, ranges, ffunc, n_proc=1): """ Run fit_cont, dealing with spectrum in regions or chunks This is useful if a spectrum has gaps. Parameters ---------- fluxes: ndarray of shape (nstars, npixels) training set or test set pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes contmask: numpy ndarray of length (npixels) boolean pixel mask, True indicates that pixel is continuum deg: int degree of fitting function ffunc: str type of fitting function, chebyshev or sinusoid Returns ------- cont: numpy ndarray of shape (nstars, npixels) the continuum, parallel to fluxes """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] cont = np.zeros(fluxes.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] if ffunc=="chebyshev": output = _find_cont_fitfunc(fluxes[:,start:stop], ivars[:,start:stop], contmask[start:stop], deg=deg, ffunc="chebyshev", n_proc=n_proc) elif ffunc=="sinusoid": output = _find_cont_fitfunc(fluxes[:,start:stop], ivars[:,start:stop], contmask[start:stop], deg=deg, ffunc="sinusoid", n_proc=n_proc) cont[:, start:stop] = output return cont
[ "def", "_find_cont_fitfunc_regions", "(", "fluxes", ",", "ivars", ",", "contmask", ",", "deg", ",", "ranges", ",", "ffunc", ",", "n_proc", "=", "1", ")", ":", "nstars", "=", "fluxes", ".", "shape", "[", "0", "]", "npixels", "=", "fluxes", ".", "shape", "[", "1", "]", "cont", "=", "np", ".", "zeros", "(", "fluxes", ".", "shape", ")", "for", "chunk", "in", "ranges", ":", "start", "=", "chunk", "[", "0", "]", "stop", "=", "chunk", "[", "1", "]", "if", "ffunc", "==", "\"chebyshev\"", ":", "output", "=", "_find_cont_fitfunc", "(", "fluxes", "[", ":", ",", "start", ":", "stop", "]", ",", "ivars", "[", ":", ",", "start", ":", "stop", "]", ",", "contmask", "[", "start", ":", "stop", "]", ",", "deg", "=", "deg", ",", "ffunc", "=", "\"chebyshev\"", ",", "n_proc", "=", "n_proc", ")", "elif", "ffunc", "==", "\"sinusoid\"", ":", "output", "=", "_find_cont_fitfunc", "(", "fluxes", "[", ":", ",", "start", ":", "stop", "]", ",", "ivars", "[", ":", ",", "start", ":", "stop", "]", ",", "contmask", "[", "start", ":", "stop", "]", ",", "deg", "=", "deg", ",", "ffunc", "=", "\"sinusoid\"", ",", "n_proc", "=", "n_proc", ")", "cont", "[", ":", ",", "start", ":", "stop", "]", "=", "output", "return", "cont" ]
Run fit_cont, dealing with spectrum in regions or chunks This is useful if a spectrum has gaps. Parameters ---------- fluxes: ndarray of shape (nstars, npixels) training set or test set pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes contmask: numpy ndarray of length (npixels) boolean pixel mask, True indicates that pixel is continuum deg: int degree of fitting function ffunc: str type of fitting function, chebyshev or sinusoid Returns ------- cont: numpy ndarray of shape (nstars, npixels) the continuum, parallel to fluxes
[ "Run", "fit_cont", "dealing", "with", "spectrum", "in", "regions", "or", "chunks" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L223-L271
annayqho/TheCannon
TheCannon/normalization.py
_find_cont_running_quantile
def _find_cont_running_quantile(wl, fluxes, ivars, q, delta_lambda, verbose=False): """ Perform continuum normalization using a running quantile Parameters ---------- wl: numpy ndarray wavelength vector fluxes: numpy ndarray of shape (nstars, npixels) pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes q: float the desired quantile cut delta_lambda: int the number of pixels over which the median is calculated Output ------ norm_fluxes: numpy ndarray of shape (nstars, npixels) normalized pixel intensities norm_ivars: numpy ndarray of shape (nstars, npixels) rescaled pixel invariances """ cont = np.zeros(fluxes.shape) nstars = fluxes.shape[0] for jj in range(nstars): if verbose: print("cont_norm_q(): working on star [%s/%s]..." % (jj+1, nstars)) flux = fluxes[jj,:] ivar = ivars[jj,:] for ll, lam in enumerate(wl): indx = (np.where(abs(wl-lam) < delta_lambda))[0] flux_cut = flux[indx] ivar_cut = ivar[indx] cont[jj, ll] = _weighted_median(flux_cut, ivar_cut, q) return cont
python
def _find_cont_running_quantile(wl, fluxes, ivars, q, delta_lambda, verbose=False): """ Perform continuum normalization using a running quantile Parameters ---------- wl: numpy ndarray wavelength vector fluxes: numpy ndarray of shape (nstars, npixels) pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes q: float the desired quantile cut delta_lambda: int the number of pixels over which the median is calculated Output ------ norm_fluxes: numpy ndarray of shape (nstars, npixels) normalized pixel intensities norm_ivars: numpy ndarray of shape (nstars, npixels) rescaled pixel invariances """ cont = np.zeros(fluxes.shape) nstars = fluxes.shape[0] for jj in range(nstars): if verbose: print("cont_norm_q(): working on star [%s/%s]..." % (jj+1, nstars)) flux = fluxes[jj,:] ivar = ivars[jj,:] for ll, lam in enumerate(wl): indx = (np.where(abs(wl-lam) < delta_lambda))[0] flux_cut = flux[indx] ivar_cut = ivar[indx] cont[jj, ll] = _weighted_median(flux_cut, ivar_cut, q) return cont
[ "def", "_find_cont_running_quantile", "(", "wl", ",", "fluxes", ",", "ivars", ",", "q", ",", "delta_lambda", ",", "verbose", "=", "False", ")", ":", "cont", "=", "np", ".", "zeros", "(", "fluxes", ".", "shape", ")", "nstars", "=", "fluxes", ".", "shape", "[", "0", "]", "for", "jj", "in", "range", "(", "nstars", ")", ":", "if", "verbose", ":", "print", "(", "\"cont_norm_q(): working on star [%s/%s]...\"", "%", "(", "jj", "+", "1", ",", "nstars", ")", ")", "flux", "=", "fluxes", "[", "jj", ",", ":", "]", "ivar", "=", "ivars", "[", "jj", ",", ":", "]", "for", "ll", ",", "lam", "in", "enumerate", "(", "wl", ")", ":", "indx", "=", "(", "np", ".", "where", "(", "abs", "(", "wl", "-", "lam", ")", "<", "delta_lambda", ")", ")", "[", "0", "]", "flux_cut", "=", "flux", "[", "indx", "]", "ivar_cut", "=", "ivar", "[", "indx", "]", "cont", "[", "jj", ",", "ll", "]", "=", "_weighted_median", "(", "flux_cut", ",", "ivar_cut", ",", "q", ")", "return", "cont" ]
Perform continuum normalization using a running quantile Parameters ---------- wl: numpy ndarray wavelength vector fluxes: numpy ndarray of shape (nstars, npixels) pixel intensities ivars: numpy ndarray of shape (nstars, npixels) inverse variances, parallel to fluxes q: float the desired quantile cut delta_lambda: int the number of pixels over which the median is calculated Output ------ norm_fluxes: numpy ndarray of shape (nstars, npixels) normalized pixel intensities norm_ivars: numpy ndarray of shape (nstars, npixels) rescaled pixel invariances
[ "Perform", "continuum", "normalization", "using", "a", "running", "quantile" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L274-L310
annayqho/TheCannon
TheCannon/normalization.py
_cont_norm_running_quantile_mp
def _cont_norm_running_quantile_mp(wl, fluxes, ivars, q, delta_lambda, n_proc=2, verbose=False): """ The same as _cont_norm_running_quantile() above, but using multi-processing. Bo Zhang (NAOC) """ nStar = fluxes.shape[0] # start mp.Pool mp_results = [] pool = mp.Pool(processes=n_proc) for i in xrange(nStar): mp_results.append(pool.apply_async(\ _find_cont_running_quantile, (wl, fluxes[i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), q, delta_lambda), {'verbose': False})) if verbose: print('@Bo Zhang: continuum normalizing star [%d/%d] ...'\ % (i + 1, nStar)) # close mp.Pool pool.close() pool.join() # reshape results --> cont cont = np.zeros_like(fluxes) for i in xrange(nStar): cont[i, :] = mp_results[i].get() #.flatten() norm_fluxes = np.ones(fluxes.shape) norm_fluxes[cont!=0] = fluxes[cont!=0] / cont[cont!=0] norm_ivars = cont**2 * ivars print('@Bo Zhang: continuum normalization finished!') return norm_fluxes, norm_ivars
python
def _cont_norm_running_quantile_mp(wl, fluxes, ivars, q, delta_lambda, n_proc=2, verbose=False): """ The same as _cont_norm_running_quantile() above, but using multi-processing. Bo Zhang (NAOC) """ nStar = fluxes.shape[0] # start mp.Pool mp_results = [] pool = mp.Pool(processes=n_proc) for i in xrange(nStar): mp_results.append(pool.apply_async(\ _find_cont_running_quantile, (wl, fluxes[i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), q, delta_lambda), {'verbose': False})) if verbose: print('@Bo Zhang: continuum normalizing star [%d/%d] ...'\ % (i + 1, nStar)) # close mp.Pool pool.close() pool.join() # reshape results --> cont cont = np.zeros_like(fluxes) for i in xrange(nStar): cont[i, :] = mp_results[i].get() #.flatten() norm_fluxes = np.ones(fluxes.shape) norm_fluxes[cont!=0] = fluxes[cont!=0] / cont[cont!=0] norm_ivars = cont**2 * ivars print('@Bo Zhang: continuum normalization finished!') return norm_fluxes, norm_ivars
[ "def", "_cont_norm_running_quantile_mp", "(", "wl", ",", "fluxes", ",", "ivars", ",", "q", ",", "delta_lambda", ",", "n_proc", "=", "2", ",", "verbose", "=", "False", ")", ":", "nStar", "=", "fluxes", ".", "shape", "[", "0", "]", "# start mp.Pool", "mp_results", "=", "[", "]", "pool", "=", "mp", ".", "Pool", "(", "processes", "=", "n_proc", ")", "for", "i", "in", "xrange", "(", "nStar", ")", ":", "mp_results", ".", "append", "(", "pool", ".", "apply_async", "(", "_find_cont_running_quantile", ",", "(", "wl", ",", "fluxes", "[", "i", ",", ":", "]", ".", "reshape", "(", "(", "1", ",", "-", "1", ")", ")", ",", "ivars", "[", "i", ",", ":", "]", ".", "reshape", "(", "(", "1", ",", "-", "1", ")", ")", ",", "q", ",", "delta_lambda", ")", ",", "{", "'verbose'", ":", "False", "}", ")", ")", "if", "verbose", ":", "print", "(", "'@Bo Zhang: continuum normalizing star [%d/%d] ...'", "%", "(", "i", "+", "1", ",", "nStar", ")", ")", "# close mp.Pool", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "# reshape results --> cont", "cont", "=", "np", ".", "zeros_like", "(", "fluxes", ")", "for", "i", "in", "xrange", "(", "nStar", ")", ":", "cont", "[", "i", ",", ":", "]", "=", "mp_results", "[", "i", "]", ".", "get", "(", ")", "#.flatten()", "norm_fluxes", "=", "np", ".", "ones", "(", "fluxes", ".", "shape", ")", "norm_fluxes", "[", "cont", "!=", "0", "]", "=", "fluxes", "[", "cont", "!=", "0", "]", "/", "cont", "[", "cont", "!=", "0", "]", "norm_ivars", "=", "cont", "**", "2", "*", "ivars", "print", "(", "'@Bo Zhang: continuum normalization finished!'", ")", "return", "norm_fluxes", ",", "norm_ivars" ]
The same as _cont_norm_running_quantile() above, but using multi-processing. Bo Zhang (NAOC)
[ "The", "same", "as", "_cont_norm_running_quantile", "()", "above", "but", "using", "multi", "-", "processing", "." ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L337-L371
annayqho/TheCannon
TheCannon/normalization.py
_cont_norm_running_quantile_regions
def _cont_norm_running_quantile_regions(wl, fluxes, ivars, q, delta_lambda, ranges, verbose=True): """ Perform continuum normalization using running quantile, for spectrum that comes in chunks """ print("contnorm.py: continuum norm using running quantile") print("Taking spectra in %s chunks" % len(ranges)) nstars = fluxes.shape[0] norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] output = _cont_norm_running_quantile( wl[start:stop], fluxes[:,start:stop], ivars[:,start:stop], q, delta_lambda) norm_fluxes[:,start:stop] = output[0] norm_ivars[:,start:stop] = output[1] return norm_fluxes, norm_ivars
python
def _cont_norm_running_quantile_regions(wl, fluxes, ivars, q, delta_lambda, ranges, verbose=True): """ Perform continuum normalization using running quantile, for spectrum that comes in chunks """ print("contnorm.py: continuum norm using running quantile") print("Taking spectra in %s chunks" % len(ranges)) nstars = fluxes.shape[0] norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] output = _cont_norm_running_quantile( wl[start:stop], fluxes[:,start:stop], ivars[:,start:stop], q, delta_lambda) norm_fluxes[:,start:stop] = output[0] norm_ivars[:,start:stop] = output[1] return norm_fluxes, norm_ivars
[ "def", "_cont_norm_running_quantile_regions", "(", "wl", ",", "fluxes", ",", "ivars", ",", "q", ",", "delta_lambda", ",", "ranges", ",", "verbose", "=", "True", ")", ":", "print", "(", "\"contnorm.py: continuum norm using running quantile\"", ")", "print", "(", "\"Taking spectra in %s chunks\"", "%", "len", "(", "ranges", ")", ")", "nstars", "=", "fluxes", ".", "shape", "[", "0", "]", "norm_fluxes", "=", "np", ".", "zeros", "(", "fluxes", ".", "shape", ")", "norm_ivars", "=", "np", ".", "zeros", "(", "ivars", ".", "shape", ")", "for", "chunk", "in", "ranges", ":", "start", "=", "chunk", "[", "0", "]", "stop", "=", "chunk", "[", "1", "]", "output", "=", "_cont_norm_running_quantile", "(", "wl", "[", "start", ":", "stop", "]", ",", "fluxes", "[", ":", ",", "start", ":", "stop", "]", ",", "ivars", "[", ":", ",", "start", ":", "stop", "]", ",", "q", ",", "delta_lambda", ")", "norm_fluxes", "[", ":", ",", "start", ":", "stop", "]", "=", "output", "[", "0", "]", "norm_ivars", "[", ":", ",", "start", ":", "stop", "]", "=", "output", "[", "1", "]", "return", "norm_fluxes", ",", "norm_ivars" ]
Perform continuum normalization using running quantile, for spectrum that comes in chunks
[ "Perform", "continuum", "normalization", "using", "running", "quantile", "for", "spectrum", "that", "comes", "in", "chunks" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L380-L398
annayqho/TheCannon
TheCannon/normalization.py
_cont_norm_running_quantile_regions_mp
def _cont_norm_running_quantile_regions_mp(wl, fluxes, ivars, q, delta_lambda, ranges, n_proc=2, verbose=False): """ Perform continuum normalization using running quantile, for spectrum that comes in chunks. The same as _cont_norm_running_quantile_regions(), but using multi-processing. Bo Zhang (NAOC) """ print("contnorm.py: continuum norm using running quantile") print("Taking spectra in %s chunks" % len(ranges)) # nstars = fluxes.shape[0] nchunks = len(ranges) norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for i in xrange(nchunks): chunk = ranges[i, :] start = chunk[0] stop = chunk[1] if verbose: print('@Bo Zhang: Going to normalize Chunk [%d/%d], pixel:[%d, %d] ...' % (i+1, nchunks, start, stop)) output = _cont_norm_running_quantile_mp( wl[start:stop], fluxes[:, start:stop], ivars[:, start:stop], q, delta_lambda, n_proc=n_proc, verbose=verbose) norm_fluxes[:, start:stop] = output[0] norm_ivars[:, start:stop] = output[1] return norm_fluxes, norm_ivars
python
def _cont_norm_running_quantile_regions_mp(wl, fluxes, ivars, q, delta_lambda, ranges, n_proc=2, verbose=False): """ Perform continuum normalization using running quantile, for spectrum that comes in chunks. The same as _cont_norm_running_quantile_regions(), but using multi-processing. Bo Zhang (NAOC) """ print("contnorm.py: continuum norm using running quantile") print("Taking spectra in %s chunks" % len(ranges)) # nstars = fluxes.shape[0] nchunks = len(ranges) norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for i in xrange(nchunks): chunk = ranges[i, :] start = chunk[0] stop = chunk[1] if verbose: print('@Bo Zhang: Going to normalize Chunk [%d/%d], pixel:[%d, %d] ...' % (i+1, nchunks, start, stop)) output = _cont_norm_running_quantile_mp( wl[start:stop], fluxes[:, start:stop], ivars[:, start:stop], q, delta_lambda, n_proc=n_proc, verbose=verbose) norm_fluxes[:, start:stop] = output[0] norm_ivars[:, start:stop] = output[1] return norm_fluxes, norm_ivars
[ "def", "_cont_norm_running_quantile_regions_mp", "(", "wl", ",", "fluxes", ",", "ivars", ",", "q", ",", "delta_lambda", ",", "ranges", ",", "n_proc", "=", "2", ",", "verbose", "=", "False", ")", ":", "print", "(", "\"contnorm.py: continuum norm using running quantile\"", ")", "print", "(", "\"Taking spectra in %s chunks\"", "%", "len", "(", "ranges", ")", ")", "# nstars = fluxes.shape[0]", "nchunks", "=", "len", "(", "ranges", ")", "norm_fluxes", "=", "np", ".", "zeros", "(", "fluxes", ".", "shape", ")", "norm_ivars", "=", "np", ".", "zeros", "(", "ivars", ".", "shape", ")", "for", "i", "in", "xrange", "(", "nchunks", ")", ":", "chunk", "=", "ranges", "[", "i", ",", ":", "]", "start", "=", "chunk", "[", "0", "]", "stop", "=", "chunk", "[", "1", "]", "if", "verbose", ":", "print", "(", "'@Bo Zhang: Going to normalize Chunk [%d/%d], pixel:[%d, %d] ...'", "%", "(", "i", "+", "1", ",", "nchunks", ",", "start", ",", "stop", ")", ")", "output", "=", "_cont_norm_running_quantile_mp", "(", "wl", "[", "start", ":", "stop", "]", ",", "fluxes", "[", ":", ",", "start", ":", "stop", "]", ",", "ivars", "[", ":", ",", "start", ":", "stop", "]", ",", "q", ",", "delta_lambda", ",", "n_proc", "=", "n_proc", ",", "verbose", "=", "verbose", ")", "norm_fluxes", "[", ":", ",", "start", ":", "stop", "]", "=", "output", "[", "0", "]", "norm_ivars", "[", ":", ",", "start", ":", "stop", "]", "=", "output", "[", "1", "]", "return", "norm_fluxes", ",", "norm_ivars" ]
Perform continuum normalization using running quantile, for spectrum that comes in chunks. The same as _cont_norm_running_quantile_regions(), but using multi-processing. Bo Zhang (NAOC)
[ "Perform", "continuum", "normalization", "using", "running", "quantile", "for", "spectrum", "that", "comes", "in", "chunks", "." ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L401-L431
annayqho/TheCannon
TheCannon/normalization.py
_cont_norm
def _cont_norm(fluxes, ivars, cont): """ Continuum-normalize a continuous segment of spectra. Parameters ---------- fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances, parallel to fluxes contmask: boolean mask True indicates that pixel is continuum Returns ------- norm_fluxes: numpy ndarray normalized pixel intensities norm_ivars: numpy ndarray rescaled inverse variances """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] norm_fluxes = np.ones(fluxes.shape) norm_ivars = np.zeros(ivars.shape) bad = cont == 0. norm_fluxes = np.ones(fluxes.shape) norm_fluxes[~bad] = fluxes[~bad] / cont[~bad] norm_ivars = cont**2 * ivars return norm_fluxes, norm_ivars
python
def _cont_norm(fluxes, ivars, cont): """ Continuum-normalize a continuous segment of spectra. Parameters ---------- fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances, parallel to fluxes contmask: boolean mask True indicates that pixel is continuum Returns ------- norm_fluxes: numpy ndarray normalized pixel intensities norm_ivars: numpy ndarray rescaled inverse variances """ nstars = fluxes.shape[0] npixels = fluxes.shape[1] norm_fluxes = np.ones(fluxes.shape) norm_ivars = np.zeros(ivars.shape) bad = cont == 0. norm_fluxes = np.ones(fluxes.shape) norm_fluxes[~bad] = fluxes[~bad] / cont[~bad] norm_ivars = cont**2 * ivars return norm_fluxes, norm_ivars
[ "def", "_cont_norm", "(", "fluxes", ",", "ivars", ",", "cont", ")", ":", "nstars", "=", "fluxes", ".", "shape", "[", "0", "]", "npixels", "=", "fluxes", ".", "shape", "[", "1", "]", "norm_fluxes", "=", "np", ".", "ones", "(", "fluxes", ".", "shape", ")", "norm_ivars", "=", "np", ".", "zeros", "(", "ivars", ".", "shape", ")", "bad", "=", "cont", "==", "0.", "norm_fluxes", "=", "np", ".", "ones", "(", "fluxes", ".", "shape", ")", "norm_fluxes", "[", "~", "bad", "]", "=", "fluxes", "[", "~", "bad", "]", "/", "cont", "[", "~", "bad", "]", "norm_ivars", "=", "cont", "**", "2", "*", "ivars", "return", "norm_fluxes", ",", "norm_ivars" ]
Continuum-normalize a continuous segment of spectra. Parameters ---------- fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances, parallel to fluxes contmask: boolean mask True indicates that pixel is continuum Returns ------- norm_fluxes: numpy ndarray normalized pixel intensities norm_ivars: numpy ndarray rescaled inverse variances
[ "Continuum", "-", "normalize", "a", "continuous", "segment", "of", "spectra", "." ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L434-L461
annayqho/TheCannon
TheCannon/normalization.py
_cont_norm_regions
def _cont_norm_regions(fluxes, ivars, cont, ranges): """ Perform continuum normalization for spectra in chunks Useful for spectra that have gaps Parameters --------- fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances, parallel to fluxes cont: numpy ndarray the continuum ranges: list or np ndarray the chunks that the spectrum should be split into Returns ------- norm_fluxes: numpy ndarray normalized pixel intensities norm_ivars: numpy ndarray rescaled inverse variances """ nstars = fluxes.shape[0] norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] output = _cont_norm(fluxes[:,start:stop], ivars[:,start:stop], cont[:,start:stop]) norm_fluxes[:,start:stop] = output[0] norm_ivars[:,start:stop] = output[1] for jj in range(nstars): bad = (norm_ivars[jj,:] == 0.) norm_fluxes[jj,:][bad] = 1. return norm_fluxes, norm_ivars
python
def _cont_norm_regions(fluxes, ivars, cont, ranges): """ Perform continuum normalization for spectra in chunks Useful for spectra that have gaps Parameters --------- fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances, parallel to fluxes cont: numpy ndarray the continuum ranges: list or np ndarray the chunks that the spectrum should be split into Returns ------- norm_fluxes: numpy ndarray normalized pixel intensities norm_ivars: numpy ndarray rescaled inverse variances """ nstars = fluxes.shape[0] norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] output = _cont_norm(fluxes[:,start:stop], ivars[:,start:stop], cont[:,start:stop]) norm_fluxes[:,start:stop] = output[0] norm_ivars[:,start:stop] = output[1] for jj in range(nstars): bad = (norm_ivars[jj,:] == 0.) norm_fluxes[jj,:][bad] = 1. return norm_fluxes, norm_ivars
[ "def", "_cont_norm_regions", "(", "fluxes", ",", "ivars", ",", "cont", ",", "ranges", ")", ":", "nstars", "=", "fluxes", ".", "shape", "[", "0", "]", "norm_fluxes", "=", "np", ".", "zeros", "(", "fluxes", ".", "shape", ")", "norm_ivars", "=", "np", ".", "zeros", "(", "ivars", ".", "shape", ")", "for", "chunk", "in", "ranges", ":", "start", "=", "chunk", "[", "0", "]", "stop", "=", "chunk", "[", "1", "]", "output", "=", "_cont_norm", "(", "fluxes", "[", ":", ",", "start", ":", "stop", "]", ",", "ivars", "[", ":", ",", "start", ":", "stop", "]", ",", "cont", "[", ":", ",", "start", ":", "stop", "]", ")", "norm_fluxes", "[", ":", ",", "start", ":", "stop", "]", "=", "output", "[", "0", "]", "norm_ivars", "[", ":", ",", "start", ":", "stop", "]", "=", "output", "[", "1", "]", "for", "jj", "in", "range", "(", "nstars", ")", ":", "bad", "=", "(", "norm_ivars", "[", "jj", ",", ":", "]", "==", "0.", ")", "norm_fluxes", "[", "jj", ",", ":", "]", "[", "bad", "]", "=", "1.", "return", "norm_fluxes", ",", "norm_ivars" ]
Perform continuum normalization for spectra in chunks Useful for spectra that have gaps Parameters --------- fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances, parallel to fluxes cont: numpy ndarray the continuum ranges: list or np ndarray the chunks that the spectrum should be split into Returns ------- norm_fluxes: numpy ndarray normalized pixel intensities norm_ivars: numpy ndarray rescaled inverse variances
[ "Perform", "continuum", "normalization", "for", "spectra", "in", "chunks" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/normalization.py#L464-L501
annayqho/TheCannon
TheCannon/model.py
CannonModel.train
def train(self, ds): """ Run training step: solve for best-fit spectral model """ if self.useErrors: self.coeffs, self.scatters, self.new_tr_labels, self.chisqs, self.pivots, self.scales = _train_model_new(ds) else: self.coeffs, self.scatters, self.chisqs, self.pivots, self.scales = _train_model(ds)
python
def train(self, ds): """ Run training step: solve for best-fit spectral model """ if self.useErrors: self.coeffs, self.scatters, self.new_tr_labels, self.chisqs, self.pivots, self.scales = _train_model_new(ds) else: self.coeffs, self.scatters, self.chisqs, self.pivots, self.scales = _train_model(ds)
[ "def", "train", "(", "self", ",", "ds", ")", ":", "if", "self", ".", "useErrors", ":", "self", ".", "coeffs", ",", "self", ".", "scatters", ",", "self", ".", "new_tr_labels", ",", "self", ".", "chisqs", ",", "self", ".", "pivots", ",", "self", ".", "scales", "=", "_train_model_new", "(", "ds", ")", "else", ":", "self", ".", "coeffs", ",", "self", ".", "scatters", ",", "self", ".", "chisqs", ",", "self", ".", "pivots", ",", "self", ".", "scales", "=", "_train_model", "(", "ds", ")" ]
Run training step: solve for best-fit spectral model
[ "Run", "training", "step", ":", "solve", "for", "best", "-", "fit", "spectral", "model" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/model.py#L36-L41
annayqho/TheCannon
TheCannon/model.py
CannonModel.infer_spectra
def infer_spectra(self, ds): """ After inferring labels for the test spectra, infer the model spectra and update the dataset model_spectra attribute. Parameters ---------- ds: Dataset object """ lvec_all = _get_lvec(ds.test_label_vals, self.pivots, self.scales, derivs=False) self.model_spectra = np.dot(lvec_all, self.coeffs.T)
python
def infer_spectra(self, ds): """ After inferring labels for the test spectra, infer the model spectra and update the dataset model_spectra attribute. Parameters ---------- ds: Dataset object """ lvec_all = _get_lvec(ds.test_label_vals, self.pivots, self.scales, derivs=False) self.model_spectra = np.dot(lvec_all, self.coeffs.T)
[ "def", "infer_spectra", "(", "self", ",", "ds", ")", ":", "lvec_all", "=", "_get_lvec", "(", "ds", ".", "test_label_vals", ",", "self", ".", "pivots", ",", "self", ".", "scales", ",", "derivs", "=", "False", ")", "self", ".", "model_spectra", "=", "np", ".", "dot", "(", "lvec_all", ",", "self", ".", "coeffs", ".", "T", ")" ]
After inferring labels for the test spectra, infer the model spectra and update the dataset model_spectra attribute. Parameters ---------- ds: Dataset object
[ "After", "inferring", "labels", "for", "the", "test", "spectra", "infer", "the", "model", "spectra", "and", "update", "the", "dataset", "model_spectra", "attribute", ".", "Parameters", "----------", "ds", ":", "Dataset", "object" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/model.py#L66-L77
annayqho/TheCannon
TheCannon/model.py
CannonModel.plot_contpix
def plot_contpix(self, x, y, contpix_x, contpix_y, figname): """ Plot baseline spec with continuum pix overlaid Parameters ---------- """ fig, axarr = plt.subplots(2, sharex=True) plt.xlabel(r"Wavelength $\lambda (\AA)$") plt.xlim(min(x), max(x)) ax = axarr[0] ax.step(x, y, where='mid', c='k', linewidth=0.3, label=r'$\theta_0$' + "= the leading fit coefficient") ax.scatter(contpix_x, contpix_y, s=1, color='r', label="continuum pixels") ax.legend(loc='lower right', prop={'family':'serif', 'size':'small'}) ax.set_title("Baseline Spectrum with Continuum Pixels") ax.set_ylabel(r'$\theta_0$') ax = axarr[1] ax.step(x, y, where='mid', c='k', linewidth=0.3, label=r'$\theta_0$' + "= the leading fit coefficient") ax.scatter(contpix_x, contpix_y, s=1, color='r', label="continuum pixels") ax.set_title("Baseline Spectrum with Continuum Pixels, Zoomed") ax.legend(loc='upper right', prop={'family':'serif', 'size':'small'}) ax.set_ylabel(r'$\theta_0$') ax.set_ylim(0.95, 1.05) print("Diagnostic plot: fitted 0th order spec w/ cont pix") print("Saved as %s.png" % (figname)) plt.savefig(figname) plt.close()
python
def plot_contpix(self, x, y, contpix_x, contpix_y, figname): """ Plot baseline spec with continuum pix overlaid Parameters ---------- """ fig, axarr = plt.subplots(2, sharex=True) plt.xlabel(r"Wavelength $\lambda (\AA)$") plt.xlim(min(x), max(x)) ax = axarr[0] ax.step(x, y, where='mid', c='k', linewidth=0.3, label=r'$\theta_0$' + "= the leading fit coefficient") ax.scatter(contpix_x, contpix_y, s=1, color='r', label="continuum pixels") ax.legend(loc='lower right', prop={'family':'serif', 'size':'small'}) ax.set_title("Baseline Spectrum with Continuum Pixels") ax.set_ylabel(r'$\theta_0$') ax = axarr[1] ax.step(x, y, where='mid', c='k', linewidth=0.3, label=r'$\theta_0$' + "= the leading fit coefficient") ax.scatter(contpix_x, contpix_y, s=1, color='r', label="continuum pixels") ax.set_title("Baseline Spectrum with Continuum Pixels, Zoomed") ax.legend(loc='upper right', prop={'family':'serif', 'size':'small'}) ax.set_ylabel(r'$\theta_0$') ax.set_ylim(0.95, 1.05) print("Diagnostic plot: fitted 0th order spec w/ cont pix") print("Saved as %s.png" % (figname)) plt.savefig(figname) plt.close()
[ "def", "plot_contpix", "(", "self", ",", "x", ",", "y", ",", "contpix_x", ",", "contpix_y", ",", "figname", ")", ":", "fig", ",", "axarr", "=", "plt", ".", "subplots", "(", "2", ",", "sharex", "=", "True", ")", "plt", ".", "xlabel", "(", "r\"Wavelength $\\lambda (\\AA)$\"", ")", "plt", ".", "xlim", "(", "min", "(", "x", ")", ",", "max", "(", "x", ")", ")", "ax", "=", "axarr", "[", "0", "]", "ax", ".", "step", "(", "x", ",", "y", ",", "where", "=", "'mid'", ",", "c", "=", "'k'", ",", "linewidth", "=", "0.3", ",", "label", "=", "r'$\\theta_0$'", "+", "\"= the leading fit coefficient\"", ")", "ax", ".", "scatter", "(", "contpix_x", ",", "contpix_y", ",", "s", "=", "1", ",", "color", "=", "'r'", ",", "label", "=", "\"continuum pixels\"", ")", "ax", ".", "legend", "(", "loc", "=", "'lower right'", ",", "prop", "=", "{", "'family'", ":", "'serif'", ",", "'size'", ":", "'small'", "}", ")", "ax", ".", "set_title", "(", "\"Baseline Spectrum with Continuum Pixels\"", ")", "ax", ".", "set_ylabel", "(", "r'$\\theta_0$'", ")", "ax", "=", "axarr", "[", "1", "]", "ax", ".", "step", "(", "x", ",", "y", ",", "where", "=", "'mid'", ",", "c", "=", "'k'", ",", "linewidth", "=", "0.3", ",", "label", "=", "r'$\\theta_0$'", "+", "\"= the leading fit coefficient\"", ")", "ax", ".", "scatter", "(", "contpix_x", ",", "contpix_y", ",", "s", "=", "1", ",", "color", "=", "'r'", ",", "label", "=", "\"continuum pixels\"", ")", "ax", ".", "set_title", "(", "\"Baseline Spectrum with Continuum Pixels, Zoomed\"", ")", "ax", ".", "legend", "(", "loc", "=", "'upper right'", ",", "prop", "=", "{", "'family'", ":", "'serif'", ",", "'size'", ":", "'small'", "}", ")", "ax", ".", "set_ylabel", "(", "r'$\\theta_0$'", ")", "ax", ".", "set_ylim", "(", "0.95", ",", "1.05", ")", "print", "(", "\"Diagnostic plot: fitted 0th order spec w/ cont pix\"", ")", "print", "(", "\"Saved as %s.png\"", "%", "(", "figname", ")", ")", "plt", ".", "savefig", "(", "figname", ")", "plt", ".", "close", "(", ")" ]
Plot baseline spec with continuum pix overlaid Parameters ----------
[ "Plot", "baseline", "spec", "with", "continuum", "pix", "overlaid" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/model.py#L80-L111
annayqho/TheCannon
TheCannon/model.py
CannonModel.diagnostics_contpix
def diagnostics_contpix(self, data, nchunks=10, fig = "baseline_spec_with_cont_pix"): """ Call plot_contpix once for each nth of the spectrum """ if data.contmask is None: print("No contmask set") else: coeffs_all = self.coeffs wl = data.wl baseline_spec = coeffs_all[:,0] contmask = data.contmask contpix_x = wl[contmask] contpix_y = baseline_spec[contmask] rem = len(wl)%nchunks wl_split = np.array(np.split(wl[0:len(wl)-rem],nchunks)) baseline_spec_split = np.array( np.split(baseline_spec[0:len(wl)-rem],nchunks)) nchunks = wl_split.shape[0] for i in range(nchunks): fig_chunk = fig + "_%s" %str(i) wl_chunk = wl_split[i,:] baseline_spec_chunk = baseline_spec_split[i,:] take = np.logical_and( contpix_x>wl_chunk[0], contpix_x<wl_chunk[-1]) self.plot_contpix( wl_chunk, baseline_spec_chunk, contpix_x[take], contpix_y[take], fig_chunk)
python
def diagnostics_contpix(self, data, nchunks=10, fig = "baseline_spec_with_cont_pix"): """ Call plot_contpix once for each nth of the spectrum """ if data.contmask is None: print("No contmask set") else: coeffs_all = self.coeffs wl = data.wl baseline_spec = coeffs_all[:,0] contmask = data.contmask contpix_x = wl[contmask] contpix_y = baseline_spec[contmask] rem = len(wl)%nchunks wl_split = np.array(np.split(wl[0:len(wl)-rem],nchunks)) baseline_spec_split = np.array( np.split(baseline_spec[0:len(wl)-rem],nchunks)) nchunks = wl_split.shape[0] for i in range(nchunks): fig_chunk = fig + "_%s" %str(i) wl_chunk = wl_split[i,:] baseline_spec_chunk = baseline_spec_split[i,:] take = np.logical_and( contpix_x>wl_chunk[0], contpix_x<wl_chunk[-1]) self.plot_contpix( wl_chunk, baseline_spec_chunk, contpix_x[take], contpix_y[take], fig_chunk)
[ "def", "diagnostics_contpix", "(", "self", ",", "data", ",", "nchunks", "=", "10", ",", "fig", "=", "\"baseline_spec_with_cont_pix\"", ")", ":", "if", "data", ".", "contmask", "is", "None", ":", "print", "(", "\"No contmask set\"", ")", "else", ":", "coeffs_all", "=", "self", ".", "coeffs", "wl", "=", "data", ".", "wl", "baseline_spec", "=", "coeffs_all", "[", ":", ",", "0", "]", "contmask", "=", "data", ".", "contmask", "contpix_x", "=", "wl", "[", "contmask", "]", "contpix_y", "=", "baseline_spec", "[", "contmask", "]", "rem", "=", "len", "(", "wl", ")", "%", "nchunks", "wl_split", "=", "np", ".", "array", "(", "np", ".", "split", "(", "wl", "[", "0", ":", "len", "(", "wl", ")", "-", "rem", "]", ",", "nchunks", ")", ")", "baseline_spec_split", "=", "np", ".", "array", "(", "np", ".", "split", "(", "baseline_spec", "[", "0", ":", "len", "(", "wl", ")", "-", "rem", "]", ",", "nchunks", ")", ")", "nchunks", "=", "wl_split", ".", "shape", "[", "0", "]", "for", "i", "in", "range", "(", "nchunks", ")", ":", "fig_chunk", "=", "fig", "+", "\"_%s\"", "%", "str", "(", "i", ")", "wl_chunk", "=", "wl_split", "[", "i", ",", ":", "]", "baseline_spec_chunk", "=", "baseline_spec_split", "[", "i", ",", ":", "]", "take", "=", "np", ".", "logical_and", "(", "contpix_x", ">", "wl_chunk", "[", "0", "]", ",", "contpix_x", "<", "wl_chunk", "[", "-", "1", "]", ")", "self", ".", "plot_contpix", "(", "wl_chunk", ",", "baseline_spec_chunk", ",", "contpix_x", "[", "take", "]", ",", "contpix_y", "[", "take", "]", ",", "fig_chunk", ")" ]
Call plot_contpix once for each nth of the spectrum
[ "Call", "plot_contpix", "once", "for", "each", "nth", "of", "the", "spectrum" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/model.py#L114-L138
annayqho/TheCannon
TheCannon/model.py
CannonModel.diagnostics_plot_chisq
def diagnostics_plot_chisq(self, ds, figname = "modelfit_chisqs.png"): """ Produce a set of diagnostic plots for the model Parameters ---------- (optional) chisq_dist_plot_name: str Filename of output saved plot """ label_names = ds.get_plotting_labels() lams = ds.wl pivots = self.pivots npixels = len(lams) nlabels = len(pivots) chisqs = self.chisqs coeffs = self.coeffs scatters = self.scatters # Histogram of the chi squareds of ind. stars plt.hist(np.sum(chisqs, axis=0), color='lightblue', alpha=0.7, bins=int(np.sqrt(len(chisqs)))) dof = len(lams) - coeffs.shape[1] # for one star plt.axvline(x=dof, c='k', linewidth=2, label="DOF") plt.legend() plt.title("Distribution of " + r"$\chi^2$" + " of the Model Fit") plt.ylabel("Count") plt.xlabel(r"$\chi^2$" + " of Individual Star") print("Diagnostic plot: histogram of the red chi squareds of the fit") print("Saved as %s" %figname) plt.savefig(figname) plt.close()
python
def diagnostics_plot_chisq(self, ds, figname = "modelfit_chisqs.png"): """ Produce a set of diagnostic plots for the model Parameters ---------- (optional) chisq_dist_plot_name: str Filename of output saved plot """ label_names = ds.get_plotting_labels() lams = ds.wl pivots = self.pivots npixels = len(lams) nlabels = len(pivots) chisqs = self.chisqs coeffs = self.coeffs scatters = self.scatters # Histogram of the chi squareds of ind. stars plt.hist(np.sum(chisqs, axis=0), color='lightblue', alpha=0.7, bins=int(np.sqrt(len(chisqs)))) dof = len(lams) - coeffs.shape[1] # for one star plt.axvline(x=dof, c='k', linewidth=2, label="DOF") plt.legend() plt.title("Distribution of " + r"$\chi^2$" + " of the Model Fit") plt.ylabel("Count") plt.xlabel(r"$\chi^2$" + " of Individual Star") print("Diagnostic plot: histogram of the red chi squareds of the fit") print("Saved as %s" %figname) plt.savefig(figname) plt.close()
[ "def", "diagnostics_plot_chisq", "(", "self", ",", "ds", ",", "figname", "=", "\"modelfit_chisqs.png\"", ")", ":", "label_names", "=", "ds", ".", "get_plotting_labels", "(", ")", "lams", "=", "ds", ".", "wl", "pivots", "=", "self", ".", "pivots", "npixels", "=", "len", "(", "lams", ")", "nlabels", "=", "len", "(", "pivots", ")", "chisqs", "=", "self", ".", "chisqs", "coeffs", "=", "self", ".", "coeffs", "scatters", "=", "self", ".", "scatters", "# Histogram of the chi squareds of ind. stars", "plt", ".", "hist", "(", "np", ".", "sum", "(", "chisqs", ",", "axis", "=", "0", ")", ",", "color", "=", "'lightblue'", ",", "alpha", "=", "0.7", ",", "bins", "=", "int", "(", "np", ".", "sqrt", "(", "len", "(", "chisqs", ")", ")", ")", ")", "dof", "=", "len", "(", "lams", ")", "-", "coeffs", ".", "shape", "[", "1", "]", "# for one star", "plt", ".", "axvline", "(", "x", "=", "dof", ",", "c", "=", "'k'", ",", "linewidth", "=", "2", ",", "label", "=", "\"DOF\"", ")", "plt", ".", "legend", "(", ")", "plt", ".", "title", "(", "\"Distribution of \"", "+", "r\"$\\chi^2$\"", "+", "\" of the Model Fit\"", ")", "plt", ".", "ylabel", "(", "\"Count\"", ")", "plt", ".", "xlabel", "(", "r\"$\\chi^2$\"", "+", "\" of Individual Star\"", ")", "print", "(", "\"Diagnostic plot: histogram of the red chi squareds of the fit\"", ")", "print", "(", "\"Saved as %s\"", "%", "figname", ")", "plt", ".", "savefig", "(", "figname", ")", "plt", ".", "close", "(", ")" ]
Produce a set of diagnostic plots for the model Parameters ---------- (optional) chisq_dist_plot_name: str Filename of output saved plot
[ "Produce", "a", "set", "of", "diagnostic", "plots", "for", "the", "model" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/model.py#L213-L242
annayqho/TheCannon
code/lamost/mass_age/cn/calc_astroseismic_mass.py
calc_mass
def calc_mass(nu_max, delta_nu, teff): """ asteroseismic scaling relations """ NU_MAX = 3140.0 # microHz DELTA_NU = 135.03 # microHz TEFF = 5777.0 return (nu_max/NU_MAX)**3 * (delta_nu/DELTA_NU)**(-4) * (teff/TEFF)**1.5
python
def calc_mass(nu_max, delta_nu, teff): """ asteroseismic scaling relations """ NU_MAX = 3140.0 # microHz DELTA_NU = 135.03 # microHz TEFF = 5777.0 return (nu_max/NU_MAX)**3 * (delta_nu/DELTA_NU)**(-4) * (teff/TEFF)**1.5
[ "def", "calc_mass", "(", "nu_max", ",", "delta_nu", ",", "teff", ")", ":", "NU_MAX", "=", "3140.0", "# microHz", "DELTA_NU", "=", "135.03", "# microHz", "TEFF", "=", "5777.0", "return", "(", "nu_max", "/", "NU_MAX", ")", "**", "3", "*", "(", "delta_nu", "/", "DELTA_NU", ")", "**", "(", "-", "4", ")", "*", "(", "teff", "/", "TEFF", ")", "**", "1.5" ]
asteroseismic scaling relations
[ "asteroseismic", "scaling", "relations" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/mass_age/cn/calc_astroseismic_mass.py#L3-L8
annayqho/TheCannon
code/lamost/mass_age/mass_age_functions.py
calc_mass_2
def calc_mass_2(mh,cm,nm,teff,logg): """ Table A2 in Martig 2016 """ CplusN = calc_sum(mh,cm,nm) t = teff/4000. return (95.8689 - 10.4042*mh - 0.7266*mh**2 + 41.3642*cm - 5.3242*cm*mh - 46.7792*cm**2 + 15.0508*nm - 0.9342*nm*mh - 30.5159*nm*cm - 1.6083*nm**2 - 67.6093*CplusN + 7.0486*CplusN*mh + 133.5775*CplusN*cm + 38.9439*CplusN*nm - 88.9948*CplusN**2 - 144.1765*t + 5.1180*t*mh - 73.7690*t*cm - 15.2927*t*nm + 101.7482*t*CplusN + 27.7690*t**2 - 9.4246*logg + 1.5159*logg*mh + 16.0412*logg*cm + 1.3549*logg*nm - 18.6527*logg*CplusN + 28.8015*logg*t - 4.0982*logg**2)
python
def calc_mass_2(mh,cm,nm,teff,logg): """ Table A2 in Martig 2016 """ CplusN = calc_sum(mh,cm,nm) t = teff/4000. return (95.8689 - 10.4042*mh - 0.7266*mh**2 + 41.3642*cm - 5.3242*cm*mh - 46.7792*cm**2 + 15.0508*nm - 0.9342*nm*mh - 30.5159*nm*cm - 1.6083*nm**2 - 67.6093*CplusN + 7.0486*CplusN*mh + 133.5775*CplusN*cm + 38.9439*CplusN*nm - 88.9948*CplusN**2 - 144.1765*t + 5.1180*t*mh - 73.7690*t*cm - 15.2927*t*nm + 101.7482*t*CplusN + 27.7690*t**2 - 9.4246*logg + 1.5159*logg*mh + 16.0412*logg*cm + 1.3549*logg*nm - 18.6527*logg*CplusN + 28.8015*logg*t - 4.0982*logg**2)
[ "def", "calc_mass_2", "(", "mh", ",", "cm", ",", "nm", ",", "teff", ",", "logg", ")", ":", "CplusN", "=", "calc_sum", "(", "mh", ",", "cm", ",", "nm", ")", "t", "=", "teff", "/", "4000.", "return", "(", "95.8689", "-", "10.4042", "*", "mh", "-", "0.7266", "*", "mh", "**", "2", "+", "41.3642", "*", "cm", "-", "5.3242", "*", "cm", "*", "mh", "-", "46.7792", "*", "cm", "**", "2", "+", "15.0508", "*", "nm", "-", "0.9342", "*", "nm", "*", "mh", "-", "30.5159", "*", "nm", "*", "cm", "-", "1.6083", "*", "nm", "**", "2", "-", "67.6093", "*", "CplusN", "+", "7.0486", "*", "CplusN", "*", "mh", "+", "133.5775", "*", "CplusN", "*", "cm", "+", "38.9439", "*", "CplusN", "*", "nm", "-", "88.9948", "*", "CplusN", "**", "2", "-", "144.1765", "*", "t", "+", "5.1180", "*", "t", "*", "mh", "-", "73.7690", "*", "t", "*", "cm", "-", "15.2927", "*", "t", "*", "nm", "+", "101.7482", "*", "t", "*", "CplusN", "+", "27.7690", "*", "t", "**", "2", "-", "9.4246", "*", "logg", "+", "1.5159", "*", "logg", "*", "mh", "+", "16.0412", "*", "logg", "*", "cm", "+", "1.3549", "*", "logg", "*", "nm", "-", "18.6527", "*", "logg", "*", "CplusN", "+", "28.8015", "*", "logg", "*", "t", "-", "4.0982", "*", "logg", "**", "2", ")" ]
Table A2 in Martig 2016
[ "Table", "A2", "in", "Martig", "2016" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/mass_age/mass_age_functions.py#L39-L48
annayqho/TheCannon
TheCannon/helpers/corner/corner.py
corner
def corner(xs, bins=20, range=None, weights=None, color="k", smooth=None, smooth1d=None, labels=None, label_kwargs=None, show_titles=False, title_fmt=".2f", title_kwargs=None, truths=None, truth_color="#4682b4", scale_hist=False, quantiles=None, verbose=False, fig=None, max_n_ticks=5, top_ticks=False, use_math_text=False, hist_kwargs=None, **hist2d_kwargs): """ Make a *sick* corner plot showing the projections of a data set in a multi-dimensional space. kwargs are passed to hist2d() or used for `matplotlib` styling. Parameters ---------- xs : array_like (nsamples, ndim) The samples. This should be a 1- or 2-dimensional array. For a 1-D array this results in a simple histogram. For a 2-D array, the zeroth axis is the list of samples and the next axis are the dimensions of the space. bins : int or array_like (ndim,) (optional) The number of bins to use in histograms, either as a fixed value for all dimensions, or as a list of integers for each dimension. weights : array_like (nsamples,) The weight of each sample. If `None` (default), samples are given equal weight. color : str (optional) A ``matplotlib`` style color for all histograms. smooth, smooth1d : float (optional) The standard deviation for Gaussian kernel passed to `scipy.ndimage.gaussian_filter` to smooth the 2-D and 1-D histograms respectively. If `None` (default), no smoothing is applied. labels : iterable (ndim,) (optional) A list of names for the dimensions. If a ``xs`` is a ``pandas.DataFrame``, labels will default to column names. label_kwargs : dict (optional) Any extra keyword arguments to send to the `set_xlabel` and `set_ylabel` methods. show_titles : bool (optional) Displays a title above each 1-D histogram showing the 0.5 quantile with the upper and lower errors supplied by the quantiles argument. title_fmt : string (optional) The format string for the quantiles given in titles. If you explicitly set ``show_titles=True`` and ``title_fmt=None``, the labels will be shown as the titles. (default: ``.2f``) title_kwargs : dict (optional) Any extra keyword arguments to send to the `set_title` command. range : iterable (ndim,) (optional) A list where each element is either a length 2 tuple containing lower and upper bounds or a float in range (0., 1.) giving the fraction of samples to include in bounds, e.g., [(0.,10.), (1.,5), 0.999, etc.]. If a fraction, the bounds are chosen to be equal-tailed. truths : iterable (ndim,) (optional) A list of reference values to indicate on the plots. Individual values can be omitted by using ``None``. truth_color : str (optional) A ``matplotlib`` style color for the ``truths`` makers. scale_hist : bool (optional) Should the 1-D histograms be scaled in such a way that the zero line is visible? quantiles : iterable (optional) A list of fractional quantiles to show on the 1-D histograms as vertical dashed lines. verbose : bool (optional) If true, print the values of the computed quantiles. plot_contours : bool (optional) Draw contours for dense regions of the plot. use_math_text : bool (optional) If true, then axis tick labels for very large or small exponents will be displayed as powers of 10 rather than using `e`. max_n_ticks: int (optional) Maximum number of ticks to try to use top_ticks : bool (optional) If true, label the top ticks of each axis fig : matplotlib.Figure (optional) Overplot onto the provided figure object. hist_kwargs : dict (optional) Any extra keyword arguments to send to the 1-D histogram plots. **hist2d_kwargs : (optional) Any remaining keyword arguments are sent to `corner.hist2d` to generate the 2-D histogram plots. """ if quantiles is None: quantiles = [] if title_kwargs is None: title_kwargs = dict() if label_kwargs is None: label_kwargs = dict() # Try filling in labels from pandas.DataFrame columns. if labels is None: try: labels = xs.columns except AttributeError: pass # Deal with 1D sample lists. xs = np.atleast_1d(xs) if len(xs.shape) == 1: xs = np.atleast_2d(xs) else: assert len(xs.shape) == 2, "The input sample array must be 1- or 2-D." xs = xs.T assert xs.shape[0] <= xs.shape[1], "I don't believe that you want more " \ "dimensions than samples!" # Parse the weight array. if weights is not None: weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("Weights must be 1-D") if xs.shape[1] != weights.shape[0]: raise ValueError("Lengths of weights must match number of samples") # Parse the parameter ranges. if range is None: if "extents" in hist2d_kwargs: logging.warn("Deprecated keyword argument 'extents'. " "Use 'range' instead.") range = hist2d_kwargs.pop("extents") else: range = [[x.min(), x.max()] for x in xs] # Check for parameters that never change. m = np.array([e[0] == e[1] for e in range], dtype=bool) if np.any(m): raise ValueError(("It looks like the parameter(s) in " "column(s) {0} have no dynamic range. " "Please provide a `range` argument.") .format(", ".join(map( "{0}".format, np.arange(len(m))[m])))) else: # If any of the extents are percentiles, convert them to ranges. # Also make sure it's a normal list. range = list(range) for i, _ in enumerate(range): try: emin, emax = range[i] except TypeError: q = [0.5 - 0.5*range[i], 0.5 + 0.5*range[i]] range[i] = quantile(xs[i], q, weights=weights) if len(range) != xs.shape[0]: raise ValueError("Dimension mismatch between samples and range") # Parse the bin specifications. try: bins = [float(bins) for _ in range] except TypeError: if len(bins) != len(range): raise ValueError("Dimension mismatch between bins and range") # Some magic numbers for pretty axis layout. K = len(xs) factor = 2.0 # size of one side of one panel lbdim = 0.5 * factor # size of left/bottom margin trdim = 0.2 * factor # size of top/right margin whspace = 0.05 # w/hspace size plotdim = factor * K + factor * (K - 1.) * whspace dim = lbdim + plotdim + trdim # Create a new figure if one wasn't provided. if fig is None: fig, axes = pl.subplots(K, K, figsize=(dim, dim)) else: try: axes = np.array(fig.axes).reshape((K, K)) except: raise ValueError("Provided figure has {0} axes, but data has " "dimensions K={1}".format(len(fig.axes), K)) # Format the figure. lb = lbdim / dim tr = (lbdim + plotdim) / dim fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr, wspace=whspace, hspace=whspace) # Set up the default histogram keywords. if hist_kwargs is None: hist_kwargs = dict() hist_kwargs["color"] = hist_kwargs.get("color", color) if smooth1d is None: hist_kwargs["histtype"] = hist_kwargs.get("histtype", "step") for i, x in enumerate(xs): # Deal with masked arrays. if hasattr(x, "compressed"): x = x.compressed() if np.shape(xs)[0] == 1: ax = axes else: ax = axes[i, i] # Plot the histograms. if smooth1d is None: n, _, _ = ax.hist(x, bins=bins[i], weights=weights, range=range[i], **hist_kwargs) else: if gaussian_filter is None: raise ImportError("Please install scipy for smoothing") n, b = np.histogram(x, bins=bins[i], weights=weights, range=range[i]) n = gaussian_filter(n, smooth1d) x0 = np.array(list(zip(b[:-1], b[1:]))).flatten() y0 = np.array(list(zip(n, n))).flatten() ax.plot(x0, y0, **hist_kwargs) if truths is not None and truths[i] is not None: ax.axvline(truths[i], color=truth_color) # Plot quantiles if wanted. if len(quantiles) > 0: qvalues = quantile(x, quantiles, weights=weights) for q in qvalues: ax.axvline(q, ls="dashed", color=color) if verbose: print("Quantiles:") print([item for item in zip(quantiles, qvalues)]) if show_titles: title = None if title_fmt is not None: # Compute the quantiles for the title. This might redo # unneeded computation but who cares. q_16, q_50, q_84 = quantile(x, [0.16, 0.5, 0.84], weights=weights) q_m, q_p = q_50-q_16, q_84-q_50 # Format the quantile display. fmt = "{{0:{0}}}".format(title_fmt).format title = r"${{{0}}}_{{-{1}}}^{{+{2}}}$" title = title.format(fmt(q_50), fmt(q_m), fmt(q_p)) # Add in the column name if it's given. if labels is not None: title = "{0} = {1}".format(labels[i], title) elif labels is not None: title = "{0}".format(labels[i]) if title is not None: ax.set_title(title, **title_kwargs) # Set up the axes. ax.set_xlim(range[i]) if scale_hist: maxn = np.max(n) ax.set_ylim(-0.1 * maxn, 1.1 * maxn) else: ax.set_ylim(0, 1.1 * np.max(n)) ax.set_yticklabels([]) ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) if i < K - 1: if top_ticks: ax.xaxis.set_ticks_position("top") [l.set_rotation(45) for l in ax.get_xticklabels()] else: ax.set_xticklabels([]) else: [l.set_rotation(45) for l in ax.get_xticklabels()] if labels is not None: ax.set_xlabel(labels[i], **label_kwargs) ax.xaxis.set_label_coords(0.5, -0.3) # use MathText for axes ticks ax.xaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) for j, y in enumerate(xs): if np.shape(xs)[0] == 1: ax = axes else: ax = axes[i, j] if j > i: ax.set_frame_on(False) ax.set_xticks([]) ax.set_yticks([]) continue elif j == i: continue # Deal with masked arrays. if hasattr(y, "compressed"): y = y.compressed() hist2d(y, x, ax=ax, range=[range[j], range[i]], weights=weights, color=color, smooth=smooth, bins=[bins[j], bins[i]], **hist2d_kwargs) if truths is not None: if truths[i] is not None and truths[j] is not None: ax.plot(truths[j], truths[i], "s", color=truth_color) if truths[j] is not None: ax.axvline(truths[j], color=truth_color) if truths[i] is not None: ax.axhline(truths[i], color=truth_color) ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) ax.yaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) if i < K - 1: ax.set_xticklabels([]) else: [l.set_rotation(45) for l in ax.get_xticklabels()] if labels is not None: ax.set_xlabel(labels[j], **label_kwargs) ax.xaxis.set_label_coords(0.5, -0.3) # use MathText for axes ticks ax.xaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) if j > 0: ax.set_yticklabels([]) else: [l.set_rotation(45) for l in ax.get_yticklabels()] if labels is not None: ax.set_ylabel(labels[i], **label_kwargs) ax.yaxis.set_label_coords(-0.3, 0.5) # use MathText for axes ticks ax.yaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) return fig
python
def corner(xs, bins=20, range=None, weights=None, color="k", smooth=None, smooth1d=None, labels=None, label_kwargs=None, show_titles=False, title_fmt=".2f", title_kwargs=None, truths=None, truth_color="#4682b4", scale_hist=False, quantiles=None, verbose=False, fig=None, max_n_ticks=5, top_ticks=False, use_math_text=False, hist_kwargs=None, **hist2d_kwargs): """ Make a *sick* corner plot showing the projections of a data set in a multi-dimensional space. kwargs are passed to hist2d() or used for `matplotlib` styling. Parameters ---------- xs : array_like (nsamples, ndim) The samples. This should be a 1- or 2-dimensional array. For a 1-D array this results in a simple histogram. For a 2-D array, the zeroth axis is the list of samples and the next axis are the dimensions of the space. bins : int or array_like (ndim,) (optional) The number of bins to use in histograms, either as a fixed value for all dimensions, or as a list of integers for each dimension. weights : array_like (nsamples,) The weight of each sample. If `None` (default), samples are given equal weight. color : str (optional) A ``matplotlib`` style color for all histograms. smooth, smooth1d : float (optional) The standard deviation for Gaussian kernel passed to `scipy.ndimage.gaussian_filter` to smooth the 2-D and 1-D histograms respectively. If `None` (default), no smoothing is applied. labels : iterable (ndim,) (optional) A list of names for the dimensions. If a ``xs`` is a ``pandas.DataFrame``, labels will default to column names. label_kwargs : dict (optional) Any extra keyword arguments to send to the `set_xlabel` and `set_ylabel` methods. show_titles : bool (optional) Displays a title above each 1-D histogram showing the 0.5 quantile with the upper and lower errors supplied by the quantiles argument. title_fmt : string (optional) The format string for the quantiles given in titles. If you explicitly set ``show_titles=True`` and ``title_fmt=None``, the labels will be shown as the titles. (default: ``.2f``) title_kwargs : dict (optional) Any extra keyword arguments to send to the `set_title` command. range : iterable (ndim,) (optional) A list where each element is either a length 2 tuple containing lower and upper bounds or a float in range (0., 1.) giving the fraction of samples to include in bounds, e.g., [(0.,10.), (1.,5), 0.999, etc.]. If a fraction, the bounds are chosen to be equal-tailed. truths : iterable (ndim,) (optional) A list of reference values to indicate on the plots. Individual values can be omitted by using ``None``. truth_color : str (optional) A ``matplotlib`` style color for the ``truths`` makers. scale_hist : bool (optional) Should the 1-D histograms be scaled in such a way that the zero line is visible? quantiles : iterable (optional) A list of fractional quantiles to show on the 1-D histograms as vertical dashed lines. verbose : bool (optional) If true, print the values of the computed quantiles. plot_contours : bool (optional) Draw contours for dense regions of the plot. use_math_text : bool (optional) If true, then axis tick labels for very large or small exponents will be displayed as powers of 10 rather than using `e`. max_n_ticks: int (optional) Maximum number of ticks to try to use top_ticks : bool (optional) If true, label the top ticks of each axis fig : matplotlib.Figure (optional) Overplot onto the provided figure object. hist_kwargs : dict (optional) Any extra keyword arguments to send to the 1-D histogram plots. **hist2d_kwargs : (optional) Any remaining keyword arguments are sent to `corner.hist2d` to generate the 2-D histogram plots. """ if quantiles is None: quantiles = [] if title_kwargs is None: title_kwargs = dict() if label_kwargs is None: label_kwargs = dict() # Try filling in labels from pandas.DataFrame columns. if labels is None: try: labels = xs.columns except AttributeError: pass # Deal with 1D sample lists. xs = np.atleast_1d(xs) if len(xs.shape) == 1: xs = np.atleast_2d(xs) else: assert len(xs.shape) == 2, "The input sample array must be 1- or 2-D." xs = xs.T assert xs.shape[0] <= xs.shape[1], "I don't believe that you want more " \ "dimensions than samples!" # Parse the weight array. if weights is not None: weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("Weights must be 1-D") if xs.shape[1] != weights.shape[0]: raise ValueError("Lengths of weights must match number of samples") # Parse the parameter ranges. if range is None: if "extents" in hist2d_kwargs: logging.warn("Deprecated keyword argument 'extents'. " "Use 'range' instead.") range = hist2d_kwargs.pop("extents") else: range = [[x.min(), x.max()] for x in xs] # Check for parameters that never change. m = np.array([e[0] == e[1] for e in range], dtype=bool) if np.any(m): raise ValueError(("It looks like the parameter(s) in " "column(s) {0} have no dynamic range. " "Please provide a `range` argument.") .format(", ".join(map( "{0}".format, np.arange(len(m))[m])))) else: # If any of the extents are percentiles, convert them to ranges. # Also make sure it's a normal list. range = list(range) for i, _ in enumerate(range): try: emin, emax = range[i] except TypeError: q = [0.5 - 0.5*range[i], 0.5 + 0.5*range[i]] range[i] = quantile(xs[i], q, weights=weights) if len(range) != xs.shape[0]: raise ValueError("Dimension mismatch between samples and range") # Parse the bin specifications. try: bins = [float(bins) for _ in range] except TypeError: if len(bins) != len(range): raise ValueError("Dimension mismatch between bins and range") # Some magic numbers for pretty axis layout. K = len(xs) factor = 2.0 # size of one side of one panel lbdim = 0.5 * factor # size of left/bottom margin trdim = 0.2 * factor # size of top/right margin whspace = 0.05 # w/hspace size plotdim = factor * K + factor * (K - 1.) * whspace dim = lbdim + plotdim + trdim # Create a new figure if one wasn't provided. if fig is None: fig, axes = pl.subplots(K, K, figsize=(dim, dim)) else: try: axes = np.array(fig.axes).reshape((K, K)) except: raise ValueError("Provided figure has {0} axes, but data has " "dimensions K={1}".format(len(fig.axes), K)) # Format the figure. lb = lbdim / dim tr = (lbdim + plotdim) / dim fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr, wspace=whspace, hspace=whspace) # Set up the default histogram keywords. if hist_kwargs is None: hist_kwargs = dict() hist_kwargs["color"] = hist_kwargs.get("color", color) if smooth1d is None: hist_kwargs["histtype"] = hist_kwargs.get("histtype", "step") for i, x in enumerate(xs): # Deal with masked arrays. if hasattr(x, "compressed"): x = x.compressed() if np.shape(xs)[0] == 1: ax = axes else: ax = axes[i, i] # Plot the histograms. if smooth1d is None: n, _, _ = ax.hist(x, bins=bins[i], weights=weights, range=range[i], **hist_kwargs) else: if gaussian_filter is None: raise ImportError("Please install scipy for smoothing") n, b = np.histogram(x, bins=bins[i], weights=weights, range=range[i]) n = gaussian_filter(n, smooth1d) x0 = np.array(list(zip(b[:-1], b[1:]))).flatten() y0 = np.array(list(zip(n, n))).flatten() ax.plot(x0, y0, **hist_kwargs) if truths is not None and truths[i] is not None: ax.axvline(truths[i], color=truth_color) # Plot quantiles if wanted. if len(quantiles) > 0: qvalues = quantile(x, quantiles, weights=weights) for q in qvalues: ax.axvline(q, ls="dashed", color=color) if verbose: print("Quantiles:") print([item for item in zip(quantiles, qvalues)]) if show_titles: title = None if title_fmt is not None: # Compute the quantiles for the title. This might redo # unneeded computation but who cares. q_16, q_50, q_84 = quantile(x, [0.16, 0.5, 0.84], weights=weights) q_m, q_p = q_50-q_16, q_84-q_50 # Format the quantile display. fmt = "{{0:{0}}}".format(title_fmt).format title = r"${{{0}}}_{{-{1}}}^{{+{2}}}$" title = title.format(fmt(q_50), fmt(q_m), fmt(q_p)) # Add in the column name if it's given. if labels is not None: title = "{0} = {1}".format(labels[i], title) elif labels is not None: title = "{0}".format(labels[i]) if title is not None: ax.set_title(title, **title_kwargs) # Set up the axes. ax.set_xlim(range[i]) if scale_hist: maxn = np.max(n) ax.set_ylim(-0.1 * maxn, 1.1 * maxn) else: ax.set_ylim(0, 1.1 * np.max(n)) ax.set_yticklabels([]) ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) if i < K - 1: if top_ticks: ax.xaxis.set_ticks_position("top") [l.set_rotation(45) for l in ax.get_xticklabels()] else: ax.set_xticklabels([]) else: [l.set_rotation(45) for l in ax.get_xticklabels()] if labels is not None: ax.set_xlabel(labels[i], **label_kwargs) ax.xaxis.set_label_coords(0.5, -0.3) # use MathText for axes ticks ax.xaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) for j, y in enumerate(xs): if np.shape(xs)[0] == 1: ax = axes else: ax = axes[i, j] if j > i: ax.set_frame_on(False) ax.set_xticks([]) ax.set_yticks([]) continue elif j == i: continue # Deal with masked arrays. if hasattr(y, "compressed"): y = y.compressed() hist2d(y, x, ax=ax, range=[range[j], range[i]], weights=weights, color=color, smooth=smooth, bins=[bins[j], bins[i]], **hist2d_kwargs) if truths is not None: if truths[i] is not None and truths[j] is not None: ax.plot(truths[j], truths[i], "s", color=truth_color) if truths[j] is not None: ax.axvline(truths[j], color=truth_color) if truths[i] is not None: ax.axhline(truths[i], color=truth_color) ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) ax.yaxis.set_major_locator(MaxNLocator(max_n_ticks, prune="lower")) if i < K - 1: ax.set_xticklabels([]) else: [l.set_rotation(45) for l in ax.get_xticklabels()] if labels is not None: ax.set_xlabel(labels[j], **label_kwargs) ax.xaxis.set_label_coords(0.5, -0.3) # use MathText for axes ticks ax.xaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) if j > 0: ax.set_yticklabels([]) else: [l.set_rotation(45) for l in ax.get_yticklabels()] if labels is not None: ax.set_ylabel(labels[i], **label_kwargs) ax.yaxis.set_label_coords(-0.3, 0.5) # use MathText for axes ticks ax.yaxis.set_major_formatter( ScalarFormatter(useMathText=use_math_text)) return fig
[ "def", "corner", "(", "xs", ",", "bins", "=", "20", ",", "range", "=", "None", ",", "weights", "=", "None", ",", "color", "=", "\"k\"", ",", "smooth", "=", "None", ",", "smooth1d", "=", "None", ",", "labels", "=", "None", ",", "label_kwargs", "=", "None", ",", "show_titles", "=", "False", ",", "title_fmt", "=", "\".2f\"", ",", "title_kwargs", "=", "None", ",", "truths", "=", "None", ",", "truth_color", "=", "\"#4682b4\"", ",", "scale_hist", "=", "False", ",", "quantiles", "=", "None", ",", "verbose", "=", "False", ",", "fig", "=", "None", ",", "max_n_ticks", "=", "5", ",", "top_ticks", "=", "False", ",", "use_math_text", "=", "False", ",", "hist_kwargs", "=", "None", ",", "*", "*", "hist2d_kwargs", ")", ":", "if", "quantiles", "is", "None", ":", "quantiles", "=", "[", "]", "if", "title_kwargs", "is", "None", ":", "title_kwargs", "=", "dict", "(", ")", "if", "label_kwargs", "is", "None", ":", "label_kwargs", "=", "dict", "(", ")", "# Try filling in labels from pandas.DataFrame columns.", "if", "labels", "is", "None", ":", "try", ":", "labels", "=", "xs", ".", "columns", "except", "AttributeError", ":", "pass", "# Deal with 1D sample lists.", "xs", "=", "np", ".", "atleast_1d", "(", "xs", ")", "if", "len", "(", "xs", ".", "shape", ")", "==", "1", ":", "xs", "=", "np", ".", "atleast_2d", "(", "xs", ")", "else", ":", "assert", "len", "(", "xs", ".", "shape", ")", "==", "2", ",", "\"The input sample array must be 1- or 2-D.\"", "xs", "=", "xs", ".", "T", "assert", "xs", ".", "shape", "[", "0", "]", "<=", "xs", ".", "shape", "[", "1", "]", ",", "\"I don't believe that you want more \"", "\"dimensions than samples!\"", "# Parse the weight array.", "if", "weights", "is", "not", "None", ":", "weights", "=", "np", ".", "asarray", "(", "weights", ")", "if", "weights", ".", "ndim", "!=", "1", ":", "raise", "ValueError", "(", "\"Weights must be 1-D\"", ")", "if", "xs", ".", "shape", "[", "1", "]", "!=", "weights", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "\"Lengths of weights must match number of samples\"", ")", "# Parse the parameter ranges.", "if", "range", "is", "None", ":", "if", "\"extents\"", "in", "hist2d_kwargs", ":", "logging", ".", "warn", "(", "\"Deprecated keyword argument 'extents'. \"", "\"Use 'range' instead.\"", ")", "range", "=", "hist2d_kwargs", ".", "pop", "(", "\"extents\"", ")", "else", ":", "range", "=", "[", "[", "x", ".", "min", "(", ")", ",", "x", ".", "max", "(", ")", "]", "for", "x", "in", "xs", "]", "# Check for parameters that never change.", "m", "=", "np", ".", "array", "(", "[", "e", "[", "0", "]", "==", "e", "[", "1", "]", "for", "e", "in", "range", "]", ",", "dtype", "=", "bool", ")", "if", "np", ".", "any", "(", "m", ")", ":", "raise", "ValueError", "(", "(", "\"It looks like the parameter(s) in \"", "\"column(s) {0} have no dynamic range. \"", "\"Please provide a `range` argument.\"", ")", ".", "format", "(", "\", \"", ".", "join", "(", "map", "(", "\"{0}\"", ".", "format", ",", "np", ".", "arange", "(", "len", "(", "m", ")", ")", "[", "m", "]", ")", ")", ")", ")", "else", ":", "# If any of the extents are percentiles, convert them to ranges.", "# Also make sure it's a normal list.", "range", "=", "list", "(", "range", ")", "for", "i", ",", "_", "in", "enumerate", "(", "range", ")", ":", "try", ":", "emin", ",", "emax", "=", "range", "[", "i", "]", "except", "TypeError", ":", "q", "=", "[", "0.5", "-", "0.5", "*", "range", "[", "i", "]", ",", "0.5", "+", "0.5", "*", "range", "[", "i", "]", "]", "range", "[", "i", "]", "=", "quantile", "(", "xs", "[", "i", "]", ",", "q", ",", "weights", "=", "weights", ")", "if", "len", "(", "range", ")", "!=", "xs", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "\"Dimension mismatch between samples and range\"", ")", "# Parse the bin specifications.", "try", ":", "bins", "=", "[", "float", "(", "bins", ")", "for", "_", "in", "range", "]", "except", "TypeError", ":", "if", "len", "(", "bins", ")", "!=", "len", "(", "range", ")", ":", "raise", "ValueError", "(", "\"Dimension mismatch between bins and range\"", ")", "# Some magic numbers for pretty axis layout.", "K", "=", "len", "(", "xs", ")", "factor", "=", "2.0", "# size of one side of one panel", "lbdim", "=", "0.5", "*", "factor", "# size of left/bottom margin", "trdim", "=", "0.2", "*", "factor", "# size of top/right margin", "whspace", "=", "0.05", "# w/hspace size", "plotdim", "=", "factor", "*", "K", "+", "factor", "*", "(", "K", "-", "1.", ")", "*", "whspace", "dim", "=", "lbdim", "+", "plotdim", "+", "trdim", "# Create a new figure if one wasn't provided.", "if", "fig", "is", "None", ":", "fig", ",", "axes", "=", "pl", ".", "subplots", "(", "K", ",", "K", ",", "figsize", "=", "(", "dim", ",", "dim", ")", ")", "else", ":", "try", ":", "axes", "=", "np", ".", "array", "(", "fig", ".", "axes", ")", ".", "reshape", "(", "(", "K", ",", "K", ")", ")", "except", ":", "raise", "ValueError", "(", "\"Provided figure has {0} axes, but data has \"", "\"dimensions K={1}\"", ".", "format", "(", "len", "(", "fig", ".", "axes", ")", ",", "K", ")", ")", "# Format the figure.", "lb", "=", "lbdim", "/", "dim", "tr", "=", "(", "lbdim", "+", "plotdim", ")", "/", "dim", "fig", ".", "subplots_adjust", "(", "left", "=", "lb", ",", "bottom", "=", "lb", ",", "right", "=", "tr", ",", "top", "=", "tr", ",", "wspace", "=", "whspace", ",", "hspace", "=", "whspace", ")", "# Set up the default histogram keywords.", "if", "hist_kwargs", "is", "None", ":", "hist_kwargs", "=", "dict", "(", ")", "hist_kwargs", "[", "\"color\"", "]", "=", "hist_kwargs", ".", "get", "(", "\"color\"", ",", "color", ")", "if", "smooth1d", "is", "None", ":", "hist_kwargs", "[", "\"histtype\"", "]", "=", "hist_kwargs", ".", "get", "(", "\"histtype\"", ",", "\"step\"", ")", "for", "i", ",", "x", "in", "enumerate", "(", "xs", ")", ":", "# Deal with masked arrays.", "if", "hasattr", "(", "x", ",", "\"compressed\"", ")", ":", "x", "=", "x", ".", "compressed", "(", ")", "if", "np", ".", "shape", "(", "xs", ")", "[", "0", "]", "==", "1", ":", "ax", "=", "axes", "else", ":", "ax", "=", "axes", "[", "i", ",", "i", "]", "# Plot the histograms.", "if", "smooth1d", "is", "None", ":", "n", ",", "_", ",", "_", "=", "ax", ".", "hist", "(", "x", ",", "bins", "=", "bins", "[", "i", "]", ",", "weights", "=", "weights", ",", "range", "=", "range", "[", "i", "]", ",", "*", "*", "hist_kwargs", ")", "else", ":", "if", "gaussian_filter", "is", "None", ":", "raise", "ImportError", "(", "\"Please install scipy for smoothing\"", ")", "n", ",", "b", "=", "np", ".", "histogram", "(", "x", ",", "bins", "=", "bins", "[", "i", "]", ",", "weights", "=", "weights", ",", "range", "=", "range", "[", "i", "]", ")", "n", "=", "gaussian_filter", "(", "n", ",", "smooth1d", ")", "x0", "=", "np", ".", "array", "(", "list", "(", "zip", "(", "b", "[", ":", "-", "1", "]", ",", "b", "[", "1", ":", "]", ")", ")", ")", ".", "flatten", "(", ")", "y0", "=", "np", ".", "array", "(", "list", "(", "zip", "(", "n", ",", "n", ")", ")", ")", ".", "flatten", "(", ")", "ax", ".", "plot", "(", "x0", ",", "y0", ",", "*", "*", "hist_kwargs", ")", "if", "truths", "is", "not", "None", "and", "truths", "[", "i", "]", "is", "not", "None", ":", "ax", ".", "axvline", "(", "truths", "[", "i", "]", ",", "color", "=", "truth_color", ")", "# Plot quantiles if wanted.", "if", "len", "(", "quantiles", ")", ">", "0", ":", "qvalues", "=", "quantile", "(", "x", ",", "quantiles", ",", "weights", "=", "weights", ")", "for", "q", "in", "qvalues", ":", "ax", ".", "axvline", "(", "q", ",", "ls", "=", "\"dashed\"", ",", "color", "=", "color", ")", "if", "verbose", ":", "print", "(", "\"Quantiles:\"", ")", "print", "(", "[", "item", "for", "item", "in", "zip", "(", "quantiles", ",", "qvalues", ")", "]", ")", "if", "show_titles", ":", "title", "=", "None", "if", "title_fmt", "is", "not", "None", ":", "# Compute the quantiles for the title. This might redo", "# unneeded computation but who cares.", "q_16", ",", "q_50", ",", "q_84", "=", "quantile", "(", "x", ",", "[", "0.16", ",", "0.5", ",", "0.84", "]", ",", "weights", "=", "weights", ")", "q_m", ",", "q_p", "=", "q_50", "-", "q_16", ",", "q_84", "-", "q_50", "# Format the quantile display.", "fmt", "=", "\"{{0:{0}}}\"", ".", "format", "(", "title_fmt", ")", ".", "format", "title", "=", "r\"${{{0}}}_{{-{1}}}^{{+{2}}}$\"", "title", "=", "title", ".", "format", "(", "fmt", "(", "q_50", ")", ",", "fmt", "(", "q_m", ")", ",", "fmt", "(", "q_p", ")", ")", "# Add in the column name if it's given.", "if", "labels", "is", "not", "None", ":", "title", "=", "\"{0} = {1}\"", ".", "format", "(", "labels", "[", "i", "]", ",", "title", ")", "elif", "labels", "is", "not", "None", ":", "title", "=", "\"{0}\"", ".", "format", "(", "labels", "[", "i", "]", ")", "if", "title", "is", "not", "None", ":", "ax", ".", "set_title", "(", "title", ",", "*", "*", "title_kwargs", ")", "# Set up the axes.", "ax", ".", "set_xlim", "(", "range", "[", "i", "]", ")", "if", "scale_hist", ":", "maxn", "=", "np", ".", "max", "(", "n", ")", "ax", ".", "set_ylim", "(", "-", "0.1", "*", "maxn", ",", "1.1", "*", "maxn", ")", "else", ":", "ax", ".", "set_ylim", "(", "0", ",", "1.1", "*", "np", ".", "max", "(", "n", ")", ")", "ax", ".", "set_yticklabels", "(", "[", "]", ")", "ax", ".", "xaxis", ".", "set_major_locator", "(", "MaxNLocator", "(", "max_n_ticks", ",", "prune", "=", "\"lower\"", ")", ")", "if", "i", "<", "K", "-", "1", ":", "if", "top_ticks", ":", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "\"top\"", ")", "[", "l", ".", "set_rotation", "(", "45", ")", "for", "l", "in", "ax", ".", "get_xticklabels", "(", ")", "]", "else", ":", "ax", ".", "set_xticklabels", "(", "[", "]", ")", "else", ":", "[", "l", ".", "set_rotation", "(", "45", ")", "for", "l", "in", "ax", ".", "get_xticklabels", "(", ")", "]", "if", "labels", "is", "not", "None", ":", "ax", ".", "set_xlabel", "(", "labels", "[", "i", "]", ",", "*", "*", "label_kwargs", ")", "ax", ".", "xaxis", ".", "set_label_coords", "(", "0.5", ",", "-", "0.3", ")", "# use MathText for axes ticks", "ax", ".", "xaxis", ".", "set_major_formatter", "(", "ScalarFormatter", "(", "useMathText", "=", "use_math_text", ")", ")", "for", "j", ",", "y", "in", "enumerate", "(", "xs", ")", ":", "if", "np", ".", "shape", "(", "xs", ")", "[", "0", "]", "==", "1", ":", "ax", "=", "axes", "else", ":", "ax", "=", "axes", "[", "i", ",", "j", "]", "if", "j", ">", "i", ":", "ax", ".", "set_frame_on", "(", "False", ")", "ax", ".", "set_xticks", "(", "[", "]", ")", "ax", ".", "set_yticks", "(", "[", "]", ")", "continue", "elif", "j", "==", "i", ":", "continue", "# Deal with masked arrays.", "if", "hasattr", "(", "y", ",", "\"compressed\"", ")", ":", "y", "=", "y", ".", "compressed", "(", ")", "hist2d", "(", "y", ",", "x", ",", "ax", "=", "ax", ",", "range", "=", "[", "range", "[", "j", "]", ",", "range", "[", "i", "]", "]", ",", "weights", "=", "weights", ",", "color", "=", "color", ",", "smooth", "=", "smooth", ",", "bins", "=", "[", "bins", "[", "j", "]", ",", "bins", "[", "i", "]", "]", ",", "*", "*", "hist2d_kwargs", ")", "if", "truths", "is", "not", "None", ":", "if", "truths", "[", "i", "]", "is", "not", "None", "and", "truths", "[", "j", "]", "is", "not", "None", ":", "ax", ".", "plot", "(", "truths", "[", "j", "]", ",", "truths", "[", "i", "]", ",", "\"s\"", ",", "color", "=", "truth_color", ")", "if", "truths", "[", "j", "]", "is", "not", "None", ":", "ax", ".", "axvline", "(", "truths", "[", "j", "]", ",", "color", "=", "truth_color", ")", "if", "truths", "[", "i", "]", "is", "not", "None", ":", "ax", ".", "axhline", "(", "truths", "[", "i", "]", ",", "color", "=", "truth_color", ")", "ax", ".", "xaxis", ".", "set_major_locator", "(", "MaxNLocator", "(", "max_n_ticks", ",", "prune", "=", "\"lower\"", ")", ")", "ax", ".", "yaxis", ".", "set_major_locator", "(", "MaxNLocator", "(", "max_n_ticks", ",", "prune", "=", "\"lower\"", ")", ")", "if", "i", "<", "K", "-", "1", ":", "ax", ".", "set_xticklabels", "(", "[", "]", ")", "else", ":", "[", "l", ".", "set_rotation", "(", "45", ")", "for", "l", "in", "ax", ".", "get_xticklabels", "(", ")", "]", "if", "labels", "is", "not", "None", ":", "ax", ".", "set_xlabel", "(", "labels", "[", "j", "]", ",", "*", "*", "label_kwargs", ")", "ax", ".", "xaxis", ".", "set_label_coords", "(", "0.5", ",", "-", "0.3", ")", "# use MathText for axes ticks", "ax", ".", "xaxis", ".", "set_major_formatter", "(", "ScalarFormatter", "(", "useMathText", "=", "use_math_text", ")", ")", "if", "j", ">", "0", ":", "ax", ".", "set_yticklabels", "(", "[", "]", ")", "else", ":", "[", "l", ".", "set_rotation", "(", "45", ")", "for", "l", "in", "ax", ".", "get_yticklabels", "(", ")", "]", "if", "labels", "is", "not", "None", ":", "ax", ".", "set_ylabel", "(", "labels", "[", "i", "]", ",", "*", "*", "label_kwargs", ")", "ax", ".", "yaxis", ".", "set_label_coords", "(", "-", "0.3", ",", "0.5", ")", "# use MathText for axes ticks", "ax", ".", "yaxis", ".", "set_major_formatter", "(", "ScalarFormatter", "(", "useMathText", "=", "use_math_text", ")", ")", "return", "fig" ]
Make a *sick* corner plot showing the projections of a data set in a multi-dimensional space. kwargs are passed to hist2d() or used for `matplotlib` styling. Parameters ---------- xs : array_like (nsamples, ndim) The samples. This should be a 1- or 2-dimensional array. For a 1-D array this results in a simple histogram. For a 2-D array, the zeroth axis is the list of samples and the next axis are the dimensions of the space. bins : int or array_like (ndim,) (optional) The number of bins to use in histograms, either as a fixed value for all dimensions, or as a list of integers for each dimension. weights : array_like (nsamples,) The weight of each sample. If `None` (default), samples are given equal weight. color : str (optional) A ``matplotlib`` style color for all histograms. smooth, smooth1d : float (optional) The standard deviation for Gaussian kernel passed to `scipy.ndimage.gaussian_filter` to smooth the 2-D and 1-D histograms respectively. If `None` (default), no smoothing is applied. labels : iterable (ndim,) (optional) A list of names for the dimensions. If a ``xs`` is a ``pandas.DataFrame``, labels will default to column names. label_kwargs : dict (optional) Any extra keyword arguments to send to the `set_xlabel` and `set_ylabel` methods. show_titles : bool (optional) Displays a title above each 1-D histogram showing the 0.5 quantile with the upper and lower errors supplied by the quantiles argument. title_fmt : string (optional) The format string for the quantiles given in titles. If you explicitly set ``show_titles=True`` and ``title_fmt=None``, the labels will be shown as the titles. (default: ``.2f``) title_kwargs : dict (optional) Any extra keyword arguments to send to the `set_title` command. range : iterable (ndim,) (optional) A list where each element is either a length 2 tuple containing lower and upper bounds or a float in range (0., 1.) giving the fraction of samples to include in bounds, e.g., [(0.,10.), (1.,5), 0.999, etc.]. If a fraction, the bounds are chosen to be equal-tailed. truths : iterable (ndim,) (optional) A list of reference values to indicate on the plots. Individual values can be omitted by using ``None``. truth_color : str (optional) A ``matplotlib`` style color for the ``truths`` makers. scale_hist : bool (optional) Should the 1-D histograms be scaled in such a way that the zero line is visible? quantiles : iterable (optional) A list of fractional quantiles to show on the 1-D histograms as vertical dashed lines. verbose : bool (optional) If true, print the values of the computed quantiles. plot_contours : bool (optional) Draw contours for dense regions of the plot. use_math_text : bool (optional) If true, then axis tick labels for very large or small exponents will be displayed as powers of 10 rather than using `e`. max_n_ticks: int (optional) Maximum number of ticks to try to use top_ticks : bool (optional) If true, label the top ticks of each axis fig : matplotlib.Figure (optional) Overplot onto the provided figure object. hist_kwargs : dict (optional) Any extra keyword arguments to send to the 1-D histogram plots. **hist2d_kwargs : (optional) Any remaining keyword arguments are sent to `corner.hist2d` to generate the 2-D histogram plots.
[ "Make", "a", "*", "sick", "*", "corner", "plot", "showing", "the", "projections", "of", "a", "data", "set", "in", "a", "multi", "-", "dimensional", "space", ".", "kwargs", "are", "passed", "to", "hist2d", "()", "or", "used", "for", "matplotlib", "styling", "." ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/helpers/corner/corner.py#L43-L392
annayqho/TheCannon
TheCannon/helpers/corner/corner.py
quantile
def quantile(x, q, weights=None): """ Like numpy.percentile, but: * Values of q are quantiles [0., 1.] rather than percentiles [0., 100.] * scalar q not supported (q must be iterable) * optional weights on x """ if weights is None: return np.percentile(x, [100. * qi for qi in q]) else: idx = np.argsort(x) xsorted = x[idx] cdf = np.add.accumulate(weights[idx]) cdf /= cdf[-1] return np.interp(q, cdf, xsorted).tolist()
python
def quantile(x, q, weights=None): """ Like numpy.percentile, but: * Values of q are quantiles [0., 1.] rather than percentiles [0., 100.] * scalar q not supported (q must be iterable) * optional weights on x """ if weights is None: return np.percentile(x, [100. * qi for qi in q]) else: idx = np.argsort(x) xsorted = x[idx] cdf = np.add.accumulate(weights[idx]) cdf /= cdf[-1] return np.interp(q, cdf, xsorted).tolist()
[ "def", "quantile", "(", "x", ",", "q", ",", "weights", "=", "None", ")", ":", "if", "weights", "is", "None", ":", "return", "np", ".", "percentile", "(", "x", ",", "[", "100.", "*", "qi", "for", "qi", "in", "q", "]", ")", "else", ":", "idx", "=", "np", ".", "argsort", "(", "x", ")", "xsorted", "=", "x", "[", "idx", "]", "cdf", "=", "np", ".", "add", ".", "accumulate", "(", "weights", "[", "idx", "]", ")", "cdf", "/=", "cdf", "[", "-", "1", "]", "return", "np", ".", "interp", "(", "q", ",", "cdf", ",", "xsorted", ")", ".", "tolist", "(", ")" ]
Like numpy.percentile, but: * Values of q are quantiles [0., 1.] rather than percentiles [0., 100.] * scalar q not supported (q must be iterable) * optional weights on x
[ "Like", "numpy", ".", "percentile", "but", ":" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/helpers/corner/corner.py#L395-L411
annayqho/TheCannon
TheCannon/helpers/corner/corner.py
hist2d
def hist2d(x, y, bins=20, range=None, weights=None, levels=None, smooth=None, ax=None, color=None, plot_datapoints=True, plot_density=True, plot_contours=True, no_fill_contours=False, fill_contours=False, contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, **kwargs): """ Plot a 2-D histogram of samples. Parameters ---------- x, y : array_like (nsamples,) The samples. levels : array_like The contour levels to draw. ax : matplotlib.Axes (optional) A axes instance on which to add the 2-D histogram. plot_datapoints : bool (optional) Draw the individual data points. plot_density : bool (optional) Draw the density colormap. plot_contours : bool (optional) Draw the contours. no_fill_contours : bool (optional) Add no filling at all to the contours (unlike setting ``fill_contours=False``, which still adds a white fill at the densest points). fill_contours : bool (optional) Fill the contours. contour_kwargs : dict (optional) Any additional keyword arguments to pass to the `contour` method. contourf_kwargs : dict (optional) Any additional keyword arguments to pass to the `contourf` method. data_kwargs : dict (optional) Any additional keyword arguments to pass to the `plot` method when adding the individual data points. """ if ax is None: ax = pl.gca() # Set the default range based on the data range if not provided. if range is None: if "extent" in kwargs: logging.warn("Deprecated keyword argument 'extent'. " "Use 'range' instead.") range = kwargs["extent"] else: range = [[x.min(), x.max()], [y.min(), y.max()]] # Set up the default plotting arguments. if color is None: color = "k" # Choose the default "sigma" contour levels. if levels is None: levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2) # This is the color map for the density plot, over-plotted to indicate the # density of the points near the center. density_cmap = LinearSegmentedColormap.from_list( "density_cmap", [color, (1, 1, 1, 0)]) # This color map is used to hide the points at the high density areas. white_cmap = LinearSegmentedColormap.from_list( "white_cmap", [(1, 1, 1), (1, 1, 1)], N=2) # This "color map" is the list of colors for the contour levels if the # contours are filled. rgba_color = colorConverter.to_rgba(color) contour_cmap = [list(rgba_color) for l in levels] + [rgba_color] for i, l in enumerate(levels): contour_cmap[i][-1] *= float(i) / (len(levels)+1) # We'll make the 2D histogram to directly estimate the density. try: H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins, range=range, weights=weights) except ValueError: raise ValueError("It looks like at least one of your sample columns " "have no dynamic range. You could try using the " "'range' argument.") if smooth is not None: if gaussian_filter is None: raise ImportError("Please install scipy for smoothing") H = gaussian_filter(H, smooth) # Compute the density levels. Hflat = H.flatten() inds = np.argsort(Hflat)[::-1] Hflat = Hflat[inds] sm = np.cumsum(Hflat) sm /= sm[-1] V = np.empty(len(levels)) for i, v0 in enumerate(levels): try: V[i] = Hflat[sm <= v0][-1] except: V[i] = Hflat[0] V.sort() m = np.diff(V) == 0 if np.any(m): logging.warning("Too few points to create valid contours") while np.any(m): V[np.where(m)[0][0]] *= 1.0 - 1e-4 m = np.diff(V) == 0 V.sort() # Compute the bin centers. X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1]) # Extend the array for the sake of the contours at the plot edges. H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4)) H2[2:-2, 2:-2] = H H2[2:-2, 1] = H[:, 0] H2[2:-2, -2] = H[:, -1] H2[1, 2:-2] = H[0] H2[-2, 2:-2] = H[-1] H2[1, 1] = H[0, 0] H2[1, -2] = H[0, -1] H2[-2, 1] = H[-1, 0] H2[-2, -2] = H[-1, -1] X2 = np.concatenate([ X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1, X1[-1] + np.array([1, 2]) * np.diff(X1[-2:]), ]) Y2 = np.concatenate([ Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]), Y1, Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:]), ]) if plot_datapoints: if data_kwargs is None: data_kwargs = dict() data_kwargs["color"] = data_kwargs.get("color", color) data_kwargs["ms"] = data_kwargs.get("ms", 2.0) data_kwargs["mec"] = data_kwargs.get("mec", "none") data_kwargs["alpha"] = data_kwargs.get("alpha", 0.1) ax.plot(x, y, "o", zorder=-1, rasterized=True, **data_kwargs) # Plot the base fill to hide the densest data points. if (plot_contours or plot_density) and not no_fill_contours: ax.contourf(X2, Y2, H2.T, [V.min(), H.max()], cmap=white_cmap, antialiased=False) if plot_contours and fill_contours: if contourf_kwargs is None: contourf_kwargs = dict() contourf_kwargs["colors"] = contourf_kwargs.get("colors", contour_cmap) contourf_kwargs["antialiased"] = contourf_kwargs.get("antialiased", False) ax.contourf(X2, Y2, H2.T, np.concatenate([[0], V, [H.max()*(1+1e-4)]]), **contourf_kwargs) # Plot the density map. This can't be plotted at the same time as the # contour fills. elif plot_density: ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap) # Plot the contour edge colors. if plot_contours: if contour_kwargs is None: contour_kwargs = dict() contour_kwargs["colors"] = contour_kwargs.get("colors", color) ax.contour(X2, Y2, H2.T, V, **contour_kwargs) ax.set_xlim(range[0]) ax.set_ylim(range[1])
python
def hist2d(x, y, bins=20, range=None, weights=None, levels=None, smooth=None, ax=None, color=None, plot_datapoints=True, plot_density=True, plot_contours=True, no_fill_contours=False, fill_contours=False, contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, **kwargs): """ Plot a 2-D histogram of samples. Parameters ---------- x, y : array_like (nsamples,) The samples. levels : array_like The contour levels to draw. ax : matplotlib.Axes (optional) A axes instance on which to add the 2-D histogram. plot_datapoints : bool (optional) Draw the individual data points. plot_density : bool (optional) Draw the density colormap. plot_contours : bool (optional) Draw the contours. no_fill_contours : bool (optional) Add no filling at all to the contours (unlike setting ``fill_contours=False``, which still adds a white fill at the densest points). fill_contours : bool (optional) Fill the contours. contour_kwargs : dict (optional) Any additional keyword arguments to pass to the `contour` method. contourf_kwargs : dict (optional) Any additional keyword arguments to pass to the `contourf` method. data_kwargs : dict (optional) Any additional keyword arguments to pass to the `plot` method when adding the individual data points. """ if ax is None: ax = pl.gca() # Set the default range based on the data range if not provided. if range is None: if "extent" in kwargs: logging.warn("Deprecated keyword argument 'extent'. " "Use 'range' instead.") range = kwargs["extent"] else: range = [[x.min(), x.max()], [y.min(), y.max()]] # Set up the default plotting arguments. if color is None: color = "k" # Choose the default "sigma" contour levels. if levels is None: levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2) # This is the color map for the density plot, over-plotted to indicate the # density of the points near the center. density_cmap = LinearSegmentedColormap.from_list( "density_cmap", [color, (1, 1, 1, 0)]) # This color map is used to hide the points at the high density areas. white_cmap = LinearSegmentedColormap.from_list( "white_cmap", [(1, 1, 1), (1, 1, 1)], N=2) # This "color map" is the list of colors for the contour levels if the # contours are filled. rgba_color = colorConverter.to_rgba(color) contour_cmap = [list(rgba_color) for l in levels] + [rgba_color] for i, l in enumerate(levels): contour_cmap[i][-1] *= float(i) / (len(levels)+1) # We'll make the 2D histogram to directly estimate the density. try: H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins, range=range, weights=weights) except ValueError: raise ValueError("It looks like at least one of your sample columns " "have no dynamic range. You could try using the " "'range' argument.") if smooth is not None: if gaussian_filter is None: raise ImportError("Please install scipy for smoothing") H = gaussian_filter(H, smooth) # Compute the density levels. Hflat = H.flatten() inds = np.argsort(Hflat)[::-1] Hflat = Hflat[inds] sm = np.cumsum(Hflat) sm /= sm[-1] V = np.empty(len(levels)) for i, v0 in enumerate(levels): try: V[i] = Hflat[sm <= v0][-1] except: V[i] = Hflat[0] V.sort() m = np.diff(V) == 0 if np.any(m): logging.warning("Too few points to create valid contours") while np.any(m): V[np.where(m)[0][0]] *= 1.0 - 1e-4 m = np.diff(V) == 0 V.sort() # Compute the bin centers. X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1]) # Extend the array for the sake of the contours at the plot edges. H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4)) H2[2:-2, 2:-2] = H H2[2:-2, 1] = H[:, 0] H2[2:-2, -2] = H[:, -1] H2[1, 2:-2] = H[0] H2[-2, 2:-2] = H[-1] H2[1, 1] = H[0, 0] H2[1, -2] = H[0, -1] H2[-2, 1] = H[-1, 0] H2[-2, -2] = H[-1, -1] X2 = np.concatenate([ X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1, X1[-1] + np.array([1, 2]) * np.diff(X1[-2:]), ]) Y2 = np.concatenate([ Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]), Y1, Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:]), ]) if plot_datapoints: if data_kwargs is None: data_kwargs = dict() data_kwargs["color"] = data_kwargs.get("color", color) data_kwargs["ms"] = data_kwargs.get("ms", 2.0) data_kwargs["mec"] = data_kwargs.get("mec", "none") data_kwargs["alpha"] = data_kwargs.get("alpha", 0.1) ax.plot(x, y, "o", zorder=-1, rasterized=True, **data_kwargs) # Plot the base fill to hide the densest data points. if (plot_contours or plot_density) and not no_fill_contours: ax.contourf(X2, Y2, H2.T, [V.min(), H.max()], cmap=white_cmap, antialiased=False) if plot_contours and fill_contours: if contourf_kwargs is None: contourf_kwargs = dict() contourf_kwargs["colors"] = contourf_kwargs.get("colors", contour_cmap) contourf_kwargs["antialiased"] = contourf_kwargs.get("antialiased", False) ax.contourf(X2, Y2, H2.T, np.concatenate([[0], V, [H.max()*(1+1e-4)]]), **contourf_kwargs) # Plot the density map. This can't be plotted at the same time as the # contour fills. elif plot_density: ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap) # Plot the contour edge colors. if plot_contours: if contour_kwargs is None: contour_kwargs = dict() contour_kwargs["colors"] = contour_kwargs.get("colors", color) ax.contour(X2, Y2, H2.T, V, **contour_kwargs) ax.set_xlim(range[0]) ax.set_ylim(range[1])
[ "def", "hist2d", "(", "x", ",", "y", ",", "bins", "=", "20", ",", "range", "=", "None", ",", "weights", "=", "None", ",", "levels", "=", "None", ",", "smooth", "=", "None", ",", "ax", "=", "None", ",", "color", "=", "None", ",", "plot_datapoints", "=", "True", ",", "plot_density", "=", "True", ",", "plot_contours", "=", "True", ",", "no_fill_contours", "=", "False", ",", "fill_contours", "=", "False", ",", "contour_kwargs", "=", "None", ",", "contourf_kwargs", "=", "None", ",", "data_kwargs", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "ax", "is", "None", ":", "ax", "=", "pl", ".", "gca", "(", ")", "# Set the default range based on the data range if not provided.", "if", "range", "is", "None", ":", "if", "\"extent\"", "in", "kwargs", ":", "logging", ".", "warn", "(", "\"Deprecated keyword argument 'extent'. \"", "\"Use 'range' instead.\"", ")", "range", "=", "kwargs", "[", "\"extent\"", "]", "else", ":", "range", "=", "[", "[", "x", ".", "min", "(", ")", ",", "x", ".", "max", "(", ")", "]", ",", "[", "y", ".", "min", "(", ")", ",", "y", ".", "max", "(", ")", "]", "]", "# Set up the default plotting arguments.", "if", "color", "is", "None", ":", "color", "=", "\"k\"", "# Choose the default \"sigma\" contour levels.", "if", "levels", "is", "None", ":", "levels", "=", "1.0", "-", "np", ".", "exp", "(", "-", "0.5", "*", "np", ".", "arange", "(", "0.5", ",", "2.1", ",", "0.5", ")", "**", "2", ")", "# This is the color map for the density plot, over-plotted to indicate the", "# density of the points near the center.", "density_cmap", "=", "LinearSegmentedColormap", ".", "from_list", "(", "\"density_cmap\"", ",", "[", "color", ",", "(", "1", ",", "1", ",", "1", ",", "0", ")", "]", ")", "# This color map is used to hide the points at the high density areas.", "white_cmap", "=", "LinearSegmentedColormap", ".", "from_list", "(", "\"white_cmap\"", ",", "[", "(", "1", ",", "1", ",", "1", ")", ",", "(", "1", ",", "1", ",", "1", ")", "]", ",", "N", "=", "2", ")", "# This \"color map\" is the list of colors for the contour levels if the", "# contours are filled.", "rgba_color", "=", "colorConverter", ".", "to_rgba", "(", "color", ")", "contour_cmap", "=", "[", "list", "(", "rgba_color", ")", "for", "l", "in", "levels", "]", "+", "[", "rgba_color", "]", "for", "i", ",", "l", "in", "enumerate", "(", "levels", ")", ":", "contour_cmap", "[", "i", "]", "[", "-", "1", "]", "*=", "float", "(", "i", ")", "/", "(", "len", "(", "levels", ")", "+", "1", ")", "# We'll make the 2D histogram to directly estimate the density.", "try", ":", "H", ",", "X", ",", "Y", "=", "np", ".", "histogram2d", "(", "x", ".", "flatten", "(", ")", ",", "y", ".", "flatten", "(", ")", ",", "bins", "=", "bins", ",", "range", "=", "range", ",", "weights", "=", "weights", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "\"It looks like at least one of your sample columns \"", "\"have no dynamic range. You could try using the \"", "\"'range' argument.\"", ")", "if", "smooth", "is", "not", "None", ":", "if", "gaussian_filter", "is", "None", ":", "raise", "ImportError", "(", "\"Please install scipy for smoothing\"", ")", "H", "=", "gaussian_filter", "(", "H", ",", "smooth", ")", "# Compute the density levels.", "Hflat", "=", "H", ".", "flatten", "(", ")", "inds", "=", "np", ".", "argsort", "(", "Hflat", ")", "[", ":", ":", "-", "1", "]", "Hflat", "=", "Hflat", "[", "inds", "]", "sm", "=", "np", ".", "cumsum", "(", "Hflat", ")", "sm", "/=", "sm", "[", "-", "1", "]", "V", "=", "np", ".", "empty", "(", "len", "(", "levels", ")", ")", "for", "i", ",", "v0", "in", "enumerate", "(", "levels", ")", ":", "try", ":", "V", "[", "i", "]", "=", "Hflat", "[", "sm", "<=", "v0", "]", "[", "-", "1", "]", "except", ":", "V", "[", "i", "]", "=", "Hflat", "[", "0", "]", "V", ".", "sort", "(", ")", "m", "=", "np", ".", "diff", "(", "V", ")", "==", "0", "if", "np", ".", "any", "(", "m", ")", ":", "logging", ".", "warning", "(", "\"Too few points to create valid contours\"", ")", "while", "np", ".", "any", "(", "m", ")", ":", "V", "[", "np", ".", "where", "(", "m", ")", "[", "0", "]", "[", "0", "]", "]", "*=", "1.0", "-", "1e-4", "m", "=", "np", ".", "diff", "(", "V", ")", "==", "0", "V", ".", "sort", "(", ")", "# Compute the bin centers.", "X1", ",", "Y1", "=", "0.5", "*", "(", "X", "[", "1", ":", "]", "+", "X", "[", ":", "-", "1", "]", ")", ",", "0.5", "*", "(", "Y", "[", "1", ":", "]", "+", "Y", "[", ":", "-", "1", "]", ")", "# Extend the array for the sake of the contours at the plot edges.", "H2", "=", "H", ".", "min", "(", ")", "+", "np", ".", "zeros", "(", "(", "H", ".", "shape", "[", "0", "]", "+", "4", ",", "H", ".", "shape", "[", "1", "]", "+", "4", ")", ")", "H2", "[", "2", ":", "-", "2", ",", "2", ":", "-", "2", "]", "=", "H", "H2", "[", "2", ":", "-", "2", ",", "1", "]", "=", "H", "[", ":", ",", "0", "]", "H2", "[", "2", ":", "-", "2", ",", "-", "2", "]", "=", "H", "[", ":", ",", "-", "1", "]", "H2", "[", "1", ",", "2", ":", "-", "2", "]", "=", "H", "[", "0", "]", "H2", "[", "-", "2", ",", "2", ":", "-", "2", "]", "=", "H", "[", "-", "1", "]", "H2", "[", "1", ",", "1", "]", "=", "H", "[", "0", ",", "0", "]", "H2", "[", "1", ",", "-", "2", "]", "=", "H", "[", "0", ",", "-", "1", "]", "H2", "[", "-", "2", ",", "1", "]", "=", "H", "[", "-", "1", ",", "0", "]", "H2", "[", "-", "2", ",", "-", "2", "]", "=", "H", "[", "-", "1", ",", "-", "1", "]", "X2", "=", "np", ".", "concatenate", "(", "[", "X1", "[", "0", "]", "+", "np", ".", "array", "(", "[", "-", "2", ",", "-", "1", "]", ")", "*", "np", ".", "diff", "(", "X1", "[", ":", "2", "]", ")", ",", "X1", ",", "X1", "[", "-", "1", "]", "+", "np", ".", "array", "(", "[", "1", ",", "2", "]", ")", "*", "np", ".", "diff", "(", "X1", "[", "-", "2", ":", "]", ")", ",", "]", ")", "Y2", "=", "np", ".", "concatenate", "(", "[", "Y1", "[", "0", "]", "+", "np", ".", "array", "(", "[", "-", "2", ",", "-", "1", "]", ")", "*", "np", ".", "diff", "(", "Y1", "[", ":", "2", "]", ")", ",", "Y1", ",", "Y1", "[", "-", "1", "]", "+", "np", ".", "array", "(", "[", "1", ",", "2", "]", ")", "*", "np", ".", "diff", "(", "Y1", "[", "-", "2", ":", "]", ")", ",", "]", ")", "if", "plot_datapoints", ":", "if", "data_kwargs", "is", "None", ":", "data_kwargs", "=", "dict", "(", ")", "data_kwargs", "[", "\"color\"", "]", "=", "data_kwargs", ".", "get", "(", "\"color\"", ",", "color", ")", "data_kwargs", "[", "\"ms\"", "]", "=", "data_kwargs", ".", "get", "(", "\"ms\"", ",", "2.0", ")", "data_kwargs", "[", "\"mec\"", "]", "=", "data_kwargs", ".", "get", "(", "\"mec\"", ",", "\"none\"", ")", "data_kwargs", "[", "\"alpha\"", "]", "=", "data_kwargs", ".", "get", "(", "\"alpha\"", ",", "0.1", ")", "ax", ".", "plot", "(", "x", ",", "y", ",", "\"o\"", ",", "zorder", "=", "-", "1", ",", "rasterized", "=", "True", ",", "*", "*", "data_kwargs", ")", "# Plot the base fill to hide the densest data points.", "if", "(", "plot_contours", "or", "plot_density", ")", "and", "not", "no_fill_contours", ":", "ax", ".", "contourf", "(", "X2", ",", "Y2", ",", "H2", ".", "T", ",", "[", "V", ".", "min", "(", ")", ",", "H", ".", "max", "(", ")", "]", ",", "cmap", "=", "white_cmap", ",", "antialiased", "=", "False", ")", "if", "plot_contours", "and", "fill_contours", ":", "if", "contourf_kwargs", "is", "None", ":", "contourf_kwargs", "=", "dict", "(", ")", "contourf_kwargs", "[", "\"colors\"", "]", "=", "contourf_kwargs", ".", "get", "(", "\"colors\"", ",", "contour_cmap", ")", "contourf_kwargs", "[", "\"antialiased\"", "]", "=", "contourf_kwargs", ".", "get", "(", "\"antialiased\"", ",", "False", ")", "ax", ".", "contourf", "(", "X2", ",", "Y2", ",", "H2", ".", "T", ",", "np", ".", "concatenate", "(", "[", "[", "0", "]", ",", "V", ",", "[", "H", ".", "max", "(", ")", "*", "(", "1", "+", "1e-4", ")", "]", "]", ")", ",", "*", "*", "contourf_kwargs", ")", "# Plot the density map. This can't be plotted at the same time as the", "# contour fills.", "elif", "plot_density", ":", "ax", ".", "pcolor", "(", "X", ",", "Y", ",", "H", ".", "max", "(", ")", "-", "H", ".", "T", ",", "cmap", "=", "density_cmap", ")", "# Plot the contour edge colors.", "if", "plot_contours", ":", "if", "contour_kwargs", "is", "None", ":", "contour_kwargs", "=", "dict", "(", ")", "contour_kwargs", "[", "\"colors\"", "]", "=", "contour_kwargs", ".", "get", "(", "\"colors\"", ",", "color", ")", "ax", ".", "contour", "(", "X2", ",", "Y2", ",", "H2", ".", "T", ",", "V", ",", "*", "*", "contour_kwargs", ")", "ax", ".", "set_xlim", "(", "range", "[", "0", "]", ")", "ax", ".", "set_ylim", "(", "range", "[", "1", "]", ")" ]
Plot a 2-D histogram of samples. Parameters ---------- x, y : array_like (nsamples,) The samples. levels : array_like The contour levels to draw. ax : matplotlib.Axes (optional) A axes instance on which to add the 2-D histogram. plot_datapoints : bool (optional) Draw the individual data points. plot_density : bool (optional) Draw the density colormap. plot_contours : bool (optional) Draw the contours. no_fill_contours : bool (optional) Add no filling at all to the contours (unlike setting ``fill_contours=False``, which still adds a white fill at the densest points). fill_contours : bool (optional) Fill the contours. contour_kwargs : dict (optional) Any additional keyword arguments to pass to the `contour` method. contourf_kwargs : dict (optional) Any additional keyword arguments to pass to the `contourf` method. data_kwargs : dict (optional) Any additional keyword arguments to pass to the `plot` method when adding the individual data points.
[ "Plot", "a", "2", "-", "D", "histogram", "of", "samples", "." ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/helpers/corner/corner.py#L414-L592
annayqho/TheCannon
code/lamost/xcalib_5labels/paper_plots/distance_cut.py
calc_dist
def calc_dist(lamost_point, training_points, coeffs): """ avg dist from one lamost point to nearest 10 training points """ diff2 = (training_points - lamost_point)**2 dist = np.sqrt(np.sum(diff2*coeffs, axis=1)) return np.mean(dist[dist.argsort()][0:10])
python
def calc_dist(lamost_point, training_points, coeffs): """ avg dist from one lamost point to nearest 10 training points """ diff2 = (training_points - lamost_point)**2 dist = np.sqrt(np.sum(diff2*coeffs, axis=1)) return np.mean(dist[dist.argsort()][0:10])
[ "def", "calc_dist", "(", "lamost_point", ",", "training_points", ",", "coeffs", ")", ":", "diff2", "=", "(", "training_points", "-", "lamost_point", ")", "**", "2", "dist", "=", "np", ".", "sqrt", "(", "np", ".", "sum", "(", "diff2", "*", "coeffs", ",", "axis", "=", "1", ")", ")", "return", "np", ".", "mean", "(", "dist", "[", "dist", ".", "argsort", "(", ")", "]", "[", "0", ":", "10", "]", ")" ]
avg dist from one lamost point to nearest 10 training points
[ "avg", "dist", "from", "one", "lamost", "point", "to", "nearest", "10", "training", "points" ]
train
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/xcalib_5labels/paper_plots/distance_cut.py#L12-L16
datosgobar/textar
textar/text_classifier.py
TextClassifier.make_classifier
def make_classifier(self, name, ids, labels): """Entrenar un clasificador SVM sobre los textos cargados. Crea un clasificador que se guarda en el objeto bajo el nombre `name`. Args: name (str): Nombre para el clasidicador. ids (list): Se espera una lista de N ids de textos ya almacenados en el TextClassifier. labels (list): Se espera una lista de N etiquetas. Una por cada id de texto presente en ids. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_ """ if not all(np.in1d(ids, self.ids)): raise ValueError("Hay ids de textos que no se encuentran \ almacenados.") setattr(self, name, SGDClassifier()) classifier = getattr(self, name) indices = np.searchsorted(self.ids, ids) classifier.fit(self.tfidf_mat[indices, :], labels)
python
def make_classifier(self, name, ids, labels): """Entrenar un clasificador SVM sobre los textos cargados. Crea un clasificador que se guarda en el objeto bajo el nombre `name`. Args: name (str): Nombre para el clasidicador. ids (list): Se espera una lista de N ids de textos ya almacenados en el TextClassifier. labels (list): Se espera una lista de N etiquetas. Una por cada id de texto presente en ids. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_ """ if not all(np.in1d(ids, self.ids)): raise ValueError("Hay ids de textos que no se encuentran \ almacenados.") setattr(self, name, SGDClassifier()) classifier = getattr(self, name) indices = np.searchsorted(self.ids, ids) classifier.fit(self.tfidf_mat[indices, :], labels)
[ "def", "make_classifier", "(", "self", ",", "name", ",", "ids", ",", "labels", ")", ":", "if", "not", "all", "(", "np", ".", "in1d", "(", "ids", ",", "self", ".", "ids", ")", ")", ":", "raise", "ValueError", "(", "\"Hay ids de textos que no se encuentran \\\n almacenados.\"", ")", "setattr", "(", "self", ",", "name", ",", "SGDClassifier", "(", ")", ")", "classifier", "=", "getattr", "(", "self", ",", "name", ")", "indices", "=", "np", ".", "searchsorted", "(", "self", ".", "ids", ",", "ids", ")", "classifier", ".", "fit", "(", "self", ".", "tfidf_mat", "[", "indices", ",", ":", "]", ",", "labels", ")" ]
Entrenar un clasificador SVM sobre los textos cargados. Crea un clasificador que se guarda en el objeto bajo el nombre `name`. Args: name (str): Nombre para el clasidicador. ids (list): Se espera una lista de N ids de textos ya almacenados en el TextClassifier. labels (list): Se espera una lista de N etiquetas. Una por cada id de texto presente en ids. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_
[ "Entrenar", "un", "clasificador", "SVM", "sobre", "los", "textos", "cargados", "." ]
train
https://github.com/datosgobar/textar/blob/44fb5b537561facae0cdfe4fe1d108dfa26cfc6b/textar/text_classifier.py#L63-L83
datosgobar/textar
textar/text_classifier.py
TextClassifier.retrain
def retrain(self, name, ids, labels): """Reentrenar parcialmente un clasificador SVM. Args: name (str): Nombre para el clasidicador. ids (list): Se espera una lista de N ids de textos ya almacenados en el TextClassifier. labels (list): Se espera una lista de N etiquetas. Una por cada id de texto presente en ids. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_ """ if not all(np.in1d(ids, self.ids)): raise ValueError("Hay ids de textos que no se encuentran \ almacenados.") try: classifier = getattr(self, name) except AttributeError: raise AttributeError("No hay ningun clasificador con ese nombre.") indices = np.in1d(self.ids, ids) if isinstance(labels, str): labels = [labels] classifier.partial_fit(self.tfidf_mat[indices, :], labels)
python
def retrain(self, name, ids, labels): """Reentrenar parcialmente un clasificador SVM. Args: name (str): Nombre para el clasidicador. ids (list): Se espera una lista de N ids de textos ya almacenados en el TextClassifier. labels (list): Se espera una lista de N etiquetas. Una por cada id de texto presente en ids. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_ """ if not all(np.in1d(ids, self.ids)): raise ValueError("Hay ids de textos que no se encuentran \ almacenados.") try: classifier = getattr(self, name) except AttributeError: raise AttributeError("No hay ningun clasificador con ese nombre.") indices = np.in1d(self.ids, ids) if isinstance(labels, str): labels = [labels] classifier.partial_fit(self.tfidf_mat[indices, :], labels)
[ "def", "retrain", "(", "self", ",", "name", ",", "ids", ",", "labels", ")", ":", "if", "not", "all", "(", "np", ".", "in1d", "(", "ids", ",", "self", ".", "ids", ")", ")", ":", "raise", "ValueError", "(", "\"Hay ids de textos que no se encuentran \\\n almacenados.\"", ")", "try", ":", "classifier", "=", "getattr", "(", "self", ",", "name", ")", "except", "AttributeError", ":", "raise", "AttributeError", "(", "\"No hay ningun clasificador con ese nombre.\"", ")", "indices", "=", "np", ".", "in1d", "(", "self", ".", "ids", ",", "ids", ")", "if", "isinstance", "(", "labels", ",", "str", ")", ":", "labels", "=", "[", "labels", "]", "classifier", ".", "partial_fit", "(", "self", ".", "tfidf_mat", "[", "indices", ",", ":", "]", ",", "labels", ")" ]
Reentrenar parcialmente un clasificador SVM. Args: name (str): Nombre para el clasidicador. ids (list): Se espera una lista de N ids de textos ya almacenados en el TextClassifier. labels (list): Se espera una lista de N etiquetas. Una por cada id de texto presente en ids. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_
[ "Reentrenar", "parcialmente", "un", "clasificador", "SVM", "." ]
train
https://github.com/datosgobar/textar/blob/44fb5b537561facae0cdfe4fe1d108dfa26cfc6b/textar/text_classifier.py#L85-L107
datosgobar/textar
textar/text_classifier.py
TextClassifier.classify
def classify(self, classifier_name, examples, max_labels=None, goodness_of_fit=False): """Usar un clasificador SVM para etiquetar textos nuevos. Args: classifier_name (str): Nombre del clasidicador a usar. examples (list or str): Se espera un ejemplo o una lista de ejemplos a clasificar en texto plano o en ids. max_labels (int, optional): Cantidad de etiquetas a devolver para cada ejemplo. Si se devuelve mas de una el orden corresponde a la plausibilidad de cada etiqueta. Si es None devuelve todas las etiquetas posibles. goodness_of_fit (bool, optional): Indica si devuelve o no una medida de cuan buenas son las etiquetas. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_ Returns: tuple (array, array): (labels_considerados, puntajes) labels_considerados: Las etiquetas que se consideraron para clasificar. puntajes: Cuanto más alto el puntaje, más probable es que la etiqueta considerada sea la adecuada. """ classifier = getattr(self, classifier_name) texts_vectors = self._make_text_vectors(examples) return classifier.classes_, classifier.decision_function(texts_vectors)
python
def classify(self, classifier_name, examples, max_labels=None, goodness_of_fit=False): """Usar un clasificador SVM para etiquetar textos nuevos. Args: classifier_name (str): Nombre del clasidicador a usar. examples (list or str): Se espera un ejemplo o una lista de ejemplos a clasificar en texto plano o en ids. max_labels (int, optional): Cantidad de etiquetas a devolver para cada ejemplo. Si se devuelve mas de una el orden corresponde a la plausibilidad de cada etiqueta. Si es None devuelve todas las etiquetas posibles. goodness_of_fit (bool, optional): Indica si devuelve o no una medida de cuan buenas son las etiquetas. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_ Returns: tuple (array, array): (labels_considerados, puntajes) labels_considerados: Las etiquetas que se consideraron para clasificar. puntajes: Cuanto más alto el puntaje, más probable es que la etiqueta considerada sea la adecuada. """ classifier = getattr(self, classifier_name) texts_vectors = self._make_text_vectors(examples) return classifier.classes_, classifier.decision_function(texts_vectors)
[ "def", "classify", "(", "self", ",", "classifier_name", ",", "examples", ",", "max_labels", "=", "None", ",", "goodness_of_fit", "=", "False", ")", ":", "classifier", "=", "getattr", "(", "self", ",", "classifier_name", ")", "texts_vectors", "=", "self", ".", "_make_text_vectors", "(", "examples", ")", "return", "classifier", ".", "classes_", ",", "classifier", ".", "decision_function", "(", "texts_vectors", ")" ]
Usar un clasificador SVM para etiquetar textos nuevos. Args: classifier_name (str): Nombre del clasidicador a usar. examples (list or str): Se espera un ejemplo o una lista de ejemplos a clasificar en texto plano o en ids. max_labels (int, optional): Cantidad de etiquetas a devolver para cada ejemplo. Si se devuelve mas de una el orden corresponde a la plausibilidad de cada etiqueta. Si es None devuelve todas las etiquetas posibles. goodness_of_fit (bool, optional): Indica si devuelve o no una medida de cuan buenas son las etiquetas. Nota: Usa el clasificador de `Scikit-learn <http://scikit-learn.org/>`_ Returns: tuple (array, array): (labels_considerados, puntajes) labels_considerados: Las etiquetas que se consideraron para clasificar. puntajes: Cuanto más alto el puntaje, más probable es que la etiqueta considerada sea la adecuada.
[ "Usar", "un", "clasificador", "SVM", "para", "etiquetar", "textos", "nuevos", "." ]
train
https://github.com/datosgobar/textar/blob/44fb5b537561facae0cdfe4fe1d108dfa26cfc6b/textar/text_classifier.py#L109-L135
datosgobar/textar
textar/text_classifier.py
TextClassifier._make_text_vectors
def _make_text_vectors(self, examples): """Funcion para generar los vectores tf-idf de una lista de textos. Args: examples (list or str): Se espera un ejemplo o una lista de: o bien ids, o bien textos. Returns: textvec (sparse matrix): Devuelve una matriz sparse que contiene los vectores TF-IDF para los ejemplos que se pasan de entrada. El tamaño de la matriz es de (N, T) donde N es la cantidad de ejemplos y T es la cantidad de términos en el vocabulario. """ if isinstance(examples, str): if examples in self.ids: textvec = self.tfidf_mat[self.ids == examples, :] else: textvec = self.vectorizer.transform([examples]) textvec = self.transformer.transform(textvec) elif type(examples) is list: if all(np.in1d(examples, self.ids)): textvec = self.tfidf_mat[np.in1d(self.ids, examples)] elif not any(np.in1d(examples, self.ids)): textvec = self.vectorizer.transform(examples) textvec = self.transformer.transform(textvec) else: raise ValueError("Las listas de ejemplos deben ser todos ids\ de textos almacenados o todos textos planos") else: raise TypeError("Los ejemplos no son del tipo de dato adecuado.") return textvec
python
def _make_text_vectors(self, examples): """Funcion para generar los vectores tf-idf de una lista de textos. Args: examples (list or str): Se espera un ejemplo o una lista de: o bien ids, o bien textos. Returns: textvec (sparse matrix): Devuelve una matriz sparse que contiene los vectores TF-IDF para los ejemplos que se pasan de entrada. El tamaño de la matriz es de (N, T) donde N es la cantidad de ejemplos y T es la cantidad de términos en el vocabulario. """ if isinstance(examples, str): if examples in self.ids: textvec = self.tfidf_mat[self.ids == examples, :] else: textvec = self.vectorizer.transform([examples]) textvec = self.transformer.transform(textvec) elif type(examples) is list: if all(np.in1d(examples, self.ids)): textvec = self.tfidf_mat[np.in1d(self.ids, examples)] elif not any(np.in1d(examples, self.ids)): textvec = self.vectorizer.transform(examples) textvec = self.transformer.transform(textvec) else: raise ValueError("Las listas de ejemplos deben ser todos ids\ de textos almacenados o todos textos planos") else: raise TypeError("Los ejemplos no son del tipo de dato adecuado.") return textvec
[ "def", "_make_text_vectors", "(", "self", ",", "examples", ")", ":", "if", "isinstance", "(", "examples", ",", "str", ")", ":", "if", "examples", "in", "self", ".", "ids", ":", "textvec", "=", "self", ".", "tfidf_mat", "[", "self", ".", "ids", "==", "examples", ",", ":", "]", "else", ":", "textvec", "=", "self", ".", "vectorizer", ".", "transform", "(", "[", "examples", "]", ")", "textvec", "=", "self", ".", "transformer", ".", "transform", "(", "textvec", ")", "elif", "type", "(", "examples", ")", "is", "list", ":", "if", "all", "(", "np", ".", "in1d", "(", "examples", ",", "self", ".", "ids", ")", ")", ":", "textvec", "=", "self", ".", "tfidf_mat", "[", "np", ".", "in1d", "(", "self", ".", "ids", ",", "examples", ")", "]", "elif", "not", "any", "(", "np", ".", "in1d", "(", "examples", ",", "self", ".", "ids", ")", ")", ":", "textvec", "=", "self", ".", "vectorizer", ".", "transform", "(", "examples", ")", "textvec", "=", "self", ".", "transformer", ".", "transform", "(", "textvec", ")", "else", ":", "raise", "ValueError", "(", "\"Las listas de ejemplos deben ser todos ids\\\n de textos almacenados o todos textos planos\"", ")", "else", ":", "raise", "TypeError", "(", "\"Los ejemplos no son del tipo de dato adecuado.\"", ")", "return", "textvec" ]
Funcion para generar los vectores tf-idf de una lista de textos. Args: examples (list or str): Se espera un ejemplo o una lista de: o bien ids, o bien textos. Returns: textvec (sparse matrix): Devuelve una matriz sparse que contiene los vectores TF-IDF para los ejemplos que se pasan de entrada. El tamaño de la matriz es de (N, T) donde N es la cantidad de ejemplos y T es la cantidad de términos en el vocabulario.
[ "Funcion", "para", "generar", "los", "vectores", "tf", "-", "idf", "de", "una", "lista", "de", "textos", "." ]
train
https://github.com/datosgobar/textar/blob/44fb5b537561facae0cdfe4fe1d108dfa26cfc6b/textar/text_classifier.py#L137-L167
datosgobar/textar
textar/text_classifier.py
TextClassifier.get_similar
def get_similar(self, example, max_similars=3, similarity_cutoff=None, term_diff_max_rank=10, filter_list=None, term_diff_cutoff=None): """Devuelve textos similares al ejemplo dentro de los textos entrenados. Nota: Usa la distancia de coseno del vector de features TF-IDF Args: example (str): Se espera un id de texto o un texto a partir del cual se buscaran otros textos similares. max_similars (int, optional): Cantidad de textos similares a devolver. similarity_cutoff (float, optional): Valor umbral de similaridad para definir que dos textos son similares entre si. term_diff_max_rank (int, optional): Este valor sirve para controlar el umbral con el que los terminos son considerados importantes a la hora de recuperar textos (no afecta el funcionamiento de que textos se consideran cercanos, solo la cantidad de terminos que se devuelven en best_words). filter_list (list): Lista de ids de textos en la cual buscar textos similares. term_diff_cutoff (float): Deprecado. Se quitara en el futuro. Returns: tuple (list, list, list): (text_ids, sorted_dist, best_words) text_ids (list of str): Devuelve los ids de los textos sugeridos. sorted_dist (list of float): Devuelve la distancia entre las opciones sugeridas y el ejemplo dado como entrada. best_words (list of list): Para cada sugerencia devuelve las palabras mas relevantes que se usaron para seleccionar esa sugerencia. """ if term_diff_cutoff: warnings.warn('Deprecado. Quedo sin uso. Se quitara en el futuro.', DeprecationWarning) if filter_list: if max_similars > len(filter_list): raise ValueError("No se pueden pedir mas sugerencias que la \ cantidad de textos en `filter_list`.") else: filt_idx = np.in1d(self.ids, filter_list) elif max_similars > self.term_mat.shape[0]: raise ValueError("No se pueden pedir mas sugerencias que la \ cantidad de textos que hay almacenados.") else: filt_idx = np.ones(len(self.ids), dtype=bool) # Saco los textos compuestos solo por stop_words good_ids = np.array(np.sum(self.term_mat, 1) > 0).squeeze() filt_idx = filt_idx & good_ids filt_idx_to_general_idx = np.flatnonzero(filt_idx) if example in self.ids: index = self.ids == example exmpl_vec = self.tfidf_mat[index, :] distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx], exmpl_vec)) # Pongo la distancia a si mismo como inf, par que no se devuelva a # si mismo como una opcion if filter_list and example in filter_list: distances[filter_list.index(example)] = np.inf elif not filter_list: idx_example = np.searchsorted(self.ids, example) filt_idx_example = np.searchsorted(np.flatnonzero(filt_idx), idx_example) distances[filt_idx_example] = np.inf else: exmpl_vec = self.vectorizer.transform([example]) # contar terminos exmpl_vec = self.transformer.transform(exmpl_vec) # calcular tfidf distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx], exmpl_vec)) if np.sum(exmpl_vec) == 0: return [], [], [] sorted_indices = np.argsort(distances) closest_n = sorted_indices[:max_similars] sorted_dist = distances[closest_n] if similarity_cutoff: closest_n = closest_n[sorted_dist < similarity_cutoff] sorted_dist = sorted_dist[sorted_dist < similarity_cutoff] best_words = [] # Calculo palabras relevantes para cada sugerencia best_example = np.squeeze(exmpl_vec.toarray()) sorted_example_weights = np.flipud(np.argsort(best_example)) truncated_max_rank = min(term_diff_max_rank, np.sum(best_example > 0)) best_example_words = sorted_example_weights[:truncated_max_rank] for suggested in closest_n: suggested_idx = filt_idx_to_general_idx[suggested] test_vec = np.squeeze(self.tfidf_mat[suggested_idx, :].toarray()) sorted_test_weights = np.flipud(np.argsort(test_vec)) truncated_max_rank = min(term_diff_max_rank, np.sum(test_vec > 0)) best_test = sorted_test_weights[:truncated_max_rank] best_words_ids = np.intersect1d(best_example_words, best_test) best_words.append([k for k, v in self.vectorizer.vocabulary_.items() if v in best_words_ids]) # Filtro dentro de las buscadas if filter_list: text_ids = self.ids[filt_idx_to_general_idx[closest_n]] else: text_ids = self.ids[closest_n] return list(text_ids), list(sorted_dist), best_words
python
def get_similar(self, example, max_similars=3, similarity_cutoff=None, term_diff_max_rank=10, filter_list=None, term_diff_cutoff=None): """Devuelve textos similares al ejemplo dentro de los textos entrenados. Nota: Usa la distancia de coseno del vector de features TF-IDF Args: example (str): Se espera un id de texto o un texto a partir del cual se buscaran otros textos similares. max_similars (int, optional): Cantidad de textos similares a devolver. similarity_cutoff (float, optional): Valor umbral de similaridad para definir que dos textos son similares entre si. term_diff_max_rank (int, optional): Este valor sirve para controlar el umbral con el que los terminos son considerados importantes a la hora de recuperar textos (no afecta el funcionamiento de que textos se consideran cercanos, solo la cantidad de terminos que se devuelven en best_words). filter_list (list): Lista de ids de textos en la cual buscar textos similares. term_diff_cutoff (float): Deprecado. Se quitara en el futuro. Returns: tuple (list, list, list): (text_ids, sorted_dist, best_words) text_ids (list of str): Devuelve los ids de los textos sugeridos. sorted_dist (list of float): Devuelve la distancia entre las opciones sugeridas y el ejemplo dado como entrada. best_words (list of list): Para cada sugerencia devuelve las palabras mas relevantes que se usaron para seleccionar esa sugerencia. """ if term_diff_cutoff: warnings.warn('Deprecado. Quedo sin uso. Se quitara en el futuro.', DeprecationWarning) if filter_list: if max_similars > len(filter_list): raise ValueError("No se pueden pedir mas sugerencias que la \ cantidad de textos en `filter_list`.") else: filt_idx = np.in1d(self.ids, filter_list) elif max_similars > self.term_mat.shape[0]: raise ValueError("No se pueden pedir mas sugerencias que la \ cantidad de textos que hay almacenados.") else: filt_idx = np.ones(len(self.ids), dtype=bool) # Saco los textos compuestos solo por stop_words good_ids = np.array(np.sum(self.term_mat, 1) > 0).squeeze() filt_idx = filt_idx & good_ids filt_idx_to_general_idx = np.flatnonzero(filt_idx) if example in self.ids: index = self.ids == example exmpl_vec = self.tfidf_mat[index, :] distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx], exmpl_vec)) # Pongo la distancia a si mismo como inf, par que no se devuelva a # si mismo como una opcion if filter_list and example in filter_list: distances[filter_list.index(example)] = np.inf elif not filter_list: idx_example = np.searchsorted(self.ids, example) filt_idx_example = np.searchsorted(np.flatnonzero(filt_idx), idx_example) distances[filt_idx_example] = np.inf else: exmpl_vec = self.vectorizer.transform([example]) # contar terminos exmpl_vec = self.transformer.transform(exmpl_vec) # calcular tfidf distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx], exmpl_vec)) if np.sum(exmpl_vec) == 0: return [], [], [] sorted_indices = np.argsort(distances) closest_n = sorted_indices[:max_similars] sorted_dist = distances[closest_n] if similarity_cutoff: closest_n = closest_n[sorted_dist < similarity_cutoff] sorted_dist = sorted_dist[sorted_dist < similarity_cutoff] best_words = [] # Calculo palabras relevantes para cada sugerencia best_example = np.squeeze(exmpl_vec.toarray()) sorted_example_weights = np.flipud(np.argsort(best_example)) truncated_max_rank = min(term_diff_max_rank, np.sum(best_example > 0)) best_example_words = sorted_example_weights[:truncated_max_rank] for suggested in closest_n: suggested_idx = filt_idx_to_general_idx[suggested] test_vec = np.squeeze(self.tfidf_mat[suggested_idx, :].toarray()) sorted_test_weights = np.flipud(np.argsort(test_vec)) truncated_max_rank = min(term_diff_max_rank, np.sum(test_vec > 0)) best_test = sorted_test_weights[:truncated_max_rank] best_words_ids = np.intersect1d(best_example_words, best_test) best_words.append([k for k, v in self.vectorizer.vocabulary_.items() if v in best_words_ids]) # Filtro dentro de las buscadas if filter_list: text_ids = self.ids[filt_idx_to_general_idx[closest_n]] else: text_ids = self.ids[closest_n] return list(text_ids), list(sorted_dist), best_words
[ "def", "get_similar", "(", "self", ",", "example", ",", "max_similars", "=", "3", ",", "similarity_cutoff", "=", "None", ",", "term_diff_max_rank", "=", "10", ",", "filter_list", "=", "None", ",", "term_diff_cutoff", "=", "None", ")", ":", "if", "term_diff_cutoff", ":", "warnings", ".", "warn", "(", "'Deprecado. Quedo sin uso. Se quitara en el futuro.'", ",", "DeprecationWarning", ")", "if", "filter_list", ":", "if", "max_similars", ">", "len", "(", "filter_list", ")", ":", "raise", "ValueError", "(", "\"No se pueden pedir mas sugerencias que la \\\n cantidad de textos en `filter_list`.\"", ")", "else", ":", "filt_idx", "=", "np", ".", "in1d", "(", "self", ".", "ids", ",", "filter_list", ")", "elif", "max_similars", ">", "self", ".", "term_mat", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "\"No se pueden pedir mas sugerencias que la \\\n cantidad de textos que hay almacenados.\"", ")", "else", ":", "filt_idx", "=", "np", ".", "ones", "(", "len", "(", "self", ".", "ids", ")", ",", "dtype", "=", "bool", ")", "# Saco los textos compuestos solo por stop_words", "good_ids", "=", "np", ".", "array", "(", "np", ".", "sum", "(", "self", ".", "term_mat", ",", "1", ")", ">", "0", ")", ".", "squeeze", "(", ")", "filt_idx", "=", "filt_idx", "&", "good_ids", "filt_idx_to_general_idx", "=", "np", ".", "flatnonzero", "(", "filt_idx", ")", "if", "example", "in", "self", ".", "ids", ":", "index", "=", "self", ".", "ids", "==", "example", "exmpl_vec", "=", "self", ".", "tfidf_mat", "[", "index", ",", ":", "]", "distances", "=", "np", ".", "squeeze", "(", "pairwise_distances", "(", "self", ".", "tfidf_mat", "[", "filt_idx", "]", ",", "exmpl_vec", ")", ")", "# Pongo la distancia a si mismo como inf, par que no se devuelva a", "# si mismo como una opcion", "if", "filter_list", "and", "example", "in", "filter_list", ":", "distances", "[", "filter_list", ".", "index", "(", "example", ")", "]", "=", "np", ".", "inf", "elif", "not", "filter_list", ":", "idx_example", "=", "np", ".", "searchsorted", "(", "self", ".", "ids", ",", "example", ")", "filt_idx_example", "=", "np", ".", "searchsorted", "(", "np", ".", "flatnonzero", "(", "filt_idx", ")", ",", "idx_example", ")", "distances", "[", "filt_idx_example", "]", "=", "np", ".", "inf", "else", ":", "exmpl_vec", "=", "self", ".", "vectorizer", ".", "transform", "(", "[", "example", "]", ")", "# contar terminos", "exmpl_vec", "=", "self", ".", "transformer", ".", "transform", "(", "exmpl_vec", ")", "# calcular tfidf", "distances", "=", "np", ".", "squeeze", "(", "pairwise_distances", "(", "self", ".", "tfidf_mat", "[", "filt_idx", "]", ",", "exmpl_vec", ")", ")", "if", "np", ".", "sum", "(", "exmpl_vec", ")", "==", "0", ":", "return", "[", "]", ",", "[", "]", ",", "[", "]", "sorted_indices", "=", "np", ".", "argsort", "(", "distances", ")", "closest_n", "=", "sorted_indices", "[", ":", "max_similars", "]", "sorted_dist", "=", "distances", "[", "closest_n", "]", "if", "similarity_cutoff", ":", "closest_n", "=", "closest_n", "[", "sorted_dist", "<", "similarity_cutoff", "]", "sorted_dist", "=", "sorted_dist", "[", "sorted_dist", "<", "similarity_cutoff", "]", "best_words", "=", "[", "]", "# Calculo palabras relevantes para cada sugerencia", "best_example", "=", "np", ".", "squeeze", "(", "exmpl_vec", ".", "toarray", "(", ")", ")", "sorted_example_weights", "=", "np", ".", "flipud", "(", "np", ".", "argsort", "(", "best_example", ")", ")", "truncated_max_rank", "=", "min", "(", "term_diff_max_rank", ",", "np", ".", "sum", "(", "best_example", ">", "0", ")", ")", "best_example_words", "=", "sorted_example_weights", "[", ":", "truncated_max_rank", "]", "for", "suggested", "in", "closest_n", ":", "suggested_idx", "=", "filt_idx_to_general_idx", "[", "suggested", "]", "test_vec", "=", "np", ".", "squeeze", "(", "self", ".", "tfidf_mat", "[", "suggested_idx", ",", ":", "]", ".", "toarray", "(", ")", ")", "sorted_test_weights", "=", "np", ".", "flipud", "(", "np", ".", "argsort", "(", "test_vec", ")", ")", "truncated_max_rank", "=", "min", "(", "term_diff_max_rank", ",", "np", ".", "sum", "(", "test_vec", ">", "0", ")", ")", "best_test", "=", "sorted_test_weights", "[", ":", "truncated_max_rank", "]", "best_words_ids", "=", "np", ".", "intersect1d", "(", "best_example_words", ",", "best_test", ")", "best_words", ".", "append", "(", "[", "k", "for", "k", ",", "v", "in", "self", ".", "vectorizer", ".", "vocabulary_", ".", "items", "(", ")", "if", "v", "in", "best_words_ids", "]", ")", "# Filtro dentro de las buscadas", "if", "filter_list", ":", "text_ids", "=", "self", ".", "ids", "[", "filt_idx_to_general_idx", "[", "closest_n", "]", "]", "else", ":", "text_ids", "=", "self", ".", "ids", "[", "closest_n", "]", "return", "list", "(", "text_ids", ")", ",", "list", "(", "sorted_dist", ")", ",", "best_words" ]
Devuelve textos similares al ejemplo dentro de los textos entrenados. Nota: Usa la distancia de coseno del vector de features TF-IDF Args: example (str): Se espera un id de texto o un texto a partir del cual se buscaran otros textos similares. max_similars (int, optional): Cantidad de textos similares a devolver. similarity_cutoff (float, optional): Valor umbral de similaridad para definir que dos textos son similares entre si. term_diff_max_rank (int, optional): Este valor sirve para controlar el umbral con el que los terminos son considerados importantes a la hora de recuperar textos (no afecta el funcionamiento de que textos se consideran cercanos, solo la cantidad de terminos que se devuelven en best_words). filter_list (list): Lista de ids de textos en la cual buscar textos similares. term_diff_cutoff (float): Deprecado. Se quitara en el futuro. Returns: tuple (list, list, list): (text_ids, sorted_dist, best_words) text_ids (list of str): Devuelve los ids de los textos sugeridos. sorted_dist (list of float): Devuelve la distancia entre las opciones sugeridas y el ejemplo dado como entrada. best_words (list of list): Para cada sugerencia devuelve las palabras mas relevantes que se usaron para seleccionar esa sugerencia.
[ "Devuelve", "textos", "similares", "al", "ejemplo", "dentro", "de", "los", "textos", "entrenados", "." ]
train
https://github.com/datosgobar/textar/blob/44fb5b537561facae0cdfe4fe1d108dfa26cfc6b/textar/text_classifier.py#L169-L274
datosgobar/textar
textar/text_classifier.py
TextClassifier.reload_texts
def reload_texts(self, texts, ids, vocabulary=None): """Calcula los vectores de terminos de textos y los almacena. A diferencia de :func:`~TextClassifier.TextClassifier.store_text` esta funcion borra cualquier informacion almacenada y comienza el conteo desde cero. Se usa para redefinir el vocabulario sobre el que se construyen los vectores. Args: texts (list): Una lista de N textos a incorporar. ids (list): Una lista de N ids alfanumericos para los textos. """ self._check_id_length(ids) self.ids = np.array(sorted(ids)) if vocabulary: self.vectorizer.vocabulary = vocabulary sorted_texts = [x for (y, x) in sorted(zip(ids, texts))] self.term_mat = self.vectorizer.fit_transform(sorted_texts) self._update_tfidf()
python
def reload_texts(self, texts, ids, vocabulary=None): """Calcula los vectores de terminos de textos y los almacena. A diferencia de :func:`~TextClassifier.TextClassifier.store_text` esta funcion borra cualquier informacion almacenada y comienza el conteo desde cero. Se usa para redefinir el vocabulario sobre el que se construyen los vectores. Args: texts (list): Una lista de N textos a incorporar. ids (list): Una lista de N ids alfanumericos para los textos. """ self._check_id_length(ids) self.ids = np.array(sorted(ids)) if vocabulary: self.vectorizer.vocabulary = vocabulary sorted_texts = [x for (y, x) in sorted(zip(ids, texts))] self.term_mat = self.vectorizer.fit_transform(sorted_texts) self._update_tfidf()
[ "def", "reload_texts", "(", "self", ",", "texts", ",", "ids", ",", "vocabulary", "=", "None", ")", ":", "self", ".", "_check_id_length", "(", "ids", ")", "self", ".", "ids", "=", "np", ".", "array", "(", "sorted", "(", "ids", ")", ")", "if", "vocabulary", ":", "self", ".", "vectorizer", ".", "vocabulary", "=", "vocabulary", "sorted_texts", "=", "[", "x", "for", "(", "y", ",", "x", ")", "in", "sorted", "(", "zip", "(", "ids", ",", "texts", ")", ")", "]", "self", ".", "term_mat", "=", "self", ".", "vectorizer", ".", "fit_transform", "(", "sorted_texts", ")", "self", ".", "_update_tfidf", "(", ")" ]
Calcula los vectores de terminos de textos y los almacena. A diferencia de :func:`~TextClassifier.TextClassifier.store_text` esta funcion borra cualquier informacion almacenada y comienza el conteo desde cero. Se usa para redefinir el vocabulario sobre el que se construyen los vectores. Args: texts (list): Una lista de N textos a incorporar. ids (list): Una lista de N ids alfanumericos para los textos.
[ "Calcula", "los", "vectores", "de", "terminos", "de", "textos", "y", "los", "almacena", "." ]
train
https://github.com/datosgobar/textar/blob/44fb5b537561facae0cdfe4fe1d108dfa26cfc6b/textar/text_classifier.py#L276-L294
sckott/pygbif
pygbif/species/name_suggest.py
name_suggest
def name_suggest(q=None, datasetKey=None, rank=None, limit=100, offset=None, **kwargs): ''' A quick and simple autocomplete service that returns up to 20 name usages by doing prefix matching against the scientific name. Results are ordered by relevance. :param q: [str] Simple search parameter. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` (Required) :param datasetKey: [str] Filters by the checklist dataset key (a uuid, see examples) :param rank: [str] A taxonomic rank. One of ``class``, ``cultivar``, ``cultivar_group``, ``domain``, ``family``, ``form``, ``genus``, ``informal``, ``infrageneric_name``, ``infraorder``, ``infraspecific_name``, ``infrasubspecific_name``, ``kingdom``, ``order``, ``phylum``, ``section``, ``series``, ``species``, ``strain``, ``subclass``, ``subfamily``, ``subform``, ``subgenus``, ``subkingdom``, ``suborder``, ``subphylum``, ``subsection``, ``subseries``, ``subspecies``, ``subtribe``, ``subvariety``, ``superclass``, ``superfamily``, ``superorder``, ``superphylum``, ``suprageneric_name``, ``tribe``, ``unranked``, or ``variety``. :param limit: [fixnum] Number of records to return. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) :return: A dictionary References: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species species.name_suggest(q='Puma concolor') x = species.name_suggest(q='Puma') species.name_suggest(q='Puma', rank="genus") species.name_suggest(q='Puma', rank="subspecies") species.name_suggest(q='Puma', rank="species") species.name_suggest(q='Puma', rank="infraspecific_name") species.name_suggest(q='Puma', limit=2) ''' url = gbif_baseurl + 'species/suggest' args = {'q':q, 'rank':rank, 'offset':offset, 'limit':limit} return gbif_GET(url, args, **kwargs)
python
def name_suggest(q=None, datasetKey=None, rank=None, limit=100, offset=None, **kwargs): ''' A quick and simple autocomplete service that returns up to 20 name usages by doing prefix matching against the scientific name. Results are ordered by relevance. :param q: [str] Simple search parameter. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` (Required) :param datasetKey: [str] Filters by the checklist dataset key (a uuid, see examples) :param rank: [str] A taxonomic rank. One of ``class``, ``cultivar``, ``cultivar_group``, ``domain``, ``family``, ``form``, ``genus``, ``informal``, ``infrageneric_name``, ``infraorder``, ``infraspecific_name``, ``infrasubspecific_name``, ``kingdom``, ``order``, ``phylum``, ``section``, ``series``, ``species``, ``strain``, ``subclass``, ``subfamily``, ``subform``, ``subgenus``, ``subkingdom``, ``suborder``, ``subphylum``, ``subsection``, ``subseries``, ``subspecies``, ``subtribe``, ``subvariety``, ``superclass``, ``superfamily``, ``superorder``, ``superphylum``, ``suprageneric_name``, ``tribe``, ``unranked``, or ``variety``. :param limit: [fixnum] Number of records to return. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) :return: A dictionary References: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species species.name_suggest(q='Puma concolor') x = species.name_suggest(q='Puma') species.name_suggest(q='Puma', rank="genus") species.name_suggest(q='Puma', rank="subspecies") species.name_suggest(q='Puma', rank="species") species.name_suggest(q='Puma', rank="infraspecific_name") species.name_suggest(q='Puma', limit=2) ''' url = gbif_baseurl + 'species/suggest' args = {'q':q, 'rank':rank, 'offset':offset, 'limit':limit} return gbif_GET(url, args, **kwargs)
[ "def", "name_suggest", "(", "q", "=", "None", ",", "datasetKey", "=", "None", ",", "rank", "=", "None", ",", "limit", "=", "100", ",", "offset", "=", "None", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'species/suggest'", "args", "=", "{", "'q'", ":", "q", ",", "'rank'", ":", "rank", ",", "'offset'", ":", "offset", ",", "'limit'", ":", "limit", "}", "return", "gbif_GET", "(", "url", ",", "args", ",", "*", "*", "kwargs", ")" ]
A quick and simple autocomplete service that returns up to 20 name usages by doing prefix matching against the scientific name. Results are ordered by relevance. :param q: [str] Simple search parameter. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` (Required) :param datasetKey: [str] Filters by the checklist dataset key (a uuid, see examples) :param rank: [str] A taxonomic rank. One of ``class``, ``cultivar``, ``cultivar_group``, ``domain``, ``family``, ``form``, ``genus``, ``informal``, ``infrageneric_name``, ``infraorder``, ``infraspecific_name``, ``infrasubspecific_name``, ``kingdom``, ``order``, ``phylum``, ``section``, ``series``, ``species``, ``strain``, ``subclass``, ``subfamily``, ``subform``, ``subgenus``, ``subkingdom``, ``suborder``, ``subphylum``, ``subsection``, ``subseries``, ``subspecies``, ``subtribe``, ``subvariety``, ``superclass``, ``superfamily``, ``superorder``, ``superphylum``, ``suprageneric_name``, ``tribe``, ``unranked``, or ``variety``. :param limit: [fixnum] Number of records to return. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) :return: A dictionary References: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species species.name_suggest(q='Puma concolor') x = species.name_suggest(q='Puma') species.name_suggest(q='Puma', rank="genus") species.name_suggest(q='Puma', rank="subspecies") species.name_suggest(q='Puma', rank="species") species.name_suggest(q='Puma', rank="infraspecific_name") species.name_suggest(q='Puma', limit=2)
[ "A", "quick", "and", "simple", "autocomplete", "service", "that", "returns", "up", "to", "20", "name", "usages", "by", "doing", "prefix", "matching", "against", "the", "scientific", "name", ".", "Results", "are", "ordered", "by", "relevance", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/species/name_suggest.py#L3-L39
sckott/pygbif
pygbif/registry/datasets.py
dataset_metrics
def dataset_metrics(uuid, **kwargs): ''' Get details on a GBIF dataset. :param uuid: [str] One or more dataset UUIDs. See examples. References: http://www.gbif.org/developer/registry#datasetMetrics Usage:: from pygbif import registry registry.dataset_metrics(uuid='3f8a1297-3259-4700-91fc-acc4170b27ce') registry.dataset_metrics(uuid='66dd0960-2d7d-46ee-a491-87b9adcfe7b1') registry.dataset_metrics(uuid=['3f8a1297-3259-4700-91fc-acc4170b27ce', '66dd0960-2d7d-46ee-a491-87b9adcfe7b1']) ''' def getdata(x, **kwargs): url = gbif_baseurl + 'dataset/' + x + '/metrics' return gbif_GET(url, {}, **kwargs) if len2(uuid) == 1: return getdata(uuid) else: return [getdata(x) for x in uuid]
python
def dataset_metrics(uuid, **kwargs): ''' Get details on a GBIF dataset. :param uuid: [str] One or more dataset UUIDs. See examples. References: http://www.gbif.org/developer/registry#datasetMetrics Usage:: from pygbif import registry registry.dataset_metrics(uuid='3f8a1297-3259-4700-91fc-acc4170b27ce') registry.dataset_metrics(uuid='66dd0960-2d7d-46ee-a491-87b9adcfe7b1') registry.dataset_metrics(uuid=['3f8a1297-3259-4700-91fc-acc4170b27ce', '66dd0960-2d7d-46ee-a491-87b9adcfe7b1']) ''' def getdata(x, **kwargs): url = gbif_baseurl + 'dataset/' + x + '/metrics' return gbif_GET(url, {}, **kwargs) if len2(uuid) == 1: return getdata(uuid) else: return [getdata(x) for x in uuid]
[ "def", "dataset_metrics", "(", "uuid", ",", "*", "*", "kwargs", ")", ":", "def", "getdata", "(", "x", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'dataset/'", "+", "x", "+", "'/metrics'", "return", "gbif_GET", "(", "url", ",", "{", "}", ",", "*", "*", "kwargs", ")", "if", "len2", "(", "uuid", ")", "==", "1", ":", "return", "getdata", "(", "uuid", ")", "else", ":", "return", "[", "getdata", "(", "x", ")", "for", "x", "in", "uuid", "]" ]
Get details on a GBIF dataset. :param uuid: [str] One or more dataset UUIDs. See examples. References: http://www.gbif.org/developer/registry#datasetMetrics Usage:: from pygbif import registry registry.dataset_metrics(uuid='3f8a1297-3259-4700-91fc-acc4170b27ce') registry.dataset_metrics(uuid='66dd0960-2d7d-46ee-a491-87b9adcfe7b1') registry.dataset_metrics(uuid=['3f8a1297-3259-4700-91fc-acc4170b27ce', '66dd0960-2d7d-46ee-a491-87b9adcfe7b1'])
[ "Get", "details", "on", "a", "GBIF", "dataset", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/registry/datasets.py#L4-L26
sckott/pygbif
pygbif/registry/datasets.py
datasets
def datasets(data = 'all', type = None, uuid = None, query = None, id = None, limit = 100, offset = None, **kwargs): ''' Search for datasets and dataset metadata. :param data: [str] The type of data to get. Default: ``all`` :param type: [str] Type of dataset, options include ``OCCURRENCE``, etc. :param uuid: [str] UUID of the data node provider. This must be specified if data is anything other than ``all``. :param query: [str] Query term(s). Only used when ``data = 'all'`` :param id: [int] A metadata document id. References http://www.gbif.org/developer/registry#datasets Usage:: from pygbif import registry registry.datasets(limit=5) registry.datasets(type="OCCURRENCE") registry.datasets(uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='contact', uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='metadata', uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='metadata', uuid="a6998220-7e3a-485d-9cd6-73076bd85657", id=598) registry.datasets(data=['deleted','duplicate']) registry.datasets(data=['deleted','duplicate'], limit=1) ''' args = {'q': query, 'type': type, 'limit': limit, 'offset': offset} data_choices = ['all', 'organization', 'contact', 'endpoint', 'identifier', 'tag', 'machinetag', 'comment', 'constituents', 'document', 'metadata', 'deleted', 'duplicate', 'subDataset', 'withNoEndpoint'] check_data(data, data_choices) if len2(data) ==1: return datasets_fetch(data, uuid, args, **kwargs) else: return [datasets_fetch(x, uuid, args, **kwargs) for x in data]
python
def datasets(data = 'all', type = None, uuid = None, query = None, id = None, limit = 100, offset = None, **kwargs): ''' Search for datasets and dataset metadata. :param data: [str] The type of data to get. Default: ``all`` :param type: [str] Type of dataset, options include ``OCCURRENCE``, etc. :param uuid: [str] UUID of the data node provider. This must be specified if data is anything other than ``all``. :param query: [str] Query term(s). Only used when ``data = 'all'`` :param id: [int] A metadata document id. References http://www.gbif.org/developer/registry#datasets Usage:: from pygbif import registry registry.datasets(limit=5) registry.datasets(type="OCCURRENCE") registry.datasets(uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='contact', uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='metadata', uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='metadata', uuid="a6998220-7e3a-485d-9cd6-73076bd85657", id=598) registry.datasets(data=['deleted','duplicate']) registry.datasets(data=['deleted','duplicate'], limit=1) ''' args = {'q': query, 'type': type, 'limit': limit, 'offset': offset} data_choices = ['all', 'organization', 'contact', 'endpoint', 'identifier', 'tag', 'machinetag', 'comment', 'constituents', 'document', 'metadata', 'deleted', 'duplicate', 'subDataset', 'withNoEndpoint'] check_data(data, data_choices) if len2(data) ==1: return datasets_fetch(data, uuid, args, **kwargs) else: return [datasets_fetch(x, uuid, args, **kwargs) for x in data]
[ "def", "datasets", "(", "data", "=", "'all'", ",", "type", "=", "None", ",", "uuid", "=", "None", ",", "query", "=", "None", ",", "id", "=", "None", ",", "limit", "=", "100", ",", "offset", "=", "None", ",", "*", "*", "kwargs", ")", ":", "args", "=", "{", "'q'", ":", "query", ",", "'type'", ":", "type", ",", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", "}", "data_choices", "=", "[", "'all'", ",", "'organization'", ",", "'contact'", ",", "'endpoint'", ",", "'identifier'", ",", "'tag'", ",", "'machinetag'", ",", "'comment'", ",", "'constituents'", ",", "'document'", ",", "'metadata'", ",", "'deleted'", ",", "'duplicate'", ",", "'subDataset'", ",", "'withNoEndpoint'", "]", "check_data", "(", "data", ",", "data_choices", ")", "if", "len2", "(", "data", ")", "==", "1", ":", "return", "datasets_fetch", "(", "data", ",", "uuid", ",", "args", ",", "*", "*", "kwargs", ")", "else", ":", "return", "[", "datasets_fetch", "(", "x", ",", "uuid", ",", "args", ",", "*", "*", "kwargs", ")", "for", "x", "in", "data", "]" ]
Search for datasets and dataset metadata. :param data: [str] The type of data to get. Default: ``all`` :param type: [str] Type of dataset, options include ``OCCURRENCE``, etc. :param uuid: [str] UUID of the data node provider. This must be specified if data is anything other than ``all``. :param query: [str] Query term(s). Only used when ``data = 'all'`` :param id: [int] A metadata document id. References http://www.gbif.org/developer/registry#datasets Usage:: from pygbif import registry registry.datasets(limit=5) registry.datasets(type="OCCURRENCE") registry.datasets(uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='contact', uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='metadata', uuid="a6998220-7e3a-485d-9cd6-73076bd85657") registry.datasets(data='metadata', uuid="a6998220-7e3a-485d-9cd6-73076bd85657", id=598) registry.datasets(data=['deleted','duplicate']) registry.datasets(data=['deleted','duplicate'], limit=1)
[ "Search", "for", "datasets", "and", "dataset", "metadata", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/registry/datasets.py#L28-L63
sckott/pygbif
pygbif/registry/datasets.py
dataset_suggest
def dataset_suggest(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None, hostingOrg=None, publishingCountry=None, decade=None, limit = 100, offset = None, **kwargs): ''' Search that returns up to 20 matching datasets. Results are ordered by relevance. :param q: [str] Query term(s) for full text search. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` :param type: [str] Type of dataset, options include OCCURRENCE, etc. :param keyword: [str] Keyword to search by. Datasets can be tagged by keywords, which you can search on. The search is done on the merged collection of tags, the dataset keywordCollections and temporalCoverages. SEEMS TO NOT BE WORKING ANYMORE AS OF 2016-09-02. :param owningOrg: [str] Owning organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingOrg: [str] Publishing organization. A uuid string. See :func:`~pygbif.registry.organizations` :param hostingOrg: [str] Hosting organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingCountry: [str] Publishing country. :param decade: [str] Decade, e.g., 1980. Filters datasets by their temporal coverage broken down to decades. Decades are given as a full year, e.g. 1880, 1960, 2000, etc, and will return datasets wholly contained in the decade as well as those that cover the entire decade or more. Facet by decade to get the break down, e.g. ``/search?facet=DECADE&facet_only=true`` (see example below) :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :return: A dictionary References: http://www.gbif.org/developer/registry#datasetSearch Usage:: from pygbif import registry registry.dataset_suggest(q="Amazon", type="OCCURRENCE") # Suggest datasets tagged with keyword "france". registry.dataset_suggest(keyword="france") # Suggest datasets owned by the organization with key # "07f617d0-c688-11d8-bf62-b8a03c50a862" (UK NBN). registry.dataset_suggest(owningOrg="07f617d0-c688-11d8-bf62-b8a03c50a862") # Fulltext search for all datasets having the word "amsterdam" somewhere in # its metadata (title, description, etc). registry.dataset_suggest(q="amsterdam") # Limited search registry.dataset_suggest(type="OCCURRENCE", limit=2) registry.dataset_suggest(type="OCCURRENCE", limit=2, offset=10) # Return just descriptions registry.dataset_suggest(type="OCCURRENCE", limit = 5, description=True) # Search by decade registry.dataset_suggest(decade=1980, limit = 30) ''' url = gbif_baseurl + 'dataset/suggest' args = {'q': q, 'type': type, 'keyword': keyword, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg, 'owningOrg': owningOrg, 'decade': decade, 'publishingCountry': publishingCountry, 'limit': limit, 'offset': offset} out = gbif_GET(url, args, **kwargs) return out
python
def dataset_suggest(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None, hostingOrg=None, publishingCountry=None, decade=None, limit = 100, offset = None, **kwargs): ''' Search that returns up to 20 matching datasets. Results are ordered by relevance. :param q: [str] Query term(s) for full text search. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` :param type: [str] Type of dataset, options include OCCURRENCE, etc. :param keyword: [str] Keyword to search by. Datasets can be tagged by keywords, which you can search on. The search is done on the merged collection of tags, the dataset keywordCollections and temporalCoverages. SEEMS TO NOT BE WORKING ANYMORE AS OF 2016-09-02. :param owningOrg: [str] Owning organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingOrg: [str] Publishing organization. A uuid string. See :func:`~pygbif.registry.organizations` :param hostingOrg: [str] Hosting organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingCountry: [str] Publishing country. :param decade: [str] Decade, e.g., 1980. Filters datasets by their temporal coverage broken down to decades. Decades are given as a full year, e.g. 1880, 1960, 2000, etc, and will return datasets wholly contained in the decade as well as those that cover the entire decade or more. Facet by decade to get the break down, e.g. ``/search?facet=DECADE&facet_only=true`` (see example below) :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :return: A dictionary References: http://www.gbif.org/developer/registry#datasetSearch Usage:: from pygbif import registry registry.dataset_suggest(q="Amazon", type="OCCURRENCE") # Suggest datasets tagged with keyword "france". registry.dataset_suggest(keyword="france") # Suggest datasets owned by the organization with key # "07f617d0-c688-11d8-bf62-b8a03c50a862" (UK NBN). registry.dataset_suggest(owningOrg="07f617d0-c688-11d8-bf62-b8a03c50a862") # Fulltext search for all datasets having the word "amsterdam" somewhere in # its metadata (title, description, etc). registry.dataset_suggest(q="amsterdam") # Limited search registry.dataset_suggest(type="OCCURRENCE", limit=2) registry.dataset_suggest(type="OCCURRENCE", limit=2, offset=10) # Return just descriptions registry.dataset_suggest(type="OCCURRENCE", limit = 5, description=True) # Search by decade registry.dataset_suggest(decade=1980, limit = 30) ''' url = gbif_baseurl + 'dataset/suggest' args = {'q': q, 'type': type, 'keyword': keyword, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg, 'owningOrg': owningOrg, 'decade': decade, 'publishingCountry': publishingCountry, 'limit': limit, 'offset': offset} out = gbif_GET(url, args, **kwargs) return out
[ "def", "dataset_suggest", "(", "q", "=", "None", ",", "type", "=", "None", ",", "keyword", "=", "None", ",", "owningOrg", "=", "None", ",", "publishingOrg", "=", "None", ",", "hostingOrg", "=", "None", ",", "publishingCountry", "=", "None", ",", "decade", "=", "None", ",", "limit", "=", "100", ",", "offset", "=", "None", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'dataset/suggest'", "args", "=", "{", "'q'", ":", "q", ",", "'type'", ":", "type", ",", "'keyword'", ":", "keyword", ",", "'publishingOrg'", ":", "publishingOrg", ",", "'hostingOrg'", ":", "hostingOrg", ",", "'owningOrg'", ":", "owningOrg", ",", "'decade'", ":", "decade", ",", "'publishingCountry'", ":", "publishingCountry", ",", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", "}", "out", "=", "gbif_GET", "(", "url", ",", "args", ",", "*", "*", "kwargs", ")", "return", "out" ]
Search that returns up to 20 matching datasets. Results are ordered by relevance. :param q: [str] Query term(s) for full text search. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` :param type: [str] Type of dataset, options include OCCURRENCE, etc. :param keyword: [str] Keyword to search by. Datasets can be tagged by keywords, which you can search on. The search is done on the merged collection of tags, the dataset keywordCollections and temporalCoverages. SEEMS TO NOT BE WORKING ANYMORE AS OF 2016-09-02. :param owningOrg: [str] Owning organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingOrg: [str] Publishing organization. A uuid string. See :func:`~pygbif.registry.organizations` :param hostingOrg: [str] Hosting organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingCountry: [str] Publishing country. :param decade: [str] Decade, e.g., 1980. Filters datasets by their temporal coverage broken down to decades. Decades are given as a full year, e.g. 1880, 1960, 2000, etc, and will return datasets wholly contained in the decade as well as those that cover the entire decade or more. Facet by decade to get the break down, e.g. ``/search?facet=DECADE&facet_only=true`` (see example below) :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :return: A dictionary References: http://www.gbif.org/developer/registry#datasetSearch Usage:: from pygbif import registry registry.dataset_suggest(q="Amazon", type="OCCURRENCE") # Suggest datasets tagged with keyword "france". registry.dataset_suggest(keyword="france") # Suggest datasets owned by the organization with key # "07f617d0-c688-11d8-bf62-b8a03c50a862" (UK NBN). registry.dataset_suggest(owningOrg="07f617d0-c688-11d8-bf62-b8a03c50a862") # Fulltext search for all datasets having the word "amsterdam" somewhere in # its metadata (title, description, etc). registry.dataset_suggest(q="amsterdam") # Limited search registry.dataset_suggest(type="OCCURRENCE", limit=2) registry.dataset_suggest(type="OCCURRENCE", limit=2, offset=10) # Return just descriptions registry.dataset_suggest(type="OCCURRENCE", limit = 5, description=True) # Search by decade registry.dataset_suggest(decade=1980, limit = 30)
[ "Search", "that", "returns", "up", "to", "20", "matching", "datasets", ".", "Results", "are", "ordered", "by", "relevance", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/registry/datasets.py#L88-L143
sckott/pygbif
pygbif/registry/datasets.py
dataset_search
def dataset_search(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None, hostingOrg=None, decade=None, publishingCountry = None, facet = None, facetMincount=None, facetMultiselect = None, hl = False, limit = 100, offset = None, **kwargs): ''' Full text search across all datasets. Results are ordered by relevance. :param q: [str] Query term(s) for full text search. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` :param type: [str] Type of dataset, options include OCCURRENCE, etc. :param keyword: [str] Keyword to search by. Datasets can be tagged by keywords, which you can search on. The search is done on the merged collection of tags, the dataset keywordCollections and temporalCoverages. SEEMS TO NOT BE WORKING ANYMORE AS OF 2016-09-02. :param owningOrg: [str] Owning organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingOrg: [str] Publishing organization. A uuid string. See :func:`~pygbif.registry.organizations` :param hostingOrg: [str] Hosting organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingCountry: [str] Publishing country. :param decade: [str] Decade, e.g., 1980. Filters datasets by their temporal coverage broken down to decades. Decades are given as a full year, e.g. 1880, 1960, 2000, etc, and will return datasets wholly contained in the decade as well as those that cover the entire decade or more. Facet by decade to get the break down, e.g. ``/search?facet=DECADE&facet_only=true`` (see example below) :param facet: [str] A list of facet names used to retrieve the 100 most frequent values for a field. Allowed facets are: type, keyword, publishingOrg, hostingOrg, decade, and publishingCountry. Additionally subtype and country are legal values but not yet implemented, so data will not yet be returned for them. :param facetMincount: [str] Used in combination with the facet parameter. Set facetMincount={#} to exclude facets with a count less than {#}, e.g. http://api.gbif.org/v1/dataset/search?facet=type&limit=0&facetMincount=10000 only shows the type value 'OCCURRENCE' because 'CHECKLIST' and 'METADATA' have counts less than 10000. :param facetMultiselect: [bool] Used in combination with the facet parameter. Set facetMultiselect=True to still return counts for values that are not currently filtered, e.g. http://api.gbif.org/v1/dataset/search?facet=type&limit=0&type=CHECKLIST&facetMultiselect=true still shows type values 'OCCURRENCE' and 'METADATA' even though type is being filtered by type=CHECKLIST :param hl: [bool] Set ``hl=True`` to highlight terms matching the query when in fulltext search fields. The highlight will be an emphasis tag of class 'gbifH1' e.g. http://api.gbif.org/v1/dataset/search?q=plant&hl=true Fulltext search fields include: title, keyword, country, publishing country, publishing organization title, hosting organization title, and description. One additional full text field is searched which includes information from metadata documents, but the text of this field is not returned in the response. :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :note: Note that you can pass in additional faceting parameters on a per field basis. For example, if you want to limit the numbef of facets returned from a field ``foo`` to 3 results, pass in ``foo_facetLimit = 3``. GBIF does not allow all per field parameters, but does allow some. See also examples. :return: A dictionary References: http://www.gbif.org/developer/registry#datasetSearch Usage:: from pygbif import registry # Gets all datasets of type "OCCURRENCE". registry.dataset_search(type="OCCURRENCE", limit = 10) # Fulltext search for all datasets having the word "amsterdam" somewhere in # its metadata (title, description, etc). registry.dataset_search(q="amsterdam", limit = 10) # Limited search registry.dataset_search(type="OCCURRENCE", limit=2) registry.dataset_search(type="OCCURRENCE", limit=2, offset=10) # Search by decade registry.dataset_search(decade=1980, limit = 10) # Faceting ## just facets registry.dataset_search(facet="decade", facetMincount=10, limit=0) ## data and facets registry.dataset_search(facet="decade", facetMincount=10, limit=2) ## many facet variables registry.dataset_search(facet=["decade", "type"], facetMincount=10, limit=0) ## facet vars ### per variable paging x = registry.dataset_search( facet = ["decade", "type"], decade_facetLimit = 3, type_facetLimit = 3, limit = 0 ) ## highlight x = registry.dataset_search(q="plant", hl=True, limit = 10) [ z['description'] for z in x['results'] ] ''' url = gbif_baseurl + 'dataset/search' args = {'q': q, 'type': type, 'keyword': keyword, 'owningOrg': owningOrg, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg, 'decade': decade, 'publishingCountry': publishingCountry, 'facet': facet, 'facetMincount': facetMincount, 'facetMultiselect': facetMultiselect, 'hl': hl, 'limit': limit, 'offset': offset} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip( [ re.sub('_', '.', x) for x in gbif_kwargs.keys() ], gbif_kwargs.values() )) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} out = gbif_GET(url, args, **kwargs) return out
python
def dataset_search(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None, hostingOrg=None, decade=None, publishingCountry = None, facet = None, facetMincount=None, facetMultiselect = None, hl = False, limit = 100, offset = None, **kwargs): ''' Full text search across all datasets. Results are ordered by relevance. :param q: [str] Query term(s) for full text search. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` :param type: [str] Type of dataset, options include OCCURRENCE, etc. :param keyword: [str] Keyword to search by. Datasets can be tagged by keywords, which you can search on. The search is done on the merged collection of tags, the dataset keywordCollections and temporalCoverages. SEEMS TO NOT BE WORKING ANYMORE AS OF 2016-09-02. :param owningOrg: [str] Owning organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingOrg: [str] Publishing organization. A uuid string. See :func:`~pygbif.registry.organizations` :param hostingOrg: [str] Hosting organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingCountry: [str] Publishing country. :param decade: [str] Decade, e.g., 1980. Filters datasets by their temporal coverage broken down to decades. Decades are given as a full year, e.g. 1880, 1960, 2000, etc, and will return datasets wholly contained in the decade as well as those that cover the entire decade or more. Facet by decade to get the break down, e.g. ``/search?facet=DECADE&facet_only=true`` (see example below) :param facet: [str] A list of facet names used to retrieve the 100 most frequent values for a field. Allowed facets are: type, keyword, publishingOrg, hostingOrg, decade, and publishingCountry. Additionally subtype and country are legal values but not yet implemented, so data will not yet be returned for them. :param facetMincount: [str] Used in combination with the facet parameter. Set facetMincount={#} to exclude facets with a count less than {#}, e.g. http://api.gbif.org/v1/dataset/search?facet=type&limit=0&facetMincount=10000 only shows the type value 'OCCURRENCE' because 'CHECKLIST' and 'METADATA' have counts less than 10000. :param facetMultiselect: [bool] Used in combination with the facet parameter. Set facetMultiselect=True to still return counts for values that are not currently filtered, e.g. http://api.gbif.org/v1/dataset/search?facet=type&limit=0&type=CHECKLIST&facetMultiselect=true still shows type values 'OCCURRENCE' and 'METADATA' even though type is being filtered by type=CHECKLIST :param hl: [bool] Set ``hl=True`` to highlight terms matching the query when in fulltext search fields. The highlight will be an emphasis tag of class 'gbifH1' e.g. http://api.gbif.org/v1/dataset/search?q=plant&hl=true Fulltext search fields include: title, keyword, country, publishing country, publishing organization title, hosting organization title, and description. One additional full text field is searched which includes information from metadata documents, but the text of this field is not returned in the response. :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :note: Note that you can pass in additional faceting parameters on a per field basis. For example, if you want to limit the numbef of facets returned from a field ``foo`` to 3 results, pass in ``foo_facetLimit = 3``. GBIF does not allow all per field parameters, but does allow some. See also examples. :return: A dictionary References: http://www.gbif.org/developer/registry#datasetSearch Usage:: from pygbif import registry # Gets all datasets of type "OCCURRENCE". registry.dataset_search(type="OCCURRENCE", limit = 10) # Fulltext search for all datasets having the word "amsterdam" somewhere in # its metadata (title, description, etc). registry.dataset_search(q="amsterdam", limit = 10) # Limited search registry.dataset_search(type="OCCURRENCE", limit=2) registry.dataset_search(type="OCCURRENCE", limit=2, offset=10) # Search by decade registry.dataset_search(decade=1980, limit = 10) # Faceting ## just facets registry.dataset_search(facet="decade", facetMincount=10, limit=0) ## data and facets registry.dataset_search(facet="decade", facetMincount=10, limit=2) ## many facet variables registry.dataset_search(facet=["decade", "type"], facetMincount=10, limit=0) ## facet vars ### per variable paging x = registry.dataset_search( facet = ["decade", "type"], decade_facetLimit = 3, type_facetLimit = 3, limit = 0 ) ## highlight x = registry.dataset_search(q="plant", hl=True, limit = 10) [ z['description'] for z in x['results'] ] ''' url = gbif_baseurl + 'dataset/search' args = {'q': q, 'type': type, 'keyword': keyword, 'owningOrg': owningOrg, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg, 'decade': decade, 'publishingCountry': publishingCountry, 'facet': facet, 'facetMincount': facetMincount, 'facetMultiselect': facetMultiselect, 'hl': hl, 'limit': limit, 'offset': offset} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip( [ re.sub('_', '.', x) for x in gbif_kwargs.keys() ], gbif_kwargs.values() )) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} out = gbif_GET(url, args, **kwargs) return out
[ "def", "dataset_search", "(", "q", "=", "None", ",", "type", "=", "None", ",", "keyword", "=", "None", ",", "owningOrg", "=", "None", ",", "publishingOrg", "=", "None", ",", "hostingOrg", "=", "None", ",", "decade", "=", "None", ",", "publishingCountry", "=", "None", ",", "facet", "=", "None", ",", "facetMincount", "=", "None", ",", "facetMultiselect", "=", "None", ",", "hl", "=", "False", ",", "limit", "=", "100", ",", "offset", "=", "None", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'dataset/search'", "args", "=", "{", "'q'", ":", "q", ",", "'type'", ":", "type", ",", "'keyword'", ":", "keyword", ",", "'owningOrg'", ":", "owningOrg", ",", "'publishingOrg'", ":", "publishingOrg", ",", "'hostingOrg'", ":", "hostingOrg", ",", "'decade'", ":", "decade", ",", "'publishingCountry'", ":", "publishingCountry", ",", "'facet'", ":", "facet", ",", "'facetMincount'", ":", "facetMincount", ",", "'facetMultiselect'", ":", "facetMultiselect", ",", "'hl'", ":", "hl", ",", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", "}", "gbif_kwargs", "=", "{", "key", ":", "kwargs", "[", "key", "]", "for", "key", "in", "kwargs", "if", "key", "not", "in", "requests_argset", "}", "if", "gbif_kwargs", "is", "not", "None", ":", "xx", "=", "dict", "(", "zip", "(", "[", "re", ".", "sub", "(", "'_'", ",", "'.'", ",", "x", ")", "for", "x", "in", "gbif_kwargs", ".", "keys", "(", ")", "]", ",", "gbif_kwargs", ".", "values", "(", ")", ")", ")", "args", ".", "update", "(", "xx", ")", "kwargs", "=", "{", "key", ":", "kwargs", "[", "key", "]", "for", "key", "in", "kwargs", "if", "key", "in", "requests_argset", "}", "out", "=", "gbif_GET", "(", "url", ",", "args", ",", "*", "*", "kwargs", ")", "return", "out" ]
Full text search across all datasets. Results are ordered by relevance. :param q: [str] Query term(s) for full text search. The value for this parameter can be a simple word or a phrase. Wildcards can be added to the simple word parameters only, e.g. ``q=*puma*`` :param type: [str] Type of dataset, options include OCCURRENCE, etc. :param keyword: [str] Keyword to search by. Datasets can be tagged by keywords, which you can search on. The search is done on the merged collection of tags, the dataset keywordCollections and temporalCoverages. SEEMS TO NOT BE WORKING ANYMORE AS OF 2016-09-02. :param owningOrg: [str] Owning organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingOrg: [str] Publishing organization. A uuid string. See :func:`~pygbif.registry.organizations` :param hostingOrg: [str] Hosting organization. A uuid string. See :func:`~pygbif.registry.organizations` :param publishingCountry: [str] Publishing country. :param decade: [str] Decade, e.g., 1980. Filters datasets by their temporal coverage broken down to decades. Decades are given as a full year, e.g. 1880, 1960, 2000, etc, and will return datasets wholly contained in the decade as well as those that cover the entire decade or more. Facet by decade to get the break down, e.g. ``/search?facet=DECADE&facet_only=true`` (see example below) :param facet: [str] A list of facet names used to retrieve the 100 most frequent values for a field. Allowed facets are: type, keyword, publishingOrg, hostingOrg, decade, and publishingCountry. Additionally subtype and country are legal values but not yet implemented, so data will not yet be returned for them. :param facetMincount: [str] Used in combination with the facet parameter. Set facetMincount={#} to exclude facets with a count less than {#}, e.g. http://api.gbif.org/v1/dataset/search?facet=type&limit=0&facetMincount=10000 only shows the type value 'OCCURRENCE' because 'CHECKLIST' and 'METADATA' have counts less than 10000. :param facetMultiselect: [bool] Used in combination with the facet parameter. Set facetMultiselect=True to still return counts for values that are not currently filtered, e.g. http://api.gbif.org/v1/dataset/search?facet=type&limit=0&type=CHECKLIST&facetMultiselect=true still shows type values 'OCCURRENCE' and 'METADATA' even though type is being filtered by type=CHECKLIST :param hl: [bool] Set ``hl=True`` to highlight terms matching the query when in fulltext search fields. The highlight will be an emphasis tag of class 'gbifH1' e.g. http://api.gbif.org/v1/dataset/search?q=plant&hl=true Fulltext search fields include: title, keyword, country, publishing country, publishing organization title, hosting organization title, and description. One additional full text field is searched which includes information from metadata documents, but the text of this field is not returned in the response. :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :note: Note that you can pass in additional faceting parameters on a per field basis. For example, if you want to limit the numbef of facets returned from a field ``foo`` to 3 results, pass in ``foo_facetLimit = 3``. GBIF does not allow all per field parameters, but does allow some. See also examples. :return: A dictionary References: http://www.gbif.org/developer/registry#datasetSearch Usage:: from pygbif import registry # Gets all datasets of type "OCCURRENCE". registry.dataset_search(type="OCCURRENCE", limit = 10) # Fulltext search for all datasets having the word "amsterdam" somewhere in # its metadata (title, description, etc). registry.dataset_search(q="amsterdam", limit = 10) # Limited search registry.dataset_search(type="OCCURRENCE", limit=2) registry.dataset_search(type="OCCURRENCE", limit=2, offset=10) # Search by decade registry.dataset_search(decade=1980, limit = 10) # Faceting ## just facets registry.dataset_search(facet="decade", facetMincount=10, limit=0) ## data and facets registry.dataset_search(facet="decade", facetMincount=10, limit=2) ## many facet variables registry.dataset_search(facet=["decade", "type"], facetMincount=10, limit=0) ## facet vars ### per variable paging x = registry.dataset_search( facet = ["decade", "type"], decade_facetLimit = 3, type_facetLimit = 3, limit = 0 ) ## highlight x = registry.dataset_search(q="plant", hl=True, limit = 10) [ z['description'] for z in x['results'] ]
[ "Full", "text", "search", "across", "all", "datasets", ".", "Results", "are", "ordered", "by", "relevance", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/registry/datasets.py#L145-L257
sckott/pygbif
pygbif/utils/wkt_rewind.py
wkt_rewind
def wkt_rewind(x, digits = None): ''' reverse WKT winding order :param x: [str] WKT string :param digits: [int] number of digits after decimal to use for the return string. by default, we use the mean number of digits in your string. :return: a string Usage:: from pygbif import wkt_rewind x = 'POLYGON((144.6 13.2, 144.6 13.6, 144.9 13.6, 144.9 13.2, 144.6 13.2))' wkt_rewind(x) wkt_rewind(x, digits = 0) wkt_rewind(x, digits = 3) wkt_rewind(x, digits = 7) ''' z = wkt.loads(x) if digits is None: coords = z['coordinates'] nums = __flatten(coords) dec_n = [ decimal.Decimal(str(w)).as_tuple().exponent for w in nums ] digits = abs(statistics.mean(dec_n)) else: if not isinstance(digits, int): raise TypeError("'digits' must be an int") wound = rewind(z) back_to_wkt = wkt.dumps(wound, decimals = digits) return back_to_wkt
python
def wkt_rewind(x, digits = None): ''' reverse WKT winding order :param x: [str] WKT string :param digits: [int] number of digits after decimal to use for the return string. by default, we use the mean number of digits in your string. :return: a string Usage:: from pygbif import wkt_rewind x = 'POLYGON((144.6 13.2, 144.6 13.6, 144.9 13.6, 144.9 13.2, 144.6 13.2))' wkt_rewind(x) wkt_rewind(x, digits = 0) wkt_rewind(x, digits = 3) wkt_rewind(x, digits = 7) ''' z = wkt.loads(x) if digits is None: coords = z['coordinates'] nums = __flatten(coords) dec_n = [ decimal.Decimal(str(w)).as_tuple().exponent for w in nums ] digits = abs(statistics.mean(dec_n)) else: if not isinstance(digits, int): raise TypeError("'digits' must be an int") wound = rewind(z) back_to_wkt = wkt.dumps(wound, decimals = digits) return back_to_wkt
[ "def", "wkt_rewind", "(", "x", ",", "digits", "=", "None", ")", ":", "z", "=", "wkt", ".", "loads", "(", "x", ")", "if", "digits", "is", "None", ":", "coords", "=", "z", "[", "'coordinates'", "]", "nums", "=", "__flatten", "(", "coords", ")", "dec_n", "=", "[", "decimal", ".", "Decimal", "(", "str", "(", "w", ")", ")", ".", "as_tuple", "(", ")", ".", "exponent", "for", "w", "in", "nums", "]", "digits", "=", "abs", "(", "statistics", ".", "mean", "(", "dec_n", ")", ")", "else", ":", "if", "not", "isinstance", "(", "digits", ",", "int", ")", ":", "raise", "TypeError", "(", "\"'digits' must be an int\"", ")", "wound", "=", "rewind", "(", "z", ")", "back_to_wkt", "=", "wkt", ".", "dumps", "(", "wound", ",", "decimals", "=", "digits", ")", "return", "back_to_wkt" ]
reverse WKT winding order :param x: [str] WKT string :param digits: [int] number of digits after decimal to use for the return string. by default, we use the mean number of digits in your string. :return: a string Usage:: from pygbif import wkt_rewind x = 'POLYGON((144.6 13.2, 144.6 13.6, 144.9 13.6, 144.9 13.2, 144.6 13.2))' wkt_rewind(x) wkt_rewind(x, digits = 0) wkt_rewind(x, digits = 3) wkt_rewind(x, digits = 7)
[ "reverse", "WKT", "winding", "order" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/utils/wkt_rewind.py#L6-L36
sckott/pygbif
pygbif/gbifissues.py
occ_issues_lookup
def occ_issues_lookup(issue=None, code=None): ''' Lookup occurrence issue definitions and short codes :param issue: Full name of issue, e.g, CONTINENT_COUNTRY_MISMATCH :param code: an issue short code, e.g. ccm Usage pygbif.occ_issues_lookup(issue = 'CONTINENT_COUNTRY_MISMATCH') pygbif.occ_issues_lookup(issue = 'MULTIMEDIA_DATE_INVALID') pygbif.occ_issues_lookup(issue = 'ZERO_COORDINATE') pygbif.occ_issues_lookup(code = 'cdiv') ''' if code is None: bb = [trymatch(issue, x) for x in gbifissues['issue'] ] tmp = filter(None, bb) else: bb = [trymatch(code, x) for x in gbifissues['code'] ] tmp = filter(None, bb) return tmp
python
def occ_issues_lookup(issue=None, code=None): ''' Lookup occurrence issue definitions and short codes :param issue: Full name of issue, e.g, CONTINENT_COUNTRY_MISMATCH :param code: an issue short code, e.g. ccm Usage pygbif.occ_issues_lookup(issue = 'CONTINENT_COUNTRY_MISMATCH') pygbif.occ_issues_lookup(issue = 'MULTIMEDIA_DATE_INVALID') pygbif.occ_issues_lookup(issue = 'ZERO_COORDINATE') pygbif.occ_issues_lookup(code = 'cdiv') ''' if code is None: bb = [trymatch(issue, x) for x in gbifissues['issue'] ] tmp = filter(None, bb) else: bb = [trymatch(code, x) for x in gbifissues['code'] ] tmp = filter(None, bb) return tmp
[ "def", "occ_issues_lookup", "(", "issue", "=", "None", ",", "code", "=", "None", ")", ":", "if", "code", "is", "None", ":", "bb", "=", "[", "trymatch", "(", "issue", ",", "x", ")", "for", "x", "in", "gbifissues", "[", "'issue'", "]", "]", "tmp", "=", "filter", "(", "None", ",", "bb", ")", "else", ":", "bb", "=", "[", "trymatch", "(", "code", ",", "x", ")", "for", "x", "in", "gbifissues", "[", "'code'", "]", "]", "tmp", "=", "filter", "(", "None", ",", "bb", ")", "return", "tmp" ]
Lookup occurrence issue definitions and short codes :param issue: Full name of issue, e.g, CONTINENT_COUNTRY_MISMATCH :param code: an issue short code, e.g. ccm Usage pygbif.occ_issues_lookup(issue = 'CONTINENT_COUNTRY_MISMATCH') pygbif.occ_issues_lookup(issue = 'MULTIMEDIA_DATE_INVALID') pygbif.occ_issues_lookup(issue = 'ZERO_COORDINATE') pygbif.occ_issues_lookup(code = 'cdiv')
[ "Lookup", "occurrence", "issue", "definitions", "and", "short", "codes" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/gbifissues.py#L3-L22
sckott/pygbif
pygbif/occurrences/search.py
search
def search(taxonKey=None, repatriated=None, kingdomKey=None, phylumKey=None, classKey=None, orderKey=None, familyKey=None, genusKey=None, subgenusKey=None, scientificName=None, country=None, publishingCountry=None, hasCoordinate=None, typeStatus=None, recordNumber=None, lastInterpreted=None, continent=None, geometry=None, recordedBy=None, basisOfRecord=None, datasetKey=None, eventDate=None, catalogNumber=None, year=None, month=None, decimalLatitude=None, decimalLongitude=None, elevation=None, depth=None, institutionCode=None, collectionCode=None, hasGeospatialIssue=None, issue=None, q=None, spellCheck=None, mediatype=None, limit=300, offset=0, establishmentMeans=None, facet=None, facetMincount=None, facetMultiselect=None, **kwargs): ''' Search GBIF occurrences :param taxonKey: [int] A GBIF occurrence identifier :param q: [str] Simple search parameter. The value for this parameter can be a simple word or a phrase. :param spellCheck: [bool] If ``True`` ask GBIF to check your spelling of the value passed to the ``search`` parameter. IMPORTANT: This only checks the input to the ``search`` parameter, and no others. Default: ``False`` :param repatriated: [str] Searches for records whose publishing country is different to the country where the record was recorded in :param kingdomKey: [int] Kingdom classification key :param phylumKey: [int] Phylum classification key :param classKey: [int] Class classification key :param orderKey: [int] Order classification key :param familyKey: [int] Family classification key :param genusKey: [int] Genus classification key :param subgenusKey: [int] Subgenus classification key :param scientificName: [str] A scientific name from the GBIF backbone. All included and synonym taxa are included in the search. :param datasetKey: [str] The occurrence dataset key (a uuid) :param catalogNumber: [str] An identifier of any form assigned by the source within a physical collection or digital dataset for the record which may not unique, but should be fairly unique in combination with the institution and collection code. :param recordedBy: [str] The person who recorded the occurrence. :param collectionCode: [str] An identifier of any form assigned by the source to identify the physical collection or digital dataset uniquely within the text of an institution. :param institutionCode: [str] An identifier of any form assigned by the source to identify the institution the record belongs to. Not guaranteed to be que. :param country: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 :param basisOfRecord: [str] Basis of record, as defined in our BasisOfRecord enum here http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are: - ``FOSSIL_SPECIMEN`` An occurrence record describing a fossilized specimen. - ``HUMAN_OBSERVATION`` An occurrence record describing an observation made by one or more people. - ``LITERATURE`` An occurrence record based on literature alone. - ``LIVING_SPECIMEN`` An occurrence record describing a living specimen, e.g. - ``MACHINE_OBSERVATION`` An occurrence record describing an observation made by a machine. - ``OBSERVATION`` An occurrence record describing an observation. - ``PRESERVED_SPECIMEN`` An occurrence record describing a preserved specimen. - ``UNKNOWN`` Unknown basis for the record. :param eventDate: [date] Occurrence date in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param year: [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param month: [int] The month of the year, starting with 1 for January. Supports range queries, smaller,larger (e.g., ``1,2``, whereas ``2,1`` wouldn't work) :param q: [str] Query terms. The value for this parameter can be a simple word or a phrase. :param decimalLatitude: [float] Latitude in decimals between -90 and 90 based on WGS 84. Supports range queries, smaller,larger (e.g., ``25,30``, whereas ``30,25`` wouldn't work) :param decimalLongitude: [float] Longitude in decimals between -180 and 180 based on WGS 84. Supports range queries (e.g., ``-0.4,-0.2``, whereas ``-0.2,-0.4`` wouldn't work). :param publishingCountry: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. :param elevation: [int/str] Elevation in meters above sea level. Supports range queries, smaller,larger (e.g., ``5,30``, whereas ``30,5`` wouldn't work) :param depth: [int/str] Depth in meters relative to elevation. For example 10 meters below a lake surface with given elevation. Supports range queries, smaller,larger (e.g., ``5,30``, whereas ``30,5`` wouldn't work) :param geometry: [str] Searches for occurrences inside a polygon described in Well Known Text (WKT) format. A WKT shape written as either POINT, LINESTRING, LINEARRING POLYGON, or MULTIPOLYGON. Example of a polygon: ``((30.1 10.1, 20, 20 40, 40 40, 30.1 10.1))`` would be queried as http://bit.ly/1BzNwDq. Polygons must have counter-clockwise ordering of points. :param hasGeospatialIssue: [bool] Includes/excludes occurrence records which contain spatial issues (as determined in our record interpretation), i.e. ``hasGeospatialIssue=TRUE`` returns only those records with spatial issues while ``hasGeospatialIssue=FALSE`` includes only records without spatial issues. The absence of this parameter returns any record with or without spatial issues. :param issue: [str] One or more of many possible issues with each occurrence record. See Details. Issues passed to this parameter filter results by the issue. :param hasCoordinate: [bool] Return only occurence records with lat/long data (``true``) or all records (``false``, default). :param typeStatus: [str] Type status of the specimen. One of many options. See ?typestatus :param recordNumber: [int] Number recorded by collector of the data, different from GBIF record number. See http://rs.tdwg.org/dwc/terms/#recordNumber} for more info :param lastInterpreted: [date] Date the record was last modified in GBIF, in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param continent: [str] Continent. One of ``africa``, ``antarctica``, ``asia``, ``europe``, ``north_america`` (North America includes the Caribbean and reachies down and includes Panama), ``oceania``, or ``south_america`` :param fields: [str] Default (``all``) returns all fields. ``minimal`` returns just taxon name, key, latitude, and longitude. Or specify each field you want returned by name, e.g. ``fields = c('name','latitude','elevation')``. :param mediatype: [str] Media type. Default is ``NULL``, so no filtering on mediatype. Options: ``NULL``, ``MovingImage``, ``Sound``, and ``StillImage`` :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :param facet: [str] a character vector of length 1 or greater :param establishmentMeans: [str] EstablishmentMeans, possible values include: INTRODUCED, INVASIVE, MANAGED, NATIVE, NATURALISED, UNCERTAIN :param facetMincount: [int] minimum number of records to be included in the faceting results :param facetMultiselect: [bool] Set to ``true`` to still return counts for values that are not currently filtered. See examples. Default: ``false`` :return: A dictionary Usage:: from pygbif import occurrences occurrences.search(taxonKey = 3329049) # Return 2 results, this is the default by the way occurrences.search(taxonKey=3329049, limit=2) # Instead of getting a taxon key first, you can search for a name directly # However, note that using this approach (with `scientificName="..."`) # you are getting synonyms too. The results for using `scientifcName` and # `taxonKey` parameters are the same in this case, but I wouldn't be surprised if for some # names they return different results occurrences.search(scientificName = 'Ursus americanus') from pygbif import species key = species.name_backbone(name = 'Ursus americanus', rank='species')['usageKey'] occurrences.search(taxonKey = key) # Search by dataset key occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', limit=20) # Search by catalog number occurrences.search(catalogNumber="49366", limit=20) # occurrences.search(catalogNumber=["49366","Bird.27847588"], limit=20) # Use paging parameters (limit and offset) to page. Note the different results # for the two queries below. occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=10, limit=5) occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=20, limit=5) # Many dataset keys # occurrences.search(datasetKey=["50c9509d-22c7-4a22-a47d-8c48425ef4a7", "7b5d6a48-f762-11e1-a439-00145eb45e9a"], limit=20) # Search by collector name res = occurrences.search(recordedBy="smith", limit=20) [ x['recordedBy'] for x in res['results'] ] # Many collector names # occurrences.search(recordedBy=["smith","BJ Stacey"], limit=20) # Search for many species splist = ['Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa'] keys = [ species.name_suggest(x)[0]['key'] for x in splist ] out = [ occurrences.search(taxonKey = x, limit=1) for x in keys ] [ x['results'][0]['speciesKey'] for x in out ] # Search - q parameter occurrences.search(q = "kingfisher", limit=20) ## spell check - only works with the `search` parameter ### spelled correctly - same result as above call occurrences.search(q = "kingfisher", limit=20, spellCheck = True) ### spelled incorrectly - stops with suggested spelling occurrences.search(q = "kajsdkla", limit=20, spellCheck = True) ### spelled incorrectly - stops with many suggested spellings ### and number of results for each occurrences.search(q = "helir", limit=20, spellCheck = True) # Search on latitidue and longitude occurrences.search(decimalLatitude=50, decimalLongitude=10, limit=2) # Search on a bounding box ## in well known text format occurrences.search(geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20) from pygbif import species key = species.name_suggest(q='Aesculus hippocastanum')[0]['key'] occurrences.search(taxonKey=key, geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20) ## multipolygon wkt = 'MULTIPOLYGON(((-123 38, -123 43, -116 43, -116 38, -123 38)),((-97 41, -97 45, -93 45, -93 41, -97 41)))' occurrences.search(geometry = wkt, limit = 20) # Search on country occurrences.search(country='US', limit=20) occurrences.search(country='FR', limit=20) occurrences.search(country='DE', limit=20) # Get only occurrences with lat/long data occurrences.search(taxonKey=key, hasCoordinate=True, limit=20) # Get only occurrences that were recorded as living specimens occurrences.search(taxonKey=key, basisOfRecord="LIVING_SPECIMEN", hasCoordinate=True, limit=20) # Get occurrences for a particular eventDate occurrences.search(taxonKey=key, eventDate="2013", limit=20) occurrences.search(taxonKey=key, year="2013", limit=20) occurrences.search(taxonKey=key, month="6", limit=20) # Get occurrences based on depth key = species.name_backbone(name='Salmo salar', kingdom='animals')['usageKey'] occurrences.search(taxonKey=key, depth="5", limit=20) # Get occurrences based on elevation key = species.name_backbone(name='Puma concolor', kingdom='animals')['usageKey'] occurrences.search(taxonKey=key, elevation=50, hasCoordinate=True, limit=20) # Get occurrences based on institutionCode occurrences.search(institutionCode="TLMF", limit=20) # Get occurrences based on collectionCode occurrences.search(collectionCode="Floristic Databases MV - Higher Plants", limit=20) # Get only those occurrences with spatial issues occurrences.search(taxonKey=key, hasGeospatialIssue=True, limit=20) # Search using a query string occurrences.search(q="kingfisher", limit=20) # Range queries ## See Detail for parameters that support range queries ### this is a range depth, with lower/upper limits in character string occurrences.search(depth='50,100') ## Range search with year occurrences.search(year='1999,2000', limit=20) ## Range search with latitude occurrences.search(decimalLatitude='29.59,29.6') # Search by specimen type status ## Look for possible values of the typeStatus parameter looking at the typestatus dataset occurrences.search(typeStatus = 'allotype') # Search by specimen record number ## This is the record number of the person/group that submitted the data, not GBIF's numbers ## You can see that many different groups have record number 1, so not super helpful occurrences.search(recordNumber = 1) # Search by last time interpreted: Date the record was last modified in GBIF ## The lastInterpreted parameter accepts ISO 8601 format dates, including ## yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Range queries are accepted for lastInterpreted occurrences.search(lastInterpreted = '2014-04-01') # Search by continent ## One of africa, antarctica, asia, europe, north_america, oceania, or south_america occurrences.search(continent = 'south_america') occurrences.search(continent = 'africa') occurrences.search(continent = 'oceania') occurrences.search(continent = 'antarctica') # Search for occurrences with images occurrences.search(mediatype = 'StillImage') occurrences.search(mediatype = 'MovingImage') x = occurrences.search(mediatype = 'Sound') [z['media'] for z in x['results']] # Query based on issues occurrences.search(taxonKey=1, issue='DEPTH_UNLIKELY') occurrences.search(taxonKey=1, issue=['DEPTH_UNLIKELY','COORDINATE_ROUNDED']) # Show all records in the Arizona State Lichen Collection that cant be matched to the GBIF # backbone properly: occurrences.search(datasetKey='84c0e1a0-f762-11e1-a439-00145eb45e9a', issue=['TAXON_MATCH_NONE','TAXON_MATCH_HIGHERRANK']) # If you pass in an invalid polygon you get hopefully informative errors ### the WKT string is fine, but GBIF says bad polygon wkt = 'POLYGON((-178.59375 64.83258989321493,-165.9375 59.24622380205539, -147.3046875 59.065977905449806,-130.78125 51.04484764446178,-125.859375 36.70806354647625, -112.1484375 23.367471303759686,-105.1171875 16.093320185359257,-86.8359375 9.23767076398516, -82.96875 2.9485268155066175,-82.6171875 -14.812060061226388,-74.8828125 -18.849111862023985, -77.34375 -47.661687803329166,-84.375 -49.975955187343295,174.7265625 -50.649460483096114, 179.296875 -42.19189902447192,-176.8359375 -35.634976650677295,176.8359375 -31.835565983656227, 163.4765625 -6.528187613695323,152.578125 1.894796132058301,135.703125 4.702353722559447, 127.96875 15.077427674847987,127.96875 23.689804541429606,139.921875 32.06861069132688, 149.4140625 42.65416193033991,159.2578125 48.3160811030533,168.3984375 57.019804336633165, 178.2421875 59.95776046458139,-179.6484375 61.16708631440347,-178.59375 64.83258989321493))' occurrences.search(geometry = wkt) # Faceting ## return no occurrence records with limit=0 x = occurrences.search(facet = "country", limit = 0) x['facets'] ## also return occurrence records x = occurrences.search(facet = "establishmentMeans", limit = 10) x['facets'] x['results'] ## multiple facet variables x = occurrences.search(facet = ["country", "basisOfRecord"], limit = 10) x['results'] x['facets'] x['facets']['country'] x['facets']['basisOfRecord'] x['facets']['basisOfRecord']['count'] ## set a minimum facet count x = occurrences.search(facet = "country", facetMincount = 30000000L, limit = 0) x['facets'] ## paging per each faceted variable ### do so by passing in variables like "country" + "_facetLimit" = "country_facetLimit" ### or "country" + "_facetOffset" = "country_facetOffset" x = occurrences.search( facet = ["country", "basisOfRecord", "hasCoordinate"], country_facetLimit = 3, basisOfRecord_facetLimit = 6, limit = 0 ) x['facets'] # requests package options ## There's an acceptable set of requests options (['timeout', 'cookies', 'auth', ## 'allow_redirects', 'proxies', 'verify', 'stream', 'cert']) you can pass ## in via **kwargs, e.g., set a timeout x = occurrences.search(timeout = 1) ''' url = gbif_baseurl + 'occurrence/search' args = {'taxonKey': taxonKey, 'repatriated': repatriated, 'kingdomKey': kingdomKey, 'phylumKey': phylumKey, 'classKey': classKey, 'orderKey': orderKey, 'familyKey': familyKey, 'genusKey': genusKey, 'subgenusKey': subgenusKey, 'scientificName': scientificName, 'country': country, 'publishingCountry': publishingCountry, 'hasCoordinate': hasCoordinate, 'typeStatus': typeStatus, 'recordNumber': recordNumber, 'lastInterpreted': lastInterpreted, 'continent': continent, 'geometry': geometry, 'recordedBy': recordedBy, 'basisOfRecord': basisOfRecord, 'datasetKey': datasetKey, 'eventDate': eventDate, 'catalogNumber': catalogNumber, 'year': year, 'month': month, 'decimalLatitude': decimalLatitude, 'decimalLongitude': decimalLongitude, 'elevation': elevation, 'depth': depth, 'institutionCode': institutionCode, 'collectionCode': collectionCode, 'hasGeospatialIssue': hasGeospatialIssue, 'issue': issue, 'q': q, 'spellCheck': spellCheck, 'mediatype': mediatype, 'limit': limit, 'offset': offset, 'establishmentMeans': establishmentMeans, 'facetMincount': facetMincount, 'facet': facet, 'facetMultiselect': facetMultiselect} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip( [ re.sub('_', '.', x) for x in gbif_kwargs.keys() ], gbif_kwargs.values() )) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} out = gbif_GET(url, args, **kwargs) return out
python
def search(taxonKey=None, repatriated=None, kingdomKey=None, phylumKey=None, classKey=None, orderKey=None, familyKey=None, genusKey=None, subgenusKey=None, scientificName=None, country=None, publishingCountry=None, hasCoordinate=None, typeStatus=None, recordNumber=None, lastInterpreted=None, continent=None, geometry=None, recordedBy=None, basisOfRecord=None, datasetKey=None, eventDate=None, catalogNumber=None, year=None, month=None, decimalLatitude=None, decimalLongitude=None, elevation=None, depth=None, institutionCode=None, collectionCode=None, hasGeospatialIssue=None, issue=None, q=None, spellCheck=None, mediatype=None, limit=300, offset=0, establishmentMeans=None, facet=None, facetMincount=None, facetMultiselect=None, **kwargs): ''' Search GBIF occurrences :param taxonKey: [int] A GBIF occurrence identifier :param q: [str] Simple search parameter. The value for this parameter can be a simple word or a phrase. :param spellCheck: [bool] If ``True`` ask GBIF to check your spelling of the value passed to the ``search`` parameter. IMPORTANT: This only checks the input to the ``search`` parameter, and no others. Default: ``False`` :param repatriated: [str] Searches for records whose publishing country is different to the country where the record was recorded in :param kingdomKey: [int] Kingdom classification key :param phylumKey: [int] Phylum classification key :param classKey: [int] Class classification key :param orderKey: [int] Order classification key :param familyKey: [int] Family classification key :param genusKey: [int] Genus classification key :param subgenusKey: [int] Subgenus classification key :param scientificName: [str] A scientific name from the GBIF backbone. All included and synonym taxa are included in the search. :param datasetKey: [str] The occurrence dataset key (a uuid) :param catalogNumber: [str] An identifier of any form assigned by the source within a physical collection or digital dataset for the record which may not unique, but should be fairly unique in combination with the institution and collection code. :param recordedBy: [str] The person who recorded the occurrence. :param collectionCode: [str] An identifier of any form assigned by the source to identify the physical collection or digital dataset uniquely within the text of an institution. :param institutionCode: [str] An identifier of any form assigned by the source to identify the institution the record belongs to. Not guaranteed to be que. :param country: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 :param basisOfRecord: [str] Basis of record, as defined in our BasisOfRecord enum here http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are: - ``FOSSIL_SPECIMEN`` An occurrence record describing a fossilized specimen. - ``HUMAN_OBSERVATION`` An occurrence record describing an observation made by one or more people. - ``LITERATURE`` An occurrence record based on literature alone. - ``LIVING_SPECIMEN`` An occurrence record describing a living specimen, e.g. - ``MACHINE_OBSERVATION`` An occurrence record describing an observation made by a machine. - ``OBSERVATION`` An occurrence record describing an observation. - ``PRESERVED_SPECIMEN`` An occurrence record describing a preserved specimen. - ``UNKNOWN`` Unknown basis for the record. :param eventDate: [date] Occurrence date in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param year: [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param month: [int] The month of the year, starting with 1 for January. Supports range queries, smaller,larger (e.g., ``1,2``, whereas ``2,1`` wouldn't work) :param q: [str] Query terms. The value for this parameter can be a simple word or a phrase. :param decimalLatitude: [float] Latitude in decimals between -90 and 90 based on WGS 84. Supports range queries, smaller,larger (e.g., ``25,30``, whereas ``30,25`` wouldn't work) :param decimalLongitude: [float] Longitude in decimals between -180 and 180 based on WGS 84. Supports range queries (e.g., ``-0.4,-0.2``, whereas ``-0.2,-0.4`` wouldn't work). :param publishingCountry: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. :param elevation: [int/str] Elevation in meters above sea level. Supports range queries, smaller,larger (e.g., ``5,30``, whereas ``30,5`` wouldn't work) :param depth: [int/str] Depth in meters relative to elevation. For example 10 meters below a lake surface with given elevation. Supports range queries, smaller,larger (e.g., ``5,30``, whereas ``30,5`` wouldn't work) :param geometry: [str] Searches for occurrences inside a polygon described in Well Known Text (WKT) format. A WKT shape written as either POINT, LINESTRING, LINEARRING POLYGON, or MULTIPOLYGON. Example of a polygon: ``((30.1 10.1, 20, 20 40, 40 40, 30.1 10.1))`` would be queried as http://bit.ly/1BzNwDq. Polygons must have counter-clockwise ordering of points. :param hasGeospatialIssue: [bool] Includes/excludes occurrence records which contain spatial issues (as determined in our record interpretation), i.e. ``hasGeospatialIssue=TRUE`` returns only those records with spatial issues while ``hasGeospatialIssue=FALSE`` includes only records without spatial issues. The absence of this parameter returns any record with or without spatial issues. :param issue: [str] One or more of many possible issues with each occurrence record. See Details. Issues passed to this parameter filter results by the issue. :param hasCoordinate: [bool] Return only occurence records with lat/long data (``true``) or all records (``false``, default). :param typeStatus: [str] Type status of the specimen. One of many options. See ?typestatus :param recordNumber: [int] Number recorded by collector of the data, different from GBIF record number. See http://rs.tdwg.org/dwc/terms/#recordNumber} for more info :param lastInterpreted: [date] Date the record was last modified in GBIF, in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param continent: [str] Continent. One of ``africa``, ``antarctica``, ``asia``, ``europe``, ``north_america`` (North America includes the Caribbean and reachies down and includes Panama), ``oceania``, or ``south_america`` :param fields: [str] Default (``all``) returns all fields. ``minimal`` returns just taxon name, key, latitude, and longitude. Or specify each field you want returned by name, e.g. ``fields = c('name','latitude','elevation')``. :param mediatype: [str] Media type. Default is ``NULL``, so no filtering on mediatype. Options: ``NULL``, ``MovingImage``, ``Sound``, and ``StillImage`` :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :param facet: [str] a character vector of length 1 or greater :param establishmentMeans: [str] EstablishmentMeans, possible values include: INTRODUCED, INVASIVE, MANAGED, NATIVE, NATURALISED, UNCERTAIN :param facetMincount: [int] minimum number of records to be included in the faceting results :param facetMultiselect: [bool] Set to ``true`` to still return counts for values that are not currently filtered. See examples. Default: ``false`` :return: A dictionary Usage:: from pygbif import occurrences occurrences.search(taxonKey = 3329049) # Return 2 results, this is the default by the way occurrences.search(taxonKey=3329049, limit=2) # Instead of getting a taxon key first, you can search for a name directly # However, note that using this approach (with `scientificName="..."`) # you are getting synonyms too. The results for using `scientifcName` and # `taxonKey` parameters are the same in this case, but I wouldn't be surprised if for some # names they return different results occurrences.search(scientificName = 'Ursus americanus') from pygbif import species key = species.name_backbone(name = 'Ursus americanus', rank='species')['usageKey'] occurrences.search(taxonKey = key) # Search by dataset key occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', limit=20) # Search by catalog number occurrences.search(catalogNumber="49366", limit=20) # occurrences.search(catalogNumber=["49366","Bird.27847588"], limit=20) # Use paging parameters (limit and offset) to page. Note the different results # for the two queries below. occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=10, limit=5) occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=20, limit=5) # Many dataset keys # occurrences.search(datasetKey=["50c9509d-22c7-4a22-a47d-8c48425ef4a7", "7b5d6a48-f762-11e1-a439-00145eb45e9a"], limit=20) # Search by collector name res = occurrences.search(recordedBy="smith", limit=20) [ x['recordedBy'] for x in res['results'] ] # Many collector names # occurrences.search(recordedBy=["smith","BJ Stacey"], limit=20) # Search for many species splist = ['Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa'] keys = [ species.name_suggest(x)[0]['key'] for x in splist ] out = [ occurrences.search(taxonKey = x, limit=1) for x in keys ] [ x['results'][0]['speciesKey'] for x in out ] # Search - q parameter occurrences.search(q = "kingfisher", limit=20) ## spell check - only works with the `search` parameter ### spelled correctly - same result as above call occurrences.search(q = "kingfisher", limit=20, spellCheck = True) ### spelled incorrectly - stops with suggested spelling occurrences.search(q = "kajsdkla", limit=20, spellCheck = True) ### spelled incorrectly - stops with many suggested spellings ### and number of results for each occurrences.search(q = "helir", limit=20, spellCheck = True) # Search on latitidue and longitude occurrences.search(decimalLatitude=50, decimalLongitude=10, limit=2) # Search on a bounding box ## in well known text format occurrences.search(geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20) from pygbif import species key = species.name_suggest(q='Aesculus hippocastanum')[0]['key'] occurrences.search(taxonKey=key, geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20) ## multipolygon wkt = 'MULTIPOLYGON(((-123 38, -123 43, -116 43, -116 38, -123 38)),((-97 41, -97 45, -93 45, -93 41, -97 41)))' occurrences.search(geometry = wkt, limit = 20) # Search on country occurrences.search(country='US', limit=20) occurrences.search(country='FR', limit=20) occurrences.search(country='DE', limit=20) # Get only occurrences with lat/long data occurrences.search(taxonKey=key, hasCoordinate=True, limit=20) # Get only occurrences that were recorded as living specimens occurrences.search(taxonKey=key, basisOfRecord="LIVING_SPECIMEN", hasCoordinate=True, limit=20) # Get occurrences for a particular eventDate occurrences.search(taxonKey=key, eventDate="2013", limit=20) occurrences.search(taxonKey=key, year="2013", limit=20) occurrences.search(taxonKey=key, month="6", limit=20) # Get occurrences based on depth key = species.name_backbone(name='Salmo salar', kingdom='animals')['usageKey'] occurrences.search(taxonKey=key, depth="5", limit=20) # Get occurrences based on elevation key = species.name_backbone(name='Puma concolor', kingdom='animals')['usageKey'] occurrences.search(taxonKey=key, elevation=50, hasCoordinate=True, limit=20) # Get occurrences based on institutionCode occurrences.search(institutionCode="TLMF", limit=20) # Get occurrences based on collectionCode occurrences.search(collectionCode="Floristic Databases MV - Higher Plants", limit=20) # Get only those occurrences with spatial issues occurrences.search(taxonKey=key, hasGeospatialIssue=True, limit=20) # Search using a query string occurrences.search(q="kingfisher", limit=20) # Range queries ## See Detail for parameters that support range queries ### this is a range depth, with lower/upper limits in character string occurrences.search(depth='50,100') ## Range search with year occurrences.search(year='1999,2000', limit=20) ## Range search with latitude occurrences.search(decimalLatitude='29.59,29.6') # Search by specimen type status ## Look for possible values of the typeStatus parameter looking at the typestatus dataset occurrences.search(typeStatus = 'allotype') # Search by specimen record number ## This is the record number of the person/group that submitted the data, not GBIF's numbers ## You can see that many different groups have record number 1, so not super helpful occurrences.search(recordNumber = 1) # Search by last time interpreted: Date the record was last modified in GBIF ## The lastInterpreted parameter accepts ISO 8601 format dates, including ## yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Range queries are accepted for lastInterpreted occurrences.search(lastInterpreted = '2014-04-01') # Search by continent ## One of africa, antarctica, asia, europe, north_america, oceania, or south_america occurrences.search(continent = 'south_america') occurrences.search(continent = 'africa') occurrences.search(continent = 'oceania') occurrences.search(continent = 'antarctica') # Search for occurrences with images occurrences.search(mediatype = 'StillImage') occurrences.search(mediatype = 'MovingImage') x = occurrences.search(mediatype = 'Sound') [z['media'] for z in x['results']] # Query based on issues occurrences.search(taxonKey=1, issue='DEPTH_UNLIKELY') occurrences.search(taxonKey=1, issue=['DEPTH_UNLIKELY','COORDINATE_ROUNDED']) # Show all records in the Arizona State Lichen Collection that cant be matched to the GBIF # backbone properly: occurrences.search(datasetKey='84c0e1a0-f762-11e1-a439-00145eb45e9a', issue=['TAXON_MATCH_NONE','TAXON_MATCH_HIGHERRANK']) # If you pass in an invalid polygon you get hopefully informative errors ### the WKT string is fine, but GBIF says bad polygon wkt = 'POLYGON((-178.59375 64.83258989321493,-165.9375 59.24622380205539, -147.3046875 59.065977905449806,-130.78125 51.04484764446178,-125.859375 36.70806354647625, -112.1484375 23.367471303759686,-105.1171875 16.093320185359257,-86.8359375 9.23767076398516, -82.96875 2.9485268155066175,-82.6171875 -14.812060061226388,-74.8828125 -18.849111862023985, -77.34375 -47.661687803329166,-84.375 -49.975955187343295,174.7265625 -50.649460483096114, 179.296875 -42.19189902447192,-176.8359375 -35.634976650677295,176.8359375 -31.835565983656227, 163.4765625 -6.528187613695323,152.578125 1.894796132058301,135.703125 4.702353722559447, 127.96875 15.077427674847987,127.96875 23.689804541429606,139.921875 32.06861069132688, 149.4140625 42.65416193033991,159.2578125 48.3160811030533,168.3984375 57.019804336633165, 178.2421875 59.95776046458139,-179.6484375 61.16708631440347,-178.59375 64.83258989321493))' occurrences.search(geometry = wkt) # Faceting ## return no occurrence records with limit=0 x = occurrences.search(facet = "country", limit = 0) x['facets'] ## also return occurrence records x = occurrences.search(facet = "establishmentMeans", limit = 10) x['facets'] x['results'] ## multiple facet variables x = occurrences.search(facet = ["country", "basisOfRecord"], limit = 10) x['results'] x['facets'] x['facets']['country'] x['facets']['basisOfRecord'] x['facets']['basisOfRecord']['count'] ## set a minimum facet count x = occurrences.search(facet = "country", facetMincount = 30000000L, limit = 0) x['facets'] ## paging per each faceted variable ### do so by passing in variables like "country" + "_facetLimit" = "country_facetLimit" ### or "country" + "_facetOffset" = "country_facetOffset" x = occurrences.search( facet = ["country", "basisOfRecord", "hasCoordinate"], country_facetLimit = 3, basisOfRecord_facetLimit = 6, limit = 0 ) x['facets'] # requests package options ## There's an acceptable set of requests options (['timeout', 'cookies', 'auth', ## 'allow_redirects', 'proxies', 'verify', 'stream', 'cert']) you can pass ## in via **kwargs, e.g., set a timeout x = occurrences.search(timeout = 1) ''' url = gbif_baseurl + 'occurrence/search' args = {'taxonKey': taxonKey, 'repatriated': repatriated, 'kingdomKey': kingdomKey, 'phylumKey': phylumKey, 'classKey': classKey, 'orderKey': orderKey, 'familyKey': familyKey, 'genusKey': genusKey, 'subgenusKey': subgenusKey, 'scientificName': scientificName, 'country': country, 'publishingCountry': publishingCountry, 'hasCoordinate': hasCoordinate, 'typeStatus': typeStatus, 'recordNumber': recordNumber, 'lastInterpreted': lastInterpreted, 'continent': continent, 'geometry': geometry, 'recordedBy': recordedBy, 'basisOfRecord': basisOfRecord, 'datasetKey': datasetKey, 'eventDate': eventDate, 'catalogNumber': catalogNumber, 'year': year, 'month': month, 'decimalLatitude': decimalLatitude, 'decimalLongitude': decimalLongitude, 'elevation': elevation, 'depth': depth, 'institutionCode': institutionCode, 'collectionCode': collectionCode, 'hasGeospatialIssue': hasGeospatialIssue, 'issue': issue, 'q': q, 'spellCheck': spellCheck, 'mediatype': mediatype, 'limit': limit, 'offset': offset, 'establishmentMeans': establishmentMeans, 'facetMincount': facetMincount, 'facet': facet, 'facetMultiselect': facetMultiselect} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip( [ re.sub('_', '.', x) for x in gbif_kwargs.keys() ], gbif_kwargs.values() )) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} out = gbif_GET(url, args, **kwargs) return out
[ "def", "search", "(", "taxonKey", "=", "None", ",", "repatriated", "=", "None", ",", "kingdomKey", "=", "None", ",", "phylumKey", "=", "None", ",", "classKey", "=", "None", ",", "orderKey", "=", "None", ",", "familyKey", "=", "None", ",", "genusKey", "=", "None", ",", "subgenusKey", "=", "None", ",", "scientificName", "=", "None", ",", "country", "=", "None", ",", "publishingCountry", "=", "None", ",", "hasCoordinate", "=", "None", ",", "typeStatus", "=", "None", ",", "recordNumber", "=", "None", ",", "lastInterpreted", "=", "None", ",", "continent", "=", "None", ",", "geometry", "=", "None", ",", "recordedBy", "=", "None", ",", "basisOfRecord", "=", "None", ",", "datasetKey", "=", "None", ",", "eventDate", "=", "None", ",", "catalogNumber", "=", "None", ",", "year", "=", "None", ",", "month", "=", "None", ",", "decimalLatitude", "=", "None", ",", "decimalLongitude", "=", "None", ",", "elevation", "=", "None", ",", "depth", "=", "None", ",", "institutionCode", "=", "None", ",", "collectionCode", "=", "None", ",", "hasGeospatialIssue", "=", "None", ",", "issue", "=", "None", ",", "q", "=", "None", ",", "spellCheck", "=", "None", ",", "mediatype", "=", "None", ",", "limit", "=", "300", ",", "offset", "=", "0", ",", "establishmentMeans", "=", "None", ",", "facet", "=", "None", ",", "facetMincount", "=", "None", ",", "facetMultiselect", "=", "None", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/search'", "args", "=", "{", "'taxonKey'", ":", "taxonKey", ",", "'repatriated'", ":", "repatriated", ",", "'kingdomKey'", ":", "kingdomKey", ",", "'phylumKey'", ":", "phylumKey", ",", "'classKey'", ":", "classKey", ",", "'orderKey'", ":", "orderKey", ",", "'familyKey'", ":", "familyKey", ",", "'genusKey'", ":", "genusKey", ",", "'subgenusKey'", ":", "subgenusKey", ",", "'scientificName'", ":", "scientificName", ",", "'country'", ":", "country", ",", "'publishingCountry'", ":", "publishingCountry", ",", "'hasCoordinate'", ":", "hasCoordinate", ",", "'typeStatus'", ":", "typeStatus", ",", "'recordNumber'", ":", "recordNumber", ",", "'lastInterpreted'", ":", "lastInterpreted", ",", "'continent'", ":", "continent", ",", "'geometry'", ":", "geometry", ",", "'recordedBy'", ":", "recordedBy", ",", "'basisOfRecord'", ":", "basisOfRecord", ",", "'datasetKey'", ":", "datasetKey", ",", "'eventDate'", ":", "eventDate", ",", "'catalogNumber'", ":", "catalogNumber", ",", "'year'", ":", "year", ",", "'month'", ":", "month", ",", "'decimalLatitude'", ":", "decimalLatitude", ",", "'decimalLongitude'", ":", "decimalLongitude", ",", "'elevation'", ":", "elevation", ",", "'depth'", ":", "depth", ",", "'institutionCode'", ":", "institutionCode", ",", "'collectionCode'", ":", "collectionCode", ",", "'hasGeospatialIssue'", ":", "hasGeospatialIssue", ",", "'issue'", ":", "issue", ",", "'q'", ":", "q", ",", "'spellCheck'", ":", "spellCheck", ",", "'mediatype'", ":", "mediatype", ",", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", ",", "'establishmentMeans'", ":", "establishmentMeans", ",", "'facetMincount'", ":", "facetMincount", ",", "'facet'", ":", "facet", ",", "'facetMultiselect'", ":", "facetMultiselect", "}", "gbif_kwargs", "=", "{", "key", ":", "kwargs", "[", "key", "]", "for", "key", "in", "kwargs", "if", "key", "not", "in", "requests_argset", "}", "if", "gbif_kwargs", "is", "not", "None", ":", "xx", "=", "dict", "(", "zip", "(", "[", "re", ".", "sub", "(", "'_'", ",", "'.'", ",", "x", ")", "for", "x", "in", "gbif_kwargs", ".", "keys", "(", ")", "]", ",", "gbif_kwargs", ".", "values", "(", ")", ")", ")", "args", ".", "update", "(", "xx", ")", "kwargs", "=", "{", "key", ":", "kwargs", "[", "key", "]", "for", "key", "in", "kwargs", "if", "key", "in", "requests_argset", "}", "out", "=", "gbif_GET", "(", "url", ",", "args", ",", "*", "*", "kwargs", ")", "return", "out" ]
Search GBIF occurrences :param taxonKey: [int] A GBIF occurrence identifier :param q: [str] Simple search parameter. The value for this parameter can be a simple word or a phrase. :param spellCheck: [bool] If ``True`` ask GBIF to check your spelling of the value passed to the ``search`` parameter. IMPORTANT: This only checks the input to the ``search`` parameter, and no others. Default: ``False`` :param repatriated: [str] Searches for records whose publishing country is different to the country where the record was recorded in :param kingdomKey: [int] Kingdom classification key :param phylumKey: [int] Phylum classification key :param classKey: [int] Class classification key :param orderKey: [int] Order classification key :param familyKey: [int] Family classification key :param genusKey: [int] Genus classification key :param subgenusKey: [int] Subgenus classification key :param scientificName: [str] A scientific name from the GBIF backbone. All included and synonym taxa are included in the search. :param datasetKey: [str] The occurrence dataset key (a uuid) :param catalogNumber: [str] An identifier of any form assigned by the source within a physical collection or digital dataset for the record which may not unique, but should be fairly unique in combination with the institution and collection code. :param recordedBy: [str] The person who recorded the occurrence. :param collectionCode: [str] An identifier of any form assigned by the source to identify the physical collection or digital dataset uniquely within the text of an institution. :param institutionCode: [str] An identifier of any form assigned by the source to identify the institution the record belongs to. Not guaranteed to be que. :param country: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 :param basisOfRecord: [str] Basis of record, as defined in our BasisOfRecord enum here http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are: - ``FOSSIL_SPECIMEN`` An occurrence record describing a fossilized specimen. - ``HUMAN_OBSERVATION`` An occurrence record describing an observation made by one or more people. - ``LITERATURE`` An occurrence record based on literature alone. - ``LIVING_SPECIMEN`` An occurrence record describing a living specimen, e.g. - ``MACHINE_OBSERVATION`` An occurrence record describing an observation made by a machine. - ``OBSERVATION`` An occurrence record describing an observation. - ``PRESERVED_SPECIMEN`` An occurrence record describing a preserved specimen. - ``UNKNOWN`` Unknown basis for the record. :param eventDate: [date] Occurrence date in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param year: [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param month: [int] The month of the year, starting with 1 for January. Supports range queries, smaller,larger (e.g., ``1,2``, whereas ``2,1`` wouldn't work) :param q: [str] Query terms. The value for this parameter can be a simple word or a phrase. :param decimalLatitude: [float] Latitude in decimals between -90 and 90 based on WGS 84. Supports range queries, smaller,larger (e.g., ``25,30``, whereas ``30,25`` wouldn't work) :param decimalLongitude: [float] Longitude in decimals between -180 and 180 based on WGS 84. Supports range queries (e.g., ``-0.4,-0.2``, whereas ``-0.2,-0.4`` wouldn't work). :param publishingCountry: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. :param elevation: [int/str] Elevation in meters above sea level. Supports range queries, smaller,larger (e.g., ``5,30``, whereas ``30,5`` wouldn't work) :param depth: [int/str] Depth in meters relative to elevation. For example 10 meters below a lake surface with given elevation. Supports range queries, smaller,larger (e.g., ``5,30``, whereas ``30,5`` wouldn't work) :param geometry: [str] Searches for occurrences inside a polygon described in Well Known Text (WKT) format. A WKT shape written as either POINT, LINESTRING, LINEARRING POLYGON, or MULTIPOLYGON. Example of a polygon: ``((30.1 10.1, 20, 20 40, 40 40, 30.1 10.1))`` would be queried as http://bit.ly/1BzNwDq. Polygons must have counter-clockwise ordering of points. :param hasGeospatialIssue: [bool] Includes/excludes occurrence records which contain spatial issues (as determined in our record interpretation), i.e. ``hasGeospatialIssue=TRUE`` returns only those records with spatial issues while ``hasGeospatialIssue=FALSE`` includes only records without spatial issues. The absence of this parameter returns any record with or without spatial issues. :param issue: [str] One or more of many possible issues with each occurrence record. See Details. Issues passed to this parameter filter results by the issue. :param hasCoordinate: [bool] Return only occurence records with lat/long data (``true``) or all records (``false``, default). :param typeStatus: [str] Type status of the specimen. One of many options. See ?typestatus :param recordNumber: [int] Number recorded by collector of the data, different from GBIF record number. See http://rs.tdwg.org/dwc/terms/#recordNumber} for more info :param lastInterpreted: [date] Date the record was last modified in GBIF, in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param continent: [str] Continent. One of ``africa``, ``antarctica``, ``asia``, ``europe``, ``north_america`` (North America includes the Caribbean and reachies down and includes Panama), ``oceania``, or ``south_america`` :param fields: [str] Default (``all``) returns all fields. ``minimal`` returns just taxon name, key, latitude, and longitude. Or specify each field you want returned by name, e.g. ``fields = c('name','latitude','elevation')``. :param mediatype: [str] Media type. Default is ``NULL``, so no filtering on mediatype. Options: ``NULL``, ``MovingImage``, ``Sound``, and ``StillImage`` :param limit: [int] Number of results to return. Default: ``300`` :param offset: [int] Record to start at. Default: ``0`` :param facet: [str] a character vector of length 1 or greater :param establishmentMeans: [str] EstablishmentMeans, possible values include: INTRODUCED, INVASIVE, MANAGED, NATIVE, NATURALISED, UNCERTAIN :param facetMincount: [int] minimum number of records to be included in the faceting results :param facetMultiselect: [bool] Set to ``true`` to still return counts for values that are not currently filtered. See examples. Default: ``false`` :return: A dictionary Usage:: from pygbif import occurrences occurrences.search(taxonKey = 3329049) # Return 2 results, this is the default by the way occurrences.search(taxonKey=3329049, limit=2) # Instead of getting a taxon key first, you can search for a name directly # However, note that using this approach (with `scientificName="..."`) # you are getting synonyms too. The results for using `scientifcName` and # `taxonKey` parameters are the same in this case, but I wouldn't be surprised if for some # names they return different results occurrences.search(scientificName = 'Ursus americanus') from pygbif import species key = species.name_backbone(name = 'Ursus americanus', rank='species')['usageKey'] occurrences.search(taxonKey = key) # Search by dataset key occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', limit=20) # Search by catalog number occurrences.search(catalogNumber="49366", limit=20) # occurrences.search(catalogNumber=["49366","Bird.27847588"], limit=20) # Use paging parameters (limit and offset) to page. Note the different results # for the two queries below. occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=10, limit=5) occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=20, limit=5) # Many dataset keys # occurrences.search(datasetKey=["50c9509d-22c7-4a22-a47d-8c48425ef4a7", "7b5d6a48-f762-11e1-a439-00145eb45e9a"], limit=20) # Search by collector name res = occurrences.search(recordedBy="smith", limit=20) [ x['recordedBy'] for x in res['results'] ] # Many collector names # occurrences.search(recordedBy=["smith","BJ Stacey"], limit=20) # Search for many species splist = ['Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa'] keys = [ species.name_suggest(x)[0]['key'] for x in splist ] out = [ occurrences.search(taxonKey = x, limit=1) for x in keys ] [ x['results'][0]['speciesKey'] for x in out ] # Search - q parameter occurrences.search(q = "kingfisher", limit=20) ## spell check - only works with the `search` parameter ### spelled correctly - same result as above call occurrences.search(q = "kingfisher", limit=20, spellCheck = True) ### spelled incorrectly - stops with suggested spelling occurrences.search(q = "kajsdkla", limit=20, spellCheck = True) ### spelled incorrectly - stops with many suggested spellings ### and number of results for each occurrences.search(q = "helir", limit=20, spellCheck = True) # Search on latitidue and longitude occurrences.search(decimalLatitude=50, decimalLongitude=10, limit=2) # Search on a bounding box ## in well known text format occurrences.search(geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20) from pygbif import species key = species.name_suggest(q='Aesculus hippocastanum')[0]['key'] occurrences.search(taxonKey=key, geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20) ## multipolygon wkt = 'MULTIPOLYGON(((-123 38, -123 43, -116 43, -116 38, -123 38)),((-97 41, -97 45, -93 45, -93 41, -97 41)))' occurrences.search(geometry = wkt, limit = 20) # Search on country occurrences.search(country='US', limit=20) occurrences.search(country='FR', limit=20) occurrences.search(country='DE', limit=20) # Get only occurrences with lat/long data occurrences.search(taxonKey=key, hasCoordinate=True, limit=20) # Get only occurrences that were recorded as living specimens occurrences.search(taxonKey=key, basisOfRecord="LIVING_SPECIMEN", hasCoordinate=True, limit=20) # Get occurrences for a particular eventDate occurrences.search(taxonKey=key, eventDate="2013", limit=20) occurrences.search(taxonKey=key, year="2013", limit=20) occurrences.search(taxonKey=key, month="6", limit=20) # Get occurrences based on depth key = species.name_backbone(name='Salmo salar', kingdom='animals')['usageKey'] occurrences.search(taxonKey=key, depth="5", limit=20) # Get occurrences based on elevation key = species.name_backbone(name='Puma concolor', kingdom='animals')['usageKey'] occurrences.search(taxonKey=key, elevation=50, hasCoordinate=True, limit=20) # Get occurrences based on institutionCode occurrences.search(institutionCode="TLMF", limit=20) # Get occurrences based on collectionCode occurrences.search(collectionCode="Floristic Databases MV - Higher Plants", limit=20) # Get only those occurrences with spatial issues occurrences.search(taxonKey=key, hasGeospatialIssue=True, limit=20) # Search using a query string occurrences.search(q="kingfisher", limit=20) # Range queries ## See Detail for parameters that support range queries ### this is a range depth, with lower/upper limits in character string occurrences.search(depth='50,100') ## Range search with year occurrences.search(year='1999,2000', limit=20) ## Range search with latitude occurrences.search(decimalLatitude='29.59,29.6') # Search by specimen type status ## Look for possible values of the typeStatus parameter looking at the typestatus dataset occurrences.search(typeStatus = 'allotype') # Search by specimen record number ## This is the record number of the person/group that submitted the data, not GBIF's numbers ## You can see that many different groups have record number 1, so not super helpful occurrences.search(recordNumber = 1) # Search by last time interpreted: Date the record was last modified in GBIF ## The lastInterpreted parameter accepts ISO 8601 format dates, including ## yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Range queries are accepted for lastInterpreted occurrences.search(lastInterpreted = '2014-04-01') # Search by continent ## One of africa, antarctica, asia, europe, north_america, oceania, or south_america occurrences.search(continent = 'south_america') occurrences.search(continent = 'africa') occurrences.search(continent = 'oceania') occurrences.search(continent = 'antarctica') # Search for occurrences with images occurrences.search(mediatype = 'StillImage') occurrences.search(mediatype = 'MovingImage') x = occurrences.search(mediatype = 'Sound') [z['media'] for z in x['results']] # Query based on issues occurrences.search(taxonKey=1, issue='DEPTH_UNLIKELY') occurrences.search(taxonKey=1, issue=['DEPTH_UNLIKELY','COORDINATE_ROUNDED']) # Show all records in the Arizona State Lichen Collection that cant be matched to the GBIF # backbone properly: occurrences.search(datasetKey='84c0e1a0-f762-11e1-a439-00145eb45e9a', issue=['TAXON_MATCH_NONE','TAXON_MATCH_HIGHERRANK']) # If you pass in an invalid polygon you get hopefully informative errors ### the WKT string is fine, but GBIF says bad polygon wkt = 'POLYGON((-178.59375 64.83258989321493,-165.9375 59.24622380205539, -147.3046875 59.065977905449806,-130.78125 51.04484764446178,-125.859375 36.70806354647625, -112.1484375 23.367471303759686,-105.1171875 16.093320185359257,-86.8359375 9.23767076398516, -82.96875 2.9485268155066175,-82.6171875 -14.812060061226388,-74.8828125 -18.849111862023985, -77.34375 -47.661687803329166,-84.375 -49.975955187343295,174.7265625 -50.649460483096114, 179.296875 -42.19189902447192,-176.8359375 -35.634976650677295,176.8359375 -31.835565983656227, 163.4765625 -6.528187613695323,152.578125 1.894796132058301,135.703125 4.702353722559447, 127.96875 15.077427674847987,127.96875 23.689804541429606,139.921875 32.06861069132688, 149.4140625 42.65416193033991,159.2578125 48.3160811030533,168.3984375 57.019804336633165, 178.2421875 59.95776046458139,-179.6484375 61.16708631440347,-178.59375 64.83258989321493))' occurrences.search(geometry = wkt) # Faceting ## return no occurrence records with limit=0 x = occurrences.search(facet = "country", limit = 0) x['facets'] ## also return occurrence records x = occurrences.search(facet = "establishmentMeans", limit = 10) x['facets'] x['results'] ## multiple facet variables x = occurrences.search(facet = ["country", "basisOfRecord"], limit = 10) x['results'] x['facets'] x['facets']['country'] x['facets']['basisOfRecord'] x['facets']['basisOfRecord']['count'] ## set a minimum facet count x = occurrences.search(facet = "country", facetMincount = 30000000L, limit = 0) x['facets'] ## paging per each faceted variable ### do so by passing in variables like "country" + "_facetLimit" = "country_facetLimit" ### or "country" + "_facetOffset" = "country_facetOffset" x = occurrences.search( facet = ["country", "basisOfRecord", "hasCoordinate"], country_facetLimit = 3, basisOfRecord_facetLimit = 6, limit = 0 ) x['facets'] # requests package options ## There's an acceptable set of requests options (['timeout', 'cookies', 'auth', ## 'allow_redirects', 'proxies', 'verify', 'stream', 'cert']) you can pass ## in via **kwargs, e.g., set a timeout x = occurrences.search(timeout = 1)
[ "Search", "GBIF", "occurrences" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/search.py#L4-L334
sckott/pygbif
pygbif/registry/networks.py
networks
def networks(data = 'all', uuid = None, q = None, identifier = None, identifierType = None, limit = 100, offset = None, **kwargs): ''' Networks metadata. Note: there's only 1 network now, so there's not a lot you can do with this method. :param data: [str] The type of data to get. Default: ``all`` :param uuid: [str] UUID of the data network provider. This must be specified if data is anything other than ``all``. :param q: [str] Query networks. Only used when ``data = 'all'``. Ignored otherwise. :param identifier: [fixnum] The value for this parameter can be a simple string or integer, e.g. identifier=120 :param identifierType: [str] Used in combination with the identifier parameter to filter identifiers by identifier type: ``DOI``, ``FTP``, ``GBIF_NODE``, ``GBIF_PARTICIPANT``, ``GBIF_PORTAL``, ``HANDLER``, ``LSID``, ``UNKNOWN``, ``URI``, ``URL``, ``UUID`` :param limit: [int] Number of results to return. Default: ``100`` :param offset: [int] Record to start at. Default: ``0`` :return: A dictionary References: http://www.gbif.org/developer/registry#networks Usage:: from pygbif import registry registry.networks(limit=1) registry.networks(uuid='2b7c7b4f-4d4f-40d3-94de-c28b6fa054a6') ''' args = {'q': q, 'limit': limit, 'offset': offset, 'identifier': identifier, 'identifierType': identifierType} data_choices = ['all', 'contact', 'endpoint', 'identifier', 'tag', 'machineTag', 'comment', 'constituents'] check_data(data, data_choices) def getdata(x, uuid, args, **kwargs): if x is not 'all' and uuid is None: stop('You must specify a uuid if data does not equal "all"') if uuid is None: url = gbif_baseurl + 'network' else: if x is 'all': url = gbif_baseurl + 'network/' + uuid else: url = gbif_baseurl + 'network/' + uuid + '/' + x res = gbif_GET(url, args, **kwargs) return {'meta': get_meta(res), 'data': parse_results(res, uuid)} if len2(data) == 1: return getdata(data, uuid, args, **kwargs) else: return [getdata(x, uuid, args, **kwargs) for x in data]
python
def networks(data = 'all', uuid = None, q = None, identifier = None, identifierType = None, limit = 100, offset = None, **kwargs): ''' Networks metadata. Note: there's only 1 network now, so there's not a lot you can do with this method. :param data: [str] The type of data to get. Default: ``all`` :param uuid: [str] UUID of the data network provider. This must be specified if data is anything other than ``all``. :param q: [str] Query networks. Only used when ``data = 'all'``. Ignored otherwise. :param identifier: [fixnum] The value for this parameter can be a simple string or integer, e.g. identifier=120 :param identifierType: [str] Used in combination with the identifier parameter to filter identifiers by identifier type: ``DOI``, ``FTP``, ``GBIF_NODE``, ``GBIF_PARTICIPANT``, ``GBIF_PORTAL``, ``HANDLER``, ``LSID``, ``UNKNOWN``, ``URI``, ``URL``, ``UUID`` :param limit: [int] Number of results to return. Default: ``100`` :param offset: [int] Record to start at. Default: ``0`` :return: A dictionary References: http://www.gbif.org/developer/registry#networks Usage:: from pygbif import registry registry.networks(limit=1) registry.networks(uuid='2b7c7b4f-4d4f-40d3-94de-c28b6fa054a6') ''' args = {'q': q, 'limit': limit, 'offset': offset, 'identifier': identifier, 'identifierType': identifierType} data_choices = ['all', 'contact', 'endpoint', 'identifier', 'tag', 'machineTag', 'comment', 'constituents'] check_data(data, data_choices) def getdata(x, uuid, args, **kwargs): if x is not 'all' and uuid is None: stop('You must specify a uuid if data does not equal "all"') if uuid is None: url = gbif_baseurl + 'network' else: if x is 'all': url = gbif_baseurl + 'network/' + uuid else: url = gbif_baseurl + 'network/' + uuid + '/' + x res = gbif_GET(url, args, **kwargs) return {'meta': get_meta(res), 'data': parse_results(res, uuid)} if len2(data) == 1: return getdata(data, uuid, args, **kwargs) else: return [getdata(x, uuid, args, **kwargs) for x in data]
[ "def", "networks", "(", "data", "=", "'all'", ",", "uuid", "=", "None", ",", "q", "=", "None", ",", "identifier", "=", "None", ",", "identifierType", "=", "None", ",", "limit", "=", "100", ",", "offset", "=", "None", ",", "*", "*", "kwargs", ")", ":", "args", "=", "{", "'q'", ":", "q", ",", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", ",", "'identifier'", ":", "identifier", ",", "'identifierType'", ":", "identifierType", "}", "data_choices", "=", "[", "'all'", ",", "'contact'", ",", "'endpoint'", ",", "'identifier'", ",", "'tag'", ",", "'machineTag'", ",", "'comment'", ",", "'constituents'", "]", "check_data", "(", "data", ",", "data_choices", ")", "def", "getdata", "(", "x", ",", "uuid", ",", "args", ",", "*", "*", "kwargs", ")", ":", "if", "x", "is", "not", "'all'", "and", "uuid", "is", "None", ":", "stop", "(", "'You must specify a uuid if data does not equal \"all\"'", ")", "if", "uuid", "is", "None", ":", "url", "=", "gbif_baseurl", "+", "'network'", "else", ":", "if", "x", "is", "'all'", ":", "url", "=", "gbif_baseurl", "+", "'network/'", "+", "uuid", "else", ":", "url", "=", "gbif_baseurl", "+", "'network/'", "+", "uuid", "+", "'/'", "+", "x", "res", "=", "gbif_GET", "(", "url", ",", "args", ",", "*", "*", "kwargs", ")", "return", "{", "'meta'", ":", "get_meta", "(", "res", ")", ",", "'data'", ":", "parse_results", "(", "res", ",", "uuid", ")", "}", "if", "len2", "(", "data", ")", "==", "1", ":", "return", "getdata", "(", "data", ",", "uuid", ",", "args", ",", "*", "*", "kwargs", ")", "else", ":", "return", "[", "getdata", "(", "x", ",", "uuid", ",", "args", ",", "*", "*", "kwargs", ")", "for", "x", "in", "data", "]" ]
Networks metadata. Note: there's only 1 network now, so there's not a lot you can do with this method. :param data: [str] The type of data to get. Default: ``all`` :param uuid: [str] UUID of the data network provider. This must be specified if data is anything other than ``all``. :param q: [str] Query networks. Only used when ``data = 'all'``. Ignored otherwise. :param identifier: [fixnum] The value for this parameter can be a simple string or integer, e.g. identifier=120 :param identifierType: [str] Used in combination with the identifier parameter to filter identifiers by identifier type: ``DOI``, ``FTP``, ``GBIF_NODE``, ``GBIF_PARTICIPANT``, ``GBIF_PORTAL``, ``HANDLER``, ``LSID``, ``UNKNOWN``, ``URI``, ``URL``, ``UUID`` :param limit: [int] Number of results to return. Default: ``100`` :param offset: [int] Record to start at. Default: ``0`` :return: A dictionary References: http://www.gbif.org/developer/registry#networks Usage:: from pygbif import registry registry.networks(limit=1) registry.networks(uuid='2b7c7b4f-4d4f-40d3-94de-c28b6fa054a6')
[ "Networks", "metadata", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/registry/networks.py#L3-L56
sckott/pygbif
pygbif/maps/map.py
map
def map(source = 'density', z = 0, x = 0, y = 0, format = '@1x.png', srs='EPSG:4326', bin=None, hexPerTile=None, style='classic.point', taxonKey=None, country=None, publishingCountry=None, publisher=None, datasetKey=None, year=None, basisOfRecord=None, **kwargs): ''' GBIF maps API :param source: [str] Either ``density`` for fast, precalculated tiles, or ``adhoc`` for any search :param z: [str] zoom level :param x: [str] longitude :param y: [str] latitude :param format: [str] format of returned data. One of: - ``.mvt`` - vector tile - ``@Hx.png`` - 256px raster tile (for legacy clients) - ``@1x.png`` - 512px raster tile, @2x.png for a 1024px raster tile - ``@2x.png`` - 1024px raster tile - ``@3x.png`` - 2048px raster tile - ``@4x.png`` - 4096px raster tile :param srs: [str] Spatial reference system. One of: - ``EPSG:3857`` (Web Mercator) - ``EPSG:4326`` (WGS84 plate caree) - ``EPSG:3575`` (Arctic LAEA) - ``EPSG:3031`` (Antarctic stereographic) :param bin: [str] square or hex to aggregate occurrence counts into squares or hexagons. Points by default. :param hexPerTile: [str] sets the size of the hexagons (the number horizontally across a tile) :param squareSize: [str] sets the size of the squares. Choose a factor of 4096 so they tessalate correctly: probably from 8, 16, 32, 64, 128, 256, 512. :param style: [str] for raster tiles, choose from the available styles. Defaults to classic.point. :param taxonKey: [int] A GBIF occurrence identifier :param datasetKey: [str] The occurrence dataset key (a uuid) :param country: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 :param basisOfRecord: [str] Basis of record, as defined in the BasisOfRecord enum http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are - ``FOSSIL_SPECIMEN`` An occurrence record describing a fossilized specimen. - ``HUMAN_OBSERVATION`` An occurrence record describing an observation made by one or more people. - ``LITERATURE`` An occurrence record based on literature alone. - ``LIVING_SPECIMEN`` An occurrence record describing a living specimen, e.g. - ``MACHINE_OBSERVATION`` An occurrence record describing an observation made by a machine. - ``OBSERVATION`` An occurrence record describing an observation. - ``PRESERVED_SPECIMEN`` An occurrence record describing a preserved specimen. - ``UNKNOWN`` Unknown basis for the record. :param year: [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param publishingCountry: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. :return: An object of class GbifMap For mvt format, see https://github.com/tilezen/mapbox-vector-tile to decode, and example below Usage:: from pygbif import maps out = maps.map(taxonKey = 2435098) out.response out.path out.img out.plot() out = maps.map(taxonKey = 2480498, year = range(2008, 2011+1)) out.response out.path out.img out.plot() # srs maps.map(taxonKey = 2480498, year = 2010, srs = "EPSG:3857") # bin maps.map(taxonKey = 212, year = 1998, bin = "hex", hexPerTile = 30, style = "classic-noborder.poly") # style maps.map(taxonKey = 2480498, style = "purpleYellow.point").plot() # basisOfRecord maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = "HUMAN_OBSERVATION", bin = "hex", hexPerTile = 500).plot() maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = ["HUMAN_OBSERVATION", "LIVING_SPECIMEN"], hexPerTile = 500, bin = "hex").plot() # map vector tiles, gives back raw bytes from pygbif import maps x = maps.map(taxonKey = 2480498, year = 2010, format = ".mvt") x.response x.path x.img # None import mapbox_vector_tile mapbox_vector_tile.decode(x.response.content) ''' if format not in ['.mvt', '@Hx.png', '@1x.png', '@2x.png', '@3x.png', '@4x.png']: raise ValueError("'format' not in allowed set, see docs") if source not in ['density', 'adhoc']: raise ValueError("'source' not in allowed set, see docs") if srs not in ['EPSG:3857', 'EPSG:4326', 'EPSG:3575', 'EPSG:3031']: raise ValueError("'srs' not in allowed set, see docs") if bin is not None: if bin not in ['square', 'hex']: raise ValueError("'bin' not in allowed set, see docs") if style is not None: if style not in map_styles: raise ValueError("'style' not in allowed set, see docs") maps_baseurl = 'https://api.gbif.org' url = maps_baseurl + '/v2/map/occurrence/%s/%s/%s/%s%s' url = url % ( source, z, x, y, format ) year = __handle_year(year) basisOfRecord = __handle_bor(basisOfRecord) args = {'srs': srs, 'bin': bin, 'hexPerTile': hexPerTile, 'style': style, 'taxonKey': taxonKey, 'country': country, 'publishingCountry': publishingCountry, 'publisher': publisher, 'datasetKey': datasetKey, 'year': year, 'basisOfRecord': basisOfRecord} kw = {key: kwargs[key] for key in kwargs if key not in requests_argset} if kw is not None: xx = dict(zip( [ re.sub('_', '.', x) for x in kw.keys() ], kw.values() )) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} ctype = 'image/png' if has(format, "png") else 'application/x-protobuf' out = gbif_GET_map(url, args, ctype, **kwargs) # return out return GbifMap(out)
python
def map(source = 'density', z = 0, x = 0, y = 0, format = '@1x.png', srs='EPSG:4326', bin=None, hexPerTile=None, style='classic.point', taxonKey=None, country=None, publishingCountry=None, publisher=None, datasetKey=None, year=None, basisOfRecord=None, **kwargs): ''' GBIF maps API :param source: [str] Either ``density`` for fast, precalculated tiles, or ``adhoc`` for any search :param z: [str] zoom level :param x: [str] longitude :param y: [str] latitude :param format: [str] format of returned data. One of: - ``.mvt`` - vector tile - ``@Hx.png`` - 256px raster tile (for legacy clients) - ``@1x.png`` - 512px raster tile, @2x.png for a 1024px raster tile - ``@2x.png`` - 1024px raster tile - ``@3x.png`` - 2048px raster tile - ``@4x.png`` - 4096px raster tile :param srs: [str] Spatial reference system. One of: - ``EPSG:3857`` (Web Mercator) - ``EPSG:4326`` (WGS84 plate caree) - ``EPSG:3575`` (Arctic LAEA) - ``EPSG:3031`` (Antarctic stereographic) :param bin: [str] square or hex to aggregate occurrence counts into squares or hexagons. Points by default. :param hexPerTile: [str] sets the size of the hexagons (the number horizontally across a tile) :param squareSize: [str] sets the size of the squares. Choose a factor of 4096 so they tessalate correctly: probably from 8, 16, 32, 64, 128, 256, 512. :param style: [str] for raster tiles, choose from the available styles. Defaults to classic.point. :param taxonKey: [int] A GBIF occurrence identifier :param datasetKey: [str] The occurrence dataset key (a uuid) :param country: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 :param basisOfRecord: [str] Basis of record, as defined in the BasisOfRecord enum http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are - ``FOSSIL_SPECIMEN`` An occurrence record describing a fossilized specimen. - ``HUMAN_OBSERVATION`` An occurrence record describing an observation made by one or more people. - ``LITERATURE`` An occurrence record based on literature alone. - ``LIVING_SPECIMEN`` An occurrence record describing a living specimen, e.g. - ``MACHINE_OBSERVATION`` An occurrence record describing an observation made by a machine. - ``OBSERVATION`` An occurrence record describing an observation. - ``PRESERVED_SPECIMEN`` An occurrence record describing a preserved specimen. - ``UNKNOWN`` Unknown basis for the record. :param year: [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param publishingCountry: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. :return: An object of class GbifMap For mvt format, see https://github.com/tilezen/mapbox-vector-tile to decode, and example below Usage:: from pygbif import maps out = maps.map(taxonKey = 2435098) out.response out.path out.img out.plot() out = maps.map(taxonKey = 2480498, year = range(2008, 2011+1)) out.response out.path out.img out.plot() # srs maps.map(taxonKey = 2480498, year = 2010, srs = "EPSG:3857") # bin maps.map(taxonKey = 212, year = 1998, bin = "hex", hexPerTile = 30, style = "classic-noborder.poly") # style maps.map(taxonKey = 2480498, style = "purpleYellow.point").plot() # basisOfRecord maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = "HUMAN_OBSERVATION", bin = "hex", hexPerTile = 500).plot() maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = ["HUMAN_OBSERVATION", "LIVING_SPECIMEN"], hexPerTile = 500, bin = "hex").plot() # map vector tiles, gives back raw bytes from pygbif import maps x = maps.map(taxonKey = 2480498, year = 2010, format = ".mvt") x.response x.path x.img # None import mapbox_vector_tile mapbox_vector_tile.decode(x.response.content) ''' if format not in ['.mvt', '@Hx.png', '@1x.png', '@2x.png', '@3x.png', '@4x.png']: raise ValueError("'format' not in allowed set, see docs") if source not in ['density', 'adhoc']: raise ValueError("'source' not in allowed set, see docs") if srs not in ['EPSG:3857', 'EPSG:4326', 'EPSG:3575', 'EPSG:3031']: raise ValueError("'srs' not in allowed set, see docs") if bin is not None: if bin not in ['square', 'hex']: raise ValueError("'bin' not in allowed set, see docs") if style is not None: if style not in map_styles: raise ValueError("'style' not in allowed set, see docs") maps_baseurl = 'https://api.gbif.org' url = maps_baseurl + '/v2/map/occurrence/%s/%s/%s/%s%s' url = url % ( source, z, x, y, format ) year = __handle_year(year) basisOfRecord = __handle_bor(basisOfRecord) args = {'srs': srs, 'bin': bin, 'hexPerTile': hexPerTile, 'style': style, 'taxonKey': taxonKey, 'country': country, 'publishingCountry': publishingCountry, 'publisher': publisher, 'datasetKey': datasetKey, 'year': year, 'basisOfRecord': basisOfRecord} kw = {key: kwargs[key] for key in kwargs if key not in requests_argset} if kw is not None: xx = dict(zip( [ re.sub('_', '.', x) for x in kw.keys() ], kw.values() )) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} ctype = 'image/png' if has(format, "png") else 'application/x-protobuf' out = gbif_GET_map(url, args, ctype, **kwargs) # return out return GbifMap(out)
[ "def", "map", "(", "source", "=", "'density'", ",", "z", "=", "0", ",", "x", "=", "0", ",", "y", "=", "0", ",", "format", "=", "'@1x.png'", ",", "srs", "=", "'EPSG:4326'", ",", "bin", "=", "None", ",", "hexPerTile", "=", "None", ",", "style", "=", "'classic.point'", ",", "taxonKey", "=", "None", ",", "country", "=", "None", ",", "publishingCountry", "=", "None", ",", "publisher", "=", "None", ",", "datasetKey", "=", "None", ",", "year", "=", "None", ",", "basisOfRecord", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "format", "not", "in", "[", "'.mvt'", ",", "'@Hx.png'", ",", "'@1x.png'", ",", "'@2x.png'", ",", "'@3x.png'", ",", "'@4x.png'", "]", ":", "raise", "ValueError", "(", "\"'format' not in allowed set, see docs\"", ")", "if", "source", "not", "in", "[", "'density'", ",", "'adhoc'", "]", ":", "raise", "ValueError", "(", "\"'source' not in allowed set, see docs\"", ")", "if", "srs", "not", "in", "[", "'EPSG:3857'", ",", "'EPSG:4326'", ",", "'EPSG:3575'", ",", "'EPSG:3031'", "]", ":", "raise", "ValueError", "(", "\"'srs' not in allowed set, see docs\"", ")", "if", "bin", "is", "not", "None", ":", "if", "bin", "not", "in", "[", "'square'", ",", "'hex'", "]", ":", "raise", "ValueError", "(", "\"'bin' not in allowed set, see docs\"", ")", "if", "style", "is", "not", "None", ":", "if", "style", "not", "in", "map_styles", ":", "raise", "ValueError", "(", "\"'style' not in allowed set, see docs\"", ")", "maps_baseurl", "=", "'https://api.gbif.org'", "url", "=", "maps_baseurl", "+", "'/v2/map/occurrence/%s/%s/%s/%s%s'", "url", "=", "url", "%", "(", "source", ",", "z", ",", "x", ",", "y", ",", "format", ")", "year", "=", "__handle_year", "(", "year", ")", "basisOfRecord", "=", "__handle_bor", "(", "basisOfRecord", ")", "args", "=", "{", "'srs'", ":", "srs", ",", "'bin'", ":", "bin", ",", "'hexPerTile'", ":", "hexPerTile", ",", "'style'", ":", "style", ",", "'taxonKey'", ":", "taxonKey", ",", "'country'", ":", "country", ",", "'publishingCountry'", ":", "publishingCountry", ",", "'publisher'", ":", "publisher", ",", "'datasetKey'", ":", "datasetKey", ",", "'year'", ":", "year", ",", "'basisOfRecord'", ":", "basisOfRecord", "}", "kw", "=", "{", "key", ":", "kwargs", "[", "key", "]", "for", "key", "in", "kwargs", "if", "key", "not", "in", "requests_argset", "}", "if", "kw", "is", "not", "None", ":", "xx", "=", "dict", "(", "zip", "(", "[", "re", ".", "sub", "(", "'_'", ",", "'.'", ",", "x", ")", "for", "x", "in", "kw", ".", "keys", "(", ")", "]", ",", "kw", ".", "values", "(", ")", ")", ")", "args", ".", "update", "(", "xx", ")", "kwargs", "=", "{", "key", ":", "kwargs", "[", "key", "]", "for", "key", "in", "kwargs", "if", "key", "in", "requests_argset", "}", "ctype", "=", "'image/png'", "if", "has", "(", "format", ",", "\"png\"", ")", "else", "'application/x-protobuf'", "out", "=", "gbif_GET_map", "(", "url", ",", "args", ",", "ctype", ",", "*", "*", "kwargs", ")", "# return out", "return", "GbifMap", "(", "out", ")" ]
GBIF maps API :param source: [str] Either ``density`` for fast, precalculated tiles, or ``adhoc`` for any search :param z: [str] zoom level :param x: [str] longitude :param y: [str] latitude :param format: [str] format of returned data. One of: - ``.mvt`` - vector tile - ``@Hx.png`` - 256px raster tile (for legacy clients) - ``@1x.png`` - 512px raster tile, @2x.png for a 1024px raster tile - ``@2x.png`` - 1024px raster tile - ``@3x.png`` - 2048px raster tile - ``@4x.png`` - 4096px raster tile :param srs: [str] Spatial reference system. One of: - ``EPSG:3857`` (Web Mercator) - ``EPSG:4326`` (WGS84 plate caree) - ``EPSG:3575`` (Arctic LAEA) - ``EPSG:3031`` (Antarctic stereographic) :param bin: [str] square or hex to aggregate occurrence counts into squares or hexagons. Points by default. :param hexPerTile: [str] sets the size of the hexagons (the number horizontally across a tile) :param squareSize: [str] sets the size of the squares. Choose a factor of 4096 so they tessalate correctly: probably from 8, 16, 32, 64, 128, 256, 512. :param style: [str] for raster tiles, choose from the available styles. Defaults to classic.point. :param taxonKey: [int] A GBIF occurrence identifier :param datasetKey: [str] The occurrence dataset key (a uuid) :param country: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 :param basisOfRecord: [str] Basis of record, as defined in the BasisOfRecord enum http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are - ``FOSSIL_SPECIMEN`` An occurrence record describing a fossilized specimen. - ``HUMAN_OBSERVATION`` An occurrence record describing an observation made by one or more people. - ``LITERATURE`` An occurrence record based on literature alone. - ``LIVING_SPECIMEN`` An occurrence record describing a living specimen, e.g. - ``MACHINE_OBSERVATION`` An occurrence record describing an observation made by a machine. - ``OBSERVATION`` An occurrence record describing an observation. - ``PRESERVED_SPECIMEN`` An occurrence record describing a preserved specimen. - ``UNKNOWN`` Unknown basis for the record. :param year: [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param publishingCountry: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. :return: An object of class GbifMap For mvt format, see https://github.com/tilezen/mapbox-vector-tile to decode, and example below Usage:: from pygbif import maps out = maps.map(taxonKey = 2435098) out.response out.path out.img out.plot() out = maps.map(taxonKey = 2480498, year = range(2008, 2011+1)) out.response out.path out.img out.plot() # srs maps.map(taxonKey = 2480498, year = 2010, srs = "EPSG:3857") # bin maps.map(taxonKey = 212, year = 1998, bin = "hex", hexPerTile = 30, style = "classic-noborder.poly") # style maps.map(taxonKey = 2480498, style = "purpleYellow.point").plot() # basisOfRecord maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = "HUMAN_OBSERVATION", bin = "hex", hexPerTile = 500).plot() maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = ["HUMAN_OBSERVATION", "LIVING_SPECIMEN"], hexPerTile = 500, bin = "hex").plot() # map vector tiles, gives back raw bytes from pygbif import maps x = maps.map(taxonKey = 2480498, year = 2010, format = ".mvt") x.response x.path x.img # None import mapbox_vector_tile mapbox_vector_tile.decode(x.response.content)
[ "GBIF", "maps", "API" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/maps/map.py#L8-L145
sckott/pygbif
pygbif/species/name_usage.py
name_usage
def name_usage(key = None, name = None, data = 'all', language = None, datasetKey = None, uuid = None, sourceId = None, rank = None, shortname = None, limit = 100, offset = None, **kwargs): ''' Lookup details for specific names in all taxonomies in GBIF. :param key: [fixnum] A GBIF key for a taxon :param name: [str] Filters by a case insensitive, canonical namestring, e.g. 'Puma concolor' :param data: [str] The type of data to get. Default: ``all``. Options: ``all``, ``verbatim``, ``name``, ``parents``, ``children``, ``related``, ``synonyms``, ``descriptions``, ``distributions``, ``media``, ``references``, ``speciesProfiles``, ``vernacularNames``, ``typeSpecimens``, ``root`` :param language: [str] Language, default is english :param datasetKey: [str] Filters by the dataset's key (a uuid) :param uuid: [str] A uuid for a dataset. Should give exact same results as datasetKey. :param sourceId: [fixnum] Filters by the source identifier. :param rank: [str] Taxonomic rank. Filters by taxonomic rank as one of: ``CLASS``, ``CULTIVAR``, ``CULTIVAR_GROUP``, ``DOMAIN``, ``FAMILY``, ``FORM``, ``GENUS``, ``INFORMAL``, ``INFRAGENERIC_NAME``, ``INFRAORDER``, ``INFRASPECIFIC_NAME``, ``INFRASUBSPECIFIC_NAME``, ``KINGDOM``, ``ORDER``, ``PHYLUM``, ``SECTION``, ``SERIES``, ``SPECIES``, ``STRAIN``, ``SUBCLASS``, ``SUBFAMILY``, ``SUBFORM``, ``SUBGENUS``, ``SUBKINGDOM``, ``SUBORDER``, ``SUBPHYLUM``, ``SUBSECTION``, ``SUBSERIES``, ``SUBSPECIES``, ``SUBTRIBE``, ``SUBVARIETY``, ``SUPERCLASS``, ``SUPERFAMILY``, ``SUPERORDER``, ``SUPERPHYLUM``, ``SUPRAGENERIC_NAME``, ``TRIBE``, ``UNRANKED``, ``VARIETY`` :param shortname: [str] A short name..need more info on this? :param limit: [fixnum] Number of records to return. Default: ``100``. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) References: http://www.gbif.org/developer/species#nameUsages Usage:: from pygbif import species species.name_usage(key=1) # Name usage for a taxonomic name species.name_usage(name='Puma', rank="GENUS") # All name usages species.name_usage() # References for a name usage species.name_usage(key=2435099, data='references') # Species profiles, descriptions species.name_usage(key=3119195, data='speciesProfiles') species.name_usage(key=3119195, data='descriptions') species.name_usage(key=2435099, data='children') # Vernacular names for a name usage species.name_usage(key=3119195, data='vernacularNames') # Limit number of results returned species.name_usage(key=3119195, data='vernacularNames', limit=3) # Search for names by dataset with datasetKey parameter species.name_usage(datasetKey="d7dddbf4-2cf0-4f39-9b2a-bb099caae36c") # Search for a particular language species.name_usage(key=3119195, language="FRENCH", data='vernacularNames') ''' args = {'language': language, 'name': name, 'datasetKey': datasetKey, 'rank': rank, 'sourceId': sourceId, 'limit': limit, 'offset': offset} data_choices = ['all', 'verbatim', 'name', 'parents', 'children', 'related', 'synonyms', 'descriptions', 'distributions', 'media', 'references', 'speciesProfiles', 'vernacularNames', 'typeSpecimens', 'root'] check_data(data, data_choices) if len2(data) == 1: return name_usage_fetch(data, key, shortname, uuid, args, **kwargs) else: return [name_usage_fetch(x, key, shortname, uuid, args, **kwargs) for x in data]
python
def name_usage(key = None, name = None, data = 'all', language = None, datasetKey = None, uuid = None, sourceId = None, rank = None, shortname = None, limit = 100, offset = None, **kwargs): ''' Lookup details for specific names in all taxonomies in GBIF. :param key: [fixnum] A GBIF key for a taxon :param name: [str] Filters by a case insensitive, canonical namestring, e.g. 'Puma concolor' :param data: [str] The type of data to get. Default: ``all``. Options: ``all``, ``verbatim``, ``name``, ``parents``, ``children``, ``related``, ``synonyms``, ``descriptions``, ``distributions``, ``media``, ``references``, ``speciesProfiles``, ``vernacularNames``, ``typeSpecimens``, ``root`` :param language: [str] Language, default is english :param datasetKey: [str] Filters by the dataset's key (a uuid) :param uuid: [str] A uuid for a dataset. Should give exact same results as datasetKey. :param sourceId: [fixnum] Filters by the source identifier. :param rank: [str] Taxonomic rank. Filters by taxonomic rank as one of: ``CLASS``, ``CULTIVAR``, ``CULTIVAR_GROUP``, ``DOMAIN``, ``FAMILY``, ``FORM``, ``GENUS``, ``INFORMAL``, ``INFRAGENERIC_NAME``, ``INFRAORDER``, ``INFRASPECIFIC_NAME``, ``INFRASUBSPECIFIC_NAME``, ``KINGDOM``, ``ORDER``, ``PHYLUM``, ``SECTION``, ``SERIES``, ``SPECIES``, ``STRAIN``, ``SUBCLASS``, ``SUBFAMILY``, ``SUBFORM``, ``SUBGENUS``, ``SUBKINGDOM``, ``SUBORDER``, ``SUBPHYLUM``, ``SUBSECTION``, ``SUBSERIES``, ``SUBSPECIES``, ``SUBTRIBE``, ``SUBVARIETY``, ``SUPERCLASS``, ``SUPERFAMILY``, ``SUPERORDER``, ``SUPERPHYLUM``, ``SUPRAGENERIC_NAME``, ``TRIBE``, ``UNRANKED``, ``VARIETY`` :param shortname: [str] A short name..need more info on this? :param limit: [fixnum] Number of records to return. Default: ``100``. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) References: http://www.gbif.org/developer/species#nameUsages Usage:: from pygbif import species species.name_usage(key=1) # Name usage for a taxonomic name species.name_usage(name='Puma', rank="GENUS") # All name usages species.name_usage() # References for a name usage species.name_usage(key=2435099, data='references') # Species profiles, descriptions species.name_usage(key=3119195, data='speciesProfiles') species.name_usage(key=3119195, data='descriptions') species.name_usage(key=2435099, data='children') # Vernacular names for a name usage species.name_usage(key=3119195, data='vernacularNames') # Limit number of results returned species.name_usage(key=3119195, data='vernacularNames', limit=3) # Search for names by dataset with datasetKey parameter species.name_usage(datasetKey="d7dddbf4-2cf0-4f39-9b2a-bb099caae36c") # Search for a particular language species.name_usage(key=3119195, language="FRENCH", data='vernacularNames') ''' args = {'language': language, 'name': name, 'datasetKey': datasetKey, 'rank': rank, 'sourceId': sourceId, 'limit': limit, 'offset': offset} data_choices = ['all', 'verbatim', 'name', 'parents', 'children', 'related', 'synonyms', 'descriptions', 'distributions', 'media', 'references', 'speciesProfiles', 'vernacularNames', 'typeSpecimens', 'root'] check_data(data, data_choices) if len2(data) == 1: return name_usage_fetch(data, key, shortname, uuid, args, **kwargs) else: return [name_usage_fetch(x, key, shortname, uuid, args, **kwargs) for x in data]
[ "def", "name_usage", "(", "key", "=", "None", ",", "name", "=", "None", ",", "data", "=", "'all'", ",", "language", "=", "None", ",", "datasetKey", "=", "None", ",", "uuid", "=", "None", ",", "sourceId", "=", "None", ",", "rank", "=", "None", ",", "shortname", "=", "None", ",", "limit", "=", "100", ",", "offset", "=", "None", ",", "*", "*", "kwargs", ")", ":", "args", "=", "{", "'language'", ":", "language", ",", "'name'", ":", "name", ",", "'datasetKey'", ":", "datasetKey", ",", "'rank'", ":", "rank", ",", "'sourceId'", ":", "sourceId", ",", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", "}", "data_choices", "=", "[", "'all'", ",", "'verbatim'", ",", "'name'", ",", "'parents'", ",", "'children'", ",", "'related'", ",", "'synonyms'", ",", "'descriptions'", ",", "'distributions'", ",", "'media'", ",", "'references'", ",", "'speciesProfiles'", ",", "'vernacularNames'", ",", "'typeSpecimens'", ",", "'root'", "]", "check_data", "(", "data", ",", "data_choices", ")", "if", "len2", "(", "data", ")", "==", "1", ":", "return", "name_usage_fetch", "(", "data", ",", "key", ",", "shortname", ",", "uuid", ",", "args", ",", "*", "*", "kwargs", ")", "else", ":", "return", "[", "name_usage_fetch", "(", "x", ",", "key", ",", "shortname", ",", "uuid", ",", "args", ",", "*", "*", "kwargs", ")", "for", "x", "in", "data", "]" ]
Lookup details for specific names in all taxonomies in GBIF. :param key: [fixnum] A GBIF key for a taxon :param name: [str] Filters by a case insensitive, canonical namestring, e.g. 'Puma concolor' :param data: [str] The type of data to get. Default: ``all``. Options: ``all``, ``verbatim``, ``name``, ``parents``, ``children``, ``related``, ``synonyms``, ``descriptions``, ``distributions``, ``media``, ``references``, ``speciesProfiles``, ``vernacularNames``, ``typeSpecimens``, ``root`` :param language: [str] Language, default is english :param datasetKey: [str] Filters by the dataset's key (a uuid) :param uuid: [str] A uuid for a dataset. Should give exact same results as datasetKey. :param sourceId: [fixnum] Filters by the source identifier. :param rank: [str] Taxonomic rank. Filters by taxonomic rank as one of: ``CLASS``, ``CULTIVAR``, ``CULTIVAR_GROUP``, ``DOMAIN``, ``FAMILY``, ``FORM``, ``GENUS``, ``INFORMAL``, ``INFRAGENERIC_NAME``, ``INFRAORDER``, ``INFRASPECIFIC_NAME``, ``INFRASUBSPECIFIC_NAME``, ``KINGDOM``, ``ORDER``, ``PHYLUM``, ``SECTION``, ``SERIES``, ``SPECIES``, ``STRAIN``, ``SUBCLASS``, ``SUBFAMILY``, ``SUBFORM``, ``SUBGENUS``, ``SUBKINGDOM``, ``SUBORDER``, ``SUBPHYLUM``, ``SUBSECTION``, ``SUBSERIES``, ``SUBSPECIES``, ``SUBTRIBE``, ``SUBVARIETY``, ``SUPERCLASS``, ``SUPERFAMILY``, ``SUPERORDER``, ``SUPERPHYLUM``, ``SUPRAGENERIC_NAME``, ``TRIBE``, ``UNRANKED``, ``VARIETY`` :param shortname: [str] A short name..need more info on this? :param limit: [fixnum] Number of records to return. Default: ``100``. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) References: http://www.gbif.org/developer/species#nameUsages Usage:: from pygbif import species species.name_usage(key=1) # Name usage for a taxonomic name species.name_usage(name='Puma', rank="GENUS") # All name usages species.name_usage() # References for a name usage species.name_usage(key=2435099, data='references') # Species profiles, descriptions species.name_usage(key=3119195, data='speciesProfiles') species.name_usage(key=3119195, data='descriptions') species.name_usage(key=2435099, data='children') # Vernacular names for a name usage species.name_usage(key=3119195, data='vernacularNames') # Limit number of results returned species.name_usage(key=3119195, data='vernacularNames', limit=3) # Search for names by dataset with datasetKey parameter species.name_usage(datasetKey="d7dddbf4-2cf0-4f39-9b2a-bb099caae36c") # Search for a particular language species.name_usage(key=3119195, language="FRENCH", data='vernacularNames')
[ "Lookup", "details", "for", "specific", "names", "in", "all", "taxonomies", "in", "GBIF", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/species/name_usage.py#L3-L76
sckott/pygbif
pygbif/occurrences/download.py
_check_environ
def _check_environ(variable, value): """check if a variable is present in the environmental variables""" if is_not_none(value): return value else: value = os.environ.get(variable) if is_none(value): stop(''.join([variable, """ not supplied and no entry in environmental variables"""])) else: return value
python
def _check_environ(variable, value): """check if a variable is present in the environmental variables""" if is_not_none(value): return value else: value = os.environ.get(variable) if is_none(value): stop(''.join([variable, """ not supplied and no entry in environmental variables"""])) else: return value
[ "def", "_check_environ", "(", "variable", ",", "value", ")", ":", "if", "is_not_none", "(", "value", ")", ":", "return", "value", "else", ":", "value", "=", "os", ".", "environ", ".", "get", "(", "variable", ")", "if", "is_none", "(", "value", ")", ":", "stop", "(", "''", ".", "join", "(", "[", "variable", ",", "\"\"\" not supplied and no entry in environmental\n variables\"\"\"", "]", ")", ")", "else", ":", "return", "value" ]
check if a variable is present in the environmental variables
[ "check", "if", "a", "variable", "is", "present", "in", "the", "environmental", "variables" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/download.py#L18-L29
sckott/pygbif
pygbif/occurrences/download.py
download
def download(queries, user=None, pwd=None, email=None, pred_type='and'): """ Spin up a download request for GBIF occurrence data. :param queries: One or more of query arguments to kick of a download job. See Details. :type queries: str or list :param pred_type: (character) One of ``equals`` (``=``), ``and`` (``&``), `or`` (``|``), ``lessThan`` (``<``), ``lessThanOrEquals`` (``<=``), ``greaterThan`` (``>``), ``greaterThanOrEquals`` (``>=``), ``in``, ``within``, ``not`` (``!``), ``like`` :param user: (character) User name within GBIF's website. Required. Set in your env vars with the option ``GBIF_USER`` :param pwd: (character) User password within GBIF's website. Required. Set in your env vars with the option ``GBIF_PWD`` :param email: (character) Email address to recieve download notice done email. Required. Set in your env vars with the option ``GBIF_EMAIL`` Argument passed have to be passed as character (e.g., ``country = US``), with a space between key (``country``), operator (``=``), and value (``US``). See the ``type`` parameter for possible options for the operator. This character string is parsed internally. Acceptable arguments to ``...`` (args) are: - taxonKey = ``TAXON_KEY`` - scientificName = ``SCIENTIFIC_NAME`` - country = ``COUNTRY`` - publishingCountry = ``PUBLISHING_COUNTRY`` - hasCoordinate = ``HAS_COORDINATE`` - hasGeospatialIssue = ``HAS_GEOSPATIAL_ISSUE`` - typeStatus = ``TYPE_STATUS`` - recordNumber = ``RECORD_NUMBER`` - lastInterpreted = ``LAST_INTERPRETED`` - continent = ``CONTINENT`` - geometry = ``GEOMETRY`` - basisOfRecord = ``BASIS_OF_RECORD`` - datasetKey = ``DATASET_KEY`` - eventDate = ``EVENT_DATE`` - catalogNumber = ``CATALOG_NUMBER`` - year = ``YEAR`` - month = ``MONTH`` - decimalLatitude = ``DECIMAL_LATITUDE`` - decimalLongitude = ``DECIMAL_LONGITUDE`` - elevation = ``ELEVATION`` - depth = ``DEPTH`` - institutionCode = ``INSTITUTION_CODE`` - collectionCode = ``COLLECTION_CODE`` - issue = ``ISSUE`` - mediatype = ``MEDIA_TYPE`` - recordedBy = ``RECORDED_BY`` - repatriated = ``REPATRIATED`` See the API docs http://www.gbif.org/developer/occurrence#download for more info, and the predicates docs http://www.gbif.org/developer/occurrence#predicates GBIF has a limit of 12,000 characters for download queries - so if you're download request is really, really long and complex, consider breaking it up into multiple requests by one factor or another. :return: A dictionary, of results Usage:: from pygbif import occurrences as occ occ.download('basisOfRecord = LITERATURE') occ.download('taxonKey = 3119195') occ.download('decimalLatitude > 50') occ.download('elevation >= 9000') occ.download('decimalLatitude >= 65') occ.download('country = US') occ.download('institutionCode = TLMF') occ.download('catalogNumber = Bird.27847588') res = occ.download(['taxonKey = 7264332', 'hasCoordinate = TRUE']) # pass output to download_meta for more information occ.download_meta(occ.download('decimalLatitude > 75')) # Multiple queries gg = occ.download(['decimalLatitude >= 65', 'decimalLatitude <= -65'], type='or') gg = occ.download(['depth = 80', 'taxonKey = 2343454'], type='or') # Repratriated data for Costa Rica occ.download(['country = CR', 'repatriated = true']) """ user = _check_environ('GBIF_USER', user) pwd = _check_environ('GBIF_PWD', pwd) email = _check_environ('GBIF_EMAIL', email) if isinstance(queries, str): queries = [queries] keyval = [_parse_args(z) for z in queries] # USE GBIFDownload class to set up the predicates req = GbifDownload(user, email) req.main_pred_type = pred_type for predicate in keyval: req.add_predicate(predicate['key'], predicate['value'], predicate['type']) out = req.post_download(user, pwd) return out, req.payload
python
def download(queries, user=None, pwd=None, email=None, pred_type='and'): """ Spin up a download request for GBIF occurrence data. :param queries: One or more of query arguments to kick of a download job. See Details. :type queries: str or list :param pred_type: (character) One of ``equals`` (``=``), ``and`` (``&``), `or`` (``|``), ``lessThan`` (``<``), ``lessThanOrEquals`` (``<=``), ``greaterThan`` (``>``), ``greaterThanOrEquals`` (``>=``), ``in``, ``within``, ``not`` (``!``), ``like`` :param user: (character) User name within GBIF's website. Required. Set in your env vars with the option ``GBIF_USER`` :param pwd: (character) User password within GBIF's website. Required. Set in your env vars with the option ``GBIF_PWD`` :param email: (character) Email address to recieve download notice done email. Required. Set in your env vars with the option ``GBIF_EMAIL`` Argument passed have to be passed as character (e.g., ``country = US``), with a space between key (``country``), operator (``=``), and value (``US``). See the ``type`` parameter for possible options for the operator. This character string is parsed internally. Acceptable arguments to ``...`` (args) are: - taxonKey = ``TAXON_KEY`` - scientificName = ``SCIENTIFIC_NAME`` - country = ``COUNTRY`` - publishingCountry = ``PUBLISHING_COUNTRY`` - hasCoordinate = ``HAS_COORDINATE`` - hasGeospatialIssue = ``HAS_GEOSPATIAL_ISSUE`` - typeStatus = ``TYPE_STATUS`` - recordNumber = ``RECORD_NUMBER`` - lastInterpreted = ``LAST_INTERPRETED`` - continent = ``CONTINENT`` - geometry = ``GEOMETRY`` - basisOfRecord = ``BASIS_OF_RECORD`` - datasetKey = ``DATASET_KEY`` - eventDate = ``EVENT_DATE`` - catalogNumber = ``CATALOG_NUMBER`` - year = ``YEAR`` - month = ``MONTH`` - decimalLatitude = ``DECIMAL_LATITUDE`` - decimalLongitude = ``DECIMAL_LONGITUDE`` - elevation = ``ELEVATION`` - depth = ``DEPTH`` - institutionCode = ``INSTITUTION_CODE`` - collectionCode = ``COLLECTION_CODE`` - issue = ``ISSUE`` - mediatype = ``MEDIA_TYPE`` - recordedBy = ``RECORDED_BY`` - repatriated = ``REPATRIATED`` See the API docs http://www.gbif.org/developer/occurrence#download for more info, and the predicates docs http://www.gbif.org/developer/occurrence#predicates GBIF has a limit of 12,000 characters for download queries - so if you're download request is really, really long and complex, consider breaking it up into multiple requests by one factor or another. :return: A dictionary, of results Usage:: from pygbif import occurrences as occ occ.download('basisOfRecord = LITERATURE') occ.download('taxonKey = 3119195') occ.download('decimalLatitude > 50') occ.download('elevation >= 9000') occ.download('decimalLatitude >= 65') occ.download('country = US') occ.download('institutionCode = TLMF') occ.download('catalogNumber = Bird.27847588') res = occ.download(['taxonKey = 7264332', 'hasCoordinate = TRUE']) # pass output to download_meta for more information occ.download_meta(occ.download('decimalLatitude > 75')) # Multiple queries gg = occ.download(['decimalLatitude >= 65', 'decimalLatitude <= -65'], type='or') gg = occ.download(['depth = 80', 'taxonKey = 2343454'], type='or') # Repratriated data for Costa Rica occ.download(['country = CR', 'repatriated = true']) """ user = _check_environ('GBIF_USER', user) pwd = _check_environ('GBIF_PWD', pwd) email = _check_environ('GBIF_EMAIL', email) if isinstance(queries, str): queries = [queries] keyval = [_parse_args(z) for z in queries] # USE GBIFDownload class to set up the predicates req = GbifDownload(user, email) req.main_pred_type = pred_type for predicate in keyval: req.add_predicate(predicate['key'], predicate['value'], predicate['type']) out = req.post_download(user, pwd) return out, req.payload
[ "def", "download", "(", "queries", ",", "user", "=", "None", ",", "pwd", "=", "None", ",", "email", "=", "None", ",", "pred_type", "=", "'and'", ")", ":", "user", "=", "_check_environ", "(", "'GBIF_USER'", ",", "user", ")", "pwd", "=", "_check_environ", "(", "'GBIF_PWD'", ",", "pwd", ")", "email", "=", "_check_environ", "(", "'GBIF_EMAIL'", ",", "email", ")", "if", "isinstance", "(", "queries", ",", "str", ")", ":", "queries", "=", "[", "queries", "]", "keyval", "=", "[", "_parse_args", "(", "z", ")", "for", "z", "in", "queries", "]", "# USE GBIFDownload class to set up the predicates", "req", "=", "GbifDownload", "(", "user", ",", "email", ")", "req", ".", "main_pred_type", "=", "pred_type", "for", "predicate", "in", "keyval", ":", "req", ".", "add_predicate", "(", "predicate", "[", "'key'", "]", ",", "predicate", "[", "'value'", "]", ",", "predicate", "[", "'type'", "]", ")", "out", "=", "req", ".", "post_download", "(", "user", ",", "pwd", ")", "return", "out", ",", "req", ".", "payload" ]
Spin up a download request for GBIF occurrence data. :param queries: One or more of query arguments to kick of a download job. See Details. :type queries: str or list :param pred_type: (character) One of ``equals`` (``=``), ``and`` (``&``), `or`` (``|``), ``lessThan`` (``<``), ``lessThanOrEquals`` (``<=``), ``greaterThan`` (``>``), ``greaterThanOrEquals`` (``>=``), ``in``, ``within``, ``not`` (``!``), ``like`` :param user: (character) User name within GBIF's website. Required. Set in your env vars with the option ``GBIF_USER`` :param pwd: (character) User password within GBIF's website. Required. Set in your env vars with the option ``GBIF_PWD`` :param email: (character) Email address to recieve download notice done email. Required. Set in your env vars with the option ``GBIF_EMAIL`` Argument passed have to be passed as character (e.g., ``country = US``), with a space between key (``country``), operator (``=``), and value (``US``). See the ``type`` parameter for possible options for the operator. This character string is parsed internally. Acceptable arguments to ``...`` (args) are: - taxonKey = ``TAXON_KEY`` - scientificName = ``SCIENTIFIC_NAME`` - country = ``COUNTRY`` - publishingCountry = ``PUBLISHING_COUNTRY`` - hasCoordinate = ``HAS_COORDINATE`` - hasGeospatialIssue = ``HAS_GEOSPATIAL_ISSUE`` - typeStatus = ``TYPE_STATUS`` - recordNumber = ``RECORD_NUMBER`` - lastInterpreted = ``LAST_INTERPRETED`` - continent = ``CONTINENT`` - geometry = ``GEOMETRY`` - basisOfRecord = ``BASIS_OF_RECORD`` - datasetKey = ``DATASET_KEY`` - eventDate = ``EVENT_DATE`` - catalogNumber = ``CATALOG_NUMBER`` - year = ``YEAR`` - month = ``MONTH`` - decimalLatitude = ``DECIMAL_LATITUDE`` - decimalLongitude = ``DECIMAL_LONGITUDE`` - elevation = ``ELEVATION`` - depth = ``DEPTH`` - institutionCode = ``INSTITUTION_CODE`` - collectionCode = ``COLLECTION_CODE`` - issue = ``ISSUE`` - mediatype = ``MEDIA_TYPE`` - recordedBy = ``RECORDED_BY`` - repatriated = ``REPATRIATED`` See the API docs http://www.gbif.org/developer/occurrence#download for more info, and the predicates docs http://www.gbif.org/developer/occurrence#predicates GBIF has a limit of 12,000 characters for download queries - so if you're download request is really, really long and complex, consider breaking it up into multiple requests by one factor or another. :return: A dictionary, of results Usage:: from pygbif import occurrences as occ occ.download('basisOfRecord = LITERATURE') occ.download('taxonKey = 3119195') occ.download('decimalLatitude > 50') occ.download('elevation >= 9000') occ.download('decimalLatitude >= 65') occ.download('country = US') occ.download('institutionCode = TLMF') occ.download('catalogNumber = Bird.27847588') res = occ.download(['taxonKey = 7264332', 'hasCoordinate = TRUE']) # pass output to download_meta for more information occ.download_meta(occ.download('decimalLatitude > 75')) # Multiple queries gg = occ.download(['decimalLatitude >= 65', 'decimalLatitude <= -65'], type='or') gg = occ.download(['depth = 80', 'taxonKey = 2343454'], type='or') # Repratriated data for Costa Rica occ.download(['country = CR', 'repatriated = true'])
[ "Spin", "up", "a", "download", "request", "for", "GBIF", "occurrence", "data", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/download.py#L32-L143
sckott/pygbif
pygbif/occurrences/download.py
download_list
def download_list(user=None, pwd=None, limit=20, offset=0): """ Lists the downloads created by a user. :param user: [str] A user name, look at env var ``GBIF_USER`` first :param pwd: [str] Your password, look at env var ``GBIF_PWD`` first :param limit: [int] Number of records to return. Default: ``20`` :param offset: [int] Record number to start at. Default: ``0`` Usage:: from pygbif import occurrences as occ occ.download_list(user = "sckott") occ.download_list(user = "sckott", limit = 5) occ.download_list(user = "sckott", offset = 21) """ user = _check_environ('GBIF_USER', user) pwd = _check_environ('GBIF_PWD', pwd) url = 'http://api.gbif.org/v1/occurrence/download/user/' + user args = {'limit': limit, 'offset': offset} res = gbif_GET(url, args, auth=(user, pwd)) return {'meta': {'offset': res['offset'], 'limit': res['limit'], 'endofrecords': res['endOfRecords'], 'count': res['count']}, 'results': res['results']}
python
def download_list(user=None, pwd=None, limit=20, offset=0): """ Lists the downloads created by a user. :param user: [str] A user name, look at env var ``GBIF_USER`` first :param pwd: [str] Your password, look at env var ``GBIF_PWD`` first :param limit: [int] Number of records to return. Default: ``20`` :param offset: [int] Record number to start at. Default: ``0`` Usage:: from pygbif import occurrences as occ occ.download_list(user = "sckott") occ.download_list(user = "sckott", limit = 5) occ.download_list(user = "sckott", offset = 21) """ user = _check_environ('GBIF_USER', user) pwd = _check_environ('GBIF_PWD', pwd) url = 'http://api.gbif.org/v1/occurrence/download/user/' + user args = {'limit': limit, 'offset': offset} res = gbif_GET(url, args, auth=(user, pwd)) return {'meta': {'offset': res['offset'], 'limit': res['limit'], 'endofrecords': res['endOfRecords'], 'count': res['count']}, 'results': res['results']}
[ "def", "download_list", "(", "user", "=", "None", ",", "pwd", "=", "None", ",", "limit", "=", "20", ",", "offset", "=", "0", ")", ":", "user", "=", "_check_environ", "(", "'GBIF_USER'", ",", "user", ")", "pwd", "=", "_check_environ", "(", "'GBIF_PWD'", ",", "pwd", ")", "url", "=", "'http://api.gbif.org/v1/occurrence/download/user/'", "+", "user", "args", "=", "{", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", "}", "res", "=", "gbif_GET", "(", "url", ",", "args", ",", "auth", "=", "(", "user", ",", "pwd", ")", ")", "return", "{", "'meta'", ":", "{", "'offset'", ":", "res", "[", "'offset'", "]", ",", "'limit'", ":", "res", "[", "'limit'", "]", ",", "'endofrecords'", ":", "res", "[", "'endOfRecords'", "]", ",", "'count'", ":", "res", "[", "'count'", "]", "}", ",", "'results'", ":", "res", "[", "'results'", "]", "}" ]
Lists the downloads created by a user. :param user: [str] A user name, look at env var ``GBIF_USER`` first :param pwd: [str] Your password, look at env var ``GBIF_PWD`` first :param limit: [int] Number of records to return. Default: ``20`` :param offset: [int] Record number to start at. Default: ``0`` Usage:: from pygbif import occurrences as occ occ.download_list(user = "sckott") occ.download_list(user = "sckott", limit = 5) occ.download_list(user = "sckott", offset = 21)
[ "Lists", "the", "downloads", "created", "by", "a", "user", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/download.py#L331-L358
sckott/pygbif
pygbif/occurrences/download.py
download_get
def download_get(key, path=".", **kwargs): """ Get a download from GBIF. :param key: [str] A key generated from a request, like that from ``download`` :param path: [str] Path to write zip file to. Default: ``"."``, with a ``.zip`` appended to the end. :param **kwargs**: Further named arguments passed on to ``requests.get`` Downloads the zip file to a directory you specify on your machine. The speed of this function is of course proportional to the size of the file to download, and affected by your internet connection speed. This function only downloads the file. To open and read it, see https://github.com/BelgianBiodiversityPlatform/python-dwca-reader Usage:: from pygbif import occurrences as occ occ.download_get("0000066-140928181241064") occ.download_get("0003983-140910143529206") """ meta = pygbif.occurrences.download_meta(key) if meta['status'] != 'SUCCEEDED': raise Exception('download "%s" not of status SUCCEEDED' % key) else: print('Download file size: %s bytes' % meta['size']) url = 'http://api.gbif.org/v1/occurrence/download/request/' + key path = "%s/%s.zip" % (path, key) gbif_GET_write(url, path, **kwargs) print("On disk at " + path) return {'path': path, 'size': meta['size'], 'key': key}
python
def download_get(key, path=".", **kwargs): """ Get a download from GBIF. :param key: [str] A key generated from a request, like that from ``download`` :param path: [str] Path to write zip file to. Default: ``"."``, with a ``.zip`` appended to the end. :param **kwargs**: Further named arguments passed on to ``requests.get`` Downloads the zip file to a directory you specify on your machine. The speed of this function is of course proportional to the size of the file to download, and affected by your internet connection speed. This function only downloads the file. To open and read it, see https://github.com/BelgianBiodiversityPlatform/python-dwca-reader Usage:: from pygbif import occurrences as occ occ.download_get("0000066-140928181241064") occ.download_get("0003983-140910143529206") """ meta = pygbif.occurrences.download_meta(key) if meta['status'] != 'SUCCEEDED': raise Exception('download "%s" not of status SUCCEEDED' % key) else: print('Download file size: %s bytes' % meta['size']) url = 'http://api.gbif.org/v1/occurrence/download/request/' + key path = "%s/%s.zip" % (path, key) gbif_GET_write(url, path, **kwargs) print("On disk at " + path) return {'path': path, 'size': meta['size'], 'key': key}
[ "def", "download_get", "(", "key", ",", "path", "=", "\".\"", ",", "*", "*", "kwargs", ")", ":", "meta", "=", "pygbif", ".", "occurrences", ".", "download_meta", "(", "key", ")", "if", "meta", "[", "'status'", "]", "!=", "'SUCCEEDED'", ":", "raise", "Exception", "(", "'download \"%s\" not of status SUCCEEDED'", "%", "key", ")", "else", ":", "print", "(", "'Download file size: %s bytes'", "%", "meta", "[", "'size'", "]", ")", "url", "=", "'http://api.gbif.org/v1/occurrence/download/request/'", "+", "key", "path", "=", "\"%s/%s.zip\"", "%", "(", "path", ",", "key", ")", "gbif_GET_write", "(", "url", ",", "path", ",", "*", "*", "kwargs", ")", "print", "(", "\"On disk at \"", "+", "path", ")", "return", "{", "'path'", ":", "path", ",", "'size'", ":", "meta", "[", "'size'", "]", ",", "'key'", ":", "key", "}" ]
Get a download from GBIF. :param key: [str] A key generated from a request, like that from ``download`` :param path: [str] Path to write zip file to. Default: ``"."``, with a ``.zip`` appended to the end. :param **kwargs**: Further named arguments passed on to ``requests.get`` Downloads the zip file to a directory you specify on your machine. The speed of this function is of course proportional to the size of the file to download, and affected by your internet connection speed. This function only downloads the file. To open and read it, see https://github.com/BelgianBiodiversityPlatform/python-dwca-reader Usage:: from pygbif import occurrences as occ occ.download_get("0000066-140928181241064") occ.download_get("0003983-140910143529206")
[ "Get", "a", "download", "from", "GBIF", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/download.py#L361-L391
sckott/pygbif
pygbif/occurrences/download.py
GbifDownload.main_pred_type
def main_pred_type(self, value): """set main predicate combination type :param value: (character) One of ``equals`` (``=``), ``and`` (``&``), ``or`` (``|``), ``lessThan`` (``<``), ``lessThanOrEquals`` (``<=``), ``greaterThan`` (``>``), ``greaterThanOrEquals`` (``>=``), ``in``, ``within``, ``not`` (``!``), ``like`` """ if value not in operators: value = operator_lkup.get(value) if value: self._main_pred_type = value self.payload['predicate']['type'] = self._main_pred_type else: raise Exception("main predicate combiner not a valid operator")
python
def main_pred_type(self, value): """set main predicate combination type :param value: (character) One of ``equals`` (``=``), ``and`` (``&``), ``or`` (``|``), ``lessThan`` (``<``), ``lessThanOrEquals`` (``<=``), ``greaterThan`` (``>``), ``greaterThanOrEquals`` (``>=``), ``in``, ``within``, ``not`` (``!``), ``like`` """ if value not in operators: value = operator_lkup.get(value) if value: self._main_pred_type = value self.payload['predicate']['type'] = self._main_pred_type else: raise Exception("main predicate combiner not a valid operator")
[ "def", "main_pred_type", "(", "self", ",", "value", ")", ":", "if", "value", "not", "in", "operators", ":", "value", "=", "operator_lkup", ".", "get", "(", "value", ")", "if", "value", ":", "self", ".", "_main_pred_type", "=", "value", "self", ".", "payload", "[", "'predicate'", "]", "[", "'type'", "]", "=", "self", ".", "_main_pred_type", "else", ":", "raise", "Exception", "(", "\"main predicate combiner not a valid operator\"", ")" ]
set main predicate combination type :param value: (character) One of ``equals`` (``=``), ``and`` (``&``), ``or`` (``|``), ``lessThan`` (``<``), ``lessThanOrEquals`` (``<=``), ``greaterThan`` (``>``), ``greaterThanOrEquals`` (``>=``), ``in``, ``within``, ``not`` (``!``), ``like``
[ "set", "main", "predicate", "combination", "type" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/download.py#L193-L206
sckott/pygbif
pygbif/occurrences/download.py
GbifDownload.add_predicate
def add_predicate(self, key, value, predicate_type='equals'): """ add key, value, type combination of a predicate :param key: query KEY parameter :param value: the value used in the predicate :param predicate_type: the type of predicate (e.g. ``equals``) """ if predicate_type not in operators: predicate_type = operator_lkup.get(predicate_type) if predicate_type: self.predicates.append({'type': predicate_type, 'key': key, 'value': value }) else: raise Exception("predicate type not a valid operator")
python
def add_predicate(self, key, value, predicate_type='equals'): """ add key, value, type combination of a predicate :param key: query KEY parameter :param value: the value used in the predicate :param predicate_type: the type of predicate (e.g. ``equals``) """ if predicate_type not in operators: predicate_type = operator_lkup.get(predicate_type) if predicate_type: self.predicates.append({'type': predicate_type, 'key': key, 'value': value }) else: raise Exception("predicate type not a valid operator")
[ "def", "add_predicate", "(", "self", ",", "key", ",", "value", ",", "predicate_type", "=", "'equals'", ")", ":", "if", "predicate_type", "not", "in", "operators", ":", "predicate_type", "=", "operator_lkup", ".", "get", "(", "predicate_type", ")", "if", "predicate_type", ":", "self", ".", "predicates", ".", "append", "(", "{", "'type'", ":", "predicate_type", ",", "'key'", ":", "key", ",", "'value'", ":", "value", "}", ")", "else", ":", "raise", "Exception", "(", "\"predicate type not a valid operator\"", ")" ]
add key, value, type combination of a predicate :param key: query KEY parameter :param value: the value used in the predicate :param predicate_type: the type of predicate (e.g. ``equals``)
[ "add", "key", "value", "type", "combination", "of", "a", "predicate" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/download.py#L208-L224
sckott/pygbif
pygbif/occurrences/download.py
GbifDownload._extract_values
def _extract_values(values_list): """extract values from either file or list :param values_list: list or file name (str) with list of values """ values = [] # check if file or list of values to iterate if isinstance(values_list, str): with open(values_list) as ff: reading = csv.reader(ff) for j in reading: values.append(j[0]) elif isinstance(values_list, list): values = values_list else: raise Exception("input datatype not supported.") return values
python
def _extract_values(values_list): """extract values from either file or list :param values_list: list or file name (str) with list of values """ values = [] # check if file or list of values to iterate if isinstance(values_list, str): with open(values_list) as ff: reading = csv.reader(ff) for j in reading: values.append(j[0]) elif isinstance(values_list, list): values = values_list else: raise Exception("input datatype not supported.") return values
[ "def", "_extract_values", "(", "values_list", ")", ":", "values", "=", "[", "]", "# check if file or list of values to iterate", "if", "isinstance", "(", "values_list", ",", "str", ")", ":", "with", "open", "(", "values_list", ")", "as", "ff", ":", "reading", "=", "csv", ".", "reader", "(", "ff", ")", "for", "j", "in", "reading", ":", "values", ".", "append", "(", "j", "[", "0", "]", ")", "elif", "isinstance", "(", "values_list", ",", "list", ")", ":", "values", "=", "values_list", "else", ":", "raise", "Exception", "(", "\"input datatype not supported.\"", ")", "return", "values" ]
extract values from either file or list :param values_list: list or file name (str) with list of values
[ "extract", "values", "from", "either", "file", "or", "list" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/download.py#L227-L243
sckott/pygbif
pygbif/occurrences/download.py
GbifDownload.add_iterative_predicate
def add_iterative_predicate(self, key, values_list): """add an iterative predicate with a key and set of values which it can be equal to in and or function. The individual predicates are specified with the type ``equals`` and combined with a type ``or``. The main reason for this addition is the inability of using ``in`` as predicate type wfor multiple taxon_key values (cfr. http://dev.gbif.org/issues/browse/POR-2753) :param key: API key to use for the query. :param values_list: Filename or list containing the taxon keys to be s searched. """ values = self._extract_values(values_list) predicate = {'type': 'equals', 'key': key, 'value': None} predicates = [] while values: predicate['value'] = values.pop() predicates.append(predicate.copy()) self.predicates.append({'type': 'or', 'predicates': predicates})
python
def add_iterative_predicate(self, key, values_list): """add an iterative predicate with a key and set of values which it can be equal to in and or function. The individual predicates are specified with the type ``equals`` and combined with a type ``or``. The main reason for this addition is the inability of using ``in`` as predicate type wfor multiple taxon_key values (cfr. http://dev.gbif.org/issues/browse/POR-2753) :param key: API key to use for the query. :param values_list: Filename or list containing the taxon keys to be s searched. """ values = self._extract_values(values_list) predicate = {'type': 'equals', 'key': key, 'value': None} predicates = [] while values: predicate['value'] = values.pop() predicates.append(predicate.copy()) self.predicates.append({'type': 'or', 'predicates': predicates})
[ "def", "add_iterative_predicate", "(", "self", ",", "key", ",", "values_list", ")", ":", "values", "=", "self", ".", "_extract_values", "(", "values_list", ")", "predicate", "=", "{", "'type'", ":", "'equals'", ",", "'key'", ":", "key", ",", "'value'", ":", "None", "}", "predicates", "=", "[", "]", "while", "values", ":", "predicate", "[", "'value'", "]", "=", "values", ".", "pop", "(", ")", "predicates", ".", "append", "(", "predicate", ".", "copy", "(", ")", ")", "self", ".", "predicates", ".", "append", "(", "{", "'type'", ":", "'or'", ",", "'predicates'", ":", "predicates", "}", ")" ]
add an iterative predicate with a key and set of values which it can be equal to in and or function. The individual predicates are specified with the type ``equals`` and combined with a type ``or``. The main reason for this addition is the inability of using ``in`` as predicate type wfor multiple taxon_key values (cfr. http://dev.gbif.org/issues/browse/POR-2753) :param key: API key to use for the query. :param values_list: Filename or list containing the taxon keys to be s searched.
[ "add", "an", "iterative", "predicate", "with", "a", "key", "and", "set", "of", "values", "which", "it", "can", "be", "equal", "to", "in", "and", "or", "function", ".", "The", "individual", "predicates", "are", "specified", "with", "the", "type", "equals", "and", "combined", "with", "a", "type", "or", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/download.py#L245-L267
sckott/pygbif
pygbif/occurrences/get.py
get
def get(key, **kwargs): ''' Gets details for a single, interpreted occurrence :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get(key = 1258202889) occurrences.get(key = 1227768771) occurrences.get(key = 1227769518) ''' url = gbif_baseurl + 'occurrence/' + str(key) out = gbif_GET(url, {}, **kwargs) return out
python
def get(key, **kwargs): ''' Gets details for a single, interpreted occurrence :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get(key = 1258202889) occurrences.get(key = 1227768771) occurrences.get(key = 1227769518) ''' url = gbif_baseurl + 'occurrence/' + str(key) out = gbif_GET(url, {}, **kwargs) return out
[ "def", "get", "(", "key", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/'", "+", "str", "(", "key", ")", "out", "=", "gbif_GET", "(", "url", ",", "{", "}", ",", "*", "*", "kwargs", ")", "return", "out" ]
Gets details for a single, interpreted occurrence :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get(key = 1258202889) occurrences.get(key = 1227768771) occurrences.get(key = 1227769518)
[ "Gets", "details", "for", "a", "single", "interpreted", "occurrence" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/get.py#L3-L20
sckott/pygbif
pygbif/occurrences/get.py
get_verbatim
def get_verbatim(key, **kwargs): ''' Gets a verbatim occurrence record without any interpretation :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get_verbatim(key = 1258202889) occurrences.get_verbatim(key = 1227768771) occurrences.get_verbatim(key = 1227769518) ''' url = gbif_baseurl + 'occurrence/' + str(key) + '/verbatim' out = gbif_GET(url, {}, **kwargs) return out
python
def get_verbatim(key, **kwargs): ''' Gets a verbatim occurrence record without any interpretation :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get_verbatim(key = 1258202889) occurrences.get_verbatim(key = 1227768771) occurrences.get_verbatim(key = 1227769518) ''' url = gbif_baseurl + 'occurrence/' + str(key) + '/verbatim' out = gbif_GET(url, {}, **kwargs) return out
[ "def", "get_verbatim", "(", "key", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/'", "+", "str", "(", "key", ")", "+", "'/verbatim'", "out", "=", "gbif_GET", "(", "url", ",", "{", "}", ",", "*", "*", "kwargs", ")", "return", "out" ]
Gets a verbatim occurrence record without any interpretation :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get_verbatim(key = 1258202889) occurrences.get_verbatim(key = 1227768771) occurrences.get_verbatim(key = 1227769518)
[ "Gets", "a", "verbatim", "occurrence", "record", "without", "any", "interpretation" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/get.py#L22-L39
sckott/pygbif
pygbif/occurrences/get.py
get_fragment
def get_fragment(key, **kwargs): ''' Get a single occurrence fragment in its raw form (xml or json) :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get_fragment(key = 1052909293) occurrences.get_fragment(key = 1227768771) occurrences.get_fragment(key = 1227769518) ''' url = gbif_baseurl + 'occurrence/' + str(key) + '/fragment' out = gbif_GET(url, {}, **kwargs) return out
python
def get_fragment(key, **kwargs): ''' Get a single occurrence fragment in its raw form (xml or json) :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get_fragment(key = 1052909293) occurrences.get_fragment(key = 1227768771) occurrences.get_fragment(key = 1227769518) ''' url = gbif_baseurl + 'occurrence/' + str(key) + '/fragment' out = gbif_GET(url, {}, **kwargs) return out
[ "def", "get_fragment", "(", "key", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/'", "+", "str", "(", "key", ")", "+", "'/fragment'", "out", "=", "gbif_GET", "(", "url", ",", "{", "}", ",", "*", "*", "kwargs", ")", "return", "out" ]
Get a single occurrence fragment in its raw form (xml or json) :param key: [int] A GBIF occurrence key :return: A dictionary, of results Usage:: from pygbif import occurrences occurrences.get_fragment(key = 1052909293) occurrences.get_fragment(key = 1227768771) occurrences.get_fragment(key = 1227769518)
[ "Get", "a", "single", "occurrence", "fragment", "in", "its", "raw", "form", "(", "xml", "or", "json", ")" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/get.py#L41-L58
sckott/pygbif
pygbif/species/name_backbone.py
name_backbone
def name_backbone(name, rank=None, kingdom=None, phylum=None, clazz=None, order=None, family=None, genus=None, strict=False, verbose=False, offset=None, limit=100, **kwargs): ''' Lookup names in the GBIF backbone taxonomy. :param name: [str] Full scientific name potentially with authorship (required) :param rank: [str] The rank given as our rank enum. (optional) :param kingdom: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param phylum: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param class: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param order: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param family: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param genus: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param strict: [bool] If True it (fuzzy) matches only the given name, but never a taxon in the upper classification (optional) :param verbose: [bool] If True show alternative matches considered which had been rejected. :param offset: [int] Record to start at. Default: ``0`` :param limit: [int] Number of results to return. Default: ``100`` A list for a single taxon with many slots (with ``verbose=False`` - default), or a list of length two, first element for the suggested taxon match, and a data.frame with alternative name suggestions resulting from fuzzy matching (with ``verbose=True``). If you don't get a match GBIF gives back a list of length 3 with slots synonym, confidence, and ``matchType='NONE'``. reference: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species species.name_backbone(name='Helianthus annuus', kingdom='plants') species.name_backbone(name='Helianthus', rank='genus', kingdom='plants') species.name_backbone(name='Poa', rank='genus', family='Poaceae') # Verbose - gives back alternatives species.name_backbone(name='Helianthus annuus', kingdom='plants', verbose=True) # Strictness species.name_backbone(name='Poa', kingdom='plants', verbose=True, strict=False) species.name_backbone(name='Helianthus annuus', kingdom='plants', verbose=True, strict=True) # Non-existent name species.name_backbone(name='Aso') # Multiple equal matches species.name_backbone(name='Oenante') ''' url = gbif_baseurl + 'species/match' args = {'name': name, 'rank': rank, 'kingdom': kingdom, 'phylum': phylum, 'class': clazz, 'order': order, 'family': family, 'genus': genus, 'strict': strict, 'verbose': verbose, 'offset': offset, 'limit': limit} tt = gbif_GET(url, args, **kwargs) return tt
python
def name_backbone(name, rank=None, kingdom=None, phylum=None, clazz=None, order=None, family=None, genus=None, strict=False, verbose=False, offset=None, limit=100, **kwargs): ''' Lookup names in the GBIF backbone taxonomy. :param name: [str] Full scientific name potentially with authorship (required) :param rank: [str] The rank given as our rank enum. (optional) :param kingdom: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param phylum: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param class: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param order: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param family: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param genus: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param strict: [bool] If True it (fuzzy) matches only the given name, but never a taxon in the upper classification (optional) :param verbose: [bool] If True show alternative matches considered which had been rejected. :param offset: [int] Record to start at. Default: ``0`` :param limit: [int] Number of results to return. Default: ``100`` A list for a single taxon with many slots (with ``verbose=False`` - default), or a list of length two, first element for the suggested taxon match, and a data.frame with alternative name suggestions resulting from fuzzy matching (with ``verbose=True``). If you don't get a match GBIF gives back a list of length 3 with slots synonym, confidence, and ``matchType='NONE'``. reference: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species species.name_backbone(name='Helianthus annuus', kingdom='plants') species.name_backbone(name='Helianthus', rank='genus', kingdom='plants') species.name_backbone(name='Poa', rank='genus', family='Poaceae') # Verbose - gives back alternatives species.name_backbone(name='Helianthus annuus', kingdom='plants', verbose=True) # Strictness species.name_backbone(name='Poa', kingdom='plants', verbose=True, strict=False) species.name_backbone(name='Helianthus annuus', kingdom='plants', verbose=True, strict=True) # Non-existent name species.name_backbone(name='Aso') # Multiple equal matches species.name_backbone(name='Oenante') ''' url = gbif_baseurl + 'species/match' args = {'name': name, 'rank': rank, 'kingdom': kingdom, 'phylum': phylum, 'class': clazz, 'order': order, 'family': family, 'genus': genus, 'strict': strict, 'verbose': verbose, 'offset': offset, 'limit': limit} tt = gbif_GET(url, args, **kwargs) return tt
[ "def", "name_backbone", "(", "name", ",", "rank", "=", "None", ",", "kingdom", "=", "None", ",", "phylum", "=", "None", ",", "clazz", "=", "None", ",", "order", "=", "None", ",", "family", "=", "None", ",", "genus", "=", "None", ",", "strict", "=", "False", ",", "verbose", "=", "False", ",", "offset", "=", "None", ",", "limit", "=", "100", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'species/match'", "args", "=", "{", "'name'", ":", "name", ",", "'rank'", ":", "rank", ",", "'kingdom'", ":", "kingdom", ",", "'phylum'", ":", "phylum", ",", "'class'", ":", "clazz", ",", "'order'", ":", "order", ",", "'family'", ":", "family", ",", "'genus'", ":", "genus", ",", "'strict'", ":", "strict", ",", "'verbose'", ":", "verbose", ",", "'offset'", ":", "offset", ",", "'limit'", ":", "limit", "}", "tt", "=", "gbif_GET", "(", "url", ",", "args", ",", "*", "*", "kwargs", ")", "return", "tt" ]
Lookup names in the GBIF backbone taxonomy. :param name: [str] Full scientific name potentially with authorship (required) :param rank: [str] The rank given as our rank enum. (optional) :param kingdom: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param phylum: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param class: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param order: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param family: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param genus: [str] If provided default matching will also try to match against this if no direct match is found for the name alone. (optional) :param strict: [bool] If True it (fuzzy) matches only the given name, but never a taxon in the upper classification (optional) :param verbose: [bool] If True show alternative matches considered which had been rejected. :param offset: [int] Record to start at. Default: ``0`` :param limit: [int] Number of results to return. Default: ``100`` A list for a single taxon with many slots (with ``verbose=False`` - default), or a list of length two, first element for the suggested taxon match, and a data.frame with alternative name suggestions resulting from fuzzy matching (with ``verbose=True``). If you don't get a match GBIF gives back a list of length 3 with slots synonym, confidence, and ``matchType='NONE'``. reference: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species species.name_backbone(name='Helianthus annuus', kingdom='plants') species.name_backbone(name='Helianthus', rank='genus', kingdom='plants') species.name_backbone(name='Poa', rank='genus', family='Poaceae') # Verbose - gives back alternatives species.name_backbone(name='Helianthus annuus', kingdom='plants', verbose=True) # Strictness species.name_backbone(name='Poa', kingdom='plants', verbose=True, strict=False) species.name_backbone(name='Helianthus annuus', kingdom='plants', verbose=True, strict=True) # Non-existent name species.name_backbone(name='Aso') # Multiple equal matches species.name_backbone(name='Oenante')
[ "Lookup", "names", "in", "the", "GBIF", "backbone", "taxonomy", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/species/name_backbone.py#L3-L63
sckott/pygbif
pygbif/species/name_parser.py
name_parser
def name_parser(name, **kwargs): ''' Parse taxon names using the GBIF name parser :param name: [str] A character vector of scientific names. (required) reference: http://www.gbif.org/developer/species#parser Usage:: from pygbif import species species.name_parser('x Agropogon littoralis') species.name_parser(['Arrhenatherum elatius var. elatius', 'Secale cereale subsp. cereale', 'Secale cereale ssp. cereale', 'Vanessa atalanta (Linnaeus, 1758)']) ''' url = gbif_baseurl + 'parser/name' if name.__class__ == str: name = [name] return gbif_POST(url, name, **kwargs)
python
def name_parser(name, **kwargs): ''' Parse taxon names using the GBIF name parser :param name: [str] A character vector of scientific names. (required) reference: http://www.gbif.org/developer/species#parser Usage:: from pygbif import species species.name_parser('x Agropogon littoralis') species.name_parser(['Arrhenatherum elatius var. elatius', 'Secale cereale subsp. cereale', 'Secale cereale ssp. cereale', 'Vanessa atalanta (Linnaeus, 1758)']) ''' url = gbif_baseurl + 'parser/name' if name.__class__ == str: name = [name] return gbif_POST(url, name, **kwargs)
[ "def", "name_parser", "(", "name", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'parser/name'", "if", "name", ".", "__class__", "==", "str", ":", "name", "=", "[", "name", "]", "return", "gbif_POST", "(", "url", ",", "name", ",", "*", "*", "kwargs", ")" ]
Parse taxon names using the GBIF name parser :param name: [str] A character vector of scientific names. (required) reference: http://www.gbif.org/developer/species#parser Usage:: from pygbif import species species.name_parser('x Agropogon littoralis') species.name_parser(['Arrhenatherum elatius var. elatius', 'Secale cereale subsp. cereale', 'Secale cereale ssp. cereale', 'Vanessa atalanta (Linnaeus, 1758)'])
[ "Parse", "taxon", "names", "using", "the", "GBIF", "name", "parser" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/species/name_parser.py#L3-L22
sckott/pygbif
pygbif/species/name_lookup.py
name_lookup
def name_lookup(q=None, rank=None, higherTaxonKey=None, status=None, isExtinct=None, habitat=None, nameType=None, datasetKey=None, nomenclaturalStatus=None, limit=100, offset=None, facet=False, facetMincount=None, facetMultiselect=None, type=None, hl=False, verbose=False, **kwargs): ''' Lookup names in all taxonomies in GBIF. This service uses fuzzy lookup so that you can put in partial names and you should get back those things that match. See examples below. :param q: [str] Query term(s) for full text search (optional) :param rank: [str] ``CLASS``, ``CULTIVAR``, ``CULTIVAR_GROUP``, ``DOMAIN``, ``FAMILY``, ``FORM``, ``GENUS``, ``INFORMAL``, ``INFRAGENERIC_NAME``, ``INFRAORDER``, ``INFRASPECIFIC_NAME``, ``INFRASUBSPECIFIC_NAME``, ``KINGDOM``, ``ORDER``, ``PHYLUM``, ``SECTION``, ``SERIES``, ``SPECIES``, ``STRAIN``, ``SUBCLASS``, ``SUBFAMILY``, ``SUBFORM``, ``SUBGENUS``, ``SUBKINGDOM``, ``SUBORDER``, ``SUBPHYLUM``, ``SUBSECTION``, ``SUBSERIES``, ``SUBSPECIES``, ``SUBTRIBE``, ``SUBVARIETY``, ``SUPERCLASS``, ``SUPERFAMILY``, ``SUPERORDER``, ``SUPERPHYLUM``, ``SUPRAGENERIC_NAME``, ``TRIBE``, ``UNRANKED``, ``VARIETY`` (optional) :param verbose: [bool] If True show alternative matches considered which had been rejected. :param higherTaxonKey: [str] Filters by any of the higher Linnean rank keys. Note this is within the respective checklist and not searching nub keys across all checklists (optional) :param status: [str] (optional) Filters by the taxonomic status as one of: * ``ACCEPTED`` * ``DETERMINATION_SYNONYM`` Used for unknown child taxa referred to via spec, ssp, ... * ``DOUBTFUL`` Treated as accepted, but doubtful whether this is correct. * ``HETEROTYPIC_SYNONYM`` More specific subclass of ``SYNONYM``. * ``HOMOTYPIC_SYNONYM`` More specific subclass of ``SYNONYM``. * ``INTERMEDIATE_RANK_SYNONYM`` Used in nub only. * ``MISAPPLIED`` More specific subclass of ``SYNONYM``. * ``PROPARTE_SYNONYM`` More specific subclass of ``SYNONYM``. * ``SYNONYM`` A general synonym, the exact type is unknown. :param isExtinct: [bool] Filters by extinction status (e.g. ``isExtinct=True``) :param habitat: [str] Filters by habitat. One of: ``marine``, ``freshwater``, or ``terrestrial`` (optional) :param nameType: [str] (optional) Filters by the name type as one of: * ``BLACKLISTED`` surely not a scientific name. * ``CANDIDATUS`` Candidatus is a component of the taxonomic name for a bacterium that cannot be maintained in a Bacteriology Culture Collection. * ``CULTIVAR`` a cultivated plant name. * ``DOUBTFUL`` doubtful whether this is a scientific name at all. * ``HYBRID`` a hybrid formula (not a hybrid name). * ``INFORMAL`` a scientific name with some informal addition like "cf." or indetermined like Abies spec. * ``SCINAME`` a scientific name which is not well formed. * ``VIRUS`` a virus name. * ``WELLFORMED`` a well formed scientific name according to present nomenclatural rules. :param datasetKey: [str] Filters by the dataset's key (a uuid) (optional) :param nomenclaturalStatus: [str] Not yet implemented, but will eventually allow for filtering by a nomenclatural status enum :param limit: [fixnum] Number of records to return. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) :param facet: [str] A list of facet names used to retrieve the 100 most frequent values for a field. Allowed facets are: ``datasetKey``, ``higherTaxonKey``, ``rank``, ``status``, ``isExtinct``, ``habitat``, and ``nameType``. Additionally ``threat`` and ``nomenclaturalStatus`` are legal values but not yet implemented, so data will not yet be returned for them. (optional) :param facetMincount: [str] Used in combination with the facet parameter. Set ``facetMincount={#}`` to exclude facets with a count less than {#}, e.g. http://bit.ly/1bMdByP only shows the type value ``ACCEPTED`` because the other statuses have counts less than 7,000,000 (optional) :param facetMultiselect: [bool] Used in combination with the facet parameter. Set ``facetMultiselect=True`` to still return counts for values that are not currently filtered, e.g. http://bit.ly/19YLXPO still shows all status values even though status is being filtered by ``status=ACCEPTED`` (optional) :param type: [str] Type of name. One of ``occurrence``, ``checklist``, or ``metadata``. (optional) :param hl: [bool] Set ``hl=True`` to highlight terms matching the query when in fulltext search fields. The highlight will be an emphasis tag of class ``gbifH1`` e.g. ``q='plant', hl=True``. Fulltext search fields include: ``title``, ``keyword``, ``country``, ``publishing country``, ``publishing organization title``, ``hosting organization title``, and ``description``. One additional full text field is searched which includes information from metadata documents, but the text of this field is not returned in the response. (optional) :return: A dictionary :references: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species # Look up names like mammalia species.name_lookup(q='mammalia') # Paging species.name_lookup(q='mammalia', limit=1) species.name_lookup(q='mammalia', limit=1, offset=2) # large requests, use offset parameter first = species.name_lookup(q='mammalia', limit=1000) second = species.name_lookup(q='mammalia', limit=1000, offset=1000) # Get all data and parse it, removing descriptions which can be quite long species.name_lookup('Helianthus annuus', rank="species", verbose=True) # Get all data and parse it, removing descriptions field which can be quite long out = species.name_lookup('Helianthus annuus', rank="species") res = out['results'] [ z.pop('descriptions', None) for z in res ] res # Fuzzy searching species.name_lookup(q='Heli', rank="genus") # Limit records to certain number species.name_lookup('Helianthus annuus', rank="species", limit=2) # Query by habitat species.name_lookup(habitat = "terrestrial", limit=2) species.name_lookup(habitat = "marine", limit=2) species.name_lookup(habitat = "freshwater", limit=2) # Using faceting species.name_lookup(facet='status', limit=0, facetMincount='70000') species.name_lookup(facet=['status', 'higherTaxonKey'], limit=0, facetMincount='700000') species.name_lookup(facet='nameType', limit=0) species.name_lookup(facet='habitat', limit=0) species.name_lookup(facet='datasetKey', limit=0) species.name_lookup(facet='rank', limit=0) species.name_lookup(facet='isExtinct', limit=0) # text highlighting species.name_lookup(q='plant', hl=True, limit=30) # Lookup by datasetKey species.name_lookup(datasetKey='3f8a1297-3259-4700-91fc-acc4170b27ce') ''' args = {'q': q, 'rank': rank, 'higherTaxonKey': higherTaxonKey, 'status': status, 'isExtinct': isExtinct, 'habitat': habitat, 'nameType': nameType, 'datasetKey': datasetKey, 'nomenclaturalStatus': nomenclaturalStatus, 'limit': limit, 'offset': offset, 'facet': bn(facet), 'facetMincount': facetMincount, 'facetMultiselect': facetMultiselect, 'hl': bn(hl), 'verbose': bn(verbose), 'type': type} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip( [ re.sub('_', '.', x) for x in gbif_kwargs.keys() ], gbif_kwargs.values() )) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} return gbif_GET(gbif_baseurl + 'species/search', args, **kwargs)
python
def name_lookup(q=None, rank=None, higherTaxonKey=None, status=None, isExtinct=None, habitat=None, nameType=None, datasetKey=None, nomenclaturalStatus=None, limit=100, offset=None, facet=False, facetMincount=None, facetMultiselect=None, type=None, hl=False, verbose=False, **kwargs): ''' Lookup names in all taxonomies in GBIF. This service uses fuzzy lookup so that you can put in partial names and you should get back those things that match. See examples below. :param q: [str] Query term(s) for full text search (optional) :param rank: [str] ``CLASS``, ``CULTIVAR``, ``CULTIVAR_GROUP``, ``DOMAIN``, ``FAMILY``, ``FORM``, ``GENUS``, ``INFORMAL``, ``INFRAGENERIC_NAME``, ``INFRAORDER``, ``INFRASPECIFIC_NAME``, ``INFRASUBSPECIFIC_NAME``, ``KINGDOM``, ``ORDER``, ``PHYLUM``, ``SECTION``, ``SERIES``, ``SPECIES``, ``STRAIN``, ``SUBCLASS``, ``SUBFAMILY``, ``SUBFORM``, ``SUBGENUS``, ``SUBKINGDOM``, ``SUBORDER``, ``SUBPHYLUM``, ``SUBSECTION``, ``SUBSERIES``, ``SUBSPECIES``, ``SUBTRIBE``, ``SUBVARIETY``, ``SUPERCLASS``, ``SUPERFAMILY``, ``SUPERORDER``, ``SUPERPHYLUM``, ``SUPRAGENERIC_NAME``, ``TRIBE``, ``UNRANKED``, ``VARIETY`` (optional) :param verbose: [bool] If True show alternative matches considered which had been rejected. :param higherTaxonKey: [str] Filters by any of the higher Linnean rank keys. Note this is within the respective checklist and not searching nub keys across all checklists (optional) :param status: [str] (optional) Filters by the taxonomic status as one of: * ``ACCEPTED`` * ``DETERMINATION_SYNONYM`` Used for unknown child taxa referred to via spec, ssp, ... * ``DOUBTFUL`` Treated as accepted, but doubtful whether this is correct. * ``HETEROTYPIC_SYNONYM`` More specific subclass of ``SYNONYM``. * ``HOMOTYPIC_SYNONYM`` More specific subclass of ``SYNONYM``. * ``INTERMEDIATE_RANK_SYNONYM`` Used in nub only. * ``MISAPPLIED`` More specific subclass of ``SYNONYM``. * ``PROPARTE_SYNONYM`` More specific subclass of ``SYNONYM``. * ``SYNONYM`` A general synonym, the exact type is unknown. :param isExtinct: [bool] Filters by extinction status (e.g. ``isExtinct=True``) :param habitat: [str] Filters by habitat. One of: ``marine``, ``freshwater``, or ``terrestrial`` (optional) :param nameType: [str] (optional) Filters by the name type as one of: * ``BLACKLISTED`` surely not a scientific name. * ``CANDIDATUS`` Candidatus is a component of the taxonomic name for a bacterium that cannot be maintained in a Bacteriology Culture Collection. * ``CULTIVAR`` a cultivated plant name. * ``DOUBTFUL`` doubtful whether this is a scientific name at all. * ``HYBRID`` a hybrid formula (not a hybrid name). * ``INFORMAL`` a scientific name with some informal addition like "cf." or indetermined like Abies spec. * ``SCINAME`` a scientific name which is not well formed. * ``VIRUS`` a virus name. * ``WELLFORMED`` a well formed scientific name according to present nomenclatural rules. :param datasetKey: [str] Filters by the dataset's key (a uuid) (optional) :param nomenclaturalStatus: [str] Not yet implemented, but will eventually allow for filtering by a nomenclatural status enum :param limit: [fixnum] Number of records to return. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) :param facet: [str] A list of facet names used to retrieve the 100 most frequent values for a field. Allowed facets are: ``datasetKey``, ``higherTaxonKey``, ``rank``, ``status``, ``isExtinct``, ``habitat``, and ``nameType``. Additionally ``threat`` and ``nomenclaturalStatus`` are legal values but not yet implemented, so data will not yet be returned for them. (optional) :param facetMincount: [str] Used in combination with the facet parameter. Set ``facetMincount={#}`` to exclude facets with a count less than {#}, e.g. http://bit.ly/1bMdByP only shows the type value ``ACCEPTED`` because the other statuses have counts less than 7,000,000 (optional) :param facetMultiselect: [bool] Used in combination with the facet parameter. Set ``facetMultiselect=True`` to still return counts for values that are not currently filtered, e.g. http://bit.ly/19YLXPO still shows all status values even though status is being filtered by ``status=ACCEPTED`` (optional) :param type: [str] Type of name. One of ``occurrence``, ``checklist``, or ``metadata``. (optional) :param hl: [bool] Set ``hl=True`` to highlight terms matching the query when in fulltext search fields. The highlight will be an emphasis tag of class ``gbifH1`` e.g. ``q='plant', hl=True``. Fulltext search fields include: ``title``, ``keyword``, ``country``, ``publishing country``, ``publishing organization title``, ``hosting organization title``, and ``description``. One additional full text field is searched which includes information from metadata documents, but the text of this field is not returned in the response. (optional) :return: A dictionary :references: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species # Look up names like mammalia species.name_lookup(q='mammalia') # Paging species.name_lookup(q='mammalia', limit=1) species.name_lookup(q='mammalia', limit=1, offset=2) # large requests, use offset parameter first = species.name_lookup(q='mammalia', limit=1000) second = species.name_lookup(q='mammalia', limit=1000, offset=1000) # Get all data and parse it, removing descriptions which can be quite long species.name_lookup('Helianthus annuus', rank="species", verbose=True) # Get all data and parse it, removing descriptions field which can be quite long out = species.name_lookup('Helianthus annuus', rank="species") res = out['results'] [ z.pop('descriptions', None) for z in res ] res # Fuzzy searching species.name_lookup(q='Heli', rank="genus") # Limit records to certain number species.name_lookup('Helianthus annuus', rank="species", limit=2) # Query by habitat species.name_lookup(habitat = "terrestrial", limit=2) species.name_lookup(habitat = "marine", limit=2) species.name_lookup(habitat = "freshwater", limit=2) # Using faceting species.name_lookup(facet='status', limit=0, facetMincount='70000') species.name_lookup(facet=['status', 'higherTaxonKey'], limit=0, facetMincount='700000') species.name_lookup(facet='nameType', limit=0) species.name_lookup(facet='habitat', limit=0) species.name_lookup(facet='datasetKey', limit=0) species.name_lookup(facet='rank', limit=0) species.name_lookup(facet='isExtinct', limit=0) # text highlighting species.name_lookup(q='plant', hl=True, limit=30) # Lookup by datasetKey species.name_lookup(datasetKey='3f8a1297-3259-4700-91fc-acc4170b27ce') ''' args = {'q': q, 'rank': rank, 'higherTaxonKey': higherTaxonKey, 'status': status, 'isExtinct': isExtinct, 'habitat': habitat, 'nameType': nameType, 'datasetKey': datasetKey, 'nomenclaturalStatus': nomenclaturalStatus, 'limit': limit, 'offset': offset, 'facet': bn(facet), 'facetMincount': facetMincount, 'facetMultiselect': facetMultiselect, 'hl': bn(hl), 'verbose': bn(verbose), 'type': type} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip( [ re.sub('_', '.', x) for x in gbif_kwargs.keys() ], gbif_kwargs.values() )) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} return gbif_GET(gbif_baseurl + 'species/search', args, **kwargs)
[ "def", "name_lookup", "(", "q", "=", "None", ",", "rank", "=", "None", ",", "higherTaxonKey", "=", "None", ",", "status", "=", "None", ",", "isExtinct", "=", "None", ",", "habitat", "=", "None", ",", "nameType", "=", "None", ",", "datasetKey", "=", "None", ",", "nomenclaturalStatus", "=", "None", ",", "limit", "=", "100", ",", "offset", "=", "None", ",", "facet", "=", "False", ",", "facetMincount", "=", "None", ",", "facetMultiselect", "=", "None", ",", "type", "=", "None", ",", "hl", "=", "False", ",", "verbose", "=", "False", ",", "*", "*", "kwargs", ")", ":", "args", "=", "{", "'q'", ":", "q", ",", "'rank'", ":", "rank", ",", "'higherTaxonKey'", ":", "higherTaxonKey", ",", "'status'", ":", "status", ",", "'isExtinct'", ":", "isExtinct", ",", "'habitat'", ":", "habitat", ",", "'nameType'", ":", "nameType", ",", "'datasetKey'", ":", "datasetKey", ",", "'nomenclaturalStatus'", ":", "nomenclaturalStatus", ",", "'limit'", ":", "limit", ",", "'offset'", ":", "offset", ",", "'facet'", ":", "bn", "(", "facet", ")", ",", "'facetMincount'", ":", "facetMincount", ",", "'facetMultiselect'", ":", "facetMultiselect", ",", "'hl'", ":", "bn", "(", "hl", ")", ",", "'verbose'", ":", "bn", "(", "verbose", ")", ",", "'type'", ":", "type", "}", "gbif_kwargs", "=", "{", "key", ":", "kwargs", "[", "key", "]", "for", "key", "in", "kwargs", "if", "key", "not", "in", "requests_argset", "}", "if", "gbif_kwargs", "is", "not", "None", ":", "xx", "=", "dict", "(", "zip", "(", "[", "re", ".", "sub", "(", "'_'", ",", "'.'", ",", "x", ")", "for", "x", "in", "gbif_kwargs", ".", "keys", "(", ")", "]", ",", "gbif_kwargs", ".", "values", "(", ")", ")", ")", "args", ".", "update", "(", "xx", ")", "kwargs", "=", "{", "key", ":", "kwargs", "[", "key", "]", "for", "key", "in", "kwargs", "if", "key", "in", "requests_argset", "}", "return", "gbif_GET", "(", "gbif_baseurl", "+", "'species/search'", ",", "args", ",", "*", "*", "kwargs", ")" ]
Lookup names in all taxonomies in GBIF. This service uses fuzzy lookup so that you can put in partial names and you should get back those things that match. See examples below. :param q: [str] Query term(s) for full text search (optional) :param rank: [str] ``CLASS``, ``CULTIVAR``, ``CULTIVAR_GROUP``, ``DOMAIN``, ``FAMILY``, ``FORM``, ``GENUS``, ``INFORMAL``, ``INFRAGENERIC_NAME``, ``INFRAORDER``, ``INFRASPECIFIC_NAME``, ``INFRASUBSPECIFIC_NAME``, ``KINGDOM``, ``ORDER``, ``PHYLUM``, ``SECTION``, ``SERIES``, ``SPECIES``, ``STRAIN``, ``SUBCLASS``, ``SUBFAMILY``, ``SUBFORM``, ``SUBGENUS``, ``SUBKINGDOM``, ``SUBORDER``, ``SUBPHYLUM``, ``SUBSECTION``, ``SUBSERIES``, ``SUBSPECIES``, ``SUBTRIBE``, ``SUBVARIETY``, ``SUPERCLASS``, ``SUPERFAMILY``, ``SUPERORDER``, ``SUPERPHYLUM``, ``SUPRAGENERIC_NAME``, ``TRIBE``, ``UNRANKED``, ``VARIETY`` (optional) :param verbose: [bool] If True show alternative matches considered which had been rejected. :param higherTaxonKey: [str] Filters by any of the higher Linnean rank keys. Note this is within the respective checklist and not searching nub keys across all checklists (optional) :param status: [str] (optional) Filters by the taxonomic status as one of: * ``ACCEPTED`` * ``DETERMINATION_SYNONYM`` Used for unknown child taxa referred to via spec, ssp, ... * ``DOUBTFUL`` Treated as accepted, but doubtful whether this is correct. * ``HETEROTYPIC_SYNONYM`` More specific subclass of ``SYNONYM``. * ``HOMOTYPIC_SYNONYM`` More specific subclass of ``SYNONYM``. * ``INTERMEDIATE_RANK_SYNONYM`` Used in nub only. * ``MISAPPLIED`` More specific subclass of ``SYNONYM``. * ``PROPARTE_SYNONYM`` More specific subclass of ``SYNONYM``. * ``SYNONYM`` A general synonym, the exact type is unknown. :param isExtinct: [bool] Filters by extinction status (e.g. ``isExtinct=True``) :param habitat: [str] Filters by habitat. One of: ``marine``, ``freshwater``, or ``terrestrial`` (optional) :param nameType: [str] (optional) Filters by the name type as one of: * ``BLACKLISTED`` surely not a scientific name. * ``CANDIDATUS`` Candidatus is a component of the taxonomic name for a bacterium that cannot be maintained in a Bacteriology Culture Collection. * ``CULTIVAR`` a cultivated plant name. * ``DOUBTFUL`` doubtful whether this is a scientific name at all. * ``HYBRID`` a hybrid formula (not a hybrid name). * ``INFORMAL`` a scientific name with some informal addition like "cf." or indetermined like Abies spec. * ``SCINAME`` a scientific name which is not well formed. * ``VIRUS`` a virus name. * ``WELLFORMED`` a well formed scientific name according to present nomenclatural rules. :param datasetKey: [str] Filters by the dataset's key (a uuid) (optional) :param nomenclaturalStatus: [str] Not yet implemented, but will eventually allow for filtering by a nomenclatural status enum :param limit: [fixnum] Number of records to return. Maximum: ``1000``. (optional) :param offset: [fixnum] Record number to start at. (optional) :param facet: [str] A list of facet names used to retrieve the 100 most frequent values for a field. Allowed facets are: ``datasetKey``, ``higherTaxonKey``, ``rank``, ``status``, ``isExtinct``, ``habitat``, and ``nameType``. Additionally ``threat`` and ``nomenclaturalStatus`` are legal values but not yet implemented, so data will not yet be returned for them. (optional) :param facetMincount: [str] Used in combination with the facet parameter. Set ``facetMincount={#}`` to exclude facets with a count less than {#}, e.g. http://bit.ly/1bMdByP only shows the type value ``ACCEPTED`` because the other statuses have counts less than 7,000,000 (optional) :param facetMultiselect: [bool] Used in combination with the facet parameter. Set ``facetMultiselect=True`` to still return counts for values that are not currently filtered, e.g. http://bit.ly/19YLXPO still shows all status values even though status is being filtered by ``status=ACCEPTED`` (optional) :param type: [str] Type of name. One of ``occurrence``, ``checklist``, or ``metadata``. (optional) :param hl: [bool] Set ``hl=True`` to highlight terms matching the query when in fulltext search fields. The highlight will be an emphasis tag of class ``gbifH1`` e.g. ``q='plant', hl=True``. Fulltext search fields include: ``title``, ``keyword``, ``country``, ``publishing country``, ``publishing organization title``, ``hosting organization title``, and ``description``. One additional full text field is searched which includes information from metadata documents, but the text of this field is not returned in the response. (optional) :return: A dictionary :references: http://www.gbif.org/developer/species#searching Usage:: from pygbif import species # Look up names like mammalia species.name_lookup(q='mammalia') # Paging species.name_lookup(q='mammalia', limit=1) species.name_lookup(q='mammalia', limit=1, offset=2) # large requests, use offset parameter first = species.name_lookup(q='mammalia', limit=1000) second = species.name_lookup(q='mammalia', limit=1000, offset=1000) # Get all data and parse it, removing descriptions which can be quite long species.name_lookup('Helianthus annuus', rank="species", verbose=True) # Get all data and parse it, removing descriptions field which can be quite long out = species.name_lookup('Helianthus annuus', rank="species") res = out['results'] [ z.pop('descriptions', None) for z in res ] res # Fuzzy searching species.name_lookup(q='Heli', rank="genus") # Limit records to certain number species.name_lookup('Helianthus annuus', rank="species", limit=2) # Query by habitat species.name_lookup(habitat = "terrestrial", limit=2) species.name_lookup(habitat = "marine", limit=2) species.name_lookup(habitat = "freshwater", limit=2) # Using faceting species.name_lookup(facet='status', limit=0, facetMincount='70000') species.name_lookup(facet=['status', 'higherTaxonKey'], limit=0, facetMincount='700000') species.name_lookup(facet='nameType', limit=0) species.name_lookup(facet='habitat', limit=0) species.name_lookup(facet='datasetKey', limit=0) species.name_lookup(facet='rank', limit=0) species.name_lookup(facet='isExtinct', limit=0) # text highlighting species.name_lookup(q='plant', hl=True, limit=30) # Lookup by datasetKey species.name_lookup(datasetKey='3f8a1297-3259-4700-91fc-acc4170b27ce')
[ "Lookup", "names", "in", "all", "taxonomies", "in", "GBIF", "." ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/species/name_lookup.py#L3-L141
sckott/pygbif
pygbif/occurrences/count.py
count
def count(taxonKey=None, basisOfRecord=None, country=None, isGeoreferenced=None, datasetKey=None, publishingCountry=None, typeStatus=None, issue=None, year=None, **kwargs): ''' Returns occurrence counts for a predefined set of dimensions :param taxonKey: [int] A GBIF occurrence identifier :param basisOfRecord: [str] A GBIF occurrence identifier :param country: [str] A GBIF occurrence identifier :param isGeoreferenced: [bool] A GBIF occurrence identifier :param datasetKey: [str] A GBIF occurrence identifier :param publishingCountry: [str] A GBIF occurrence identifier :param typeStatus: [str] A GBIF occurrence identifier :param issue: [str] A GBIF occurrence identifier :param year: [int] A GBIF occurrence identifier :return: dict Usage:: from pygbif import occurrences occurrences.count(taxonKey = 3329049) occurrences.count(country = 'CA') occurrences.count(isGeoreferenced = True) occurrences.count(basisOfRecord = 'OBSERVATION') ''' url = gbif_baseurl + 'occurrence/count' out = gbif_GET(url, {'taxonKey': taxonKey, 'basisOfRecord': basisOfRecord, 'country': country, 'isGeoreferenced': isGeoreferenced, 'datasetKey': datasetKey, 'publishingCountry': publishingCountry, 'typeStatus': typeStatus, 'issue': issue, 'year': year}, **kwargs) return out
python
def count(taxonKey=None, basisOfRecord=None, country=None, isGeoreferenced=None, datasetKey=None, publishingCountry=None, typeStatus=None, issue=None, year=None, **kwargs): ''' Returns occurrence counts for a predefined set of dimensions :param taxonKey: [int] A GBIF occurrence identifier :param basisOfRecord: [str] A GBIF occurrence identifier :param country: [str] A GBIF occurrence identifier :param isGeoreferenced: [bool] A GBIF occurrence identifier :param datasetKey: [str] A GBIF occurrence identifier :param publishingCountry: [str] A GBIF occurrence identifier :param typeStatus: [str] A GBIF occurrence identifier :param issue: [str] A GBIF occurrence identifier :param year: [int] A GBIF occurrence identifier :return: dict Usage:: from pygbif import occurrences occurrences.count(taxonKey = 3329049) occurrences.count(country = 'CA') occurrences.count(isGeoreferenced = True) occurrences.count(basisOfRecord = 'OBSERVATION') ''' url = gbif_baseurl + 'occurrence/count' out = gbif_GET(url, {'taxonKey': taxonKey, 'basisOfRecord': basisOfRecord, 'country': country, 'isGeoreferenced': isGeoreferenced, 'datasetKey': datasetKey, 'publishingCountry': publishingCountry, 'typeStatus': typeStatus, 'issue': issue, 'year': year}, **kwargs) return out
[ "def", "count", "(", "taxonKey", "=", "None", ",", "basisOfRecord", "=", "None", ",", "country", "=", "None", ",", "isGeoreferenced", "=", "None", ",", "datasetKey", "=", "None", ",", "publishingCountry", "=", "None", ",", "typeStatus", "=", "None", ",", "issue", "=", "None", ",", "year", "=", "None", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/count'", "out", "=", "gbif_GET", "(", "url", ",", "{", "'taxonKey'", ":", "taxonKey", ",", "'basisOfRecord'", ":", "basisOfRecord", ",", "'country'", ":", "country", ",", "'isGeoreferenced'", ":", "isGeoreferenced", ",", "'datasetKey'", ":", "datasetKey", ",", "'publishingCountry'", ":", "publishingCountry", ",", "'typeStatus'", ":", "typeStatus", ",", "'issue'", ":", "issue", ",", "'year'", ":", "year", "}", ",", "*", "*", "kwargs", ")", "return", "out" ]
Returns occurrence counts for a predefined set of dimensions :param taxonKey: [int] A GBIF occurrence identifier :param basisOfRecord: [str] A GBIF occurrence identifier :param country: [str] A GBIF occurrence identifier :param isGeoreferenced: [bool] A GBIF occurrence identifier :param datasetKey: [str] A GBIF occurrence identifier :param publishingCountry: [str] A GBIF occurrence identifier :param typeStatus: [str] A GBIF occurrence identifier :param issue: [str] A GBIF occurrence identifier :param year: [int] A GBIF occurrence identifier :return: dict Usage:: from pygbif import occurrences occurrences.count(taxonKey = 3329049) occurrences.count(country = 'CA') occurrences.count(isGeoreferenced = True) occurrences.count(basisOfRecord = 'OBSERVATION')
[ "Returns", "occurrence", "counts", "for", "a", "predefined", "set", "of", "dimensions" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/count.py#L3-L34
sckott/pygbif
pygbif/occurrences/count.py
count_year
def count_year(year, **kwargs): ''' Lists occurrence counts by year :param year: [int] year range, e.g., ``1990,2000``. Does not support ranges like ``asterisk,2010`` :return: dict Usage:: from pygbif import occurrences occurrences.count_year(year = '1990,2000') ''' url = gbif_baseurl + 'occurrence/counts/year' out = gbif_GET(url, {'year': year}, **kwargs) return out
python
def count_year(year, **kwargs): ''' Lists occurrence counts by year :param year: [int] year range, e.g., ``1990,2000``. Does not support ranges like ``asterisk,2010`` :return: dict Usage:: from pygbif import occurrences occurrences.count_year(year = '1990,2000') ''' url = gbif_baseurl + 'occurrence/counts/year' out = gbif_GET(url, {'year': year}, **kwargs) return out
[ "def", "count_year", "(", "year", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/counts/year'", "out", "=", "gbif_GET", "(", "url", ",", "{", "'year'", ":", "year", "}", ",", "*", "*", "kwargs", ")", "return", "out" ]
Lists occurrence counts by year :param year: [int] year range, e.g., ``1990,2000``. Does not support ranges like ``asterisk,2010`` :return: dict Usage:: from pygbif import occurrences occurrences.count_year(year = '1990,2000')
[ "Lists", "occurrence", "counts", "by", "year" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/count.py#L51-L66
sckott/pygbif
pygbif/occurrences/count.py
count_datasets
def count_datasets(taxonKey = None, country = None, **kwargs): ''' Lists occurrence counts for datasets that cover a given taxon or country :param taxonKey: [int] Taxon key :param country: [str] A country, two letter code :return: dict Usage:: from pygbif import occurrences occurrences.count_datasets(country = "DE") ''' url = gbif_baseurl + 'occurrence/counts/datasets' out = gbif_GET(url, {'taxonKey': taxonKey, 'country': country}, **kwargs) return out
python
def count_datasets(taxonKey = None, country = None, **kwargs): ''' Lists occurrence counts for datasets that cover a given taxon or country :param taxonKey: [int] Taxon key :param country: [str] A country, two letter code :return: dict Usage:: from pygbif import occurrences occurrences.count_datasets(country = "DE") ''' url = gbif_baseurl + 'occurrence/counts/datasets' out = gbif_GET(url, {'taxonKey': taxonKey, 'country': country}, **kwargs) return out
[ "def", "count_datasets", "(", "taxonKey", "=", "None", ",", "country", "=", "None", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/counts/datasets'", "out", "=", "gbif_GET", "(", "url", ",", "{", "'taxonKey'", ":", "taxonKey", ",", "'country'", ":", "country", "}", ",", "*", "*", "kwargs", ")", "return", "out" ]
Lists occurrence counts for datasets that cover a given taxon or country :param taxonKey: [int] Taxon key :param country: [str] A country, two letter code :return: dict Usage:: from pygbif import occurrences occurrences.count_datasets(country = "DE")
[ "Lists", "occurrence", "counts", "for", "datasets", "that", "cover", "a", "given", "taxon", "or", "country" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/count.py#L68-L84
sckott/pygbif
pygbif/occurrences/count.py
count_countries
def count_countries(publishingCountry, **kwargs): ''' Lists occurrence counts for all countries covered by the data published by the given country :param publishingCountry: [str] A two letter country code :return: dict Usage:: from pygbif import occurrences occurrences.count_countries(publishingCountry = "DE") ''' url = gbif_baseurl + 'occurrence/counts/countries' out = gbif_GET(url, {'publishingCountry': publishingCountry}, **kwargs) return out
python
def count_countries(publishingCountry, **kwargs): ''' Lists occurrence counts for all countries covered by the data published by the given country :param publishingCountry: [str] A two letter country code :return: dict Usage:: from pygbif import occurrences occurrences.count_countries(publishingCountry = "DE") ''' url = gbif_baseurl + 'occurrence/counts/countries' out = gbif_GET(url, {'publishingCountry': publishingCountry}, **kwargs) return out
[ "def", "count_countries", "(", "publishingCountry", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/counts/countries'", "out", "=", "gbif_GET", "(", "url", ",", "{", "'publishingCountry'", ":", "publishingCountry", "}", ",", "*", "*", "kwargs", ")", "return", "out" ]
Lists occurrence counts for all countries covered by the data published by the given country :param publishingCountry: [str] A two letter country code :return: dict Usage:: from pygbif import occurrences occurrences.count_countries(publishingCountry = "DE")
[ "Lists", "occurrence", "counts", "for", "all", "countries", "covered", "by", "the", "data", "published", "by", "the", "given", "country" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/count.py#L86-L101
sckott/pygbif
pygbif/occurrences/count.py
count_publishingcountries
def count_publishingcountries(country, **kwargs): ''' Lists occurrence counts for all countries that publish data about the given country :param country: [str] A country, two letter code :return: dict Usage:: from pygbif import occurrences occurrences.count_publishingcountries(country = "DE") ''' url = gbif_baseurl + 'occurrence/counts/publishingCountries' out = gbif_GET(url, {"country": country}, **kwargs) return out
python
def count_publishingcountries(country, **kwargs): ''' Lists occurrence counts for all countries that publish data about the given country :param country: [str] A country, two letter code :return: dict Usage:: from pygbif import occurrences occurrences.count_publishingcountries(country = "DE") ''' url = gbif_baseurl + 'occurrence/counts/publishingCountries' out = gbif_GET(url, {"country": country}, **kwargs) return out
[ "def", "count_publishingcountries", "(", "country", ",", "*", "*", "kwargs", ")", ":", "url", "=", "gbif_baseurl", "+", "'occurrence/counts/publishingCountries'", "out", "=", "gbif_GET", "(", "url", ",", "{", "\"country\"", ":", "country", "}", ",", "*", "*", "kwargs", ")", "return", "out" ]
Lists occurrence counts for all countries that publish data about the given country :param country: [str] A country, two letter code :return: dict Usage:: from pygbif import occurrences occurrences.count_publishingcountries(country = "DE")
[ "Lists", "occurrence", "counts", "for", "all", "countries", "that", "publish", "data", "about", "the", "given", "country" ]
train
https://github.com/sckott/pygbif/blob/bf54f2920bc46d97d7e2e1b0c8059e5878f3c5ab/pygbif/occurrences/count.py#L103-L118
jwkvam/plotlywrapper
plotlywrapper.py
_detect_notebook
def _detect_notebook() -> bool: """Detect if code is running in a Jupyter Notebook. This isn't 100% correct but seems good enough Returns ------- bool True if it detects this is a notebook, otherwise False. """ try: from IPython import get_ipython from ipykernel import zmqshell except ImportError: return False kernel = get_ipython() try: from spyder.utils.ipython.spyder_kernel import SpyderKernel if isinstance(kernel.kernel, SpyderKernel): return False except (ImportError, AttributeError): pass return isinstance(kernel, zmqshell.ZMQInteractiveShell)
python
def _detect_notebook() -> bool: """Detect if code is running in a Jupyter Notebook. This isn't 100% correct but seems good enough Returns ------- bool True if it detects this is a notebook, otherwise False. """ try: from IPython import get_ipython from ipykernel import zmqshell except ImportError: return False kernel = get_ipython() try: from spyder.utils.ipython.spyder_kernel import SpyderKernel if isinstance(kernel.kernel, SpyderKernel): return False except (ImportError, AttributeError): pass return isinstance(kernel, zmqshell.ZMQInteractiveShell)
[ "def", "_detect_notebook", "(", ")", "->", "bool", ":", "try", ":", "from", "IPython", "import", "get_ipython", "from", "ipykernel", "import", "zmqshell", "except", "ImportError", ":", "return", "False", "kernel", "=", "get_ipython", "(", ")", "try", ":", "from", "spyder", ".", "utils", ".", "ipython", ".", "spyder_kernel", "import", "SpyderKernel", "if", "isinstance", "(", "kernel", ".", "kernel", ",", "SpyderKernel", ")", ":", "return", "False", "except", "(", "ImportError", ",", "AttributeError", ")", ":", "pass", "return", "isinstance", "(", "kernel", ",", "zmqshell", ".", "ZMQInteractiveShell", ")" ]
Detect if code is running in a Jupyter Notebook. This isn't 100% correct but seems good enough Returns ------- bool True if it detects this is a notebook, otherwise False.
[ "Detect", "if", "code", "is", "running", "in", "a", "Jupyter", "Notebook", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L31-L55
jwkvam/plotlywrapper
plotlywrapper.py
_merge_layout
def _merge_layout(x: go.Layout, y: go.Layout) -> go.Layout: """Merge attributes from two layouts.""" xjson = x.to_plotly_json() yjson = y.to_plotly_json() if 'shapes' in yjson and 'shapes' in xjson: xjson['shapes'] += yjson['shapes'] yjson.update(xjson) return go.Layout(yjson)
python
def _merge_layout(x: go.Layout, y: go.Layout) -> go.Layout: """Merge attributes from two layouts.""" xjson = x.to_plotly_json() yjson = y.to_plotly_json() if 'shapes' in yjson and 'shapes' in xjson: xjson['shapes'] += yjson['shapes'] yjson.update(xjson) return go.Layout(yjson)
[ "def", "_merge_layout", "(", "x", ":", "go", ".", "Layout", ",", "y", ":", "go", ".", "Layout", ")", "->", "go", ".", "Layout", ":", "xjson", "=", "x", ".", "to_plotly_json", "(", ")", "yjson", "=", "y", ".", "to_plotly_json", "(", ")", "if", "'shapes'", "in", "yjson", "and", "'shapes'", "in", "xjson", ":", "xjson", "[", "'shapes'", "]", "+=", "yjson", "[", "'shapes'", "]", "yjson", ".", "update", "(", "xjson", ")", "return", "go", ".", "Layout", "(", "yjson", ")" ]
Merge attributes from two layouts.
[ "Merge", "attributes", "from", "two", "layouts", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L58-L65
jwkvam/plotlywrapper
plotlywrapper.py
_try_pydatetime
def _try_pydatetime(x): """Try to convert to pandas objects to datetimes. Plotly doesn't know how to handle them. """ try: # for datetimeindex x = [y.isoformat() for y in x.to_pydatetime()] except AttributeError: pass try: # for generic series x = [y.isoformat() for y in x.dt.to_pydatetime()] except AttributeError: pass return x
python
def _try_pydatetime(x): """Try to convert to pandas objects to datetimes. Plotly doesn't know how to handle them. """ try: # for datetimeindex x = [y.isoformat() for y in x.to_pydatetime()] except AttributeError: pass try: # for generic series x = [y.isoformat() for y in x.dt.to_pydatetime()] except AttributeError: pass return x
[ "def", "_try_pydatetime", "(", "x", ")", ":", "try", ":", "# for datetimeindex", "x", "=", "[", "y", ".", "isoformat", "(", ")", "for", "y", "in", "x", ".", "to_pydatetime", "(", ")", "]", "except", "AttributeError", ":", "pass", "try", ":", "# for generic series", "x", "=", "[", "y", ".", "isoformat", "(", ")", "for", "y", "in", "x", ".", "dt", ".", "to_pydatetime", "(", ")", "]", "except", "AttributeError", ":", "pass", "return", "x" ]
Try to convert to pandas objects to datetimes. Plotly doesn't know how to handle them.
[ "Try", "to", "convert", "to", "pandas", "objects", "to", "datetimes", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L68-L83
jwkvam/plotlywrapper
plotlywrapper.py
spark_shape
def spark_shape(points, shapes, fill=None, color='blue', width=5, yindex=0, heights=None): """TODO: Docstring for spark. Parameters ---------- points : array-like shapes : array-like fill : array-like, optional Returns ------- Chart """ assert len(points) == len(shapes) + 1 data = [{'marker': {'color': 'white'}, 'x': [points[0], points[-1]], 'y': [yindex, yindex]}] if fill is None: fill = [False] * len(shapes) if heights is None: heights = [0.4] * len(shapes) lays = [] for i, (shape, height) in enumerate(zip(shapes, heights)): if shape is None: continue if fill[i]: fillcolor = color else: fillcolor = 'white' lays.append( dict( type=shape, x0=points[i], x1=points[i + 1], y0=yindex - height, y1=yindex + height, xref='x', yref='y', fillcolor=fillcolor, line=dict(color=color, width=width), ) ) layout = dict(shapes=lays) return Chart(data=data, layout=layout)
python
def spark_shape(points, shapes, fill=None, color='blue', width=5, yindex=0, heights=None): """TODO: Docstring for spark. Parameters ---------- points : array-like shapes : array-like fill : array-like, optional Returns ------- Chart """ assert len(points) == len(shapes) + 1 data = [{'marker': {'color': 'white'}, 'x': [points[0], points[-1]], 'y': [yindex, yindex]}] if fill is None: fill = [False] * len(shapes) if heights is None: heights = [0.4] * len(shapes) lays = [] for i, (shape, height) in enumerate(zip(shapes, heights)): if shape is None: continue if fill[i]: fillcolor = color else: fillcolor = 'white' lays.append( dict( type=shape, x0=points[i], x1=points[i + 1], y0=yindex - height, y1=yindex + height, xref='x', yref='y', fillcolor=fillcolor, line=dict(color=color, width=width), ) ) layout = dict(shapes=lays) return Chart(data=data, layout=layout)
[ "def", "spark_shape", "(", "points", ",", "shapes", ",", "fill", "=", "None", ",", "color", "=", "'blue'", ",", "width", "=", "5", ",", "yindex", "=", "0", ",", "heights", "=", "None", ")", ":", "assert", "len", "(", "points", ")", "==", "len", "(", "shapes", ")", "+", "1", "data", "=", "[", "{", "'marker'", ":", "{", "'color'", ":", "'white'", "}", ",", "'x'", ":", "[", "points", "[", "0", "]", ",", "points", "[", "-", "1", "]", "]", ",", "'y'", ":", "[", "yindex", ",", "yindex", "]", "}", "]", "if", "fill", "is", "None", ":", "fill", "=", "[", "False", "]", "*", "len", "(", "shapes", ")", "if", "heights", "is", "None", ":", "heights", "=", "[", "0.4", "]", "*", "len", "(", "shapes", ")", "lays", "=", "[", "]", "for", "i", ",", "(", "shape", ",", "height", ")", "in", "enumerate", "(", "zip", "(", "shapes", ",", "heights", ")", ")", ":", "if", "shape", "is", "None", ":", "continue", "if", "fill", "[", "i", "]", ":", "fillcolor", "=", "color", "else", ":", "fillcolor", "=", "'white'", "lays", ".", "append", "(", "dict", "(", "type", "=", "shape", ",", "x0", "=", "points", "[", "i", "]", ",", "x1", "=", "points", "[", "i", "+", "1", "]", ",", "y0", "=", "yindex", "-", "height", ",", "y1", "=", "yindex", "+", "height", ",", "xref", "=", "'x'", ",", "yref", "=", "'y'", ",", "fillcolor", "=", "fillcolor", ",", "line", "=", "dict", "(", "color", "=", "color", ",", "width", "=", "width", ")", ",", ")", ")", "layout", "=", "dict", "(", "shapes", "=", "lays", ")", "return", "Chart", "(", "data", "=", "data", ",", "layout", "=", "layout", ")" ]
TODO: Docstring for spark. Parameters ---------- points : array-like shapes : array-like fill : array-like, optional Returns ------- Chart
[ "TODO", ":", "Docstring", "for", "spark", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L472-L519
jwkvam/plotlywrapper
plotlywrapper.py
vertical
def vertical(x, ymin=0, ymax=1, color=None, width=None, dash=None, opacity=None): """Draws a vertical line from `ymin` to `ymax`. Parameters ---------- xmin : int, optional xmax : int, optional color : str, optional width : number, optional Returns ------- Chart """ lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash layout = dict( shapes=[dict(type='line', x0=x, x1=x, y0=ymin, y1=ymax, opacity=opacity, line=lineattr)] ) return Chart(layout=layout)
python
def vertical(x, ymin=0, ymax=1, color=None, width=None, dash=None, opacity=None): """Draws a vertical line from `ymin` to `ymax`. Parameters ---------- xmin : int, optional xmax : int, optional color : str, optional width : number, optional Returns ------- Chart """ lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash layout = dict( shapes=[dict(type='line', x0=x, x1=x, y0=ymin, y1=ymax, opacity=opacity, line=lineattr)] ) return Chart(layout=layout)
[ "def", "vertical", "(", "x", ",", "ymin", "=", "0", ",", "ymax", "=", "1", ",", "color", "=", "None", ",", "width", "=", "None", ",", "dash", "=", "None", ",", "opacity", "=", "None", ")", ":", "lineattr", "=", "{", "}", "if", "color", ":", "lineattr", "[", "'color'", "]", "=", "color", "if", "width", ":", "lineattr", "[", "'width'", "]", "=", "width", "if", "dash", ":", "lineattr", "[", "'dash'", "]", "=", "dash", "layout", "=", "dict", "(", "shapes", "=", "[", "dict", "(", "type", "=", "'line'", ",", "x0", "=", "x", ",", "x1", "=", "x", ",", "y0", "=", "ymin", ",", "y1", "=", "ymax", ",", "opacity", "=", "opacity", ",", "line", "=", "lineattr", ")", "]", ")", "return", "Chart", "(", "layout", "=", "layout", ")" ]
Draws a vertical line from `ymin` to `ymax`. Parameters ---------- xmin : int, optional xmax : int, optional color : str, optional width : number, optional Returns ------- Chart
[ "Draws", "a", "vertical", "line", "from", "ymin", "to", "ymax", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L522-L548
jwkvam/plotlywrapper
plotlywrapper.py
horizontal
def horizontal(y, xmin=0, xmax=1, color=None, width=None, dash=None, opacity=None): """Draws a horizontal line from `xmin` to `xmax`. Parameters ---------- xmin : int, optional xmax : int, optional color : str, optional width : number, optional Returns ------- Chart """ lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash layout = dict( shapes=[dict(type='line', x0=xmin, x1=xmax, y0=y, y1=y, opacity=opacity, line=lineattr)] ) return Chart(layout=layout)
python
def horizontal(y, xmin=0, xmax=1, color=None, width=None, dash=None, opacity=None): """Draws a horizontal line from `xmin` to `xmax`. Parameters ---------- xmin : int, optional xmax : int, optional color : str, optional width : number, optional Returns ------- Chart """ lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash layout = dict( shapes=[dict(type='line', x0=xmin, x1=xmax, y0=y, y1=y, opacity=opacity, line=lineattr)] ) return Chart(layout=layout)
[ "def", "horizontal", "(", "y", ",", "xmin", "=", "0", ",", "xmax", "=", "1", ",", "color", "=", "None", ",", "width", "=", "None", ",", "dash", "=", "None", ",", "opacity", "=", "None", ")", ":", "lineattr", "=", "{", "}", "if", "color", ":", "lineattr", "[", "'color'", "]", "=", "color", "if", "width", ":", "lineattr", "[", "'width'", "]", "=", "width", "if", "dash", ":", "lineattr", "[", "'dash'", "]", "=", "dash", "layout", "=", "dict", "(", "shapes", "=", "[", "dict", "(", "type", "=", "'line'", ",", "x0", "=", "xmin", ",", "x1", "=", "xmax", ",", "y0", "=", "y", ",", "y1", "=", "y", ",", "opacity", "=", "opacity", ",", "line", "=", "lineattr", ")", "]", ")", "return", "Chart", "(", "layout", "=", "layout", ")" ]
Draws a horizontal line from `xmin` to `xmax`. Parameters ---------- xmin : int, optional xmax : int, optional color : str, optional width : number, optional Returns ------- Chart
[ "Draws", "a", "horizontal", "line", "from", "xmin", "to", "xmax", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L551-L577
jwkvam/plotlywrapper
plotlywrapper.py
line
def line( x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', yaxis=1, fill=None, text="", markersize=6, ): """Draws connected dots. Parameters ---------- x : array-like, optional y : array-like, optional label : array-like, optional Returns ------- Chart """ assert x is not None or y is not None, "x or y must be something" yn = 'y' + str(yaxis) lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash if y is None: y = x x = None if x is None: x = np.arange(len(y)) else: x = _try_pydatetime(x) x = np.atleast_1d(x) y = np.atleast_1d(y) assert x.shape[0] == y.shape[0] if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [ go.Scatter( x=x, y=yy, name=ll, line=lineattr, mode=mode, text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(size=markersize, opacity=opacity), ) for ll, yy in zip(label, y.T) ] else: data = [ go.Scatter( x=x, y=y, name=label, line=lineattr, mode=mode, text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(size=markersize, opacity=opacity), ) ] if yaxis == 1: return Chart(data=data) return Chart(data=data, layout={'yaxis' + str(yaxis): dict(overlaying='y')})
python
def line( x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', yaxis=1, fill=None, text="", markersize=6, ): """Draws connected dots. Parameters ---------- x : array-like, optional y : array-like, optional label : array-like, optional Returns ------- Chart """ assert x is not None or y is not None, "x or y must be something" yn = 'y' + str(yaxis) lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash if y is None: y = x x = None if x is None: x = np.arange(len(y)) else: x = _try_pydatetime(x) x = np.atleast_1d(x) y = np.atleast_1d(y) assert x.shape[0] == y.shape[0] if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [ go.Scatter( x=x, y=yy, name=ll, line=lineattr, mode=mode, text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(size=markersize, opacity=opacity), ) for ll, yy in zip(label, y.T) ] else: data = [ go.Scatter( x=x, y=y, name=label, line=lineattr, mode=mode, text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(size=markersize, opacity=opacity), ) ] if yaxis == 1: return Chart(data=data) return Chart(data=data, layout={'yaxis' + str(yaxis): dict(overlaying='y')})
[ "def", "line", "(", "x", "=", "None", ",", "y", "=", "None", ",", "label", "=", "None", ",", "color", "=", "None", ",", "width", "=", "None", ",", "dash", "=", "None", ",", "opacity", "=", "None", ",", "mode", "=", "'lines+markers'", ",", "yaxis", "=", "1", ",", "fill", "=", "None", ",", "text", "=", "\"\"", ",", "markersize", "=", "6", ",", ")", ":", "assert", "x", "is", "not", "None", "or", "y", "is", "not", "None", ",", "\"x or y must be something\"", "yn", "=", "'y'", "+", "str", "(", "yaxis", ")", "lineattr", "=", "{", "}", "if", "color", ":", "lineattr", "[", "'color'", "]", "=", "color", "if", "width", ":", "lineattr", "[", "'width'", "]", "=", "width", "if", "dash", ":", "lineattr", "[", "'dash'", "]", "=", "dash", "if", "y", "is", "None", ":", "y", "=", "x", "x", "=", "None", "if", "x", "is", "None", ":", "x", "=", "np", ".", "arange", "(", "len", "(", "y", ")", ")", "else", ":", "x", "=", "_try_pydatetime", "(", "x", ")", "x", "=", "np", ".", "atleast_1d", "(", "x", ")", "y", "=", "np", ".", "atleast_1d", "(", "y", ")", "assert", "x", ".", "shape", "[", "0", "]", "==", "y", ".", "shape", "[", "0", "]", "if", "y", ".", "ndim", "==", "2", ":", "if", "not", "hasattr", "(", "label", ",", "'__iter__'", ")", ":", "if", "label", "is", "None", ":", "label", "=", "_labels", "(", ")", "else", ":", "label", "=", "_labels", "(", "label", ")", "data", "=", "[", "go", ".", "Scatter", "(", "x", "=", "x", ",", "y", "=", "yy", ",", "name", "=", "ll", ",", "line", "=", "lineattr", ",", "mode", "=", "mode", ",", "text", "=", "text", ",", "fill", "=", "fill", ",", "opacity", "=", "opacity", ",", "yaxis", "=", "yn", ",", "marker", "=", "dict", "(", "size", "=", "markersize", ",", "opacity", "=", "opacity", ")", ",", ")", "for", "ll", ",", "yy", "in", "zip", "(", "label", ",", "y", ".", "T", ")", "]", "else", ":", "data", "=", "[", "go", ".", "Scatter", "(", "x", "=", "x", ",", "y", "=", "y", ",", "name", "=", "label", ",", "line", "=", "lineattr", ",", "mode", "=", "mode", ",", "text", "=", "text", ",", "fill", "=", "fill", ",", "opacity", "=", "opacity", ",", "yaxis", "=", "yn", ",", "marker", "=", "dict", "(", "size", "=", "markersize", ",", "opacity", "=", "opacity", ")", ",", ")", "]", "if", "yaxis", "==", "1", ":", "return", "Chart", "(", "data", "=", "data", ")", "return", "Chart", "(", "data", "=", "data", ",", "layout", "=", "{", "'yaxis'", "+", "str", "(", "yaxis", ")", ":", "dict", "(", "overlaying", "=", "'y'", ")", "}", ")" ]
Draws connected dots. Parameters ---------- x : array-like, optional y : array-like, optional label : array-like, optional Returns ------- Chart
[ "Draws", "connected", "dots", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L580-L665
jwkvam/plotlywrapper
plotlywrapper.py
line3d
def line3d( x, y, z, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers' ): """Create a 3d line chart.""" x = np.atleast_1d(x) y = np.atleast_1d(y) z = np.atleast_1d(z) assert x.shape == y.shape assert y.shape == z.shape lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [ go.Scatter3d(x=xx, y=yy, z=zz, name=ll, line=lineattr, mode=mode, opacity=opacity) for ll, xx, yy, zz in zip(label, x.T, y.T, z.T) ] else: data = [go.Scatter3d(x=x, y=y, z=z, name=label, line=lineattr, mode=mode, opacity=opacity)] return Chart(data=data)
python
def line3d( x, y, z, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers' ): """Create a 3d line chart.""" x = np.atleast_1d(x) y = np.atleast_1d(y) z = np.atleast_1d(z) assert x.shape == y.shape assert y.shape == z.shape lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [ go.Scatter3d(x=xx, y=yy, z=zz, name=ll, line=lineattr, mode=mode, opacity=opacity) for ll, xx, yy, zz in zip(label, x.T, y.T, z.T) ] else: data = [go.Scatter3d(x=x, y=y, z=z, name=label, line=lineattr, mode=mode, opacity=opacity)] return Chart(data=data)
[ "def", "line3d", "(", "x", ",", "y", ",", "z", ",", "label", "=", "None", ",", "color", "=", "None", ",", "width", "=", "None", ",", "dash", "=", "None", ",", "opacity", "=", "None", ",", "mode", "=", "'lines+markers'", ")", ":", "x", "=", "np", ".", "atleast_1d", "(", "x", ")", "y", "=", "np", ".", "atleast_1d", "(", "y", ")", "z", "=", "np", ".", "atleast_1d", "(", "z", ")", "assert", "x", ".", "shape", "==", "y", ".", "shape", "assert", "y", ".", "shape", "==", "z", ".", "shape", "lineattr", "=", "{", "}", "if", "color", ":", "lineattr", "[", "'color'", "]", "=", "color", "if", "width", ":", "lineattr", "[", "'width'", "]", "=", "width", "if", "dash", ":", "lineattr", "[", "'dash'", "]", "=", "dash", "if", "y", ".", "ndim", "==", "2", ":", "if", "not", "hasattr", "(", "label", ",", "'__iter__'", ")", ":", "if", "label", "is", "None", ":", "label", "=", "_labels", "(", ")", "else", ":", "label", "=", "_labels", "(", "label", ")", "data", "=", "[", "go", ".", "Scatter3d", "(", "x", "=", "xx", ",", "y", "=", "yy", ",", "z", "=", "zz", ",", "name", "=", "ll", ",", "line", "=", "lineattr", ",", "mode", "=", "mode", ",", "opacity", "=", "opacity", ")", "for", "ll", ",", "xx", ",", "yy", ",", "zz", "in", "zip", "(", "label", ",", "x", ".", "T", ",", "y", ".", "T", ",", "z", ".", "T", ")", "]", "else", ":", "data", "=", "[", "go", ".", "Scatter3d", "(", "x", "=", "x", ",", "y", "=", "y", ",", "z", "=", "z", ",", "name", "=", "label", ",", "line", "=", "lineattr", ",", "mode", "=", "mode", ",", "opacity", "=", "opacity", ")", "]", "return", "Chart", "(", "data", "=", "data", ")" ]
Create a 3d line chart.
[ "Create", "a", "3d", "line", "chart", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L668-L696
jwkvam/plotlywrapper
plotlywrapper.py
scatter
def scatter( x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, markersize=6, yaxis=1, fill=None, text="", mode='markers', ): """Draws dots. Parameters ---------- x : array-like, optional y : array-like, optional label : array-like, optional Returns ------- Chart """ return line( x=x, y=y, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, yaxis=yaxis, fill=fill, text=text, markersize=markersize, )
python
def scatter( x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, markersize=6, yaxis=1, fill=None, text="", mode='markers', ): """Draws dots. Parameters ---------- x : array-like, optional y : array-like, optional label : array-like, optional Returns ------- Chart """ return line( x=x, y=y, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, yaxis=yaxis, fill=fill, text=text, markersize=markersize, )
[ "def", "scatter", "(", "x", "=", "None", ",", "y", "=", "None", ",", "label", "=", "None", ",", "color", "=", "None", ",", "width", "=", "None", ",", "dash", "=", "None", ",", "opacity", "=", "None", ",", "markersize", "=", "6", ",", "yaxis", "=", "1", ",", "fill", "=", "None", ",", "text", "=", "\"\"", ",", "mode", "=", "'markers'", ",", ")", ":", "return", "line", "(", "x", "=", "x", ",", "y", "=", "y", ",", "label", "=", "label", ",", "color", "=", "color", ",", "width", "=", "width", ",", "dash", "=", "dash", ",", "opacity", "=", "opacity", ",", "mode", "=", "mode", ",", "yaxis", "=", "yaxis", ",", "fill", "=", "fill", ",", "text", "=", "text", ",", "markersize", "=", "markersize", ",", ")" ]
Draws dots. Parameters ---------- x : array-like, optional y : array-like, optional label : array-like, optional Returns ------- Chart
[ "Draws", "dots", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L746-L786
jwkvam/plotlywrapper
plotlywrapper.py
bar
def bar(x=None, y=None, label=None, mode='group', yaxis=1, opacity=None): """Create a bar chart. Parameters ---------- x : array-like, optional y : TODO, optional label : TODO, optional mode : 'group' or 'stack', default 'group' opacity : TODO, optional Returns ------- Chart A Chart with bar graph data. """ assert x is not None or y is not None, "x or y must be something" yn = 'y' + str(yaxis) if y is None: y = x x = None if x is None: x = np.arange(len(y)) else: x = _try_pydatetime(x) x = np.atleast_1d(x) y = np.atleast_1d(y) if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [go.Bar(x=x, y=yy, name=ll, yaxis=yn, opacity=opacity) for ll, yy in zip(label, y.T)] else: data = [go.Bar(x=x, y=y, name=label, yaxis=yn, opacity=opacity)] if yaxis == 1: return Chart(data=data, layout={'barmode': mode}) return Chart(data=data, layout={'barmode': mode, 'yaxis' + str(yaxis): dict(overlaying='y')})
python
def bar(x=None, y=None, label=None, mode='group', yaxis=1, opacity=None): """Create a bar chart. Parameters ---------- x : array-like, optional y : TODO, optional label : TODO, optional mode : 'group' or 'stack', default 'group' opacity : TODO, optional Returns ------- Chart A Chart with bar graph data. """ assert x is not None or y is not None, "x or y must be something" yn = 'y' + str(yaxis) if y is None: y = x x = None if x is None: x = np.arange(len(y)) else: x = _try_pydatetime(x) x = np.atleast_1d(x) y = np.atleast_1d(y) if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [go.Bar(x=x, y=yy, name=ll, yaxis=yn, opacity=opacity) for ll, yy in zip(label, y.T)] else: data = [go.Bar(x=x, y=y, name=label, yaxis=yn, opacity=opacity)] if yaxis == 1: return Chart(data=data, layout={'barmode': mode}) return Chart(data=data, layout={'barmode': mode, 'yaxis' + str(yaxis): dict(overlaying='y')})
[ "def", "bar", "(", "x", "=", "None", ",", "y", "=", "None", ",", "label", "=", "None", ",", "mode", "=", "'group'", ",", "yaxis", "=", "1", ",", "opacity", "=", "None", ")", ":", "assert", "x", "is", "not", "None", "or", "y", "is", "not", "None", ",", "\"x or y must be something\"", "yn", "=", "'y'", "+", "str", "(", "yaxis", ")", "if", "y", "is", "None", ":", "y", "=", "x", "x", "=", "None", "if", "x", "is", "None", ":", "x", "=", "np", ".", "arange", "(", "len", "(", "y", ")", ")", "else", ":", "x", "=", "_try_pydatetime", "(", "x", ")", "x", "=", "np", ".", "atleast_1d", "(", "x", ")", "y", "=", "np", ".", "atleast_1d", "(", "y", ")", "if", "y", ".", "ndim", "==", "2", ":", "if", "not", "hasattr", "(", "label", ",", "'__iter__'", ")", ":", "if", "label", "is", "None", ":", "label", "=", "_labels", "(", ")", "else", ":", "label", "=", "_labels", "(", "label", ")", "data", "=", "[", "go", ".", "Bar", "(", "x", "=", "x", ",", "y", "=", "yy", ",", "name", "=", "ll", ",", "yaxis", "=", "yn", ",", "opacity", "=", "opacity", ")", "for", "ll", ",", "yy", "in", "zip", "(", "label", ",", "y", ".", "T", ")", "]", "else", ":", "data", "=", "[", "go", ".", "Bar", "(", "x", "=", "x", ",", "y", "=", "y", ",", "name", "=", "label", ",", "yaxis", "=", "yn", ",", "opacity", "=", "opacity", ")", "]", "if", "yaxis", "==", "1", ":", "return", "Chart", "(", "data", "=", "data", ",", "layout", "=", "{", "'barmode'", ":", "mode", "}", ")", "return", "Chart", "(", "data", "=", "data", ",", "layout", "=", "{", "'barmode'", ":", "mode", ",", "'yaxis'", "+", "str", "(", "yaxis", ")", ":", "dict", "(", "overlaying", "=", "'y'", ")", "}", ")" ]
Create a bar chart. Parameters ---------- x : array-like, optional y : TODO, optional label : TODO, optional mode : 'group' or 'stack', default 'group' opacity : TODO, optional Returns ------- Chart A Chart with bar graph data.
[ "Create", "a", "bar", "chart", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L789-L829
jwkvam/plotlywrapper
plotlywrapper.py
heatmap
def heatmap(z, x=None, y=None, colorscale='Viridis'): """Create a heatmap. Parameters ---------- z : TODO x : TODO, optional y : TODO, optional colorscale : TODO, optional Returns ------- Chart """ z = np.atleast_1d(z) data = [go.Heatmap(z=z, x=x, y=y, colorscale=colorscale)] return Chart(data=data)
python
def heatmap(z, x=None, y=None, colorscale='Viridis'): """Create a heatmap. Parameters ---------- z : TODO x : TODO, optional y : TODO, optional colorscale : TODO, optional Returns ------- Chart """ z = np.atleast_1d(z) data = [go.Heatmap(z=z, x=x, y=y, colorscale=colorscale)] return Chart(data=data)
[ "def", "heatmap", "(", "z", ",", "x", "=", "None", ",", "y", "=", "None", ",", "colorscale", "=", "'Viridis'", ")", ":", "z", "=", "np", ".", "atleast_1d", "(", "z", ")", "data", "=", "[", "go", ".", "Heatmap", "(", "z", "=", "z", ",", "x", "=", "x", ",", "y", "=", "y", ",", "colorscale", "=", "colorscale", ")", "]", "return", "Chart", "(", "data", "=", "data", ")" ]
Create a heatmap. Parameters ---------- z : TODO x : TODO, optional y : TODO, optional colorscale : TODO, optional Returns ------- Chart
[ "Create", "a", "heatmap", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L832-L850
jwkvam/plotlywrapper
plotlywrapper.py
fill_zero
def fill_zero( x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', **kargs ): """Fill to zero. Parameters ---------- x : array-like, optional y : TODO, optional label : TODO, optional Returns ------- Chart """ return line( x=x, y=y, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, fill='tozeroy', **kargs )
python
def fill_zero( x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', **kargs ): """Fill to zero. Parameters ---------- x : array-like, optional y : TODO, optional label : TODO, optional Returns ------- Chart """ return line( x=x, y=y, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, fill='tozeroy', **kargs )
[ "def", "fill_zero", "(", "x", "=", "None", ",", "y", "=", "None", ",", "label", "=", "None", ",", "color", "=", "None", ",", "width", "=", "None", ",", "dash", "=", "None", ",", "opacity", "=", "None", ",", "mode", "=", "'lines+markers'", ",", "*", "*", "kargs", ")", ":", "return", "line", "(", "x", "=", "x", ",", "y", "=", "y", ",", "label", "=", "label", ",", "color", "=", "color", ",", "width", "=", "width", ",", "dash", "=", "dash", ",", "opacity", "=", "opacity", ",", "mode", "=", "mode", ",", "fill", "=", "'tozeroy'", ",", "*", "*", "kargs", ")" ]
Fill to zero. Parameters ---------- x : array-like, optional y : TODO, optional label : TODO, optional Returns ------- Chart
[ "Fill", "to", "zero", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L853-L888
jwkvam/plotlywrapper
plotlywrapper.py
fill_between
def fill_between( x=None, ylow=None, yhigh=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', **kargs ): """Fill between `ylow` and `yhigh`. Parameters ---------- x : array-like, optional ylow : TODO, optional yhigh : TODO, optional Returns ------- Chart """ plot = line( x=x, y=ylow, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, fill=None, **kargs ) plot += line( x=x, y=yhigh, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, fill='tonexty', **kargs ) return plot
python
def fill_between( x=None, ylow=None, yhigh=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', **kargs ): """Fill between `ylow` and `yhigh`. Parameters ---------- x : array-like, optional ylow : TODO, optional yhigh : TODO, optional Returns ------- Chart """ plot = line( x=x, y=ylow, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, fill=None, **kargs ) plot += line( x=x, y=yhigh, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, fill='tonexty', **kargs ) return plot
[ "def", "fill_between", "(", "x", "=", "None", ",", "ylow", "=", "None", ",", "yhigh", "=", "None", ",", "label", "=", "None", ",", "color", "=", "None", ",", "width", "=", "None", ",", "dash", "=", "None", ",", "opacity", "=", "None", ",", "mode", "=", "'lines+markers'", ",", "*", "*", "kargs", ")", ":", "plot", "=", "line", "(", "x", "=", "x", ",", "y", "=", "ylow", ",", "label", "=", "label", ",", "color", "=", "color", ",", "width", "=", "width", ",", "dash", "=", "dash", ",", "opacity", "=", "opacity", ",", "mode", "=", "mode", ",", "fill", "=", "None", ",", "*", "*", "kargs", ")", "plot", "+=", "line", "(", "x", "=", "x", ",", "y", "=", "yhigh", ",", "label", "=", "label", ",", "color", "=", "color", ",", "width", "=", "width", ",", "dash", "=", "dash", ",", "opacity", "=", "opacity", ",", "mode", "=", "mode", ",", "fill", "=", "'tonexty'", ",", "*", "*", "kargs", ")", "return", "plot" ]
Fill between `ylow` and `yhigh`. Parameters ---------- x : array-like, optional ylow : TODO, optional yhigh : TODO, optional Returns ------- Chart
[ "Fill", "between", "ylow", "and", "yhigh", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L891-L940
jwkvam/plotlywrapper
plotlywrapper.py
rug
def rug(x, label=None, opacity=None): """Rug chart. Parameters ---------- x : array-like, optional label : TODO, optional opacity : TODO, optional Returns ------- Chart """ x = _try_pydatetime(x) x = np.atleast_1d(x) data = [ go.Scatter( x=x, y=np.ones_like(x), name=label, opacity=opacity, mode='markers', marker=dict(symbol='line-ns-open'), ) ] layout = dict( barmode='overlay', hovermode='closest', legend=dict(traceorder='reversed'), xaxis1=dict(zeroline=False), yaxis1=dict( domain=[0.85, 1], showline=False, showgrid=False, zeroline=False, anchor='free', position=0.0, showticklabels=False, ), ) return Chart(data=data, layout=layout)
python
def rug(x, label=None, opacity=None): """Rug chart. Parameters ---------- x : array-like, optional label : TODO, optional opacity : TODO, optional Returns ------- Chart """ x = _try_pydatetime(x) x = np.atleast_1d(x) data = [ go.Scatter( x=x, y=np.ones_like(x), name=label, opacity=opacity, mode='markers', marker=dict(symbol='line-ns-open'), ) ] layout = dict( barmode='overlay', hovermode='closest', legend=dict(traceorder='reversed'), xaxis1=dict(zeroline=False), yaxis1=dict( domain=[0.85, 1], showline=False, showgrid=False, zeroline=False, anchor='free', position=0.0, showticklabels=False, ), ) return Chart(data=data, layout=layout)
[ "def", "rug", "(", "x", ",", "label", "=", "None", ",", "opacity", "=", "None", ")", ":", "x", "=", "_try_pydatetime", "(", "x", ")", "x", "=", "np", ".", "atleast_1d", "(", "x", ")", "data", "=", "[", "go", ".", "Scatter", "(", "x", "=", "x", ",", "y", "=", "np", ".", "ones_like", "(", "x", ")", ",", "name", "=", "label", ",", "opacity", "=", "opacity", ",", "mode", "=", "'markers'", ",", "marker", "=", "dict", "(", "symbol", "=", "'line-ns-open'", ")", ",", ")", "]", "layout", "=", "dict", "(", "barmode", "=", "'overlay'", ",", "hovermode", "=", "'closest'", ",", "legend", "=", "dict", "(", "traceorder", "=", "'reversed'", ")", ",", "xaxis1", "=", "dict", "(", "zeroline", "=", "False", ")", ",", "yaxis1", "=", "dict", "(", "domain", "=", "[", "0.85", ",", "1", "]", ",", "showline", "=", "False", ",", "showgrid", "=", "False", ",", "zeroline", "=", "False", ",", "anchor", "=", "'free'", ",", "position", "=", "0.0", ",", "showticklabels", "=", "False", ",", ")", ",", ")", "return", "Chart", "(", "data", "=", "data", ",", "layout", "=", "layout", ")" ]
Rug chart. Parameters ---------- x : array-like, optional label : TODO, optional opacity : TODO, optional Returns ------- Chart
[ "Rug", "chart", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L943-L984
jwkvam/plotlywrapper
plotlywrapper.py
surface
def surface(x, y, z): """Surface plot. Parameters ---------- x : array-like, optional y : array-like, optional z : array-like, optional Returns ------- Chart """ data = [go.Surface(x=x, y=y, z=z)] return Chart(data=data)
python
def surface(x, y, z): """Surface plot. Parameters ---------- x : array-like, optional y : array-like, optional z : array-like, optional Returns ------- Chart """ data = [go.Surface(x=x, y=y, z=z)] return Chart(data=data)
[ "def", "surface", "(", "x", ",", "y", ",", "z", ")", ":", "data", "=", "[", "go", ".", "Surface", "(", "x", "=", "x", ",", "y", "=", "y", ",", "z", "=", "z", ")", "]", "return", "Chart", "(", "data", "=", "data", ")" ]
Surface plot. Parameters ---------- x : array-like, optional y : array-like, optional z : array-like, optional Returns ------- Chart
[ "Surface", "plot", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L987-L1002
jwkvam/plotlywrapper
plotlywrapper.py
hist
def hist(x, mode='overlay', label=None, opacity=None, horz=False, histnorm=None): """Histogram. Parameters ---------- x : array-like mode : str, optional label : TODO, optional opacity : float, optional horz : bool, optional histnorm : None, "percent", "probability", "density", "probability density", optional Specifies the type of normalization used for this histogram trace. If ``None``, the span of each bar corresponds to the number of occurrences (i.e. the number of data points lying inside the bins). If "percent", the span of each bar corresponds to the percentage of occurrences with respect to the total number of sample points (here, the sum of all bin area equals 100%). If "density", the span of each bar corresponds to the number of occurrences in a bin divided by the size of the bin interval (here, the sum of all bin area equals the total number of sample points). If "probability density", the span of each bar corresponds to the probability that an event will fall into the corresponding bin (here, the sum of all bin area equals 1). Returns ------- Chart """ x = np.atleast_1d(x) if horz: kargs = dict(y=x) else: kargs = dict(x=x) layout = dict(barmode=mode) data = [go.Histogram(opacity=opacity, name=label, histnorm=histnorm, **kargs)] return Chart(data=data, layout=layout)
python
def hist(x, mode='overlay', label=None, opacity=None, horz=False, histnorm=None): """Histogram. Parameters ---------- x : array-like mode : str, optional label : TODO, optional opacity : float, optional horz : bool, optional histnorm : None, "percent", "probability", "density", "probability density", optional Specifies the type of normalization used for this histogram trace. If ``None``, the span of each bar corresponds to the number of occurrences (i.e. the number of data points lying inside the bins). If "percent", the span of each bar corresponds to the percentage of occurrences with respect to the total number of sample points (here, the sum of all bin area equals 100%). If "density", the span of each bar corresponds to the number of occurrences in a bin divided by the size of the bin interval (here, the sum of all bin area equals the total number of sample points). If "probability density", the span of each bar corresponds to the probability that an event will fall into the corresponding bin (here, the sum of all bin area equals 1). Returns ------- Chart """ x = np.atleast_1d(x) if horz: kargs = dict(y=x) else: kargs = dict(x=x) layout = dict(barmode=mode) data = [go.Histogram(opacity=opacity, name=label, histnorm=histnorm, **kargs)] return Chart(data=data, layout=layout)
[ "def", "hist", "(", "x", ",", "mode", "=", "'overlay'", ",", "label", "=", "None", ",", "opacity", "=", "None", ",", "horz", "=", "False", ",", "histnorm", "=", "None", ")", ":", "x", "=", "np", ".", "atleast_1d", "(", "x", ")", "if", "horz", ":", "kargs", "=", "dict", "(", "y", "=", "x", ")", "else", ":", "kargs", "=", "dict", "(", "x", "=", "x", ")", "layout", "=", "dict", "(", "barmode", "=", "mode", ")", "data", "=", "[", "go", ".", "Histogram", "(", "opacity", "=", "opacity", ",", "name", "=", "label", ",", "histnorm", "=", "histnorm", ",", "*", "*", "kargs", ")", "]", "return", "Chart", "(", "data", "=", "data", ",", "layout", "=", "layout", ")" ]
Histogram. Parameters ---------- x : array-like mode : str, optional label : TODO, optional opacity : float, optional horz : bool, optional histnorm : None, "percent", "probability", "density", "probability density", optional Specifies the type of normalization used for this histogram trace. If ``None``, the span of each bar corresponds to the number of occurrences (i.e. the number of data points lying inside the bins). If "percent", the span of each bar corresponds to the percentage of occurrences with respect to the total number of sample points (here, the sum of all bin area equals 100%). If "density", the span of each bar corresponds to the number of occurrences in a bin divided by the size of the bin interval (here, the sum of all bin area equals the total number of sample points). If "probability density", the span of each bar corresponds to the probability that an event will fall into the corresponding bin (here, the sum of all bin area equals 1). Returns ------- Chart
[ "Histogram", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L1005-L1040
jwkvam/plotlywrapper
plotlywrapper.py
hist2d
def hist2d(x, y, label=None, opacity=None): """2D Histogram. Parameters ---------- x : array-like, optional y : array-like, optional label : TODO, optional opacity : float, optional Returns ------- Chart """ x = np.atleast_1d(x) y = np.atleast_1d(y) data = [go.Histogram2d(x=x, y=y, opacity=opacity, name=label)] return Chart(data=data)
python
def hist2d(x, y, label=None, opacity=None): """2D Histogram. Parameters ---------- x : array-like, optional y : array-like, optional label : TODO, optional opacity : float, optional Returns ------- Chart """ x = np.atleast_1d(x) y = np.atleast_1d(y) data = [go.Histogram2d(x=x, y=y, opacity=opacity, name=label)] return Chart(data=data)
[ "def", "hist2d", "(", "x", ",", "y", ",", "label", "=", "None", ",", "opacity", "=", "None", ")", ":", "x", "=", "np", ".", "atleast_1d", "(", "x", ")", "y", "=", "np", ".", "atleast_1d", "(", "y", ")", "data", "=", "[", "go", ".", "Histogram2d", "(", "x", "=", "x", ",", "y", "=", "y", ",", "opacity", "=", "opacity", ",", "name", "=", "label", ")", "]", "return", "Chart", "(", "data", "=", "data", ")" ]
2D Histogram. Parameters ---------- x : array-like, optional y : array-like, optional label : TODO, optional opacity : float, optional Returns ------- Chart
[ "2D", "Histogram", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L1043-L1061
jwkvam/plotlywrapper
plotlywrapper.py
Chart.ytickangle
def ytickangle(self, angle, index=1): """Set the angle of the y-axis tick labels. Parameters ---------- value : int Angle in degrees index : int, optional Y-axis index Returns ------- Chart """ self.layout['yaxis' + str(index)]['tickangle'] = angle return self
python
def ytickangle(self, angle, index=1): """Set the angle of the y-axis tick labels. Parameters ---------- value : int Angle in degrees index : int, optional Y-axis index Returns ------- Chart """ self.layout['yaxis' + str(index)]['tickangle'] = angle return self
[ "def", "ytickangle", "(", "self", ",", "angle", ",", "index", "=", "1", ")", ":", "self", ".", "layout", "[", "'yaxis'", "+", "str", "(", "index", ")", "]", "[", "'tickangle'", "]", "=", "angle", "return", "self" ]
Set the angle of the y-axis tick labels. Parameters ---------- value : int Angle in degrees index : int, optional Y-axis index Returns ------- Chart
[ "Set", "the", "angle", "of", "the", "y", "-", "axis", "tick", "labels", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L221-L237
jwkvam/plotlywrapper
plotlywrapper.py
Chart.ylabelsize
def ylabelsize(self, size, index=1): """Set the size of the label. Parameters ---------- size : int Returns ------- Chart """ self.layout['yaxis' + str(index)]['titlefont']['size'] = size return self
python
def ylabelsize(self, size, index=1): """Set the size of the label. Parameters ---------- size : int Returns ------- Chart """ self.layout['yaxis' + str(index)]['titlefont']['size'] = size return self
[ "def", "ylabelsize", "(", "self", ",", "size", ",", "index", "=", "1", ")", ":", "self", ".", "layout", "[", "'yaxis'", "+", "str", "(", "index", ")", "]", "[", "'titlefont'", "]", "[", "'size'", "]", "=", "size", "return", "self" ]
Set the size of the label. Parameters ---------- size : int Returns ------- Chart
[ "Set", "the", "size", "of", "the", "label", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L254-L267
jwkvam/plotlywrapper
plotlywrapper.py
Chart.yticksize
def yticksize(self, size, index=1): """Set the tick font size. Parameters ---------- size : int Returns ------- Chart """ self.layout['yaxis' + str(index)]['tickfont']['size'] = size return self
python
def yticksize(self, size, index=1): """Set the tick font size. Parameters ---------- size : int Returns ------- Chart """ self.layout['yaxis' + str(index)]['tickfont']['size'] = size return self
[ "def", "yticksize", "(", "self", ",", "size", ",", "index", "=", "1", ")", ":", "self", ".", "layout", "[", "'yaxis'", "+", "str", "(", "index", ")", "]", "[", "'tickfont'", "]", "[", "'size'", "]", "=", "size", "return", "self" ]
Set the tick font size. Parameters ---------- size : int Returns ------- Chart
[ "Set", "the", "tick", "font", "size", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L284-L297
jwkvam/plotlywrapper
plotlywrapper.py
Chart.ytickvals
def ytickvals(self, values, index=1): """Set the tick values. Parameters ---------- values : array-like Returns ------- Chart """ self.layout['yaxis' + str(index)]['tickvals'] = values return self
python
def ytickvals(self, values, index=1): """Set the tick values. Parameters ---------- values : array-like Returns ------- Chart """ self.layout['yaxis' + str(index)]['tickvals'] = values return self
[ "def", "ytickvals", "(", "self", ",", "values", ",", "index", "=", "1", ")", ":", "self", ".", "layout", "[", "'yaxis'", "+", "str", "(", "index", ")", "]", "[", "'tickvals'", "]", "=", "values", "return", "self" ]
Set the tick values. Parameters ---------- values : array-like Returns ------- Chart
[ "Set", "the", "tick", "values", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L299-L312
jwkvam/plotlywrapper
plotlywrapper.py
Chart.yticktext
def yticktext(self, labels, index=1): """Set the tick labels. Parameters ---------- labels : array-like Returns ------- Chart """ self.layout['yaxis' + str(index)]['ticktext'] = labels return self
python
def yticktext(self, labels, index=1): """Set the tick labels. Parameters ---------- labels : array-like Returns ------- Chart """ self.layout['yaxis' + str(index)]['ticktext'] = labels return self
[ "def", "yticktext", "(", "self", ",", "labels", ",", "index", "=", "1", ")", ":", "self", ".", "layout", "[", "'yaxis'", "+", "str", "(", "index", ")", "]", "[", "'ticktext'", "]", "=", "labels", "return", "self" ]
Set the tick labels. Parameters ---------- labels : array-like Returns ------- Chart
[ "Set", "the", "tick", "labels", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L314-L327
jwkvam/plotlywrapper
plotlywrapper.py
Chart.ylim
def ylim(self, low, high, index=1): """Set yaxis limits. Parameters ---------- low : number high : number index : int, optional Returns ------- Chart """ self.layout['yaxis' + str(index)]['range'] = [low, high] return self
python
def ylim(self, low, high, index=1): """Set yaxis limits. Parameters ---------- low : number high : number index : int, optional Returns ------- Chart """ self.layout['yaxis' + str(index)]['range'] = [low, high] return self
[ "def", "ylim", "(", "self", ",", "low", ",", "high", ",", "index", "=", "1", ")", ":", "self", ".", "layout", "[", "'yaxis'", "+", "str", "(", "index", ")", "]", "[", "'range'", "]", "=", "[", "low", ",", "high", "]", "return", "self" ]
Set yaxis limits. Parameters ---------- low : number high : number index : int, optional Returns ------- Chart
[ "Set", "yaxis", "limits", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L345-L360
jwkvam/plotlywrapper
plotlywrapper.py
Chart.ydtick
def ydtick(self, dtick, index=1): """Set the tick distance.""" self.layout['yaxis' + str(index)]['dtick'] = dtick return self
python
def ydtick(self, dtick, index=1): """Set the tick distance.""" self.layout['yaxis' + str(index)]['dtick'] = dtick return self
[ "def", "ydtick", "(", "self", ",", "dtick", ",", "index", "=", "1", ")", ":", "self", ".", "layout", "[", "'yaxis'", "+", "str", "(", "index", ")", "]", "[", "'dtick'", "]", "=", "dtick", "return", "self" ]
Set the tick distance.
[ "Set", "the", "tick", "distance", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L367-L370
jwkvam/plotlywrapper
plotlywrapper.py
Chart.ynticks
def ynticks(self, nticks, index=1): """Set the number of ticks.""" self.layout['yaxis' + str(index)]['nticks'] = nticks return self
python
def ynticks(self, nticks, index=1): """Set the number of ticks.""" self.layout['yaxis' + str(index)]['nticks'] = nticks return self
[ "def", "ynticks", "(", "self", ",", "nticks", ",", "index", "=", "1", ")", ":", "self", ".", "layout", "[", "'yaxis'", "+", "str", "(", "index", ")", "]", "[", "'nticks'", "]", "=", "nticks", "return", "self" ]
Set the number of ticks.
[ "Set", "the", "number", "of", "ticks", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L377-L380
jwkvam/plotlywrapper
plotlywrapper.py
Chart.show
def show( self, filename: Optional[str] = None, show_link: bool = True, auto_open: bool = True, detect_notebook: bool = True, ) -> None: """Display the chart. Parameters ---------- filename : str, optional Save plot to this filename, otherwise it's saved to a temporary file. show_link : bool, optional Show link to plotly. auto_open : bool, optional Automatically open the plot (in the browser). detect_notebook : bool, optional Try to detect if we're running in a notebook. """ kargs = {} if detect_notebook and _detect_notebook(): py.init_notebook_mode() plot = py.iplot else: plot = py.plot if filename is None: filename = NamedTemporaryFile(prefix='plotly', suffix='.html', delete=False).name kargs['filename'] = filename kargs['auto_open'] = auto_open plot(self, show_link=show_link, **kargs)
python
def show( self, filename: Optional[str] = None, show_link: bool = True, auto_open: bool = True, detect_notebook: bool = True, ) -> None: """Display the chart. Parameters ---------- filename : str, optional Save plot to this filename, otherwise it's saved to a temporary file. show_link : bool, optional Show link to plotly. auto_open : bool, optional Automatically open the plot (in the browser). detect_notebook : bool, optional Try to detect if we're running in a notebook. """ kargs = {} if detect_notebook and _detect_notebook(): py.init_notebook_mode() plot = py.iplot else: plot = py.plot if filename is None: filename = NamedTemporaryFile(prefix='plotly', suffix='.html', delete=False).name kargs['filename'] = filename kargs['auto_open'] = auto_open plot(self, show_link=show_link, **kargs)
[ "def", "show", "(", "self", ",", "filename", ":", "Optional", "[", "str", "]", "=", "None", ",", "show_link", ":", "bool", "=", "True", ",", "auto_open", ":", "bool", "=", "True", ",", "detect_notebook", ":", "bool", "=", "True", ",", ")", "->", "None", ":", "kargs", "=", "{", "}", "if", "detect_notebook", "and", "_detect_notebook", "(", ")", ":", "py", ".", "init_notebook_mode", "(", ")", "plot", "=", "py", ".", "iplot", "else", ":", "plot", "=", "py", ".", "plot", "if", "filename", "is", "None", ":", "filename", "=", "NamedTemporaryFile", "(", "prefix", "=", "'plotly'", ",", "suffix", "=", "'.html'", ",", "delete", "=", "False", ")", ".", "name", "kargs", "[", "'filename'", "]", "=", "filename", "kargs", "[", "'auto_open'", "]", "=", "auto_open", "plot", "(", "self", ",", "show_link", "=", "show_link", ",", "*", "*", "kargs", ")" ]
Display the chart. Parameters ---------- filename : str, optional Save plot to this filename, otherwise it's saved to a temporary file. show_link : bool, optional Show link to plotly. auto_open : bool, optional Automatically open the plot (in the browser). detect_notebook : bool, optional Try to detect if we're running in a notebook.
[ "Display", "the", "chart", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L410-L442
jwkvam/plotlywrapper
plotlywrapper.py
Chart.save
def save( self, filename: Optional[str] = None, show_link: bool = True, auto_open: bool = False, output: str = 'file', plotlyjs: bool = True, ) -> str: """Save the chart to an html file.""" if filename is None: filename = NamedTemporaryFile(prefix='plotly', suffix='.html', delete=False).name # NOTE: this doesn't work for output 'div' py.plot( self, show_link=show_link, filename=filename, auto_open=auto_open, output_type=output, include_plotlyjs=plotlyjs, ) return filename
python
def save( self, filename: Optional[str] = None, show_link: bool = True, auto_open: bool = False, output: str = 'file', plotlyjs: bool = True, ) -> str: """Save the chart to an html file.""" if filename is None: filename = NamedTemporaryFile(prefix='plotly', suffix='.html', delete=False).name # NOTE: this doesn't work for output 'div' py.plot( self, show_link=show_link, filename=filename, auto_open=auto_open, output_type=output, include_plotlyjs=plotlyjs, ) return filename
[ "def", "save", "(", "self", ",", "filename", ":", "Optional", "[", "str", "]", "=", "None", ",", "show_link", ":", "bool", "=", "True", ",", "auto_open", ":", "bool", "=", "False", ",", "output", ":", "str", "=", "'file'", ",", "plotlyjs", ":", "bool", "=", "True", ",", ")", "->", "str", ":", "if", "filename", "is", "None", ":", "filename", "=", "NamedTemporaryFile", "(", "prefix", "=", "'plotly'", ",", "suffix", "=", "'.html'", ",", "delete", "=", "False", ")", ".", "name", "# NOTE: this doesn't work for output 'div'", "py", ".", "plot", "(", "self", ",", "show_link", "=", "show_link", ",", "filename", "=", "filename", ",", "auto_open", "=", "auto_open", ",", "output_type", "=", "output", ",", "include_plotlyjs", "=", "plotlyjs", ",", ")", "return", "filename" ]
Save the chart to an html file.
[ "Save", "the", "chart", "to", "an", "html", "file", "." ]
train
https://github.com/jwkvam/plotlywrapper/blob/762b42912e824fecb1212c186900f2ebdd0ab12b/plotlywrapper.py#L444-L464
cgarciae/phi
phi/builder.py
Builder.RegisterMethod
def RegisterMethod(cls, *args, **kwargs): """ **RegisterMethod** RegisterMethod(f, library_path, alias=None, original_name=None, doc=None, wrapped=None, explanation="", method_type=utils.identity, explain=True) `classmethod` for registering functions as methods of this class. **Arguments** * **f** : the particular function being registered as a method * **library_path** : library from where `f` comes from, unless you pass an empty string, put a period `"."` at the end of the library name. * `alias=None` : alias for the name/method being registered * `original_name=None` : name of the original function, used for documentation purposes. * `doc=None` : complete documentation of the method being registered * `wrapped=None` : if you are registering a function which wraps around another function, pass this other function through `wrapped` to get better documentation, this is specially useful is you register a bunch of functions in a for loop. Please include an `explanation` to tell how the actual function differs from the wrapped one. * `explanation=""` : especify any additional information for the documentation of the method being registered, you can use any of the following format tags within this string and they will be replace latter on: `{original_name}`, `{name}`, `{fn_docs}`, `{library_path}`, `{builder_class}`. * `method_type=identity` : by default its applied but does nothing, you might also want to register functions as `property`, `classmethod`, `staticmethod` * `explain=True` : decide whether or not to show any kind of explanation, its useful to set it to `False` if you are using a `Register*` decorator and will only use the function as a registered method. A main feature of `phi` is that it enables you to integrate your library or even an existing library with the DSL. You can achieve three levels of integration 1. Passing your functions to the DSL. This a very general machanism -since you could actually do everything with python lamdas- but in practice functions often receive multiple parameters. 2. Creating partials with the `Then*` method family. Using this you could integrate any function, but it will add a lot of noise if you use heavily on it. 3. Registering functions as methods of a `Builder` derived class. This produces the most readable code and its the approach you should take if you want to create a Phi-based library or a helper class. While point 3 is the most desirable it has a cost: you need to create your own `phi.builder.Builder`-derived class. This is because SHOULD NOT register functions to existing builders e.g. the `phi.builder.Builder` or [PythonBuilder](https://cgarciae.github.io/phi/builder.m.html#phi.python_builder.PythonBuilder) provided by phi because that would pollute the `P` object. Instead you should create a custom class that derives from `phi.builder.Builder`, [PythonBuilder](https://cgarciae.github.io/phi/builder.m.html#phi.python_builder.PythonBuilder) or another custom builder depending on your needs and register your functions to that class. **Examples** Say you have a function on a library called `"my_lib"` def some_fun(obj, arg1, arg2): # code You could use it with the dsl like this from phi import P, Then P.Pipe( input, ... Then(some_fun, arg1, arg2) ... ) assuming the first parameter `obj` is being piped down. However if you do this very often or you are creating a library, you are better off creating a custom class derived from `Builder` or `PythonBuilder` from phi import Builder #or PythonBuilder class MyBuilder(Builder): # or PythonBuilder pass and registering your function as a method. The first way you could do this is by creating a wrapper function for `some_fun` and registering it as a method def some_fun_wrapper(self, arg1, arg2): return self.Then(some_fun, arg1, arg2) MyBuilder.RegisterMethod(some_fun_wrapper, "my_lib.", wrapped=some_fun) Here we basically created a shortcut for the original expression `Then(some_fun, arg1, arg2)`. You could also do this using a decorator @MyBuilder.RegisterMethod("my_lib.", wrapped=some_fun) def some_fun_wrapper(self, arg1, arg2): return self.Then(some_fun, arg1, arg2) However, this is such a common task that we've created the method `Register` to avoid you from having to create the wrapper. With it you could register the function `some_fun` directly as a method like this MyBuilder.Register(some_fun, "my_lib.") or by using a decorator over the original function definition @MyBuilder.Register("my_lib.") def some_fun(obj, arg1, arg2): # code Once done you've done any of the previous approaches you can create a custom global object e.g. `M` and use it instead of/along with `P` M = MyBuilder(lambda x: x) M.Pipe( input, ... M.some_fun(arg1, args) ... ) **Argument position** `phi.builder.Builder.Register` internally uses `phi.builder.Builder.Then`, this is only useful if the object being piped is intended to be passed as the first argument of the function being registered, if this is not the case you could use `phi.builder.Builder.Register2`, `phi.builder.Builder.Register3`, ..., `phi.builder.Builder.Register5` or `phi.builder.Builder.RegisterAt` to set an arbitrary position, these functions will internally use `phi.builder.Builder.Then2`, `phi.builder.Builder.Then3`, ..., `phi.builder.Builder.Then5` or `phi.builder.Builder.ThenAt` respectively. **Wrapping functions** Sometimes you have an existing function that you would like to modify slightly so it plays nicely with the DSL, what you normally do is create a function that wraps around it and passes the arguments to it in a way that is convenient import some_lib @MyBuilder.Register("some_lib.") def some_fun(a, n): return some_lib.some_fun(a, n - 1) # forward the args, n slightly modified When you do this -as a side effect- you loose the original documentation, to avoid this you can use the Registers `wrapped` argument along with the `explanation` argument to clarity the situation import some_lib some_fun_explanation = "However, it differs in that `n` is automatically subtracted `1`" @MyBuilder.Register("some_lib.", wrapped=some_lib.some_fun, explanation=some_fun_explanation) def some_fun(a, n): return some_lib.some_fun(a, n - 1) # forward the args, n slightly modified Now the documentation for `MyBuilder.some_fun` will be a little bit nicer since it includes the original documentation from `some_lib.some_fun`. This behaviour is specially useful if you are wrapping an entire 3rd party library, you usually automate the process iterating over all the funcitions in a for loop. The `phi.builder.Builder.PatchAt` method lets you register and entire module using a few lines of code, however, something you have to do thing more manually and do the iteration yourself. **See Also** * `phi.builder.Builder.PatchAt` * `phi.builder.Builder.RegisterAt` """ unpack_error = True try: f, library_path = args unpack_error = False cls._RegisterMethod(f, library_path, **kwargs) except: if not unpack_error: raise def register_decorator(f): library_path, = args cls._RegisterMethod(f, library_path, **kwargs) return f return register_decorator
python
def RegisterMethod(cls, *args, **kwargs): """ **RegisterMethod** RegisterMethod(f, library_path, alias=None, original_name=None, doc=None, wrapped=None, explanation="", method_type=utils.identity, explain=True) `classmethod` for registering functions as methods of this class. **Arguments** * **f** : the particular function being registered as a method * **library_path** : library from where `f` comes from, unless you pass an empty string, put a period `"."` at the end of the library name. * `alias=None` : alias for the name/method being registered * `original_name=None` : name of the original function, used for documentation purposes. * `doc=None` : complete documentation of the method being registered * `wrapped=None` : if you are registering a function which wraps around another function, pass this other function through `wrapped` to get better documentation, this is specially useful is you register a bunch of functions in a for loop. Please include an `explanation` to tell how the actual function differs from the wrapped one. * `explanation=""` : especify any additional information for the documentation of the method being registered, you can use any of the following format tags within this string and they will be replace latter on: `{original_name}`, `{name}`, `{fn_docs}`, `{library_path}`, `{builder_class}`. * `method_type=identity` : by default its applied but does nothing, you might also want to register functions as `property`, `classmethod`, `staticmethod` * `explain=True` : decide whether or not to show any kind of explanation, its useful to set it to `False` if you are using a `Register*` decorator and will only use the function as a registered method. A main feature of `phi` is that it enables you to integrate your library or even an existing library with the DSL. You can achieve three levels of integration 1. Passing your functions to the DSL. This a very general machanism -since you could actually do everything with python lamdas- but in practice functions often receive multiple parameters. 2. Creating partials with the `Then*` method family. Using this you could integrate any function, but it will add a lot of noise if you use heavily on it. 3. Registering functions as methods of a `Builder` derived class. This produces the most readable code and its the approach you should take if you want to create a Phi-based library or a helper class. While point 3 is the most desirable it has a cost: you need to create your own `phi.builder.Builder`-derived class. This is because SHOULD NOT register functions to existing builders e.g. the `phi.builder.Builder` or [PythonBuilder](https://cgarciae.github.io/phi/builder.m.html#phi.python_builder.PythonBuilder) provided by phi because that would pollute the `P` object. Instead you should create a custom class that derives from `phi.builder.Builder`, [PythonBuilder](https://cgarciae.github.io/phi/builder.m.html#phi.python_builder.PythonBuilder) or another custom builder depending on your needs and register your functions to that class. **Examples** Say you have a function on a library called `"my_lib"` def some_fun(obj, arg1, arg2): # code You could use it with the dsl like this from phi import P, Then P.Pipe( input, ... Then(some_fun, arg1, arg2) ... ) assuming the first parameter `obj` is being piped down. However if you do this very often or you are creating a library, you are better off creating a custom class derived from `Builder` or `PythonBuilder` from phi import Builder #or PythonBuilder class MyBuilder(Builder): # or PythonBuilder pass and registering your function as a method. The first way you could do this is by creating a wrapper function for `some_fun` and registering it as a method def some_fun_wrapper(self, arg1, arg2): return self.Then(some_fun, arg1, arg2) MyBuilder.RegisterMethod(some_fun_wrapper, "my_lib.", wrapped=some_fun) Here we basically created a shortcut for the original expression `Then(some_fun, arg1, arg2)`. You could also do this using a decorator @MyBuilder.RegisterMethod("my_lib.", wrapped=some_fun) def some_fun_wrapper(self, arg1, arg2): return self.Then(some_fun, arg1, arg2) However, this is such a common task that we've created the method `Register` to avoid you from having to create the wrapper. With it you could register the function `some_fun` directly as a method like this MyBuilder.Register(some_fun, "my_lib.") or by using a decorator over the original function definition @MyBuilder.Register("my_lib.") def some_fun(obj, arg1, arg2): # code Once done you've done any of the previous approaches you can create a custom global object e.g. `M` and use it instead of/along with `P` M = MyBuilder(lambda x: x) M.Pipe( input, ... M.some_fun(arg1, args) ... ) **Argument position** `phi.builder.Builder.Register` internally uses `phi.builder.Builder.Then`, this is only useful if the object being piped is intended to be passed as the first argument of the function being registered, if this is not the case you could use `phi.builder.Builder.Register2`, `phi.builder.Builder.Register3`, ..., `phi.builder.Builder.Register5` or `phi.builder.Builder.RegisterAt` to set an arbitrary position, these functions will internally use `phi.builder.Builder.Then2`, `phi.builder.Builder.Then3`, ..., `phi.builder.Builder.Then5` or `phi.builder.Builder.ThenAt` respectively. **Wrapping functions** Sometimes you have an existing function that you would like to modify slightly so it plays nicely with the DSL, what you normally do is create a function that wraps around it and passes the arguments to it in a way that is convenient import some_lib @MyBuilder.Register("some_lib.") def some_fun(a, n): return some_lib.some_fun(a, n - 1) # forward the args, n slightly modified When you do this -as a side effect- you loose the original documentation, to avoid this you can use the Registers `wrapped` argument along with the `explanation` argument to clarity the situation import some_lib some_fun_explanation = "However, it differs in that `n` is automatically subtracted `1`" @MyBuilder.Register("some_lib.", wrapped=some_lib.some_fun, explanation=some_fun_explanation) def some_fun(a, n): return some_lib.some_fun(a, n - 1) # forward the args, n slightly modified Now the documentation for `MyBuilder.some_fun` will be a little bit nicer since it includes the original documentation from `some_lib.some_fun`. This behaviour is specially useful if you are wrapping an entire 3rd party library, you usually automate the process iterating over all the funcitions in a for loop. The `phi.builder.Builder.PatchAt` method lets you register and entire module using a few lines of code, however, something you have to do thing more manually and do the iteration yourself. **See Also** * `phi.builder.Builder.PatchAt` * `phi.builder.Builder.RegisterAt` """ unpack_error = True try: f, library_path = args unpack_error = False cls._RegisterMethod(f, library_path, **kwargs) except: if not unpack_error: raise def register_decorator(f): library_path, = args cls._RegisterMethod(f, library_path, **kwargs) return f return register_decorator
[ "def", "RegisterMethod", "(", "cls", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "unpack_error", "=", "True", "try", ":", "f", ",", "library_path", "=", "args", "unpack_error", "=", "False", "cls", ".", "_RegisterMethod", "(", "f", ",", "library_path", ",", "*", "*", "kwargs", ")", "except", ":", "if", "not", "unpack_error", ":", "raise", "def", "register_decorator", "(", "f", ")", ":", "library_path", ",", "=", "args", "cls", ".", "_RegisterMethod", "(", "f", ",", "library_path", ",", "*", "*", "kwargs", ")", "return", "f", "return", "register_decorator" ]
**RegisterMethod** RegisterMethod(f, library_path, alias=None, original_name=None, doc=None, wrapped=None, explanation="", method_type=utils.identity, explain=True) `classmethod` for registering functions as methods of this class. **Arguments** * **f** : the particular function being registered as a method * **library_path** : library from where `f` comes from, unless you pass an empty string, put a period `"."` at the end of the library name. * `alias=None` : alias for the name/method being registered * `original_name=None` : name of the original function, used for documentation purposes. * `doc=None` : complete documentation of the method being registered * `wrapped=None` : if you are registering a function which wraps around another function, pass this other function through `wrapped` to get better documentation, this is specially useful is you register a bunch of functions in a for loop. Please include an `explanation` to tell how the actual function differs from the wrapped one. * `explanation=""` : especify any additional information for the documentation of the method being registered, you can use any of the following format tags within this string and they will be replace latter on: `{original_name}`, `{name}`, `{fn_docs}`, `{library_path}`, `{builder_class}`. * `method_type=identity` : by default its applied but does nothing, you might also want to register functions as `property`, `classmethod`, `staticmethod` * `explain=True` : decide whether or not to show any kind of explanation, its useful to set it to `False` if you are using a `Register*` decorator and will only use the function as a registered method. A main feature of `phi` is that it enables you to integrate your library or even an existing library with the DSL. You can achieve three levels of integration 1. Passing your functions to the DSL. This a very general machanism -since you could actually do everything with python lamdas- but in practice functions often receive multiple parameters. 2. Creating partials with the `Then*` method family. Using this you could integrate any function, but it will add a lot of noise if you use heavily on it. 3. Registering functions as methods of a `Builder` derived class. This produces the most readable code and its the approach you should take if you want to create a Phi-based library or a helper class. While point 3 is the most desirable it has a cost: you need to create your own `phi.builder.Builder`-derived class. This is because SHOULD NOT register functions to existing builders e.g. the `phi.builder.Builder` or [PythonBuilder](https://cgarciae.github.io/phi/builder.m.html#phi.python_builder.PythonBuilder) provided by phi because that would pollute the `P` object. Instead you should create a custom class that derives from `phi.builder.Builder`, [PythonBuilder](https://cgarciae.github.io/phi/builder.m.html#phi.python_builder.PythonBuilder) or another custom builder depending on your needs and register your functions to that class. **Examples** Say you have a function on a library called `"my_lib"` def some_fun(obj, arg1, arg2): # code You could use it with the dsl like this from phi import P, Then P.Pipe( input, ... Then(some_fun, arg1, arg2) ... ) assuming the first parameter `obj` is being piped down. However if you do this very often or you are creating a library, you are better off creating a custom class derived from `Builder` or `PythonBuilder` from phi import Builder #or PythonBuilder class MyBuilder(Builder): # or PythonBuilder pass and registering your function as a method. The first way you could do this is by creating a wrapper function for `some_fun` and registering it as a method def some_fun_wrapper(self, arg1, arg2): return self.Then(some_fun, arg1, arg2) MyBuilder.RegisterMethod(some_fun_wrapper, "my_lib.", wrapped=some_fun) Here we basically created a shortcut for the original expression `Then(some_fun, arg1, arg2)`. You could also do this using a decorator @MyBuilder.RegisterMethod("my_lib.", wrapped=some_fun) def some_fun_wrapper(self, arg1, arg2): return self.Then(some_fun, arg1, arg2) However, this is such a common task that we've created the method `Register` to avoid you from having to create the wrapper. With it you could register the function `some_fun` directly as a method like this MyBuilder.Register(some_fun, "my_lib.") or by using a decorator over the original function definition @MyBuilder.Register("my_lib.") def some_fun(obj, arg1, arg2): # code Once done you've done any of the previous approaches you can create a custom global object e.g. `M` and use it instead of/along with `P` M = MyBuilder(lambda x: x) M.Pipe( input, ... M.some_fun(arg1, args) ... ) **Argument position** `phi.builder.Builder.Register` internally uses `phi.builder.Builder.Then`, this is only useful if the object being piped is intended to be passed as the first argument of the function being registered, if this is not the case you could use `phi.builder.Builder.Register2`, `phi.builder.Builder.Register3`, ..., `phi.builder.Builder.Register5` or `phi.builder.Builder.RegisterAt` to set an arbitrary position, these functions will internally use `phi.builder.Builder.Then2`, `phi.builder.Builder.Then3`, ..., `phi.builder.Builder.Then5` or `phi.builder.Builder.ThenAt` respectively. **Wrapping functions** Sometimes you have an existing function that you would like to modify slightly so it plays nicely with the DSL, what you normally do is create a function that wraps around it and passes the arguments to it in a way that is convenient import some_lib @MyBuilder.Register("some_lib.") def some_fun(a, n): return some_lib.some_fun(a, n - 1) # forward the args, n slightly modified When you do this -as a side effect- you loose the original documentation, to avoid this you can use the Registers `wrapped` argument along with the `explanation` argument to clarity the situation import some_lib some_fun_explanation = "However, it differs in that `n` is automatically subtracted `1`" @MyBuilder.Register("some_lib.", wrapped=some_lib.some_fun, explanation=some_fun_explanation) def some_fun(a, n): return some_lib.some_fun(a, n - 1) # forward the args, n slightly modified Now the documentation for `MyBuilder.some_fun` will be a little bit nicer since it includes the original documentation from `some_lib.some_fun`. This behaviour is specially useful if you are wrapping an entire 3rd party library, you usually automate the process iterating over all the funcitions in a for loop. The `phi.builder.Builder.PatchAt` method lets you register and entire module using a few lines of code, however, something you have to do thing more manually and do the iteration yourself. **See Also** * `phi.builder.Builder.PatchAt` * `phi.builder.Builder.RegisterAt`
[ "**", "RegisterMethod", "**" ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/builder.py#L71-L205
cgarciae/phi
phi/builder.py
Builder.RegisterAt
def RegisterAt(cls, *args, **kwargs): """ **RegisterAt** RegisterAt(n, f, library_path, alias=None, original_name=None, doc=None, wrapped=None, explanation="", method_type=utils.identity, explain=True, _return_type=None) Most of the time you don't want to register an method as such, that is, you don't care about the `self` builder object, instead you want to register a function that transforms the value being piped down the DSL. For this you can use `RegisterAt` so e.g. def some_fun(obj, arg1, arg2): # code @MyBuilder.RegisterMethod("my_lib.") def some_fun_wrapper(self, arg1, arg2): return self.ThenAt(1, some_fun, arg1, arg2) can be written directly as @MyBuilder.RegisterAt(1, "my_lib.") def some_fun(obj, arg1, arg2): # code For this case you can just use `Register` which is a shortcut for `RegisterAt(1, ...)` @MyBuilder.Register("my_lib.") def some_fun(obj, arg1, arg2): # code **Also See** * `phi.builder.Builder.RegisterMethod` """ unpack_error = True try: n, f, library_path = args unpack_error = False cls._RegisterAt(n, f, library_path, **kwargs) except: if not unpack_error: raise def register_decorator(f): n, library_path = args cls._RegisterAt(n, f, library_path, **kwargs) return f return register_decorator
python
def RegisterAt(cls, *args, **kwargs): """ **RegisterAt** RegisterAt(n, f, library_path, alias=None, original_name=None, doc=None, wrapped=None, explanation="", method_type=utils.identity, explain=True, _return_type=None) Most of the time you don't want to register an method as such, that is, you don't care about the `self` builder object, instead you want to register a function that transforms the value being piped down the DSL. For this you can use `RegisterAt` so e.g. def some_fun(obj, arg1, arg2): # code @MyBuilder.RegisterMethod("my_lib.") def some_fun_wrapper(self, arg1, arg2): return self.ThenAt(1, some_fun, arg1, arg2) can be written directly as @MyBuilder.RegisterAt(1, "my_lib.") def some_fun(obj, arg1, arg2): # code For this case you can just use `Register` which is a shortcut for `RegisterAt(1, ...)` @MyBuilder.Register("my_lib.") def some_fun(obj, arg1, arg2): # code **Also See** * `phi.builder.Builder.RegisterMethod` """ unpack_error = True try: n, f, library_path = args unpack_error = False cls._RegisterAt(n, f, library_path, **kwargs) except: if not unpack_error: raise def register_decorator(f): n, library_path = args cls._RegisterAt(n, f, library_path, **kwargs) return f return register_decorator
[ "def", "RegisterAt", "(", "cls", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "unpack_error", "=", "True", "try", ":", "n", ",", "f", ",", "library_path", "=", "args", "unpack_error", "=", "False", "cls", ".", "_RegisterAt", "(", "n", ",", "f", ",", "library_path", ",", "*", "*", "kwargs", ")", "except", ":", "if", "not", "unpack_error", ":", "raise", "def", "register_decorator", "(", "f", ")", ":", "n", ",", "library_path", "=", "args", "cls", ".", "_RegisterAt", "(", "n", ",", "f", ",", "library_path", ",", "*", "*", "kwargs", ")", "return", "f", "return", "register_decorator" ]
**RegisterAt** RegisterAt(n, f, library_path, alias=None, original_name=None, doc=None, wrapped=None, explanation="", method_type=utils.identity, explain=True, _return_type=None) Most of the time you don't want to register an method as such, that is, you don't care about the `self` builder object, instead you want to register a function that transforms the value being piped down the DSL. For this you can use `RegisterAt` so e.g. def some_fun(obj, arg1, arg2): # code @MyBuilder.RegisterMethod("my_lib.") def some_fun_wrapper(self, arg1, arg2): return self.ThenAt(1, some_fun, arg1, arg2) can be written directly as @MyBuilder.RegisterAt(1, "my_lib.") def some_fun(obj, arg1, arg2): # code For this case you can just use `Register` which is a shortcut for `RegisterAt(1, ...)` @MyBuilder.Register("my_lib.") def some_fun(obj, arg1, arg2): # code **Also See** * `phi.builder.Builder.RegisterMethod`
[ "**", "RegisterAt", "**" ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/builder.py#L238-L285
cgarciae/phi
phi/builder.py
Builder.PatchAt
def PatchAt(cls, n, module, method_wrapper=None, module_alias=None, method_name_modifier=utils.identity, blacklist_predicate=_False, whitelist_predicate=_True, return_type_predicate=_None, getmembers_predicate=inspect.isfunction, admit_private=False, explanation=""): """ This classmethod lets you easily patch all of functions/callables from a module or class as methods a Builder class. **Arguments** * **n** : the position the the object being piped will take in the arguments when the function being patched is applied. See `RegisterMethod` and `ThenAt`. * **module** : a module or class from which the functions/methods/callables will be taken. * `module_alias = None` : an optional alias for the module used for documentation purposes. * `method_name_modifier = lambda f_name: None` : a function that can modify the name of the method will take. If `None` the name of the function will be used. * `blacklist_predicate = lambda f_name: name[0] != "_"` : A predicate that determines which functions are banned given their name. By default it excludes all function whose name start with `'_'`. `blacklist_predicate` can also be of type list, in which case all names contained in this list will be banned. * `whitelist_predicate = lambda f_name: True` : A predicate that determines which functions are admitted given their name. By default it include any function. `whitelist_predicate` can also be of type list, in which case only names contained in this list will be admitted. You can use both `blacklist_predicate` and `whitelist_predicate` at the same time. * `return_type_predicate = lambda f_name: None` : a predicate that determines the `_return_type` of the Builder. By default it will always return `None`. See `phi.builder.Builder.ThenAt`. * `getmembers_predicate = inspect.isfunction` : a predicate that determines what type of elements/members will be fetched by the `inspect` module, defaults to [inspect.isfunction](https://docs.python.org/2/library/inspect.html#inspect.isfunction). See [getmembers](https://docs.python.org/2/library/inspect.html#inspect.getmembers). **Examples** Lets patch ALL the main functions from numpy into a custom builder! from phi import PythonBuilder #or Builder import numpy as np class NumpyBuilder(PythonBuilder): #or Builder "A Builder for numpy functions!" pass NumpyBuilder.PatchAt(1, np) N = NumpyBuilder(lambda x: x) Thats it! Although a serious patch would involve filtering out functions that don't take arrays. Another common task would be to use `NumpyBuilder.PatchAt(2, ...)` (`PatchAt(n, ..)` in general) when convenient to send the object being pipe to the relevant argument of the function. The previous is usually done with and a combination of `whitelist_predicate`s and `blacklist_predicate`s on `PatchAt(1, ...)` and `PatchAt(2, ...)` to filter or include the approriate functions on each kind of patch. Given the previous code we could now do import numpy as np x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) z = N.Pipe( x, N .dot(y) .add(x) .transpose() .sum(axis=1) ) Which is strictly equivalent to import numpy as np x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) z = np.dot(x, y) z = np.add(z, x) z = np.transpose(z) z = np.sum(z, axis=1) The thing to notice is that with the `NumpyBuilder` we avoid the repetitive and needless passing and reassigment of the `z` variable, this removes a lot of noise from our code. """ _rtp = return_type_predicate return_type_predicate = (lambda x: _rtp) if inspect.isclass(_rtp) and issubclass(_rtp, Builder) else _rtp module_name = module_alias if module_alias else module.__name__ + '.' patch_members = _get_patch_members(module, blacklist_predicate=blacklist_predicate, whitelist_predicate=whitelist_predicate, getmembers_predicate=getmembers_predicate, admit_private=admit_private) for name, f in patch_members: wrapped = None if method_wrapper: g = method_wrapper(f) wrapped = f else: g = f cls.RegisterAt(n, g, module_name, wrapped=wrapped, _return_type=return_type_predicate(name), alias=method_name_modifier(name), explanation=explanation)
python
def PatchAt(cls, n, module, method_wrapper=None, module_alias=None, method_name_modifier=utils.identity, blacklist_predicate=_False, whitelist_predicate=_True, return_type_predicate=_None, getmembers_predicate=inspect.isfunction, admit_private=False, explanation=""): """ This classmethod lets you easily patch all of functions/callables from a module or class as methods a Builder class. **Arguments** * **n** : the position the the object being piped will take in the arguments when the function being patched is applied. See `RegisterMethod` and `ThenAt`. * **module** : a module or class from which the functions/methods/callables will be taken. * `module_alias = None` : an optional alias for the module used for documentation purposes. * `method_name_modifier = lambda f_name: None` : a function that can modify the name of the method will take. If `None` the name of the function will be used. * `blacklist_predicate = lambda f_name: name[0] != "_"` : A predicate that determines which functions are banned given their name. By default it excludes all function whose name start with `'_'`. `blacklist_predicate` can also be of type list, in which case all names contained in this list will be banned. * `whitelist_predicate = lambda f_name: True` : A predicate that determines which functions are admitted given their name. By default it include any function. `whitelist_predicate` can also be of type list, in which case only names contained in this list will be admitted. You can use both `blacklist_predicate` and `whitelist_predicate` at the same time. * `return_type_predicate = lambda f_name: None` : a predicate that determines the `_return_type` of the Builder. By default it will always return `None`. See `phi.builder.Builder.ThenAt`. * `getmembers_predicate = inspect.isfunction` : a predicate that determines what type of elements/members will be fetched by the `inspect` module, defaults to [inspect.isfunction](https://docs.python.org/2/library/inspect.html#inspect.isfunction). See [getmembers](https://docs.python.org/2/library/inspect.html#inspect.getmembers). **Examples** Lets patch ALL the main functions from numpy into a custom builder! from phi import PythonBuilder #or Builder import numpy as np class NumpyBuilder(PythonBuilder): #or Builder "A Builder for numpy functions!" pass NumpyBuilder.PatchAt(1, np) N = NumpyBuilder(lambda x: x) Thats it! Although a serious patch would involve filtering out functions that don't take arrays. Another common task would be to use `NumpyBuilder.PatchAt(2, ...)` (`PatchAt(n, ..)` in general) when convenient to send the object being pipe to the relevant argument of the function. The previous is usually done with and a combination of `whitelist_predicate`s and `blacklist_predicate`s on `PatchAt(1, ...)` and `PatchAt(2, ...)` to filter or include the approriate functions on each kind of patch. Given the previous code we could now do import numpy as np x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) z = N.Pipe( x, N .dot(y) .add(x) .transpose() .sum(axis=1) ) Which is strictly equivalent to import numpy as np x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) z = np.dot(x, y) z = np.add(z, x) z = np.transpose(z) z = np.sum(z, axis=1) The thing to notice is that with the `NumpyBuilder` we avoid the repetitive and needless passing and reassigment of the `z` variable, this removes a lot of noise from our code. """ _rtp = return_type_predicate return_type_predicate = (lambda x: _rtp) if inspect.isclass(_rtp) and issubclass(_rtp, Builder) else _rtp module_name = module_alias if module_alias else module.__name__ + '.' patch_members = _get_patch_members(module, blacklist_predicate=blacklist_predicate, whitelist_predicate=whitelist_predicate, getmembers_predicate=getmembers_predicate, admit_private=admit_private) for name, f in patch_members: wrapped = None if method_wrapper: g = method_wrapper(f) wrapped = f else: g = f cls.RegisterAt(n, g, module_name, wrapped=wrapped, _return_type=return_type_predicate(name), alias=method_name_modifier(name), explanation=explanation)
[ "def", "PatchAt", "(", "cls", ",", "n", ",", "module", ",", "method_wrapper", "=", "None", ",", "module_alias", "=", "None", ",", "method_name_modifier", "=", "utils", ".", "identity", ",", "blacklist_predicate", "=", "_False", ",", "whitelist_predicate", "=", "_True", ",", "return_type_predicate", "=", "_None", ",", "getmembers_predicate", "=", "inspect", ".", "isfunction", ",", "admit_private", "=", "False", ",", "explanation", "=", "\"\"", ")", ":", "_rtp", "=", "return_type_predicate", "return_type_predicate", "=", "(", "lambda", "x", ":", "_rtp", ")", "if", "inspect", ".", "isclass", "(", "_rtp", ")", "and", "issubclass", "(", "_rtp", ",", "Builder", ")", "else", "_rtp", "module_name", "=", "module_alias", "if", "module_alias", "else", "module", ".", "__name__", "+", "'.'", "patch_members", "=", "_get_patch_members", "(", "module", ",", "blacklist_predicate", "=", "blacklist_predicate", ",", "whitelist_predicate", "=", "whitelist_predicate", ",", "getmembers_predicate", "=", "getmembers_predicate", ",", "admit_private", "=", "admit_private", ")", "for", "name", ",", "f", "in", "patch_members", ":", "wrapped", "=", "None", "if", "method_wrapper", ":", "g", "=", "method_wrapper", "(", "f", ")", "wrapped", "=", "f", "else", ":", "g", "=", "f", "cls", ".", "RegisterAt", "(", "n", ",", "g", ",", "module_name", ",", "wrapped", "=", "wrapped", ",", "_return_type", "=", "return_type_predicate", "(", "name", ")", ",", "alias", "=", "method_name_modifier", "(", "name", ")", ",", "explanation", "=", "explanation", ")" ]
This classmethod lets you easily patch all of functions/callables from a module or class as methods a Builder class. **Arguments** * **n** : the position the the object being piped will take in the arguments when the function being patched is applied. See `RegisterMethod` and `ThenAt`. * **module** : a module or class from which the functions/methods/callables will be taken. * `module_alias = None` : an optional alias for the module used for documentation purposes. * `method_name_modifier = lambda f_name: None` : a function that can modify the name of the method will take. If `None` the name of the function will be used. * `blacklist_predicate = lambda f_name: name[0] != "_"` : A predicate that determines which functions are banned given their name. By default it excludes all function whose name start with `'_'`. `blacklist_predicate` can also be of type list, in which case all names contained in this list will be banned. * `whitelist_predicate = lambda f_name: True` : A predicate that determines which functions are admitted given their name. By default it include any function. `whitelist_predicate` can also be of type list, in which case only names contained in this list will be admitted. You can use both `blacklist_predicate` and `whitelist_predicate` at the same time. * `return_type_predicate = lambda f_name: None` : a predicate that determines the `_return_type` of the Builder. By default it will always return `None`. See `phi.builder.Builder.ThenAt`. * `getmembers_predicate = inspect.isfunction` : a predicate that determines what type of elements/members will be fetched by the `inspect` module, defaults to [inspect.isfunction](https://docs.python.org/2/library/inspect.html#inspect.isfunction). See [getmembers](https://docs.python.org/2/library/inspect.html#inspect.getmembers). **Examples** Lets patch ALL the main functions from numpy into a custom builder! from phi import PythonBuilder #or Builder import numpy as np class NumpyBuilder(PythonBuilder): #or Builder "A Builder for numpy functions!" pass NumpyBuilder.PatchAt(1, np) N = NumpyBuilder(lambda x: x) Thats it! Although a serious patch would involve filtering out functions that don't take arrays. Another common task would be to use `NumpyBuilder.PatchAt(2, ...)` (`PatchAt(n, ..)` in general) when convenient to send the object being pipe to the relevant argument of the function. The previous is usually done with and a combination of `whitelist_predicate`s and `blacklist_predicate`s on `PatchAt(1, ...)` and `PatchAt(2, ...)` to filter or include the approriate functions on each kind of patch. Given the previous code we could now do import numpy as np x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) z = N.Pipe( x, N .dot(y) .add(x) .transpose() .sum(axis=1) ) Which is strictly equivalent to import numpy as np x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) z = np.dot(x, y) z = np.add(z, x) z = np.transpose(z) z = np.sum(z, axis=1) The thing to notice is that with the `NumpyBuilder` we avoid the repetitive and needless passing and reassigment of the `z` variable, this removes a lot of noise from our code.
[ "This", "classmethod", "lets", "you", "easily", "patch", "all", "of", "functions", "/", "callables", "from", "a", "module", "or", "class", "as", "methods", "a", "Builder", "class", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/builder.py#L360-L434
cgarciae/phi
phi/utils.py
get_method_sig
def get_method_sig(method): """ Given a function, it returns a string that pretty much looks how the function signature_ would be written in python. :param method: a python method :return: A string similar describing the pythong method signature_. eg: "my_method(first_argArg, second_arg=42, third_arg='something')" """ # The return value of ArgSpec is a bit weird, as the list of arguments and # list of defaults are returned in separate array. # eg: ArgSpec(args=['first_arg', 'second_arg', 'third_arg'], # varargs=None, keywords=None, defaults=(42, 'something')) argspec = inspect.getargspec(method) arg_index=0 args = [] # Use the args and defaults array returned by argspec and find out # which arguments has default for arg in argspec.args: default_arg = _get_default_arg(argspec.args, argspec.defaults, arg_index) if default_arg.has_default: args.append("%s=%s" % (arg, default_arg.default_value)) else: args.append(arg) arg_index += 1 return "%s(%s)" % (method.__name__, ", ".join(args))
python
def get_method_sig(method): """ Given a function, it returns a string that pretty much looks how the function signature_ would be written in python. :param method: a python method :return: A string similar describing the pythong method signature_. eg: "my_method(first_argArg, second_arg=42, third_arg='something')" """ # The return value of ArgSpec is a bit weird, as the list of arguments and # list of defaults are returned in separate array. # eg: ArgSpec(args=['first_arg', 'second_arg', 'third_arg'], # varargs=None, keywords=None, defaults=(42, 'something')) argspec = inspect.getargspec(method) arg_index=0 args = [] # Use the args and defaults array returned by argspec and find out # which arguments has default for arg in argspec.args: default_arg = _get_default_arg(argspec.args, argspec.defaults, arg_index) if default_arg.has_default: args.append("%s=%s" % (arg, default_arg.default_value)) else: args.append(arg) arg_index += 1 return "%s(%s)" % (method.__name__, ", ".join(args))
[ "def", "get_method_sig", "(", "method", ")", ":", "# The return value of ArgSpec is a bit weird, as the list of arguments and", "# list of defaults are returned in separate array.", "# eg: ArgSpec(args=['first_arg', 'second_arg', 'third_arg'],", "# varargs=None, keywords=None, defaults=(42, 'something'))", "argspec", "=", "inspect", ".", "getargspec", "(", "method", ")", "arg_index", "=", "0", "args", "=", "[", "]", "# Use the args and defaults array returned by argspec and find out", "# which arguments has default", "for", "arg", "in", "argspec", ".", "args", ":", "default_arg", "=", "_get_default_arg", "(", "argspec", ".", "args", ",", "argspec", ".", "defaults", ",", "arg_index", ")", "if", "default_arg", ".", "has_default", ":", "args", ".", "append", "(", "\"%s=%s\"", "%", "(", "arg", ",", "default_arg", ".", "default_value", ")", ")", "else", ":", "args", ".", "append", "(", "arg", ")", "arg_index", "+=", "1", "return", "\"%s(%s)\"", "%", "(", "method", ".", "__name__", ",", "\", \"", ".", "join", "(", "args", ")", ")" ]
Given a function, it returns a string that pretty much looks how the function signature_ would be written in python. :param method: a python method :return: A string similar describing the pythong method signature_. eg: "my_method(first_argArg, second_arg=42, third_arg='something')"
[ "Given", "a", "function", "it", "returns", "a", "string", "that", "pretty", "much", "looks", "how", "the", "function", "signature_", "would", "be", "written", "in", "python", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/utils.py#L64-L90
cgarciae/phi
phi/dsl.py
Expression.Pipe
def Pipe(self, *sequence, **kwargs): """ `Pipe` runs any `phi.dsl.Expression`. Its highly inspired by Elixir's [|> (pipe)](https://hexdocs.pm/elixir/Kernel.html#%7C%3E/2) operator. **Arguments** * ***sequence**: any variable amount of expressions. All expressions inside of `sequence` will be composed together using `phi.dsl.Expression.Seq`. * ****kwargs**: `Pipe` forwards all `kwargs` to `phi.builder.Builder.Seq`, visit its documentation for more info. The expression Pipe(*sequence, **kwargs) is equivalent to Seq(*sequence, **kwargs)(None) Normally the first argument or `Pipe` is a value, that is reinterpreted as a `phi.dsl.Expression.Val`, therfore, the input `None` is discarded. **Examples** from phi import P def add1(x): return x + 1 def mul3(x): return x * 3 x = P.Pipe( 1, #input add1, #1 + 1 == 2 mul3 #2 * 3 == 6 ) assert x == 6 The previous using [lambdas](https://cgarciae.github.io/phi/lambdas.m.html) to create the functions from phi import P x = P.Pipe( 1, #input P + 1, #1 + 1 == 2 P * 3 #2 * 3 == 6 ) assert x == 6 **Also see** * `phi.builder.Builder.Seq` * [dsl](https://cgarciae.github.io/phi/dsl.m.html) * [Compile](https://cgarciae.github.io/phi/dsl.m.html#phi.dsl.Compile) * [lambdas](https://cgarciae.github.io/phi/lambdas.m.html) """ state = kwargs.pop("refs", {}) return self.Seq(*sequence, **kwargs)(None, **state)
python
def Pipe(self, *sequence, **kwargs): """ `Pipe` runs any `phi.dsl.Expression`. Its highly inspired by Elixir's [|> (pipe)](https://hexdocs.pm/elixir/Kernel.html#%7C%3E/2) operator. **Arguments** * ***sequence**: any variable amount of expressions. All expressions inside of `sequence` will be composed together using `phi.dsl.Expression.Seq`. * ****kwargs**: `Pipe` forwards all `kwargs` to `phi.builder.Builder.Seq`, visit its documentation for more info. The expression Pipe(*sequence, **kwargs) is equivalent to Seq(*sequence, **kwargs)(None) Normally the first argument or `Pipe` is a value, that is reinterpreted as a `phi.dsl.Expression.Val`, therfore, the input `None` is discarded. **Examples** from phi import P def add1(x): return x + 1 def mul3(x): return x * 3 x = P.Pipe( 1, #input add1, #1 + 1 == 2 mul3 #2 * 3 == 6 ) assert x == 6 The previous using [lambdas](https://cgarciae.github.io/phi/lambdas.m.html) to create the functions from phi import P x = P.Pipe( 1, #input P + 1, #1 + 1 == 2 P * 3 #2 * 3 == 6 ) assert x == 6 **Also see** * `phi.builder.Builder.Seq` * [dsl](https://cgarciae.github.io/phi/dsl.m.html) * [Compile](https://cgarciae.github.io/phi/dsl.m.html#phi.dsl.Compile) * [lambdas](https://cgarciae.github.io/phi/lambdas.m.html) """ state = kwargs.pop("refs", {}) return self.Seq(*sequence, **kwargs)(None, **state)
[ "def", "Pipe", "(", "self", ",", "*", "sequence", ",", "*", "*", "kwargs", ")", ":", "state", "=", "kwargs", ".", "pop", "(", "\"refs\"", ",", "{", "}", ")", "return", "self", ".", "Seq", "(", "*", "sequence", ",", "*", "*", "kwargs", ")", "(", "None", ",", "*", "*", "state", ")" ]
`Pipe` runs any `phi.dsl.Expression`. Its highly inspired by Elixir's [|> (pipe)](https://hexdocs.pm/elixir/Kernel.html#%7C%3E/2) operator. **Arguments** * ***sequence**: any variable amount of expressions. All expressions inside of `sequence` will be composed together using `phi.dsl.Expression.Seq`. * ****kwargs**: `Pipe` forwards all `kwargs` to `phi.builder.Builder.Seq`, visit its documentation for more info. The expression Pipe(*sequence, **kwargs) is equivalent to Seq(*sequence, **kwargs)(None) Normally the first argument or `Pipe` is a value, that is reinterpreted as a `phi.dsl.Expression.Val`, therfore, the input `None` is discarded. **Examples** from phi import P def add1(x): return x + 1 def mul3(x): return x * 3 x = P.Pipe( 1, #input add1, #1 + 1 == 2 mul3 #2 * 3 == 6 ) assert x == 6 The previous using [lambdas](https://cgarciae.github.io/phi/lambdas.m.html) to create the functions from phi import P x = P.Pipe( 1, #input P + 1, #1 + 1 == 2 P * 3 #2 * 3 == 6 ) assert x == 6 **Also see** * `phi.builder.Builder.Seq` * [dsl](https://cgarciae.github.io/phi/dsl.m.html) * [Compile](https://cgarciae.github.io/phi/dsl.m.html#phi.dsl.Compile) * [lambdas](https://cgarciae.github.io/phi/lambdas.m.html)
[ "Pipe", "runs", "any", "phi", ".", "dsl", ".", "Expression", ".", "Its", "highly", "inspired", "by", "Elixir", "s", "[", "|", ">", "(", "pipe", ")", "]", "(", "https", ":", "//", "hexdocs", ".", "pm", "/", "elixir", "/", "Kernel", ".", "html#%7C%3E", "/", "2", ")", "operator", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L468-L522
cgarciae/phi
phi/dsl.py
Expression.ThenAt
def ThenAt(self, n, f, *_args, **kwargs): """ `ThenAt` enables you to create a partially apply many arguments to a function, the returned partial expects a single arguments which will be applied at the `n`th position of the original function. **Arguments** * **n**: position at which the created partial will apply its awaited argument on the original function. * **f**: function which the partial will be created. * **_args & kwargs**: all `*_args` and `**kwargs` will be passed to the function `f`. * `_return_type = None`: type of the returned `builder`, if `None` it will return the same type of the current `builder`. This special kwarg will NOT be passed to `f`. You can think of `n` as the position that the value being piped down will pass through the `f`. Say you have the following expression D == fun(A, B, C) all the following are equivalent from phi import P, Pipe, ThenAt D == Pipe(A, ThenAt(1, fun, B, C)) D == Pipe(B, ThenAt(2, fun, A, C)) D == Pipe(C, ThenAt(3, fun, A, B)) you could also use the shortcuts `Then`, `Then2`,..., `Then5`, which are more readable from phi import P, Pipe D == Pipe(A, P.Then(fun, B, C)) D == Pipe(B, P.Then2(fun, A, C)) D == Pipe(C, P.Then3(fun, A, B)) There is a special case not discussed above: `n = 0`. When this happens only the arguments given will be applied to `f`, this method it will return a partial that expects a single argument but completely ignores it from phi import P D == Pipe(None, P.ThenAt(0, fun, A, B, C)) D == Pipe(None, P.Then0(fun, A, B, C)) **Examples** Max of 6 and the argument: from phi import P assert 6 == P.Pipe( 2, P.Then(max, 6) ) Previous is equivalent to assert 6 == max(2, 6) Open a file in read mode (`'r'`) from phi import P f = P.Pipe( "file.txt", P.Then(open, 'r') ) Previous is equivalent to f = open("file.txt", 'r') Split a string by whitespace and then get the length of each word from phi import P assert [5, 5, 5] == P.Pipe( "Again hello world", P.Then(str.split, ' ') .Then2(map, len) ) Previous is equivalent to x = "Again hello world" x = str.split(x, ' ') x = map(len, x) assert [5, 5, 5] == x As you see, `Then2` was very useful because `map` accepts and `iterable` as its `2nd` parameter. You can rewrite the previous using the [PythonBuilder](https://cgarciae.github.io/phi/python_builder.m.html) and the `phi.builder.Builder.Obj` object from phi import P, Obj assert [5, 5, 5] == P.Pipe( "Again hello world", Obj.split(' '), P.map(len) ) **Also see** * `phi.builder.Builder.Obj` * [PythonBuilder](https://cgarciae.github.io/phi/python_builder.m.html) * `phi.builder.Builder.RegisterAt` """ _return_type = None n_args = n - 1 if '_return_type' in kwargs: _return_type = kwargs['_return_type'] del kwargs['_return_type'] @utils.lift def g(x): new_args = _args[0:n_args] + (x,) + _args[n_args:] if n_args >= 0 else _args return f(*new_args, **kwargs) return self.__then__(g, _return_type=_return_type)
python
def ThenAt(self, n, f, *_args, **kwargs): """ `ThenAt` enables you to create a partially apply many arguments to a function, the returned partial expects a single arguments which will be applied at the `n`th position of the original function. **Arguments** * **n**: position at which the created partial will apply its awaited argument on the original function. * **f**: function which the partial will be created. * **_args & kwargs**: all `*_args` and `**kwargs` will be passed to the function `f`. * `_return_type = None`: type of the returned `builder`, if `None` it will return the same type of the current `builder`. This special kwarg will NOT be passed to `f`. You can think of `n` as the position that the value being piped down will pass through the `f`. Say you have the following expression D == fun(A, B, C) all the following are equivalent from phi import P, Pipe, ThenAt D == Pipe(A, ThenAt(1, fun, B, C)) D == Pipe(B, ThenAt(2, fun, A, C)) D == Pipe(C, ThenAt(3, fun, A, B)) you could also use the shortcuts `Then`, `Then2`,..., `Then5`, which are more readable from phi import P, Pipe D == Pipe(A, P.Then(fun, B, C)) D == Pipe(B, P.Then2(fun, A, C)) D == Pipe(C, P.Then3(fun, A, B)) There is a special case not discussed above: `n = 0`. When this happens only the arguments given will be applied to `f`, this method it will return a partial that expects a single argument but completely ignores it from phi import P D == Pipe(None, P.ThenAt(0, fun, A, B, C)) D == Pipe(None, P.Then0(fun, A, B, C)) **Examples** Max of 6 and the argument: from phi import P assert 6 == P.Pipe( 2, P.Then(max, 6) ) Previous is equivalent to assert 6 == max(2, 6) Open a file in read mode (`'r'`) from phi import P f = P.Pipe( "file.txt", P.Then(open, 'r') ) Previous is equivalent to f = open("file.txt", 'r') Split a string by whitespace and then get the length of each word from phi import P assert [5, 5, 5] == P.Pipe( "Again hello world", P.Then(str.split, ' ') .Then2(map, len) ) Previous is equivalent to x = "Again hello world" x = str.split(x, ' ') x = map(len, x) assert [5, 5, 5] == x As you see, `Then2` was very useful because `map` accepts and `iterable` as its `2nd` parameter. You can rewrite the previous using the [PythonBuilder](https://cgarciae.github.io/phi/python_builder.m.html) and the `phi.builder.Builder.Obj` object from phi import P, Obj assert [5, 5, 5] == P.Pipe( "Again hello world", Obj.split(' '), P.map(len) ) **Also see** * `phi.builder.Builder.Obj` * [PythonBuilder](https://cgarciae.github.io/phi/python_builder.m.html) * `phi.builder.Builder.RegisterAt` """ _return_type = None n_args = n - 1 if '_return_type' in kwargs: _return_type = kwargs['_return_type'] del kwargs['_return_type'] @utils.lift def g(x): new_args = _args[0:n_args] + (x,) + _args[n_args:] if n_args >= 0 else _args return f(*new_args, **kwargs) return self.__then__(g, _return_type=_return_type)
[ "def", "ThenAt", "(", "self", ",", "n", ",", "f", ",", "*", "_args", ",", "*", "*", "kwargs", ")", ":", "_return_type", "=", "None", "n_args", "=", "n", "-", "1", "if", "'_return_type'", "in", "kwargs", ":", "_return_type", "=", "kwargs", "[", "'_return_type'", "]", "del", "kwargs", "[", "'_return_type'", "]", "@", "utils", ".", "lift", "def", "g", "(", "x", ")", ":", "new_args", "=", "_args", "[", "0", ":", "n_args", "]", "+", "(", "x", ",", ")", "+", "_args", "[", "n_args", ":", "]", "if", "n_args", ">=", "0", "else", "_args", "return", "f", "(", "*", "new_args", ",", "*", "*", "kwargs", ")", "return", "self", ".", "__then__", "(", "g", ",", "_return_type", "=", "_return_type", ")" ]
`ThenAt` enables you to create a partially apply many arguments to a function, the returned partial expects a single arguments which will be applied at the `n`th position of the original function. **Arguments** * **n**: position at which the created partial will apply its awaited argument on the original function. * **f**: function which the partial will be created. * **_args & kwargs**: all `*_args` and `**kwargs` will be passed to the function `f`. * `_return_type = None`: type of the returned `builder`, if `None` it will return the same type of the current `builder`. This special kwarg will NOT be passed to `f`. You can think of `n` as the position that the value being piped down will pass through the `f`. Say you have the following expression D == fun(A, B, C) all the following are equivalent from phi import P, Pipe, ThenAt D == Pipe(A, ThenAt(1, fun, B, C)) D == Pipe(B, ThenAt(2, fun, A, C)) D == Pipe(C, ThenAt(3, fun, A, B)) you could also use the shortcuts `Then`, `Then2`,..., `Then5`, which are more readable from phi import P, Pipe D == Pipe(A, P.Then(fun, B, C)) D == Pipe(B, P.Then2(fun, A, C)) D == Pipe(C, P.Then3(fun, A, B)) There is a special case not discussed above: `n = 0`. When this happens only the arguments given will be applied to `f`, this method it will return a partial that expects a single argument but completely ignores it from phi import P D == Pipe(None, P.ThenAt(0, fun, A, B, C)) D == Pipe(None, P.Then0(fun, A, B, C)) **Examples** Max of 6 and the argument: from phi import P assert 6 == P.Pipe( 2, P.Then(max, 6) ) Previous is equivalent to assert 6 == max(2, 6) Open a file in read mode (`'r'`) from phi import P f = P.Pipe( "file.txt", P.Then(open, 'r') ) Previous is equivalent to f = open("file.txt", 'r') Split a string by whitespace and then get the length of each word from phi import P assert [5, 5, 5] == P.Pipe( "Again hello world", P.Then(str.split, ' ') .Then2(map, len) ) Previous is equivalent to x = "Again hello world" x = str.split(x, ' ') x = map(len, x) assert [5, 5, 5] == x As you see, `Then2` was very useful because `map` accepts and `iterable` as its `2nd` parameter. You can rewrite the previous using the [PythonBuilder](https://cgarciae.github.io/phi/python_builder.m.html) and the `phi.builder.Builder.Obj` object from phi import P, Obj assert [5, 5, 5] == P.Pipe( "Again hello world", Obj.split(' '), P.map(len) ) **Also see** * `phi.builder.Builder.Obj` * [PythonBuilder](https://cgarciae.github.io/phi/python_builder.m.html) * `phi.builder.Builder.RegisterAt`
[ "ThenAt", "enables", "you", "to", "create", "a", "partially", "apply", "many", "arguments", "to", "a", "function", "the", "returned", "partial", "expects", "a", "single", "arguments", "which", "will", "be", "applied", "at", "the", "n", "th", "position", "of", "the", "original", "function", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L524-L638
cgarciae/phi
phi/dsl.py
Expression.Then0
def Then0(self, f, *args, **kwargs): """ `Then0(f, ...)` is equivalent to `ThenAt(0, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ return self.ThenAt(0, f, *args, **kwargs)
python
def Then0(self, f, *args, **kwargs): """ `Then0(f, ...)` is equivalent to `ThenAt(0, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ return self.ThenAt(0, f, *args, **kwargs)
[ "def", "Then0", "(", "self", ",", "f", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "ThenAt", "(", "0", ",", "f", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
`Then0(f, ...)` is equivalent to `ThenAt(0, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information.
[ "Then0", "(", "f", "...", ")", "is", "equivalent", "to", "ThenAt", "(", "0", "f", "...", ")", ".", "Checkout", "phi", ".", "builder", ".", "Builder", ".", "ThenAt", "for", "more", "information", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L640-L644
cgarciae/phi
phi/dsl.py
Expression.Then
def Then(self, f, *args, **kwargs): """ `Then(f, ...)` is equivalent to `ThenAt(1, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ return self.ThenAt(1, f, *args, **kwargs)
python
def Then(self, f, *args, **kwargs): """ `Then(f, ...)` is equivalent to `ThenAt(1, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ return self.ThenAt(1, f, *args, **kwargs)
[ "def", "Then", "(", "self", ",", "f", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "ThenAt", "(", "1", ",", "f", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
`Then(f, ...)` is equivalent to `ThenAt(1, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information.
[ "Then", "(", "f", "...", ")", "is", "equivalent", "to", "ThenAt", "(", "1", "f", "...", ")", ".", "Checkout", "phi", ".", "builder", ".", "Builder", ".", "ThenAt", "for", "more", "information", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L646-L650
cgarciae/phi
phi/dsl.py
Expression.Then2
def Then2(self, f, arg1, *args, **kwargs): """ `Then2(f, ...)` is equivalent to `ThenAt(2, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ args = (arg1,) + args return self.ThenAt(2, f, *args, **kwargs)
python
def Then2(self, f, arg1, *args, **kwargs): """ `Then2(f, ...)` is equivalent to `ThenAt(2, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ args = (arg1,) + args return self.ThenAt(2, f, *args, **kwargs)
[ "def", "Then2", "(", "self", ",", "f", ",", "arg1", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "args", "=", "(", "arg1", ",", ")", "+", "args", "return", "self", ".", "ThenAt", "(", "2", ",", "f", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
`Then2(f, ...)` is equivalent to `ThenAt(2, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information.
[ "Then2", "(", "f", "...", ")", "is", "equivalent", "to", "ThenAt", "(", "2", "f", "...", ")", ".", "Checkout", "phi", ".", "builder", ".", "Builder", ".", "ThenAt", "for", "more", "information", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L654-L659
cgarciae/phi
phi/dsl.py
Expression.Then3
def Then3(self, f, arg1, arg2, *args, **kwargs): """ `Then3(f, ...)` is equivalent to `ThenAt(3, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ args = (arg1, arg2) + args return self.ThenAt(3, f, *args, **kwargs)
python
def Then3(self, f, arg1, arg2, *args, **kwargs): """ `Then3(f, ...)` is equivalent to `ThenAt(3, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ args = (arg1, arg2) + args return self.ThenAt(3, f, *args, **kwargs)
[ "def", "Then3", "(", "self", ",", "f", ",", "arg1", ",", "arg2", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "args", "=", "(", "arg1", ",", "arg2", ")", "+", "args", "return", "self", ".", "ThenAt", "(", "3", ",", "f", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
`Then3(f, ...)` is equivalent to `ThenAt(3, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information.
[ "Then3", "(", "f", "...", ")", "is", "equivalent", "to", "ThenAt", "(", "3", "f", "...", ")", ".", "Checkout", "phi", ".", "builder", ".", "Builder", ".", "ThenAt", "for", "more", "information", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L661-L666
cgarciae/phi
phi/dsl.py
Expression.Then4
def Then4(self, f, arg1, arg2, arg3, *args, **kwargs): """ `Then4(f, ...)` is equivalent to `ThenAt(4, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ args = (arg1, arg2, arg3) + args return self.ThenAt(4, f, *args, **kwargs)
python
def Then4(self, f, arg1, arg2, arg3, *args, **kwargs): """ `Then4(f, ...)` is equivalent to `ThenAt(4, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ args = (arg1, arg2, arg3) + args return self.ThenAt(4, f, *args, **kwargs)
[ "def", "Then4", "(", "self", ",", "f", ",", "arg1", ",", "arg2", ",", "arg3", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "args", "=", "(", "arg1", ",", "arg2", ",", "arg3", ")", "+", "args", "return", "self", ".", "ThenAt", "(", "4", ",", "f", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
`Then4(f, ...)` is equivalent to `ThenAt(4, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information.
[ "Then4", "(", "f", "...", ")", "is", "equivalent", "to", "ThenAt", "(", "4", "f", "...", ")", ".", "Checkout", "phi", ".", "builder", ".", "Builder", ".", "ThenAt", "for", "more", "information", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L668-L673
cgarciae/phi
phi/dsl.py
Expression.Then5
def Then5(self, f, arg1, arg2, arg3, arg4, *args, **kwargs): """ `Then5(f, ...)` is equivalent to `ThenAt(5, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ args = (arg1, arg2, arg3, arg4) + args return self.ThenAt(5, f, *args, **kwargs)
python
def Then5(self, f, arg1, arg2, arg3, arg4, *args, **kwargs): """ `Then5(f, ...)` is equivalent to `ThenAt(5, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information. """ args = (arg1, arg2, arg3, arg4) + args return self.ThenAt(5, f, *args, **kwargs)
[ "def", "Then5", "(", "self", ",", "f", ",", "arg1", ",", "arg2", ",", "arg3", ",", "arg4", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "args", "=", "(", "arg1", ",", "arg2", ",", "arg3", ",", "arg4", ")", "+", "args", "return", "self", ".", "ThenAt", "(", "5", ",", "f", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
`Then5(f, ...)` is equivalent to `ThenAt(5, f, ...)`. Checkout `phi.builder.Builder.ThenAt` for more information.
[ "Then5", "(", "f", "...", ")", "is", "equivalent", "to", "ThenAt", "(", "5", "f", "...", ")", ".", "Checkout", "phi", ".", "builder", ".", "Builder", ".", "ThenAt", "for", "more", "information", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L675-L680
cgarciae/phi
phi/dsl.py
Expression.List
def List(self, *branches, **kwargs): """ While `Seq` is sequential, `phi.dsl.Expression.List` allows you to split the computation and get back a list with the result of each path. While the list literal should be the most incarnation of this expresion, it can actually be any iterable (implements `__iter__`) that is not a tuple and yields a valid expresion. The expression k = List(f, g) is equivalent to k = lambda x: [ f(x), g(x) ] In general, the following rules apply after compilation: **General Branching** List(f0, f1, ..., fn) is equivalent to lambda x: [ f0(x), f1(x), ..., fn(x) ] **Composing & Branching** It is interesting to see how braching interacts with composing. The expression Seq(f, List(g, h)) is *almost* equivalent to List( Seq(f, g), Seq(f, h) ) As you see its as if `f` where distributed over the List. We say *almost* because their implementation is different def _lambda(x): x = f(x) return [ g(x), h(x) ] vs lambda x: [ g(f(x)), h(f(x)) ] As you see `f` is only executed once in the first one. Both should yield the same result if `f` is a pure function. ### Examples form phi import P, List avg_word_length = P.Pipe( "1 22 333", lambda s: s.split(' '), # ['1', '22', '333'] lambda l: map(len, l), # [1, 2, 3] List( sum # 1 + 2 + 3 == 6 , len # len([1, 2, 3]) == 3 ), lambda l: l[0] / l[1] # sum / len == 6 / 3 == 2 ) assert avg_word_length == 2 The previous could also be done more briefly like this form phi import P, Obj, List avg_word_length = P.Pipe( "1 22 333", Obj .split(' ') # ['1', '22', '333'] .map(len) # [1, 2, 3] .List( sum #sum([1, 2, 3]) == 6 , len #len([1, 2, 3]) == 3 ), P[0] / P[1] #6 / 3 == 2 ) assert avg_word_length == 2 In the example above the last expression P[0] / P[1] works for a couple of reasons 1. The previous expression returns a list 2. In general the expression `P[x]` compiles to a function with the form `lambda obj: obj[x]` 3. The class `Expression` (the class from which the object `P` inherits) overrides most operators to create functions easily. For example, the expression (P * 2) / (P + 1) compile to a function of the form lambda x: (x * 2) / (x + 1) Check out the documentatio for Phi [lambdas](https://cgarciae.github.io/phi/lambdas.m.html). """ gs = [ _parse(code)._f for code in branches ] def h(x, state): ys = [] for g in gs: y, state = g(x, state) ys.append(y) return (ys, state) return self.__then__(h, **kwargs)
python
def List(self, *branches, **kwargs): """ While `Seq` is sequential, `phi.dsl.Expression.List` allows you to split the computation and get back a list with the result of each path. While the list literal should be the most incarnation of this expresion, it can actually be any iterable (implements `__iter__`) that is not a tuple and yields a valid expresion. The expression k = List(f, g) is equivalent to k = lambda x: [ f(x), g(x) ] In general, the following rules apply after compilation: **General Branching** List(f0, f1, ..., fn) is equivalent to lambda x: [ f0(x), f1(x), ..., fn(x) ] **Composing & Branching** It is interesting to see how braching interacts with composing. The expression Seq(f, List(g, h)) is *almost* equivalent to List( Seq(f, g), Seq(f, h) ) As you see its as if `f` where distributed over the List. We say *almost* because their implementation is different def _lambda(x): x = f(x) return [ g(x), h(x) ] vs lambda x: [ g(f(x)), h(f(x)) ] As you see `f` is only executed once in the first one. Both should yield the same result if `f` is a pure function. ### Examples form phi import P, List avg_word_length = P.Pipe( "1 22 333", lambda s: s.split(' '), # ['1', '22', '333'] lambda l: map(len, l), # [1, 2, 3] List( sum # 1 + 2 + 3 == 6 , len # len([1, 2, 3]) == 3 ), lambda l: l[0] / l[1] # sum / len == 6 / 3 == 2 ) assert avg_word_length == 2 The previous could also be done more briefly like this form phi import P, Obj, List avg_word_length = P.Pipe( "1 22 333", Obj .split(' ') # ['1', '22', '333'] .map(len) # [1, 2, 3] .List( sum #sum([1, 2, 3]) == 6 , len #len([1, 2, 3]) == 3 ), P[0] / P[1] #6 / 3 == 2 ) assert avg_word_length == 2 In the example above the last expression P[0] / P[1] works for a couple of reasons 1. The previous expression returns a list 2. In general the expression `P[x]` compiles to a function with the form `lambda obj: obj[x]` 3. The class `Expression` (the class from which the object `P` inherits) overrides most operators to create functions easily. For example, the expression (P * 2) / (P + 1) compile to a function of the form lambda x: (x * 2) / (x + 1) Check out the documentatio for Phi [lambdas](https://cgarciae.github.io/phi/lambdas.m.html). """ gs = [ _parse(code)._f for code in branches ] def h(x, state): ys = [] for g in gs: y, state = g(x, state) ys.append(y) return (ys, state) return self.__then__(h, **kwargs)
[ "def", "List", "(", "self", ",", "*", "branches", ",", "*", "*", "kwargs", ")", ":", "gs", "=", "[", "_parse", "(", "code", ")", ".", "_f", "for", "code", "in", "branches", "]", "def", "h", "(", "x", ",", "state", ")", ":", "ys", "=", "[", "]", "for", "g", "in", "gs", ":", "y", ",", "state", "=", "g", "(", "x", ",", "state", ")", "ys", ".", "append", "(", "y", ")", "return", "(", "ys", ",", "state", ")", "return", "self", ".", "__then__", "(", "h", ",", "*", "*", "kwargs", ")" ]
While `Seq` is sequential, `phi.dsl.Expression.List` allows you to split the computation and get back a list with the result of each path. While the list literal should be the most incarnation of this expresion, it can actually be any iterable (implements `__iter__`) that is not a tuple and yields a valid expresion. The expression k = List(f, g) is equivalent to k = lambda x: [ f(x), g(x) ] In general, the following rules apply after compilation: **General Branching** List(f0, f1, ..., fn) is equivalent to lambda x: [ f0(x), f1(x), ..., fn(x) ] **Composing & Branching** It is interesting to see how braching interacts with composing. The expression Seq(f, List(g, h)) is *almost* equivalent to List( Seq(f, g), Seq(f, h) ) As you see its as if `f` where distributed over the List. We say *almost* because their implementation is different def _lambda(x): x = f(x) return [ g(x), h(x) ] vs lambda x: [ g(f(x)), h(f(x)) ] As you see `f` is only executed once in the first one. Both should yield the same result if `f` is a pure function. ### Examples form phi import P, List avg_word_length = P.Pipe( "1 22 333", lambda s: s.split(' '), # ['1', '22', '333'] lambda l: map(len, l), # [1, 2, 3] List( sum # 1 + 2 + 3 == 6 , len # len([1, 2, 3]) == 3 ), lambda l: l[0] / l[1] # sum / len == 6 / 3 == 2 ) assert avg_word_length == 2 The previous could also be done more briefly like this form phi import P, Obj, List avg_word_length = P.Pipe( "1 22 333", Obj .split(' ') # ['1', '22', '333'] .map(len) # [1, 2, 3] .List( sum #sum([1, 2, 3]) == 6 , len #len([1, 2, 3]) == 3 ), P[0] / P[1] #6 / 3 == 2 ) assert avg_word_length == 2 In the example above the last expression P[0] / P[1] works for a couple of reasons 1. The previous expression returns a list 2. In general the expression `P[x]` compiles to a function with the form `lambda obj: obj[x]` 3. The class `Expression` (the class from which the object `P` inherits) overrides most operators to create functions easily. For example, the expression (P * 2) / (P + 1) compile to a function of the form lambda x: (x * 2) / (x + 1) Check out the documentatio for Phi [lambdas](https://cgarciae.github.io/phi/lambdas.m.html).
[ "While", "Seq", "is", "sequential", "phi", ".", "dsl", ".", "Expression", ".", "List", "allows", "you", "to", "split", "the", "computation", "and", "get", "back", "a", "list", "with", "the", "result", "of", "each", "path", ".", "While", "the", "list", "literal", "should", "be", "the", "most", "incarnation", "of", "this", "expresion", "it", "can", "actually", "be", "any", "iterable", "(", "implements", "__iter__", ")", "that", "is", "not", "a", "tuple", "and", "yields", "a", "valid", "expresion", "." ]
train
https://github.com/cgarciae/phi/blob/87fd7100a76f823232f4fd8360498b4b80675265/phi/dsl.py#L682-L793