repository_name
stringlengths 7
55
| func_path_in_repository
stringlengths 4
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 75
104k
| language
stringclasses 1
value | func_code_string
stringlengths 75
104k
| func_code_tokens
sequencelengths 19
28.4k
| func_documentation_string
stringlengths 1
46.9k
| func_documentation_tokens
sequencelengths 1
1.97k
| split_name
stringclasses 1
value | func_code_url
stringlengths 87
315
|
---|---|---|---|---|---|---|---|---|---|---|
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.delete_columns | def delete_columns(self, columns):
"""
Delete columns from the DataFrame
:param columns: list of columns to delete
:return: nothing
"""
columns = [columns] if not isinstance(columns, (list, blist)) else columns
if not all([x in self._columns for x in columns]):
raise ValueError('all columns must be in current columns')
for column in columns:
c = self._columns.index(column)
del self._data[c]
del self._columns[c]
if not len(self._data): # if all the columns have been deleted, remove index
self.index = list() | python | def delete_columns(self, columns):
"""
Delete columns from the DataFrame
:param columns: list of columns to delete
:return: nothing
"""
columns = [columns] if not isinstance(columns, (list, blist)) else columns
if not all([x in self._columns for x in columns]):
raise ValueError('all columns must be in current columns')
for column in columns:
c = self._columns.index(column)
del self._data[c]
del self._columns[c]
if not len(self._data): # if all the columns have been deleted, remove index
self.index = list() | [
"def",
"delete_columns",
"(",
"self",
",",
"columns",
")",
":",
"columns",
"=",
"[",
"columns",
"]",
"if",
"not",
"isinstance",
"(",
"columns",
",",
"(",
"list",
",",
"blist",
")",
")",
"else",
"columns",
"if",
"not",
"all",
"(",
"[",
"x",
"in",
"self",
".",
"_columns",
"for",
"x",
"in",
"columns",
"]",
")",
":",
"raise",
"ValueError",
"(",
"'all columns must be in current columns'",
")",
"for",
"column",
"in",
"columns",
":",
"c",
"=",
"self",
".",
"_columns",
".",
"index",
"(",
"column",
")",
"del",
"self",
".",
"_data",
"[",
"c",
"]",
"del",
"self",
".",
"_columns",
"[",
"c",
"]",
"if",
"not",
"len",
"(",
"self",
".",
"_data",
")",
":",
"# if all the columns have been deleted, remove index",
"self",
".",
"index",
"=",
"list",
"(",
")"
] | Delete columns from the DataFrame
:param columns: list of columns to delete
:return: nothing | [
"Delete",
"columns",
"from",
"the",
"DataFrame"
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L945-L960 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.sort_index | def sort_index(self):
"""
Sort the DataFrame by the index. The sort modifies the DataFrame inplace
:return: nothing
"""
sort = sorted_list_indexes(self._index)
# sort index
self._index = blist([self._index[x] for x in sort]) if self._blist else [self._index[x] for x in sort]
# each column
for c in range(len(self._data)):
self._data[c] = blist([self._data[c][i] for i in sort]) if self._blist else [self._data[c][i] for i in sort] | python | def sort_index(self):
"""
Sort the DataFrame by the index. The sort modifies the DataFrame inplace
:return: nothing
"""
sort = sorted_list_indexes(self._index)
# sort index
self._index = blist([self._index[x] for x in sort]) if self._blist else [self._index[x] for x in sort]
# each column
for c in range(len(self._data)):
self._data[c] = blist([self._data[c][i] for i in sort]) if self._blist else [self._data[c][i] for i in sort] | [
"def",
"sort_index",
"(",
"self",
")",
":",
"sort",
"=",
"sorted_list_indexes",
"(",
"self",
".",
"_index",
")",
"# sort index",
"self",
".",
"_index",
"=",
"blist",
"(",
"[",
"self",
".",
"_index",
"[",
"x",
"]",
"for",
"x",
"in",
"sort",
"]",
")",
"if",
"self",
".",
"_blist",
"else",
"[",
"self",
".",
"_index",
"[",
"x",
"]",
"for",
"x",
"in",
"sort",
"]",
"# each column",
"for",
"c",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"_data",
")",
")",
":",
"self",
".",
"_data",
"[",
"c",
"]",
"=",
"blist",
"(",
"[",
"self",
".",
"_data",
"[",
"c",
"]",
"[",
"i",
"]",
"for",
"i",
"in",
"sort",
"]",
")",
"if",
"self",
".",
"_blist",
"else",
"[",
"self",
".",
"_data",
"[",
"c",
"]",
"[",
"i",
"]",
"for",
"i",
"in",
"sort",
"]"
] | Sort the DataFrame by the index. The sort modifies the DataFrame inplace
:return: nothing | [
"Sort",
"the",
"DataFrame",
"by",
"the",
"index",
".",
"The",
"sort",
"modifies",
"the",
"DataFrame",
"inplace"
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L962-L973 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.sort_columns | def sort_columns(self, column, key=None, reverse=False):
"""
Sort the DataFrame by one of the columns. The sort modifies the DataFrame inplace. The key and reverse
parameters have the same meaning as for the built-in sort() function.
:param column: column name to use for the sort
:param key: if not None then a function of one argument that is used to extract a comparison key from each
list element
:param reverse: if True then the list elements are sort as if each comparison were reversed.
:return: nothing
"""
if isinstance(column, (list, blist)):
raise TypeError('Can only sort by a single column ')
sort = sorted_list_indexes(self._data[self._columns.index(column)], key, reverse)
# sort index
self._index = blist([self._index[x] for x in sort]) if self._blist else [self._index[x] for x in sort]
# each column
for c in range(len(self._data)):
self._data[c] = blist([self._data[c][i] for i in sort]) if self._blist else [self._data[c][i] for i in sort] | python | def sort_columns(self, column, key=None, reverse=False):
"""
Sort the DataFrame by one of the columns. The sort modifies the DataFrame inplace. The key and reverse
parameters have the same meaning as for the built-in sort() function.
:param column: column name to use for the sort
:param key: if not None then a function of one argument that is used to extract a comparison key from each
list element
:param reverse: if True then the list elements are sort as if each comparison were reversed.
:return: nothing
"""
if isinstance(column, (list, blist)):
raise TypeError('Can only sort by a single column ')
sort = sorted_list_indexes(self._data[self._columns.index(column)], key, reverse)
# sort index
self._index = blist([self._index[x] for x in sort]) if self._blist else [self._index[x] for x in sort]
# each column
for c in range(len(self._data)):
self._data[c] = blist([self._data[c][i] for i in sort]) if self._blist else [self._data[c][i] for i in sort] | [
"def",
"sort_columns",
"(",
"self",
",",
"column",
",",
"key",
"=",
"None",
",",
"reverse",
"=",
"False",
")",
":",
"if",
"isinstance",
"(",
"column",
",",
"(",
"list",
",",
"blist",
")",
")",
":",
"raise",
"TypeError",
"(",
"'Can only sort by a single column '",
")",
"sort",
"=",
"sorted_list_indexes",
"(",
"self",
".",
"_data",
"[",
"self",
".",
"_columns",
".",
"index",
"(",
"column",
")",
"]",
",",
"key",
",",
"reverse",
")",
"# sort index",
"self",
".",
"_index",
"=",
"blist",
"(",
"[",
"self",
".",
"_index",
"[",
"x",
"]",
"for",
"x",
"in",
"sort",
"]",
")",
"if",
"self",
".",
"_blist",
"else",
"[",
"self",
".",
"_index",
"[",
"x",
"]",
"for",
"x",
"in",
"sort",
"]",
"# each column",
"for",
"c",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"_data",
")",
")",
":",
"self",
".",
"_data",
"[",
"c",
"]",
"=",
"blist",
"(",
"[",
"self",
".",
"_data",
"[",
"c",
"]",
"[",
"i",
"]",
"for",
"i",
"in",
"sort",
"]",
")",
"if",
"self",
".",
"_blist",
"else",
"[",
"self",
".",
"_data",
"[",
"c",
"]",
"[",
"i",
"]",
"for",
"i",
"in",
"sort",
"]"
] | Sort the DataFrame by one of the columns. The sort modifies the DataFrame inplace. The key and reverse
parameters have the same meaning as for the built-in sort() function.
:param column: column name to use for the sort
:param key: if not None then a function of one argument that is used to extract a comparison key from each
list element
:param reverse: if True then the list elements are sort as if each comparison were reversed.
:return: nothing | [
"Sort",
"the",
"DataFrame",
"by",
"one",
"of",
"the",
"columns",
".",
"The",
"sort",
"modifies",
"the",
"DataFrame",
"inplace",
".",
"The",
"key",
"and",
"reverse",
"parameters",
"have",
"the",
"same",
"meaning",
"as",
"for",
"the",
"built",
"-",
"in",
"sort",
"()",
"function",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L975-L993 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.validate_integrity | def validate_integrity(self):
"""
Validate the integrity of the DataFrame. This checks that the indexes, column names and internal data are not
corrupted. Will raise an error if there is a problem.
:return: nothing
"""
self._validate_columns(self._columns)
self._validate_index(self._index)
self._validate_data() | python | def validate_integrity(self):
"""
Validate the integrity of the DataFrame. This checks that the indexes, column names and internal data are not
corrupted. Will raise an error if there is a problem.
:return: nothing
"""
self._validate_columns(self._columns)
self._validate_index(self._index)
self._validate_data() | [
"def",
"validate_integrity",
"(",
"self",
")",
":",
"self",
".",
"_validate_columns",
"(",
"self",
".",
"_columns",
")",
"self",
".",
"_validate_index",
"(",
"self",
".",
"_index",
")",
"self",
".",
"_validate_data",
"(",
")"
] | Validate the integrity of the DataFrame. This checks that the indexes, column names and internal data are not
corrupted. Will raise an error if there is a problem.
:return: nothing | [
"Validate",
"the",
"integrity",
"of",
"the",
"DataFrame",
".",
"This",
"checks",
"that",
"the",
"indexes",
"column",
"names",
"and",
"internal",
"data",
"are",
"not",
"corrupted",
".",
"Will",
"raise",
"an",
"error",
"if",
"there",
"is",
"a",
"problem",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L1016-L1025 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.append | def append(self, data_frame):
"""
Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current
DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the
current indexes or will raise an error.
:param data_frame: DataFrame to append
:return: nothing
"""
if len(data_frame) == 0: # empty DataFrame, do nothing
return
data_frame_index = data_frame.index
combined_index = self._index + data_frame_index
if len(set(combined_index)) != len(combined_index):
raise ValueError('duplicate indexes in DataFrames')
for c, column in enumerate(data_frame.columns):
if PYTHON3:
self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c].copy())
else:
self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c][:]) | python | def append(self, data_frame):
"""
Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current
DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the
current indexes or will raise an error.
:param data_frame: DataFrame to append
:return: nothing
"""
if len(data_frame) == 0: # empty DataFrame, do nothing
return
data_frame_index = data_frame.index
combined_index = self._index + data_frame_index
if len(set(combined_index)) != len(combined_index):
raise ValueError('duplicate indexes in DataFrames')
for c, column in enumerate(data_frame.columns):
if PYTHON3:
self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c].copy())
else:
self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c][:]) | [
"def",
"append",
"(",
"self",
",",
"data_frame",
")",
":",
"if",
"len",
"(",
"data_frame",
")",
"==",
"0",
":",
"# empty DataFrame, do nothing",
"return",
"data_frame_index",
"=",
"data_frame",
".",
"index",
"combined_index",
"=",
"self",
".",
"_index",
"+",
"data_frame_index",
"if",
"len",
"(",
"set",
"(",
"combined_index",
")",
")",
"!=",
"len",
"(",
"combined_index",
")",
":",
"raise",
"ValueError",
"(",
"'duplicate indexes in DataFrames'",
")",
"for",
"c",
",",
"column",
"in",
"enumerate",
"(",
"data_frame",
".",
"columns",
")",
":",
"if",
"PYTHON3",
":",
"self",
".",
"set",
"(",
"indexes",
"=",
"data_frame_index",
",",
"columns",
"=",
"column",
",",
"values",
"=",
"data_frame",
".",
"data",
"[",
"c",
"]",
".",
"copy",
"(",
")",
")",
"else",
":",
"self",
".",
"set",
"(",
"indexes",
"=",
"data_frame_index",
",",
"columns",
"=",
"column",
",",
"values",
"=",
"data_frame",
".",
"data",
"[",
"c",
"]",
"[",
":",
"]",
")"
] | Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current
DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the
current indexes or will raise an error.
:param data_frame: DataFrame to append
:return: nothing | [
"Append",
"another",
"DataFrame",
"to",
"this",
"DataFrame",
".",
"If",
"the",
"new",
"data_frame",
"has",
"columns",
"that",
"are",
"not",
"in",
"the",
"current",
"DataFrame",
"then",
"new",
"columns",
"will",
"be",
"created",
".",
"All",
"of",
"the",
"indexes",
"in",
"the",
"data_frame",
"must",
"be",
"different",
"from",
"the",
"current",
"indexes",
"or",
"will",
"raise",
"an",
"error",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L1027-L1047 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.add | def add(self, left_column, right_column, indexes=None):
"""
Math helper method that adds element-wise two columns. If indexes are not None then will only perform the math
on that sub-set of the columns.
:param left_column: first column name
:param right_column: second column name
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:return: list
"""
left_list, right_list = self._get_lists(left_column, right_column, indexes)
return [l + r for l, r in zip(left_list, right_list)] | python | def add(self, left_column, right_column, indexes=None):
"""
Math helper method that adds element-wise two columns. If indexes are not None then will only perform the math
on that sub-set of the columns.
:param left_column: first column name
:param right_column: second column name
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:return: list
"""
left_list, right_list = self._get_lists(left_column, right_column, indexes)
return [l + r for l, r in zip(left_list, right_list)] | [
"def",
"add",
"(",
"self",
",",
"left_column",
",",
"right_column",
",",
"indexes",
"=",
"None",
")",
":",
"left_list",
",",
"right_list",
"=",
"self",
".",
"_get_lists",
"(",
"left_column",
",",
"right_column",
",",
"indexes",
")",
"return",
"[",
"l",
"+",
"r",
"for",
"l",
",",
"r",
"in",
"zip",
"(",
"left_list",
",",
"right_list",
")",
"]"
] | Math helper method that adds element-wise two columns. If indexes are not None then will only perform the math
on that sub-set of the columns.
:param left_column: first column name
:param right_column: second column name
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:return: list | [
"Math",
"helper",
"method",
"that",
"adds",
"element",
"-",
"wise",
"two",
"columns",
".",
"If",
"indexes",
"are",
"not",
"None",
"then",
"will",
"only",
"perform",
"the",
"math",
"on",
"that",
"sub",
"-",
"set",
"of",
"the",
"columns",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L1070-L1082 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.isin | def isin(self, column, compare_list):
"""
Returns a boolean list where each elements is whether that element in the column is in the compare_list.
:param column: single column name, does not work for multiple columns
:param compare_list: list of items to compare to
:return: list of booleans
"""
return [x in compare_list for x in self._data[self._columns.index(column)]] | python | def isin(self, column, compare_list):
"""
Returns a boolean list where each elements is whether that element in the column is in the compare_list.
:param column: single column name, does not work for multiple columns
:param compare_list: list of items to compare to
:return: list of booleans
"""
return [x in compare_list for x in self._data[self._columns.index(column)]] | [
"def",
"isin",
"(",
"self",
",",
"column",
",",
"compare_list",
")",
":",
"return",
"[",
"x",
"in",
"compare_list",
"for",
"x",
"in",
"self",
".",
"_data",
"[",
"self",
".",
"_columns",
".",
"index",
"(",
"column",
")",
"]",
"]"
] | Returns a boolean list where each elements is whether that element in the column is in the compare_list.
:param column: single column name, does not work for multiple columns
:param compare_list: list of items to compare to
:return: list of booleans | [
"Returns",
"a",
"boolean",
"list",
"where",
"each",
"elements",
"is",
"whether",
"that",
"element",
"in",
"the",
"column",
"is",
"in",
"the",
"compare_list",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L1126-L1134 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.iterrows | def iterrows(self, index=True):
"""
Iterates over DataFrame rows as dictionary of the values. The index will be included.
:param index: if True include the index in the results
:return: dictionary
"""
for i in range(len(self._index)):
row = {self._index_name: self._index[i]} if index else dict()
for c, col in enumerate(self._columns):
row[col] = self._data[c][i]
yield row | python | def iterrows(self, index=True):
"""
Iterates over DataFrame rows as dictionary of the values. The index will be included.
:param index: if True include the index in the results
:return: dictionary
"""
for i in range(len(self._index)):
row = {self._index_name: self._index[i]} if index else dict()
for c, col in enumerate(self._columns):
row[col] = self._data[c][i]
yield row | [
"def",
"iterrows",
"(",
"self",
",",
"index",
"=",
"True",
")",
":",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"_index",
")",
")",
":",
"row",
"=",
"{",
"self",
".",
"_index_name",
":",
"self",
".",
"_index",
"[",
"i",
"]",
"}",
"if",
"index",
"else",
"dict",
"(",
")",
"for",
"c",
",",
"col",
"in",
"enumerate",
"(",
"self",
".",
"_columns",
")",
":",
"row",
"[",
"col",
"]",
"=",
"self",
".",
"_data",
"[",
"c",
"]",
"[",
"i",
"]",
"yield",
"row"
] | Iterates over DataFrame rows as dictionary of the values. The index will be included.
:param index: if True include the index in the results
:return: dictionary | [
"Iterates",
"over",
"DataFrame",
"rows",
"as",
"dictionary",
"of",
"the",
"values",
".",
"The",
"index",
"will",
"be",
"included",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L1136-L1147 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.itertuples | def itertuples(self, index=True, name='Raccoon'):
"""
Iterates over DataFrame rows as tuple of the values.
:param index: if True then include the index
:param name: name of the namedtuple
:return: namedtuple
"""
fields = [self._index_name] if index else list()
fields.extend(self._columns)
row_tuple = namedtuple(name, fields)
for i in range(len(self._index)):
row = {self._index_name: self._index[i]} if index else dict()
for c, col in enumerate(self._columns):
row[col] = self._data[c][i]
yield row_tuple(**row) | python | def itertuples(self, index=True, name='Raccoon'):
"""
Iterates over DataFrame rows as tuple of the values.
:param index: if True then include the index
:param name: name of the namedtuple
:return: namedtuple
"""
fields = [self._index_name] if index else list()
fields.extend(self._columns)
row_tuple = namedtuple(name, fields)
for i in range(len(self._index)):
row = {self._index_name: self._index[i]} if index else dict()
for c, col in enumerate(self._columns):
row[col] = self._data[c][i]
yield row_tuple(**row) | [
"def",
"itertuples",
"(",
"self",
",",
"index",
"=",
"True",
",",
"name",
"=",
"'Raccoon'",
")",
":",
"fields",
"=",
"[",
"self",
".",
"_index_name",
"]",
"if",
"index",
"else",
"list",
"(",
")",
"fields",
".",
"extend",
"(",
"self",
".",
"_columns",
")",
"row_tuple",
"=",
"namedtuple",
"(",
"name",
",",
"fields",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"_index",
")",
")",
":",
"row",
"=",
"{",
"self",
".",
"_index_name",
":",
"self",
".",
"_index",
"[",
"i",
"]",
"}",
"if",
"index",
"else",
"dict",
"(",
")",
"for",
"c",
",",
"col",
"in",
"enumerate",
"(",
"self",
".",
"_columns",
")",
":",
"row",
"[",
"col",
"]",
"=",
"self",
".",
"_data",
"[",
"c",
"]",
"[",
"i",
"]",
"yield",
"row_tuple",
"(",
"*",
"*",
"row",
")"
] | Iterates over DataFrame rows as tuple of the values.
:param index: if True then include the index
:param name: name of the namedtuple
:return: namedtuple | [
"Iterates",
"over",
"DataFrame",
"rows",
"as",
"tuple",
"of",
"the",
"values",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L1149-L1164 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.reset_index | def reset_index(self, drop=False):
"""
Resets the index of the DataFrame to simple integer list and the index name to 'index'. If drop is True then
the existing index is dropped, if drop is False then the current index is made a column in the DataFrame with
the index name the name of the column. If the index is a tuple multi-index then each element of the tuple is
converted into a separate column. If the index name was 'index' then the column name will be 'index_0' to not
conflict on print().
:param drop: if True then the current index is dropped, if False then index converted to columns
:return: nothing
"""
if not drop:
if isinstance(self.index_name, tuple):
index_data = list(map(list, zip(*self._index)))
for i in range(len(self.index_name)):
self.set_column(column=self.index_name[i], values=index_data[i])
else:
col_name = self.index_name if self.index_name is not 'index' else 'index_0'
self.set_column(column=col_name, values=self._index)
self.index = list(range(self.__len__()))
self.index_name = 'index' | python | def reset_index(self, drop=False):
"""
Resets the index of the DataFrame to simple integer list and the index name to 'index'. If drop is True then
the existing index is dropped, if drop is False then the current index is made a column in the DataFrame with
the index name the name of the column. If the index is a tuple multi-index then each element of the tuple is
converted into a separate column. If the index name was 'index' then the column name will be 'index_0' to not
conflict on print().
:param drop: if True then the current index is dropped, if False then index converted to columns
:return: nothing
"""
if not drop:
if isinstance(self.index_name, tuple):
index_data = list(map(list, zip(*self._index)))
for i in range(len(self.index_name)):
self.set_column(column=self.index_name[i], values=index_data[i])
else:
col_name = self.index_name if self.index_name is not 'index' else 'index_0'
self.set_column(column=col_name, values=self._index)
self.index = list(range(self.__len__()))
self.index_name = 'index' | [
"def",
"reset_index",
"(",
"self",
",",
"drop",
"=",
"False",
")",
":",
"if",
"not",
"drop",
":",
"if",
"isinstance",
"(",
"self",
".",
"index_name",
",",
"tuple",
")",
":",
"index_data",
"=",
"list",
"(",
"map",
"(",
"list",
",",
"zip",
"(",
"*",
"self",
".",
"_index",
")",
")",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"index_name",
")",
")",
":",
"self",
".",
"set_column",
"(",
"column",
"=",
"self",
".",
"index_name",
"[",
"i",
"]",
",",
"values",
"=",
"index_data",
"[",
"i",
"]",
")",
"else",
":",
"col_name",
"=",
"self",
".",
"index_name",
"if",
"self",
".",
"index_name",
"is",
"not",
"'index'",
"else",
"'index_0'",
"self",
".",
"set_column",
"(",
"column",
"=",
"col_name",
",",
"values",
"=",
"self",
".",
"_index",
")",
"self",
".",
"index",
"=",
"list",
"(",
"range",
"(",
"self",
".",
"__len__",
"(",
")",
")",
")",
"self",
".",
"index_name",
"=",
"'index'"
] | Resets the index of the DataFrame to simple integer list and the index name to 'index'. If drop is True then
the existing index is dropped, if drop is False then the current index is made a column in the DataFrame with
the index name the name of the column. If the index is a tuple multi-index then each element of the tuple is
converted into a separate column. If the index name was 'index' then the column name will be 'index_0' to not
conflict on print().
:param drop: if True then the current index is dropped, if False then index converted to columns
:return: nothing | [
"Resets",
"the",
"index",
"of",
"the",
"DataFrame",
"to",
"simple",
"integer",
"list",
"and",
"the",
"index",
"name",
"to",
"index",
".",
"If",
"drop",
"is",
"True",
"then",
"the",
"existing",
"index",
"is",
"dropped",
"if",
"drop",
"is",
"False",
"then",
"the",
"current",
"index",
"is",
"made",
"a",
"column",
"in",
"the",
"DataFrame",
"with",
"the",
"index",
"name",
"the",
"name",
"of",
"the",
"column",
".",
"If",
"the",
"index",
"is",
"a",
"tuple",
"multi",
"-",
"index",
"then",
"each",
"element",
"of",
"the",
"tuple",
"is",
"converted",
"into",
"a",
"separate",
"column",
".",
"If",
"the",
"index",
"name",
"was",
"index",
"then",
"the",
"column",
"name",
"will",
"be",
"index_0",
"to",
"not",
"conflict",
"on",
"print",
"()",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L1166-L1186 |
rsheftel/raccoon | raccoon/dataframe.py | DataFrame.from_json | def from_json(cls, json_string):
"""
Creates and return a DataFrame from a JSON of the type created by to_json
:param json_string: JSON
:return: DataFrame
"""
input_dict = json.loads(json_string)
# convert index to tuple if required
if input_dict['index'] and isinstance(input_dict['index'][0], list):
input_dict['index'] = [tuple(x) for x in input_dict['index']]
# convert index_name to tuple if required
if isinstance(input_dict['meta_data']['index_name'], list):
input_dict['meta_data']['index_name'] = tuple(input_dict['meta_data']['index_name'])
data = input_dict['data'] if input_dict['data'] else None
return cls(data=data, index=input_dict['index'], **input_dict['meta_data']) | python | def from_json(cls, json_string):
"""
Creates and return a DataFrame from a JSON of the type created by to_json
:param json_string: JSON
:return: DataFrame
"""
input_dict = json.loads(json_string)
# convert index to tuple if required
if input_dict['index'] and isinstance(input_dict['index'][0], list):
input_dict['index'] = [tuple(x) for x in input_dict['index']]
# convert index_name to tuple if required
if isinstance(input_dict['meta_data']['index_name'], list):
input_dict['meta_data']['index_name'] = tuple(input_dict['meta_data']['index_name'])
data = input_dict['data'] if input_dict['data'] else None
return cls(data=data, index=input_dict['index'], **input_dict['meta_data']) | [
"def",
"from_json",
"(",
"cls",
",",
"json_string",
")",
":",
"input_dict",
"=",
"json",
".",
"loads",
"(",
"json_string",
")",
"# convert index to tuple if required",
"if",
"input_dict",
"[",
"'index'",
"]",
"and",
"isinstance",
"(",
"input_dict",
"[",
"'index'",
"]",
"[",
"0",
"]",
",",
"list",
")",
":",
"input_dict",
"[",
"'index'",
"]",
"=",
"[",
"tuple",
"(",
"x",
")",
"for",
"x",
"in",
"input_dict",
"[",
"'index'",
"]",
"]",
"# convert index_name to tuple if required",
"if",
"isinstance",
"(",
"input_dict",
"[",
"'meta_data'",
"]",
"[",
"'index_name'",
"]",
",",
"list",
")",
":",
"input_dict",
"[",
"'meta_data'",
"]",
"[",
"'index_name'",
"]",
"=",
"tuple",
"(",
"input_dict",
"[",
"'meta_data'",
"]",
"[",
"'index_name'",
"]",
")",
"data",
"=",
"input_dict",
"[",
"'data'",
"]",
"if",
"input_dict",
"[",
"'data'",
"]",
"else",
"None",
"return",
"cls",
"(",
"data",
"=",
"data",
",",
"index",
"=",
"input_dict",
"[",
"'index'",
"]",
",",
"*",
"*",
"input_dict",
"[",
"'meta_data'",
"]",
")"
] | Creates and return a DataFrame from a JSON of the type created by to_json
:param json_string: JSON
:return: DataFrame | [
"Creates",
"and",
"return",
"a",
"DataFrame",
"from",
"a",
"JSON",
"of",
"the",
"type",
"created",
"by",
"to_json"
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/dataframe.py#L1190-L1205 |
vmlaker/mpipe | src/FilterWorker.py | FilterWorker.doTask | def doTask(self, task):
"""Filter input *task* to pipelines -- make sure each one has no more
than *max_tasks* tasks in it. Return a tuple
(*task*, *results*)
where *task* is the given task, and *results* is
a list of latest retrieved results from pipelines."""
# If we're not caching, then clear the table of last results.
if not self._cache_results:
self._last_results = dict()
# Iterate the list of pipelines, draining each one of any results.
# For pipelines whose current stream has less than *max_tasks* tasks
# remaining, feed them the current task.
for pipe in self._pipelines:
count = self._task_counts[pipe]
# Let's attempt to drain all (if any) results from the pipeline.
valid = True
last_result = None
while count and valid:
valid, result = pipe.get(sys.float_info.min)
if valid:
last_result = result
count -= 1
# Unless we're dropping results, save the last result (if any).
if not self._drop_results:
if last_result is not None:
self._last_results[pipe] = last_result
# If there is room for the task, or if it is a "stop" request,
# put it on the pipeline.
if count <= self._max_tasks-1 or task is None:
pipe.put(task)
count += 1
# Update the task count for the pipeline.
self._task_counts[pipe] = count
# If we're only propagating the task, do so now.
if self._drop_results:
return task
# Otherwise, also propagate the assembly of pipeline results.
all_results = [res for res in self._last_results.values()]
return task, all_results | python | def doTask(self, task):
"""Filter input *task* to pipelines -- make sure each one has no more
than *max_tasks* tasks in it. Return a tuple
(*task*, *results*)
where *task* is the given task, and *results* is
a list of latest retrieved results from pipelines."""
# If we're not caching, then clear the table of last results.
if not self._cache_results:
self._last_results = dict()
# Iterate the list of pipelines, draining each one of any results.
# For pipelines whose current stream has less than *max_tasks* tasks
# remaining, feed them the current task.
for pipe in self._pipelines:
count = self._task_counts[pipe]
# Let's attempt to drain all (if any) results from the pipeline.
valid = True
last_result = None
while count and valid:
valid, result = pipe.get(sys.float_info.min)
if valid:
last_result = result
count -= 1
# Unless we're dropping results, save the last result (if any).
if not self._drop_results:
if last_result is not None:
self._last_results[pipe] = last_result
# If there is room for the task, or if it is a "stop" request,
# put it on the pipeline.
if count <= self._max_tasks-1 or task is None:
pipe.put(task)
count += 1
# Update the task count for the pipeline.
self._task_counts[pipe] = count
# If we're only propagating the task, do so now.
if self._drop_results:
return task
# Otherwise, also propagate the assembly of pipeline results.
all_results = [res for res in self._last_results.values()]
return task, all_results | [
"def",
"doTask",
"(",
"self",
",",
"task",
")",
":",
"# If we're not caching, then clear the table of last results.",
"if",
"not",
"self",
".",
"_cache_results",
":",
"self",
".",
"_last_results",
"=",
"dict",
"(",
")",
"# Iterate the list of pipelines, draining each one of any results.",
"# For pipelines whose current stream has less than *max_tasks* tasks ",
"# remaining, feed them the current task.",
"for",
"pipe",
"in",
"self",
".",
"_pipelines",
":",
"count",
"=",
"self",
".",
"_task_counts",
"[",
"pipe",
"]",
"# Let's attempt to drain all (if any) results from the pipeline.",
"valid",
"=",
"True",
"last_result",
"=",
"None",
"while",
"count",
"and",
"valid",
":",
"valid",
",",
"result",
"=",
"pipe",
".",
"get",
"(",
"sys",
".",
"float_info",
".",
"min",
")",
"if",
"valid",
":",
"last_result",
"=",
"result",
"count",
"-=",
"1",
"# Unless we're dropping results, save the last result (if any).",
"if",
"not",
"self",
".",
"_drop_results",
":",
"if",
"last_result",
"is",
"not",
"None",
":",
"self",
".",
"_last_results",
"[",
"pipe",
"]",
"=",
"last_result",
"# If there is room for the task, or if it is a \"stop\" request,",
"# put it on the pipeline.",
"if",
"count",
"<=",
"self",
".",
"_max_tasks",
"-",
"1",
"or",
"task",
"is",
"None",
":",
"pipe",
".",
"put",
"(",
"task",
")",
"count",
"+=",
"1",
"# Update the task count for the pipeline.",
"self",
".",
"_task_counts",
"[",
"pipe",
"]",
"=",
"count",
"# If we're only propagating the task, do so now.",
"if",
"self",
".",
"_drop_results",
":",
"return",
"task",
"# Otherwise, also propagate the assembly of pipeline results.",
"all_results",
"=",
"[",
"res",
"for",
"res",
"in",
"self",
".",
"_last_results",
".",
"values",
"(",
")",
"]",
"return",
"task",
",",
"all_results"
] | Filter input *task* to pipelines -- make sure each one has no more
than *max_tasks* tasks in it. Return a tuple
(*task*, *results*)
where *task* is the given task, and *results* is
a list of latest retrieved results from pipelines. | [
"Filter",
"input",
"*",
"task",
"*",
"to",
"pipelines",
"--",
"make",
"sure",
"each",
"one",
"has",
"no",
"more",
"than",
"*",
"max_tasks",
"*",
"tasks",
"in",
"it",
".",
"Return",
"a",
"tuple",
"(",
"*",
"task",
"*",
"*",
"results",
"*",
")",
"where",
"*",
"task",
"*",
"is",
"the",
"given",
"task",
"and",
"*",
"results",
"*",
"is",
"a",
"list",
"of",
"latest",
"retrieved",
"results",
"from",
"pipelines",
"."
] | train | https://github.com/vmlaker/mpipe/blob/5a1804cf64271931f0cd3e4fff3e2b38291212dd/src/FilterWorker.py#L47-L94 |
rsheftel/raccoon | raccoon/utils.py | assert_frame_equal | def assert_frame_equal(left, right, data_function=None, data_args=None):
"""
For unit testing equality of two DataFrames.
:param left: first DataFrame
:param right: second DataFrame
:param data_function: if provided will use this function to assert compare the df.data
:param data_args: arguments to pass to the data_function
:return: nothing
"""
if data_function:
data_args = {} if not data_args else data_args
data_function(left.data, right.data, **data_args)
else:
assert left.data == right.data
assert left.index == right.index
assert left.columns == right.columns
assert left.index_name == right.index_name
assert left.sort == right.sort
assert left.blist == right.blist | python | def assert_frame_equal(left, right, data_function=None, data_args=None):
"""
For unit testing equality of two DataFrames.
:param left: first DataFrame
:param right: second DataFrame
:param data_function: if provided will use this function to assert compare the df.data
:param data_args: arguments to pass to the data_function
:return: nothing
"""
if data_function:
data_args = {} if not data_args else data_args
data_function(left.data, right.data, **data_args)
else:
assert left.data == right.data
assert left.index == right.index
assert left.columns == right.columns
assert left.index_name == right.index_name
assert left.sort == right.sort
assert left.blist == right.blist | [
"def",
"assert_frame_equal",
"(",
"left",
",",
"right",
",",
"data_function",
"=",
"None",
",",
"data_args",
"=",
"None",
")",
":",
"if",
"data_function",
":",
"data_args",
"=",
"{",
"}",
"if",
"not",
"data_args",
"else",
"data_args",
"data_function",
"(",
"left",
".",
"data",
",",
"right",
".",
"data",
",",
"*",
"*",
"data_args",
")",
"else",
":",
"assert",
"left",
".",
"data",
"==",
"right",
".",
"data",
"assert",
"left",
".",
"index",
"==",
"right",
".",
"index",
"assert",
"left",
".",
"columns",
"==",
"right",
".",
"columns",
"assert",
"left",
".",
"index_name",
"==",
"right",
".",
"index_name",
"assert",
"left",
".",
"sort",
"==",
"right",
".",
"sort",
"assert",
"left",
".",
"blist",
"==",
"right",
".",
"blist"
] | For unit testing equality of two DataFrames.
:param left: first DataFrame
:param right: second DataFrame
:param data_function: if provided will use this function to assert compare the df.data
:param data_args: arguments to pass to the data_function
:return: nothing | [
"For",
"unit",
"testing",
"equality",
"of",
"two",
"DataFrames",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/utils.py#L8-L27 |
rsheftel/raccoon | raccoon/utils.py | assert_series_equal | def assert_series_equal(left, right, data_function=None, data_args=None):
"""
For unit testing equality of two Series.
:param left: first Series
:param right: second Series
:param data_function: if provided will use this function to assert compare the df.data
:param data_args: arguments to pass to the data_function
:return: nothing
"""
assert type(left) == type(right)
if data_function:
data_args = {} if not data_args else data_args
data_function(left.data, right.data, **data_args)
else:
assert left.data == right.data
assert left.index == right.index
assert left.data_name == right.data_name
assert left.index_name == right.index_name
assert left.sort == right.sort
if isinstance(left, rc.ViewSeries):
assert left.offset == right.offset
if isinstance(left, rc.Series):
assert left.blist == right.blist | python | def assert_series_equal(left, right, data_function=None, data_args=None):
"""
For unit testing equality of two Series.
:param left: first Series
:param right: second Series
:param data_function: if provided will use this function to assert compare the df.data
:param data_args: arguments to pass to the data_function
:return: nothing
"""
assert type(left) == type(right)
if data_function:
data_args = {} if not data_args else data_args
data_function(left.data, right.data, **data_args)
else:
assert left.data == right.data
assert left.index == right.index
assert left.data_name == right.data_name
assert left.index_name == right.index_name
assert left.sort == right.sort
if isinstance(left, rc.ViewSeries):
assert left.offset == right.offset
if isinstance(left, rc.Series):
assert left.blist == right.blist | [
"def",
"assert_series_equal",
"(",
"left",
",",
"right",
",",
"data_function",
"=",
"None",
",",
"data_args",
"=",
"None",
")",
":",
"assert",
"type",
"(",
"left",
")",
"==",
"type",
"(",
"right",
")",
"if",
"data_function",
":",
"data_args",
"=",
"{",
"}",
"if",
"not",
"data_args",
"else",
"data_args",
"data_function",
"(",
"left",
".",
"data",
",",
"right",
".",
"data",
",",
"*",
"*",
"data_args",
")",
"else",
":",
"assert",
"left",
".",
"data",
"==",
"right",
".",
"data",
"assert",
"left",
".",
"index",
"==",
"right",
".",
"index",
"assert",
"left",
".",
"data_name",
"==",
"right",
".",
"data_name",
"assert",
"left",
".",
"index_name",
"==",
"right",
".",
"index_name",
"assert",
"left",
".",
"sort",
"==",
"right",
".",
"sort",
"if",
"isinstance",
"(",
"left",
",",
"rc",
".",
"ViewSeries",
")",
":",
"assert",
"left",
".",
"offset",
"==",
"right",
".",
"offset",
"if",
"isinstance",
"(",
"left",
",",
"rc",
".",
"Series",
")",
":",
"assert",
"left",
".",
"blist",
"==",
"right",
".",
"blist"
] | For unit testing equality of two Series.
:param left: first Series
:param right: second Series
:param data_function: if provided will use this function to assert compare the df.data
:param data_args: arguments to pass to the data_function
:return: nothing | [
"For",
"unit",
"testing",
"equality",
"of",
"two",
"Series",
"."
] | train | https://github.com/rsheftel/raccoon/blob/e5c4b5fb933b51f33aff11e8168c39790e9a7c75/raccoon/utils.py#L30-L53 |
vmlaker/mpipe | src/Pipeline.py | Pipeline.get | def get(self, timeout=None):
"""Return result from the pipeline."""
result = None
for stage in self._output_stages:
result = stage.get(timeout)
return result | python | def get(self, timeout=None):
"""Return result from the pipeline."""
result = None
for stage in self._output_stages:
result = stage.get(timeout)
return result | [
"def",
"get",
"(",
"self",
",",
"timeout",
"=",
"None",
")",
":",
"result",
"=",
"None",
"for",
"stage",
"in",
"self",
".",
"_output_stages",
":",
"result",
"=",
"stage",
".",
"get",
"(",
"timeout",
")",
"return",
"result"
] | Return result from the pipeline. | [
"Return",
"result",
"from",
"the",
"pipeline",
"."
] | train | https://github.com/vmlaker/mpipe/blob/5a1804cf64271931f0cd3e4fff3e2b38291212dd/src/Pipeline.py#L15-L20 |
brenns10/tswift | tswift.py | main | def main():
"""
Run the CLI.
"""
parser = argparse.ArgumentParser(
description='Search artists, lyrics, and songs!'
)
parser.add_argument(
'artist',
help='Specify an artist name (Default: Taylor Swift)',
default='Taylor Swift',
nargs='?',
)
parser.add_argument(
'-s', '--song',
help='Given artist name, specify a song name',
required=False,
)
parser.add_argument(
'-l', '--lyrics',
help='Search for song by lyrics',
required=False,
)
args = parser.parse_args()
if args.lyrics:
song = Song.find_song(args.lyrics)
else:
if args.song:
song = Song(
title=args.song,
artist=args.artist,
)
else:
artist = Artist(args.artist)
if artist.songs:
song = random.choice(artist.songs)
else:
print('Couldn\'t find any songs by artist {}!'
.format(args.artist))
sys.exit(1)
print(song.format()) | python | def main():
"""
Run the CLI.
"""
parser = argparse.ArgumentParser(
description='Search artists, lyrics, and songs!'
)
parser.add_argument(
'artist',
help='Specify an artist name (Default: Taylor Swift)',
default='Taylor Swift',
nargs='?',
)
parser.add_argument(
'-s', '--song',
help='Given artist name, specify a song name',
required=False,
)
parser.add_argument(
'-l', '--lyrics',
help='Search for song by lyrics',
required=False,
)
args = parser.parse_args()
if args.lyrics:
song = Song.find_song(args.lyrics)
else:
if args.song:
song = Song(
title=args.song,
artist=args.artist,
)
else:
artist = Artist(args.artist)
if artist.songs:
song = random.choice(artist.songs)
else:
print('Couldn\'t find any songs by artist {}!'
.format(args.artist))
sys.exit(1)
print(song.format()) | [
"def",
"main",
"(",
")",
":",
"parser",
"=",
"argparse",
".",
"ArgumentParser",
"(",
"description",
"=",
"'Search artists, lyrics, and songs!'",
")",
"parser",
".",
"add_argument",
"(",
"'artist'",
",",
"help",
"=",
"'Specify an artist name (Default: Taylor Swift)'",
",",
"default",
"=",
"'Taylor Swift'",
",",
"nargs",
"=",
"'?'",
",",
")",
"parser",
".",
"add_argument",
"(",
"'-s'",
",",
"'--song'",
",",
"help",
"=",
"'Given artist name, specify a song name'",
",",
"required",
"=",
"False",
",",
")",
"parser",
".",
"add_argument",
"(",
"'-l'",
",",
"'--lyrics'",
",",
"help",
"=",
"'Search for song by lyrics'",
",",
"required",
"=",
"False",
",",
")",
"args",
"=",
"parser",
".",
"parse_args",
"(",
")",
"if",
"args",
".",
"lyrics",
":",
"song",
"=",
"Song",
".",
"find_song",
"(",
"args",
".",
"lyrics",
")",
"else",
":",
"if",
"args",
".",
"song",
":",
"song",
"=",
"Song",
"(",
"title",
"=",
"args",
".",
"song",
",",
"artist",
"=",
"args",
".",
"artist",
",",
")",
"else",
":",
"artist",
"=",
"Artist",
"(",
"args",
".",
"artist",
")",
"if",
"artist",
".",
"songs",
":",
"song",
"=",
"random",
".",
"choice",
"(",
"artist",
".",
"songs",
")",
"else",
":",
"print",
"(",
"'Couldn\\'t find any songs by artist {}!'",
".",
"format",
"(",
"args",
".",
"artist",
")",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"print",
"(",
"song",
".",
"format",
"(",
")",
")"
] | Run the CLI. | [
"Run",
"the",
"CLI",
"."
] | train | https://github.com/brenns10/tswift/blob/f4a8f3127e088d6b3a9669496f107c2704f4d1a3/tswift.py#L156-L198 |
brenns10/tswift | tswift.py | Song.load | def load(self):
"""Load the lyrics from MetroLyrics."""
page = requests.get(self._url)
# Forces utf-8 to prevent character mangling
page.encoding = 'utf-8'
tree = html.fromstring(page.text)
lyric_div = tree.get_element_by_id('lyrics-body-text')
verses = [c.text_content() for c in lyric_div.find_class('verse')]
self._lyrics = '\n\n'.join(verses)
return self | python | def load(self):
"""Load the lyrics from MetroLyrics."""
page = requests.get(self._url)
# Forces utf-8 to prevent character mangling
page.encoding = 'utf-8'
tree = html.fromstring(page.text)
lyric_div = tree.get_element_by_id('lyrics-body-text')
verses = [c.text_content() for c in lyric_div.find_class('verse')]
self._lyrics = '\n\n'.join(verses)
return self | [
"def",
"load",
"(",
"self",
")",
":",
"page",
"=",
"requests",
".",
"get",
"(",
"self",
".",
"_url",
")",
"# Forces utf-8 to prevent character mangling",
"page",
".",
"encoding",
"=",
"'utf-8'",
"tree",
"=",
"html",
".",
"fromstring",
"(",
"page",
".",
"text",
")",
"lyric_div",
"=",
"tree",
".",
"get_element_by_id",
"(",
"'lyrics-body-text'",
")",
"verses",
"=",
"[",
"c",
".",
"text_content",
"(",
")",
"for",
"c",
"in",
"lyric_div",
".",
"find_class",
"(",
"'verse'",
")",
"]",
"self",
".",
"_lyrics",
"=",
"'\\n\\n'",
".",
"join",
"(",
"verses",
")",
"return",
"self"
] | Load the lyrics from MetroLyrics. | [
"Load",
"the",
"lyrics",
"from",
"MetroLyrics",
"."
] | train | https://github.com/brenns10/tswift/blob/f4a8f3127e088d6b3a9669496f107c2704f4d1a3/tswift.py#L61-L71 |
brenns10/tswift | tswift.py | Artist.load | def load(self, verbose=False):
"""
Load the list of songs.
Note that this only loads a list of songs that this artist was the main
artist of. If they were only featured in the song, that song won't be
listed here. There is a list on the artist page for that, I just
haven't added any parsing code for that, since I don't need it.
"""
self._songs = []
page_num = 1
total_pages = 1
while page_num <= total_pages:
if verbose:
print('retrieving page %d' % page_num)
page = requests.get(ARTIST_URL.format(artist=self.name,
n=page_num))
tree = html.fromstring(page.text)
song_rows_xp = r'//*[@id="popular"]/div/table/tbody/tr'
songlist_pagination_xp = r'//*[@id="main-content"]/div[1]/'\
'div[2]/p/span/a'
rows = tree.xpath(song_rows_xp)
for row in rows:
song_link = row.xpath(r'./td/a[contains(@class,"title")]')
assert len(song_link) == 1
self._songs.append(Song(url=song_link[0].attrib['href']))
total_pages = len(tree.xpath(songlist_pagination_xp))
page_num += 1
return self | python | def load(self, verbose=False):
"""
Load the list of songs.
Note that this only loads a list of songs that this artist was the main
artist of. If they were only featured in the song, that song won't be
listed here. There is a list on the artist page for that, I just
haven't added any parsing code for that, since I don't need it.
"""
self._songs = []
page_num = 1
total_pages = 1
while page_num <= total_pages:
if verbose:
print('retrieving page %d' % page_num)
page = requests.get(ARTIST_URL.format(artist=self.name,
n=page_num))
tree = html.fromstring(page.text)
song_rows_xp = r'//*[@id="popular"]/div/table/tbody/tr'
songlist_pagination_xp = r'//*[@id="main-content"]/div[1]/'\
'div[2]/p/span/a'
rows = tree.xpath(song_rows_xp)
for row in rows:
song_link = row.xpath(r'./td/a[contains(@class,"title")]')
assert len(song_link) == 1
self._songs.append(Song(url=song_link[0].attrib['href']))
total_pages = len(tree.xpath(songlist_pagination_xp))
page_num += 1
return self | [
"def",
"load",
"(",
"self",
",",
"verbose",
"=",
"False",
")",
":",
"self",
".",
"_songs",
"=",
"[",
"]",
"page_num",
"=",
"1",
"total_pages",
"=",
"1",
"while",
"page_num",
"<=",
"total_pages",
":",
"if",
"verbose",
":",
"print",
"(",
"'retrieving page %d'",
"%",
"page_num",
")",
"page",
"=",
"requests",
".",
"get",
"(",
"ARTIST_URL",
".",
"format",
"(",
"artist",
"=",
"self",
".",
"name",
",",
"n",
"=",
"page_num",
")",
")",
"tree",
"=",
"html",
".",
"fromstring",
"(",
"page",
".",
"text",
")",
"song_rows_xp",
"=",
"r'//*[@id=\"popular\"]/div/table/tbody/tr'",
"songlist_pagination_xp",
"=",
"r'//*[@id=\"main-content\"]/div[1]/'",
"'div[2]/p/span/a'",
"rows",
"=",
"tree",
".",
"xpath",
"(",
"song_rows_xp",
")",
"for",
"row",
"in",
"rows",
":",
"song_link",
"=",
"row",
".",
"xpath",
"(",
"r'./td/a[contains(@class,\"title\")]'",
")",
"assert",
"len",
"(",
"song_link",
")",
"==",
"1",
"self",
".",
"_songs",
".",
"append",
"(",
"Song",
"(",
"url",
"=",
"song_link",
"[",
"0",
"]",
".",
"attrib",
"[",
"'href'",
"]",
")",
")",
"total_pages",
"=",
"len",
"(",
"tree",
".",
"xpath",
"(",
"songlist_pagination_xp",
")",
")",
"page_num",
"+=",
"1",
"return",
"self"
] | Load the list of songs.
Note that this only loads a list of songs that this artist was the main
artist of. If they were only featured in the song, that song won't be
listed here. There is a list on the artist page for that, I just
haven't added any parsing code for that, since I don't need it. | [
"Load",
"the",
"list",
"of",
"songs",
"."
] | train | https://github.com/brenns10/tswift/blob/f4a8f3127e088d6b3a9669496f107c2704f4d1a3/tswift.py#L113-L144 |
jwass/geog | geog/geog.py | distance | def distance(p0, p1, deg=True, r=r_earth_mean):
"""
Return the distance between two points on the surface of the Earth.
Parameters
----------
p0 : point-like (or array of point-like) [longitude, latitude] objects
p1 : point-like (or array of point-like) [longitude, latitude] objects
deg : bool, optional (default True)
indicates if p0 and p1 are specified in degrees
r : float, optional (default r_earth_mean)
radius of the sphere
Returns
-------
d : float
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Distance
Note: Spherical earth model. By default uses radius of 6371.0 km.
"""
single, (p0, p1) = _to_arrays((p0, 2), (p1, 2))
if deg:
p0 = np.radians(p0)
p1 = np.radians(p1)
lon0, lat0 = p0[:,0], p0[:,1]
lon1, lat1 = p1[:,0], p1[:,1]
# h_x used to denote haversine(x): sin^2(x / 2)
h_dlat = sin((lat1 - lat0) / 2.0) ** 2
h_dlon = sin((lon1 - lon0) / 2.0) ** 2
h_angle = h_dlat + cos(lat0) * cos(lat1) * h_dlon
angle = 2.0 * arcsin(sqrt(h_angle))
d = r * angle
if single:
d = d[0]
return d | python | def distance(p0, p1, deg=True, r=r_earth_mean):
"""
Return the distance between two points on the surface of the Earth.
Parameters
----------
p0 : point-like (or array of point-like) [longitude, latitude] objects
p1 : point-like (or array of point-like) [longitude, latitude] objects
deg : bool, optional (default True)
indicates if p0 and p1 are specified in degrees
r : float, optional (default r_earth_mean)
radius of the sphere
Returns
-------
d : float
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Distance
Note: Spherical earth model. By default uses radius of 6371.0 km.
"""
single, (p0, p1) = _to_arrays((p0, 2), (p1, 2))
if deg:
p0 = np.radians(p0)
p1 = np.radians(p1)
lon0, lat0 = p0[:,0], p0[:,1]
lon1, lat1 = p1[:,0], p1[:,1]
# h_x used to denote haversine(x): sin^2(x / 2)
h_dlat = sin((lat1 - lat0) / 2.0) ** 2
h_dlon = sin((lon1 - lon0) / 2.0) ** 2
h_angle = h_dlat + cos(lat0) * cos(lat1) * h_dlon
angle = 2.0 * arcsin(sqrt(h_angle))
d = r * angle
if single:
d = d[0]
return d | [
"def",
"distance",
"(",
"p0",
",",
"p1",
",",
"deg",
"=",
"True",
",",
"r",
"=",
"r_earth_mean",
")",
":",
"single",
",",
"(",
"p0",
",",
"p1",
")",
"=",
"_to_arrays",
"(",
"(",
"p0",
",",
"2",
")",
",",
"(",
"p1",
",",
"2",
")",
")",
"if",
"deg",
":",
"p0",
"=",
"np",
".",
"radians",
"(",
"p0",
")",
"p1",
"=",
"np",
".",
"radians",
"(",
"p1",
")",
"lon0",
",",
"lat0",
"=",
"p0",
"[",
":",
",",
"0",
"]",
",",
"p0",
"[",
":",
",",
"1",
"]",
"lon1",
",",
"lat1",
"=",
"p1",
"[",
":",
",",
"0",
"]",
",",
"p1",
"[",
":",
",",
"1",
"]",
"# h_x used to denote haversine(x): sin^2(x / 2)",
"h_dlat",
"=",
"sin",
"(",
"(",
"lat1",
"-",
"lat0",
")",
"/",
"2.0",
")",
"**",
"2",
"h_dlon",
"=",
"sin",
"(",
"(",
"lon1",
"-",
"lon0",
")",
"/",
"2.0",
")",
"**",
"2",
"h_angle",
"=",
"h_dlat",
"+",
"cos",
"(",
"lat0",
")",
"*",
"cos",
"(",
"lat1",
")",
"*",
"h_dlon",
"angle",
"=",
"2.0",
"*",
"arcsin",
"(",
"sqrt",
"(",
"h_angle",
")",
")",
"d",
"=",
"r",
"*",
"angle",
"if",
"single",
":",
"d",
"=",
"d",
"[",
"0",
"]",
"return",
"d"
] | Return the distance between two points on the surface of the Earth.
Parameters
----------
p0 : point-like (or array of point-like) [longitude, latitude] objects
p1 : point-like (or array of point-like) [longitude, latitude] objects
deg : bool, optional (default True)
indicates if p0 and p1 are specified in degrees
r : float, optional (default r_earth_mean)
radius of the sphere
Returns
-------
d : float
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Distance
Note: Spherical earth model. By default uses radius of 6371.0 km. | [
"Return",
"the",
"distance",
"between",
"two",
"points",
"on",
"the",
"surface",
"of",
"the",
"Earth",
"."
] | train | https://github.com/jwass/geog/blob/52ceb9b543454b31c63694ee459aad9cd52f011a/geog/geog.py#L32-L74 |
jwass/geog | geog/geog.py | course | def course(p0, p1, deg=True, bearing=False):
"""
Compute the initial bearing along the great circle from p0 to p1
NB: The angle returned by course() is not the traditional definition of
bearing. It is definted such that 0 degrees to due East increasing
counter-clockwise such that 90 degrees is due North. To obtain the bearing
(0 degrees is due North increasing clockwise so that 90 degrees is due
East), set the bearing flag input to True.
Parameters
----------
p0 : point-like (or array of point-like) [lon, lat] objects
p1 : point-like (or array of point-like) [lon, lat] objects
deg : bool, optional (default True)
indicates if p0 and p1 are specified in degrees. The returned
angle is returned in the same units as the input.
bearing : bool, optional (default False)
If True, use the classical definition of bearing where 0 degrees is
due North increasing clockwise so that and 90 degrees is due East.
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Bearing
"""
single, (p0, p1) = _to_arrays((p0, 2), (p1, 2))
if deg:
p0 = np.radians(p0)
p1 = np.radians(p1)
lon0, lat0 = p0[:,0], p0[:,1]
lon1, lat1 = p1[:,0], p1[:,1]
dlon = lon1 - lon0
a = sin(dlon) * cos(lat1)
b = cos(lat0) * sin(lat1) - sin(lat0) * cos(lat1) * cos(dlon)
if bearing:
angle = arctan2(a, b)
else:
angle = arctan2(b, a)
if deg:
angle = np.degrees(angle)
if single:
angle = angle[0]
return angle | python | def course(p0, p1, deg=True, bearing=False):
"""
Compute the initial bearing along the great circle from p0 to p1
NB: The angle returned by course() is not the traditional definition of
bearing. It is definted such that 0 degrees to due East increasing
counter-clockwise such that 90 degrees is due North. To obtain the bearing
(0 degrees is due North increasing clockwise so that 90 degrees is due
East), set the bearing flag input to True.
Parameters
----------
p0 : point-like (or array of point-like) [lon, lat] objects
p1 : point-like (or array of point-like) [lon, lat] objects
deg : bool, optional (default True)
indicates if p0 and p1 are specified in degrees. The returned
angle is returned in the same units as the input.
bearing : bool, optional (default False)
If True, use the classical definition of bearing where 0 degrees is
due North increasing clockwise so that and 90 degrees is due East.
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Bearing
"""
single, (p0, p1) = _to_arrays((p0, 2), (p1, 2))
if deg:
p0 = np.radians(p0)
p1 = np.radians(p1)
lon0, lat0 = p0[:,0], p0[:,1]
lon1, lat1 = p1[:,0], p1[:,1]
dlon = lon1 - lon0
a = sin(dlon) * cos(lat1)
b = cos(lat0) * sin(lat1) - sin(lat0) * cos(lat1) * cos(dlon)
if bearing:
angle = arctan2(a, b)
else:
angle = arctan2(b, a)
if deg:
angle = np.degrees(angle)
if single:
angle = angle[0]
return angle | [
"def",
"course",
"(",
"p0",
",",
"p1",
",",
"deg",
"=",
"True",
",",
"bearing",
"=",
"False",
")",
":",
"single",
",",
"(",
"p0",
",",
"p1",
")",
"=",
"_to_arrays",
"(",
"(",
"p0",
",",
"2",
")",
",",
"(",
"p1",
",",
"2",
")",
")",
"if",
"deg",
":",
"p0",
"=",
"np",
".",
"radians",
"(",
"p0",
")",
"p1",
"=",
"np",
".",
"radians",
"(",
"p1",
")",
"lon0",
",",
"lat0",
"=",
"p0",
"[",
":",
",",
"0",
"]",
",",
"p0",
"[",
":",
",",
"1",
"]",
"lon1",
",",
"lat1",
"=",
"p1",
"[",
":",
",",
"0",
"]",
",",
"p1",
"[",
":",
",",
"1",
"]",
"dlon",
"=",
"lon1",
"-",
"lon0",
"a",
"=",
"sin",
"(",
"dlon",
")",
"*",
"cos",
"(",
"lat1",
")",
"b",
"=",
"cos",
"(",
"lat0",
")",
"*",
"sin",
"(",
"lat1",
")",
"-",
"sin",
"(",
"lat0",
")",
"*",
"cos",
"(",
"lat1",
")",
"*",
"cos",
"(",
"dlon",
")",
"if",
"bearing",
":",
"angle",
"=",
"arctan2",
"(",
"a",
",",
"b",
")",
"else",
":",
"angle",
"=",
"arctan2",
"(",
"b",
",",
"a",
")",
"if",
"deg",
":",
"angle",
"=",
"np",
".",
"degrees",
"(",
"angle",
")",
"if",
"single",
":",
"angle",
"=",
"angle",
"[",
"0",
"]",
"return",
"angle"
] | Compute the initial bearing along the great circle from p0 to p1
NB: The angle returned by course() is not the traditional definition of
bearing. It is definted such that 0 degrees to due East increasing
counter-clockwise such that 90 degrees is due North. To obtain the bearing
(0 degrees is due North increasing clockwise so that 90 degrees is due
East), set the bearing flag input to True.
Parameters
----------
p0 : point-like (or array of point-like) [lon, lat] objects
p1 : point-like (or array of point-like) [lon, lat] objects
deg : bool, optional (default True)
indicates if p0 and p1 are specified in degrees. The returned
angle is returned in the same units as the input.
bearing : bool, optional (default False)
If True, use the classical definition of bearing where 0 degrees is
due North increasing clockwise so that and 90 degrees is due East.
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Bearing | [
"Compute",
"the",
"initial",
"bearing",
"along",
"the",
"great",
"circle",
"from",
"p0",
"to",
"p1"
] | train | https://github.com/jwass/geog/blob/52ceb9b543454b31c63694ee459aad9cd52f011a/geog/geog.py#L77-L126 |
jwass/geog | geog/geog.py | propagate | def propagate(p0, angle, d, deg=True, bearing=False, r=r_earth_mean):
"""
Given an initial point and angle, move distance d along the surface
Parameters
----------
p0 : point-like (or array of point-like) [lon, lat] objects
angle : float (or array of float)
bearing. Note that by default, 0 degrees is due East increasing
clockwise so that 90 degrees is due North. See the bearing flag
to change the meaning of this angle
d : float (or array of float)
distance to move. The units of d should be consistent with input r
deg : bool, optional (default True)
Whether both p0 and angle are specified in degrees. The output
points will also match the value of this flag.
bearing : bool, optional (default False)
Indicates whether to interpret the input angle as the classical
definition of bearing.
r : float, optional (default r_earth_mean)
radius of the sphere
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Destination
Note: Spherical earth model. By default uses radius of 6371.0 km.
"""
single, (p0, angle, d) = _to_arrays((p0, 2), (angle, 1), (d, 1))
if deg:
p0 = np.radians(p0)
angle = np.radians(angle)
if not bearing:
angle = np.pi / 2.0 - angle
lon0, lat0 = p0[:,0], p0[:,1]
angd = d / r
lat1 = arcsin(sin(lat0) * cos(angd) + cos(lat0) * sin(angd) * cos(angle))
a = sin(angle) * sin(angd) * cos(lat0)
b = cos(angd) - sin(lat0) * sin(lat1)
lon1 = lon0 + arctan2(a, b)
p1 = np.column_stack([lon1, lat1])
if deg:
p1 = np.degrees(p1)
if single:
p1 = p1[0]
return p1 | python | def propagate(p0, angle, d, deg=True, bearing=False, r=r_earth_mean):
"""
Given an initial point and angle, move distance d along the surface
Parameters
----------
p0 : point-like (or array of point-like) [lon, lat] objects
angle : float (or array of float)
bearing. Note that by default, 0 degrees is due East increasing
clockwise so that 90 degrees is due North. See the bearing flag
to change the meaning of this angle
d : float (or array of float)
distance to move. The units of d should be consistent with input r
deg : bool, optional (default True)
Whether both p0 and angle are specified in degrees. The output
points will also match the value of this flag.
bearing : bool, optional (default False)
Indicates whether to interpret the input angle as the classical
definition of bearing.
r : float, optional (default r_earth_mean)
radius of the sphere
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Destination
Note: Spherical earth model. By default uses radius of 6371.0 km.
"""
single, (p0, angle, d) = _to_arrays((p0, 2), (angle, 1), (d, 1))
if deg:
p0 = np.radians(p0)
angle = np.radians(angle)
if not bearing:
angle = np.pi / 2.0 - angle
lon0, lat0 = p0[:,0], p0[:,1]
angd = d / r
lat1 = arcsin(sin(lat0) * cos(angd) + cos(lat0) * sin(angd) * cos(angle))
a = sin(angle) * sin(angd) * cos(lat0)
b = cos(angd) - sin(lat0) * sin(lat1)
lon1 = lon0 + arctan2(a, b)
p1 = np.column_stack([lon1, lat1])
if deg:
p1 = np.degrees(p1)
if single:
p1 = p1[0]
return p1 | [
"def",
"propagate",
"(",
"p0",
",",
"angle",
",",
"d",
",",
"deg",
"=",
"True",
",",
"bearing",
"=",
"False",
",",
"r",
"=",
"r_earth_mean",
")",
":",
"single",
",",
"(",
"p0",
",",
"angle",
",",
"d",
")",
"=",
"_to_arrays",
"(",
"(",
"p0",
",",
"2",
")",
",",
"(",
"angle",
",",
"1",
")",
",",
"(",
"d",
",",
"1",
")",
")",
"if",
"deg",
":",
"p0",
"=",
"np",
".",
"radians",
"(",
"p0",
")",
"angle",
"=",
"np",
".",
"radians",
"(",
"angle",
")",
"if",
"not",
"bearing",
":",
"angle",
"=",
"np",
".",
"pi",
"/",
"2.0",
"-",
"angle",
"lon0",
",",
"lat0",
"=",
"p0",
"[",
":",
",",
"0",
"]",
",",
"p0",
"[",
":",
",",
"1",
"]",
"angd",
"=",
"d",
"/",
"r",
"lat1",
"=",
"arcsin",
"(",
"sin",
"(",
"lat0",
")",
"*",
"cos",
"(",
"angd",
")",
"+",
"cos",
"(",
"lat0",
")",
"*",
"sin",
"(",
"angd",
")",
"*",
"cos",
"(",
"angle",
")",
")",
"a",
"=",
"sin",
"(",
"angle",
")",
"*",
"sin",
"(",
"angd",
")",
"*",
"cos",
"(",
"lat0",
")",
"b",
"=",
"cos",
"(",
"angd",
")",
"-",
"sin",
"(",
"lat0",
")",
"*",
"sin",
"(",
"lat1",
")",
"lon1",
"=",
"lon0",
"+",
"arctan2",
"(",
"a",
",",
"b",
")",
"p1",
"=",
"np",
".",
"column_stack",
"(",
"[",
"lon1",
",",
"lat1",
"]",
")",
"if",
"deg",
":",
"p1",
"=",
"np",
".",
"degrees",
"(",
"p1",
")",
"if",
"single",
":",
"p1",
"=",
"p1",
"[",
"0",
"]",
"return",
"p1"
] | Given an initial point and angle, move distance d along the surface
Parameters
----------
p0 : point-like (or array of point-like) [lon, lat] objects
angle : float (or array of float)
bearing. Note that by default, 0 degrees is due East increasing
clockwise so that 90 degrees is due North. See the bearing flag
to change the meaning of this angle
d : float (or array of float)
distance to move. The units of d should be consistent with input r
deg : bool, optional (default True)
Whether both p0 and angle are specified in degrees. The output
points will also match the value of this flag.
bearing : bool, optional (default False)
Indicates whether to interpret the input angle as the classical
definition of bearing.
r : float, optional (default r_earth_mean)
radius of the sphere
Reference
---------
http://www.movable-type.co.uk/scripts/latlong.html - Destination
Note: Spherical earth model. By default uses radius of 6371.0 km. | [
"Given",
"an",
"initial",
"point",
"and",
"angle",
"move",
"distance",
"d",
"along",
"the",
"surface"
] | train | https://github.com/jwass/geog/blob/52ceb9b543454b31c63694ee459aad9cd52f011a/geog/geog.py#L129-L184 |
lepture/flask-weixin | flask_weixin.py | Weixin.validate | def validate(self, signature, timestamp, nonce):
"""Validate request signature.
:param signature: A string signature parameter sent by weixin.
:param timestamp: A int timestamp parameter sent by weixin.
:param nonce: A int nonce parameter sent by weixin.
"""
if not self.token:
raise RuntimeError('WEIXIN_TOKEN is missing')
if self.expires_in:
try:
timestamp = int(timestamp)
except (ValueError, TypeError):
# fake timestamp
return False
delta = time.time() - timestamp
if delta < 0:
# this is a fake timestamp
return False
if delta > self.expires_in:
# expired timestamp
return False
values = [self.token, str(timestamp), str(nonce)]
s = ''.join(sorted(values))
hsh = hashlib.sha1(s.encode('utf-8')).hexdigest()
return signature == hsh | python | def validate(self, signature, timestamp, nonce):
"""Validate request signature.
:param signature: A string signature parameter sent by weixin.
:param timestamp: A int timestamp parameter sent by weixin.
:param nonce: A int nonce parameter sent by weixin.
"""
if not self.token:
raise RuntimeError('WEIXIN_TOKEN is missing')
if self.expires_in:
try:
timestamp = int(timestamp)
except (ValueError, TypeError):
# fake timestamp
return False
delta = time.time() - timestamp
if delta < 0:
# this is a fake timestamp
return False
if delta > self.expires_in:
# expired timestamp
return False
values = [self.token, str(timestamp), str(nonce)]
s = ''.join(sorted(values))
hsh = hashlib.sha1(s.encode('utf-8')).hexdigest()
return signature == hsh | [
"def",
"validate",
"(",
"self",
",",
"signature",
",",
"timestamp",
",",
"nonce",
")",
":",
"if",
"not",
"self",
".",
"token",
":",
"raise",
"RuntimeError",
"(",
"'WEIXIN_TOKEN is missing'",
")",
"if",
"self",
".",
"expires_in",
":",
"try",
":",
"timestamp",
"=",
"int",
"(",
"timestamp",
")",
"except",
"(",
"ValueError",
",",
"TypeError",
")",
":",
"# fake timestamp",
"return",
"False",
"delta",
"=",
"time",
".",
"time",
"(",
")",
"-",
"timestamp",
"if",
"delta",
"<",
"0",
":",
"# this is a fake timestamp",
"return",
"False",
"if",
"delta",
">",
"self",
".",
"expires_in",
":",
"# expired timestamp",
"return",
"False",
"values",
"=",
"[",
"self",
".",
"token",
",",
"str",
"(",
"timestamp",
")",
",",
"str",
"(",
"nonce",
")",
"]",
"s",
"=",
"''",
".",
"join",
"(",
"sorted",
"(",
"values",
")",
")",
"hsh",
"=",
"hashlib",
".",
"sha1",
"(",
"s",
".",
"encode",
"(",
"'utf-8'",
")",
")",
".",
"hexdigest",
"(",
")",
"return",
"signature",
"==",
"hsh"
] | Validate request signature.
:param signature: A string signature parameter sent by weixin.
:param timestamp: A int timestamp parameter sent by weixin.
:param nonce: A int nonce parameter sent by weixin. | [
"Validate",
"request",
"signature",
"."
] | train | https://github.com/lepture/flask-weixin/blob/abf0b507d41b9780257507aa78fc0817fdc75719/flask_weixin.py#L77-L106 |
lepture/flask-weixin | flask_weixin.py | Weixin.parse | def parse(self, content):
"""Parse xml body sent by weixin.
:param content: A text of xml body.
"""
raw = {}
try:
root = etree.fromstring(content)
except SyntaxError as e:
raise ValueError(*e.args)
for child in root:
raw[child.tag] = child.text
formatted = self.format(raw)
msg_type = formatted['type']
msg_parser = getattr(self, 'parse_%s' % msg_type, None)
if callable(msg_parser):
parsed = msg_parser(raw)
else:
parsed = self.parse_invalid_type(raw)
formatted.update(parsed)
return formatted | python | def parse(self, content):
"""Parse xml body sent by weixin.
:param content: A text of xml body.
"""
raw = {}
try:
root = etree.fromstring(content)
except SyntaxError as e:
raise ValueError(*e.args)
for child in root:
raw[child.tag] = child.text
formatted = self.format(raw)
msg_type = formatted['type']
msg_parser = getattr(self, 'parse_%s' % msg_type, None)
if callable(msg_parser):
parsed = msg_parser(raw)
else:
parsed = self.parse_invalid_type(raw)
formatted.update(parsed)
return formatted | [
"def",
"parse",
"(",
"self",
",",
"content",
")",
":",
"raw",
"=",
"{",
"}",
"try",
":",
"root",
"=",
"etree",
".",
"fromstring",
"(",
"content",
")",
"except",
"SyntaxError",
"as",
"e",
":",
"raise",
"ValueError",
"(",
"*",
"e",
".",
"args",
")",
"for",
"child",
"in",
"root",
":",
"raw",
"[",
"child",
".",
"tag",
"]",
"=",
"child",
".",
"text",
"formatted",
"=",
"self",
".",
"format",
"(",
"raw",
")",
"msg_type",
"=",
"formatted",
"[",
"'type'",
"]",
"msg_parser",
"=",
"getattr",
"(",
"self",
",",
"'parse_%s'",
"%",
"msg_type",
",",
"None",
")",
"if",
"callable",
"(",
"msg_parser",
")",
":",
"parsed",
"=",
"msg_parser",
"(",
"raw",
")",
"else",
":",
"parsed",
"=",
"self",
".",
"parse_invalid_type",
"(",
"raw",
")",
"formatted",
".",
"update",
"(",
"parsed",
")",
"return",
"formatted"
] | Parse xml body sent by weixin.
:param content: A text of xml body. | [
"Parse",
"xml",
"body",
"sent",
"by",
"weixin",
"."
] | train | https://github.com/lepture/flask-weixin/blob/abf0b507d41b9780257507aa78fc0817fdc75719/flask_weixin.py#L108-L133 |
lepture/flask-weixin | flask_weixin.py | Weixin.reply | def reply(self, username, type='text', sender=None, **kwargs):
"""Create the reply text for weixin.
The reply varies per reply type. The acceptable types are `text`,
`music`, `news`, `image`, `voice`, `video`. Each type accepts
different parameters, but they share some common parameters:
* username: the receiver's username
* type: the reply type, aka text, music and news
* sender: sender is optional if you have a default value
Text reply requires an additional parameter of `content`.
Music reply requires 4 more parameters:
* title: A string for music title
* description: A string for music description
* music_url: A link of the music
* hq_music_url: A link of the high quality music
News reply requires an additional parameter of `articles`, which
is a list/tuple of articles, each one is a dict:
* title: A string for article title
* description: A string for article description
* picurl: A link for article cover image
* url: A link for article url
Image and Voice reply requires an additional parameter of `media_id`.
Video reply requires 3 more parameters:
* media_id: A string for video `media_id`
* title: A string for video title
* description: A string for video description
"""
sender = sender or self.sender
if not sender:
raise RuntimeError('WEIXIN_SENDER or sender argument is missing')
if type == 'text':
content = kwargs.get('content', '')
return text_reply(username, sender, content)
if type == 'music':
values = {}
for k in ('title', 'description', 'music_url', 'hq_music_url'):
values[k] = kwargs.get(k)
return music_reply(username, sender, **values)
if type == 'news':
items = kwargs.get('articles', [])
return news_reply(username, sender, *items)
if type == 'customer_service':
service_account = kwargs.get('service_account', None)
return transfer_customer_service_reply(username, sender,
service_account)
if type == 'image':
media_id = kwargs.get('media_id', '')
return image_reply(username, sender, media_id)
if type == 'voice':
media_id = kwargs.get('media_id', '')
return voice_reply(username, sender, media_id)
if type == 'video':
values = {}
for k in ('media_id', 'title', 'description'):
values[k] = kwargs.get(k)
return video_reply(username, sender, **values) | python | def reply(self, username, type='text', sender=None, **kwargs):
"""Create the reply text for weixin.
The reply varies per reply type. The acceptable types are `text`,
`music`, `news`, `image`, `voice`, `video`. Each type accepts
different parameters, but they share some common parameters:
* username: the receiver's username
* type: the reply type, aka text, music and news
* sender: sender is optional if you have a default value
Text reply requires an additional parameter of `content`.
Music reply requires 4 more parameters:
* title: A string for music title
* description: A string for music description
* music_url: A link of the music
* hq_music_url: A link of the high quality music
News reply requires an additional parameter of `articles`, which
is a list/tuple of articles, each one is a dict:
* title: A string for article title
* description: A string for article description
* picurl: A link for article cover image
* url: A link for article url
Image and Voice reply requires an additional parameter of `media_id`.
Video reply requires 3 more parameters:
* media_id: A string for video `media_id`
* title: A string for video title
* description: A string for video description
"""
sender = sender or self.sender
if not sender:
raise RuntimeError('WEIXIN_SENDER or sender argument is missing')
if type == 'text':
content = kwargs.get('content', '')
return text_reply(username, sender, content)
if type == 'music':
values = {}
for k in ('title', 'description', 'music_url', 'hq_music_url'):
values[k] = kwargs.get(k)
return music_reply(username, sender, **values)
if type == 'news':
items = kwargs.get('articles', [])
return news_reply(username, sender, *items)
if type == 'customer_service':
service_account = kwargs.get('service_account', None)
return transfer_customer_service_reply(username, sender,
service_account)
if type == 'image':
media_id = kwargs.get('media_id', '')
return image_reply(username, sender, media_id)
if type == 'voice':
media_id = kwargs.get('media_id', '')
return voice_reply(username, sender, media_id)
if type == 'video':
values = {}
for k in ('media_id', 'title', 'description'):
values[k] = kwargs.get(k)
return video_reply(username, sender, **values) | [
"def",
"reply",
"(",
"self",
",",
"username",
",",
"type",
"=",
"'text'",
",",
"sender",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"sender",
"=",
"sender",
"or",
"self",
".",
"sender",
"if",
"not",
"sender",
":",
"raise",
"RuntimeError",
"(",
"'WEIXIN_SENDER or sender argument is missing'",
")",
"if",
"type",
"==",
"'text'",
":",
"content",
"=",
"kwargs",
".",
"get",
"(",
"'content'",
",",
"''",
")",
"return",
"text_reply",
"(",
"username",
",",
"sender",
",",
"content",
")",
"if",
"type",
"==",
"'music'",
":",
"values",
"=",
"{",
"}",
"for",
"k",
"in",
"(",
"'title'",
",",
"'description'",
",",
"'music_url'",
",",
"'hq_music_url'",
")",
":",
"values",
"[",
"k",
"]",
"=",
"kwargs",
".",
"get",
"(",
"k",
")",
"return",
"music_reply",
"(",
"username",
",",
"sender",
",",
"*",
"*",
"values",
")",
"if",
"type",
"==",
"'news'",
":",
"items",
"=",
"kwargs",
".",
"get",
"(",
"'articles'",
",",
"[",
"]",
")",
"return",
"news_reply",
"(",
"username",
",",
"sender",
",",
"*",
"items",
")",
"if",
"type",
"==",
"'customer_service'",
":",
"service_account",
"=",
"kwargs",
".",
"get",
"(",
"'service_account'",
",",
"None",
")",
"return",
"transfer_customer_service_reply",
"(",
"username",
",",
"sender",
",",
"service_account",
")",
"if",
"type",
"==",
"'image'",
":",
"media_id",
"=",
"kwargs",
".",
"get",
"(",
"'media_id'",
",",
"''",
")",
"return",
"image_reply",
"(",
"username",
",",
"sender",
",",
"media_id",
")",
"if",
"type",
"==",
"'voice'",
":",
"media_id",
"=",
"kwargs",
".",
"get",
"(",
"'media_id'",
",",
"''",
")",
"return",
"voice_reply",
"(",
"username",
",",
"sender",
",",
"media_id",
")",
"if",
"type",
"==",
"'video'",
":",
"values",
"=",
"{",
"}",
"for",
"k",
"in",
"(",
"'media_id'",
",",
"'title'",
",",
"'description'",
")",
":",
"values",
"[",
"k",
"]",
"=",
"kwargs",
".",
"get",
"(",
"k",
")",
"return",
"video_reply",
"(",
"username",
",",
"sender",
",",
"*",
"*",
"values",
")"
] | Create the reply text for weixin.
The reply varies per reply type. The acceptable types are `text`,
`music`, `news`, `image`, `voice`, `video`. Each type accepts
different parameters, but they share some common parameters:
* username: the receiver's username
* type: the reply type, aka text, music and news
* sender: sender is optional if you have a default value
Text reply requires an additional parameter of `content`.
Music reply requires 4 more parameters:
* title: A string for music title
* description: A string for music description
* music_url: A link of the music
* hq_music_url: A link of the high quality music
News reply requires an additional parameter of `articles`, which
is a list/tuple of articles, each one is a dict:
* title: A string for article title
* description: A string for article description
* picurl: A link for article cover image
* url: A link for article url
Image and Voice reply requires an additional parameter of `media_id`.
Video reply requires 3 more parameters:
* media_id: A string for video `media_id`
* title: A string for video title
* description: A string for video description | [
"Create",
"the",
"reply",
"text",
"for",
"weixin",
"."
] | train | https://github.com/lepture/flask-weixin/blob/abf0b507d41b9780257507aa78fc0817fdc75719/flask_weixin.py#L187-L258 |
lepture/flask-weixin | flask_weixin.py | Weixin.register | def register(self, key=None, func=None, **kwargs):
"""Register a command helper function.
You can register the function::
def print_help(**kwargs):
username = kwargs.get('sender')
sender = kwargs.get('receiver')
return weixin.reply(
username, sender=sender, content='text reply'
)
weixin.register('help', print_help)
It is also accessible as a decorator::
@weixin.register('help')
def print_help(*args, **kwargs):
username = kwargs.get('sender')
sender = kwargs.get('receiver')
return weixin.reply(
username, sender=sender, content='text reply'
)
"""
if func:
if key is None:
limitation = frozenset(kwargs.items())
self._registry_without_key.append((func, limitation))
else:
self._registry[key] = func
return func
return self.__call__(key, **kwargs) | python | def register(self, key=None, func=None, **kwargs):
"""Register a command helper function.
You can register the function::
def print_help(**kwargs):
username = kwargs.get('sender')
sender = kwargs.get('receiver')
return weixin.reply(
username, sender=sender, content='text reply'
)
weixin.register('help', print_help)
It is also accessible as a decorator::
@weixin.register('help')
def print_help(*args, **kwargs):
username = kwargs.get('sender')
sender = kwargs.get('receiver')
return weixin.reply(
username, sender=sender, content='text reply'
)
"""
if func:
if key is None:
limitation = frozenset(kwargs.items())
self._registry_without_key.append((func, limitation))
else:
self._registry[key] = func
return func
return self.__call__(key, **kwargs) | [
"def",
"register",
"(",
"self",
",",
"key",
"=",
"None",
",",
"func",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"func",
":",
"if",
"key",
"is",
"None",
":",
"limitation",
"=",
"frozenset",
"(",
"kwargs",
".",
"items",
"(",
")",
")",
"self",
".",
"_registry_without_key",
".",
"append",
"(",
"(",
"func",
",",
"limitation",
")",
")",
"else",
":",
"self",
".",
"_registry",
"[",
"key",
"]",
"=",
"func",
"return",
"func",
"return",
"self",
".",
"__call__",
"(",
"key",
",",
"*",
"*",
"kwargs",
")"
] | Register a command helper function.
You can register the function::
def print_help(**kwargs):
username = kwargs.get('sender')
sender = kwargs.get('receiver')
return weixin.reply(
username, sender=sender, content='text reply'
)
weixin.register('help', print_help)
It is also accessible as a decorator::
@weixin.register('help')
def print_help(*args, **kwargs):
username = kwargs.get('sender')
sender = kwargs.get('receiver')
return weixin.reply(
username, sender=sender, content='text reply'
) | [
"Register",
"a",
"command",
"helper",
"function",
"."
] | train | https://github.com/lepture/flask-weixin/blob/abf0b507d41b9780257507aa78fc0817fdc75719/flask_weixin.py#L260-L292 |
lepture/flask-weixin | flask_weixin.py | Weixin.view_func | def view_func(self):
"""Default view function for Flask app.
This is a simple implementation for view func, you can add it to
your Flask app::
weixin = Weixin(app)
app.add_url_rule('/', view_func=weixin.view_func)
"""
if request is None:
raise RuntimeError('view_func need Flask be installed')
signature = request.args.get('signature')
timestamp = request.args.get('timestamp')
nonce = request.args.get('nonce')
if not self.validate(signature, timestamp, nonce):
return 'signature failed', 400
if request.method == 'GET':
echostr = request.args.get('echostr', '')
return echostr
try:
ret = self.parse(request.data)
except ValueError:
return 'invalid', 400
if 'type' not in ret:
# not a valid message
return 'invalid', 400
if ret['type'] == 'text' and ret['content'] in self._registry:
func = self._registry[ret['content']]
else:
ret_set = frozenset(ret.items())
matched_rules = (
_func for _func, _limitation in self._registry_without_key
if _limitation.issubset(ret_set))
func = next(matched_rules, None) # first matched rule
if func is None:
if '*' in self._registry:
func = self._registry['*']
else:
func = 'failed'
if callable(func):
text = func(**ret)
else:
# plain text
text = self.reply(
username=ret['sender'],
sender=ret['receiver'],
content=func,
)
return Response(text, content_type='text/xml; charset=utf-8') | python | def view_func(self):
"""Default view function for Flask app.
This is a simple implementation for view func, you can add it to
your Flask app::
weixin = Weixin(app)
app.add_url_rule('/', view_func=weixin.view_func)
"""
if request is None:
raise RuntimeError('view_func need Flask be installed')
signature = request.args.get('signature')
timestamp = request.args.get('timestamp')
nonce = request.args.get('nonce')
if not self.validate(signature, timestamp, nonce):
return 'signature failed', 400
if request.method == 'GET':
echostr = request.args.get('echostr', '')
return echostr
try:
ret = self.parse(request.data)
except ValueError:
return 'invalid', 400
if 'type' not in ret:
# not a valid message
return 'invalid', 400
if ret['type'] == 'text' and ret['content'] in self._registry:
func = self._registry[ret['content']]
else:
ret_set = frozenset(ret.items())
matched_rules = (
_func for _func, _limitation in self._registry_without_key
if _limitation.issubset(ret_set))
func = next(matched_rules, None) # first matched rule
if func is None:
if '*' in self._registry:
func = self._registry['*']
else:
func = 'failed'
if callable(func):
text = func(**ret)
else:
# plain text
text = self.reply(
username=ret['sender'],
sender=ret['receiver'],
content=func,
)
return Response(text, content_type='text/xml; charset=utf-8') | [
"def",
"view_func",
"(",
"self",
")",
":",
"if",
"request",
"is",
"None",
":",
"raise",
"RuntimeError",
"(",
"'view_func need Flask be installed'",
")",
"signature",
"=",
"request",
".",
"args",
".",
"get",
"(",
"'signature'",
")",
"timestamp",
"=",
"request",
".",
"args",
".",
"get",
"(",
"'timestamp'",
")",
"nonce",
"=",
"request",
".",
"args",
".",
"get",
"(",
"'nonce'",
")",
"if",
"not",
"self",
".",
"validate",
"(",
"signature",
",",
"timestamp",
",",
"nonce",
")",
":",
"return",
"'signature failed'",
",",
"400",
"if",
"request",
".",
"method",
"==",
"'GET'",
":",
"echostr",
"=",
"request",
".",
"args",
".",
"get",
"(",
"'echostr'",
",",
"''",
")",
"return",
"echostr",
"try",
":",
"ret",
"=",
"self",
".",
"parse",
"(",
"request",
".",
"data",
")",
"except",
"ValueError",
":",
"return",
"'invalid'",
",",
"400",
"if",
"'type'",
"not",
"in",
"ret",
":",
"# not a valid message",
"return",
"'invalid'",
",",
"400",
"if",
"ret",
"[",
"'type'",
"]",
"==",
"'text'",
"and",
"ret",
"[",
"'content'",
"]",
"in",
"self",
".",
"_registry",
":",
"func",
"=",
"self",
".",
"_registry",
"[",
"ret",
"[",
"'content'",
"]",
"]",
"else",
":",
"ret_set",
"=",
"frozenset",
"(",
"ret",
".",
"items",
"(",
")",
")",
"matched_rules",
"=",
"(",
"_func",
"for",
"_func",
",",
"_limitation",
"in",
"self",
".",
"_registry_without_key",
"if",
"_limitation",
".",
"issubset",
"(",
"ret_set",
")",
")",
"func",
"=",
"next",
"(",
"matched_rules",
",",
"None",
")",
"# first matched rule",
"if",
"func",
"is",
"None",
":",
"if",
"'*'",
"in",
"self",
".",
"_registry",
":",
"func",
"=",
"self",
".",
"_registry",
"[",
"'*'",
"]",
"else",
":",
"func",
"=",
"'failed'",
"if",
"callable",
"(",
"func",
")",
":",
"text",
"=",
"func",
"(",
"*",
"*",
"ret",
")",
"else",
":",
"# plain text",
"text",
"=",
"self",
".",
"reply",
"(",
"username",
"=",
"ret",
"[",
"'sender'",
"]",
",",
"sender",
"=",
"ret",
"[",
"'receiver'",
"]",
",",
"content",
"=",
"func",
",",
")",
"return",
"Response",
"(",
"text",
",",
"content_type",
"=",
"'text/xml; charset=utf-8'",
")"
] | Default view function for Flask app.
This is a simple implementation for view func, you can add it to
your Flask app::
weixin = Weixin(app)
app.add_url_rule('/', view_func=weixin.view_func) | [
"Default",
"view",
"function",
"for",
"Flask",
"app",
"."
] | train | https://github.com/lepture/flask-weixin/blob/abf0b507d41b9780257507aa78fc0817fdc75719/flask_weixin.py#L313-L369 |
cuducos/getgist | getgist/__main__.py | run_getgist | def run_getgist(filename, user, **kwargs):
"""Passes user inputs to GetGist() and calls get()"""
assume_yes = kwargs.get("yes_to_all")
getgist = GetGist(user=user, filename=filename, assume_yes=assume_yes)
getgist.get() | python | def run_getgist(filename, user, **kwargs):
"""Passes user inputs to GetGist() and calls get()"""
assume_yes = kwargs.get("yes_to_all")
getgist = GetGist(user=user, filename=filename, assume_yes=assume_yes)
getgist.get() | [
"def",
"run_getgist",
"(",
"filename",
",",
"user",
",",
"*",
"*",
"kwargs",
")",
":",
"assume_yes",
"=",
"kwargs",
".",
"get",
"(",
"\"yes_to_all\"",
")",
"getgist",
"=",
"GetGist",
"(",
"user",
"=",
"user",
",",
"filename",
"=",
"filename",
",",
"assume_yes",
"=",
"assume_yes",
")",
"getgist",
".",
"get",
"(",
")"
] | Passes user inputs to GetGist() and calls get() | [
"Passes",
"user",
"inputs",
"to",
"GetGist",
"()",
"and",
"calls",
"get",
"()"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/__main__.py#L107-L111 |
cuducos/getgist | getgist/__main__.py | run_getmy | def run_getmy(filename, **kwargs):
"""Shortcut for run_getgist() reading username from env var"""
assume_yes = kwargs.get("yes_to_all")
user = getenv("GETGIST_USER")
getgist = GetGist(user=user, filename=filename, assume_yes=assume_yes)
getgist.get() | python | def run_getmy(filename, **kwargs):
"""Shortcut for run_getgist() reading username from env var"""
assume_yes = kwargs.get("yes_to_all")
user = getenv("GETGIST_USER")
getgist = GetGist(user=user, filename=filename, assume_yes=assume_yes)
getgist.get() | [
"def",
"run_getmy",
"(",
"filename",
",",
"*",
"*",
"kwargs",
")",
":",
"assume_yes",
"=",
"kwargs",
".",
"get",
"(",
"\"yes_to_all\"",
")",
"user",
"=",
"getenv",
"(",
"\"GETGIST_USER\"",
")",
"getgist",
"=",
"GetGist",
"(",
"user",
"=",
"user",
",",
"filename",
"=",
"filename",
",",
"assume_yes",
"=",
"assume_yes",
")",
"getgist",
".",
"get",
"(",
")"
] | Shortcut for run_getgist() reading username from env var | [
"Shortcut",
"for",
"run_getgist",
"()",
"reading",
"username",
"from",
"env",
"var"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/__main__.py#L117-L122 |
cuducos/getgist | getgist/__main__.py | run_putgist | def run_putgist(filename, user, **kwargs):
"""Passes user inputs to GetGist() and calls put()"""
assume_yes = kwargs.get("yes_to_all")
private = kwargs.get("private")
getgist = GetGist(
user=user,
filename=filename,
assume_yes=assume_yes,
create_private=private,
allow_none=True,
)
getgist.put() | python | def run_putgist(filename, user, **kwargs):
"""Passes user inputs to GetGist() and calls put()"""
assume_yes = kwargs.get("yes_to_all")
private = kwargs.get("private")
getgist = GetGist(
user=user,
filename=filename,
assume_yes=assume_yes,
create_private=private,
allow_none=True,
)
getgist.put() | [
"def",
"run_putgist",
"(",
"filename",
",",
"user",
",",
"*",
"*",
"kwargs",
")",
":",
"assume_yes",
"=",
"kwargs",
".",
"get",
"(",
"\"yes_to_all\"",
")",
"private",
"=",
"kwargs",
".",
"get",
"(",
"\"private\"",
")",
"getgist",
"=",
"GetGist",
"(",
"user",
"=",
"user",
",",
"filename",
"=",
"filename",
",",
"assume_yes",
"=",
"assume_yes",
",",
"create_private",
"=",
"private",
",",
"allow_none",
"=",
"True",
",",
")",
"getgist",
".",
"put",
"(",
")"
] | Passes user inputs to GetGist() and calls put() | [
"Passes",
"user",
"inputs",
"to",
"GetGist",
"()",
"and",
"calls",
"put",
"()"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/__main__.py#L130-L141 |
cuducos/getgist | getgist/__main__.py | GetGist.get | def get(self):
"""Reads the remote file from Gist and save it locally"""
if self.gist:
content = self.github.read_gist_file(self.gist)
self.local.save(content) | python | def get(self):
"""Reads the remote file from Gist and save it locally"""
if self.gist:
content = self.github.read_gist_file(self.gist)
self.local.save(content) | [
"def",
"get",
"(",
"self",
")",
":",
"if",
"self",
".",
"gist",
":",
"content",
"=",
"self",
".",
"github",
".",
"read_gist_file",
"(",
"self",
".",
"gist",
")",
"self",
".",
"local",
".",
"save",
"(",
"content",
")"
] | Reads the remote file from Gist and save it locally | [
"Reads",
"the",
"remote",
"file",
"from",
"Gist",
"and",
"save",
"it",
"locally"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/__main__.py#L88-L92 |
cuducos/getgist | getgist/__main__.py | GetGist.put | def put(self):
""" Reads local file & update the remote gist (or create a new one)"""
content = self.local.read()
if self.gist:
self.github.update(self.gist, content)
else:
self.github.create(content, public=self.public) | python | def put(self):
""" Reads local file & update the remote gist (or create a new one)"""
content = self.local.read()
if self.gist:
self.github.update(self.gist, content)
else:
self.github.create(content, public=self.public) | [
"def",
"put",
"(",
"self",
")",
":",
"content",
"=",
"self",
".",
"local",
".",
"read",
"(",
")",
"if",
"self",
".",
"gist",
":",
"self",
".",
"github",
".",
"update",
"(",
"self",
".",
"gist",
",",
"content",
")",
"else",
":",
"self",
".",
"github",
".",
"create",
"(",
"content",
",",
"public",
"=",
"self",
".",
"public",
")"
] | Reads local file & update the remote gist (or create a new one) | [
"Reads",
"local",
"file",
"&",
"update",
"the",
"remote",
"gist",
"(",
"or",
"create",
"a",
"new",
"one",
")"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/__main__.py#L94-L100 |
cuducos/getgist | getgist/github.py | oauth_only | def oauth_only(function):
"""Decorator to restrict some GitHubTools methods to run only with OAuth"""
def check_for_oauth(self, *args, **kwargs):
"""
Returns False if GitHubTools instance is not authenticated, or return
the decorated fucntion if it is.
"""
if not self.is_authenticated:
self.oops("To use putgist you have to set your GETGIST_TOKEN")
self.oops("(see `putgist --help` for details)")
return False
return function(self, *args, **kwargs)
return check_for_oauth | python | def oauth_only(function):
"""Decorator to restrict some GitHubTools methods to run only with OAuth"""
def check_for_oauth(self, *args, **kwargs):
"""
Returns False if GitHubTools instance is not authenticated, or return
the decorated fucntion if it is.
"""
if not self.is_authenticated:
self.oops("To use putgist you have to set your GETGIST_TOKEN")
self.oops("(see `putgist --help` for details)")
return False
return function(self, *args, **kwargs)
return check_for_oauth | [
"def",
"oauth_only",
"(",
"function",
")",
":",
"def",
"check_for_oauth",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"\"\"\"\n Returns False if GitHubTools instance is not authenticated, or return\n the decorated fucntion if it is.\n \"\"\"",
"if",
"not",
"self",
".",
"is_authenticated",
":",
"self",
".",
"oops",
"(",
"\"To use putgist you have to set your GETGIST_TOKEN\"",
")",
"self",
".",
"oops",
"(",
"\"(see `putgist --help` for details)\"",
")",
"return",
"False",
"return",
"function",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"check_for_oauth"
] | Decorator to restrict some GitHubTools methods to run only with OAuth | [
"Decorator",
"to",
"restrict",
"some",
"GitHubTools",
"methods",
"to",
"run",
"only",
"with",
"OAuth"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L11-L25 |
cuducos/getgist | getgist/github.py | GitHubTools.add_oauth_header | def add_oauth_header(self):
"""
Validate token and add the proper header for further requests.
:return: (None)
"""
# abort if no token
oauth_token = self._get_token()
if not oauth_token:
return
# add oauth header & reach the api
self.headers["Authorization"] = "token " + oauth_token
url = self._api_url("user")
raw_resp = self.requests.get(url)
resp = raw_resp.json()
# abort & remove header if token is invalid
if resp.get("login", None) != self.user:
self.oops("Invalid token for user " + self.user)
self.headers.pop("Authorization")
return
self.is_authenticated = True
self.yeah("User {} authenticated".format(self.user)) | python | def add_oauth_header(self):
"""
Validate token and add the proper header for further requests.
:return: (None)
"""
# abort if no token
oauth_token = self._get_token()
if not oauth_token:
return
# add oauth header & reach the api
self.headers["Authorization"] = "token " + oauth_token
url = self._api_url("user")
raw_resp = self.requests.get(url)
resp = raw_resp.json()
# abort & remove header if token is invalid
if resp.get("login", None) != self.user:
self.oops("Invalid token for user " + self.user)
self.headers.pop("Authorization")
return
self.is_authenticated = True
self.yeah("User {} authenticated".format(self.user)) | [
"def",
"add_oauth_header",
"(",
"self",
")",
":",
"# abort if no token",
"oauth_token",
"=",
"self",
".",
"_get_token",
"(",
")",
"if",
"not",
"oauth_token",
":",
"return",
"# add oauth header & reach the api",
"self",
".",
"headers",
"[",
"\"Authorization\"",
"]",
"=",
"\"token \"",
"+",
"oauth_token",
"url",
"=",
"self",
".",
"_api_url",
"(",
"\"user\"",
")",
"raw_resp",
"=",
"self",
".",
"requests",
".",
"get",
"(",
"url",
")",
"resp",
"=",
"raw_resp",
".",
"json",
"(",
")",
"# abort & remove header if token is invalid",
"if",
"resp",
".",
"get",
"(",
"\"login\"",
",",
"None",
")",
"!=",
"self",
".",
"user",
":",
"self",
".",
"oops",
"(",
"\"Invalid token for user \"",
"+",
"self",
".",
"user",
")",
"self",
".",
"headers",
".",
"pop",
"(",
"\"Authorization\"",
")",
"return",
"self",
".",
"is_authenticated",
"=",
"True",
"self",
".",
"yeah",
"(",
"\"User {} authenticated\"",
".",
"format",
"(",
"self",
".",
"user",
")",
")"
] | Validate token and add the proper header for further requests.
:return: (None) | [
"Validate",
"token",
"and",
"add",
"the",
"proper",
"header",
"for",
"further",
"requests",
".",
":",
"return",
":",
"(",
"None",
")"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L56-L79 |
cuducos/getgist | getgist/github.py | GitHubTools.get_gists | def get_gists(self):
"""
List generator containing gist relevant information
such as id, description, filenames and raw URL (dict).
"""
# fetch all gists
if self.is_authenticated:
url = self._api_url("gists")
else:
url = self._api_url("users", self.user, "gists")
self.output("Fetching " + url)
raw_resp = self.requests.get(url)
# abort if user not found
if raw_resp.status_code != 200:
self.oops("User `{}` not found".format(self.user))
return
# abort if there are no gists
resp = raw_resp.json()
if not resp:
self.oops("No gists found for user `{}`".format(self.user))
return
# parse response
for gist in raw_resp.json():
yield self._parse_gist(gist) | python | def get_gists(self):
"""
List generator containing gist relevant information
such as id, description, filenames and raw URL (dict).
"""
# fetch all gists
if self.is_authenticated:
url = self._api_url("gists")
else:
url = self._api_url("users", self.user, "gists")
self.output("Fetching " + url)
raw_resp = self.requests.get(url)
# abort if user not found
if raw_resp.status_code != 200:
self.oops("User `{}` not found".format(self.user))
return
# abort if there are no gists
resp = raw_resp.json()
if not resp:
self.oops("No gists found for user `{}`".format(self.user))
return
# parse response
for gist in raw_resp.json():
yield self._parse_gist(gist) | [
"def",
"get_gists",
"(",
"self",
")",
":",
"# fetch all gists",
"if",
"self",
".",
"is_authenticated",
":",
"url",
"=",
"self",
".",
"_api_url",
"(",
"\"gists\"",
")",
"else",
":",
"url",
"=",
"self",
".",
"_api_url",
"(",
"\"users\"",
",",
"self",
".",
"user",
",",
"\"gists\"",
")",
"self",
".",
"output",
"(",
"\"Fetching \"",
"+",
"url",
")",
"raw_resp",
"=",
"self",
".",
"requests",
".",
"get",
"(",
"url",
")",
"# abort if user not found",
"if",
"raw_resp",
".",
"status_code",
"!=",
"200",
":",
"self",
".",
"oops",
"(",
"\"User `{}` not found\"",
".",
"format",
"(",
"self",
".",
"user",
")",
")",
"return",
"# abort if there are no gists",
"resp",
"=",
"raw_resp",
".",
"json",
"(",
")",
"if",
"not",
"resp",
":",
"self",
".",
"oops",
"(",
"\"No gists found for user `{}`\"",
".",
"format",
"(",
"self",
".",
"user",
")",
")",
"return",
"# parse response",
"for",
"gist",
"in",
"raw_resp",
".",
"json",
"(",
")",
":",
"yield",
"self",
".",
"_parse_gist",
"(",
"gist",
")"
] | List generator containing gist relevant information
such as id, description, filenames and raw URL (dict). | [
"List",
"generator",
"containing",
"gist",
"relevant",
"information",
"such",
"as",
"id",
"description",
"filenames",
"and",
"raw",
"URL",
"(",
"dict",
")",
"."
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L81-L107 |
cuducos/getgist | getgist/github.py | GitHubTools.select_gist | def select_gist(self, allow_none=False):
"""
Given the requested filename, it selects the proper gist; if more than
one gist is found with the given filename, user is asked to choose.
:allow_none: (bool) for `getgist` it should raise error if no gist is
found, but setting this argument to True avoid this error, which is
useful when `putgist` is calling this method
:return: (dict) selected gist
"""
# pick up all macthing gists
matches = list()
for gist in self.get_gists():
for gist_file in gist.get("files"):
if self.filename == gist_file.get("filename"):
matches.append(gist)
# abort if no match is found
if not matches:
if allow_none:
return None
else:
msg = "No file named `{}` found in {}'s gists"
self.oops(msg.format(self.file_path, self.user))
if not self.is_authenticated:
self.warn("To access private gists set the GETGIST_TOKEN")
self.warn("(see `getgist --help` for details)")
return False
# return if there's is only one match
if len(matches) == 1 or self.assume_yes:
return matches.pop(0)
return self._ask_which_gist(matches) | python | def select_gist(self, allow_none=False):
"""
Given the requested filename, it selects the proper gist; if more than
one gist is found with the given filename, user is asked to choose.
:allow_none: (bool) for `getgist` it should raise error if no gist is
found, but setting this argument to True avoid this error, which is
useful when `putgist` is calling this method
:return: (dict) selected gist
"""
# pick up all macthing gists
matches = list()
for gist in self.get_gists():
for gist_file in gist.get("files"):
if self.filename == gist_file.get("filename"):
matches.append(gist)
# abort if no match is found
if not matches:
if allow_none:
return None
else:
msg = "No file named `{}` found in {}'s gists"
self.oops(msg.format(self.file_path, self.user))
if not self.is_authenticated:
self.warn("To access private gists set the GETGIST_TOKEN")
self.warn("(see `getgist --help` for details)")
return False
# return if there's is only one match
if len(matches) == 1 or self.assume_yes:
return matches.pop(0)
return self._ask_which_gist(matches) | [
"def",
"select_gist",
"(",
"self",
",",
"allow_none",
"=",
"False",
")",
":",
"# pick up all macthing gists",
"matches",
"=",
"list",
"(",
")",
"for",
"gist",
"in",
"self",
".",
"get_gists",
"(",
")",
":",
"for",
"gist_file",
"in",
"gist",
".",
"get",
"(",
"\"files\"",
")",
":",
"if",
"self",
".",
"filename",
"==",
"gist_file",
".",
"get",
"(",
"\"filename\"",
")",
":",
"matches",
".",
"append",
"(",
"gist",
")",
"# abort if no match is found",
"if",
"not",
"matches",
":",
"if",
"allow_none",
":",
"return",
"None",
"else",
":",
"msg",
"=",
"\"No file named `{}` found in {}'s gists\"",
"self",
".",
"oops",
"(",
"msg",
".",
"format",
"(",
"self",
".",
"file_path",
",",
"self",
".",
"user",
")",
")",
"if",
"not",
"self",
".",
"is_authenticated",
":",
"self",
".",
"warn",
"(",
"\"To access private gists set the GETGIST_TOKEN\"",
")",
"self",
".",
"warn",
"(",
"\"(see `getgist --help` for details)\"",
")",
"return",
"False",
"# return if there's is only one match",
"if",
"len",
"(",
"matches",
")",
"==",
"1",
"or",
"self",
".",
"assume_yes",
":",
"return",
"matches",
".",
"pop",
"(",
"0",
")",
"return",
"self",
".",
"_ask_which_gist",
"(",
"matches",
")"
] | Given the requested filename, it selects the proper gist; if more than
one gist is found with the given filename, user is asked to choose.
:allow_none: (bool) for `getgist` it should raise error if no gist is
found, but setting this argument to True avoid this error, which is
useful when `putgist` is calling this method
:return: (dict) selected gist | [
"Given",
"the",
"requested",
"filename",
"it",
"selects",
"the",
"proper",
"gist",
";",
"if",
"more",
"than",
"one",
"gist",
"is",
"found",
"with",
"the",
"given",
"filename",
"user",
"is",
"asked",
"to",
"choose",
".",
":",
"allow_none",
":",
"(",
"bool",
")",
"for",
"getgist",
"it",
"should",
"raise",
"error",
"if",
"no",
"gist",
"is",
"found",
"but",
"setting",
"this",
"argument",
"to",
"True",
"avoid",
"this",
"error",
"which",
"is",
"useful",
"when",
"putgist",
"is",
"calling",
"this",
"method",
":",
"return",
":",
"(",
"dict",
")",
"selected",
"gist"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L109-L141 |
cuducos/getgist | getgist/github.py | GitHubTools.read_gist_file | def read_gist_file(self, gist):
"""
Returns the contents of file hosted inside a gist at GitHub.
:param gist: (dict) gist parsed by GitHubTools._parse()
:return: (bytes) content of a gist loaded from GitHub
"""
url = False
files = gist.get("files")
for gist_file in files:
if gist_file.get("filename") == self.filename:
url = gist_file.get("raw_url")
break
if url:
self.output("Reading {}".format(url))
response = self.requests.get(url)
return response.content | python | def read_gist_file(self, gist):
"""
Returns the contents of file hosted inside a gist at GitHub.
:param gist: (dict) gist parsed by GitHubTools._parse()
:return: (bytes) content of a gist loaded from GitHub
"""
url = False
files = gist.get("files")
for gist_file in files:
if gist_file.get("filename") == self.filename:
url = gist_file.get("raw_url")
break
if url:
self.output("Reading {}".format(url))
response = self.requests.get(url)
return response.content | [
"def",
"read_gist_file",
"(",
"self",
",",
"gist",
")",
":",
"url",
"=",
"False",
"files",
"=",
"gist",
".",
"get",
"(",
"\"files\"",
")",
"for",
"gist_file",
"in",
"files",
":",
"if",
"gist_file",
".",
"get",
"(",
"\"filename\"",
")",
"==",
"self",
".",
"filename",
":",
"url",
"=",
"gist_file",
".",
"get",
"(",
"\"raw_url\"",
")",
"break",
"if",
"url",
":",
"self",
".",
"output",
"(",
"\"Reading {}\"",
".",
"format",
"(",
"url",
")",
")",
"response",
"=",
"self",
".",
"requests",
".",
"get",
"(",
"url",
")",
"return",
"response",
".",
"content"
] | Returns the contents of file hosted inside a gist at GitHub.
:param gist: (dict) gist parsed by GitHubTools._parse()
:return: (bytes) content of a gist loaded from GitHub | [
"Returns",
"the",
"contents",
"of",
"file",
"hosted",
"inside",
"a",
"gist",
"at",
"GitHub",
".",
":",
"param",
"gist",
":",
"(",
"dict",
")",
"gist",
"parsed",
"by",
"GitHubTools",
".",
"_parse",
"()",
":",
"return",
":",
"(",
"bytes",
")",
"content",
"of",
"a",
"gist",
"loaded",
"from",
"GitHub"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L143-L158 |
cuducos/getgist | getgist/github.py | GitHubTools.update | def update(self, gist, content):
"""
Updates the contents of file hosted inside a gist at GitHub.
:param gist: (dict) gist parsed by GitHubTools._parse_gist()
:param content: (str or bytes) to be written
:return: (bool) indicatind the success or failure of the update
"""
# abort if content is False
if content is False:
return False
# request
url = self._api_url("gists", gist.get("id"))
data = {"files": {self.filename: {"content": content}}}
self.output("Sending contents of {} to {}".format(self.file_path, url))
response = self.requests.patch(url, data=dumps(data))
# error
if response.status_code != 200:
self.oops("Could not update " + gist.get("description"))
self.oops("PATCH request returned " + str(response.status_code))
return False
# success
self.yeah("Done!")
self.hey("The URL to this Gist is: {}".format(gist["url"]))
return True | python | def update(self, gist, content):
"""
Updates the contents of file hosted inside a gist at GitHub.
:param gist: (dict) gist parsed by GitHubTools._parse_gist()
:param content: (str or bytes) to be written
:return: (bool) indicatind the success or failure of the update
"""
# abort if content is False
if content is False:
return False
# request
url = self._api_url("gists", gist.get("id"))
data = {"files": {self.filename: {"content": content}}}
self.output("Sending contents of {} to {}".format(self.file_path, url))
response = self.requests.patch(url, data=dumps(data))
# error
if response.status_code != 200:
self.oops("Could not update " + gist.get("description"))
self.oops("PATCH request returned " + str(response.status_code))
return False
# success
self.yeah("Done!")
self.hey("The URL to this Gist is: {}".format(gist["url"]))
return True | [
"def",
"update",
"(",
"self",
",",
"gist",
",",
"content",
")",
":",
"# abort if content is False",
"if",
"content",
"is",
"False",
":",
"return",
"False",
"# request",
"url",
"=",
"self",
".",
"_api_url",
"(",
"\"gists\"",
",",
"gist",
".",
"get",
"(",
"\"id\"",
")",
")",
"data",
"=",
"{",
"\"files\"",
":",
"{",
"self",
".",
"filename",
":",
"{",
"\"content\"",
":",
"content",
"}",
"}",
"}",
"self",
".",
"output",
"(",
"\"Sending contents of {} to {}\"",
".",
"format",
"(",
"self",
".",
"file_path",
",",
"url",
")",
")",
"response",
"=",
"self",
".",
"requests",
".",
"patch",
"(",
"url",
",",
"data",
"=",
"dumps",
"(",
"data",
")",
")",
"# error",
"if",
"response",
".",
"status_code",
"!=",
"200",
":",
"self",
".",
"oops",
"(",
"\"Could not update \"",
"+",
"gist",
".",
"get",
"(",
"\"description\"",
")",
")",
"self",
".",
"oops",
"(",
"\"PATCH request returned \"",
"+",
"str",
"(",
"response",
".",
"status_code",
")",
")",
"return",
"False",
"# success",
"self",
".",
"yeah",
"(",
"\"Done!\"",
")",
"self",
".",
"hey",
"(",
"\"The URL to this Gist is: {}\"",
".",
"format",
"(",
"gist",
"[",
"\"url\"",
"]",
")",
")",
"return",
"True"
] | Updates the contents of file hosted inside a gist at GitHub.
:param gist: (dict) gist parsed by GitHubTools._parse_gist()
:param content: (str or bytes) to be written
:return: (bool) indicatind the success or failure of the update | [
"Updates",
"the",
"contents",
"of",
"file",
"hosted",
"inside",
"a",
"gist",
"at",
"GitHub",
".",
":",
"param",
"gist",
":",
"(",
"dict",
")",
"gist",
"parsed",
"by",
"GitHubTools",
".",
"_parse_gist",
"()",
":",
"param",
"content",
":",
"(",
"str",
"or",
"bytes",
")",
"to",
"be",
"written",
":",
"return",
":",
"(",
"bool",
")",
"indicatind",
"the",
"success",
"or",
"failure",
"of",
"the",
"update"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L161-L187 |
cuducos/getgist | getgist/github.py | GitHubTools.create | def create(self, content, **kwargs):
"""
Create a new gist.
:param gist: (dict) gist parsed by GitHubTools._parse()
:param content: (str or bytes) to be written
:param public: (bool) defines if the gist is public or private
:return: (bool) indicatind the success or failure of the creation
"""
# abort if content is False
if content is False:
return False
# set new gist
public = bool(kwargs.get("public", True))
data = {
"description": self.filename,
"public": public,
"files": {self.filename: {"content": content}},
}
# send request
url = self._api_url("gists")
self.output("Sending contents of {} to {}".format(self.file_path, url))
response = self.requests.post(url, data=dumps(data))
# error
if response.status_code != 201:
self.oops("Could not create " + self.filename)
self.oops("POST request returned " + str(response.status_code))
return False
# parse created gist
gist = self._parse_gist(response.json())
# success
self.yeah("Done!")
self.hey("The URL to this Gist is: {}".format(gist["url"]))
return True | python | def create(self, content, **kwargs):
"""
Create a new gist.
:param gist: (dict) gist parsed by GitHubTools._parse()
:param content: (str or bytes) to be written
:param public: (bool) defines if the gist is public or private
:return: (bool) indicatind the success or failure of the creation
"""
# abort if content is False
if content is False:
return False
# set new gist
public = bool(kwargs.get("public", True))
data = {
"description": self.filename,
"public": public,
"files": {self.filename: {"content": content}},
}
# send request
url = self._api_url("gists")
self.output("Sending contents of {} to {}".format(self.file_path, url))
response = self.requests.post(url, data=dumps(data))
# error
if response.status_code != 201:
self.oops("Could not create " + self.filename)
self.oops("POST request returned " + str(response.status_code))
return False
# parse created gist
gist = self._parse_gist(response.json())
# success
self.yeah("Done!")
self.hey("The URL to this Gist is: {}".format(gist["url"]))
return True | [
"def",
"create",
"(",
"self",
",",
"content",
",",
"*",
"*",
"kwargs",
")",
":",
"# abort if content is False",
"if",
"content",
"is",
"False",
":",
"return",
"False",
"# set new gist",
"public",
"=",
"bool",
"(",
"kwargs",
".",
"get",
"(",
"\"public\"",
",",
"True",
")",
")",
"data",
"=",
"{",
"\"description\"",
":",
"self",
".",
"filename",
",",
"\"public\"",
":",
"public",
",",
"\"files\"",
":",
"{",
"self",
".",
"filename",
":",
"{",
"\"content\"",
":",
"content",
"}",
"}",
",",
"}",
"# send request",
"url",
"=",
"self",
".",
"_api_url",
"(",
"\"gists\"",
")",
"self",
".",
"output",
"(",
"\"Sending contents of {} to {}\"",
".",
"format",
"(",
"self",
".",
"file_path",
",",
"url",
")",
")",
"response",
"=",
"self",
".",
"requests",
".",
"post",
"(",
"url",
",",
"data",
"=",
"dumps",
"(",
"data",
")",
")",
"# error",
"if",
"response",
".",
"status_code",
"!=",
"201",
":",
"self",
".",
"oops",
"(",
"\"Could not create \"",
"+",
"self",
".",
"filename",
")",
"self",
".",
"oops",
"(",
"\"POST request returned \"",
"+",
"str",
"(",
"response",
".",
"status_code",
")",
")",
"return",
"False",
"# parse created gist",
"gist",
"=",
"self",
".",
"_parse_gist",
"(",
"response",
".",
"json",
"(",
")",
")",
"# success",
"self",
".",
"yeah",
"(",
"\"Done!\"",
")",
"self",
".",
"hey",
"(",
"\"The URL to this Gist is: {}\"",
".",
"format",
"(",
"gist",
"[",
"\"url\"",
"]",
")",
")",
"return",
"True"
] | Create a new gist.
:param gist: (dict) gist parsed by GitHubTools._parse()
:param content: (str or bytes) to be written
:param public: (bool) defines if the gist is public or private
:return: (bool) indicatind the success or failure of the creation | [
"Create",
"a",
"new",
"gist",
".",
":",
"param",
"gist",
":",
"(",
"dict",
")",
"gist",
"parsed",
"by",
"GitHubTools",
".",
"_parse",
"()",
":",
"param",
"content",
":",
"(",
"str",
"or",
"bytes",
")",
"to",
"be",
"written",
":",
"param",
"public",
":",
"(",
"bool",
")",
"defines",
"if",
"the",
"gist",
"is",
"public",
"or",
"private",
":",
"return",
":",
"(",
"bool",
")",
"indicatind",
"the",
"success",
"or",
"failure",
"of",
"the",
"creation"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L190-L227 |
cuducos/getgist | getgist/github.py | GitHubTools._ask_which_gist | def _ask_which_gist(self, matches):
"""
Asks user which gist to use in case of more than one gist matching the
instance filename.
:param matches: (list) of dictioaries generated within select_gists()
:return: (dict) of the selected gist
"""
# ask user which gist to use
self.hey("Use {} from which gist?".format(self.filename))
for count, gist in enumerate(matches, 1):
self.hey("[{}] {}".format(count, gist.get("description")))
# get the gist index
selected = False
while not selected:
gist_index = prompt("Type the number: ", type=int) - 1
try:
selected = matches[gist_index]
except IndexError:
self.oops("Invalid number, please try again.")
self.output("Using `{}` Gist".format(selected["description"]))
return selected | python | def _ask_which_gist(self, matches):
"""
Asks user which gist to use in case of more than one gist matching the
instance filename.
:param matches: (list) of dictioaries generated within select_gists()
:return: (dict) of the selected gist
"""
# ask user which gist to use
self.hey("Use {} from which gist?".format(self.filename))
for count, gist in enumerate(matches, 1):
self.hey("[{}] {}".format(count, gist.get("description")))
# get the gist index
selected = False
while not selected:
gist_index = prompt("Type the number: ", type=int) - 1
try:
selected = matches[gist_index]
except IndexError:
self.oops("Invalid number, please try again.")
self.output("Using `{}` Gist".format(selected["description"]))
return selected | [
"def",
"_ask_which_gist",
"(",
"self",
",",
"matches",
")",
":",
"# ask user which gist to use",
"self",
".",
"hey",
"(",
"\"Use {} from which gist?\"",
".",
"format",
"(",
"self",
".",
"filename",
")",
")",
"for",
"count",
",",
"gist",
"in",
"enumerate",
"(",
"matches",
",",
"1",
")",
":",
"self",
".",
"hey",
"(",
"\"[{}] {}\"",
".",
"format",
"(",
"count",
",",
"gist",
".",
"get",
"(",
"\"description\"",
")",
")",
")",
"# get the gist index",
"selected",
"=",
"False",
"while",
"not",
"selected",
":",
"gist_index",
"=",
"prompt",
"(",
"\"Type the number: \"",
",",
"type",
"=",
"int",
")",
"-",
"1",
"try",
":",
"selected",
"=",
"matches",
"[",
"gist_index",
"]",
"except",
"IndexError",
":",
"self",
".",
"oops",
"(",
"\"Invalid number, please try again.\"",
")",
"self",
".",
"output",
"(",
"\"Using `{}` Gist\"",
".",
"format",
"(",
"selected",
"[",
"\"description\"",
"]",
")",
")",
"return",
"selected"
] | Asks user which gist to use in case of more than one gist matching the
instance filename.
:param matches: (list) of dictioaries generated within select_gists()
:return: (dict) of the selected gist | [
"Asks",
"user",
"which",
"gist",
"to",
"use",
"in",
"case",
"of",
"more",
"than",
"one",
"gist",
"matching",
"the",
"instance",
"filename",
".",
":",
"param",
"matches",
":",
"(",
"list",
")",
"of",
"dictioaries",
"generated",
"within",
"select_gists",
"()",
":",
"return",
":",
"(",
"dict",
")",
"of",
"the",
"selected",
"gist"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L229-L251 |
cuducos/getgist | getgist/github.py | GitHubTools._parse_gist | def _parse_gist(gist):
"""Receive a gist (dict) and parse it to GetGist"""
# parse files
files = list()
file_names = sorted(filename for filename in gist["files"].keys())
for name in file_names:
files.append(
dict(filename=name, raw_url=gist["files"][name].get("raw_url"))
)
# parse description
description = gist["description"]
if not description:
names = sorted(f.get("filename") for f in files)
description = names.pop(0)
return dict(
description=description,
id=gist.get("id"),
files=files,
url=gist.get("html_url"),
) | python | def _parse_gist(gist):
"""Receive a gist (dict) and parse it to GetGist"""
# parse files
files = list()
file_names = sorted(filename for filename in gist["files"].keys())
for name in file_names:
files.append(
dict(filename=name, raw_url=gist["files"][name].get("raw_url"))
)
# parse description
description = gist["description"]
if not description:
names = sorted(f.get("filename") for f in files)
description = names.pop(0)
return dict(
description=description,
id=gist.get("id"),
files=files,
url=gist.get("html_url"),
) | [
"def",
"_parse_gist",
"(",
"gist",
")",
":",
"# parse files",
"files",
"=",
"list",
"(",
")",
"file_names",
"=",
"sorted",
"(",
"filename",
"for",
"filename",
"in",
"gist",
"[",
"\"files\"",
"]",
".",
"keys",
"(",
")",
")",
"for",
"name",
"in",
"file_names",
":",
"files",
".",
"append",
"(",
"dict",
"(",
"filename",
"=",
"name",
",",
"raw_url",
"=",
"gist",
"[",
"\"files\"",
"]",
"[",
"name",
"]",
".",
"get",
"(",
"\"raw_url\"",
")",
")",
")",
"# parse description",
"description",
"=",
"gist",
"[",
"\"description\"",
"]",
"if",
"not",
"description",
":",
"names",
"=",
"sorted",
"(",
"f",
".",
"get",
"(",
"\"filename\"",
")",
"for",
"f",
"in",
"files",
")",
"description",
"=",
"names",
".",
"pop",
"(",
"0",
")",
"return",
"dict",
"(",
"description",
"=",
"description",
",",
"id",
"=",
"gist",
".",
"get",
"(",
"\"id\"",
")",
",",
"files",
"=",
"files",
",",
"url",
"=",
"gist",
".",
"get",
"(",
"\"html_url\"",
")",
",",
")"
] | Receive a gist (dict) and parse it to GetGist | [
"Receive",
"a",
"gist",
"(",
"dict",
")",
"and",
"parse",
"it",
"to",
"GetGist"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/github.py#L258-L280 |
cuducos/getgist | getgist/__init__.py | GetGistCommons.indent | def indent(self, message):
"""
Sets the indent for standardized output
:param message: (str)
:return: (str)
"""
indent = self.indent_char * self.indent_size
return indent + message | python | def indent(self, message):
"""
Sets the indent for standardized output
:param message: (str)
:return: (str)
"""
indent = self.indent_char * self.indent_size
return indent + message | [
"def",
"indent",
"(",
"self",
",",
"message",
")",
":",
"indent",
"=",
"self",
".",
"indent_char",
"*",
"self",
".",
"indent_size",
"return",
"indent",
"+",
"message"
] | Sets the indent for standardized output
:param message: (str)
:return: (str) | [
"Sets",
"the",
"indent",
"for",
"standardized",
"output",
":",
"param",
"message",
":",
"(",
"str",
")",
":",
"return",
":",
"(",
"str",
")"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/__init__.py#L12-L19 |
cuducos/getgist | getgist/__init__.py | GetGistCommons.output | def output(self, message, color=None):
"""
A helper to used like print() or click's secho() tunneling all the
outputs to sys.stdout or sys.stderr
:param message: (str)
:param color: (str) check click.secho() documentation
:return: (None) prints to sys.stdout or sys.stderr
"""
output_to = stderr if color == "red" else stdout
secho(self.indent(message), fg=color, file=output_to) | python | def output(self, message, color=None):
"""
A helper to used like print() or click's secho() tunneling all the
outputs to sys.stdout or sys.stderr
:param message: (str)
:param color: (str) check click.secho() documentation
:return: (None) prints to sys.stdout or sys.stderr
"""
output_to = stderr if color == "red" else stdout
secho(self.indent(message), fg=color, file=output_to) | [
"def",
"output",
"(",
"self",
",",
"message",
",",
"color",
"=",
"None",
")",
":",
"output_to",
"=",
"stderr",
"if",
"color",
"==",
"\"red\"",
"else",
"stdout",
"secho",
"(",
"self",
".",
"indent",
"(",
"message",
")",
",",
"fg",
"=",
"color",
",",
"file",
"=",
"output_to",
")"
] | A helper to used like print() or click's secho() tunneling all the
outputs to sys.stdout or sys.stderr
:param message: (str)
:param color: (str) check click.secho() documentation
:return: (None) prints to sys.stdout or sys.stderr | [
"A",
"helper",
"to",
"used",
"like",
"print",
"()",
"or",
"click",
"s",
"secho",
"()",
"tunneling",
"all",
"the",
"outputs",
"to",
"sys",
".",
"stdout",
"or",
"sys",
".",
"stderr",
":",
"param",
"message",
":",
"(",
"str",
")",
":",
"param",
"color",
":",
"(",
"str",
")",
"check",
"click",
".",
"secho",
"()",
"documentation",
":",
"return",
":",
"(",
"None",
")",
"prints",
"to",
"sys",
".",
"stdout",
"or",
"sys",
".",
"stderr"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/__init__.py#L21-L30 |
cuducos/getgist | getgist/request.py | GetGistRequests.get | def get(self, url, params=None, **kwargs):
"""Encapsulte requests.get to use this class instance header"""
return requests.get(url, params=params, headers=self.add_headers(**kwargs)) | python | def get(self, url, params=None, **kwargs):
"""Encapsulte requests.get to use this class instance header"""
return requests.get(url, params=params, headers=self.add_headers(**kwargs)) | [
"def",
"get",
"(",
"self",
",",
"url",
",",
"params",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"requests",
".",
"get",
"(",
"url",
",",
"params",
"=",
"params",
",",
"headers",
"=",
"self",
".",
"add_headers",
"(",
"*",
"*",
"kwargs",
")",
")"
] | Encapsulte requests.get to use this class instance header | [
"Encapsulte",
"requests",
".",
"get",
"to",
"use",
"this",
"class",
"instance",
"header"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/request.py#L26-L28 |
cuducos/getgist | getgist/request.py | GetGistRequests.patch | def patch(self, url, data=None, **kwargs):
"""Encapsulte requests.patch to use this class instance header"""
return requests.patch(url, data=data, headers=self.add_headers(**kwargs)) | python | def patch(self, url, data=None, **kwargs):
"""Encapsulte requests.patch to use this class instance header"""
return requests.patch(url, data=data, headers=self.add_headers(**kwargs)) | [
"def",
"patch",
"(",
"self",
",",
"url",
",",
"data",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"requests",
".",
"patch",
"(",
"url",
",",
"data",
"=",
"data",
",",
"headers",
"=",
"self",
".",
"add_headers",
"(",
"*",
"*",
"kwargs",
")",
")"
] | Encapsulte requests.patch to use this class instance header | [
"Encapsulte",
"requests",
".",
"patch",
"to",
"use",
"this",
"class",
"instance",
"header"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/request.py#L30-L32 |
cuducos/getgist | getgist/request.py | GetGistRequests.post | def post(self, url, data=None, **kwargs):
"""Encapsulte requests.post to use this class instance header"""
return requests.post(url, data=data, headers=self.add_headers(**kwargs)) | python | def post(self, url, data=None, **kwargs):
"""Encapsulte requests.post to use this class instance header"""
return requests.post(url, data=data, headers=self.add_headers(**kwargs)) | [
"def",
"post",
"(",
"self",
",",
"url",
",",
"data",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"requests",
".",
"post",
"(",
"url",
",",
"data",
"=",
"data",
",",
"headers",
"=",
"self",
".",
"add_headers",
"(",
"*",
"*",
"kwargs",
")",
")"
] | Encapsulte requests.post to use this class instance header | [
"Encapsulte",
"requests",
".",
"post",
"to",
"use",
"this",
"class",
"instance",
"header"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/request.py#L34-L36 |
cuducos/getgist | getgist/local.py | LocalTools.save | def save(self, content):
"""
Save any given content to the instance file.
:param content: (str or bytes)
:return: (None)
"""
# backup existing file if needed
if os.path.exists(self.file_path) and not self.assume_yes:
message = "Overwrite existing {}? (y/n) "
if not confirm(message.format(self.filename)):
self.backup()
# write file
self.output("Saving " + self.filename)
with open(self.file_path, "wb") as handler:
if not isinstance(content, bytes):
content = bytes(content, "utf-8")
handler.write(content)
self.yeah("Done!") | python | def save(self, content):
"""
Save any given content to the instance file.
:param content: (str or bytes)
:return: (None)
"""
# backup existing file if needed
if os.path.exists(self.file_path) and not self.assume_yes:
message = "Overwrite existing {}? (y/n) "
if not confirm(message.format(self.filename)):
self.backup()
# write file
self.output("Saving " + self.filename)
with open(self.file_path, "wb") as handler:
if not isinstance(content, bytes):
content = bytes(content, "utf-8")
handler.write(content)
self.yeah("Done!") | [
"def",
"save",
"(",
"self",
",",
"content",
")",
":",
"# backup existing file if needed",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"self",
".",
"file_path",
")",
"and",
"not",
"self",
".",
"assume_yes",
":",
"message",
"=",
"\"Overwrite existing {}? (y/n) \"",
"if",
"not",
"confirm",
"(",
"message",
".",
"format",
"(",
"self",
".",
"filename",
")",
")",
":",
"self",
".",
"backup",
"(",
")",
"# write file",
"self",
".",
"output",
"(",
"\"Saving \"",
"+",
"self",
".",
"filename",
")",
"with",
"open",
"(",
"self",
".",
"file_path",
",",
"\"wb\"",
")",
"as",
"handler",
":",
"if",
"not",
"isinstance",
"(",
"content",
",",
"bytes",
")",
":",
"content",
"=",
"bytes",
"(",
"content",
",",
"\"utf-8\"",
")",
"handler",
".",
"write",
"(",
"content",
")",
"self",
".",
"yeah",
"(",
"\"Done!\"",
")"
] | Save any given content to the instance file.
:param content: (str or bytes)
:return: (None) | [
"Save",
"any",
"given",
"content",
"to",
"the",
"instance",
"file",
".",
":",
"param",
"content",
":",
"(",
"str",
"or",
"bytes",
")",
":",
"return",
":",
"(",
"None",
")"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/local.py#L23-L41 |
cuducos/getgist | getgist/local.py | LocalTools.backup | def backup(self):
"""Backups files with the same name of the instance filename"""
count = 0
name = "{}.bkp".format(self.filename)
backup = os.path.join(self.cwd, name)
while os.path.exists(backup):
count += 1
name = "{}.bkp{}".format(self.filename, count)
backup = os.path.join(self.cwd, name)
self.hey("Moving existing {} to {}".format(self.filename, name))
os.rename(os.path.join(self.cwd, self.filename), backup) | python | def backup(self):
"""Backups files with the same name of the instance filename"""
count = 0
name = "{}.bkp".format(self.filename)
backup = os.path.join(self.cwd, name)
while os.path.exists(backup):
count += 1
name = "{}.bkp{}".format(self.filename, count)
backup = os.path.join(self.cwd, name)
self.hey("Moving existing {} to {}".format(self.filename, name))
os.rename(os.path.join(self.cwd, self.filename), backup) | [
"def",
"backup",
"(",
"self",
")",
":",
"count",
"=",
"0",
"name",
"=",
"\"{}.bkp\"",
".",
"format",
"(",
"self",
".",
"filename",
")",
"backup",
"=",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"cwd",
",",
"name",
")",
"while",
"os",
".",
"path",
".",
"exists",
"(",
"backup",
")",
":",
"count",
"+=",
"1",
"name",
"=",
"\"{}.bkp{}\"",
".",
"format",
"(",
"self",
".",
"filename",
",",
"count",
")",
"backup",
"=",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"cwd",
",",
"name",
")",
"self",
".",
"hey",
"(",
"\"Moving existing {} to {}\"",
".",
"format",
"(",
"self",
".",
"filename",
",",
"name",
")",
")",
"os",
".",
"rename",
"(",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"cwd",
",",
"self",
".",
"filename",
")",
",",
"backup",
")"
] | Backups files with the same name of the instance filename | [
"Backups",
"files",
"with",
"the",
"same",
"name",
"of",
"the",
"instance",
"filename"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/local.py#L43-L53 |
cuducos/getgist | getgist/local.py | LocalTools.read | def read(self, file_path=None):
"""
Read the contents of a file.
:param filename: (str) path to a file in the local file system
:return: (str) contents of the file, or (False) if not found/not file
"""
if not file_path:
file_path = self.file_path
# abort if the file path does not exist
if not os.path.exists(file_path):
self.oops("Sorry, but {} does not exist".format(file_path))
return False
# abort if the file path is not a file
if not os.path.isfile(file_path):
self.oops("Sorry, but {} is not a file".format(file_path))
return False
with open(file_path) as handler:
return handler.read() | python | def read(self, file_path=None):
"""
Read the contents of a file.
:param filename: (str) path to a file in the local file system
:return: (str) contents of the file, or (False) if not found/not file
"""
if not file_path:
file_path = self.file_path
# abort if the file path does not exist
if not os.path.exists(file_path):
self.oops("Sorry, but {} does not exist".format(file_path))
return False
# abort if the file path is not a file
if not os.path.isfile(file_path):
self.oops("Sorry, but {} is not a file".format(file_path))
return False
with open(file_path) as handler:
return handler.read() | [
"def",
"read",
"(",
"self",
",",
"file_path",
"=",
"None",
")",
":",
"if",
"not",
"file_path",
":",
"file_path",
"=",
"self",
".",
"file_path",
"# abort if the file path does not exist",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"file_path",
")",
":",
"self",
".",
"oops",
"(",
"\"Sorry, but {} does not exist\"",
".",
"format",
"(",
"file_path",
")",
")",
"return",
"False",
"# abort if the file path is not a file",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"file_path",
")",
":",
"self",
".",
"oops",
"(",
"\"Sorry, but {} is not a file\"",
".",
"format",
"(",
"file_path",
")",
")",
"return",
"False",
"with",
"open",
"(",
"file_path",
")",
"as",
"handler",
":",
"return",
"handler",
".",
"read",
"(",
")"
] | Read the contents of a file.
:param filename: (str) path to a file in the local file system
:return: (str) contents of the file, or (False) if not found/not file | [
"Read",
"the",
"contents",
"of",
"a",
"file",
".",
":",
"param",
"filename",
":",
"(",
"str",
")",
"path",
"to",
"a",
"file",
"in",
"the",
"local",
"file",
"system",
":",
"return",
":",
"(",
"str",
")",
"contents",
"of",
"the",
"file",
"or",
"(",
"False",
")",
"if",
"not",
"found",
"/",
"not",
"file"
] | train | https://github.com/cuducos/getgist/blob/c70a0a9353eca43360b82c759d1e1514ec265d3b/getgist/local.py#L55-L75 |
thautwarm/EBNFParser | Python/Ruikowa/ObjectRegex/Tokenizer.py | char_matcher | def char_matcher(mode):
"""
a faster way for characters to generate token strings cache
"""
def f_raw(inp_str, pos):
return mode if inp_str[pos] is mode else None
def f_collection(inp_str, pos):
ch = inp_str[pos]
for each in mode:
if ch is each:
return ch
return None
if isinstance(mode, str):
return f_raw
if len(mode) is 1:
mode = mode[0]
return f_raw
return f_collection | python | def char_matcher(mode):
"""
a faster way for characters to generate token strings cache
"""
def f_raw(inp_str, pos):
return mode if inp_str[pos] is mode else None
def f_collection(inp_str, pos):
ch = inp_str[pos]
for each in mode:
if ch is each:
return ch
return None
if isinstance(mode, str):
return f_raw
if len(mode) is 1:
mode = mode[0]
return f_raw
return f_collection | [
"def",
"char_matcher",
"(",
"mode",
")",
":",
"def",
"f_raw",
"(",
"inp_str",
",",
"pos",
")",
":",
"return",
"mode",
"if",
"inp_str",
"[",
"pos",
"]",
"is",
"mode",
"else",
"None",
"def",
"f_collection",
"(",
"inp_str",
",",
"pos",
")",
":",
"ch",
"=",
"inp_str",
"[",
"pos",
"]",
"for",
"each",
"in",
"mode",
":",
"if",
"ch",
"is",
"each",
":",
"return",
"ch",
"return",
"None",
"if",
"isinstance",
"(",
"mode",
",",
"str",
")",
":",
"return",
"f_raw",
"if",
"len",
"(",
"mode",
")",
"is",
"1",
":",
"mode",
"=",
"mode",
"[",
"0",
"]",
"return",
"f_raw",
"return",
"f_collection"
] | a faster way for characters to generate token strings cache | [
"a",
"faster",
"way",
"for",
"characters",
"to",
"generate",
"token",
"strings",
"cache"
] | train | https://github.com/thautwarm/EBNFParser/blob/101a92c4f408f9e6ce7b55aacb39cded9394521d/Python/Ruikowa/ObjectRegex/Tokenizer.py#L159-L181 |
thautwarm/EBNFParser | Python/Ruikowa/ObjectRegex/Tokenizer.py | str_matcher | def str_matcher(mode):
"""
generate token strings' cache
"""
def f_raw(inp_str, pos):
return unique_literal_cache_pool[mode] if inp_str.startswith(mode, pos) else None
def f_collection(inp_str, pos):
for each in mode:
if inp_str.startswith(each, pos):
return unique_literal_cache_pool[each]
return None
if isinstance(mode, str):
return f_raw
if len(mode) is 1:
mode = mode[0]
return f_raw
return f_collection | python | def str_matcher(mode):
"""
generate token strings' cache
"""
def f_raw(inp_str, pos):
return unique_literal_cache_pool[mode] if inp_str.startswith(mode, pos) else None
def f_collection(inp_str, pos):
for each in mode:
if inp_str.startswith(each, pos):
return unique_literal_cache_pool[each]
return None
if isinstance(mode, str):
return f_raw
if len(mode) is 1:
mode = mode[0]
return f_raw
return f_collection | [
"def",
"str_matcher",
"(",
"mode",
")",
":",
"def",
"f_raw",
"(",
"inp_str",
",",
"pos",
")",
":",
"return",
"unique_literal_cache_pool",
"[",
"mode",
"]",
"if",
"inp_str",
".",
"startswith",
"(",
"mode",
",",
"pos",
")",
"else",
"None",
"def",
"f_collection",
"(",
"inp_str",
",",
"pos",
")",
":",
"for",
"each",
"in",
"mode",
":",
"if",
"inp_str",
".",
"startswith",
"(",
"each",
",",
"pos",
")",
":",
"return",
"unique_literal_cache_pool",
"[",
"each",
"]",
"return",
"None",
"if",
"isinstance",
"(",
"mode",
",",
"str",
")",
":",
"return",
"f_raw",
"if",
"len",
"(",
"mode",
")",
"is",
"1",
":",
"mode",
"=",
"mode",
"[",
"0",
"]",
"return",
"f_raw",
"return",
"f_collection"
] | generate token strings' cache | [
"generate",
"token",
"strings",
"cache"
] | train | https://github.com/thautwarm/EBNFParser/blob/101a92c4f408f9e6ce7b55aacb39cded9394521d/Python/Ruikowa/ObjectRegex/Tokenizer.py#L184-L205 |
thautwarm/EBNFParser | Python/Ruikowa/ObjectRegex/Tokenizer.py | regex_matcher | def regex_matcher(regex_pat):
"""
generate token names' cache
:param regex_pat:
:return:
"""
if isinstance(regex_pat, str):
regex_pat = re.compile(regex_pat)
def f(inp_str, pos):
m = regex_pat.match(inp_str, pos)
return m.group() if m else None
return f | python | def regex_matcher(regex_pat):
"""
generate token names' cache
:param regex_pat:
:return:
"""
if isinstance(regex_pat, str):
regex_pat = re.compile(regex_pat)
def f(inp_str, pos):
m = regex_pat.match(inp_str, pos)
return m.group() if m else None
return f | [
"def",
"regex_matcher",
"(",
"regex_pat",
")",
":",
"if",
"isinstance",
"(",
"regex_pat",
",",
"str",
")",
":",
"regex_pat",
"=",
"re",
".",
"compile",
"(",
"regex_pat",
")",
"def",
"f",
"(",
"inp_str",
",",
"pos",
")",
":",
"m",
"=",
"regex_pat",
".",
"match",
"(",
"inp_str",
",",
"pos",
")",
"return",
"m",
".",
"group",
"(",
")",
"if",
"m",
"else",
"None",
"return",
"f"
] | generate token names' cache
:param regex_pat:
:return: | [
"generate",
"token",
"names",
"cache",
":",
"param",
"regex_pat",
":",
":",
"return",
":"
] | train | https://github.com/thautwarm/EBNFParser/blob/101a92c4f408f9e6ce7b55aacb39cded9394521d/Python/Ruikowa/ObjectRegex/Tokenizer.py#L208-L221 |
thautwarm/EBNFParser | Python/Ruikowa/Bootstrap/Ast.py | Compiler.ast_for_stmts | def ast_for_stmts(self, stmts: T) -> None:
"""
Stmts ::= TokenDef{0, 1} Equals*;
"""
if not stmts:
raise ValueError('no ast found!')
head, *equals = stmts
if head.name is NameEnum.TokenDef:
self.ast_for_token_def(head)
elif head.name is NameEnum.TokenIgnore:
self.ast_for_token_ignore(head)
else:
self.ast_for_equals(head)
for each in equals:
self.ast_for_equals(each)
# if every combined parser can reach any other combined,
# just take any of them and compile it!
if not self.compile_helper.alone and self._current__combined_parser_name:
self.compile_helper.alone.add(self._current__combined_parser_name) | python | def ast_for_stmts(self, stmts: T) -> None:
"""
Stmts ::= TokenDef{0, 1} Equals*;
"""
if not stmts:
raise ValueError('no ast found!')
head, *equals = stmts
if head.name is NameEnum.TokenDef:
self.ast_for_token_def(head)
elif head.name is NameEnum.TokenIgnore:
self.ast_for_token_ignore(head)
else:
self.ast_for_equals(head)
for each in equals:
self.ast_for_equals(each)
# if every combined parser can reach any other combined,
# just take any of them and compile it!
if not self.compile_helper.alone and self._current__combined_parser_name:
self.compile_helper.alone.add(self._current__combined_parser_name) | [
"def",
"ast_for_stmts",
"(",
"self",
",",
"stmts",
":",
"T",
")",
"->",
"None",
":",
"if",
"not",
"stmts",
":",
"raise",
"ValueError",
"(",
"'no ast found!'",
")",
"head",
",",
"",
"*",
"equals",
"=",
"stmts",
"if",
"head",
".",
"name",
"is",
"NameEnum",
".",
"TokenDef",
":",
"self",
".",
"ast_for_token_def",
"(",
"head",
")",
"elif",
"head",
".",
"name",
"is",
"NameEnum",
".",
"TokenIgnore",
":",
"self",
".",
"ast_for_token_ignore",
"(",
"head",
")",
"else",
":",
"self",
".",
"ast_for_equals",
"(",
"head",
")",
"for",
"each",
"in",
"equals",
":",
"self",
".",
"ast_for_equals",
"(",
"each",
")",
"# if every combined parser can reach any other combined, \r",
"# just take any of them and compile it!\r",
"if",
"not",
"self",
".",
"compile_helper",
".",
"alone",
"and",
"self",
".",
"_current__combined_parser_name",
":",
"self",
".",
"compile_helper",
".",
"alone",
".",
"add",
"(",
"self",
".",
"_current__combined_parser_name",
")"
] | Stmts ::= TokenDef{0, 1} Equals*; | [
"Stmts",
"::",
"=",
"TokenDef",
"{",
"0",
"1",
"}",
"Equals",
"*",
";"
] | train | https://github.com/thautwarm/EBNFParser/blob/101a92c4f408f9e6ce7b55aacb39cded9394521d/Python/Ruikowa/Bootstrap/Ast.py#L54-L75 |
andela-sjames/paystack-python | paystackapi/base.py | PayStackRequests._request | def _request(self, method, resource_uri, **kwargs):
"""Perform a method on a resource.
Args:
method: requests.`method`
resource_uri: resource endpoint
Raises:
HTTPError
Returns:
JSON Response
"""
data = kwargs.get('data')
response = method(self.API_BASE_URL + resource_uri,
json=data, headers=self.headers)
response.raise_for_status()
return response.json() | python | def _request(self, method, resource_uri, **kwargs):
"""Perform a method on a resource.
Args:
method: requests.`method`
resource_uri: resource endpoint
Raises:
HTTPError
Returns:
JSON Response
"""
data = kwargs.get('data')
response = method(self.API_BASE_URL + resource_uri,
json=data, headers=self.headers)
response.raise_for_status()
return response.json() | [
"def",
"_request",
"(",
"self",
",",
"method",
",",
"resource_uri",
",",
"*",
"*",
"kwargs",
")",
":",
"data",
"=",
"kwargs",
".",
"get",
"(",
"'data'",
")",
"response",
"=",
"method",
"(",
"self",
".",
"API_BASE_URL",
"+",
"resource_uri",
",",
"json",
"=",
"data",
",",
"headers",
"=",
"self",
".",
"headers",
")",
"response",
".",
"raise_for_status",
"(",
")",
"return",
"response",
".",
"json",
"(",
")"
] | Perform a method on a resource.
Args:
method: requests.`method`
resource_uri: resource endpoint
Raises:
HTTPError
Returns:
JSON Response | [
"Perform",
"a",
"method",
"on",
"a",
"resource",
"."
] | train | https://github.com/andela-sjames/paystack-python/blob/c9e4bddcb76e1490fefc362e71a21486400dccd4/paystackapi/base.py#L45-L60 |
andela-sjames/paystack-python | paystackapi/base.py | PayStackRequests.get | def get(self, endpoint, **kwargs):
"""Get a resource.
Args:
endpoint: resource endpoint.
"""
return self._request(requests.get, endpoint, **kwargs) | python | def get(self, endpoint, **kwargs):
"""Get a resource.
Args:
endpoint: resource endpoint.
"""
return self._request(requests.get, endpoint, **kwargs) | [
"def",
"get",
"(",
"self",
",",
"endpoint",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"_request",
"(",
"requests",
".",
"get",
",",
"endpoint",
",",
"*",
"*",
"kwargs",
")"
] | Get a resource.
Args:
endpoint: resource endpoint. | [
"Get",
"a",
"resource",
"."
] | train | https://github.com/andela-sjames/paystack-python/blob/c9e4bddcb76e1490fefc362e71a21486400dccd4/paystackapi/base.py#L62-L68 |
andela-sjames/paystack-python | paystackapi/base.py | PayStackRequests.post | def post(self, endpoint, **kwargs):
"""Create a resource.
Args:
endpoint: resource endpoint.
"""
return self._request(requests.post, endpoint, **kwargs) | python | def post(self, endpoint, **kwargs):
"""Create a resource.
Args:
endpoint: resource endpoint.
"""
return self._request(requests.post, endpoint, **kwargs) | [
"def",
"post",
"(",
"self",
",",
"endpoint",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"_request",
"(",
"requests",
".",
"post",
",",
"endpoint",
",",
"*",
"*",
"kwargs",
")"
] | Create a resource.
Args:
endpoint: resource endpoint. | [
"Create",
"a",
"resource",
"."
] | train | https://github.com/andela-sjames/paystack-python/blob/c9e4bddcb76e1490fefc362e71a21486400dccd4/paystackapi/base.py#L70-L76 |
andela-sjames/paystack-python | paystackapi/base.py | PayStackRequests.put | def put(self, endpoint, **kwargs):
"""Update a resource.
Args:
endpoint: resource endpoint.
"""
return self._request(requests.put, endpoint, **kwargs) | python | def put(self, endpoint, **kwargs):
"""Update a resource.
Args:
endpoint: resource endpoint.
"""
return self._request(requests.put, endpoint, **kwargs) | [
"def",
"put",
"(",
"self",
",",
"endpoint",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"_request",
"(",
"requests",
".",
"put",
",",
"endpoint",
",",
"*",
"*",
"kwargs",
")"
] | Update a resource.
Args:
endpoint: resource endpoint. | [
"Update",
"a",
"resource",
"."
] | train | https://github.com/andela-sjames/paystack-python/blob/c9e4bddcb76e1490fefc362e71a21486400dccd4/paystackapi/base.py#L78-L84 |
andela-sjames/paystack-python | paystackapi/customer.py | Customer.update | def update(cls, customer_id, **kwargs):
"""
Static method defined to update paystack customer data by id.
Args:
customer_id: paystack customer id.
first_name: customer's first name(optional).
last_name: customer's last name(optional).
email: customer's email address(optional).
phone:customer's phone number(optional).
Returns:
Json data from paystack API.
"""
return cls().requests.put('customer/{customer_id}'.format(**locals()),
data=kwargs) | python | def update(cls, customer_id, **kwargs):
"""
Static method defined to update paystack customer data by id.
Args:
customer_id: paystack customer id.
first_name: customer's first name(optional).
last_name: customer's last name(optional).
email: customer's email address(optional).
phone:customer's phone number(optional).
Returns:
Json data from paystack API.
"""
return cls().requests.put('customer/{customer_id}'.format(**locals()),
data=kwargs) | [
"def",
"update",
"(",
"cls",
",",
"customer_id",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"cls",
"(",
")",
".",
"requests",
".",
"put",
"(",
"'customer/{customer_id}'",
".",
"format",
"(",
"*",
"*",
"locals",
"(",
")",
")",
",",
"data",
"=",
"kwargs",
")"
] | Static method defined to update paystack customer data by id.
Args:
customer_id: paystack customer id.
first_name: customer's first name(optional).
last_name: customer's last name(optional).
email: customer's email address(optional).
phone:customer's phone number(optional).
Returns:
Json data from paystack API. | [
"Static",
"method",
"defined",
"to",
"update",
"paystack",
"customer",
"data",
"by",
"id",
"."
] | train | https://github.com/andela-sjames/paystack-python/blob/c9e4bddcb76e1490fefc362e71a21486400dccd4/paystackapi/customer.py#L50-L65 |
datadesk/slackdown | slackdown/__init__.py | render | def render(txt):
"""
Accepts Slack formatted text and returns HTML.
"""
# Removing links to other channels
txt = re.sub(r'<#[^\|]*\|(.*)>', r'#\g<1>', txt)
# Removing links to other users
txt = re.sub(r'<(@.*)>', r'\g<1>', txt)
# handle named hyperlinks
txt = re.sub(r'<([^\|]*)\|([^\|]*)>', r'<a href="\g<1>" target="blank">\g<2></a>', txt)
# handle unnamed hyperlinks
txt = re.sub(r'<([^a|/a].*)>', r'<a href="\g<1>" target="blank">\g<1></a>', txt)
# handle ordered and unordered lists
for delimeter in LIST_DELIMITERS:
slack_tag = delimeter
class_name = LIST_DELIMITERS[delimeter]
# Wrap any lines that start with the slack_tag in <li></li>
list_regex = u'(?:^|\n){}\s?(.*)'.format(slack_tag)
list_repl = r'<li class="list-item-{}">\g<1></li>'.format(class_name)
txt = re.sub(list_regex, list_repl, txt)
# hanlde blockquotes
txt = re.sub(u'(^|\n)(?:>){3}\s?(.*)$', r'\g<1><blockquote>\g<2></blockquote>', txt, flags=re.DOTALL)
txt = re.sub(u'(?:^|\n)>\s?(.*)\n?', r'<blockquote>\g<1></blockquote>', txt)
# handle code blocks
txt = re.sub(r'```\n?(.*)```', r'<pre>\g<1></pre>', txt, flags=re.DOTALL)
txt = re.sub(r'\n(</pre>)', r'\g<1>', txt)
# handle bolding, italics, and strikethrough
for wrapper in FORMATTERS:
slack_tag = wrapper
html_tag = FORMATTERS[wrapper]
# Grab all text in formatted characters on the same line unless escaped
regex = r'(?<!\\)\{t}([^\{t}|\n]*)\{t}'.format(t=slack_tag)
repl = r'<{t}>\g<1></{t}>'.format(t=html_tag)
txt = re.sub(regex, repl, txt)
# convert line breaks
txt = txt.replace('\n', '<br />')
# clean up bad HTML
parser = CustomSlackdownHTMLParser(txt)
txt = parser.clean()
# convert multiple spaces
txt = txt.replace(r' ', '  ')
return txt | python | def render(txt):
"""
Accepts Slack formatted text and returns HTML.
"""
# Removing links to other channels
txt = re.sub(r'<#[^\|]*\|(.*)>', r'#\g<1>', txt)
# Removing links to other users
txt = re.sub(r'<(@.*)>', r'\g<1>', txt)
# handle named hyperlinks
txt = re.sub(r'<([^\|]*)\|([^\|]*)>', r'<a href="\g<1>" target="blank">\g<2></a>', txt)
# handle unnamed hyperlinks
txt = re.sub(r'<([^a|/a].*)>', r'<a href="\g<1>" target="blank">\g<1></a>', txt)
# handle ordered and unordered lists
for delimeter in LIST_DELIMITERS:
slack_tag = delimeter
class_name = LIST_DELIMITERS[delimeter]
# Wrap any lines that start with the slack_tag in <li></li>
list_regex = u'(?:^|\n){}\s?(.*)'.format(slack_tag)
list_repl = r'<li class="list-item-{}">\g<1></li>'.format(class_name)
txt = re.sub(list_regex, list_repl, txt)
# hanlde blockquotes
txt = re.sub(u'(^|\n)(?:>){3}\s?(.*)$', r'\g<1><blockquote>\g<2></blockquote>', txt, flags=re.DOTALL)
txt = re.sub(u'(?:^|\n)>\s?(.*)\n?', r'<blockquote>\g<1></blockquote>', txt)
# handle code blocks
txt = re.sub(r'```\n?(.*)```', r'<pre>\g<1></pre>', txt, flags=re.DOTALL)
txt = re.sub(r'\n(</pre>)', r'\g<1>', txt)
# handle bolding, italics, and strikethrough
for wrapper in FORMATTERS:
slack_tag = wrapper
html_tag = FORMATTERS[wrapper]
# Grab all text in formatted characters on the same line unless escaped
regex = r'(?<!\\)\{t}([^\{t}|\n]*)\{t}'.format(t=slack_tag)
repl = r'<{t}>\g<1></{t}>'.format(t=html_tag)
txt = re.sub(regex, repl, txt)
# convert line breaks
txt = txt.replace('\n', '<br />')
# clean up bad HTML
parser = CustomSlackdownHTMLParser(txt)
txt = parser.clean()
# convert multiple spaces
txt = txt.replace(r' ', '  ')
return txt | [
"def",
"render",
"(",
"txt",
")",
":",
"# Removing links to other channels",
"txt",
"=",
"re",
".",
"sub",
"(",
"r'<#[^\\|]*\\|(.*)>'",
",",
"r'#\\g<1>'",
",",
"txt",
")",
"# Removing links to other users",
"txt",
"=",
"re",
".",
"sub",
"(",
"r'<(@.*)>'",
",",
"r'\\g<1>'",
",",
"txt",
")",
"# handle named hyperlinks",
"txt",
"=",
"re",
".",
"sub",
"(",
"r'<([^\\|]*)\\|([^\\|]*)>'",
",",
"r'<a href=\"\\g<1>\" target=\"blank\">\\g<2></a>'",
",",
"txt",
")",
"# handle unnamed hyperlinks",
"txt",
"=",
"re",
".",
"sub",
"(",
"r'<([^a|/a].*)>'",
",",
"r'<a href=\"\\g<1>\" target=\"blank\">\\g<1></a>'",
",",
"txt",
")",
"# handle ordered and unordered lists",
"for",
"delimeter",
"in",
"LIST_DELIMITERS",
":",
"slack_tag",
"=",
"delimeter",
"class_name",
"=",
"LIST_DELIMITERS",
"[",
"delimeter",
"]",
"# Wrap any lines that start with the slack_tag in <li></li>",
"list_regex",
"=",
"u'(?:^|\\n){}\\s?(.*)'",
".",
"format",
"(",
"slack_tag",
")",
"list_repl",
"=",
"r'<li class=\"list-item-{}\">\\g<1></li>'",
".",
"format",
"(",
"class_name",
")",
"txt",
"=",
"re",
".",
"sub",
"(",
"list_regex",
",",
"list_repl",
",",
"txt",
")",
"# hanlde blockquotes",
"txt",
"=",
"re",
".",
"sub",
"(",
"u'(^|\\n)(?:>){3}\\s?(.*)$'",
",",
"r'\\g<1><blockquote>\\g<2></blockquote>'",
",",
"txt",
",",
"flags",
"=",
"re",
".",
"DOTALL",
")",
"txt",
"=",
"re",
".",
"sub",
"(",
"u'(?:^|\\n)>\\s?(.*)\\n?'",
",",
"r'<blockquote>\\g<1></blockquote>'",
",",
"txt",
")",
"# handle code blocks",
"txt",
"=",
"re",
".",
"sub",
"(",
"r'```\\n?(.*)```'",
",",
"r'<pre>\\g<1></pre>'",
",",
"txt",
",",
"flags",
"=",
"re",
".",
"DOTALL",
")",
"txt",
"=",
"re",
".",
"sub",
"(",
"r'\\n(</pre>)'",
",",
"r'\\g<1>'",
",",
"txt",
")",
"# handle bolding, italics, and strikethrough",
"for",
"wrapper",
"in",
"FORMATTERS",
":",
"slack_tag",
"=",
"wrapper",
"html_tag",
"=",
"FORMATTERS",
"[",
"wrapper",
"]",
"# Grab all text in formatted characters on the same line unless escaped",
"regex",
"=",
"r'(?<!\\\\)\\{t}([^\\{t}|\\n]*)\\{t}'",
".",
"format",
"(",
"t",
"=",
"slack_tag",
")",
"repl",
"=",
"r'<{t}>\\g<1></{t}>'",
".",
"format",
"(",
"t",
"=",
"html_tag",
")",
"txt",
"=",
"re",
".",
"sub",
"(",
"regex",
",",
"repl",
",",
"txt",
")",
"# convert line breaks",
"txt",
"=",
"txt",
".",
"replace",
"(",
"'\\n'",
",",
"'<br />'",
")",
"# clean up bad HTML",
"parser",
"=",
"CustomSlackdownHTMLParser",
"(",
"txt",
")",
"txt",
"=",
"parser",
".",
"clean",
"(",
")",
"# convert multiple spaces",
"txt",
"=",
"txt",
".",
"replace",
"(",
"r' '",
",",
"'  '",
")",
"return",
"txt"
] | Accepts Slack formatted text and returns HTML. | [
"Accepts",
"Slack",
"formatted",
"text",
"and",
"returns",
"HTML",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/__init__.py#L59-L114 |
datadesk/slackdown | slackdown/__init__.py | CustomSlackdownHTMLParser._open_list | def _open_list(self, list_type):
"""
Add an open list tag corresponding to the specification in the
parser's LIST_TYPES.
"""
if list_type in LIST_TYPES.keys():
tag = LIST_TYPES[list_type]
else:
raise Exception('CustomSlackdownHTMLParser:_open_list: Not a valid list type.')
html = '<{t} class="list-container-{c}">'.format(
t=tag,
c=list_type
)
self.cleaned_html += html
self.current_parent_element['tag'] = LIST_TYPES[list_type]
self.current_parent_element['attrs'] = {'class': list_type} | python | def _open_list(self, list_type):
"""
Add an open list tag corresponding to the specification in the
parser's LIST_TYPES.
"""
if list_type in LIST_TYPES.keys():
tag = LIST_TYPES[list_type]
else:
raise Exception('CustomSlackdownHTMLParser:_open_list: Not a valid list type.')
html = '<{t} class="list-container-{c}">'.format(
t=tag,
c=list_type
)
self.cleaned_html += html
self.current_parent_element['tag'] = LIST_TYPES[list_type]
self.current_parent_element['attrs'] = {'class': list_type} | [
"def",
"_open_list",
"(",
"self",
",",
"list_type",
")",
":",
"if",
"list_type",
"in",
"LIST_TYPES",
".",
"keys",
"(",
")",
":",
"tag",
"=",
"LIST_TYPES",
"[",
"list_type",
"]",
"else",
":",
"raise",
"Exception",
"(",
"'CustomSlackdownHTMLParser:_open_list: Not a valid list type.'",
")",
"html",
"=",
"'<{t} class=\"list-container-{c}\">'",
".",
"format",
"(",
"t",
"=",
"tag",
",",
"c",
"=",
"list_type",
")",
"self",
".",
"cleaned_html",
"+=",
"html",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"=",
"LIST_TYPES",
"[",
"list_type",
"]",
"self",
".",
"current_parent_element",
"[",
"'attrs'",
"]",
"=",
"{",
"'class'",
":",
"list_type",
"}"
] | Add an open list tag corresponding to the specification in the
parser's LIST_TYPES. | [
"Add",
"an",
"open",
"list",
"tag",
"corresponding",
"to",
"the",
"specification",
"in",
"the",
"parser",
"s",
"LIST_TYPES",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/__init__.py#L134-L150 |
datadesk/slackdown | slackdown/__init__.py | CustomSlackdownHTMLParser._close_list | def _close_list(self):
"""
Add an close list tag corresponding to the currently open
list found in current_parent_element.
"""
list_type = self.current_parent_element['attrs']['class']
tag = LIST_TYPES[list_type]
html = '</{t}>'.format(
t=tag
)
self.cleaned_html += html
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = {} | python | def _close_list(self):
"""
Add an close list tag corresponding to the currently open
list found in current_parent_element.
"""
list_type = self.current_parent_element['attrs']['class']
tag = LIST_TYPES[list_type]
html = '</{t}>'.format(
t=tag
)
self.cleaned_html += html
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = {} | [
"def",
"_close_list",
"(",
"self",
")",
":",
"list_type",
"=",
"self",
".",
"current_parent_element",
"[",
"'attrs'",
"]",
"[",
"'class'",
"]",
"tag",
"=",
"LIST_TYPES",
"[",
"list_type",
"]",
"html",
"=",
"'</{t}>'",
".",
"format",
"(",
"t",
"=",
"tag",
")",
"self",
".",
"cleaned_html",
"+=",
"html",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"=",
"''",
"self",
".",
"current_parent_element",
"[",
"'attrs'",
"]",
"=",
"{",
"}"
] | Add an close list tag corresponding to the currently open
list found in current_parent_element. | [
"Add",
"an",
"close",
"list",
"tag",
"corresponding",
"to",
"the",
"currently",
"open",
"list",
"found",
"in",
"current_parent_element",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/__init__.py#L152-L165 |
datadesk/slackdown | slackdown/__init__.py | CustomSlackdownHTMLParser.handle_starttag | def handle_starttag(self, tag, attrs):
"""
Called by HTMLParser.feed when a start tag is found.
"""
# Parse the tag attributes
attrs_dict = dict(t for t in attrs)
# If the tag is a predefined parent element
if tag in PARENT_ELEMENTS:
# If parser is parsing another parent element
if self.current_parent_element['tag'] != '':
# close the parent element
self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])
self.current_parent_element['tag'] = tag
self.current_parent_element['attrs'] = {}
self.cleaned_html += '<{}>'.format(tag)
# If the tag is a list item
elif tag == 'li':
self.parsing_li = True
# Parse the class name & subsequent type
class_name = attrs_dict['class']
list_type = class_name[10:]
# Check if parsing a list
if self.current_parent_element['tag'] == 'ul' or self.current_parent_element['tag'] == 'ol':
cur_list_type = self.current_parent_element['attrs']['class']
# Parsing a different list
if cur_list_type != list_type:
# Close that list
self._close_list()
# Open new list
self._open_list(list_type)
# Not parsing a list
else:
# if parsing some other parent
if self.current_parent_element['tag'] != '':
self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])
# Open new list
self._open_list(list_type)
self.cleaned_html += '<{}>'.format(tag)
# If the tag is a line break
elif tag == 'br':
# If parsing a paragraph, close it
if self.current_parent_element['tag'] == 'p':
self.cleaned_html += '</p>'
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = {}
# If parsing a list, close it
elif self.current_parent_element['tag'] == 'ul' or self.current_parent_element['tag'] == 'ol':
self._close_list()
# If parsing any other parent element, keep it
elif self.current_parent_element['tag'] in PARENT_ELEMENTS:
self.cleaned_html += '<br />'
# If not in any parent element, create an empty paragraph
else:
self.cleaned_html += '<p></p>'
# If the tag is something else, like a <b> or <i> tag
else:
# If not parsing any parent element
if self.current_parent_element['tag'] == '':
self.cleaned_html += '<p>'
self.current_parent_element['tag'] = 'p'
self.cleaned_html += '<{}'.format(tag)
for attr in sorted(attrs_dict.keys()):
self.cleaned_html += ' {k}="{v}"'.format(
k=attr,
v=attrs_dict[attr]
)
self.cleaned_html += '>' | python | def handle_starttag(self, tag, attrs):
"""
Called by HTMLParser.feed when a start tag is found.
"""
# Parse the tag attributes
attrs_dict = dict(t for t in attrs)
# If the tag is a predefined parent element
if tag in PARENT_ELEMENTS:
# If parser is parsing another parent element
if self.current_parent_element['tag'] != '':
# close the parent element
self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])
self.current_parent_element['tag'] = tag
self.current_parent_element['attrs'] = {}
self.cleaned_html += '<{}>'.format(tag)
# If the tag is a list item
elif tag == 'li':
self.parsing_li = True
# Parse the class name & subsequent type
class_name = attrs_dict['class']
list_type = class_name[10:]
# Check if parsing a list
if self.current_parent_element['tag'] == 'ul' or self.current_parent_element['tag'] == 'ol':
cur_list_type = self.current_parent_element['attrs']['class']
# Parsing a different list
if cur_list_type != list_type:
# Close that list
self._close_list()
# Open new list
self._open_list(list_type)
# Not parsing a list
else:
# if parsing some other parent
if self.current_parent_element['tag'] != '':
self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])
# Open new list
self._open_list(list_type)
self.cleaned_html += '<{}>'.format(tag)
# If the tag is a line break
elif tag == 'br':
# If parsing a paragraph, close it
if self.current_parent_element['tag'] == 'p':
self.cleaned_html += '</p>'
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = {}
# If parsing a list, close it
elif self.current_parent_element['tag'] == 'ul' or self.current_parent_element['tag'] == 'ol':
self._close_list()
# If parsing any other parent element, keep it
elif self.current_parent_element['tag'] in PARENT_ELEMENTS:
self.cleaned_html += '<br />'
# If not in any parent element, create an empty paragraph
else:
self.cleaned_html += '<p></p>'
# If the tag is something else, like a <b> or <i> tag
else:
# If not parsing any parent element
if self.current_parent_element['tag'] == '':
self.cleaned_html += '<p>'
self.current_parent_element['tag'] = 'p'
self.cleaned_html += '<{}'.format(tag)
for attr in sorted(attrs_dict.keys()):
self.cleaned_html += ' {k}="{v}"'.format(
k=attr,
v=attrs_dict[attr]
)
self.cleaned_html += '>' | [
"def",
"handle_starttag",
"(",
"self",
",",
"tag",
",",
"attrs",
")",
":",
"# Parse the tag attributes",
"attrs_dict",
"=",
"dict",
"(",
"t",
"for",
"t",
"in",
"attrs",
")",
"# If the tag is a predefined parent element",
"if",
"tag",
"in",
"PARENT_ELEMENTS",
":",
"# If parser is parsing another parent element",
"if",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"!=",
"''",
":",
"# close the parent element",
"self",
".",
"cleaned_html",
"+=",
"'</{}>'",
".",
"format",
"(",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
")",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"=",
"tag",
"self",
".",
"current_parent_element",
"[",
"'attrs'",
"]",
"=",
"{",
"}",
"self",
".",
"cleaned_html",
"+=",
"'<{}>'",
".",
"format",
"(",
"tag",
")",
"# If the tag is a list item",
"elif",
"tag",
"==",
"'li'",
":",
"self",
".",
"parsing_li",
"=",
"True",
"# Parse the class name & subsequent type",
"class_name",
"=",
"attrs_dict",
"[",
"'class'",
"]",
"list_type",
"=",
"class_name",
"[",
"10",
":",
"]",
"# Check if parsing a list",
"if",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"==",
"'ul'",
"or",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"==",
"'ol'",
":",
"cur_list_type",
"=",
"self",
".",
"current_parent_element",
"[",
"'attrs'",
"]",
"[",
"'class'",
"]",
"# Parsing a different list",
"if",
"cur_list_type",
"!=",
"list_type",
":",
"# Close that list",
"self",
".",
"_close_list",
"(",
")",
"# Open new list",
"self",
".",
"_open_list",
"(",
"list_type",
")",
"# Not parsing a list",
"else",
":",
"# if parsing some other parent",
"if",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"!=",
"''",
":",
"self",
".",
"cleaned_html",
"+=",
"'</{}>'",
".",
"format",
"(",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
")",
"# Open new list",
"self",
".",
"_open_list",
"(",
"list_type",
")",
"self",
".",
"cleaned_html",
"+=",
"'<{}>'",
".",
"format",
"(",
"tag",
")",
"# If the tag is a line break",
"elif",
"tag",
"==",
"'br'",
":",
"# If parsing a paragraph, close it",
"if",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"==",
"'p'",
":",
"self",
".",
"cleaned_html",
"+=",
"'</p>'",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"=",
"''",
"self",
".",
"current_parent_element",
"[",
"'attrs'",
"]",
"=",
"{",
"}",
"# If parsing a list, close it",
"elif",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"==",
"'ul'",
"or",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"==",
"'ol'",
":",
"self",
".",
"_close_list",
"(",
")",
"# If parsing any other parent element, keep it",
"elif",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"in",
"PARENT_ELEMENTS",
":",
"self",
".",
"cleaned_html",
"+=",
"'<br />'",
"# If not in any parent element, create an empty paragraph",
"else",
":",
"self",
".",
"cleaned_html",
"+=",
"'<p></p>'",
"# If the tag is something else, like a <b> or <i> tag",
"else",
":",
"# If not parsing any parent element",
"if",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"==",
"''",
":",
"self",
".",
"cleaned_html",
"+=",
"'<p>'",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"=",
"'p'",
"self",
".",
"cleaned_html",
"+=",
"'<{}'",
".",
"format",
"(",
"tag",
")",
"for",
"attr",
"in",
"sorted",
"(",
"attrs_dict",
".",
"keys",
"(",
")",
")",
":",
"self",
".",
"cleaned_html",
"+=",
"' {k}=\"{v}\"'",
".",
"format",
"(",
"k",
"=",
"attr",
",",
"v",
"=",
"attrs_dict",
"[",
"attr",
"]",
")",
"self",
".",
"cleaned_html",
"+=",
"'>'"
] | Called by HTMLParser.feed when a start tag is found. | [
"Called",
"by",
"HTMLParser",
".",
"feed",
"when",
"a",
"start",
"tag",
"is",
"found",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/__init__.py#L167-L245 |
datadesk/slackdown | slackdown/__init__.py | CustomSlackdownHTMLParser.handle_endtag | def handle_endtag(self, tag):
"""
Called by HTMLParser.feed when an end tag is found.
"""
if tag in PARENT_ELEMENTS:
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = ''
if tag == 'li':
self.parsing_li = True
if tag != 'br':
self.cleaned_html += '</{}>'.format(tag) | python | def handle_endtag(self, tag):
"""
Called by HTMLParser.feed when an end tag is found.
"""
if tag in PARENT_ELEMENTS:
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = ''
if tag == 'li':
self.parsing_li = True
if tag != 'br':
self.cleaned_html += '</{}>'.format(tag) | [
"def",
"handle_endtag",
"(",
"self",
",",
"tag",
")",
":",
"if",
"tag",
"in",
"PARENT_ELEMENTS",
":",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"=",
"''",
"self",
".",
"current_parent_element",
"[",
"'attrs'",
"]",
"=",
"''",
"if",
"tag",
"==",
"'li'",
":",
"self",
".",
"parsing_li",
"=",
"True",
"if",
"tag",
"!=",
"'br'",
":",
"self",
".",
"cleaned_html",
"+=",
"'</{}>'",
".",
"format",
"(",
"tag",
")"
] | Called by HTMLParser.feed when an end tag is found. | [
"Called",
"by",
"HTMLParser",
".",
"feed",
"when",
"an",
"end",
"tag",
"is",
"found",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/__init__.py#L247-L258 |
datadesk/slackdown | slackdown/__init__.py | CustomSlackdownHTMLParser.handle_data | def handle_data(self, data):
"""
Called by HTMLParser.feed when text is found.
"""
if self.current_parent_element['tag'] == '':
self.cleaned_html += '<p>'
self.current_parent_element['tag'] = 'p'
self.cleaned_html += data | python | def handle_data(self, data):
"""
Called by HTMLParser.feed when text is found.
"""
if self.current_parent_element['tag'] == '':
self.cleaned_html += '<p>'
self.current_parent_element['tag'] = 'p'
self.cleaned_html += data | [
"def",
"handle_data",
"(",
"self",
",",
"data",
")",
":",
"if",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"==",
"''",
":",
"self",
".",
"cleaned_html",
"+=",
"'<p>'",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"=",
"'p'",
"self",
".",
"cleaned_html",
"+=",
"data"
] | Called by HTMLParser.feed when text is found. | [
"Called",
"by",
"HTMLParser",
".",
"feed",
"when",
"text",
"is",
"found",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/__init__.py#L260-L268 |
datadesk/slackdown | slackdown/__init__.py | CustomSlackdownHTMLParser._remove_pre_formatting | def _remove_pre_formatting(self):
"""
Removes formatting tags added to pre elements.
"""
preformatted_wrappers = [
'pre',
'code'
]
for wrapper in preformatted_wrappers:
for formatter in FORMATTERS:
tag = FORMATTERS[formatter]
character = formatter
regex = r'(<{w}>.*)<{t}>(.*)</{t}>(.*</{w}>)'.format(
t=tag,
w=wrapper
)
repl = r'\g<1>{c}\g<2>{c}\g<3>'.format(c=character)
self.cleaned_html = re.sub(regex, repl, self.cleaned_html) | python | def _remove_pre_formatting(self):
"""
Removes formatting tags added to pre elements.
"""
preformatted_wrappers = [
'pre',
'code'
]
for wrapper in preformatted_wrappers:
for formatter in FORMATTERS:
tag = FORMATTERS[formatter]
character = formatter
regex = r'(<{w}>.*)<{t}>(.*)</{t}>(.*</{w}>)'.format(
t=tag,
w=wrapper
)
repl = r'\g<1>{c}\g<2>{c}\g<3>'.format(c=character)
self.cleaned_html = re.sub(regex, repl, self.cleaned_html) | [
"def",
"_remove_pre_formatting",
"(",
"self",
")",
":",
"preformatted_wrappers",
"=",
"[",
"'pre'",
",",
"'code'",
"]",
"for",
"wrapper",
"in",
"preformatted_wrappers",
":",
"for",
"formatter",
"in",
"FORMATTERS",
":",
"tag",
"=",
"FORMATTERS",
"[",
"formatter",
"]",
"character",
"=",
"formatter",
"regex",
"=",
"r'(<{w}>.*)<{t}>(.*)</{t}>(.*</{w}>)'",
".",
"format",
"(",
"t",
"=",
"tag",
",",
"w",
"=",
"wrapper",
")",
"repl",
"=",
"r'\\g<1>{c}\\g<2>{c}\\g<3>'",
".",
"format",
"(",
"c",
"=",
"character",
")",
"self",
".",
"cleaned_html",
"=",
"re",
".",
"sub",
"(",
"regex",
",",
"repl",
",",
"self",
".",
"cleaned_html",
")"
] | Removes formatting tags added to pre elements. | [
"Removes",
"formatting",
"tags",
"added",
"to",
"pre",
"elements",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/__init__.py#L270-L289 |
datadesk/slackdown | slackdown/__init__.py | CustomSlackdownHTMLParser.clean | def clean(self):
"""
Goes through the txt input and cleans up any problematic HTML.
"""
# Calls handle_starttag, handle_endtag, and handle_data
self.feed()
# Clean up any parent tags left open
if self.current_parent_element['tag'] != '':
self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])
# Remove empty <p> added after lists
self.cleaned_html = re.sub(r'(</[u|o]l>)<p></p>', r'\g<1>', self.cleaned_html)
self._remove_pre_formatting()
return self.cleaned_html | python | def clean(self):
"""
Goes through the txt input and cleans up any problematic HTML.
"""
# Calls handle_starttag, handle_endtag, and handle_data
self.feed()
# Clean up any parent tags left open
if self.current_parent_element['tag'] != '':
self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])
# Remove empty <p> added after lists
self.cleaned_html = re.sub(r'(</[u|o]l>)<p></p>', r'\g<1>', self.cleaned_html)
self._remove_pre_formatting()
return self.cleaned_html | [
"def",
"clean",
"(",
"self",
")",
":",
"# Calls handle_starttag, handle_endtag, and handle_data",
"self",
".",
"feed",
"(",
")",
"# Clean up any parent tags left open",
"if",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
"!=",
"''",
":",
"self",
".",
"cleaned_html",
"+=",
"'</{}>'",
".",
"format",
"(",
"self",
".",
"current_parent_element",
"[",
"'tag'",
"]",
")",
"# Remove empty <p> added after lists",
"self",
".",
"cleaned_html",
"=",
"re",
".",
"sub",
"(",
"r'(</[u|o]l>)<p></p>'",
",",
"r'\\g<1>'",
",",
"self",
".",
"cleaned_html",
")",
"self",
".",
"_remove_pre_formatting",
"(",
")",
"return",
"self",
".",
"cleaned_html"
] | Goes through the txt input and cleans up any problematic HTML. | [
"Goes",
"through",
"the",
"txt",
"input",
"and",
"cleans",
"up",
"any",
"problematic",
"HTML",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/__init__.py#L297-L313 |
datadesk/slackdown | slackdown/templates.py | render_author | def render_author(**kwargs):
"""
Unstrict template block for rendering authors:
<div class="author">
<img class="author-avatar" src="{author_avatar}">
<p class="author-name">
<a href="{author_link}">{author_name}</a>
</p>
<p class="user-handle">{author_handle}</p>
</div>
"""
html = '<div class="user">'
author_avatar = kwargs.get('author_avatar', None)
if author_avatar:
html += '<img class="user-avatar" src="{}">'.format(author_avatar)
author_name = kwargs.get('author_name', None)
if author_name:
html += '<p class="user-name">'
author_link = kwargs.get('author_link', None)
if author_link:
html += '<a href="{author_link}">{author_name}</a>'.format(
author_link=author_link,
author_name=author_name
)
else:
html += author_name
html += '</p>'
author_handle = kwargs.get('author_handle', None)
if author_handle:
html += '<p class="user-handle">{}</p>'.format(author_handle)
html += '</div>' | python | def render_author(**kwargs):
"""
Unstrict template block for rendering authors:
<div class="author">
<img class="author-avatar" src="{author_avatar}">
<p class="author-name">
<a href="{author_link}">{author_name}</a>
</p>
<p class="user-handle">{author_handle}</p>
</div>
"""
html = '<div class="user">'
author_avatar = kwargs.get('author_avatar', None)
if author_avatar:
html += '<img class="user-avatar" src="{}">'.format(author_avatar)
author_name = kwargs.get('author_name', None)
if author_name:
html += '<p class="user-name">'
author_link = kwargs.get('author_link', None)
if author_link:
html += '<a href="{author_link}">{author_name}</a>'.format(
author_link=author_link,
author_name=author_name
)
else:
html += author_name
html += '</p>'
author_handle = kwargs.get('author_handle', None)
if author_handle:
html += '<p class="user-handle">{}</p>'.format(author_handle)
html += '</div>' | [
"def",
"render_author",
"(",
"*",
"*",
"kwargs",
")",
":",
"html",
"=",
"'<div class=\"user\">'",
"author_avatar",
"=",
"kwargs",
".",
"get",
"(",
"'author_avatar'",
",",
"None",
")",
"if",
"author_avatar",
":",
"html",
"+=",
"'<img class=\"user-avatar\" src=\"{}\">'",
".",
"format",
"(",
"author_avatar",
")",
"author_name",
"=",
"kwargs",
".",
"get",
"(",
"'author_name'",
",",
"None",
")",
"if",
"author_name",
":",
"html",
"+=",
"'<p class=\"user-name\">'",
"author_link",
"=",
"kwargs",
".",
"get",
"(",
"'author_link'",
",",
"None",
")",
"if",
"author_link",
":",
"html",
"+=",
"'<a href=\"{author_link}\">{author_name}</a>'",
".",
"format",
"(",
"author_link",
"=",
"author_link",
",",
"author_name",
"=",
"author_name",
")",
"else",
":",
"html",
"+=",
"author_name",
"html",
"+=",
"'</p>'",
"author_handle",
"=",
"kwargs",
".",
"get",
"(",
"'author_handle'",
",",
"None",
")",
"if",
"author_handle",
":",
"html",
"+=",
"'<p class=\"user-handle\">{}</p>'",
".",
"format",
"(",
"author_handle",
")",
"html",
"+=",
"'</div>'"
] | Unstrict template block for rendering authors:
<div class="author">
<img class="author-avatar" src="{author_avatar}">
<p class="author-name">
<a href="{author_link}">{author_name}</a>
</p>
<p class="user-handle">{author_handle}</p>
</div> | [
"Unstrict",
"template",
"block",
"for",
"rendering",
"authors",
":",
"<div",
"class",
"=",
"author",
">",
"<img",
"class",
"=",
"author",
"-",
"avatar",
"src",
"=",
"{",
"author_avatar",
"}",
">",
"<p",
"class",
"=",
"author",
"-",
"name",
">",
"<a",
"href",
"=",
"{",
"author_link",
"}",
">",
"{",
"author_name",
"}",
"<",
"/",
"a",
">",
"<",
"/",
"p",
">",
"<p",
"class",
"=",
"user",
"-",
"handle",
">",
"{",
"author_handle",
"}",
"<",
"/",
"p",
">",
"<",
"/",
"div",
">"
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/templates.py#L1-L37 |
datadesk/slackdown | slackdown/templates.py | render_metadata | def render_metadata(**kwargs):
"""
Unstrict template block for rendering metadata:
<div class="metadata">
<img class="metadata-logo" src="{service_logo}">
<p class="metadata-name">{service_name}</p>
<p class="metadata-timestamp">
<a href="{timestamp_link}">{timestamp}</a>
</p>
</div>
"""
html = '<div class="metadata">'
service_logo = kwargs.get('service_logo', None)
if service_logo:
html += '<img class="metadata-logo" src="{}">'.format(service_logo)
service_name = kwargs.get('service_name', None)
if service_name:
html += '<p class="metadata-name">{}</p>'.format(service_name)
timestamp = kwargs.get('timestamp', None)
if timestamp:
html += '<p class="user-name">'
timestamp_link = kwargs.get('timestamp_link', None)
if timestamp_link:
html += '<a href="{timestamp_link}">{timestamp}</a>'.format(
timestamp_link=timestamp_link,
timestamp=timestamp
)
else:
html += timestamp
html += '</p>'
html += '</div>' | python | def render_metadata(**kwargs):
"""
Unstrict template block for rendering metadata:
<div class="metadata">
<img class="metadata-logo" src="{service_logo}">
<p class="metadata-name">{service_name}</p>
<p class="metadata-timestamp">
<a href="{timestamp_link}">{timestamp}</a>
</p>
</div>
"""
html = '<div class="metadata">'
service_logo = kwargs.get('service_logo', None)
if service_logo:
html += '<img class="metadata-logo" src="{}">'.format(service_logo)
service_name = kwargs.get('service_name', None)
if service_name:
html += '<p class="metadata-name">{}</p>'.format(service_name)
timestamp = kwargs.get('timestamp', None)
if timestamp:
html += '<p class="user-name">'
timestamp_link = kwargs.get('timestamp_link', None)
if timestamp_link:
html += '<a href="{timestamp_link}">{timestamp}</a>'.format(
timestamp_link=timestamp_link,
timestamp=timestamp
)
else:
html += timestamp
html += '</p>'
html += '</div>' | [
"def",
"render_metadata",
"(",
"*",
"*",
"kwargs",
")",
":",
"html",
"=",
"'<div class=\"metadata\">'",
"service_logo",
"=",
"kwargs",
".",
"get",
"(",
"'service_logo'",
",",
"None",
")",
"if",
"service_logo",
":",
"html",
"+=",
"'<img class=\"metadata-logo\" src=\"{}\">'",
".",
"format",
"(",
"service_logo",
")",
"service_name",
"=",
"kwargs",
".",
"get",
"(",
"'service_name'",
",",
"None",
")",
"if",
"service_name",
":",
"html",
"+=",
"'<p class=\"metadata-name\">{}</p>'",
".",
"format",
"(",
"service_name",
")",
"timestamp",
"=",
"kwargs",
".",
"get",
"(",
"'timestamp'",
",",
"None",
")",
"if",
"timestamp",
":",
"html",
"+=",
"'<p class=\"user-name\">'",
"timestamp_link",
"=",
"kwargs",
".",
"get",
"(",
"'timestamp_link'",
",",
"None",
")",
"if",
"timestamp_link",
":",
"html",
"+=",
"'<a href=\"{timestamp_link}\">{timestamp}</a>'",
".",
"format",
"(",
"timestamp_link",
"=",
"timestamp_link",
",",
"timestamp",
"=",
"timestamp",
")",
"else",
":",
"html",
"+=",
"timestamp",
"html",
"+=",
"'</p>'",
"html",
"+=",
"'</div>'"
] | Unstrict template block for rendering metadata:
<div class="metadata">
<img class="metadata-logo" src="{service_logo}">
<p class="metadata-name">{service_name}</p>
<p class="metadata-timestamp">
<a href="{timestamp_link}">{timestamp}</a>
</p>
</div> | [
"Unstrict",
"template",
"block",
"for",
"rendering",
"metadata",
":",
"<div",
"class",
"=",
"metadata",
">",
"<img",
"class",
"=",
"metadata",
"-",
"logo",
"src",
"=",
"{",
"service_logo",
"}",
">",
"<p",
"class",
"=",
"metadata",
"-",
"name",
">",
"{",
"service_name",
"}",
"<",
"/",
"p",
">",
"<p",
"class",
"=",
"metadata",
"-",
"timestamp",
">",
"<a",
"href",
"=",
"{",
"timestamp_link",
"}",
">",
"{",
"timestamp",
"}",
"<",
"/",
"a",
">",
"<",
"/",
"p",
">",
"<",
"/",
"div",
">"
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/templates.py#L40-L76 |
datadesk/slackdown | slackdown/templates.py | render_image | def render_image(**kwargs):
"""
Unstrict template block for rendering an image:
<img alt="{alt_text}" title="{title}" src="{url}">
"""
html = ''
url = kwargs.get('url', None)
if url:
html = '<img'
alt_text = kwargs.get('alt_text', None)
if alt_text:
html += ' alt="{}"'.format(alt_text)
title = kwargs.get('title', None)
if title:
html += ' title="{}"'.format(title)
html += ' src="{}">'.format(url)
return html | python | def render_image(**kwargs):
"""
Unstrict template block for rendering an image:
<img alt="{alt_text}" title="{title}" src="{url}">
"""
html = ''
url = kwargs.get('url', None)
if url:
html = '<img'
alt_text = kwargs.get('alt_text', None)
if alt_text:
html += ' alt="{}"'.format(alt_text)
title = kwargs.get('title', None)
if title:
html += ' title="{}"'.format(title)
html += ' src="{}">'.format(url)
return html | [
"def",
"render_image",
"(",
"*",
"*",
"kwargs",
")",
":",
"html",
"=",
"''",
"url",
"=",
"kwargs",
".",
"get",
"(",
"'url'",
",",
"None",
")",
"if",
"url",
":",
"html",
"=",
"'<img'",
"alt_text",
"=",
"kwargs",
".",
"get",
"(",
"'alt_text'",
",",
"None",
")",
"if",
"alt_text",
":",
"html",
"+=",
"' alt=\"{}\"'",
".",
"format",
"(",
"alt_text",
")",
"title",
"=",
"kwargs",
".",
"get",
"(",
"'title'",
",",
"None",
")",
"if",
"title",
":",
"html",
"+=",
"' title=\"{}\"'",
".",
"format",
"(",
"title",
")",
"html",
"+=",
"' src=\"{}\">'",
".",
"format",
"(",
"url",
")",
"return",
"html"
] | Unstrict template block for rendering an image:
<img alt="{alt_text}" title="{title}" src="{url}"> | [
"Unstrict",
"template",
"block",
"for",
"rendering",
"an",
"image",
":",
"<img",
"alt",
"=",
"{",
"alt_text",
"}",
"title",
"=",
"{",
"title",
"}",
"src",
"=",
"{",
"url",
"}",
">"
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/templates.py#L79-L100 |
datadesk/slackdown | slackdown/templates.py | render_twitter | def render_twitter(text, **kwargs):
"""
Strict template block for rendering twitter embeds.
"""
author = render_author(**kwargs['author'])
metadata = render_metadata(**kwargs['metadata'])
image = render_image(**kwargs['image'])
html = """
<div class="attachment attachment-twitter">
{author}
<p class="twitter-content">{text}</p>
{metadata}
{image}
</div>
""".format(
author=author,
text=text,
metadata=metadata,
image=image
).strip()
return html | python | def render_twitter(text, **kwargs):
"""
Strict template block for rendering twitter embeds.
"""
author = render_author(**kwargs['author'])
metadata = render_metadata(**kwargs['metadata'])
image = render_image(**kwargs['image'])
html = """
<div class="attachment attachment-twitter">
{author}
<p class="twitter-content">{text}</p>
{metadata}
{image}
</div>
""".format(
author=author,
text=text,
metadata=metadata,
image=image
).strip()
return html | [
"def",
"render_twitter",
"(",
"text",
",",
"*",
"*",
"kwargs",
")",
":",
"author",
"=",
"render_author",
"(",
"*",
"*",
"kwargs",
"[",
"'author'",
"]",
")",
"metadata",
"=",
"render_metadata",
"(",
"*",
"*",
"kwargs",
"[",
"'metadata'",
"]",
")",
"image",
"=",
"render_image",
"(",
"*",
"*",
"kwargs",
"[",
"'image'",
"]",
")",
"html",
"=",
"\"\"\"\n <div class=\"attachment attachment-twitter\">\n {author}\n <p class=\"twitter-content\">{text}</p>\n {metadata}\n {image}\n </div>\n \"\"\"",
".",
"format",
"(",
"author",
"=",
"author",
",",
"text",
"=",
"text",
",",
"metadata",
"=",
"metadata",
",",
"image",
"=",
"image",
")",
".",
"strip",
"(",
")",
"return",
"html"
] | Strict template block for rendering twitter embeds. | [
"Strict",
"template",
"block",
"for",
"rendering",
"twitter",
"embeds",
"."
] | train | https://github.com/datadesk/slackdown/blob/2c5c2faf2673d0d58183f590f234d2c7e1fe8508/slackdown/templates.py#L103-L125 |
annayqho/TheCannon | code/lamost/li_giants/find_all_candidates.py | get_model | def get_model(LAB_DIR):
""" Cannon model params """
coeffs = np.load("%s/coeffs.npz" %LAB_DIR)['arr_0']
scatters = np.load("%s/scatters.npz" %LAB_DIR)['arr_0']
chisqs = np.load("%s/chisqs.npz" %LAB_DIR)['arr_0']
pivots = np.load("%s/pivots.npz" %LAB_DIR)['arr_0']
return coeffs, scatters, chisqs, pivots | python | def get_model(LAB_DIR):
""" Cannon model params """
coeffs = np.load("%s/coeffs.npz" %LAB_DIR)['arr_0']
scatters = np.load("%s/scatters.npz" %LAB_DIR)['arr_0']
chisqs = np.load("%s/chisqs.npz" %LAB_DIR)['arr_0']
pivots = np.load("%s/pivots.npz" %LAB_DIR)['arr_0']
return coeffs, scatters, chisqs, pivots | [
"def",
"get_model",
"(",
"LAB_DIR",
")",
":",
"coeffs",
"=",
"np",
".",
"load",
"(",
"\"%s/coeffs.npz\"",
"%",
"LAB_DIR",
")",
"[",
"'arr_0'",
"]",
"scatters",
"=",
"np",
".",
"load",
"(",
"\"%s/scatters.npz\"",
"%",
"LAB_DIR",
")",
"[",
"'arr_0'",
"]",
"chisqs",
"=",
"np",
".",
"load",
"(",
"\"%s/chisqs.npz\"",
"%",
"LAB_DIR",
")",
"[",
"'arr_0'",
"]",
"pivots",
"=",
"np",
".",
"load",
"(",
"\"%s/pivots.npz\"",
"%",
"LAB_DIR",
")",
"[",
"'arr_0'",
"]",
"return",
"coeffs",
",",
"scatters",
",",
"chisqs",
",",
"pivots"
] | Cannon model params | [
"Cannon",
"model",
"params"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/find_all_candidates.py#L50-L56 |
annayqho/TheCannon | code/lamost/li_giants/find_all_candidates.py | get_labels | def get_labels(ids_find):
""" Labels to make Cannon model spectra """
a = pyfits.open("%s/lamost_catalog_full.fits" %LAB_DIR)
data = a[1].data
a.close()
id_all = data['lamost_id']
id_all = np.array(id_all)
id_all = np.array([val.strip() for val in id_all])
snr_all = data['cannon_snrg']
chisq_all = data['cannon_chisq']
teff = data['cannon_teff']
logg = data['cannon_logg']
feh = data['cannon_m_h']
afe = data['cannon_alpha_m']
ak = data['cannon_a_k']
labels = np.vstack((teff,logg,feh,afe,ak))
choose = np.in1d(id_all, ids_find)
id_choose = id_all[choose]
label_choose = labels[:,choose]
snr_choose = snr_all[choose]
chisq_choose = chisq_all[choose]
inds = np.array([np.where(id_choose==val)[0][0] for val in ids_find])
print(id_choose[inds][100])
print(ids_find[100])
return label_choose[:,inds], snr_choose[inds], chisq_choose[inds] | python | def get_labels(ids_find):
""" Labels to make Cannon model spectra """
a = pyfits.open("%s/lamost_catalog_full.fits" %LAB_DIR)
data = a[1].data
a.close()
id_all = data['lamost_id']
id_all = np.array(id_all)
id_all = np.array([val.strip() for val in id_all])
snr_all = data['cannon_snrg']
chisq_all = data['cannon_chisq']
teff = data['cannon_teff']
logg = data['cannon_logg']
feh = data['cannon_m_h']
afe = data['cannon_alpha_m']
ak = data['cannon_a_k']
labels = np.vstack((teff,logg,feh,afe,ak))
choose = np.in1d(id_all, ids_find)
id_choose = id_all[choose]
label_choose = labels[:,choose]
snr_choose = snr_all[choose]
chisq_choose = chisq_all[choose]
inds = np.array([np.where(id_choose==val)[0][0] for val in ids_find])
print(id_choose[inds][100])
print(ids_find[100])
return label_choose[:,inds], snr_choose[inds], chisq_choose[inds] | [
"def",
"get_labels",
"(",
"ids_find",
")",
":",
"a",
"=",
"pyfits",
".",
"open",
"(",
"\"%s/lamost_catalog_full.fits\"",
"%",
"LAB_DIR",
")",
"data",
"=",
"a",
"[",
"1",
"]",
".",
"data",
"a",
".",
"close",
"(",
")",
"id_all",
"=",
"data",
"[",
"'lamost_id'",
"]",
"id_all",
"=",
"np",
".",
"array",
"(",
"id_all",
")",
"id_all",
"=",
"np",
".",
"array",
"(",
"[",
"val",
".",
"strip",
"(",
")",
"for",
"val",
"in",
"id_all",
"]",
")",
"snr_all",
"=",
"data",
"[",
"'cannon_snrg'",
"]",
"chisq_all",
"=",
"data",
"[",
"'cannon_chisq'",
"]",
"teff",
"=",
"data",
"[",
"'cannon_teff'",
"]",
"logg",
"=",
"data",
"[",
"'cannon_logg'",
"]",
"feh",
"=",
"data",
"[",
"'cannon_m_h'",
"]",
"afe",
"=",
"data",
"[",
"'cannon_alpha_m'",
"]",
"ak",
"=",
"data",
"[",
"'cannon_a_k'",
"]",
"labels",
"=",
"np",
".",
"vstack",
"(",
"(",
"teff",
",",
"logg",
",",
"feh",
",",
"afe",
",",
"ak",
")",
")",
"choose",
"=",
"np",
".",
"in1d",
"(",
"id_all",
",",
"ids_find",
")",
"id_choose",
"=",
"id_all",
"[",
"choose",
"]",
"label_choose",
"=",
"labels",
"[",
":",
",",
"choose",
"]",
"snr_choose",
"=",
"snr_all",
"[",
"choose",
"]",
"chisq_choose",
"=",
"chisq_all",
"[",
"choose",
"]",
"inds",
"=",
"np",
".",
"array",
"(",
"[",
"np",
".",
"where",
"(",
"id_choose",
"==",
"val",
")",
"[",
"0",
"]",
"[",
"0",
"]",
"for",
"val",
"in",
"ids_find",
"]",
")",
"print",
"(",
"id_choose",
"[",
"inds",
"]",
"[",
"100",
"]",
")",
"print",
"(",
"ids_find",
"[",
"100",
"]",
")",
"return",
"label_choose",
"[",
":",
",",
"inds",
"]",
",",
"snr_choose",
"[",
"inds",
"]",
",",
"chisq_choose",
"[",
"inds",
"]"
] | Labels to make Cannon model spectra | [
"Labels",
"to",
"make",
"Cannon",
"model",
"spectra"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/find_all_candidates.py#L59-L83 |
annayqho/TheCannon | code/lamost/li_giants/find_all_candidates.py | get_normed_spectra | def get_normed_spectra():
""" Spectra to compare with models """
wl = np.load("%s/wl.npz" %LAB_DIR)['arr_0']
filenames = np.array(
[SPEC_DIR + "/Spectra" + "/" + val for val in lamost_id])
grid, fluxes, ivars, npix, SNRs = lamost.load_spectra(
lamost_id, input_grid=wl)
ds = dataset.Dataset(
wl, lamost_id, fluxes, ivars, [1],
lamost_id[0:2], fluxes[0:2], ivars[0:2])
ds.continuum_normalize_gaussian_smoothing(L=50)
np.savez(SPEC_DIR + "/" + "norm_flux.npz", ds.tr_flux)
np.savez(SPEC_DIR + "/" + "norm_ivar.npz", ds.tr_ivar)
return ds.tr_flux, ds.tr_ivar | python | def get_normed_spectra():
""" Spectra to compare with models """
wl = np.load("%s/wl.npz" %LAB_DIR)['arr_0']
filenames = np.array(
[SPEC_DIR + "/Spectra" + "/" + val for val in lamost_id])
grid, fluxes, ivars, npix, SNRs = lamost.load_spectra(
lamost_id, input_grid=wl)
ds = dataset.Dataset(
wl, lamost_id, fluxes, ivars, [1],
lamost_id[0:2], fluxes[0:2], ivars[0:2])
ds.continuum_normalize_gaussian_smoothing(L=50)
np.savez(SPEC_DIR + "/" + "norm_flux.npz", ds.tr_flux)
np.savez(SPEC_DIR + "/" + "norm_ivar.npz", ds.tr_ivar)
return ds.tr_flux, ds.tr_ivar | [
"def",
"get_normed_spectra",
"(",
")",
":",
"wl",
"=",
"np",
".",
"load",
"(",
"\"%s/wl.npz\"",
"%",
"LAB_DIR",
")",
"[",
"'arr_0'",
"]",
"filenames",
"=",
"np",
".",
"array",
"(",
"[",
"SPEC_DIR",
"+",
"\"/Spectra\"",
"+",
"\"/\"",
"+",
"val",
"for",
"val",
"in",
"lamost_id",
"]",
")",
"grid",
",",
"fluxes",
",",
"ivars",
",",
"npix",
",",
"SNRs",
"=",
"lamost",
".",
"load_spectra",
"(",
"lamost_id",
",",
"input_grid",
"=",
"wl",
")",
"ds",
"=",
"dataset",
".",
"Dataset",
"(",
"wl",
",",
"lamost_id",
",",
"fluxes",
",",
"ivars",
",",
"[",
"1",
"]",
",",
"lamost_id",
"[",
"0",
":",
"2",
"]",
",",
"fluxes",
"[",
"0",
":",
"2",
"]",
",",
"ivars",
"[",
"0",
":",
"2",
"]",
")",
"ds",
".",
"continuum_normalize_gaussian_smoothing",
"(",
"L",
"=",
"50",
")",
"np",
".",
"savez",
"(",
"SPEC_DIR",
"+",
"\"/\"",
"+",
"\"norm_flux.npz\"",
",",
"ds",
".",
"tr_flux",
")",
"np",
".",
"savez",
"(",
"SPEC_DIR",
"+",
"\"/\"",
"+",
"\"norm_ivar.npz\"",
",",
"ds",
".",
"tr_ivar",
")",
"return",
"ds",
".",
"tr_flux",
",",
"ds",
".",
"tr_ivar"
] | Spectra to compare with models | [
"Spectra",
"to",
"compare",
"with",
"models"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/find_all_candidates.py#L86-L99 |
annayqho/TheCannon | code/lamost/li_giants/find_all_candidates.py | wget_files | def wget_files():
""" Pull the files from the LAMOST archive """
for f in lamost_id:
short = (f.split('-')[2]).split('_')[0]
filename = "%s/%s.gz" %(short,f)
DIR = "/Users/annaho/Data/Li_Giants/Spectra_APOKASC"
searchfor = "%s/%s.gz" %(DIR,f)
if glob.glob(searchfor):
print("done")
else:
#print(searchfor)
os.system(
"wget http://dr2.lamost.org/sas/fits/%s" %(filename))
new_filename = filename.split("_")[0] + "_" + filename.split("_")[2]
os.system(
"wget http://dr2.lamost.org/sas/fits/%s" %(new_filename)) | python | def wget_files():
""" Pull the files from the LAMOST archive """
for f in lamost_id:
short = (f.split('-')[2]).split('_')[0]
filename = "%s/%s.gz" %(short,f)
DIR = "/Users/annaho/Data/Li_Giants/Spectra_APOKASC"
searchfor = "%s/%s.gz" %(DIR,f)
if glob.glob(searchfor):
print("done")
else:
#print(searchfor)
os.system(
"wget http://dr2.lamost.org/sas/fits/%s" %(filename))
new_filename = filename.split("_")[0] + "_" + filename.split("_")[2]
os.system(
"wget http://dr2.lamost.org/sas/fits/%s" %(new_filename)) | [
"def",
"wget_files",
"(",
")",
":",
"for",
"f",
"in",
"lamost_id",
":",
"short",
"=",
"(",
"f",
".",
"split",
"(",
"'-'",
")",
"[",
"2",
"]",
")",
".",
"split",
"(",
"'_'",
")",
"[",
"0",
"]",
"filename",
"=",
"\"%s/%s.gz\"",
"%",
"(",
"short",
",",
"f",
")",
"DIR",
"=",
"\"/Users/annaho/Data/Li_Giants/Spectra_APOKASC\"",
"searchfor",
"=",
"\"%s/%s.gz\"",
"%",
"(",
"DIR",
",",
"f",
")",
"if",
"glob",
".",
"glob",
"(",
"searchfor",
")",
":",
"print",
"(",
"\"done\"",
")",
"else",
":",
"#print(searchfor)",
"os",
".",
"system",
"(",
"\"wget http://dr2.lamost.org/sas/fits/%s\"",
"%",
"(",
"filename",
")",
")",
"new_filename",
"=",
"filename",
".",
"split",
"(",
"\"_\"",
")",
"[",
"0",
"]",
"+",
"\"_\"",
"+",
"filename",
".",
"split",
"(",
"\"_\"",
")",
"[",
"2",
"]",
"os",
".",
"system",
"(",
"\"wget http://dr2.lamost.org/sas/fits/%s\"",
"%",
"(",
"new_filename",
")",
")"
] | Pull the files from the LAMOST archive | [
"Pull",
"the",
"files",
"from",
"the",
"LAMOST",
"archive"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/find_all_candidates.py#L102-L117 |
annayqho/TheCannon | code/lamost/li_giants/find_apokasc_candidates.py | get_labels | def get_labels():
""" Labels to make Cannon model spectra """
cannon_teff = data['cannon_teff_2']
cannon_logg = data['cannon_logg_2']
cannon_m_h = data['cannon_m_h']
cannon_alpha_m = data['cannon_alpha_m']
cannon_a_k = data['cannon_a_k']
labels = np.vstack(
(cannon_teff, cannon_logg, cannon_m_h, cannon_alpha_m, cannon_a_k))
cannon_chisq = data['cannon_chisq']
np.savez(DATA_DIR + "chisq.npz", labels)
np.savez(DATA_DIR + "labels.npz", labels)
snrg = data['cannon_snrg'] # snrg * 3
np.savez("snr.npz", snrg)
return labels.T | python | def get_labels():
""" Labels to make Cannon model spectra """
cannon_teff = data['cannon_teff_2']
cannon_logg = data['cannon_logg_2']
cannon_m_h = data['cannon_m_h']
cannon_alpha_m = data['cannon_alpha_m']
cannon_a_k = data['cannon_a_k']
labels = np.vstack(
(cannon_teff, cannon_logg, cannon_m_h, cannon_alpha_m, cannon_a_k))
cannon_chisq = data['cannon_chisq']
np.savez(DATA_DIR + "chisq.npz", labels)
np.savez(DATA_DIR + "labels.npz", labels)
snrg = data['cannon_snrg'] # snrg * 3
np.savez("snr.npz", snrg)
return labels.T | [
"def",
"get_labels",
"(",
")",
":",
"cannon_teff",
"=",
"data",
"[",
"'cannon_teff_2'",
"]",
"cannon_logg",
"=",
"data",
"[",
"'cannon_logg_2'",
"]",
"cannon_m_h",
"=",
"data",
"[",
"'cannon_m_h'",
"]",
"cannon_alpha_m",
"=",
"data",
"[",
"'cannon_alpha_m'",
"]",
"cannon_a_k",
"=",
"data",
"[",
"'cannon_a_k'",
"]",
"labels",
"=",
"np",
".",
"vstack",
"(",
"(",
"cannon_teff",
",",
"cannon_logg",
",",
"cannon_m_h",
",",
"cannon_alpha_m",
",",
"cannon_a_k",
")",
")",
"cannon_chisq",
"=",
"data",
"[",
"'cannon_chisq'",
"]",
"np",
".",
"savez",
"(",
"DATA_DIR",
"+",
"\"chisq.npz\"",
",",
"labels",
")",
"np",
".",
"savez",
"(",
"DATA_DIR",
"+",
"\"labels.npz\"",
",",
"labels",
")",
"snrg",
"=",
"data",
"[",
"'cannon_snrg'",
"]",
"# snrg * 3",
"np",
".",
"savez",
"(",
"\"snr.npz\"",
",",
"snrg",
")",
"return",
"labels",
".",
"T"
] | Labels to make Cannon model spectra | [
"Labels",
"to",
"make",
"Cannon",
"model",
"spectra"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/find_apokasc_candidates.py#L30-L44 |
annayqho/TheCannon | code/lamost/abundances/calc_gradient_spectra.py | cannon_normalize | def cannon_normalize(spec_raw):
""" Normalize according to The Cannon """
spec = np.array([spec_raw])
wl = np.arange(0, spec.shape[1])
w = continuum_normalization.gaussian_weight_matrix(wl, L=50)
ivar = np.ones(spec.shape)*0.5
cont = continuum_normalization._find_cont_gaussian_smooth(
wl, spec, ivar, w)
norm_flux, norm_ivar = continuum_normalization._cont_norm(
spec, ivar, cont)
return norm_flux[0] | python | def cannon_normalize(spec_raw):
""" Normalize according to The Cannon """
spec = np.array([spec_raw])
wl = np.arange(0, spec.shape[1])
w = continuum_normalization.gaussian_weight_matrix(wl, L=50)
ivar = np.ones(spec.shape)*0.5
cont = continuum_normalization._find_cont_gaussian_smooth(
wl, spec, ivar, w)
norm_flux, norm_ivar = continuum_normalization._cont_norm(
spec, ivar, cont)
return norm_flux[0] | [
"def",
"cannon_normalize",
"(",
"spec_raw",
")",
":",
"spec",
"=",
"np",
".",
"array",
"(",
"[",
"spec_raw",
"]",
")",
"wl",
"=",
"np",
".",
"arange",
"(",
"0",
",",
"spec",
".",
"shape",
"[",
"1",
"]",
")",
"w",
"=",
"continuum_normalization",
".",
"gaussian_weight_matrix",
"(",
"wl",
",",
"L",
"=",
"50",
")",
"ivar",
"=",
"np",
".",
"ones",
"(",
"spec",
".",
"shape",
")",
"*",
"0.5",
"cont",
"=",
"continuum_normalization",
".",
"_find_cont_gaussian_smooth",
"(",
"wl",
",",
"spec",
",",
"ivar",
",",
"w",
")",
"norm_flux",
",",
"norm_ivar",
"=",
"continuum_normalization",
".",
"_cont_norm",
"(",
"spec",
",",
"ivar",
",",
"cont",
")",
"return",
"norm_flux",
"[",
"0",
"]"
] | Normalize according to The Cannon | [
"Normalize",
"according",
"to",
"The",
"Cannon"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/abundances/calc_gradient_spectra.py#L25-L35 |
annayqho/TheCannon | code/lamost/abundances/calc_gradient_spectra.py | resample | def resample(grid, wl, flux):
""" Resample spectrum onto desired grid """
flux_rs = (interpolate.interp1d(wl, flux))(grid)
return flux_rs | python | def resample(grid, wl, flux):
""" Resample spectrum onto desired grid """
flux_rs = (interpolate.interp1d(wl, flux))(grid)
return flux_rs | [
"def",
"resample",
"(",
"grid",
",",
"wl",
",",
"flux",
")",
":",
"flux_rs",
"=",
"(",
"interpolate",
".",
"interp1d",
"(",
"wl",
",",
"flux",
")",
")",
"(",
"grid",
")",
"return",
"flux_rs"
] | Resample spectrum onto desired grid | [
"Resample",
"spectrum",
"onto",
"desired",
"grid"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/abundances/calc_gradient_spectra.py#L38-L41 |
annayqho/TheCannon | code/lamost/abundances/calc_gradient_spectra.py | gen_cannon_grad_spec | def gen_cannon_grad_spec(choose, coeffs, pivots):
""" Generate Cannon gradient spectra
Parameters
----------
labels: default values for [teff, logg, feh, cfe, nfe, afe, ak]
choose: val of cfe or nfe, whatever you're varying
low: lowest val of cfe or nfe, whatever you're varying
high: highest val of cfe or nfe, whatever you're varying
"""
base_labels = [4800, 2.5, 0.03, 0.10, -0.17, -0.17, 0, -0.16,
-0.13, -0.15, 0.13, 0.08, 0.17, -0.062]
label_names = np.array(
['TEFF', 'LOGG', 'AK', 'Al', 'Ca', 'C', 'Fe', 'Mg', 'Mn',
'Ni', 'N', 'O', 'Si', 'Ti'])
label_atnum = np.array(
[0, 1, -1, 13, 20, 6, 26, 12, 25, 28, 7, 8, 14, 22])
# Generate Cannon gradient spectra
ind = np.where(label_atnum==choose)[0][0]
low_lab = copy.copy(base_labels)
high = base_labels[ind]
if choose > 0:
low = base_labels[ind] - 0.2
else: #temperature
if choose != 0: print("warning...")
low = base_labels[ind] - 200
low_lab[ind] = low
lvec = (train_model._get_lvec(np.array([low_lab]), pivots))[0]
model_low = np.dot(coeffs, lvec)
lvec = (train_model._get_lvec(np.array([base_labels]), pivots))[0]
model_high = np.dot(coeffs, lvec)
grad_spec = (model_high - model_low) / (high - low)
return grad_spec | python | def gen_cannon_grad_spec(choose, coeffs, pivots):
""" Generate Cannon gradient spectra
Parameters
----------
labels: default values for [teff, logg, feh, cfe, nfe, afe, ak]
choose: val of cfe or nfe, whatever you're varying
low: lowest val of cfe or nfe, whatever you're varying
high: highest val of cfe or nfe, whatever you're varying
"""
base_labels = [4800, 2.5, 0.03, 0.10, -0.17, -0.17, 0, -0.16,
-0.13, -0.15, 0.13, 0.08, 0.17, -0.062]
label_names = np.array(
['TEFF', 'LOGG', 'AK', 'Al', 'Ca', 'C', 'Fe', 'Mg', 'Mn',
'Ni', 'N', 'O', 'Si', 'Ti'])
label_atnum = np.array(
[0, 1, -1, 13, 20, 6, 26, 12, 25, 28, 7, 8, 14, 22])
# Generate Cannon gradient spectra
ind = np.where(label_atnum==choose)[0][0]
low_lab = copy.copy(base_labels)
high = base_labels[ind]
if choose > 0:
low = base_labels[ind] - 0.2
else: #temperature
if choose != 0: print("warning...")
low = base_labels[ind] - 200
low_lab[ind] = low
lvec = (train_model._get_lvec(np.array([low_lab]), pivots))[0]
model_low = np.dot(coeffs, lvec)
lvec = (train_model._get_lvec(np.array([base_labels]), pivots))[0]
model_high = np.dot(coeffs, lvec)
grad_spec = (model_high - model_low) / (high - low)
return grad_spec | [
"def",
"gen_cannon_grad_spec",
"(",
"choose",
",",
"coeffs",
",",
"pivots",
")",
":",
"base_labels",
"=",
"[",
"4800",
",",
"2.5",
",",
"0.03",
",",
"0.10",
",",
"-",
"0.17",
",",
"-",
"0.17",
",",
"0",
",",
"-",
"0.16",
",",
"-",
"0.13",
",",
"-",
"0.15",
",",
"0.13",
",",
"0.08",
",",
"0.17",
",",
"-",
"0.062",
"]",
"label_names",
"=",
"np",
".",
"array",
"(",
"[",
"'TEFF'",
",",
"'LOGG'",
",",
"'AK'",
",",
"'Al'",
",",
"'Ca'",
",",
"'C'",
",",
"'Fe'",
",",
"'Mg'",
",",
"'Mn'",
",",
"'Ni'",
",",
"'N'",
",",
"'O'",
",",
"'Si'",
",",
"'Ti'",
"]",
")",
"label_atnum",
"=",
"np",
".",
"array",
"(",
"[",
"0",
",",
"1",
",",
"-",
"1",
",",
"13",
",",
"20",
",",
"6",
",",
"26",
",",
"12",
",",
"25",
",",
"28",
",",
"7",
",",
"8",
",",
"14",
",",
"22",
"]",
")",
"# Generate Cannon gradient spectra",
"ind",
"=",
"np",
".",
"where",
"(",
"label_atnum",
"==",
"choose",
")",
"[",
"0",
"]",
"[",
"0",
"]",
"low_lab",
"=",
"copy",
".",
"copy",
"(",
"base_labels",
")",
"high",
"=",
"base_labels",
"[",
"ind",
"]",
"if",
"choose",
">",
"0",
":",
"low",
"=",
"base_labels",
"[",
"ind",
"]",
"-",
"0.2",
"else",
":",
"#temperature",
"if",
"choose",
"!=",
"0",
":",
"print",
"(",
"\"warning...\"",
")",
"low",
"=",
"base_labels",
"[",
"ind",
"]",
"-",
"200",
"low_lab",
"[",
"ind",
"]",
"=",
"low",
"lvec",
"=",
"(",
"train_model",
".",
"_get_lvec",
"(",
"np",
".",
"array",
"(",
"[",
"low_lab",
"]",
")",
",",
"pivots",
")",
")",
"[",
"0",
"]",
"model_low",
"=",
"np",
".",
"dot",
"(",
"coeffs",
",",
"lvec",
")",
"lvec",
"=",
"(",
"train_model",
".",
"_get_lvec",
"(",
"np",
".",
"array",
"(",
"[",
"base_labels",
"]",
")",
",",
"pivots",
")",
")",
"[",
"0",
"]",
"model_high",
"=",
"np",
".",
"dot",
"(",
"coeffs",
",",
"lvec",
")",
"grad_spec",
"=",
"(",
"model_high",
"-",
"model_low",
")",
"/",
"(",
"high",
"-",
"low",
")",
"return",
"grad_spec"
] | Generate Cannon gradient spectra
Parameters
----------
labels: default values for [teff, logg, feh, cfe, nfe, afe, ak]
choose: val of cfe or nfe, whatever you're varying
low: lowest val of cfe or nfe, whatever you're varying
high: highest val of cfe or nfe, whatever you're varying | [
"Generate",
"Cannon",
"gradient",
"spectra"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/abundances/calc_gradient_spectra.py#L62-L94 |
annayqho/TheCannon | code/lamost/abundances/calc_gradient_spectra.py | get_model_spec_ting | def get_model_spec_ting(atomic_number):
"""
X_u_template[0:2] are teff, logg, vturb in km/s
X_u_template[:,3] -> onward, put atomic number
atomic_number is 6 for C, 7 for N
"""
DATA_DIR = "/Users/annaho/Data/LAMOST/Mass_And_Age"
temp = np.load("%s/X_u_template_KGh_res=1800.npz" %DATA_DIR)
X_u_template = temp["X_u_template"]
wl = temp["wavelength"]
grad_spec = X_u_template[:,atomic_number]
return wl, grad_spec | python | def get_model_spec_ting(atomic_number):
"""
X_u_template[0:2] are teff, logg, vturb in km/s
X_u_template[:,3] -> onward, put atomic number
atomic_number is 6 for C, 7 for N
"""
DATA_DIR = "/Users/annaho/Data/LAMOST/Mass_And_Age"
temp = np.load("%s/X_u_template_KGh_res=1800.npz" %DATA_DIR)
X_u_template = temp["X_u_template"]
wl = temp["wavelength"]
grad_spec = X_u_template[:,atomic_number]
return wl, grad_spec | [
"def",
"get_model_spec_ting",
"(",
"atomic_number",
")",
":",
"DATA_DIR",
"=",
"\"/Users/annaho/Data/LAMOST/Mass_And_Age\"",
"temp",
"=",
"np",
".",
"load",
"(",
"\"%s/X_u_template_KGh_res=1800.npz\"",
"%",
"DATA_DIR",
")",
"X_u_template",
"=",
"temp",
"[",
"\"X_u_template\"",
"]",
"wl",
"=",
"temp",
"[",
"\"wavelength\"",
"]",
"grad_spec",
"=",
"X_u_template",
"[",
":",
",",
"atomic_number",
"]",
"return",
"wl",
",",
"grad_spec"
] | X_u_template[0:2] are teff, logg, vturb in km/s
X_u_template[:,3] -> onward, put atomic number
atomic_number is 6 for C, 7 for N | [
"X_u_template",
"[",
"0",
":",
"2",
"]",
"are",
"teff",
"logg",
"vturb",
"in",
"km",
"/",
"s",
"X_u_template",
"[",
":",
"3",
"]",
"-",
">",
"onward",
"put",
"atomic",
"number",
"atomic_number",
"is",
"6",
"for",
"C",
"7",
"for",
"N"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/abundances/calc_gradient_spectra.py#L129-L140 |
annayqho/TheCannon | code/lamost/li_giants/residuals.py | get_residuals | def get_residuals(ds, m):
""" Using the dataset and model object, calculate the residuals and return
Parameters
----------
ds: dataset object
m: model object
Return
------
residuals: array of residuals, spec minus model spec
"""
model_spectra = get_model_spectra(ds, m)
resid = ds.test_flux - model_spectra
return resid | python | def get_residuals(ds, m):
""" Using the dataset and model object, calculate the residuals and return
Parameters
----------
ds: dataset object
m: model object
Return
------
residuals: array of residuals, spec minus model spec
"""
model_spectra = get_model_spectra(ds, m)
resid = ds.test_flux - model_spectra
return resid | [
"def",
"get_residuals",
"(",
"ds",
",",
"m",
")",
":",
"model_spectra",
"=",
"get_model_spectra",
"(",
"ds",
",",
"m",
")",
"resid",
"=",
"ds",
".",
"test_flux",
"-",
"model_spectra",
"return",
"resid"
] | Using the dataset and model object, calculate the residuals and return
Parameters
----------
ds: dataset object
m: model object
Return
------
residuals: array of residuals, spec minus model spec | [
"Using",
"the",
"dataset",
"and",
"model",
"object",
"calculate",
"the",
"residuals",
"and",
"return"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/residuals.py#L27-L40 |
annayqho/TheCannon | code/lamost/li_giants/residuals.py | load_model | def load_model():
""" Load the model
Parameters
----------
direc: directory with all of the model files
Returns
-------
m: model object
"""
direc = "/home/annaho/TheCannon/code/lamost/mass_age/cn"
m = model.CannonModel(2)
m.coeffs = np.load(direc + "/coeffs.npz")['arr_0'][0:3626,:] # no cols
m.scatters = np.load(direc + "/scatters.npz")['arr_0'][0:3626] # no cols
m.chisqs = np.load(direc + "/chisqs.npz")['arr_0'][0:3626] # no cols
m.pivots = np.load(direc + "/pivots.npz")['arr_0']
return m | python | def load_model():
""" Load the model
Parameters
----------
direc: directory with all of the model files
Returns
-------
m: model object
"""
direc = "/home/annaho/TheCannon/code/lamost/mass_age/cn"
m = model.CannonModel(2)
m.coeffs = np.load(direc + "/coeffs.npz")['arr_0'][0:3626,:] # no cols
m.scatters = np.load(direc + "/scatters.npz")['arr_0'][0:3626] # no cols
m.chisqs = np.load(direc + "/chisqs.npz")['arr_0'][0:3626] # no cols
m.pivots = np.load(direc + "/pivots.npz")['arr_0']
return m | [
"def",
"load_model",
"(",
")",
":",
"direc",
"=",
"\"/home/annaho/TheCannon/code/lamost/mass_age/cn\"",
"m",
"=",
"model",
".",
"CannonModel",
"(",
"2",
")",
"m",
".",
"coeffs",
"=",
"np",
".",
"load",
"(",
"direc",
"+",
"\"/coeffs.npz\"",
")",
"[",
"'arr_0'",
"]",
"[",
"0",
":",
"3626",
",",
":",
"]",
"# no cols",
"m",
".",
"scatters",
"=",
"np",
".",
"load",
"(",
"direc",
"+",
"\"/scatters.npz\"",
")",
"[",
"'arr_0'",
"]",
"[",
"0",
":",
"3626",
"]",
"# no cols",
"m",
".",
"chisqs",
"=",
"np",
".",
"load",
"(",
"direc",
"+",
"\"/chisqs.npz\"",
")",
"[",
"'arr_0'",
"]",
"[",
"0",
":",
"3626",
"]",
"# no cols",
"m",
".",
"pivots",
"=",
"np",
".",
"load",
"(",
"direc",
"+",
"\"/pivots.npz\"",
")",
"[",
"'arr_0'",
"]",
"return",
"m"
] | Load the model
Parameters
----------
direc: directory with all of the model files
Returns
-------
m: model object | [
"Load",
"the",
"model"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/residuals.py#L48-L65 |
annayqho/TheCannon | code/lamost/li_giants/residuals.py | load_dataset | def load_dataset(date):
""" Load the dataset for a single date
Parameters
----------
date: the date (string) for which to load the data & dataset
Returns
-------
ds: the dataset object
"""
LAB_DIR = "/home/annaho/TheCannon/data/lamost"
WL_DIR = "/home/annaho/TheCannon/code/lamost/mass_age/cn"
SPEC_DIR = "/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels/output"
wl = np.load(WL_DIR + "/wl_cols.npz")['arr_0'][0:3626] # no cols
ds = dataset.Dataset(wl, [], [], [], [], [], [], [])
test_label = np.load("%s/%s_all_cannon_labels.npz" %(LAB_DIR,date))['arr_0']
ds.test_label_vals = test_label
a = np.load("%s/%s_norm.npz" %(SPEC_DIR,date))
ds.test_flux = a['arr_0']
ds.test_ivar = a['arr_1']
ds.test_ID = np.load("%s/%s_ids.npz" %(SPEC_DIR,date))['arr_0']
return ds | python | def load_dataset(date):
""" Load the dataset for a single date
Parameters
----------
date: the date (string) for which to load the data & dataset
Returns
-------
ds: the dataset object
"""
LAB_DIR = "/home/annaho/TheCannon/data/lamost"
WL_DIR = "/home/annaho/TheCannon/code/lamost/mass_age/cn"
SPEC_DIR = "/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels/output"
wl = np.load(WL_DIR + "/wl_cols.npz")['arr_0'][0:3626] # no cols
ds = dataset.Dataset(wl, [], [], [], [], [], [], [])
test_label = np.load("%s/%s_all_cannon_labels.npz" %(LAB_DIR,date))['arr_0']
ds.test_label_vals = test_label
a = np.load("%s/%s_norm.npz" %(SPEC_DIR,date))
ds.test_flux = a['arr_0']
ds.test_ivar = a['arr_1']
ds.test_ID = np.load("%s/%s_ids.npz" %(SPEC_DIR,date))['arr_0']
return ds | [
"def",
"load_dataset",
"(",
"date",
")",
":",
"LAB_DIR",
"=",
"\"/home/annaho/TheCannon/data/lamost\"",
"WL_DIR",
"=",
"\"/home/annaho/TheCannon/code/lamost/mass_age/cn\"",
"SPEC_DIR",
"=",
"\"/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels/output\"",
"wl",
"=",
"np",
".",
"load",
"(",
"WL_DIR",
"+",
"\"/wl_cols.npz\"",
")",
"[",
"'arr_0'",
"]",
"[",
"0",
":",
"3626",
"]",
"# no cols",
"ds",
"=",
"dataset",
".",
"Dataset",
"(",
"wl",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
")",
"test_label",
"=",
"np",
".",
"load",
"(",
"\"%s/%s_all_cannon_labels.npz\"",
"%",
"(",
"LAB_DIR",
",",
"date",
")",
")",
"[",
"'arr_0'",
"]",
"ds",
".",
"test_label_vals",
"=",
"test_label",
"a",
"=",
"np",
".",
"load",
"(",
"\"%s/%s_norm.npz\"",
"%",
"(",
"SPEC_DIR",
",",
"date",
")",
")",
"ds",
".",
"test_flux",
"=",
"a",
"[",
"'arr_0'",
"]",
"ds",
".",
"test_ivar",
"=",
"a",
"[",
"'arr_1'",
"]",
"ds",
".",
"test_ID",
"=",
"np",
".",
"load",
"(",
"\"%s/%s_ids.npz\"",
"%",
"(",
"SPEC_DIR",
",",
"date",
")",
")",
"[",
"'arr_0'",
"]",
"return",
"ds"
] | Load the dataset for a single date
Parameters
----------
date: the date (string) for which to load the data & dataset
Returns
-------
ds: the dataset object | [
"Load",
"the",
"dataset",
"for",
"a",
"single",
"date",
"Parameters",
"----------",
"date",
":",
"the",
"date",
"(",
"string",
")",
"for",
"which",
"to",
"load",
"the",
"data",
"&",
"dataset"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/residuals.py#L68-L90 |
annayqho/TheCannon | code/lamost/li_giants/residuals.py | fit_gaussian | def fit_gaussian(x, y, yerr, p0):
""" Fit a Gaussian to the data """
try:
popt, pcov = curve_fit(gaussian, x, y, sigma=yerr, p0=p0, absolute_sigma=True)
except RuntimeError:
return [0],[0]
return popt, pcov | python | def fit_gaussian(x, y, yerr, p0):
""" Fit a Gaussian to the data """
try:
popt, pcov = curve_fit(gaussian, x, y, sigma=yerr, p0=p0, absolute_sigma=True)
except RuntimeError:
return [0],[0]
return popt, pcov | [
"def",
"fit_gaussian",
"(",
"x",
",",
"y",
",",
"yerr",
",",
"p0",
")",
":",
"try",
":",
"popt",
",",
"pcov",
"=",
"curve_fit",
"(",
"gaussian",
",",
"x",
",",
"y",
",",
"sigma",
"=",
"yerr",
",",
"p0",
"=",
"p0",
",",
"absolute_sigma",
"=",
"True",
")",
"except",
"RuntimeError",
":",
"return",
"[",
"0",
"]",
",",
"[",
"0",
"]",
"return",
"popt",
",",
"pcov"
] | Fit a Gaussian to the data | [
"Fit",
"a",
"Gaussian",
"to",
"the",
"data"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/residuals.py#L93-L99 |
annayqho/TheCannon | code/lamost/li_giants/residuals.py | select | def select(yerrs, amps, amp_errs, widths):
""" criteria for keeping an object """
keep_1 = np.logical_and(amps < 0, widths > 1)
keep_2 = np.logical_and(np.abs(amps) > 3*yerrs, amp_errs < 3*np.abs(amps))
keep = np.logical_and(keep_1, keep_2)
return keep | python | def select(yerrs, amps, amp_errs, widths):
""" criteria for keeping an object """
keep_1 = np.logical_and(amps < 0, widths > 1)
keep_2 = np.logical_and(np.abs(amps) > 3*yerrs, amp_errs < 3*np.abs(amps))
keep = np.logical_and(keep_1, keep_2)
return keep | [
"def",
"select",
"(",
"yerrs",
",",
"amps",
",",
"amp_errs",
",",
"widths",
")",
":",
"keep_1",
"=",
"np",
".",
"logical_and",
"(",
"amps",
"<",
"0",
",",
"widths",
">",
"1",
")",
"keep_2",
"=",
"np",
".",
"logical_and",
"(",
"np",
".",
"abs",
"(",
"amps",
")",
">",
"3",
"*",
"yerrs",
",",
"amp_errs",
"<",
"3",
"*",
"np",
".",
"abs",
"(",
"amps",
")",
")",
"keep",
"=",
"np",
".",
"logical_and",
"(",
"keep_1",
",",
"keep_2",
")",
"return",
"keep"
] | criteria for keeping an object | [
"criteria",
"for",
"keeping",
"an",
"object"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/residuals.py#L131-L136 |
annayqho/TheCannon | code/lamost/li_giants/residuals.py | run_all | def run_all():
""" Load the data that we're using to search for Li-rich giants.
Store it in dataset and model objects. """
DATA_DIR = "/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels"
dates = os.listdir("/home/share/LAMOST/DR2/DR2_release")
dates = np.array(dates)
dates = np.delete(dates, np.where(dates=='.directory')[0][0])
dates = np.delete(dates, np.where(dates=='all_folders.list')[0][0])
dates = np.delete(dates, np.where(dates=='dr2.lis')[0][0])
for date in dates:
if glob.glob("*%s*.txt" %date):
print("%s done" %date)
else:
print("running %s" %date)
run_one_date(date) | python | def run_all():
""" Load the data that we're using to search for Li-rich giants.
Store it in dataset and model objects. """
DATA_DIR = "/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels"
dates = os.listdir("/home/share/LAMOST/DR2/DR2_release")
dates = np.array(dates)
dates = np.delete(dates, np.where(dates=='.directory')[0][0])
dates = np.delete(dates, np.where(dates=='all_folders.list')[0][0])
dates = np.delete(dates, np.where(dates=='dr2.lis')[0][0])
for date in dates:
if glob.glob("*%s*.txt" %date):
print("%s done" %date)
else:
print("running %s" %date)
run_one_date(date) | [
"def",
"run_all",
"(",
")",
":",
"DATA_DIR",
"=",
"\"/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels\"",
"dates",
"=",
"os",
".",
"listdir",
"(",
"\"/home/share/LAMOST/DR2/DR2_release\"",
")",
"dates",
"=",
"np",
".",
"array",
"(",
"dates",
")",
"dates",
"=",
"np",
".",
"delete",
"(",
"dates",
",",
"np",
".",
"where",
"(",
"dates",
"==",
"'.directory'",
")",
"[",
"0",
"]",
"[",
"0",
"]",
")",
"dates",
"=",
"np",
".",
"delete",
"(",
"dates",
",",
"np",
".",
"where",
"(",
"dates",
"==",
"'all_folders.list'",
")",
"[",
"0",
"]",
"[",
"0",
"]",
")",
"dates",
"=",
"np",
".",
"delete",
"(",
"dates",
",",
"np",
".",
"where",
"(",
"dates",
"==",
"'dr2.lis'",
")",
"[",
"0",
"]",
"[",
"0",
"]",
")",
"for",
"date",
"in",
"dates",
":",
"if",
"glob",
".",
"glob",
"(",
"\"*%s*.txt\"",
"%",
"date",
")",
":",
"print",
"(",
"\"%s done\"",
"%",
"date",
")",
"else",
":",
"print",
"(",
"\"running %s\"",
"%",
"date",
")",
"run_one_date",
"(",
"date",
")"
] | Load the data that we're using to search for Li-rich giants.
Store it in dataset and model objects. | [
"Load",
"the",
"data",
"that",
"we",
"re",
"using",
"to",
"search",
"for",
"Li",
"-",
"rich",
"giants",
".",
"Store",
"it",
"in",
"dataset",
"and",
"model",
"objects",
"."
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/li_giants/residuals.py#L212-L227 |
annayqho/TheCannon | code/lamost/mass_age/paper_plots/cn_features.py | gen_cannon_grad_spec | def gen_cannon_grad_spec(base_labels, choose, low, high, coeffs, pivots):
""" Generate Cannon gradient spectra
Parameters
----------
labels: default values for [teff, logg, feh, cfe, nfe, afe, ak]
choose: val of cfe or nfe, whatever you're varying
low: lowest val of cfe or nfe, whatever you're varying
high: highest val of cfe or nfe, whatever you're varying
"""
# Generate Cannon gradient spectra
low_lab = copy.copy(base_labels)
low_lab[choose] = low
lvec = (train_model._get_lvec(np.array([low_lab]), pivots))[0]
model_low = np.dot(coeffs, lvec)
high_lab = copy.copy(base_labels)
high_lab[choose] = high
lvec = (train_model._get_lvec(np.array([high_lab]), pivots))[0]
model_high = np.dot(coeffs, lvec)
grad_spec = (model_high - model_low) / (high - low)
return grad_spec | python | def gen_cannon_grad_spec(base_labels, choose, low, high, coeffs, pivots):
""" Generate Cannon gradient spectra
Parameters
----------
labels: default values for [teff, logg, feh, cfe, nfe, afe, ak]
choose: val of cfe or nfe, whatever you're varying
low: lowest val of cfe or nfe, whatever you're varying
high: highest val of cfe or nfe, whatever you're varying
"""
# Generate Cannon gradient spectra
low_lab = copy.copy(base_labels)
low_lab[choose] = low
lvec = (train_model._get_lvec(np.array([low_lab]), pivots))[0]
model_low = np.dot(coeffs, lvec)
high_lab = copy.copy(base_labels)
high_lab[choose] = high
lvec = (train_model._get_lvec(np.array([high_lab]), pivots))[0]
model_high = np.dot(coeffs, lvec)
grad_spec = (model_high - model_low) / (high - low)
return grad_spec | [
"def",
"gen_cannon_grad_spec",
"(",
"base_labels",
",",
"choose",
",",
"low",
",",
"high",
",",
"coeffs",
",",
"pivots",
")",
":",
"# Generate Cannon gradient spectra",
"low_lab",
"=",
"copy",
".",
"copy",
"(",
"base_labels",
")",
"low_lab",
"[",
"choose",
"]",
"=",
"low",
"lvec",
"=",
"(",
"train_model",
".",
"_get_lvec",
"(",
"np",
".",
"array",
"(",
"[",
"low_lab",
"]",
")",
",",
"pivots",
")",
")",
"[",
"0",
"]",
"model_low",
"=",
"np",
".",
"dot",
"(",
"coeffs",
",",
"lvec",
")",
"high_lab",
"=",
"copy",
".",
"copy",
"(",
"base_labels",
")",
"high_lab",
"[",
"choose",
"]",
"=",
"high",
"lvec",
"=",
"(",
"train_model",
".",
"_get_lvec",
"(",
"np",
".",
"array",
"(",
"[",
"high_lab",
"]",
")",
",",
"pivots",
")",
")",
"[",
"0",
"]",
"model_high",
"=",
"np",
".",
"dot",
"(",
"coeffs",
",",
"lvec",
")",
"grad_spec",
"=",
"(",
"model_high",
"-",
"model_low",
")",
"/",
"(",
"high",
"-",
"low",
")",
"return",
"grad_spec"
] | Generate Cannon gradient spectra
Parameters
----------
labels: default values for [teff, logg, feh, cfe, nfe, afe, ak]
choose: val of cfe or nfe, whatever you're varying
low: lowest val of cfe or nfe, whatever you're varying
high: highest val of cfe or nfe, whatever you're varying | [
"Generate",
"Cannon",
"gradient",
"spectra"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/mass_age/paper_plots/cn_features.py#L55-L75 |
annayqho/TheCannon | code/lamost/mass_age/cn/write_table.py | get_err | def get_err(snr):
""" Get approximate scatters from SNR
as determined in the code, snr_test.py
Order: Teff, logg, MH, CM, NM, alpha """
quad_terms = np.array(
[3.11e-3, 1.10e-5, 6.95e-6, 5.05e-6, 4.65e-6, 4.10e-6])
lin_terms = np.array(
[-0.869, -2.07e-3, -1.40e-3, -1.03e-3, -1.13e-3, -7.29e-4])
consts = np.array([104, 0.200, 0.117, 0.114, 0.156, 0.0624])
err = quad_terms[:,None] * snr**2 + lin_terms[:,None] * snr + consts[:,None]
# find the minimum of the quadratic function
min_snr = -lin_terms / (2*quad_terms)
min_err = quad_terms * min_snr**2 + lin_terms * min_snr + consts
mask = (snr[:,None] > min_snr).T
for i in range(0,len(min_err)):
err[i][mask[i]] = min_err[i]
return err | python | def get_err(snr):
""" Get approximate scatters from SNR
as determined in the code, snr_test.py
Order: Teff, logg, MH, CM, NM, alpha """
quad_terms = np.array(
[3.11e-3, 1.10e-5, 6.95e-6, 5.05e-6, 4.65e-6, 4.10e-6])
lin_terms = np.array(
[-0.869, -2.07e-3, -1.40e-3, -1.03e-3, -1.13e-3, -7.29e-4])
consts = np.array([104, 0.200, 0.117, 0.114, 0.156, 0.0624])
err = quad_terms[:,None] * snr**2 + lin_terms[:,None] * snr + consts[:,None]
# find the minimum of the quadratic function
min_snr = -lin_terms / (2*quad_terms)
min_err = quad_terms * min_snr**2 + lin_terms * min_snr + consts
mask = (snr[:,None] > min_snr).T
for i in range(0,len(min_err)):
err[i][mask[i]] = min_err[i]
return err | [
"def",
"get_err",
"(",
"snr",
")",
":",
"quad_terms",
"=",
"np",
".",
"array",
"(",
"[",
"3.11e-3",
",",
"1.10e-5",
",",
"6.95e-6",
",",
"5.05e-6",
",",
"4.65e-6",
",",
"4.10e-6",
"]",
")",
"lin_terms",
"=",
"np",
".",
"array",
"(",
"[",
"-",
"0.869",
",",
"-",
"2.07e-3",
",",
"-",
"1.40e-3",
",",
"-",
"1.03e-3",
",",
"-",
"1.13e-3",
",",
"-",
"7.29e-4",
"]",
")",
"consts",
"=",
"np",
".",
"array",
"(",
"[",
"104",
",",
"0.200",
",",
"0.117",
",",
"0.114",
",",
"0.156",
",",
"0.0624",
"]",
")",
"err",
"=",
"quad_terms",
"[",
":",
",",
"None",
"]",
"*",
"snr",
"**",
"2",
"+",
"lin_terms",
"[",
":",
",",
"None",
"]",
"*",
"snr",
"+",
"consts",
"[",
":",
",",
"None",
"]",
"# find the minimum of the quadratic function",
"min_snr",
"=",
"-",
"lin_terms",
"/",
"(",
"2",
"*",
"quad_terms",
")",
"min_err",
"=",
"quad_terms",
"*",
"min_snr",
"**",
"2",
"+",
"lin_terms",
"*",
"min_snr",
"+",
"consts",
"mask",
"=",
"(",
"snr",
"[",
":",
",",
"None",
"]",
">",
"min_snr",
")",
".",
"T",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"min_err",
")",
")",
":",
"err",
"[",
"i",
"]",
"[",
"mask",
"[",
"i",
"]",
"]",
"=",
"min_err",
"[",
"i",
"]",
"return",
"err"
] | Get approximate scatters from SNR
as determined in the code, snr_test.py
Order: Teff, logg, MH, CM, NM, alpha | [
"Get",
"approximate",
"scatters",
"from",
"SNR",
"as",
"determined",
"in",
"the",
"code",
"snr_test",
".",
"py",
"Order",
":",
"Teff",
"logg",
"MH",
"CM",
"NM",
"alpha"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/mass_age/cn/write_table.py#L12-L31 |
annayqho/TheCannon | code/lamost/mass_age/cn/get_colors.py | get_colors | def get_colors(catalog):
"""
Pull colors from catalog
Parameters
----------
catalog: filename
"""
print("Get Colors")
a = pyfits.open(catalog)
data = a[1].data
a.close()
all_ids = data['LAMOST_ID_1']
all_ids = np.array([val.strip() for val in all_ids])
# G magnitude
gmag = data['gpmag']
gmag_err = data['e_gpmag']
# R magnitude
rmag = data['rpmag']
rmag_err = data['e_rpmag']
# I magnitude
imag = data['ipmag']
imag_err = data['e_ipmag']
# W1
W1 = data['W1mag']
W1_err = data['e_W1mag']
# W1
W2 = data['W2mag']
W2_err = data['e_W2mag']
# J magnitude
Jmag = data['Jmag']
Jmag_err = data['e_Jmag']
# H magnitude
Hmag = data['Hmag']
Hmag_err = data['e_Hmag']
# K magnitude
Kmag = data['Kmag']
Kmag_err = data['e_Kmag']
# Stack
mag = np.vstack((
gmag, rmag, imag, Jmag, Hmag, Kmag, W2, W1)) # 8, nobj
mag_err = np.vstack((
gmag_err, rmag_err, imag_err, Jmag_err,
Hmag_err, Kmag_err, W2_err, W1_err))
# Make g-r, r-i, i-J, etc
col = mag[:-1] - mag[1:]
col_ivar = 1/(mag_err[:-1]**2 + mag_err[1:]**2)
# There's something wrong with the i-band, I think..so the second color r-i
#bad = col[:,1] < 0.0
#col_ivar[bad] = 0.0
return all_ids, col, col_ivar | python | def get_colors(catalog):
"""
Pull colors from catalog
Parameters
----------
catalog: filename
"""
print("Get Colors")
a = pyfits.open(catalog)
data = a[1].data
a.close()
all_ids = data['LAMOST_ID_1']
all_ids = np.array([val.strip() for val in all_ids])
# G magnitude
gmag = data['gpmag']
gmag_err = data['e_gpmag']
# R magnitude
rmag = data['rpmag']
rmag_err = data['e_rpmag']
# I magnitude
imag = data['ipmag']
imag_err = data['e_ipmag']
# W1
W1 = data['W1mag']
W1_err = data['e_W1mag']
# W1
W2 = data['W2mag']
W2_err = data['e_W2mag']
# J magnitude
Jmag = data['Jmag']
Jmag_err = data['e_Jmag']
# H magnitude
Hmag = data['Hmag']
Hmag_err = data['e_Hmag']
# K magnitude
Kmag = data['Kmag']
Kmag_err = data['e_Kmag']
# Stack
mag = np.vstack((
gmag, rmag, imag, Jmag, Hmag, Kmag, W2, W1)) # 8, nobj
mag_err = np.vstack((
gmag_err, rmag_err, imag_err, Jmag_err,
Hmag_err, Kmag_err, W2_err, W1_err))
# Make g-r, r-i, i-J, etc
col = mag[:-1] - mag[1:]
col_ivar = 1/(mag_err[:-1]**2 + mag_err[1:]**2)
# There's something wrong with the i-band, I think..so the second color r-i
#bad = col[:,1] < 0.0
#col_ivar[bad] = 0.0
return all_ids, col, col_ivar | [
"def",
"get_colors",
"(",
"catalog",
")",
":",
"print",
"(",
"\"Get Colors\"",
")",
"a",
"=",
"pyfits",
".",
"open",
"(",
"catalog",
")",
"data",
"=",
"a",
"[",
"1",
"]",
".",
"data",
"a",
".",
"close",
"(",
")",
"all_ids",
"=",
"data",
"[",
"'LAMOST_ID_1'",
"]",
"all_ids",
"=",
"np",
".",
"array",
"(",
"[",
"val",
".",
"strip",
"(",
")",
"for",
"val",
"in",
"all_ids",
"]",
")",
"# G magnitude",
"gmag",
"=",
"data",
"[",
"'gpmag'",
"]",
"gmag_err",
"=",
"data",
"[",
"'e_gpmag'",
"]",
"# R magnitude",
"rmag",
"=",
"data",
"[",
"'rpmag'",
"]",
"rmag_err",
"=",
"data",
"[",
"'e_rpmag'",
"]",
"# I magnitude",
"imag",
"=",
"data",
"[",
"'ipmag'",
"]",
"imag_err",
"=",
"data",
"[",
"'e_ipmag'",
"]",
"# W1",
"W1",
"=",
"data",
"[",
"'W1mag'",
"]",
"W1_err",
"=",
"data",
"[",
"'e_W1mag'",
"]",
"# W1",
"W2",
"=",
"data",
"[",
"'W2mag'",
"]",
"W2_err",
"=",
"data",
"[",
"'e_W2mag'",
"]",
"# J magnitude",
"Jmag",
"=",
"data",
"[",
"'Jmag'",
"]",
"Jmag_err",
"=",
"data",
"[",
"'e_Jmag'",
"]",
"# H magnitude",
"Hmag",
"=",
"data",
"[",
"'Hmag'",
"]",
"Hmag_err",
"=",
"data",
"[",
"'e_Hmag'",
"]",
"# K magnitude",
"Kmag",
"=",
"data",
"[",
"'Kmag'",
"]",
"Kmag_err",
"=",
"data",
"[",
"'e_Kmag'",
"]",
"# Stack",
"mag",
"=",
"np",
".",
"vstack",
"(",
"(",
"gmag",
",",
"rmag",
",",
"imag",
",",
"Jmag",
",",
"Hmag",
",",
"Kmag",
",",
"W2",
",",
"W1",
")",
")",
"# 8, nobj",
"mag_err",
"=",
"np",
".",
"vstack",
"(",
"(",
"gmag_err",
",",
"rmag_err",
",",
"imag_err",
",",
"Jmag_err",
",",
"Hmag_err",
",",
"Kmag_err",
",",
"W2_err",
",",
"W1_err",
")",
")",
"# Make g-r, r-i, i-J, etc",
"col",
"=",
"mag",
"[",
":",
"-",
"1",
"]",
"-",
"mag",
"[",
"1",
":",
"]",
"col_ivar",
"=",
"1",
"/",
"(",
"mag_err",
"[",
":",
"-",
"1",
"]",
"**",
"2",
"+",
"mag_err",
"[",
"1",
":",
"]",
"**",
"2",
")",
"# There's something wrong with the i-band, I think..so the second color r-i",
"#bad = col[:,1] < 0.0",
"#col_ivar[bad] = 0.0",
"return",
"all_ids",
",",
"col",
",",
"col_ivar"
] | Pull colors from catalog
Parameters
----------
catalog: filename | [
"Pull",
"colors",
"from",
"catalog"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/mass_age/cn/get_colors.py#L4-L56 |
annayqho/TheCannon | spectral_model.py | draw_spectra | def draw_spectra(md, ds):
""" Generate best-fit spectra for all the test objects
Parameters
----------
md: model
The Cannon spectral model
ds: Dataset
Dataset object
Returns
-------
best_fluxes: ndarray
The best-fit test fluxes
best_ivars:
The best-fit test inverse variances
"""
coeffs_all, covs, scatters, red_chisqs, pivots, label_vector = model.model
nstars = len(dataset.test_SNR)
cannon_flux = np.zeros(dataset.test_flux.shape)
cannon_ivar = np.zeros(dataset.test_ivar.shape)
for i in range(nstars):
x = label_vector[:,i,:]
spec_fit = np.einsum('ij, ij->i', x, coeffs_all)
cannon_flux[i,:] = spec_fit
bad = dataset.test_ivar[i,:] == SMALL**2
cannon_ivar[i,:][~bad] = 1. / scatters[~bad] ** 2
return cannon_flux, cannon_ivar | python | def draw_spectra(md, ds):
""" Generate best-fit spectra for all the test objects
Parameters
----------
md: model
The Cannon spectral model
ds: Dataset
Dataset object
Returns
-------
best_fluxes: ndarray
The best-fit test fluxes
best_ivars:
The best-fit test inverse variances
"""
coeffs_all, covs, scatters, red_chisqs, pivots, label_vector = model.model
nstars = len(dataset.test_SNR)
cannon_flux = np.zeros(dataset.test_flux.shape)
cannon_ivar = np.zeros(dataset.test_ivar.shape)
for i in range(nstars):
x = label_vector[:,i,:]
spec_fit = np.einsum('ij, ij->i', x, coeffs_all)
cannon_flux[i,:] = spec_fit
bad = dataset.test_ivar[i,:] == SMALL**2
cannon_ivar[i,:][~bad] = 1. / scatters[~bad] ** 2
return cannon_flux, cannon_ivar | [
"def",
"draw_spectra",
"(",
"md",
",",
"ds",
")",
":",
"coeffs_all",
",",
"covs",
",",
"scatters",
",",
"red_chisqs",
",",
"pivots",
",",
"label_vector",
"=",
"model",
".",
"model",
"nstars",
"=",
"len",
"(",
"dataset",
".",
"test_SNR",
")",
"cannon_flux",
"=",
"np",
".",
"zeros",
"(",
"dataset",
".",
"test_flux",
".",
"shape",
")",
"cannon_ivar",
"=",
"np",
".",
"zeros",
"(",
"dataset",
".",
"test_ivar",
".",
"shape",
")",
"for",
"i",
"in",
"range",
"(",
"nstars",
")",
":",
"x",
"=",
"label_vector",
"[",
":",
",",
"i",
",",
":",
"]",
"spec_fit",
"=",
"np",
".",
"einsum",
"(",
"'ij, ij->i'",
",",
"x",
",",
"coeffs_all",
")",
"cannon_flux",
"[",
"i",
",",
":",
"]",
"=",
"spec_fit",
"bad",
"=",
"dataset",
".",
"test_ivar",
"[",
"i",
",",
":",
"]",
"==",
"SMALL",
"**",
"2",
"cannon_ivar",
"[",
"i",
",",
":",
"]",
"[",
"~",
"bad",
"]",
"=",
"1.",
"/",
"scatters",
"[",
"~",
"bad",
"]",
"**",
"2",
"return",
"cannon_flux",
",",
"cannon_ivar"
] | Generate best-fit spectra for all the test objects
Parameters
----------
md: model
The Cannon spectral model
ds: Dataset
Dataset object
Returns
-------
best_fluxes: ndarray
The best-fit test fluxes
best_ivars:
The best-fit test inverse variances | [
"Generate",
"best",
"-",
"fit",
"spectra",
"for",
"all",
"the",
"test",
"objects"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/spectral_model.py#L3-L32 |
annayqho/TheCannon | spectral_model.py | overlay_spectra | def overlay_spectra(model, dataset):
""" Run a series of diagnostics on the fitted spectra
Parameters
----------
model: model
best-fit Cannon spectral model
dataset: Dataset
original spectra
"""
best_flux, best_ivar = draw_spectra(model, dataset)
coeffs_all, covs, scatters, all_chisqs, pivots, label_vector = model.model
# Overplot original spectra with best-fit spectra
print("Overplotting spectra for ten random stars")
res = dataset.test_flux-best_flux
lambdas = dataset.wl
npix = len(lambdas)
nstars = best_flux.shape[0]
pickstars = []
for i in range(10):
pickstars.append(random.randrange(0, nstars-1))
for i in pickstars:
print("Star %s" % i)
ID = dataset.test_ID[i]
spec_orig = dataset.test_flux[i,:]
bad = dataset.test_flux[i,:] == 0
lambdas = np.ma.array(lambdas, mask=bad, dtype=float)
npix = len(lambdas.compressed())
spec_orig = np.ma.array(dataset.test_flux[i,:], mask=bad)
spec_fit = np.ma.array(best_flux[i,:], mask=bad)
ivars_orig = np.ma.array(dataset.test_ivar[i,:], mask=bad)
ivars_fit = np.ma.array(best_ivar[i,:], mask=bad)
red_chisq = np.sum(all_chisqs[:,i], axis=0) / (npix - coeffs_all.shape[1])
red_chisq = np.round(red_chisq, 2)
fig,axarr = plt.subplots(2)
ax1 = axarr[0]
im = ax1.scatter(lambdas, spec_orig, label="Orig Spec",
c=1 / np.sqrt(ivars_orig), s=10)
ax1.scatter(lambdas, spec_fit, label="Cannon Spec", c='r', s=10)
ax1.errorbar(lambdas, spec_fit,
yerr=1/np.sqrt(ivars_fit), fmt='ro', ms=1, alpha=0.7)
ax1.set_xlabel(r"Wavelength $\lambda (\AA)$")
ax1.set_ylabel("Normalized flux")
ax1.set_title("Spectrum Fit: %s" % ID)
ax1.set_title("Spectrum Fit")
ax1.set_xlim(min(lambdas.compressed())-10, max(lambdas.compressed())+10)
ax1.legend(loc='lower center', fancybox=True, shadow=True)
ax2 = axarr[1]
ax2.scatter(spec_orig, spec_fit, c=1/np.sqrt(ivars_orig), alpha=0.7)
ax2.errorbar(spec_orig, spec_fit, yerr=1 / np.sqrt(ivars_fit),
ecolor='k', fmt="none", ms=1, alpha=0.7)
#fig.subplots_adjust(right=0.8)
#cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar()
#fig.colorbar(
# im, cax=cbar_ax,
# label="Uncertainties on the Fluxes from the Original Spectrum")
xlims = ax2.get_xlim()
ylims = ax2.get_ylim()
lims = [np.min([xlims, ylims]), np.max([xlims, ylims])]
ax2.plot(lims, lims, 'k-', alpha=0.75)
textstr = "Red Chi Sq: %s" % red_chisq
props = dict(boxstyle='round', facecolor='palevioletred', alpha=0.5)
ax2.text(0.05, 0.95, textstr, transform=ax2.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
ax2.set_xlim(xlims)
ax2.set_ylim(ylims)
ax2.set_xlabel("Orig Fluxes")
ax2.set_ylabel("Fitted Fluxes")
plt.tight_layout()
filename = "best_fit_spec_Star%s.png" % i
print("Saved as %s" % filename)
fig.savefig(filename)
plt.close(fig) | python | def overlay_spectra(model, dataset):
""" Run a series of diagnostics on the fitted spectra
Parameters
----------
model: model
best-fit Cannon spectral model
dataset: Dataset
original spectra
"""
best_flux, best_ivar = draw_spectra(model, dataset)
coeffs_all, covs, scatters, all_chisqs, pivots, label_vector = model.model
# Overplot original spectra with best-fit spectra
print("Overplotting spectra for ten random stars")
res = dataset.test_flux-best_flux
lambdas = dataset.wl
npix = len(lambdas)
nstars = best_flux.shape[0]
pickstars = []
for i in range(10):
pickstars.append(random.randrange(0, nstars-1))
for i in pickstars:
print("Star %s" % i)
ID = dataset.test_ID[i]
spec_orig = dataset.test_flux[i,:]
bad = dataset.test_flux[i,:] == 0
lambdas = np.ma.array(lambdas, mask=bad, dtype=float)
npix = len(lambdas.compressed())
spec_orig = np.ma.array(dataset.test_flux[i,:], mask=bad)
spec_fit = np.ma.array(best_flux[i,:], mask=bad)
ivars_orig = np.ma.array(dataset.test_ivar[i,:], mask=bad)
ivars_fit = np.ma.array(best_ivar[i,:], mask=bad)
red_chisq = np.sum(all_chisqs[:,i], axis=0) / (npix - coeffs_all.shape[1])
red_chisq = np.round(red_chisq, 2)
fig,axarr = plt.subplots(2)
ax1 = axarr[0]
im = ax1.scatter(lambdas, spec_orig, label="Orig Spec",
c=1 / np.sqrt(ivars_orig), s=10)
ax1.scatter(lambdas, spec_fit, label="Cannon Spec", c='r', s=10)
ax1.errorbar(lambdas, spec_fit,
yerr=1/np.sqrt(ivars_fit), fmt='ro', ms=1, alpha=0.7)
ax1.set_xlabel(r"Wavelength $\lambda (\AA)$")
ax1.set_ylabel("Normalized flux")
ax1.set_title("Spectrum Fit: %s" % ID)
ax1.set_title("Spectrum Fit")
ax1.set_xlim(min(lambdas.compressed())-10, max(lambdas.compressed())+10)
ax1.legend(loc='lower center', fancybox=True, shadow=True)
ax2 = axarr[1]
ax2.scatter(spec_orig, spec_fit, c=1/np.sqrt(ivars_orig), alpha=0.7)
ax2.errorbar(spec_orig, spec_fit, yerr=1 / np.sqrt(ivars_fit),
ecolor='k', fmt="none", ms=1, alpha=0.7)
#fig.subplots_adjust(right=0.8)
#cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar()
#fig.colorbar(
# im, cax=cbar_ax,
# label="Uncertainties on the Fluxes from the Original Spectrum")
xlims = ax2.get_xlim()
ylims = ax2.get_ylim()
lims = [np.min([xlims, ylims]), np.max([xlims, ylims])]
ax2.plot(lims, lims, 'k-', alpha=0.75)
textstr = "Red Chi Sq: %s" % red_chisq
props = dict(boxstyle='round', facecolor='palevioletred', alpha=0.5)
ax2.text(0.05, 0.95, textstr, transform=ax2.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
ax2.set_xlim(xlims)
ax2.set_ylim(ylims)
ax2.set_xlabel("Orig Fluxes")
ax2.set_ylabel("Fitted Fluxes")
plt.tight_layout()
filename = "best_fit_spec_Star%s.png" % i
print("Saved as %s" % filename)
fig.savefig(filename)
plt.close(fig) | [
"def",
"overlay_spectra",
"(",
"model",
",",
"dataset",
")",
":",
"best_flux",
",",
"best_ivar",
"=",
"draw_spectra",
"(",
"model",
",",
"dataset",
")",
"coeffs_all",
",",
"covs",
",",
"scatters",
",",
"all_chisqs",
",",
"pivots",
",",
"label_vector",
"=",
"model",
".",
"model",
"# Overplot original spectra with best-fit spectra",
"print",
"(",
"\"Overplotting spectra for ten random stars\"",
")",
"res",
"=",
"dataset",
".",
"test_flux",
"-",
"best_flux",
"lambdas",
"=",
"dataset",
".",
"wl",
"npix",
"=",
"len",
"(",
"lambdas",
")",
"nstars",
"=",
"best_flux",
".",
"shape",
"[",
"0",
"]",
"pickstars",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"10",
")",
":",
"pickstars",
".",
"append",
"(",
"random",
".",
"randrange",
"(",
"0",
",",
"nstars",
"-",
"1",
")",
")",
"for",
"i",
"in",
"pickstars",
":",
"print",
"(",
"\"Star %s\"",
"%",
"i",
")",
"ID",
"=",
"dataset",
".",
"test_ID",
"[",
"i",
"]",
"spec_orig",
"=",
"dataset",
".",
"test_flux",
"[",
"i",
",",
":",
"]",
"bad",
"=",
"dataset",
".",
"test_flux",
"[",
"i",
",",
":",
"]",
"==",
"0",
"lambdas",
"=",
"np",
".",
"ma",
".",
"array",
"(",
"lambdas",
",",
"mask",
"=",
"bad",
",",
"dtype",
"=",
"float",
")",
"npix",
"=",
"len",
"(",
"lambdas",
".",
"compressed",
"(",
")",
")",
"spec_orig",
"=",
"np",
".",
"ma",
".",
"array",
"(",
"dataset",
".",
"test_flux",
"[",
"i",
",",
":",
"]",
",",
"mask",
"=",
"bad",
")",
"spec_fit",
"=",
"np",
".",
"ma",
".",
"array",
"(",
"best_flux",
"[",
"i",
",",
":",
"]",
",",
"mask",
"=",
"bad",
")",
"ivars_orig",
"=",
"np",
".",
"ma",
".",
"array",
"(",
"dataset",
".",
"test_ivar",
"[",
"i",
",",
":",
"]",
",",
"mask",
"=",
"bad",
")",
"ivars_fit",
"=",
"np",
".",
"ma",
".",
"array",
"(",
"best_ivar",
"[",
"i",
",",
":",
"]",
",",
"mask",
"=",
"bad",
")",
"red_chisq",
"=",
"np",
".",
"sum",
"(",
"all_chisqs",
"[",
":",
",",
"i",
"]",
",",
"axis",
"=",
"0",
")",
"/",
"(",
"npix",
"-",
"coeffs_all",
".",
"shape",
"[",
"1",
"]",
")",
"red_chisq",
"=",
"np",
".",
"round",
"(",
"red_chisq",
",",
"2",
")",
"fig",
",",
"axarr",
"=",
"plt",
".",
"subplots",
"(",
"2",
")",
"ax1",
"=",
"axarr",
"[",
"0",
"]",
"im",
"=",
"ax1",
".",
"scatter",
"(",
"lambdas",
",",
"spec_orig",
",",
"label",
"=",
"\"Orig Spec\"",
",",
"c",
"=",
"1",
"/",
"np",
".",
"sqrt",
"(",
"ivars_orig",
")",
",",
"s",
"=",
"10",
")",
"ax1",
".",
"scatter",
"(",
"lambdas",
",",
"spec_fit",
",",
"label",
"=",
"\"Cannon Spec\"",
",",
"c",
"=",
"'r'",
",",
"s",
"=",
"10",
")",
"ax1",
".",
"errorbar",
"(",
"lambdas",
",",
"spec_fit",
",",
"yerr",
"=",
"1",
"/",
"np",
".",
"sqrt",
"(",
"ivars_fit",
")",
",",
"fmt",
"=",
"'ro'",
",",
"ms",
"=",
"1",
",",
"alpha",
"=",
"0.7",
")",
"ax1",
".",
"set_xlabel",
"(",
"r\"Wavelength $\\lambda (\\AA)$\"",
")",
"ax1",
".",
"set_ylabel",
"(",
"\"Normalized flux\"",
")",
"ax1",
".",
"set_title",
"(",
"\"Spectrum Fit: %s\"",
"%",
"ID",
")",
"ax1",
".",
"set_title",
"(",
"\"Spectrum Fit\"",
")",
"ax1",
".",
"set_xlim",
"(",
"min",
"(",
"lambdas",
".",
"compressed",
"(",
")",
")",
"-",
"10",
",",
"max",
"(",
"lambdas",
".",
"compressed",
"(",
")",
")",
"+",
"10",
")",
"ax1",
".",
"legend",
"(",
"loc",
"=",
"'lower center'",
",",
"fancybox",
"=",
"True",
",",
"shadow",
"=",
"True",
")",
"ax2",
"=",
"axarr",
"[",
"1",
"]",
"ax2",
".",
"scatter",
"(",
"spec_orig",
",",
"spec_fit",
",",
"c",
"=",
"1",
"/",
"np",
".",
"sqrt",
"(",
"ivars_orig",
")",
",",
"alpha",
"=",
"0.7",
")",
"ax2",
".",
"errorbar",
"(",
"spec_orig",
",",
"spec_fit",
",",
"yerr",
"=",
"1",
"/",
"np",
".",
"sqrt",
"(",
"ivars_fit",
")",
",",
"ecolor",
"=",
"'k'",
",",
"fmt",
"=",
"\"none\"",
",",
"ms",
"=",
"1",
",",
"alpha",
"=",
"0.7",
")",
"#fig.subplots_adjust(right=0.8)",
"#cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])",
"fig",
".",
"colorbar",
"(",
")",
"#fig.colorbar(",
"# im, cax=cbar_ax,",
"# label=\"Uncertainties on the Fluxes from the Original Spectrum\")",
"xlims",
"=",
"ax2",
".",
"get_xlim",
"(",
")",
"ylims",
"=",
"ax2",
".",
"get_ylim",
"(",
")",
"lims",
"=",
"[",
"np",
".",
"min",
"(",
"[",
"xlims",
",",
"ylims",
"]",
")",
",",
"np",
".",
"max",
"(",
"[",
"xlims",
",",
"ylims",
"]",
")",
"]",
"ax2",
".",
"plot",
"(",
"lims",
",",
"lims",
",",
"'k-'",
",",
"alpha",
"=",
"0.75",
")",
"textstr",
"=",
"\"Red Chi Sq: %s\"",
"%",
"red_chisq",
"props",
"=",
"dict",
"(",
"boxstyle",
"=",
"'round'",
",",
"facecolor",
"=",
"'palevioletred'",
",",
"alpha",
"=",
"0.5",
")",
"ax2",
".",
"text",
"(",
"0.05",
",",
"0.95",
",",
"textstr",
",",
"transform",
"=",
"ax2",
".",
"transAxes",
",",
"fontsize",
"=",
"14",
",",
"verticalalignment",
"=",
"'top'",
",",
"bbox",
"=",
"props",
")",
"ax2",
".",
"set_xlim",
"(",
"xlims",
")",
"ax2",
".",
"set_ylim",
"(",
"ylims",
")",
"ax2",
".",
"set_xlabel",
"(",
"\"Orig Fluxes\"",
")",
"ax2",
".",
"set_ylabel",
"(",
"\"Fitted Fluxes\"",
")",
"plt",
".",
"tight_layout",
"(",
")",
"filename",
"=",
"\"best_fit_spec_Star%s.png\"",
"%",
"i",
"print",
"(",
"\"Saved as %s\"",
"%",
"filename",
")",
"fig",
".",
"savefig",
"(",
"filename",
")",
"plt",
".",
"close",
"(",
"fig",
")"
] | Run a series of diagnostics on the fitted spectra
Parameters
----------
model: model
best-fit Cannon spectral model
dataset: Dataset
original spectra | [
"Run",
"a",
"series",
"of",
"diagnostics",
"on",
"the",
"fitted",
"spectra"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/spectral_model.py#L35-L111 |
annayqho/TheCannon | spectral_model.py | residuals | def residuals(cannon_set, dataset):
""" Stack spectrum fit residuals, sort by each label. Include histogram of
the RMS at each pixel.
Parameters
----------
cannon_set: Dataset
best-fit Cannon spectra
dataset: Dataset
original spectra
"""
print("Stacking spectrum fit residuals")
res = dataset.test_fluxes - cannon_set.test_fluxes
bad = dataset.test_ivars == SMALL**2
err = np.zeros(len(dataset.test_ivars))
err = np.sqrt(1. / dataset.test_ivars + 1. / cannon_set.test_ivars)
res_norm = res / err
res_norm = np.ma.array(res_norm,
mask=(np.ones_like(res_norm) *
(np.std(res_norm,axis=0) == 0)))
res_norm = np.ma.compress_cols(res_norm)
for i in range(len(cannon_set.get_plotting_labels())):
label_name = cannon_set.get_plotting_labels()[i]
print("Plotting residuals sorted by %s" % label_name)
label_vals = cannon_set.tr_label_vals[:,i]
sorted_res = res_norm[np.argsort(label_vals)]
mu = np.mean(sorted_res.flatten())
sigma = np.std(sorted_res.flatten())
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
bottom_h = left_h = left+width+0.1
rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.1]
rect_histy = [left_h, bottom, 0.1, height]
plt.figure()
axScatter = plt.axes(rect_scatter)
axHistx = plt.axes(rect_histx)
axHisty = plt.axes(rect_histy)
im = axScatter.imshow(sorted_res, cmap=plt.cm.bwr_r,
interpolation="nearest", vmin=mu - 3. * sigma,
vmax=mu + 3. * sigma, aspect='auto',
origin='lower', extent=[0, len(dataset.wl),
min(label_vals),
max(label_vals)])
cax, kw = colorbar.make_axes(axScatter.axes, location='bottom')
plt.colorbar(im, cax=cax, orientation='horizontal')
axScatter.set_title(
r"Spectral Residuals Sorted by ${0:s}$".format(label_name))
axScatter.set_xlabel("Pixels")
axScatter.set_ylabel(r"$%s$" % label_name)
axHisty.hist(np.std(res_norm,axis=1)[~np.isnan(np.std(res_norm, axis=1))], orientation='horizontal', range=[0,2])
axHisty.axhline(y=1, c='k', linewidth=3, label="y=1")
axHisty.legend(bbox_to_anchor=(0., 0.8, 1., .102),
prop={'family':'serif', 'size':'small'})
axHisty.text(1.0, 0.5, "Distribution of Stdev of Star Residuals",
verticalalignment='center', transform=axHisty.transAxes,
rotation=270)
axHisty.set_ylabel("Standard Deviation")
start, end = axHisty.get_xlim()
axHisty.xaxis.set_ticks(np.linspace(start, end, 3))
axHisty.set_xlabel("Number of Stars")
axHisty.xaxis.set_label_position("top")
axHistx.hist(np.std(res_norm, axis=0)[~np.isnan(np.std(res_norm, axis=0))], range=[0.8,1.1])
axHistx.axvline(x=1, c='k', linewidth=3, label="x=1")
axHistx.set_title("Distribution of Stdev of Pixel Residuals")
axHistx.set_xlabel("Standard Deviation")
axHistx.set_ylabel("Number of Pixels")
start, end = axHistx.get_ylim()
axHistx.yaxis.set_ticks(np.linspace(start, end, 3))
axHistx.legend()
filename = "residuals_sorted_by_label_%s.png" % i
plt.savefig(filename)
print("File saved as %s" % filename)
plt.close()
# Auto-correlation of mean residuals
print("Plotting Auto-Correlation of Mean Residuals")
mean_res = res_norm.mean(axis=0)
autocorr = np.correlate(mean_res, mean_res, mode="full")
pkwidth = int(len(autocorr)/2-np.argmin(autocorr))
xmin = int(len(autocorr)/2)-pkwidth
xmax = int(len(autocorr)/2)+pkwidth
zoom_x = np.linspace(xmin, xmax, len(autocorr[xmin:xmax]))
fig, axarr = plt.subplots(2)
axarr[0].plot(autocorr)
axarr[0].set_title("Autocorrelation of Mean Spectral Residual")
axarr[0].set_xlabel("Lag (# Pixels)")
axarr[0].set_ylabel("Autocorrelation")
axarr[1].plot(zoom_x, autocorr[xmin:xmax])
axarr[1].set_title("Central Peak, Zoomed")
axarr[1].set_xlabel("Lag (# Pixels)")
axarr[1].set_ylabel("Autocorrelation")
filename = "residuals_autocorr.png"
plt.savefig(filename)
print("saved %s" % filename)
plt.close() | python | def residuals(cannon_set, dataset):
""" Stack spectrum fit residuals, sort by each label. Include histogram of
the RMS at each pixel.
Parameters
----------
cannon_set: Dataset
best-fit Cannon spectra
dataset: Dataset
original spectra
"""
print("Stacking spectrum fit residuals")
res = dataset.test_fluxes - cannon_set.test_fluxes
bad = dataset.test_ivars == SMALL**2
err = np.zeros(len(dataset.test_ivars))
err = np.sqrt(1. / dataset.test_ivars + 1. / cannon_set.test_ivars)
res_norm = res / err
res_norm = np.ma.array(res_norm,
mask=(np.ones_like(res_norm) *
(np.std(res_norm,axis=0) == 0)))
res_norm = np.ma.compress_cols(res_norm)
for i in range(len(cannon_set.get_plotting_labels())):
label_name = cannon_set.get_plotting_labels()[i]
print("Plotting residuals sorted by %s" % label_name)
label_vals = cannon_set.tr_label_vals[:,i]
sorted_res = res_norm[np.argsort(label_vals)]
mu = np.mean(sorted_res.flatten())
sigma = np.std(sorted_res.flatten())
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
bottom_h = left_h = left+width+0.1
rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.1]
rect_histy = [left_h, bottom, 0.1, height]
plt.figure()
axScatter = plt.axes(rect_scatter)
axHistx = plt.axes(rect_histx)
axHisty = plt.axes(rect_histy)
im = axScatter.imshow(sorted_res, cmap=plt.cm.bwr_r,
interpolation="nearest", vmin=mu - 3. * sigma,
vmax=mu + 3. * sigma, aspect='auto',
origin='lower', extent=[0, len(dataset.wl),
min(label_vals),
max(label_vals)])
cax, kw = colorbar.make_axes(axScatter.axes, location='bottom')
plt.colorbar(im, cax=cax, orientation='horizontal')
axScatter.set_title(
r"Spectral Residuals Sorted by ${0:s}$".format(label_name))
axScatter.set_xlabel("Pixels")
axScatter.set_ylabel(r"$%s$" % label_name)
axHisty.hist(np.std(res_norm,axis=1)[~np.isnan(np.std(res_norm, axis=1))], orientation='horizontal', range=[0,2])
axHisty.axhline(y=1, c='k', linewidth=3, label="y=1")
axHisty.legend(bbox_to_anchor=(0., 0.8, 1., .102),
prop={'family':'serif', 'size':'small'})
axHisty.text(1.0, 0.5, "Distribution of Stdev of Star Residuals",
verticalalignment='center', transform=axHisty.transAxes,
rotation=270)
axHisty.set_ylabel("Standard Deviation")
start, end = axHisty.get_xlim()
axHisty.xaxis.set_ticks(np.linspace(start, end, 3))
axHisty.set_xlabel("Number of Stars")
axHisty.xaxis.set_label_position("top")
axHistx.hist(np.std(res_norm, axis=0)[~np.isnan(np.std(res_norm, axis=0))], range=[0.8,1.1])
axHistx.axvline(x=1, c='k', linewidth=3, label="x=1")
axHistx.set_title("Distribution of Stdev of Pixel Residuals")
axHistx.set_xlabel("Standard Deviation")
axHistx.set_ylabel("Number of Pixels")
start, end = axHistx.get_ylim()
axHistx.yaxis.set_ticks(np.linspace(start, end, 3))
axHistx.legend()
filename = "residuals_sorted_by_label_%s.png" % i
plt.savefig(filename)
print("File saved as %s" % filename)
plt.close()
# Auto-correlation of mean residuals
print("Plotting Auto-Correlation of Mean Residuals")
mean_res = res_norm.mean(axis=0)
autocorr = np.correlate(mean_res, mean_res, mode="full")
pkwidth = int(len(autocorr)/2-np.argmin(autocorr))
xmin = int(len(autocorr)/2)-pkwidth
xmax = int(len(autocorr)/2)+pkwidth
zoom_x = np.linspace(xmin, xmax, len(autocorr[xmin:xmax]))
fig, axarr = plt.subplots(2)
axarr[0].plot(autocorr)
axarr[0].set_title("Autocorrelation of Mean Spectral Residual")
axarr[0].set_xlabel("Lag (# Pixels)")
axarr[0].set_ylabel("Autocorrelation")
axarr[1].plot(zoom_x, autocorr[xmin:xmax])
axarr[1].set_title("Central Peak, Zoomed")
axarr[1].set_xlabel("Lag (# Pixels)")
axarr[1].set_ylabel("Autocorrelation")
filename = "residuals_autocorr.png"
plt.savefig(filename)
print("saved %s" % filename)
plt.close() | [
"def",
"residuals",
"(",
"cannon_set",
",",
"dataset",
")",
":",
"print",
"(",
"\"Stacking spectrum fit residuals\"",
")",
"res",
"=",
"dataset",
".",
"test_fluxes",
"-",
"cannon_set",
".",
"test_fluxes",
"bad",
"=",
"dataset",
".",
"test_ivars",
"==",
"SMALL",
"**",
"2",
"err",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"dataset",
".",
"test_ivars",
")",
")",
"err",
"=",
"np",
".",
"sqrt",
"(",
"1.",
"/",
"dataset",
".",
"test_ivars",
"+",
"1.",
"/",
"cannon_set",
".",
"test_ivars",
")",
"res_norm",
"=",
"res",
"/",
"err",
"res_norm",
"=",
"np",
".",
"ma",
".",
"array",
"(",
"res_norm",
",",
"mask",
"=",
"(",
"np",
".",
"ones_like",
"(",
"res_norm",
")",
"*",
"(",
"np",
".",
"std",
"(",
"res_norm",
",",
"axis",
"=",
"0",
")",
"==",
"0",
")",
")",
")",
"res_norm",
"=",
"np",
".",
"ma",
".",
"compress_cols",
"(",
"res_norm",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"cannon_set",
".",
"get_plotting_labels",
"(",
")",
")",
")",
":",
"label_name",
"=",
"cannon_set",
".",
"get_plotting_labels",
"(",
")",
"[",
"i",
"]",
"print",
"(",
"\"Plotting residuals sorted by %s\"",
"%",
"label_name",
")",
"label_vals",
"=",
"cannon_set",
".",
"tr_label_vals",
"[",
":",
",",
"i",
"]",
"sorted_res",
"=",
"res_norm",
"[",
"np",
".",
"argsort",
"(",
"label_vals",
")",
"]",
"mu",
"=",
"np",
".",
"mean",
"(",
"sorted_res",
".",
"flatten",
"(",
")",
")",
"sigma",
"=",
"np",
".",
"std",
"(",
"sorted_res",
".",
"flatten",
"(",
")",
")",
"left",
",",
"width",
"=",
"0.1",
",",
"0.65",
"bottom",
",",
"height",
"=",
"0.1",
",",
"0.65",
"bottom_h",
"=",
"left_h",
"=",
"left",
"+",
"width",
"+",
"0.1",
"rect_scatter",
"=",
"[",
"left",
",",
"bottom",
",",
"width",
",",
"height",
"]",
"rect_histx",
"=",
"[",
"left",
",",
"bottom_h",
",",
"width",
",",
"0.1",
"]",
"rect_histy",
"=",
"[",
"left_h",
",",
"bottom",
",",
"0.1",
",",
"height",
"]",
"plt",
".",
"figure",
"(",
")",
"axScatter",
"=",
"plt",
".",
"axes",
"(",
"rect_scatter",
")",
"axHistx",
"=",
"plt",
".",
"axes",
"(",
"rect_histx",
")",
"axHisty",
"=",
"plt",
".",
"axes",
"(",
"rect_histy",
")",
"im",
"=",
"axScatter",
".",
"imshow",
"(",
"sorted_res",
",",
"cmap",
"=",
"plt",
".",
"cm",
".",
"bwr_r",
",",
"interpolation",
"=",
"\"nearest\"",
",",
"vmin",
"=",
"mu",
"-",
"3.",
"*",
"sigma",
",",
"vmax",
"=",
"mu",
"+",
"3.",
"*",
"sigma",
",",
"aspect",
"=",
"'auto'",
",",
"origin",
"=",
"'lower'",
",",
"extent",
"=",
"[",
"0",
",",
"len",
"(",
"dataset",
".",
"wl",
")",
",",
"min",
"(",
"label_vals",
")",
",",
"max",
"(",
"label_vals",
")",
"]",
")",
"cax",
",",
"kw",
"=",
"colorbar",
".",
"make_axes",
"(",
"axScatter",
".",
"axes",
",",
"location",
"=",
"'bottom'",
")",
"plt",
".",
"colorbar",
"(",
"im",
",",
"cax",
"=",
"cax",
",",
"orientation",
"=",
"'horizontal'",
")",
"axScatter",
".",
"set_title",
"(",
"r\"Spectral Residuals Sorted by ${0:s}$\"",
".",
"format",
"(",
"label_name",
")",
")",
"axScatter",
".",
"set_xlabel",
"(",
"\"Pixels\"",
")",
"axScatter",
".",
"set_ylabel",
"(",
"r\"$%s$\"",
"%",
"label_name",
")",
"axHisty",
".",
"hist",
"(",
"np",
".",
"std",
"(",
"res_norm",
",",
"axis",
"=",
"1",
")",
"[",
"~",
"np",
".",
"isnan",
"(",
"np",
".",
"std",
"(",
"res_norm",
",",
"axis",
"=",
"1",
")",
")",
"]",
",",
"orientation",
"=",
"'horizontal'",
",",
"range",
"=",
"[",
"0",
",",
"2",
"]",
")",
"axHisty",
".",
"axhline",
"(",
"y",
"=",
"1",
",",
"c",
"=",
"'k'",
",",
"linewidth",
"=",
"3",
",",
"label",
"=",
"\"y=1\"",
")",
"axHisty",
".",
"legend",
"(",
"bbox_to_anchor",
"=",
"(",
"0.",
",",
"0.8",
",",
"1.",
",",
".102",
")",
",",
"prop",
"=",
"{",
"'family'",
":",
"'serif'",
",",
"'size'",
":",
"'small'",
"}",
")",
"axHisty",
".",
"text",
"(",
"1.0",
",",
"0.5",
",",
"\"Distribution of Stdev of Star Residuals\"",
",",
"verticalalignment",
"=",
"'center'",
",",
"transform",
"=",
"axHisty",
".",
"transAxes",
",",
"rotation",
"=",
"270",
")",
"axHisty",
".",
"set_ylabel",
"(",
"\"Standard Deviation\"",
")",
"start",
",",
"end",
"=",
"axHisty",
".",
"get_xlim",
"(",
")",
"axHisty",
".",
"xaxis",
".",
"set_ticks",
"(",
"np",
".",
"linspace",
"(",
"start",
",",
"end",
",",
"3",
")",
")",
"axHisty",
".",
"set_xlabel",
"(",
"\"Number of Stars\"",
")",
"axHisty",
".",
"xaxis",
".",
"set_label_position",
"(",
"\"top\"",
")",
"axHistx",
".",
"hist",
"(",
"np",
".",
"std",
"(",
"res_norm",
",",
"axis",
"=",
"0",
")",
"[",
"~",
"np",
".",
"isnan",
"(",
"np",
".",
"std",
"(",
"res_norm",
",",
"axis",
"=",
"0",
")",
")",
"]",
",",
"range",
"=",
"[",
"0.8",
",",
"1.1",
"]",
")",
"axHistx",
".",
"axvline",
"(",
"x",
"=",
"1",
",",
"c",
"=",
"'k'",
",",
"linewidth",
"=",
"3",
",",
"label",
"=",
"\"x=1\"",
")",
"axHistx",
".",
"set_title",
"(",
"\"Distribution of Stdev of Pixel Residuals\"",
")",
"axHistx",
".",
"set_xlabel",
"(",
"\"Standard Deviation\"",
")",
"axHistx",
".",
"set_ylabel",
"(",
"\"Number of Pixels\"",
")",
"start",
",",
"end",
"=",
"axHistx",
".",
"get_ylim",
"(",
")",
"axHistx",
".",
"yaxis",
".",
"set_ticks",
"(",
"np",
".",
"linspace",
"(",
"start",
",",
"end",
",",
"3",
")",
")",
"axHistx",
".",
"legend",
"(",
")",
"filename",
"=",
"\"residuals_sorted_by_label_%s.png\"",
"%",
"i",
"plt",
".",
"savefig",
"(",
"filename",
")",
"print",
"(",
"\"File saved as %s\"",
"%",
"filename",
")",
"plt",
".",
"close",
"(",
")",
"# Auto-correlation of mean residuals",
"print",
"(",
"\"Plotting Auto-Correlation of Mean Residuals\"",
")",
"mean_res",
"=",
"res_norm",
".",
"mean",
"(",
"axis",
"=",
"0",
")",
"autocorr",
"=",
"np",
".",
"correlate",
"(",
"mean_res",
",",
"mean_res",
",",
"mode",
"=",
"\"full\"",
")",
"pkwidth",
"=",
"int",
"(",
"len",
"(",
"autocorr",
")",
"/",
"2",
"-",
"np",
".",
"argmin",
"(",
"autocorr",
")",
")",
"xmin",
"=",
"int",
"(",
"len",
"(",
"autocorr",
")",
"/",
"2",
")",
"-",
"pkwidth",
"xmax",
"=",
"int",
"(",
"len",
"(",
"autocorr",
")",
"/",
"2",
")",
"+",
"pkwidth",
"zoom_x",
"=",
"np",
".",
"linspace",
"(",
"xmin",
",",
"xmax",
",",
"len",
"(",
"autocorr",
"[",
"xmin",
":",
"xmax",
"]",
")",
")",
"fig",
",",
"axarr",
"=",
"plt",
".",
"subplots",
"(",
"2",
")",
"axarr",
"[",
"0",
"]",
".",
"plot",
"(",
"autocorr",
")",
"axarr",
"[",
"0",
"]",
".",
"set_title",
"(",
"\"Autocorrelation of Mean Spectral Residual\"",
")",
"axarr",
"[",
"0",
"]",
".",
"set_xlabel",
"(",
"\"Lag (# Pixels)\"",
")",
"axarr",
"[",
"0",
"]",
".",
"set_ylabel",
"(",
"\"Autocorrelation\"",
")",
"axarr",
"[",
"1",
"]",
".",
"plot",
"(",
"zoom_x",
",",
"autocorr",
"[",
"xmin",
":",
"xmax",
"]",
")",
"axarr",
"[",
"1",
"]",
".",
"set_title",
"(",
"\"Central Peak, Zoomed\"",
")",
"axarr",
"[",
"1",
"]",
".",
"set_xlabel",
"(",
"\"Lag (# Pixels)\"",
")",
"axarr",
"[",
"1",
"]",
".",
"set_ylabel",
"(",
"\"Autocorrelation\"",
")",
"filename",
"=",
"\"residuals_autocorr.png\"",
"plt",
".",
"savefig",
"(",
"filename",
")",
"print",
"(",
"\"saved %s\"",
"%",
"filename",
")",
"plt",
".",
"close",
"(",
")"
] | Stack spectrum fit residuals, sort by each label. Include histogram of
the RMS at each pixel.
Parameters
----------
cannon_set: Dataset
best-fit Cannon spectra
dataset: Dataset
original spectra | [
"Stack",
"spectrum",
"fit",
"residuals",
"sort",
"by",
"each",
"label",
".",
"Include",
"histogram",
"of",
"the",
"RMS",
"at",
"each",
"pixel",
"."
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/spectral_model.py#L114-L211 |
annayqho/TheCannon | TheCannon/find_continuum_pixels.py | _find_contpix_given_cuts | def _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars):
""" Find and return continuum pixels given the flux and sigma cut
Parameters
----------
f_cut: float
the upper limit imposed on the quantity (fbar-1)
sig_cut: float
the upper limit imposed on the quantity (f_sig)
wl: numpy ndarray of length npixels
rest-frame wavelength vector
fluxes: numpy ndarray of shape (nstars, npixels)
pixel intensities
ivars: numpy ndarray of shape nstars, npixels
inverse variances, parallel to fluxes
Returns
-------
contmask: boolean mask of length npixels
True indicates that the pixel is continuum
"""
f_bar = np.median(fluxes, axis=0)
sigma_f = np.var(fluxes, axis=0)
bad = np.logical_and(f_bar==0, sigma_f==0)
cont1 = np.abs(f_bar-1) <= f_cut
cont2 = sigma_f <= sig_cut
contmask = np.logical_and(cont1, cont2)
contmask[bad] = False
return contmask | python | def _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars):
""" Find and return continuum pixels given the flux and sigma cut
Parameters
----------
f_cut: float
the upper limit imposed on the quantity (fbar-1)
sig_cut: float
the upper limit imposed on the quantity (f_sig)
wl: numpy ndarray of length npixels
rest-frame wavelength vector
fluxes: numpy ndarray of shape (nstars, npixels)
pixel intensities
ivars: numpy ndarray of shape nstars, npixels
inverse variances, parallel to fluxes
Returns
-------
contmask: boolean mask of length npixels
True indicates that the pixel is continuum
"""
f_bar = np.median(fluxes, axis=0)
sigma_f = np.var(fluxes, axis=0)
bad = np.logical_and(f_bar==0, sigma_f==0)
cont1 = np.abs(f_bar-1) <= f_cut
cont2 = sigma_f <= sig_cut
contmask = np.logical_and(cont1, cont2)
contmask[bad] = False
return contmask | [
"def",
"_find_contpix_given_cuts",
"(",
"f_cut",
",",
"sig_cut",
",",
"wl",
",",
"fluxes",
",",
"ivars",
")",
":",
"f_bar",
"=",
"np",
".",
"median",
"(",
"fluxes",
",",
"axis",
"=",
"0",
")",
"sigma_f",
"=",
"np",
".",
"var",
"(",
"fluxes",
",",
"axis",
"=",
"0",
")",
"bad",
"=",
"np",
".",
"logical_and",
"(",
"f_bar",
"==",
"0",
",",
"sigma_f",
"==",
"0",
")",
"cont1",
"=",
"np",
".",
"abs",
"(",
"f_bar",
"-",
"1",
")",
"<=",
"f_cut",
"cont2",
"=",
"sigma_f",
"<=",
"sig_cut",
"contmask",
"=",
"np",
".",
"logical_and",
"(",
"cont1",
",",
"cont2",
")",
"contmask",
"[",
"bad",
"]",
"=",
"False",
"return",
"contmask"
] | Find and return continuum pixels given the flux and sigma cut
Parameters
----------
f_cut: float
the upper limit imposed on the quantity (fbar-1)
sig_cut: float
the upper limit imposed on the quantity (f_sig)
wl: numpy ndarray of length npixels
rest-frame wavelength vector
fluxes: numpy ndarray of shape (nstars, npixels)
pixel intensities
ivars: numpy ndarray of shape nstars, npixels
inverse variances, parallel to fluxes
Returns
-------
contmask: boolean mask of length npixels
True indicates that the pixel is continuum | [
"Find",
"and",
"return",
"continuum",
"pixels",
"given",
"the",
"flux",
"and",
"sigma",
"cut"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/find_continuum_pixels.py#L6-L34 |
annayqho/TheCannon | TheCannon/find_continuum_pixels.py | _find_contpix | def _find_contpix(wl, fluxes, ivars, target_frac):
""" Find continuum pix in spec, meeting a set target fraction
Parameters
----------
wl: numpy ndarray
rest-frame wavelength vector
fluxes: numpy ndarray
pixel intensities
ivars: numpy ndarray
inverse variances, parallel to fluxes
target_frac: float
the fraction of pixels in spectrum desired to be continuum
Returns
-------
contmask: boolean numpy ndarray
True corresponds to continuum pixels
"""
print("Target frac: %s" %(target_frac))
bad1 = np.median(ivars, axis=0) == SMALL
bad2 = np.var(ivars, axis=0) == 0
bad = np.logical_and(bad1, bad2)
npixels = len(wl)-sum(bad)
f_cut = 0.0001
stepsize = 0.0001
sig_cut = 0.0001
contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)
if npixels > 0:
frac = sum(contmask)/float(npixels)
else:
frac = 0
while (frac < target_frac):
f_cut += stepsize
sig_cut += stepsize
contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)
if npixels > 0:
frac = sum(contmask)/float(npixels)
else:
frac = 0
if frac > 0.10*npixels:
print("Warning: Over 10% of pixels identified as continuum.")
print("%s out of %s pixels identified as continuum" %(sum(contmask),
npixels))
print("Cuts: f_cut %s, sig_cut %s" %(f_cut, sig_cut))
return contmask | python | def _find_contpix(wl, fluxes, ivars, target_frac):
""" Find continuum pix in spec, meeting a set target fraction
Parameters
----------
wl: numpy ndarray
rest-frame wavelength vector
fluxes: numpy ndarray
pixel intensities
ivars: numpy ndarray
inverse variances, parallel to fluxes
target_frac: float
the fraction of pixels in spectrum desired to be continuum
Returns
-------
contmask: boolean numpy ndarray
True corresponds to continuum pixels
"""
print("Target frac: %s" %(target_frac))
bad1 = np.median(ivars, axis=0) == SMALL
bad2 = np.var(ivars, axis=0) == 0
bad = np.logical_and(bad1, bad2)
npixels = len(wl)-sum(bad)
f_cut = 0.0001
stepsize = 0.0001
sig_cut = 0.0001
contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)
if npixels > 0:
frac = sum(contmask)/float(npixels)
else:
frac = 0
while (frac < target_frac):
f_cut += stepsize
sig_cut += stepsize
contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)
if npixels > 0:
frac = sum(contmask)/float(npixels)
else:
frac = 0
if frac > 0.10*npixels:
print("Warning: Over 10% of pixels identified as continuum.")
print("%s out of %s pixels identified as continuum" %(sum(contmask),
npixels))
print("Cuts: f_cut %s, sig_cut %s" %(f_cut, sig_cut))
return contmask | [
"def",
"_find_contpix",
"(",
"wl",
",",
"fluxes",
",",
"ivars",
",",
"target_frac",
")",
":",
"print",
"(",
"\"Target frac: %s\"",
"%",
"(",
"target_frac",
")",
")",
"bad1",
"=",
"np",
".",
"median",
"(",
"ivars",
",",
"axis",
"=",
"0",
")",
"==",
"SMALL",
"bad2",
"=",
"np",
".",
"var",
"(",
"ivars",
",",
"axis",
"=",
"0",
")",
"==",
"0",
"bad",
"=",
"np",
".",
"logical_and",
"(",
"bad1",
",",
"bad2",
")",
"npixels",
"=",
"len",
"(",
"wl",
")",
"-",
"sum",
"(",
"bad",
")",
"f_cut",
"=",
"0.0001",
"stepsize",
"=",
"0.0001",
"sig_cut",
"=",
"0.0001",
"contmask",
"=",
"_find_contpix_given_cuts",
"(",
"f_cut",
",",
"sig_cut",
",",
"wl",
",",
"fluxes",
",",
"ivars",
")",
"if",
"npixels",
">",
"0",
":",
"frac",
"=",
"sum",
"(",
"contmask",
")",
"/",
"float",
"(",
"npixels",
")",
"else",
":",
"frac",
"=",
"0",
"while",
"(",
"frac",
"<",
"target_frac",
")",
":",
"f_cut",
"+=",
"stepsize",
"sig_cut",
"+=",
"stepsize",
"contmask",
"=",
"_find_contpix_given_cuts",
"(",
"f_cut",
",",
"sig_cut",
",",
"wl",
",",
"fluxes",
",",
"ivars",
")",
"if",
"npixels",
">",
"0",
":",
"frac",
"=",
"sum",
"(",
"contmask",
")",
"/",
"float",
"(",
"npixels",
")",
"else",
":",
"frac",
"=",
"0",
"if",
"frac",
">",
"0.10",
"*",
"npixels",
":",
"print",
"(",
"\"Warning: Over 10% of pixels identified as continuum.\"",
")",
"print",
"(",
"\"%s out of %s pixels identified as continuum\"",
"%",
"(",
"sum",
"(",
"contmask",
")",
",",
"npixels",
")",
")",
"print",
"(",
"\"Cuts: f_cut %s, sig_cut %s\"",
"%",
"(",
"f_cut",
",",
"sig_cut",
")",
")",
"return",
"contmask"
] | Find continuum pix in spec, meeting a set target fraction
Parameters
----------
wl: numpy ndarray
rest-frame wavelength vector
fluxes: numpy ndarray
pixel intensities
ivars: numpy ndarray
inverse variances, parallel to fluxes
target_frac: float
the fraction of pixels in spectrum desired to be continuum
Returns
-------
contmask: boolean numpy ndarray
True corresponds to continuum pixels | [
"Find",
"continuum",
"pix",
"in",
"spec",
"meeting",
"a",
"set",
"target",
"fraction"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/find_continuum_pixels.py#L37-L85 |
annayqho/TheCannon | TheCannon/find_continuum_pixels.py | _find_contpix_regions | def _find_contpix_regions(wl, fluxes, ivars, frac, ranges):
""" Find continuum pix in a spectrum split into chunks
Parameters
----------
wl: numpy ndarray
rest-frame wavelength vector
fluxes: numpy ndarray
pixel intensities
ivars: numpy ndarray
inverse variances, parallel to fluxes
frac: float
fraction of pixels in spectrum to be found as continuum
ranges: list, array
starts and ends indicating location of chunks in array
Returns
------
contmask: numpy ndarray, boolean
True indicates continuum pixel
"""
contmask = np.zeros(len(wl), dtype=bool)
for chunk in ranges:
start = chunk[0]
stop = chunk[1]
contmask[start:stop] = _find_contpix(
wl[start:stop], fluxes[:,start:stop], ivars[:,start:stop], frac)
return contmask | python | def _find_contpix_regions(wl, fluxes, ivars, frac, ranges):
""" Find continuum pix in a spectrum split into chunks
Parameters
----------
wl: numpy ndarray
rest-frame wavelength vector
fluxes: numpy ndarray
pixel intensities
ivars: numpy ndarray
inverse variances, parallel to fluxes
frac: float
fraction of pixels in spectrum to be found as continuum
ranges: list, array
starts and ends indicating location of chunks in array
Returns
------
contmask: numpy ndarray, boolean
True indicates continuum pixel
"""
contmask = np.zeros(len(wl), dtype=bool)
for chunk in ranges:
start = chunk[0]
stop = chunk[1]
contmask[start:stop] = _find_contpix(
wl[start:stop], fluxes[:,start:stop], ivars[:,start:stop], frac)
return contmask | [
"def",
"_find_contpix_regions",
"(",
"wl",
",",
"fluxes",
",",
"ivars",
",",
"frac",
",",
"ranges",
")",
":",
"contmask",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"wl",
")",
",",
"dtype",
"=",
"bool",
")",
"for",
"chunk",
"in",
"ranges",
":",
"start",
"=",
"chunk",
"[",
"0",
"]",
"stop",
"=",
"chunk",
"[",
"1",
"]",
"contmask",
"[",
"start",
":",
"stop",
"]",
"=",
"_find_contpix",
"(",
"wl",
"[",
"start",
":",
"stop",
"]",
",",
"fluxes",
"[",
":",
",",
"start",
":",
"stop",
"]",
",",
"ivars",
"[",
":",
",",
"start",
":",
"stop",
"]",
",",
"frac",
")",
"return",
"contmask"
] | Find continuum pix in a spectrum split into chunks
Parameters
----------
wl: numpy ndarray
rest-frame wavelength vector
fluxes: numpy ndarray
pixel intensities
ivars: numpy ndarray
inverse variances, parallel to fluxes
frac: float
fraction of pixels in spectrum to be found as continuum
ranges: list, array
starts and ends indicating location of chunks in array
Returns
------
contmask: numpy ndarray, boolean
True indicates continuum pixel | [
"Find",
"continuum",
"pix",
"in",
"a",
"spectrum",
"split",
"into",
"chunks"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/TheCannon/find_continuum_pixels.py#L88-L119 |
annayqho/TheCannon | code/lamost/xcalib_5labels/cross_validation.py | group_data | def group_data():
""" Load the reference data, and assign each object
a random integer from 0 to 7. Save the IDs. """
tr_obj = np.load("%s/ref_id.npz" %direc_ref)['arr_0']
groups = np.random.randint(0, 8, size=len(tr_obj))
np.savez("ref_groups.npz", groups) | python | def group_data():
""" Load the reference data, and assign each object
a random integer from 0 to 7. Save the IDs. """
tr_obj = np.load("%s/ref_id.npz" %direc_ref)['arr_0']
groups = np.random.randint(0, 8, size=len(tr_obj))
np.savez("ref_groups.npz", groups) | [
"def",
"group_data",
"(",
")",
":",
"tr_obj",
"=",
"np",
".",
"load",
"(",
"\"%s/ref_id.npz\"",
"%",
"direc_ref",
")",
"[",
"'arr_0'",
"]",
"groups",
"=",
"np",
".",
"random",
".",
"randint",
"(",
"0",
",",
"8",
",",
"size",
"=",
"len",
"(",
"tr_obj",
")",
")",
"np",
".",
"savez",
"(",
"\"ref_groups.npz\"",
",",
"groups",
")"
] | Load the reference data, and assign each object
a random integer from 0 to 7. Save the IDs. | [
"Load",
"the",
"reference",
"data",
"and",
"assign",
"each",
"object",
"a",
"random",
"integer",
"from",
"0",
"to",
"7",
".",
"Save",
"the",
"IDs",
"."
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/xcalib_5labels/cross_validation.py#L26-L32 |
annayqho/TheCannon | code/lamost/xcalib_5labels/cross_validation.py | train | def train(ds, ii):
""" Run the training step, given a dataset object. """
print("Loading model")
m = model.CannonModel(2)
print("Training...")
m.fit(ds)
np.savez("./ex%s_coeffs.npz" %ii, m.coeffs)
np.savez("./ex%s_scatters.npz" %ii, m.scatters)
np.savez("./ex%s_chisqs.npz" %ii, m.chisqs)
np.savez("./ex%s_pivots.npz" %ii, m.pivots)
fig = m.diagnostics_leading_coeffs(ds)
plt.savefig("ex%s_leading_coeffs.png" %ii)
# m.diagnostics_leading_coeffs_triangle(ds)
# m.diagnostics_plot_chisq(ds)
return m | python | def train(ds, ii):
""" Run the training step, given a dataset object. """
print("Loading model")
m = model.CannonModel(2)
print("Training...")
m.fit(ds)
np.savez("./ex%s_coeffs.npz" %ii, m.coeffs)
np.savez("./ex%s_scatters.npz" %ii, m.scatters)
np.savez("./ex%s_chisqs.npz" %ii, m.chisqs)
np.savez("./ex%s_pivots.npz" %ii, m.pivots)
fig = m.diagnostics_leading_coeffs(ds)
plt.savefig("ex%s_leading_coeffs.png" %ii)
# m.diagnostics_leading_coeffs_triangle(ds)
# m.diagnostics_plot_chisq(ds)
return m | [
"def",
"train",
"(",
"ds",
",",
"ii",
")",
":",
"print",
"(",
"\"Loading model\"",
")",
"m",
"=",
"model",
".",
"CannonModel",
"(",
"2",
")",
"print",
"(",
"\"Training...\"",
")",
"m",
".",
"fit",
"(",
"ds",
")",
"np",
".",
"savez",
"(",
"\"./ex%s_coeffs.npz\"",
"%",
"ii",
",",
"m",
".",
"coeffs",
")",
"np",
".",
"savez",
"(",
"\"./ex%s_scatters.npz\"",
"%",
"ii",
",",
"m",
".",
"scatters",
")",
"np",
".",
"savez",
"(",
"\"./ex%s_chisqs.npz\"",
"%",
"ii",
",",
"m",
".",
"chisqs",
")",
"np",
".",
"savez",
"(",
"\"./ex%s_pivots.npz\"",
"%",
"ii",
",",
"m",
".",
"pivots",
")",
"fig",
"=",
"m",
".",
"diagnostics_leading_coeffs",
"(",
"ds",
")",
"plt",
".",
"savefig",
"(",
"\"ex%s_leading_coeffs.png\"",
"%",
"ii",
")",
"# m.diagnostics_leading_coeffs_triangle(ds)",
"# m.diagnostics_plot_chisq(ds)",
"return",
"m"
] | Run the training step, given a dataset object. | [
"Run",
"the",
"training",
"step",
"given",
"a",
"dataset",
"object",
"."
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/xcalib_5labels/cross_validation.py#L35-L49 |
annayqho/TheCannon | code/lamost/xcalib_5labels/cross_validation.py | xvalidate | def xvalidate():
""" Train a model, leaving out a group corresponding
to a random integer from 0 to 7, e.g. leave out 0.
Test on the remaining 1/8 of the sample. """
print("Loading data")
groups = np.load("ref_groups.npz")['arr_0']
ref_label = np.load("%s/ref_label.npz" %direc_ref)['arr_0']
ref_id = np.load("%s/ref_id.npz" %direc_ref)['arr_0']
ref_flux = np.load("%s/ref_flux.npz" %direc_ref)['arr_0']
ref_ivar = np.load("%s/ref_ivar.npz" %direc_ref)['arr_0']
wl = np.load("%s/wl.npz" %direc_ref)['arr_0']
num_models = 8
for ii in np.arange(num_models):
print("Leaving out group %s" %ii)
train_on = groups != ii
test_on = groups == ii
tr_label = ref_label[train_on]
tr_id = ref_id[train_on]
tr_flux = ref_flux[train_on]
tr_ivar = ref_ivar[train_on]
print("Training on %s objects" %len(tr_id))
test_label = ref_label[test_on]
test_id = ref_id[test_on]
test_flux = ref_flux[test_on]
test_ivar = ref_ivar[test_on]
print("Testing on %s objects" %len(test_id))
print("Loading dataset...")
ds = dataset.Dataset(
wl, tr_id, tr_flux, tr_ivar, tr_label,
test_id, test_flux, test_ivar)
ds.set_label_names(
['T_{eff}', '\log g', '[M/H]', '[\\alpha/Fe]', 'AKWISE'])
fig = ds.diagnostics_SNR()
plt.savefig("ex%s_SNR.png" %ii)
fig = ds.diagnostics_ref_labels()
plt.savefig("ex%s_ref_label_triangle.png" %ii)
np.savez("ex%s_tr_snr.npz" %ii, ds.tr_SNR)
# train a model
m = train(ds, ii)
# test step
ds.tr_label = test_label # to compare the results
test(ds, m, ii) | python | def xvalidate():
""" Train a model, leaving out a group corresponding
to a random integer from 0 to 7, e.g. leave out 0.
Test on the remaining 1/8 of the sample. """
print("Loading data")
groups = np.load("ref_groups.npz")['arr_0']
ref_label = np.load("%s/ref_label.npz" %direc_ref)['arr_0']
ref_id = np.load("%s/ref_id.npz" %direc_ref)['arr_0']
ref_flux = np.load("%s/ref_flux.npz" %direc_ref)['arr_0']
ref_ivar = np.load("%s/ref_ivar.npz" %direc_ref)['arr_0']
wl = np.load("%s/wl.npz" %direc_ref)['arr_0']
num_models = 8
for ii in np.arange(num_models):
print("Leaving out group %s" %ii)
train_on = groups != ii
test_on = groups == ii
tr_label = ref_label[train_on]
tr_id = ref_id[train_on]
tr_flux = ref_flux[train_on]
tr_ivar = ref_ivar[train_on]
print("Training on %s objects" %len(tr_id))
test_label = ref_label[test_on]
test_id = ref_id[test_on]
test_flux = ref_flux[test_on]
test_ivar = ref_ivar[test_on]
print("Testing on %s objects" %len(test_id))
print("Loading dataset...")
ds = dataset.Dataset(
wl, tr_id, tr_flux, tr_ivar, tr_label,
test_id, test_flux, test_ivar)
ds.set_label_names(
['T_{eff}', '\log g', '[M/H]', '[\\alpha/Fe]', 'AKWISE'])
fig = ds.diagnostics_SNR()
plt.savefig("ex%s_SNR.png" %ii)
fig = ds.diagnostics_ref_labels()
plt.savefig("ex%s_ref_label_triangle.png" %ii)
np.savez("ex%s_tr_snr.npz" %ii, ds.tr_SNR)
# train a model
m = train(ds, ii)
# test step
ds.tr_label = test_label # to compare the results
test(ds, m, ii) | [
"def",
"xvalidate",
"(",
")",
":",
"print",
"(",
"\"Loading data\"",
")",
"groups",
"=",
"np",
".",
"load",
"(",
"\"ref_groups.npz\"",
")",
"[",
"'arr_0'",
"]",
"ref_label",
"=",
"np",
".",
"load",
"(",
"\"%s/ref_label.npz\"",
"%",
"direc_ref",
")",
"[",
"'arr_0'",
"]",
"ref_id",
"=",
"np",
".",
"load",
"(",
"\"%s/ref_id.npz\"",
"%",
"direc_ref",
")",
"[",
"'arr_0'",
"]",
"ref_flux",
"=",
"np",
".",
"load",
"(",
"\"%s/ref_flux.npz\"",
"%",
"direc_ref",
")",
"[",
"'arr_0'",
"]",
"ref_ivar",
"=",
"np",
".",
"load",
"(",
"\"%s/ref_ivar.npz\"",
"%",
"direc_ref",
")",
"[",
"'arr_0'",
"]",
"wl",
"=",
"np",
".",
"load",
"(",
"\"%s/wl.npz\"",
"%",
"direc_ref",
")",
"[",
"'arr_0'",
"]",
"num_models",
"=",
"8",
"for",
"ii",
"in",
"np",
".",
"arange",
"(",
"num_models",
")",
":",
"print",
"(",
"\"Leaving out group %s\"",
"%",
"ii",
")",
"train_on",
"=",
"groups",
"!=",
"ii",
"test_on",
"=",
"groups",
"==",
"ii",
"tr_label",
"=",
"ref_label",
"[",
"train_on",
"]",
"tr_id",
"=",
"ref_id",
"[",
"train_on",
"]",
"tr_flux",
"=",
"ref_flux",
"[",
"train_on",
"]",
"tr_ivar",
"=",
"ref_ivar",
"[",
"train_on",
"]",
"print",
"(",
"\"Training on %s objects\"",
"%",
"len",
"(",
"tr_id",
")",
")",
"test_label",
"=",
"ref_label",
"[",
"test_on",
"]",
"test_id",
"=",
"ref_id",
"[",
"test_on",
"]",
"test_flux",
"=",
"ref_flux",
"[",
"test_on",
"]",
"test_ivar",
"=",
"ref_ivar",
"[",
"test_on",
"]",
"print",
"(",
"\"Testing on %s objects\"",
"%",
"len",
"(",
"test_id",
")",
")",
"print",
"(",
"\"Loading dataset...\"",
")",
"ds",
"=",
"dataset",
".",
"Dataset",
"(",
"wl",
",",
"tr_id",
",",
"tr_flux",
",",
"tr_ivar",
",",
"tr_label",
",",
"test_id",
",",
"test_flux",
",",
"test_ivar",
")",
"ds",
".",
"set_label_names",
"(",
"[",
"'T_{eff}'",
",",
"'\\log g'",
",",
"'[M/H]'",
",",
"'[\\\\alpha/Fe]'",
",",
"'AKWISE'",
"]",
")",
"fig",
"=",
"ds",
".",
"diagnostics_SNR",
"(",
")",
"plt",
".",
"savefig",
"(",
"\"ex%s_SNR.png\"",
"%",
"ii",
")",
"fig",
"=",
"ds",
".",
"diagnostics_ref_labels",
"(",
")",
"plt",
".",
"savefig",
"(",
"\"ex%s_ref_label_triangle.png\"",
"%",
"ii",
")",
"np",
".",
"savez",
"(",
"\"ex%s_tr_snr.npz\"",
"%",
"ii",
",",
"ds",
".",
"tr_SNR",
")",
"# train a model",
"m",
"=",
"train",
"(",
"ds",
",",
"ii",
")",
"# test step",
"ds",
".",
"tr_label",
"=",
"test_label",
"# to compare the results",
"test",
"(",
"ds",
",",
"m",
",",
"ii",
")"
] | Train a model, leaving out a group corresponding
to a random integer from 0 to 7, e.g. leave out 0.
Test on the remaining 1/8 of the sample. | [
"Train",
"a",
"model",
"leaving",
"out",
"a",
"group",
"corresponding",
"to",
"a",
"random",
"integer",
"from",
"0",
"to",
"7",
"e",
".",
"g",
".",
"leave",
"out",
"0",
".",
"Test",
"on",
"the",
"remaining",
"1",
"/",
"8",
"of",
"the",
"sample",
"."
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/xcalib_5labels/cross_validation.py#L159-L207 |
annayqho/TheCannon | code/aaomega/aaomega_munge_data.py | weighted_std | def weighted_std(values, weights):
""" Calculate standard deviation weighted by errors """
average = np.average(values, weights=weights)
variance = np.average((values-average)**2, weights=weights)
return np.sqrt(variance) | python | def weighted_std(values, weights):
""" Calculate standard deviation weighted by errors """
average = np.average(values, weights=weights)
variance = np.average((values-average)**2, weights=weights)
return np.sqrt(variance) | [
"def",
"weighted_std",
"(",
"values",
",",
"weights",
")",
":",
"average",
"=",
"np",
".",
"average",
"(",
"values",
",",
"weights",
"=",
"weights",
")",
"variance",
"=",
"np",
".",
"average",
"(",
"(",
"values",
"-",
"average",
")",
"**",
"2",
",",
"weights",
"=",
"weights",
")",
"return",
"np",
".",
"sqrt",
"(",
"variance",
")"
] | Calculate standard deviation weighted by errors | [
"Calculate",
"standard",
"deviation",
"weighted",
"by",
"errors"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/aaomega/aaomega_munge_data.py#L12-L16 |
annayqho/TheCannon | code/aaomega/aaomega_munge_data.py | estimate_noise | def estimate_noise(fluxes, contmask):
""" Estimate the scatter in a region of the spectrum
taken to be continuum """
nstars = fluxes.shape[0]
scatter = np.zeros(nstars)
for i,spec in enumerate(fluxes):
cont = spec[contmask]
scatter[i] = stats.funcs.mad_std(cont)
return scatter | python | def estimate_noise(fluxes, contmask):
""" Estimate the scatter in a region of the spectrum
taken to be continuum """
nstars = fluxes.shape[0]
scatter = np.zeros(nstars)
for i,spec in enumerate(fluxes):
cont = spec[contmask]
scatter[i] = stats.funcs.mad_std(cont)
return scatter | [
"def",
"estimate_noise",
"(",
"fluxes",
",",
"contmask",
")",
":",
"nstars",
"=",
"fluxes",
".",
"shape",
"[",
"0",
"]",
"scatter",
"=",
"np",
".",
"zeros",
"(",
"nstars",
")",
"for",
"i",
",",
"spec",
"in",
"enumerate",
"(",
"fluxes",
")",
":",
"cont",
"=",
"spec",
"[",
"contmask",
"]",
"scatter",
"[",
"i",
"]",
"=",
"stats",
".",
"funcs",
".",
"mad_std",
"(",
"cont",
")",
"return",
"scatter"
] | Estimate the scatter in a region of the spectrum
taken to be continuum | [
"Estimate",
"the",
"scatter",
"in",
"a",
"region",
"of",
"the",
"spectrum",
"taken",
"to",
"be",
"continuum"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/aaomega/aaomega_munge_data.py#L19-L27 |
annayqho/TheCannon | code/aaomega/aaomega_munge_data.py | load_ref_spectra | def load_ref_spectra():
""" Pull out wl, flux, ivar from files of training spectra """
data_dir = "/Users/annaho/Data/AAOmega/ref_spectra"
# Load the files & count the number of training objects
ff = glob.glob("%s/*.txt" %data_dir)
nstars = len(ff)
print("We have %s training objects" %nstars)
# Read the first file to get the wavelength array
f = ff[0]
data = Table.read(f, format="ascii.fast_no_header")
wl = data['col1']
npix = len(wl)
print("We have %s pixels" %npix)
tr_flux = np.zeros((nstars,npix))
tr_ivar = np.zeros(tr_flux.shape)
for i,f in enumerate(ff):
data = Table.read(f, format="ascii.fast_no_header")
flux = data['col2']
tr_flux[i,:] = flux
sigma = data['col3']
tr_ivar[i,:] = 1.0 / sigma**2
return np.array(ff), wl, tr_flux, tr_ivar | python | def load_ref_spectra():
""" Pull out wl, flux, ivar from files of training spectra """
data_dir = "/Users/annaho/Data/AAOmega/ref_spectra"
# Load the files & count the number of training objects
ff = glob.glob("%s/*.txt" %data_dir)
nstars = len(ff)
print("We have %s training objects" %nstars)
# Read the first file to get the wavelength array
f = ff[0]
data = Table.read(f, format="ascii.fast_no_header")
wl = data['col1']
npix = len(wl)
print("We have %s pixels" %npix)
tr_flux = np.zeros((nstars,npix))
tr_ivar = np.zeros(tr_flux.shape)
for i,f in enumerate(ff):
data = Table.read(f, format="ascii.fast_no_header")
flux = data['col2']
tr_flux[i,:] = flux
sigma = data['col3']
tr_ivar[i,:] = 1.0 / sigma**2
return np.array(ff), wl, tr_flux, tr_ivar | [
"def",
"load_ref_spectra",
"(",
")",
":",
"data_dir",
"=",
"\"/Users/annaho/Data/AAOmega/ref_spectra\"",
"# Load the files & count the number of training objects",
"ff",
"=",
"glob",
".",
"glob",
"(",
"\"%s/*.txt\"",
"%",
"data_dir",
")",
"nstars",
"=",
"len",
"(",
"ff",
")",
"print",
"(",
"\"We have %s training objects\"",
"%",
"nstars",
")",
"# Read the first file to get the wavelength array",
"f",
"=",
"ff",
"[",
"0",
"]",
"data",
"=",
"Table",
".",
"read",
"(",
"f",
",",
"format",
"=",
"\"ascii.fast_no_header\"",
")",
"wl",
"=",
"data",
"[",
"'col1'",
"]",
"npix",
"=",
"len",
"(",
"wl",
")",
"print",
"(",
"\"We have %s pixels\"",
"%",
"npix",
")",
"tr_flux",
"=",
"np",
".",
"zeros",
"(",
"(",
"nstars",
",",
"npix",
")",
")",
"tr_ivar",
"=",
"np",
".",
"zeros",
"(",
"tr_flux",
".",
"shape",
")",
"for",
"i",
",",
"f",
"in",
"enumerate",
"(",
"ff",
")",
":",
"data",
"=",
"Table",
".",
"read",
"(",
"f",
",",
"format",
"=",
"\"ascii.fast_no_header\"",
")",
"flux",
"=",
"data",
"[",
"'col2'",
"]",
"tr_flux",
"[",
"i",
",",
":",
"]",
"=",
"flux",
"sigma",
"=",
"data",
"[",
"'col3'",
"]",
"tr_ivar",
"[",
"i",
",",
":",
"]",
"=",
"1.0",
"/",
"sigma",
"**",
"2",
"return",
"np",
".",
"array",
"(",
"ff",
")",
",",
"wl",
",",
"tr_flux",
",",
"tr_ivar"
] | Pull out wl, flux, ivar from files of training spectra | [
"Pull",
"out",
"wl",
"flux",
"ivar",
"from",
"files",
"of",
"training",
"spectra"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/aaomega/aaomega_munge_data.py#L30-L55 |
annayqho/TheCannon | code/aaomega/aaomega_munge_data.py | load_data | def load_data():
data_dir = "/Users/annaho/Data/AAOmega"
out_dir = "%s/%s" %(data_dir, "Run_13_July")
""" Use all the above functions to set data up for The Cannon """
ff, wl, tr_flux, tr_ivar = load_ref_spectra()
""" pick one that doesn't have extra dead pixels """
skylines = tr_ivar[4,:] # should be the same across all obj
np.savez("%s/skylines.npz" %out_dir, skylines)
contmask = np.load("%s/contmask_regions.npz" %data_dir)['arr_0']
scatter = estimate_noise(tr_flux, contmask)
ids, labels = load_labels()
# Select the objects in the catalog corresponding to the files
inds = []
ff_short = []
for fname in ff:
val = fname.split("/")[-1]
short = (val.split('.')[0] + '.' + val.split('.')[1])
ff_short.append(short)
if short in ids:
ind = np.where(ids==short)[0][0]
inds.append(ind)
# choose the labels
tr_id = ids[inds]
tr_label = labels[inds]
# find the corresponding spectra
ff_short = np.array(ff_short)
inds = np.array([np.where(ff_short==val)[0][0] for val in tr_id])
tr_flux_choose = tr_flux[inds]
tr_ivar_choose = tr_ivar[inds]
scatter_choose = scatter[inds]
np.savez("%s/wl.npz" %out_dir, wl)
np.savez("%s/ref_id_all.npz" %out_dir, tr_id)
np.savez("%s/ref_flux_all.npz" %out_dir, tr_flux_choose)
np.savez("%s/ref_ivar_all.npz" %out_dir, tr_ivar_choose)
np.savez("%s/ref_label_all.npz" %out_dir, tr_label)
np.savez("%s/ref_spec_scat_all.npz" %out_dir, scatter_choose)
# now, the test spectra
test_id, test_flux = load_test_spectra()
scatter = estimate_noise(test_flux, contmask)
np.savez("%s/test_id.npz" %out_dir, test_id)
np.savez("%s/test_flux.npz" %out_dir, test_flux)
np.savez("%s/test_spec_scat.npz" %out_dir, scatter) | python | def load_data():
data_dir = "/Users/annaho/Data/AAOmega"
out_dir = "%s/%s" %(data_dir, "Run_13_July")
""" Use all the above functions to set data up for The Cannon """
ff, wl, tr_flux, tr_ivar = load_ref_spectra()
""" pick one that doesn't have extra dead pixels """
skylines = tr_ivar[4,:] # should be the same across all obj
np.savez("%s/skylines.npz" %out_dir, skylines)
contmask = np.load("%s/contmask_regions.npz" %data_dir)['arr_0']
scatter = estimate_noise(tr_flux, contmask)
ids, labels = load_labels()
# Select the objects in the catalog corresponding to the files
inds = []
ff_short = []
for fname in ff:
val = fname.split("/")[-1]
short = (val.split('.')[0] + '.' + val.split('.')[1])
ff_short.append(short)
if short in ids:
ind = np.where(ids==short)[0][0]
inds.append(ind)
# choose the labels
tr_id = ids[inds]
tr_label = labels[inds]
# find the corresponding spectra
ff_short = np.array(ff_short)
inds = np.array([np.where(ff_short==val)[0][0] for val in tr_id])
tr_flux_choose = tr_flux[inds]
tr_ivar_choose = tr_ivar[inds]
scatter_choose = scatter[inds]
np.savez("%s/wl.npz" %out_dir, wl)
np.savez("%s/ref_id_all.npz" %out_dir, tr_id)
np.savez("%s/ref_flux_all.npz" %out_dir, tr_flux_choose)
np.savez("%s/ref_ivar_all.npz" %out_dir, tr_ivar_choose)
np.savez("%s/ref_label_all.npz" %out_dir, tr_label)
np.savez("%s/ref_spec_scat_all.npz" %out_dir, scatter_choose)
# now, the test spectra
test_id, test_flux = load_test_spectra()
scatter = estimate_noise(test_flux, contmask)
np.savez("%s/test_id.npz" %out_dir, test_id)
np.savez("%s/test_flux.npz" %out_dir, test_flux)
np.savez("%s/test_spec_scat.npz" %out_dir, scatter) | [
"def",
"load_data",
"(",
")",
":",
"data_dir",
"=",
"\"/Users/annaho/Data/AAOmega\"",
"out_dir",
"=",
"\"%s/%s\"",
"%",
"(",
"data_dir",
",",
"\"Run_13_July\"",
")",
"ff",
",",
"wl",
",",
"tr_flux",
",",
"tr_ivar",
"=",
"load_ref_spectra",
"(",
")",
"\"\"\" pick one that doesn't have extra dead pixels \"\"\"",
"skylines",
"=",
"tr_ivar",
"[",
"4",
",",
":",
"]",
"# should be the same across all obj",
"np",
".",
"savez",
"(",
"\"%s/skylines.npz\"",
"%",
"out_dir",
",",
"skylines",
")",
"contmask",
"=",
"np",
".",
"load",
"(",
"\"%s/contmask_regions.npz\"",
"%",
"data_dir",
")",
"[",
"'arr_0'",
"]",
"scatter",
"=",
"estimate_noise",
"(",
"tr_flux",
",",
"contmask",
")",
"ids",
",",
"labels",
"=",
"load_labels",
"(",
")",
"# Select the objects in the catalog corresponding to the files",
"inds",
"=",
"[",
"]",
"ff_short",
"=",
"[",
"]",
"for",
"fname",
"in",
"ff",
":",
"val",
"=",
"fname",
".",
"split",
"(",
"\"/\"",
")",
"[",
"-",
"1",
"]",
"short",
"=",
"(",
"val",
".",
"split",
"(",
"'.'",
")",
"[",
"0",
"]",
"+",
"'.'",
"+",
"val",
".",
"split",
"(",
"'.'",
")",
"[",
"1",
"]",
")",
"ff_short",
".",
"append",
"(",
"short",
")",
"if",
"short",
"in",
"ids",
":",
"ind",
"=",
"np",
".",
"where",
"(",
"ids",
"==",
"short",
")",
"[",
"0",
"]",
"[",
"0",
"]",
"inds",
".",
"append",
"(",
"ind",
")",
"# choose the labels",
"tr_id",
"=",
"ids",
"[",
"inds",
"]",
"tr_label",
"=",
"labels",
"[",
"inds",
"]",
"# find the corresponding spectra",
"ff_short",
"=",
"np",
".",
"array",
"(",
"ff_short",
")",
"inds",
"=",
"np",
".",
"array",
"(",
"[",
"np",
".",
"where",
"(",
"ff_short",
"==",
"val",
")",
"[",
"0",
"]",
"[",
"0",
"]",
"for",
"val",
"in",
"tr_id",
"]",
")",
"tr_flux_choose",
"=",
"tr_flux",
"[",
"inds",
"]",
"tr_ivar_choose",
"=",
"tr_ivar",
"[",
"inds",
"]",
"scatter_choose",
"=",
"scatter",
"[",
"inds",
"]",
"np",
".",
"savez",
"(",
"\"%s/wl.npz\"",
"%",
"out_dir",
",",
"wl",
")",
"np",
".",
"savez",
"(",
"\"%s/ref_id_all.npz\"",
"%",
"out_dir",
",",
"tr_id",
")",
"np",
".",
"savez",
"(",
"\"%s/ref_flux_all.npz\"",
"%",
"out_dir",
",",
"tr_flux_choose",
")",
"np",
".",
"savez",
"(",
"\"%s/ref_ivar_all.npz\"",
"%",
"out_dir",
",",
"tr_ivar_choose",
")",
"np",
".",
"savez",
"(",
"\"%s/ref_label_all.npz\"",
"%",
"out_dir",
",",
"tr_label",
")",
"np",
".",
"savez",
"(",
"\"%s/ref_spec_scat_all.npz\"",
"%",
"out_dir",
",",
"scatter_choose",
")",
"# now, the test spectra",
"test_id",
",",
"test_flux",
"=",
"load_test_spectra",
"(",
")",
"scatter",
"=",
"estimate_noise",
"(",
"test_flux",
",",
"contmask",
")",
"np",
".",
"savez",
"(",
"\"%s/test_id.npz\"",
"%",
"out_dir",
",",
"test_id",
")",
"np",
".",
"savez",
"(",
"\"%s/test_flux.npz\"",
"%",
"out_dir",
",",
"test_flux",
")",
"np",
".",
"savez",
"(",
"\"%s/test_spec_scat.npz\"",
"%",
"out_dir",
",",
"scatter",
")"
] | Use all the above functions to set data up for The Cannon | [
"Use",
"all",
"the",
"above",
"functions",
"to",
"set",
"data",
"up",
"for",
"The",
"Cannon"
] | train | https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/aaomega/aaomega_munge_data.py#L109-L157 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.