max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
eval-ccs2019/benchmark.py
nibau/zkay
0
12795051
<reponame>nibau/zkay<gh_stars>0 #!/usr/bin/env python3 # usage ./benchmark.py [example_dir] # (example_dir contains subdirectories with example sol/zkay and scenario files) # requires installed memory-profiler and zkay packages import os import datetime import sys import shutil clean=False file_dir = os.path.realpath(os.path.dirname(__file__)) base_dir = os.path.join(file_dir, 'examples') if len(sys.argv) < 2 else os.path.realpath(sys.argv[1]) backends = ['dummy', 'ecdh-chaskey', 'ecdh-aes'] #, 'rsa-pkcs1.5', 'rsa-oaep'] # rsa consumes >100 GB hdd space for backend in backends: for dirname in os.listdir(base_dir): p = os.path.join(base_dir, dirname) if os.path.isdir(p): file = None for filename in os.listdir(p): if filename.endswith(('.sol', '.zkay')): file = os.path.join(p, filename) break if file is not None: out_dir = os.path.join(p, f'out_{backend}') if clean and os.path.exists(out_dir): shutil.rmtree(out_dir) os.makedirs(out_dir, exist_ok=True) print(f'compiling {file}, at {datetime.datetime.utcnow()}') os.system(f"mprof run --include-children --nopython -o '{out_dir}/mprof_compile.dat' zkay compile '{file}' --verbosity 0 --crypto-backend {backend} --opt-hash-threshold 0 -o '{out_dir}' --log --log-dir '{out_dir}'") scenario_file = os.path.join(p, 'scenario.py') if os.path.exists(scenario_file): print(f'running {scenario_file}, at {datetime.datetime.utcnow()}') os.system(f"mprof run --include-children --nopython -o '{out_dir}/mprof_run.dat' python '{scenario_file}' '{out_dir}'")
1.96875
2
src/models/ffhq_1024_haar/__init__.py
YorkUCVIL/Wavelet-Flow
59
12795052
from models.ffhq_1024_haar.Training_data import * from models.ffhq_1024_haar.Validation_data import * from models.ffhq_1024_haar.Network_body import * from models.ffhq_1024_haar.Conditioning_network import * import models.shared.routines as routines from models.ffhq_1024_haar.build_training_graph import * model_config_path = 'data/ffhq_1024_haar/config.hjson'
1.1875
1
mkAD/modify_init.py
arielthomas1/SHEMAT-Suite-Open
0
12795053
<filename>mkAD/modify_init.py<gh_stars>0 #!/usr/bin/python # -*- coding: iso-8859-1 -*- import sys import os import re def contains(theString, theQueryValue): return theString.find(theQueryValue) > -1 targetfile = sys.argv[1] if os.path.exists(os.getcwd() + "/" + targetfile): openFile = open(targetfile) writeFile = open(targetfile+".new","w") print "Begin parsing head file to include init call" allLines = openFile.readlines() lines = set(allLines) search = 0 for line in allLines: if(search == 2): # schon gefunden writeFile.write(line) else: if search == 0: if contains(line,"IMPLICIT NONE"): # we begin search for final INCLUDE writeFile.write(line) search = 1 else: writeFile.write(line) else: if search == 1: if line.startswith("!"): # just a comment writeFile.write(line) else: if contains(line,"INCLUDE") or contains(line,"INTEGER") or contains(line,"DOUBLE") or contains(line,"EXTERNAL"): # just an include writeFile.write(line) else: # HERE we introduce the call writeFile.write(" CALL INIT()\n"); writeFile.write(line) search = 2 openFile.close() writeFile.close() else: print "Data " + targetfile +" does not exist!"
3.140625
3
Lib/xml/dom/minitraversal.py
M-Spencer-94/configNOW
3
12795054
"""A DOM implementation that offers traversal and ranges on top of minidom, using the 4DOM traversal implementation.""" import minidom, string class DOMImplementation(minidom.DOMImplementation): def hasFeature(self, feature, version): if version not in ("1.0", "2.0"): return 0 feature = string.lower(feature) if feature in ['traversal','range']: return 1 return minidom.DOMImplementation.hasFeature(self, feature, version) def _createDocument(self): return Document() class Document(minidom.Document): implementation = DOMImplementation() def createNodeIterator(self, root, whatToShow, filter, entityReferenceExpansion): from xml.dom import NodeIterator nodi = NodeIterator.NodeIterator(root, whatToShow, filter, entityReferenceExpansion) return nodi def createTreeWalker(self, root, whatToShow, filter, entityReferenceExpansion): from TreeWalker import TreeWalker return TreeWalker(root, whatToShow, filter, entityReferenceExpansion) def createRange(self): import Range return Range.Range(self) def getDOMImplementation(): return Document.implementation
2.78125
3
module/reTestIP.py
yangliangguang/CrawlFreeProxy
8
12795055
import redis from tools.common import test_http_proxy import threading def http_task(): # 连接redis数据库 POOL = redis.ConnectionPool(host='127.0.0.1', port=6379) CONN_REDIS = redis.Redis(connection_pool=POOL) # 取出一个ip进行测试 # proxy = CONN_REDIS.("freeProxy:AfterVerifyOKhttp") ip = CONN_REDIS.srandmember("freeProxy:AfterVerifyOKhttp",1) # 判断redis中ip数量是否为空 if not ip: return 0 else: # print("INFO: Get proxy from Redis freeProxy:BeforeVerifyhttp list") proxy = str(ip[0], encoding="utf-8") flag = test_http_proxy(proxy) if flag == True: # CONN_REDIS.sadd("freeProxy:AfterVerifyOKhttp", proxy) # print("INFO: Save this Proxy IP in freeProxy:AfterVerifyOKhttp") with open("pass.txt", "a+") as f: f.write(proxy + "/n") print("Pass:", proxy) else: # CONN_REDIS.sadd("freeProxy_Bad:AfterVerifyFailhttp", proxy) # print("INFO: Abandon this Proxy IP!") with open("fail.txt", "a+") as f: f.write(proxy + "+/n") print("Fail:", proxy) return 1 def loop_test(name): print("*Start thread task %s" % name) while True: result = http_task() print("\n") if result == 0: break if __name__ == "__main__": jobs = [] num = 8 for i in range(1, num+1): name = "Thread-" + str(i) jobs.append(threading.Thread(target=loop_test, args=(name,))) # 开启多线程 for t in jobs: t.start() for t in jobs: t.join()
2.875
3
draw_lines.py
ounessy/tabular-horizontal-line-drawing
0
12795056
import pytesseract from pytesseract import Output import cv2 import os from shapely.geometry import Polygon pytesseract.pytesseract.tesseract_cmd = "Tesseract path e.g c:\Tesseract-OCR\tesseract " import sys from os import chdir, listdir from os.path import join ## Hyper Params L = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' CHAR_THRESHOLD = 3 LINE_WIDTH = 2 LINE_COLOR = (0, 0, 0) ## Algo def get_image_data(img_path): img = cv2.imread(img_path) image_to_data = pytesseract.image_to_data(img, output_type=Output.DICT) Xmax = img.shape[1] Ymax = img.shape[0] return image_to_data, Xmax, Ymax def draw_lines_v1(img_path, image_to_data): img = cv2.imread(img_path) Xmax = img.shape[1] n_boxes = len(image_to_data['level']) for i in range(n_boxes): if filter_boxes(image_to_data, i) : (x, y, w, h) = (image_to_data['left'][i], image_to_data['top'][i], image_to_data['width'][i], image_to_data['height'][i]) #cv2.line(img, (0 , y +h +5 ),(Xmax, y +h +5) ,(0, 0, 0), 3) #cv2.line(img, (0 , y+h ), (Xmax + w, y + h), (0, 255, 0), 1) cv2.rectangle(img, (x, y), ( x + w, y + h), LINE_COLOR, LINE_WIDTH) """ cv2.line(img, (0 , 0),(0, Ymax) ,(0, 0, 0), 5) cv2.line(img, (0 , 0),(Xmax, 0) ,(0, 0, 0), 5) cv2.line(img, (0, Ymax),(Xmax, Ymax) ,(0, 0, 0), 5) cv2.line(img, (Xmax , 0),(Xmax, Ymax) ,(0, 0, 0), 5) """ cv2.namedWindow("output2", cv2.WINDOW_NORMAL) cv2.imshow('output2', img) def draw_lines(img_path, image_to_data, margin = 0): """ Draw extracted and filtred boxes """ img = cv2.imread(img_path) Xmax = img.shape[1] Ymax = img.shape[0] n_boxes = len(image_to_data) for i in range(n_boxes-1): """ For each line, we will draw a line between the bottom of the line and the next line top """ (x, y, w, h) = (image_to_data[i][0], image_to_data[i][1], image_to_data[i][2], image_to_data[i][3]) y_next = image_to_data[i+1][1] y_middle = (y+h+y_next)//2 """ To avoid the case of drawin a line over a word, we will set a threshold to y_middle, In case a hole section is not detected. """ y_new = min(y_middle, y+h+margin) cv2.line(img, (x , y_new),(w, y_new) ,LINE_COLOR, LINE_WIDTH) #cv2.line(img, (0 , y+h ), (Xmax + w, y + h), (0, 255, 0), 1) #cv2.rectangle(img, (x, y), ( x + w, y + h), (0, 255, 0), 1) cv2.line(img, (0 , 0),(0, Ymax) ,LINE_COLOR, 5) cv2.line(img, (0 , 0),(Xmax, 0) ,LINE_COLOR, 5) cv2.line(img, (0, Ymax),(Xmax, Ymax) ,LINE_COLOR, 5) cv2.line(img, (Xmax , 0),(Xmax, Ymax) ,LINE_COLOR, 5) #cv2.namedWindow("output", cv2.WINDOW_NORMAL) #cv2.imshow('output', img) return img def check_intersection(elem1, elem2): for l in elem1: if l in elem2: return True return False ## Processing extracted boxes def check_polygon_intersection(p1, p2): if p1.distance(p2) == 0 : return True return False def create_polygon(x, y, w, h): p = Polygon([(x, y),(x+w, y),(x+w, y + h),(x, y + h)]) return p def filter_boxes(image_to_data, ind): text = image_to_data["text"][ind] h = image_to_data["height"][ind] w = image_to_data["width"][ind] if len(text) > CHAR_THRESHOLD and w > h: return True return False def process_image_to_data(image_to_data, Xmax, Ymax): boxes_list = list() boxes_list.append([0, 0, 0, 0]) all_zero_distance = list() n_boxes = len(image_to_data['level']) """ A first loop to merge close boxes """ for i in range(n_boxes): if filter_boxes(image_to_data, i) : (y, h) = (image_to_data['top'][i], image_to_data['height'][i]) p1 = create_polygon(0, y, Xmax, h) n_b = len(boxes_list) flag = 0 zero_distance = list() for j in range(n_b): elem = boxes_list[j] p2 = create_polygon(elem[0], elem[1], elem[2], elem[3]) if check_polygon_intersection(p1, p2): zero_distance.append(j) new_y = min(y, elem[1]) new_h = max(y+h, elem[1] + elem[3]) - min(y, elem[1]) new_elem = [0, new_y, Xmax, new_h] boxes_list[j]=new_elem flag = 1 if flag == 0 : new_elem = [0, y, Xmax, h] boxes_list.append(new_elem) return boxes_list def clean_loop(boxes_list): Xmax = boxes_list[1][2] n = len(boxes_list) global_flag = 0 all_to_be_merged = list() used_ind = list() for i in range(n): if i not in used_ind: to_be_merged = list() boxe1 = boxes_list[i] p1 = create_polygon(boxe1[0],boxe1[1],boxe1[2],boxe1[3]) m = len(boxes_list) for j in range(m): if j not in used_ind: boxe2=boxes_list[j] p2 = create_polygon(boxe2[0],boxe2[1],boxe2[2],boxe2[3]) if check_polygon_intersection(p1, p2): to_be_merged.append(boxe2) used_ind.append(j) all_to_be_merged.append(to_be_merged) n_detected = len(all_to_be_merged) new_boxes_list = list() for i in range(n_detected): small_list = all_to_be_merged[i] p = len(small_list) new_y = min([boxe[1] for boxe in small_list]) new_h = max([boxe[1] + boxe[3] - new_y for boxe in small_list]) new_elem = [0, new_y, Xmax, new_h] new_boxes_list.append(new_elem) return new_boxes_list def process_table(img_path,draw_path): #try: image_to_data, Xmax, Ymax = get_image_data(img_path) image_to_data = process_image_to_data(image_to_data, Xmax, Ymax) image_to_data = clean_loop(image_to_data) img = draw_lines(img_path, image_to_data, margin =2) image_name = os.path.basename(img_path).split(os.extsep)[0].replace(" ", "_") processed_im_path = draw_path+"\\"+image_name+'pro.png' cv2.imwrite(processed_im_path, img) def process_path(file_path,draw_path): all_files = listdir(file_path) n = len(all_files) for i in range(n): f = all_files[i] img_path = join(file_path, f) process_table(img_path,draw_path)
2.859375
3
danceschool/private_lessons/models.py
django-danceschool/django-danceschool
32
12795057
from django.db import models from django.db.models import Q from django.utils.translation import gettext_lazy as _ from django.utils import timezone from django.urls import reverse from datetime import timedelta from danceschool.core.models import ( Instructor, Location, Room, DanceRole, Event, PricingTier, EventRegistration, Customer, StaffMember ) from danceschool.core.constants import getConstant from danceschool.core.mixins import EmailRecipientMixin from danceschool.core.utils.timezone import ensure_localtime class InstructorPrivateLessonDetails(models.Model): instructor = models.OneToOneField(StaffMember, on_delete=models.CASCADE) defaultPricingTier = models.ForeignKey( PricingTier, verbose_name=_('Default Pricing Tier'), null=True, blank=True, on_delete=models.SET_NULL ) roles = models.ManyToManyField(DanceRole, blank=True) couples = models.BooleanField(_('Private lessons for couples'), default=True) smallGroups = models.BooleanField(_('Private lessons for small groups'), default=True) def __str__(self): return str(_('Instructor Private lesson details for %s' % self.instructor.fullName)) class Meta: ordering = ('instructor__lastName', 'instructor__firstName') verbose_name = _('Instructor private lesson details') verbose_name_plural = _('Instructors\' private lesson details') class PrivateLessonEvent(Event): ''' This is the event object for which an individual registers. The event is created when the user books a lesson. All of the registration logic is still handled by the core app, and this model inherits all of the fields associated with other types of events (location, etc.) ''' pricingTier = models.ForeignKey( PricingTier, verbose_name=_('Pricing Tier'), null=True, blank=True, on_delete=models.SET_NULL ) participants = models.PositiveSmallIntegerField(_('Expected # of Participants'), null=True, blank=True, default=1) comments = models.TextField( _('Comments/Notes'), null=True, blank=True, help_text=_('For internal use and recordkeeping.') ) def getBasePrice(self, **kwargs): ''' This method overrides the method of the base Event class by checking the pricingTier associated with this PrivateLessonEvent and getting the appropriate price for it. ''' if not self.pricingTier: return None return self.pricingTier.getBasePrice(**kwargs) * max(self.numSlots, 1) def finalizeBooking(self, **kwargs): notifyStudent = kwargs.get('notifyStudent', True) notifyTeachers = kwargs.get('notifyTeachers', getConstant('privateLessons__notifyInstructor')) eventRegistration = kwargs.get('eventRegistration', None) affectedSlots = self.instructoravailabilityslot_set.all() affectedSlots.update( status=InstructorAvailabilitySlot.SlotStatus.booked, eventRegistration=eventRegistration, ) if notifyStudent: # This is the email template used to notify students that their private lesson has been # successfully scheduled template = getConstant('privateLessons__lessonBookedEmailTemplate') if template.defaultFromAddress and template.content: for customer in self.customers: customer.email_recipient( template.subject, template.content, send_html=False, from_address=template.defaultFromAddress, from_name=template.defaultFromName, cc=template.defaultCC, to=customer.email, lesson=self, ) if notifyTeachers: # This is the email template used to notify individuals who run registration # that they have been compensated template = getConstant('privateLessons__lessonBookedInstructorEmailTemplate') if template.defaultFromAddress and template.content: emailMixin = EmailRecipientMixin() instructors = [ x.staffMember for x in self.eventstaffmember_set.exclude( Q(staffMember__privateEmail__isnull=True) & Q(staffMember__publicEmail__isnull=True) ) ] for instructor in instructors: if not instructor.privateEmail and not instructor.publicEmail: # Without an email address, instructor cannot be notified continue emailMixin.email_recipient( template.subject, template.content, send_html=False, from_address=template.defaultFromAddress, from_name=template.defaultFromName, cc=template.defaultCC, to=instructor.privateEmail or instructor.publicEmail, lesson=self, instructor=instructor, customers=self.customers, calendarUrl=reverse('privateCalendar'), ) @property def customers(self): ''' List both any individuals signed up via the registration and payment system, and any individuals signed up without payment. ''' return Customer.objects.filter( Q(privatelessoncustomer__lesson=self) | Q(registration__eventregistration__event=self) ).distinct() customers.fget.short_description = _('Customers') @property def numSlots(self): ''' Used for various pricing discounts related things ''' return self.instructoravailabilityslot_set.count() @property def discountPointsMultiplier(self): ''' If installed, the discounts app looks for this property to determine how many points this lesson is worth toward a discount. Since private lesson points are based on the number of slots booked, this just returns the number of slots associated with this event (or 1). ''' return max(self.numSlots, 1) def nameAndDate(self, withDate=True): teacherNames = ' and '.join([x.staffMember.fullName for x in self.eventstaffmember_set.all()]) if self.customers: customerNames = ' ' + ' and '.join([x.fullName for x in self.customers]) elif self.eventregistration_set.all(): names = ' and '.join([x.registration.fullName for x in self.eventregistration_set.all()]) customerNames = ' ' + names if names else '' else: customerNames = '' if not teacherNames and not customerNames and not withDate: return _('Private Lesson') return _('Private Lesson: %s%s%s%s' % ( teacherNames, _(' for ') if teacherNames and customerNames else '', customerNames, ( (', ' if (teacherNames or customerNames) else '') + self.startTime.strftime('%Y-%m-%d') ) if withDate else '' )) @property def name(self): return self.nameAndDate(withDate=True) def save(self, *args, **kwargs): ''' Set registration status to hidden if it is not specified otherwise ''' if not self.status: self.status == Event.RegStatus.hidden super().save(*args, **kwargs) def __str__(self): return str(self.name) class Meta: permissions = ( ('view_others_lessons', _('Can view scheduled private lessons for all instructors')), ) verbose_name = _('Private lesson') verbose_name_plural = _('Private lessons') class PrivateLessonCustomer(models.Model): ''' For private lessons that go through registration and payment, the customers are the individuals who are registered. For private lessons that are booked without payment, this just provides a record that they signed up for the lesson. ''' customer = models.ForeignKey( Customer, verbose_name=_('Customer'), on_delete=models.CASCADE ) lesson = models.ForeignKey( PrivateLessonEvent, verbose_name=_('Lesson'), on_delete=models.CASCADE ) def __str__(self): return str(_('Private lesson customer: %s for lesson #%s' % (self.customer.fullName, self.lesson.id))) class Meta: unique_together = ('customer', 'lesson') verbose_name = _('Private lesson customer') verbose_name_plural = _('Private lesson customers') class InstructorAvailabilitySlot(models.Model): class SlotStatus(models.TextChoices): available = ('A', _('Available')) booked = ('B', _('Booked')) tentative = ('T', _('Tentative Booking')) unavailable = ('U', _('Unavailable')) instructor = models.ForeignKey(Instructor, verbose_name=_('Instructor'), on_delete=models.CASCADE) pricingTier = models.ForeignKey( PricingTier, verbose_name=_('Pricing Tier'), null=True, blank=True, on_delete=models.SET_NULL ) startTime = models.DateTimeField(_('Start time')) duration = models.PositiveSmallIntegerField(_('Slot duration (minutes)'), default=30) location = models.ForeignKey( Location, verbose_name=_('Location'), null=True, blank=True, on_delete=models.SET_NULL, ) room = models.ForeignKey( Room, verbose_name=_('Room'), null=True, blank=True, on_delete=models.SET_NULL, ) status = models.CharField(max_length=1, choices=SlotStatus.choices, default=SlotStatus.available) # We need both a link to the registrations and a link to the event because # in the event that an expired (temporary) Registration is deleted, we still want to # be able to identify the Event that was created for this private lesson. lessonEvent = models.ForeignKey( PrivateLessonEvent, verbose_name=_('Scheduled lesson'), null=True, blank=True, on_delete=models.SET_NULL, ) eventRegistration = models.ForeignKey( EventRegistration, verbose_name=_('event registration'), null=True, blank=True, on_delete=models.SET_NULL, related_name='privateLessonSlots' ) creationDate = models.DateTimeField(auto_now_add=True) modifiedDate = models.DateTimeField(auto_now=True) @property def availableDurations(self): ''' A lesson can always be booked for the length of a single slot, but this method checks if multiple slots are available. This method requires that slots are non-overlapping, which needs to be enforced on slot save. ''' potential_slots = InstructorAvailabilitySlot.objects.filter( instructor=self.instructor, location=self.location, room=self.room, pricingTier=self.pricingTier, startTime__gte=self.startTime, startTime__lte=self.startTime + timedelta(minutes=getConstant('privateLessons__maximumLessonLength')), ).exclude(id=self.id).order_by('startTime') duration_list = [self.duration, ] last_start = self.startTime last_duration = self.duration max_duration = self.duration for slot in potential_slots: if max_duration + slot.duration > getConstant('privateLessons__maximumLessonLength'): break if ( slot.startTime == last_start + timedelta(minutes=last_duration) and slot.isAvailable ): duration_list.append(max_duration + slot.duration) last_start = slot.startTime last_duration = slot.duration max_duration += slot.duration return duration_list @property def availableRoles(self): ''' Some instructors only offer private lessons for certain roles, so we should only allow booking for the roles that have been selected for the instructor. ''' if not hasattr(self.instructor, 'instructorprivatelessondetails'): return [] return [ [x.id, x.name] for x in self.instructor.instructorprivatelessondetails.roles.all() ] def checkIfAvailable(self, dateTime=timezone.now()): ''' Available slots are available, but also tentative slots that have been held as tentative past their expiration date ''' return ( self.startTime >= dateTime + timedelta(days=getConstant('privateLessons__closeBookingDays')) and self.startTime <= dateTime + timedelta(days=getConstant('privateLessons__openBookingDays')) and not self.eventRegistration and ( self.status == self.SlotStatus.available or ( self.status == self.SlotStatus.tentative and getattr( getattr( getattr(self.eventRegistration, 'invoiceItem', None), 'invoice', None ), 'expirationDate', timezone.now() ) <= timezone.now() ) ) ) # isAvailable indicates if a slot is currently available isAvailable = property(fget=checkIfAvailable) isAvailable.fget.short_description = _('Available') @property def name(self): return _('%s: %s at %s') % ( self.instructor.fullName, ensure_localtime(self.startTime).strftime('%b %-d, %Y %-I:%M %p'), self.location ) def __str__(self): return str(self.name) class Meta: ordering = ('-startTime', 'instructor__lastName', 'instructor__firstName') verbose_name = _('Private lesson availability slot') verbose_name_plural = _('Private lesson availability slots') permissions = ( ('edit_own_availability', _('Can edit one\'s own private lesson availability.')), ('edit_others_availability', _('Can edit other instructors\' private lesson availability.')), )
2.03125
2
src/preprocess/modify_txts.py
Jeevesh8/relational-pt
0
12795058
for filename in ["test", "train", "valid"]: with open("subtrees-text-4096/" + filename + ".txt") as f, open( "subtrees-text-4096-64-comps/" + filename + ".txt", "w+") as g: for line in f.readlines(): if line.count("<post") <= 64: g.write(line)
2.4375
2
pyinsar/processing/deformation/__init__.py
MITeaps/pyinsar
8
12795059
<filename>pyinsar/processing/deformation/__init__.py __all__ = ["elastic_halfspace", "inversion"]
0.972656
1
Code/passiveRandomLearners.py
prajwalppv/Active-Learning-Uncertainity-sampling
2
12795060
<gh_stars>1-10 import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.svm import LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB import matplotlib.patches as mpatches import random def compute_loss(model,testData,labels): ''' This funtion computes the loss of the model at a given iteration. Loss here has been defined as the fraction of misclassified points by the model. Inputs: 1) model - Trained model 2) testData - test input features 3) labels - True labels for the given test data Outputs: 1) loss - fraction of wrongly classified points ''' predicted_labels = model.predict(testData) count = 0 for predicted,true in zip(predicted_labels,labels): if predicted != true: count+=1 loss = count/len(labels) if(loss>1): loss = 1 return loss def learner(type,mode,base="gaussianNB"): ''' This funtions trains a passive or random learner based on the given input parameters. Inputs: 1) type - "passive" learner or "random" learner 2) mode - Type of dataset "EASY", "MODERATE" or "DIFFICULT" 3) base - Base learner to use - "gaussianNB" or "randomForest" or "svm" Ouputs: [losses,accuracies] where, losses - holds the loss of the model at each iteration accuracies - holds the accuracies of the model at each iteration ''' sns.set() losses = [] accuracies = [] svm_loss = [] rf_loss = [] nb_loss = [] svm_accuracy = [] rf_accuracy = [] nb_accuracy = [] x = [] train_file = mode+ "_TRAIN.csv" test_file = mode + "_TEST.csv" blinded_file = mode + "_BLINDED.csv" train_data = pd.read_csv(train_file) #If type is passive, Initialize a random starting point and choose the next 2500 consecutive points if type == "passive": start_index = random.randint(0,1500) end_index = start_index + 2500 train_data = train_data.iloc[start_index:end_index,:] #If type is random, uniformly sample 2500 points from the dataset if type == "random": train_data = train_data.sample(frac=1).reset_index(drop=True) train_data = train_data.iloc[:2500,:] test_data = pd.read_csv(test_file) #Extract input features and labels based on type of dataset if mode != "DIFFICULT": test_features = test_data.iloc[:,:26] test_labels = test_data.iloc[:,-1] else: test_features = test_data.iloc[:,:52] test_labels = test_data.iloc[:,-1] print("-----------------",type," ",base,": ", mode,"-----------------") minb = 250 #batch_size defines how many input samples we process at a time batch_size = 250 iter = int(2500/batch_size) for i in range(iter): if mode !="DIFFICULT": train_features = train_data.iloc[:batch_size,:26] train_labels = train_data.iloc[:batch_size,-1] else: train_features = train_data.iloc[:batch_size,:52] train_labels = train_data.iloc[:batch_size,-1] print(type , " learner ----> Iteration ",i+1 ," out of ", iter ) #Train appropriate model based on "base" parameter if base == "svm": #Using multi-class SVM svm = LinearSVC(multi_class='ovr') svm_model = svm.fit(train_features,train_labels) svm_score = svm_model.score(test_features,test_labels) svm_l = compute_loss(svm_model,test_features,test_labels) svm_accuracy.append(svm_score) svm_loss.append(svm_l) elif base == "randomForest": #Using decision trees rf = RandomForestClassifier(n_estimators=100,criterion="gini") rf_model = rf.fit(train_features,train_labels) rf_l = compute_loss(rf_model,test_features,test_labels) rf_score = 1 - rf_l rf_accuracy.append(rf_score) rf_loss.append(rf_l) else: #Using Gaussian Naive Bayes classifier nb = GaussianNB() nb_model = nb.fit(train_features,train_labels) nb_l = compute_loss(nb_model,test_features,test_labels) nb_score = 1 - nb_l nb_accuracy.append(nb_score) nb_loss.append(nb_l) x.append(batch_size) batch_size += minb losses.append(x) accuracies.append(x) if(base == "svm"): losses.append(svm_loss) accuracies.append(svm_accuracy) if base == "randomForest": losses.append(rf_loss) accuracies.append(rf_accuracy) else: losses.append(nb_loss) accuracies.append(nb_accuracy) return ([losses,accuracies])
2.96875
3
poppurri/currency/tests/test_templatetags.py
ariel17/poppurri
0
12795061
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Description: Templatetags test units. """ __author__ = "<NAME> (<EMAIL>)" from decimal import Decimal from django.test import TestCase from currency.models import Currency from currency.templatetags.to_currency import to_currency class ToCurrencyTestCase(TestCase): """ Test unit for ```to_currency``` template tag. """ def setUp(self): super(ToCurrencyTestCase, self).setUp() def tearDown(self): super(ToCurrencyTestCase, self).tearDown() def test_to_currency(self): """ Tests a successful currency convertion, when the scale exists in model. """ currency = Currency.objects.get(code='ARS') self.assertEquals(Decimal('13'), to_currency(Decimal('1.55'), currency)) currency = Currency.objects.get(code='USD') self.assertEquals(Decimal('2.0'), to_currency(Decimal('1.55'), currency))
2.78125
3
src/metrics/psnr_metric.py
ryanwongsa/image-inpainting
0
12795062
<reponame>ryanwongsa/image-inpainting from ignite.metrics import Metric from ignite.exceptions import NotComputableError # These decorators helps with distributed settings from ignite.metrics.metric import sync_all_reduce, reinit__is_reduced import torch import torch.nn as nn from math import log10 class PSNR_Metric(Metric): def __init__(self, output_transform=lambda x: x, device=None): self._psnr_values = None self._num_examples = None self.criterion = nn.MSELoss() super(PSNR_Metric, self).__init__(output_transform=output_transform, device=device) @reinit__is_reduced def reset(self): self._psnr_values = 0 self._num_examples = 0 super(PSNR_Metric, self).reset() @reinit__is_reduced def update(self, output): y_pred, y_true = output mse = self.criterion(y_pred, y_true) psnr = 10 * log10(1 / mse.item()) self._psnr_values += psnr self._num_examples += y_true.shape[0] @sync_all_reduce("_num_examples", "_psnr_values") def compute(self): if self._num_examples == 0: raise NotComputableError('PSNR_Metric must have at least one example before it can be computed.') return self._psnr_values / self._num_examples
2.25
2
atoms_simulator/bin/__init__.py
Jorewin/atoms_simulator
0
12795063
import math import click import os.path import shutil import atoms_simulator import numpy import matplotlib.pyplot as plt def get_project_path(): return os.path.dirname(atoms_simulator.__file__) def get_path(path): i = 1 while True: if not os.path.lexists(f"{path}{i}"): return f"{path}{i}" i += 1 @click.group() def ats(): """Allows to perform detailed tests using atoms_simulator module.""" pass @ats.command() def init(): """Creates a settings_ats.toml file in the current directory.""" if not os.path.isfile("settings_ats.toml"): source = os.path.join(get_project_path(), "assets/settings_source.toml") target = os.path.join(os.getcwd(), "settings_ats.toml") shutil.copy(source, target) click.echo("Settings file generated successfully.") else: click.echo("Settings file already exists. Please delete it in order to generate a new configuration file.") @ats.command() @click.option("-g", "--graphics", "graphics", help="Turn on pygame simulation", is_flag=True) @click.option("--no-save", "no_save", help="Disable saving the results of the test.", is_flag=True) def test(graphics, no_save): """Performs a series of tests based on the data in the settings_ats.toml file.""" settings_ats = atoms_simulator.Settings("settings_ats.toml") if not settings_ats.load(): click.echo("No settings file detected. Generate the file first.") return if settings_ats["N_min"] is None: click.echo("The settings file is corrupted, please generate a new settings file.") return if settings_ats["N_step"] is None: click.echo("The settings file is corrupted, please generate a new settings file.") return if settings_ats["N_number"] is None: click.echo("The settings file is corrupted, please generate a new settings file.") return if settings_ats["R"] is None: click.echo("The settings file is corrupted, please generate a new settings file.") return click.echo("Starting simulation...") n_stop = settings_ats["N_min"] + settings_ats["N_step"] * (settings_ats["N_number"] - 1) # size = max([settings_ats['h'], settings_ats['w'], math.ceil((4 * (n_stop + 1)) ** 0.5)]) # settings_ats['h'] = size # settings_ats['w'] = size test_cases = [ [i for _ in range(settings_ats['R'])] for i in range(settings_ats["N_min"], n_stop + 1, settings_ats["N_step"]) ] bounce = numpy.empty((len(test_cases), settings_ats['R']), dtype=int) bounce_results = numpy.empty(len(test_cases), dtype=int) cop = numpy.empty((len(test_cases), settings_ats['R']), dtype=float) cop_results = numpy.empty(len(test_cases), dtype=float) settings_ats.new('N', settings_ats["N_min"]) with click.progressbar( range(len(test_cases) * settings_ats['R'] - 1, -1, -1), label="Performing simulations:", show_eta=False ) as progress: for i in progress: settings_ats['N'] = test_cases[i // settings_ats['R']][i % settings_ats['R']] try: bounce[i // settings_ats['R']][i % settings_ats['R']], \ cop[i // settings_ats['R']][i % settings_ats['R']] = atoms_simulator.simulate(settings_ats, graphics) except ValueError as error: click.echo(f"\n{error} Please generate a new settings file.") return if i % settings_ats['R'] == 0: bounce_results[i // settings_ats['R']] = int(bounce[i // settings_ats['R']].mean()) cop_results[i // settings_ats['R']] = cop[i // settings_ats['R']].mean() if not no_save: if not os.path.isdir(results_path := os.path.join(os.getcwd(), "ats_results")): os.mkdir(results_path) target_path = get_path(os.path.join(results_path, "data_batch")) os.mkdir(target_path) numpy.savetxt(os.path.join(target_path, "bounces.csv"), bounce_results) numpy.savetxt(os.path.join(target_path, "change_of_position.csv"), cop_results) settings_ats.save(target=os.path.join(target_path, "used.toml")) @ats.command() @click.option("-b", "--data_batch", "data_batch", prompt=True, help="Name of the previously generated data batch.") def plot(data_batch): """Plots the previously generated data.""" if not os.path.isdir(results_path := os.path.join(os.getcwd(), "ats_results")): click.echo( "The ats_results catalog doesn't exist within the current working directory. Generate some data first." ) return if not os.path.isdir(path := os.path.join(os.getcwd(), "ats_results", data_batch)): click.echo( f"The ats_results/{data_batch} catalog doesn't exist within the current working directory." ) return target_path = get_path(os.path.join(results_path, "figures_batch")) os.mkdir(target_path) settings_ats = atoms_simulator.Settings(os.path.join(path, "used.toml")) if not (settings_ats.load() and os.path.isfile(os.path.join(path, "bounces.csv")) and os.path.isfile(os.path.join(path, "change_of_position.csv"))): click.echo("This data batch is corrupted.") return n_stop = settings_ats["N_min"] + settings_ats["N_step"] * (settings_ats["N_number"] - 1) x = numpy.arange(settings_ats["N_min"], n_stop + 1, settings_ats["N_step"]) bounce = numpy.loadtxt(os.path.join(path, "bounces.csv")) plt.plot(x, bounce, marker='o') plt.title(f"Zależność liczby zderzeń od ilości atomów, M = {settings_ats['M']}") plt.xlabel("Liczba atomów w pojemniku") plt.ylabel("Liczba odbić atomu czerownego") plt.grid(True) plt.savefig(os.path.join(target_path, "bounces.png")) plt.clf() cop = numpy.loadtxt(os.path.join(path, "change_of_position.csv")) plt.plot(x, cop, marker='o') plt.title(f"Zależność średniej drogi swobodnej od ilości atomów, M = {settings_ats['M']}") plt.xlabel("Liczba atomów w pojemniku") plt.ylabel("Średnia droga swobodna atomu czerwonego") plt.grid(True) plt.savefig(os.path.join(target_path, "change_of_position.png")) plt.clf() settings_ats.save(os.path.join(target_path, "used.toml")) click.echo("Figures created successfullly.")
2.75
3
Workshop2/6.py
Camiloasc1/OptimizationUNAL
0
12795064
import numpy as np from scipy.optimize import linprog c = [10, 3.8, 1.5] A_ub = [ [1, 1, 1], [-1, -1, -1], [-1, -1. / 3., -1. / 6.]] b_ub = [18, -12, -9] res = linprog(c, A_ub=A_ub, b_ub=b_ub) print(res)
2.484375
2
src/data_management/cleaning.py
timmens/tsa
2
12795065
<gh_stars>1-10 from pathlib import Path import numpy as np import pandas as pd import pyarrow.parquet as pq from bld.project_paths import project_paths_join as ppj from src.shared import to_parquet_in_date_chunks UNNECESSARY_COLUMNS = ["formatted_date", "geo"] def load_data(): paths = list(Path(ppj("IN_DATA", "corona_data")).glob("2020*/**/*.parquet")) dfs = [] for path in paths: table = pq.read_table(path) df = table.to_pandas() # Add state and city from path. df["state"] = path.parents[3].name df["city"] = path.parents[2].name dfs.append(df) df = pd.concat(dfs, sort=False) return df def minimal_preprocessing(df): replace_to = {None: np.nan, "": np.nan} df = df.replace(replace_to) df = df.drop_duplicates(subset="id") df = df.drop(columns=UNNECESSARY_COLUMNS) df.id = df.id.astype(np.uint64) df = df.set_index("id") return df def main(): df = load_data() df = minimal_preprocessing(df) to_parquet_in_date_chunks(df, ppj("OUT_DATA", "tweets-cleaned")) if __name__ == "__main__": main()
2.328125
2
depoco/plot_results.py
shengxihua/deep-point-map-compression
59
12795066
<filename>depoco/plot_results.py<gh_stars>10-100 import numpy as np import matplotlib.pyplot as plt import glob import argparse from ruamel import yaml import depoco.utils.point_cloud_utils as pcu def plotResults(files, x_key, y_key, ax, draw_line=False, label=None, set_lim=True): x = [] y = [] for f in files: eval_dict = pcu.load_obj(f) if((x_key in eval_dict.keys()) & (y_key in eval_dict.keys())): for v in eval_dict.values(): v = np.array(v) if not draw_line: ax.plot(np.mean(eval_dict[x_key]), np.mean(eval_dict[y_key]), '.') ax.text(np.mean(eval_dict[x_key]), np.mean( eval_dict[y_key]), f.split('/')[-1][:-4]) x.append(np.mean(eval_dict[x_key])) y.append(np.mean(eval_dict[y_key])) if draw_line: line, = ax.plot(x, y, '-x', label=label) # line.set_label(label) ax.set_xlabel(x_key) ax.set_ylabel(y_key) if set_lim: ax.set_xlim(0,None) ax.set_ylim(0,None) # ax.grid() def genPlots(files, f, ax, draw_line=False, label=None, x_key='memory'): # print('shape',ax[0,0]) plotResults(files, x_key=x_key, y_key='chamfer_dist_abs', ax=ax[0], draw_line=draw_line, label=label) plotResults(files, x_key=x_key, y_key='chamfer_dist_plane', ax=ax[1], draw_line=draw_line, label=label) plotResults(files, x_key=x_key, y_key='iou', ax=ax[2], draw_line=draw_line, label=label) if __name__ == "__main__": ####### radius fct ############## path = 'experiments/results/kitti/' files = sorted(glob.glob(path+'*.pkl')) f, ax = plt.subplots(1, 3) f.suptitle('Radius FPS') genPlots(files, f, ax, draw_line=True, label='our', x_key='bpp') for a in ax: a.grid() # a.set_ylim([0,None]) a.legend() plt.show()
2.328125
2
code_prefixes/warp2code-prefixes.py
ipsilon/eof
0
12795067
#!/usr/bin/env python # Processes OpenEthereum warp snapshot and collects 4-byte code prefixes of all accounts. # # openethereum --chain=kovan snapshot --snapshot-threads=8 snapshot.warp # warp2code-prefixes.py snapshot.warp import sys import rlp import snappy import collections prefix_map = collections.defaultdict(int) filename = sys.argv[1] print(f"{filename=}") with open(filename, 'rb') as f: f.seek(0,2) size = f.tell() print(f"{size=}") f.seek(-8,2) manifest_end = f.tell() manifest_off_bytes = f.read(8) print(f"{manifest_off_bytes=}") manifest_off = int.from_bytes(manifest_off_bytes, 'little') print(f"{manifest_off=}") f.seek(manifest_off,0) manifest_bytes = f.read(manifest_end-manifest_off) manifest = rlp.decode(manifest_bytes) manifest_ver = int.from_bytes(manifest[0], 'big') block_number = int.from_bytes(manifest[4], 'big') block_hash = manifest[5] print(f"{manifest_ver=}") print(f"{block_number=}") print(f"block_hash={block_hash.hex()}") state_chunks = manifest[1] num_chunks=len(state_chunks) print(f"{num_chunks=}") for i in range(num_chunks): info = state_chunks[i] chunk_len = int.from_bytes(info[1], 'big') chunk_pos = int.from_bytes(info[2], 'big') print(f"{i}/{num_chunks}: {chunk_pos=} {chunk_len=}", end='') f.seek(chunk_pos) chunk_compressed = f.read(chunk_len) chunk_bytes = snappy.uncompress(chunk_compressed) chunk = rlp.decode(chunk_bytes) print(f" uncompressed_len={len(chunk_bytes)} num_accounts={len(chunk)}", flush=True) for entry in chunk: acc = entry[1] has_code = acc[2] == b'\x01' if has_code: code_prefix = bytes(acc[3][:4]) prefix_map[code_prefix] += 1 for k,v in prefix_map.items(): print(f"{k.hex()} : {v}")
2.171875
2
worker.py
lordmauve/python-now
1
12795068
"""Web Worker script.""" # In web workers, "window" is replaced by "self". from browser import bind, self import contextlib import traceback class OutputWriter: def __init__(self, id, window): self.id = id self.window = window self.buf = [] def write(self, text): """Write output to the screen.""" self.buf.append(text) self.window.send([self.id, 'output', text]) def getvalue(self): """Get everything that was printed.""" return ''.join(self.buf) @bind(self, "message") def on_message(event): """Handle a message sent by the main script. evt.data is the message body. """ msg = event.data try: id = msg['id'] except KeyError: return source = msg['source'] mode = msg['mode'] buff = OutputWriter(id, self) with contextlib.redirect_stdout(buff), contextlib.redirect_stderr(buff): self.send([id, 'ready', 0]) try: code = compile(source, filename='python-now', mode=mode) namespace = { '__name__': '__main__', '__filename__': '<python-now>' } result = exec(code, namespace) except BaseException: self.send([id, 'err', traceback.format_exc()]) else: if result is not None: print(repr(result)) # If we have exercises, run them as tests if msg['exercises']: if mode == 'exec': test_ns = namespace.copy() else: test_ns = {} test_ns.update( source=source, result=result, output=buff.getvalue(), ) exec(msg['exercises'], test_ns) tests = [] for name, test in test_ns.items(): if name.startswith('test_') and callable(test): tests.append(test) for test_id, test in enumerate(tests): try: test() except BaseException: err = traceback.format_exc() + repr(test_ns) else: err = None self.send([id, 'ex_result', (test_id, err)])
2.734375
3
NitroFE/time_based_features/indicator_features/_MovingAverageConvergenceDivergence.py
NITRO-AI/NitroFE
81
12795069
import numpy as np import pandas as pd from typing import Union, Callable from pandas.core.frame import DataFrame from NitroFE.time_based_features.indicator_features._AbsolutePriceOscillator import ( AbsolutePriceOscillator, ) from NitroFE.time_based_features.moving_average_features.moving_average_features import ( ExponentialMovingFeature, ) class MovingAverageConvergenceDivergence: """ Provided dataframe must be in ascending order. """ def __init__( self, fast_period: int = 26, slow_period: int = 12, smoothing_period: int = 9, fast_operation: str = "mean", slow_operation: str = "mean", smoothing_operation: str = "mean", initialize_using_operation: bool = False, initialize_span: int = None, min_periods: int = 0, ignore_na: bool = False, axis: int = 0, times: str = None, return_histogram=False, ): """ Parameters ---------- fast_period : int, optional specify decay in terms of span, for the fast moving feature, by default 12 slow_period : int, optional specify decay in terms of span, for the slow moving feature, by default 26 smoothing_period : int, optional specify decay in terms of span, for the smoothing moving feature, by default 9 fast_operation : str, {'mean','var','std'} operation to be performed for the fast moving feature, by default 'mean' slow_operation : str, {'mean','var','std'} operation to be performed for the slow moving feature, by default 'mean' smoothing_operation : str, optional operation to be performed for the smoothing moving feature, by default 'mean' initialize_using_operation : bool, optional If True, then specified 'operation' is performed on the first 'initialize_span' values, and then the exponential moving average is calculated, by default False initialize_span : int, optional the span over which 'operation' would be performed for initialization, by default None min_periods : int, optional Minimum number of observations in window required to have a value (otherwise result is NA), by default 0 ignore_na : bool, optional Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior, by default False axis : int, optional The axis to use. The value 0 identifies the rows, and 1 identifies the columns, by default 0 times : str, optional Times corresponding to the observations. Must be monotonically increasing and datetime64[ns] dtype, by default None """ self.span_fast = fast_period self.span_slow = slow_period self.min_periods = min_periods self.ignore_na = ignore_na self.axis = axis self.times = times self.fast_operation = fast_operation self.slow_operation = slow_operation self.smoothing_operation = smoothing_operation self.smoothing_period = smoothing_period self.return_histogram = return_histogram self.initialize_using_operation = initialize_using_operation self.initialize_span = initialize_span def fit( self, dataframe: Union[pd.DataFrame, pd.Series], first_fit: bool = True, ): """ For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False Returns --> Smoothed signal line , macd histogram Parameters ---------- dataframe : Union[pd.DataFrame, pd.Series] dataframe containing column values to create feature over first_fit : bool, optional Indicator features require past values for calculation. Use True, when calculating for training data (very first fit) Use False, when calculating for subsequent testing/production data { in which case the values, which were saved during the last phase, will be utilized for calculation }, by default True """ if first_fit: self._raw_macd_object = AbsolutePriceOscillator( fast_period=self.span_fast, slow_period=self.span_slow, fast_operation=self.fast_operation, slow_operation=self.slow_operation, min_periods=self.min_periods, initialize_using_operation=self.initialize_using_operation, initialize_span=self.initialize_span, ignore_na=self.ignore_na, axis=self.axis, times=self.times, ) self._macd_object = ExponentialMovingFeature( span=self.smoothing_period, ignore_na=self.ignore_na, axis=self.axis, times=self.times, operation=self.smoothing_operation, initialize_using_operation=self.initialize_using_operation, initialize_span=self.initialize_span, ) raw_macd = self._raw_macd_object.fit(dataframe, first_fit=first_fit) macd = self._macd_object.fit(dataframe=raw_macd, first_fit=first_fit) return raw_macd - macd if self.return_histogram else macd
2.765625
3
src/datamodules/archery_bowling_datamodule.py
V1ct0reo/lightning-fast-hydra
0
12795070
from pathlib import Path from typing import Union, List, Dict, Optional import pandas as pd from torch.utils.data import DataLoader import pytorch_lightning as pl from torchvision.transforms import transforms from src.utils.utils import get_logger class ArcheryBowlingDataModule(pl.LightningDataModule): def __init__(self, data_root: str, test: bool = False, val_ratio: float = None, batch_size: int = 1, window_size: int = 10, normalisation: str = 'WithoutNormalization', szenario: str = 'Archery', features: List[str] = ['CenterEyeAnchor_pos_X', 'LeftVirtualHand_pos_X', 'RightVirtualHand_pos_X'], identifier_col: str = 'seq_id', label_col: str = 'ParticipantID', sorting_cols: List[str] = None, num_workers: int = 1, shuffle_windows=False ): super(ArcheryBowlingDataModule, self).__init__() self.num_workers = num_workers self.logger = get_logger(name='A-B-DataModule') self.szenario = szenario self.features = features self.identifier_col = identifier_col if identifier_col is not None else 'seq_id' self.label_col = label_col if label_col is not None else 'ParticipantID' self.sorting_cols = sorting_cols self.normalisation = normalisation self.window_size = window_size self.batch_size = batch_size self.val_ratio = val_ratio self.separate = test self.data_root = Path(data_root) # Path is just more convenient self.transform = transforms.Compose([ transforms.ToTensor(), ]) self.shuffle_windows = shuffle_windows self.num_features = len(features) self.dims = (self.window_size, self.num_features) self.train_dataset, self.val_dataset, self.test_dataset = None, None, None self.logger.info('__init__ done.') def setup(self, stage: Optional[str] = None) -> None: # do i want to load all data at once, and slice afterwords? # slice all modulo matching repetitions to validation # keep the remaining as train # drop unused columns # initiate DatasetObjects and return them # return ArcheryBowlingDataset(None, 1, 1), ArcheryBowlingDataset(None, 1, 1), ArcheryBowlingDataset(None, 1, 1) if stage in (None, 'fit'): # TODO no validation set throws a Nonetype Error on val data loader... self.logger.info(f'stage:{stage}. creating Dataset...') # regexing or sorting the file path seems to be a pain. therefore ill load all relevant (normalized + session1) train_val_files = self.get_file_list(session=1) train_val_files = list(train_val_files) self.logger.info(f'found {len(train_val_files)} files.') train_val_df = ArcheryBowlingDataModule.load_dataframe_from_multiple_files(train_val_files) # TODO refactor this ifelse structure to a neat structure if self.val_ratio and self.val_ratio > 0: # not none and > 0 modulo = int(1 / self.val_ratio) if modulo > 12 or modulo < 2: self.logger.info( f'validation split ratio({self.val_ratio}) was set, ' f'but would result in either all or no data being available for training. ' f'Therefore all Data will be used as train-set!') from src.datamodules.datasets.archery_bowling_dataset import ArcheryBowlingDataset self.train_dataset = ArcheryBowlingDataset.create_from_dataframe(train_val_df, self.window_size, self.batch_size, name='TRAIN', feature_cols=self.features, identifier_col=self.identifier_col, label_col=self.label_col, shuffle_windows=self.shuffle_windows, sorting_cols=self.sorting_cols ) else: val_df = train_val_df[train_val_df['repetition'] % modulo == 0] from src.datamodules.datasets.archery_bowling_dataset import ArcheryBowlingDataset self.val_dataset = ArcheryBowlingDataset.create_from_dataframe(val_df, self.window_size, self.batch_size, name='VAL', feature_cols=self.features, identifier_col=self.identifier_col, label_col=self.label_col, shuffle_windows=self.shuffle_windows, sorting_cols=self.sorting_cols ) del val_df train_df = train_val_df[train_val_df['repetition'] % modulo != 0] del train_val_df self.train_dataset = ArcheryBowlingDataset.create_from_dataframe(train_df, self.window_size, self.batch_size, name='TRAIN', feature_cols=self.features, identifier_col=self.identifier_col, label_col=self.label_col, shuffle_windows=self.shuffle_windows, sorting_cols=self.sorting_cols ) del train_df else: from src.datamodules.datasets.archery_bowling_dataset import ArcheryBowlingDataset self.train_dataset = ArcheryBowlingDataset.create_from_dataframe(train_val_df, self.window_size, self.batch_size, name='TRAIN', feature_cols=self.features, identifier_col=self.identifier_col, label_col=self.label_col, shuffle_windows=self.shuffle_windows, sorting_cols=self.sorting_cols ) self.val_dataset = None self.logger.info('train/val Data initialized!') if stage in (None, 'test'): # slice all 'session2' entries for test data # create a list of paths for test data files (basically everything with session 2 self.logger.info(f'stage:{stage}. creating Dataset...') test_files = self.get_file_list(session=2) test_files = (list(test_files)) self.logger.info(f'found {len(test_files)} test-files.') # create test Dataset from src.datamodules.datasets.archery_bowling_dataset import ArcheryBowlingDataset test_df = ArcheryBowlingDataModule.load_dataframe_from_multiple_files(test_files) computed_batch_size = self.batch_size rest = len(test_df) % self.batch_size computed_batch_size -= rest self.test_dataset = ArcheryBowlingDataset.create_from_dataframe(test_df, self.window_size, computed_batch_size, name='TEST', feature_cols=self.features, identifier_col=self.identifier_col, label_col=self.label_col, shuffle_windows=False, sorting_cols=self.sorting_cols ) self.logger.info('test Data initialized!') self.logger.info(f'Datasets are setup.') self.logger.info(self) def get_file_list(self, session=1): train_val_files = self.data_root.glob(f'{self.szenario}*{self.normalisation}*session{session}*.csv') return train_val_files @staticmethod def load_dataframe_from_multiple_files(file_list: List[Path]): df_list = [] for i in file_list: tmp = pd.read_csv(i) df_list.append(tmp) return pd.concat(df_list, ignore_index=True) def _create_info_dict(self): return { 'train dataset': None if not self.train_dataset else str(self.train_dataset), 'val dataset': None if not self.val_dataset else str(self.val_dataset), 'test dataset': None if not self.test_dataset else str(self.test_dataset), 'dims': self.dims, '#batches': len(self.test_dataset), 'window size': self.window_size, 'batch size': self.batch_size, 'normalisation name': self.normalisation } def train_dataloader(self) -> Union[DataLoader, List[DataLoader], Dict[str, DataLoader]]: return DataLoader(self.train_dataset, batch_size=None, num_workers=self.num_workers ) def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]: return DataLoader(self.val_dataset, batch_size=None, num_workers=self.num_workers ) def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]: # TODO handle num_workers... return DataLoader(self.test_dataset, batch_size=None, num_workers=self.num_workers ) def __repr__(self): return f"DataModule(train_dataset={self.train_dataset!r}, " \ f"val_dataset={self.val_dataset!r}, " \ f"test_dataset={self.test_dataset!r}, " \ f"dims={self.dims!r}, " \ f"normalisation_name={self.normalisation!r}), " \ f"Szenario={self.szenario})" def __rich_repr__(self): yield "train_dataset", self.train_dataset yield "val_dataset", self.val_dataset yield "test_dataset", self.test_dataset yield "dims", self.dims yield "normalisation_name", self.normalisation yield "szenario", self.szenario
2.40625
2
commander.py
MauTrib/gnn-en-folie
0
12795071
<gh_stars>0 import yaml import toolbox.utils as utils import os from models import get_pipeline, get_pl_model, get_torch_model, get_optim_args, is_dummy from models.base_model import GNN_Abstract_Base_Class from data import get_test_dataset, get_train_val_datasets from metrics import setup_metric import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint import argparse import toolbox.wandb_helper as wbh def get_config(filename='default_config.yaml') -> dict: with open(filename, 'r') as f: config = yaml.safe_load(f) return config def get_observer(config: dict): path = config['observers']['base_dir'] path = os.path.join(os.getcwd(), path) utils.check_dir(path) observer = config['observers']['observer'] if observer=='wandb': logger = WandbLogger(project=f"{config['project']}_{config['problem']}", log_model="all", save_dir=path) try: logger.experiment.config.update(config) except AttributeError as ae: return None else: raise NotImplementedError(f"Observer {observer} not implemented.") return logger def load_model(config: dict, path: str, add_metric=True, **add_metric_kwargs) -> GNN_Abstract_Base_Class: """ - config : dict. The configuration dictionary (careful, must correspond to the model trying to be loaded). If set to None, will try to download a model from W&B - path : str. The local path of the Pytorch Lightning experiment, or the id of the run if need to be fetched on W&B - add_metric: bool. Adds an external metric to the pytorch lightninh module. - add_metric_kwargs: Arguments passed to the setup_metric function if activated. """ if is_dummy(config['arch']['name']): pl_model = get_pipeline(config) else: print(f'Loading base model from {path}... ', end = "") try: PL_Model_Class = get_pl_model(config) pl_model = PL_Model_Class.load_from_checkpoint(path, model=get_torch_model(config), optim_args=get_optim_args(config)) except (FileNotFoundError) as e: if config['observers']['observer']=='wandb': print(f"Failed at finding model locally with error : {e}. Trying to use W&B.") project = f"{config['project']}_{config['problem']}" wb_config, path = wbh.download_model(project, path) PL_Model_Class = get_pl_model(config) pl_model = PL_Model_Class.load_from_checkpoint(path, model=get_torch_model(wb_config), optim_args=get_optim_args(wb_config)) else: raise e print('Done.') if add_metric: setup_metric(pl_model, config, **add_metric_kwargs) return pl_model def get_trainer_config(config: dict, only_test=False) -> dict: trainer_config = config['train'] accelerator_config = utils.get_accelerator_dict(config['device']) trainer_config.update(accelerator_config) if not only_test: early_stopping = EarlyStopping('lr', verbose=True, mode='max', patience=1+config['train']['max_epochs'], divergence_threshold=config['train']['optim_args']['lr_stop']) checkpoint_callback = ModelCheckpoint(monitor="val_loss", save_top_k=1, verbose=True) trainer_config['callbacks'] = [early_stopping, checkpoint_callback] clean_config = utils.restrict_dict_to_function(pl.Trainer.__init__, trainer_config) return clean_config def setup_trainer(config: dict, model: GNN_Abstract_Base_Class, watch=True, only_test=False) -> pl.Trainer: trainer_config = get_trainer_config(config, only_test=only_test) if config['observers']['use']: logger = get_observer(config) if logger is None: print("Logger did not load. Could mean an error or that we are not in the zero_ranked experiment.") else: if watch: logger.watch(model) trainer_config['logger'] = logger trainer = pl.Trainer(**trainer_config) return trainer def train(config: dict)->pl.Trainer: if is_dummy(config['arch']['name']): print("Dummy architecture, can't train.") return None if config['train']['anew']: pl_model = get_pipeline(config) setup_metric(pl_model, config) else: pl_model = load_model(config, config['train']['start_model']) trainer = setup_trainer(config, pl_model) train_dataset, val_dataset = get_train_val_datasets(config) trainer.fit(pl_model, train_dataset, val_dataset) return trainer def test(config: dict, trainer=None, model=None, dataloaders=None, **kwargs) -> None: if dataloaders is None: dataloaders = get_test_dataset(config) arg_dict = {'dataloaders': dataloaders, 'verbose':True } if trainer is None: pl_model = model if pl_model is None: pl_model = load_model(config, config['train']['start_model'], add_metric=False) trainer = setup_trainer(config, pl_model, **kwargs) else: arg_dict['ckpt_path'] = 'best' pl_model = trainer.model setup_metric(pl_model, config, istest=True) arg_dict['model'] = pl_model trainer.test(**arg_dict) return trainer def main(): parser = argparse.ArgumentParser(description='Main file for creating experiments.') parser.add_argument('command', metavar='c', choices=['train','test'], help='Command to execute : train or test') parser.add_argument('--config', default='default_config.yaml', type=str, help='Name of the configuration file.') args = parser.parse_args() if args.command=='train': training=True default_test = False elif args.command=='test': training=False default_test=True config = get_config(args.config) config = utils.clean_config(config) trainer=None if training: trainer = train(config) if default_test or config['test_enabled']: test(config, trainer) if __name__=="__main__": pl.seed_everything(3787, workers=True) main()
2.03125
2
bulk_import_rename/main.py
williamjamir/bulk-import-rename
0
12795072
import sys import click from bulk_import_rename.commands.detect_modifications import track_modifications from bulk_import_rename.commands.rename_import import run_rename CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) @click.group(context_settings=CONTEXT_SETTINGS) @click.version_option(version='0.0.1') def app(): pass @app.command() @click.argument('project_path', type=click.Path(exists=True)) @click.option('--origin_branch', default='master', help='Branch to start the evaluation') @click.option('--work_branch', default=False, help='Name of the branch that has the modifications') @click.option('--output_file', default='list_output.py', help='Change the name of the output file') def track(**kwargs): track_modifications(**kwargs) @app.command() @click.argument('project_path', nargs=-1, type=click.Path(exists=True)) @click.argument('moved_imports_file', type=click.Path(exists=True, resolve_path=True)) def rename(**kwargs): run_rename(**kwargs) if __name__ == '__main__': # The sys.argv[1:] is necessary for debug on python2 # Link: https://goo.gl/vp5hfz app(sys.argv[1:])
2.390625
2
census_data/core/variables.py
cj-on-campus/dabp-summer-reading
0
12795073
<filename>census_data/core/variables.py<gh_stars>0 import censusdata import requests import pandas as pd census_key = '' # scrubbed for now, TODO: secrets config def get_counties(state, year): counties = [] geo = censusdata.geographies(censusdata.censusgeo([('state', state), ('county', '*')]), 'acs5', year) for key in list(geo): value = geo[key].params() county = value[1][1] counties.append(county) return counties def get_data_by_block_group(variables, state, county_list, api_key, variable_names): data = [] for county in county_list: url = 'https://api.census.gov/data/2019/acs/acs5?get=' + variables + '&for=block%20group:*&in=state:' + state + '%20county:' + county + '&key=' + census_key response = requests.get(url) if response.status_code == 200: batch = response.json()[1:] data.extend(batch) else: print('API connection failed') headers = variable_names + ["state", "county", "tract", "block_group"] df = pd.DataFrame(data=data, columns=headers) return df def get_data_by_tract(variables, state, api_key, variable_names): data = [] url = 'https://api.census.gov/data/2019/acs/acs5?get=' + variables + '&for=tract:*&in=state:' + state + '&key=' + census_key response = requests.get(url) if response.status_code == 200: batch = response.json()[1:] data.extend(batch) else: print('API connection failed') headers = variable_names + ["state", "county", "tract"] df = pd.DataFrame(data=data, columns=headers) return df
3.0625
3
server/module_stats.py
codingismycraft/pinta
0
12795074
<filename>server/module_stats.py """Exposes a class that holds change statistics for all modules. Using the git log we are creating a history of changes for each module and also append to it the number of target dependencies. """ import csv import change_history import settings import targets # Aliases. settings = settings.settings Targets = targets.Targets class ModuleStats: """Holds the statistics for a module. :ivar str _module_name: The name of the module :ivar list _affected_targets: The affected targets. :ivar int dependency_count: The number of dependencies. """ def __init__(self, module_name, affected_targets, dependency_count, change_rate, all_changes_count, latest_changes_count, lifespan_in_days, filepath): """Initializer. :param str module_name: The module name. :param set affected_targets: The affected targets. """ self._module_name = module_name self._affected_targets = list(affected_targets) self._dependency_count = dependency_count self._change_rate = change_rate self._all_changes_count = all_changes_count self._latest_changes_count = latest_changes_count self._lifespan_in_days = lifespan_in_days self._filepath = filepath @property def module_name(self): return self._module_name @property def affected_targets(self): return len(self._affected_targets) @property def dependency_count(self): return self._dependency_count @property def change_rate(self): return self._change_rate @property def all_changes_count(self): return self._all_changes_count @property def latest_changes_count(self): return self._latest_changes_count @property def lifespan_in_days(self): return self._lifespan_in_days @property def filepath(self): return self._filepath def __repr__(self): """Make debugging easier!""" return f'{self._module_name}, ' \ f'Affected targets: {len(self._affected_targets)} ' \ f'Dependencies: {self._dependency_count} ' \ f'Change Rate: {self._change_rate} ' \ f'Total Changes: {self._all_changes_count} ' \ f'Latest Changes: {self._latest_changes_count} ' \ f'Lifespan: {self._lifespan_in_days}' @classmethod def load_module_stats(cls): stats = [] stats_per_module, dependency_counts = _module_stats() history = change_history.load_change_history() for module_name, affected_targets in stats_per_module.items(): if module_name not in history: continue ch = history.get(module_name) lifespan_in_days = ch.lifespan_in_days if ch else 'n/a' change_rate = ch.change_rate if ch else 'n/a' all_changes_count = ch.changes_count if ch else 'n/a' latest_changes_count = ch.latest_changes_count if ch else 'n/a' filepath = ch.filepath if ch else 'n/a' stats.append( cls( module_name=module_name, affected_targets=affected_targets, dependency_count=dependency_counts[module_name], change_rate=change_rate, all_changes_count=all_changes_count, latest_changes_count=latest_changes_count, lifespan_in_days=lifespan_in_days, filepath=filepath ) ) return stats def _module_stats(): graph_from_target, graph_to_target = _create_graph() stats_per_module = {parent: set() for parent in graph_from_target.keys()} all_targets = Targets() for target in all_targets.get_all(): _upadate_dependencies( graph_from_target, target.module_name, stats_per_module ) dependency_counts = _count_dependencies(graph_to_target) return stats_per_module, dependency_counts def _create_graph(): """Creates the reversed dependencies graph. The adjacent edges as the are recorded in the dependencies file represent an "out" relationship between the imported and the importing modules. Here we need the reversed dependency meaning the "in" dependency because the goal is to discover how each module affects each of the targets. This why we are constructing the graph in the opposite direction meaning from the second to the first node as it appears in the dependency file. :return: The "in" dependency graph for the dependencies file. :rtype: dict """ graph_from_target = {} graph_to_target = {} with open(settings.dependencies_filename) as file: for tokens in csv.reader(file): n1 = tokens[0].strip() n2 = tokens[1].strip() if n1 not in graph_from_target: graph_from_target[n1] = [] if n2 not in graph_from_target: graph_from_target[n2] = [] graph_from_target[n2].append(n1) if n1 not in graph_to_target: graph_to_target[n1] = [] if n2 not in graph_to_target: graph_to_target[n2] = [] graph_to_target[n1].append(n2) return graph_from_target, graph_to_target def _upadate_dependencies(graph, target, stats_per_module): stack = [(target, iter(graph[target]))] stats_per_module[target].add(target) visited = set() visited.add(target) while stack: parent, iter_to_children = stack[-1] stats_per_module[parent].add(target) try: child = next(iter_to_children) if child not in visited: stack.append((child, iter(graph[child]))) visited.add(child) except StopIteration: stack.pop() def _count_dependencies(graph): """Assigns the total number of dependencies to each node.""" dependency_counter = {parent: 0 for parent in graph} for current_node in graph: stack = [[current_node, iter(graph[current_node])]] visited = set() visited.add(current_node) while stack: parent, children_iter = stack[-1] try: child = next(children_iter) if child not in visited: visited.add(child) dependency_counter[current_node] += 1 stack.append([child, iter(graph[child])]) except StopIteration: stack.pop() return dependency_counter def export_to_csv(filename): with open(filename, 'w') as file: tokens = [ "name", "targets", "dependencies", "change-rate", "all-changes", "latest-changes", "lifespan-in-days" ] file.write(','.join(tokens)) file.write("\n") for module in ModuleStats.load_module_stats(): tokens = [ module.module_name, module.affected_targets, module.dependency_count, module.change_rate, module.all_changes_count, module.latest_changes_count, module.lifespan_in_days ] file.write(','.join(str(t) for t in tokens)) file.write("\n") if __name__ == '__main__': export_to_csv("change_history.csv")
2.40625
2
colaboradores/urls.py
SurielRuano/Orientador-Legal
0
12795075
from django.conf.urls import url, include from django.conf import settings from . import views urlpatterns = [ url(r'^solicitud-colaboracion/$', views.Solicitud_colaboracion.as_view(),name="solicitud"), ]
1.4375
1
app/views.py
julesc00/travel-agency
0
12795076
<reponame>julesc00/travel-agency from django.shortcuts import render # Create your views here. def index(request): context = { "moto": "The framework for perfectionist!" } return render(request, "app/index.html", context)
1.789063
2
main.py
dark7py/da
0
12795077
<filename>main.py import pandas as pd def non_matches(firs_param, second_param, data): count = 0 for (f1, f2) in zip(data[firs_param], data[second_param]): if not is_contains(f1, f2) and not is_contains(f2, f1): count += 1 return count def is_contains(first_field, second_field): for word in first_field.lower().replace('-', ' ').split(): if word in second_field.lower(): return True return False def get_top(size, data, field1, field2, word_to_search): return data[data[field1].str.lower().str.contains(word_to_search[:-2])][field2]\ .str\ .lower()\ .value_counts()\ .head(size) works = pd.read_csv("works.csv").dropna() not_matches_count = non_matches("jobTitle", "qualification", works) managers = get_top(5, works, "jobTitle", "qualification", "менеджер") engineers = get_top(5, works, "qualification", "jobTitle", "инженер") output_string = f"{works.shape[0]} не совпадает {not_matches_count}\n\n" \ f"Топ 5 образовний менеджеров\n" \ f"{managers}\n\n" \ f"Топ 5 должностей инженеров\n" \ f"{engineers}" with open('output.txt', 'w', encoding='utf-8') as file: file.write(output_string)
3.484375
3
PYTHON_LESSON/05-class_fifth.py
sly1314sly/selenium_basic
1
12795078
<gh_stars>1-10 #多继承 # class father1(): # def have(self): # print("父级有的东西") # class father2(): # def money(self): # print("父级有的东西2") # class son(father1,father2): # pass # john = son() #两个父级都调用 #如果两个父级有同样的东西,调用的是第一个里面的,优先继承第一个类 # class father1(): # def have(self): # print("父级有的东西") # class father2(): # def have(self): # print("父级有的东西2") # class son(father1,father2): # pass # john = son() # john.have() #可以一层套一层继承 # class grandfather(): # def yeye(self): # print("爷爷有的东西") # class father1(grandfather): # def have(self): # print("父级有的东西") # class father2(grandfather): # def yiu(self): # print("父级有的东西2") # class son(father1,father2): # pass # john = son() # john.yeye() #儿子层只能先在父级层找,找不到才去爷爷层找 # class grandfather(): # def yeye(self): # print("爷爷有的东西") # class father1(grandfather): # def yeye(self): # print("父级有的东西") # class son(father1): # pass # john = son() # john.yeye() # 第一个父级没有,会找第二个父级,没有的话再找爷爷级 # class grandfather(): # def yeye(self): # print("爷爷有的东西") # class father1(grandfather): # pass # class father2(grandfather): # def yeye(self): # print("父级有的东西2") # class son(father1,father2): # pass # john = son() # john.yeye() #python3继承顺序 # 新式类的继承方式是:先找最亲的爸爸(括号里面第一个继承的类),然后再去找第二个爸爸(括号里面第二个继承的类), #当爸爸类都找不到的时候,找第一个爸爸的父类 #类里面的方法不能相互调用,单现在讲一个方法可以相互调用 #类的命名方式和方法命名方式不一样,类的命名方式,多个单词把首字母大写, 方法的是单词中间用下划线; # class PlusNum: # def plus_int(self,a,b): # a = int(a) # b = int(b) # return a+b # def plus_float(self,a,b): # a = float(a) # b = float(b) # return a+b # def plus_all(self,a,b,c,d): # return self.plus_int(a,b)+self.plus_float(c,d) #参数名字可以变,但是个数不能变 # num = PlusNum() # # print(num.plus_int(3,4)) # # print(num.plus_float(2.1,3.4)) # print(num.plus_all(1,2,3.3,4.3)) # 如下例子: # class Act: # @classmethod #表示类的方法 # def use(cls): #加上了上面的,此处变为cls,是class的缩写 # print("www") # Act.use() #类方法不仅可以被类调用,还可以被对象调用 # class Run: # @staticmethod #类的静态方法,不传对象也不传类,既不属于类做的事情,也不属于对象做的事情,但可以被类和对象调用 # def have_breakfast(): #静态方法括号为空,是针对于cls和self方法用的,可以传自己的参数如a,b等, # print('eat eggs') # r = Run # r.have_breakfast() #被对象调用 # Run.have_breakfast() #被类调用 #————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————- # Python 实例方法、类方法、静态方法的区别与作用 # Python中至少有三种比较常见的方法类型,即实例方法,类方法、静态方法。它们是如何定义的呢?如何调用的呢?它们又有何区别和作用呢?且看下文。 # 首先,这三种方法都定义在类中。下面我先简单说一下怎么定义和调用的。(PS:实例对象的权限最大。) # 实例方法 # 定义:第一个参数必须是实例对象,该参数名一般约定为“self”,通过它来传递实例的属性和方法(也可以传类的属性和方法); # 调用:只能由实例对象调用。 # 类方法 # 定义:使用装饰器@classmethod。第一个参数必须是当前类对象,该参数名一般约定为“cls”,通过它来传递类的属性和方法(不能传实例的属性和方法); # 调用:实例对象和类对象都可以调用。 # 静态方法 # 定义:使用装饰器@staticmethod。参数随意,没有“self”和“cls”参数,但是方法体中不能使用类或实例的任何属性和方法; # 调用:实例对象和类对象都可以调用。 # 实例方法 # 简而言之,实例方法就是类的实例能够使用的方法。这里不做过多解释。 # 类方法 # 使用装饰器@classmethod。 # 原则上,类方法是将类本身作为对象进行操作的方法。假设有个方法,且这个方法在逻辑上采用类本身作为对象来调用更合理,那么这个方法就可以定义为类方法。另外,如果需要继承,也可以定义为类方法。 # 如下场景: # 假设我有一个学生类和一个班级类,想要实现的功能为: # 执行班级人数增加的操作、获得班级的总人数; # 学生类继承自班级类,每实例化一个学生,班级人数都能增加; # 最后,我想定义一些学生,获得班级中的总人数。 # 思考:这个问题用类方法做比较合适,为什么?因为我实例化的是学生,但是如果我从学生这一个实例中获得班级总人数,在逻辑上显然是不合理的。同时,如果想要获得班级总人数,如果生成一个班级的实例也是没有必要的。 # 复制代码 # class ClassTest(object): # __num = 0 # @classmethod # def addNum(cls): # cls.__num += 1 # @classmethod # def getNum(cls): # return cls.__num # # 这里我用到魔术方法__new__,主要是为了在创建实例的时候调用累加方法。 # def __new__(self): # ClassTest.addNum() # return super(ClassTest, self).__new__(self) # class Student(ClassTest): # def __init__(self): # self.name = '' # a = Student() # b = Student() # print(ClassTest.getNum()) # 复制代码 # 静态方法 # 使用装饰器@staticmethod。 # 静态方法是类中的函数,不需要实例。静态方法主要是用来存放逻辑性的代码,逻辑上属于类,但是和类本身没有关系,也就是说在静态方法中,不会涉及到类中的属性和方法的操作。可以理解为,静态方法是个独立的、单纯的函数,它仅仅托管于某个类的名称空间中,便于使用和维护。 # 譬如,我想定义一个关于时间操作的类,其中有一个获取当前时间的函数。 # 复制代码 # import time # class TimeTest(object): # def __init__(self, hour, minute, second): # self.hour = hour # self.minute = minute # self.second = second # @staticmethod # def showTime(): # return time.strftime("%H:%M:%S", time.localtime()) # print(TimeTest.showTime()) # t = TimeTest(2, 10, 10) # nowTime = t.showTime() # print(nowTime) # 复制代码 # 如上,使用了静态方法(函数),然而方法体中并没使用(也不能使用)类或实例的属性(或方法)。若要获得当前时间的字符串时,并不一定需要实例化对象,此时对于静态方法而言,所在类更像是一种名称空间。 # 其实,我们也可以在类外面写一个同样的函数来做这些事,但是这样做就打乱了逻辑关系,也会导致以后代码维护困难。 # 以上就是我对Python的实例方法,类方法和静态方法之间的区别和作用的简要阐述。 #—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— import re import requests import json # response = requests.get('http://news.baidu.com') #用这个方法访问百度新闻 # print(response) #打印获取的是状态码 # content = response.text # print(content) #打印获取整个的网页内容 # with open('duban.json','w',encoding='utf-8') as file: #把网页内容写到文件中 # file.write(content) ##############################################拓展: # file = open('duban.json','r',encoding='utf-8') #读取这个文件 # a = file.read() # # pattern = re.compile(r'新闻') # # pattern = re.compile(r'\d{1,10}') #找到所有数字匹配,下标从一位到10位数字 # # pattern = re.compile(r'\d{1,}') #左边不输入,代表从0开始,右边不输入,最大随便出现 取出这个文件中的所有数字 # # pattern = re.compile(r'\d+') #跟上面的[1,]效果是一样的 # # pattern = re.compile(r'\w') #把数字、字母、下划线、汉字都打印出来了 # # pattern = re.compile(r'\w+') #把数字、字母、下划线、汉字都打印连在一起 # # pattern = re.compile(r'\W+') #除掉数字、字母、下划线和汉字剩下的东西(大写的W) # # pattern = re.compile(r'\D+') #非数字的一切内容 # pattern = re.compile(r'\w*') #表示匹配0此或者多次,等于[0,] # result = pattern.findall(a) #找到这个文件中所有的“新闻”字样 # print(result) # file.close() #打开文件记得关闭 # file = open('duban.json','r',encoding='utf-8') #读取这个文件 # a = file.read() # a2 = '<EMAIL>,song <EMAIL>,<EMAIL>' # # pattern = re.compile(r'<EMAIL>') #因为‘。’导致都匹配上了 # # pattern = re.compile(r'.') #'.'能匹配所有的东西,代表匹配所有 # pattern = re.compile(r'song\.lu@errc\.com') #在点前面加上反斜杠,就能完全匹配 # result = pattern.findall(a2) # print(result) # file.close() #打开文件记得关闭 # 比如匹配所有邮箱 # file = open('duban.json','r',encoding='utf-8') #读取这个文件 # a = file.read() # a2 = '<EMAIL>,<EMAIL>,<EMAIL>' # # pattern = re.compile(r'.+@\w+\.com') #匹配所有邮箱,但是打印出来的是一组字符串,需要分开打印,用下面方法 # # pattern = re.compile(r'\w+.\w+@\w+\.com') #正常情况只要后面的\w+@\w+\.com(正常的邮箱正则表达式)即可,但是因为此题前面有个点 # result = pattern.findall(a2) # print(result) # file.close() #打开文件记得关闭 # # 题目:<EMAIL>,只要匹配@hit # file = open('duban.json','r',encoding='utf-8') #读取这个文件 # a = file.read() # a2 = '<EMAIL>.cf.aa.ee.dd' # # pattern = re.compile(r'@.+\.') #正则表达式默认贪婪模式,尽可能多的匹配点,会匹配到最后一个,如何避免呢。前面加个问号即可,如下: # pattern = re.compile(r'@.+?\.') #正则表达式的点的懒惰模式,问号是解除贪婪模式变为懒惰模式 # result = pattern.findall(a2) # print(result) # file.close() #打开文件记得关闭 # file = open('duban.json','r',encoding='utf-8') #读取这个文件 # a = file.read() # a2 = '<HtMl>hello</hTmL>' #网页,要把hello匹配出来 # pattern = re.compile(r'<[Hh][Tt][Mm][Ll]>hello</[Hh][Tt][Mm][Ll]>') #中括号里面是你可以匹配的对象 # result = pattern.findall(a2) # print(result) # file.close() #打开文件记得关闭 # .*? 代表啥意思=====代表万能表达式。 # \d 换成中括号可以用[0123456789] 或者[0-9] 如\d{,2}可以写成[012] #\w 字母数字_ 也可以写成[a-zA-Z0-9_] # \W 非数字字母_ # \d 数字 # \D 非数字 # . 所有 # + 匹配一次或多次等于{1,} # {1,4} 匹配一次到4次 # {,4} 匹配至多四次 # {1,} 匹配至少一次 # ? 解除贪婪模式,接在次数的正则表达式后面使用 # * 表示匹配0次或多次,等于{0,} file = open('duban.json','r',encoding='utf-8') #读取这个文件 a = file.read() a2 = '<EMAIL>,song <EMAIL>,song!<EMAIL>' pattern = re.compile(r'@(.*?)\.com') #万能表达式需要告诉在哪里结束 result = pattern.findall(a2) print(result) file.close() #打开文件记得关闭 ###################################################拓展: # import json #json仅限于拿接口数据,content拿所有格式 # import requests # response = requests.get('http://news.baidu.com') #用这个方法访问百度新闻 # # print(str(response.text)) #类型是字符串类型 # # print(str(response.content)) #用concent会生成字节流,前面有个b,加上“encoding=‘utf-8’”就可以了 # print(response.json) #类型是字典类型
3.96875
4
get_address.py
trentlo/btc-utils
0
12795079
<gh_stars>0 import sys from getopt import getopt from crypto.key import PublicKey, PrivateKey if __name__ == '__main__': # Always use the compressed form now. compressed = True net = "main" mnemonic = None num_hash = 3 argv = sys.argv[1:] try: # -n (net) # `-d mnemonic`: deterministic key gen using opts, args = getopt(argv, "n:d:h:", ["net=", "deterministic="]) except: print("Error") for opt, arg in opts: if opt in ['-n', "--net"]: net = arg elif opt in ['-d', '--deterministic']: mnemonic = arg elif opt in ['-h']: num_hash = int(arg) if mnemonic == None: prvk = PrivateKey.gen_random_key() else: print('gen secret key using mnemonic: ') print(mnemonic) prvk = PrivateKey.from_mnemonic(mnemonic, num_hash) print('secret key:') print(hex(prvk.key).upper()) wif_prvk : str = prvk.get_wif(net = net, compressed = compressed) print('WIF secret key:') print(wif_prvk) pubk = PublicKey.from_private_key(prvk.key) print('public key:') print('x:', format(pubk.x, '064x')) print('y:', format(pubk.y, '064x')) addr = pubk.address(net = net, compressed = compressed) print('bitcoin address:') print(addr)
2.546875
3
AttackMethods/AttackMethod.py
Valentijn1995/Kn0ckKn0ck
0
12795080
import thread import threading import abc from time import sleep class AttackMethod: """ The AttackMethod class represents a DOS attack. The AttackMethod class is an abstract class and needs to be extended by other classes. An AttackMethod runs in its own thread. The thread loop starts when the start_attack() function is called and stops when the stop_attack() function is called. """ __metaclass__ = abc.ABCMeta def __init__(self, proxy, target): """ Constructor. Creates a new AttackMethod instance. :type target: Destination :type proxy: Proxy """ self._proxy = proxy self._attack_is_active = False self._innerThread = None self._attack_lock = threading.Lock() self._attack_target = target self._loop_delay = 0.050 self.exception = None def start_attack(self): """ Starts the DOS attack. """ self._attack_lock.acquire() if not self._attack_is_active: self._attack_is_active = True self._attack_lock.release() self._innerThread = thread.start_new_thread(self._thread_loop, ()) else: self._attack_lock.release() def stop_attack(self): """ Stops the attack loop. """ self._set_attack_active(False) def has_exception(self): if not self.is_active(): return self.exception is not None else: return False def get_exception(self): return self.exception def _thread_loop(self): """ The main loop of the attack thread. This function is called by the attack thread and could not be called directly. """ while self.is_active(): try: self._attack_loop() sleep(self._loop_delay) except Exception as ex: self.exception = ex self.stop_attack() def is_active(self): """ Checks the value of the _attack_is_active value in a thread safe was. Use this function to get the value of _attack_is_active instead of checking the value directly. :return: True if the attack is active and False otherwise """ self._attack_lock.acquire() attack_active = self._attack_is_active self._attack_lock.release() return attack_active def _set_attack_active(self, value): """ Thread-safe setter for the _attack_is_active value. This function is only for internal use. :param value: New value of the _attack_is_value value (True or False) """ if not isinstance(value, bool): raise ValueError('set_attack_active value has to be a boolean and not a ' + type(value)) self._attack_lock.acquire() self._attack_is_active = value self._attack_lock.release() @abc.abstractmethod def _attack_loop(self): """ Part of the _thread_loop. This function has to be implemented by the class which extends from the AttackMethod class. The function gets called repeatedly until the stop_attack function gets called. The class which extends from this class has to implement it's attack logic in this function. """ return
3.859375
4
alipay/aop/api/domain/SsdataDataserviceDatapropertyBatchqueryModel.py
antopen/alipay-sdk-python-all
213
12795081
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class SsdataDataserviceDatapropertyBatchqueryModel(object): def __init__(self): self._action = None self._action_param = None self._base = None self._data_channel = None self._visit_ac = None self._visit_biz_line = None self._visit_bu = None @property def action(self): return self._action @action.setter def action(self, value): self._action = value @property def action_param(self): return self._action_param @action_param.setter def action_param(self, value): self._action_param = value @property def base(self): return self._base @base.setter def base(self, value): self._base = value @property def data_channel(self): return self._data_channel @data_channel.setter def data_channel(self, value): self._data_channel = value @property def visit_ac(self): return self._visit_ac @visit_ac.setter def visit_ac(self, value): self._visit_ac = value @property def visit_biz_line(self): return self._visit_biz_line @visit_biz_line.setter def visit_biz_line(self, value): self._visit_biz_line = value @property def visit_bu(self): return self._visit_bu @visit_bu.setter def visit_bu(self, value): self._visit_bu = value def to_alipay_dict(self): params = dict() if self.action: if hasattr(self.action, 'to_alipay_dict'): params['action'] = self.action.to_alipay_dict() else: params['action'] = self.action if self.action_param: if hasattr(self.action_param, 'to_alipay_dict'): params['action_param'] = self.action_param.to_alipay_dict() else: params['action_param'] = self.action_param if self.base: if hasattr(self.base, 'to_alipay_dict'): params['base'] = self.base.to_alipay_dict() else: params['base'] = self.base if self.data_channel: if hasattr(self.data_channel, 'to_alipay_dict'): params['data_channel'] = self.data_channel.to_alipay_dict() else: params['data_channel'] = self.data_channel if self.visit_ac: if hasattr(self.visit_ac, 'to_alipay_dict'): params['visit_ac'] = self.visit_ac.to_alipay_dict() else: params['visit_ac'] = self.visit_ac if self.visit_biz_line: if hasattr(self.visit_biz_line, 'to_alipay_dict'): params['visit_biz_line'] = self.visit_biz_line.to_alipay_dict() else: params['visit_biz_line'] = self.visit_biz_line if self.visit_bu: if hasattr(self.visit_bu, 'to_alipay_dict'): params['visit_bu'] = self.visit_bu.to_alipay_dict() else: params['visit_bu'] = self.visit_bu return params @staticmethod def from_alipay_dict(d): if not d: return None o = SsdataDataserviceDatapropertyBatchqueryModel() if 'action' in d: o.action = d['action'] if 'action_param' in d: o.action_param = d['action_param'] if 'base' in d: o.base = d['base'] if 'data_channel' in d: o.data_channel = d['data_channel'] if 'visit_ac' in d: o.visit_ac = d['visit_ac'] if 'visit_biz_line' in d: o.visit_biz_line = d['visit_biz_line'] if 'visit_bu' in d: o.visit_bu = d['visit_bu'] return o
2.046875
2
app/gui/cryptotools/__init__.py
vasilypht/Cryptographic-methods
0
12795082
from typing import Final from .freqanalysis import FreqAnalysisWidget from .index_of_coincidence import ICWidget from .autocorrelation import AutocorrelationWidget from .kasiski import KasiskiWidget WIDGETS_CRYPTOTOOLS: Final = ( FreqAnalysisWidget, ICWidget, AutocorrelationWidget, KasiskiWidget )
1.304688
1
utils/build_test_db.py
eternalconcert/robotframework-sqless
0
12795083
# This file is needed to initialize the models and migrations import os import sys from nopea.dbobject import DbObject from nopea import fields from nopea.migrations import Migration if 'sqlite' in sys.argv: from nopea.adaptors.sqlite import SQLiteAdaptor DbObject.adaptor = SQLiteAdaptor('sqless.db') elif 'mysql' in sys.argv: from nopea.adaptors.mysql import MySQLAdaptor DbObject.adaptor = MySQLAdaptor({ 'host': 'localhost', 'user': 'sqless', 'db': 'sqless', 'use_unicode': True, 'charset': 'utf8' }) elif 'postgres' in sys.argv: from nopea.adaptors.postgres import PostgreSQLAdaptor DbObject.adaptor = PostgreSQLAdaptor({ 'host': 'localhost', 'user': 'sqless', 'database': 'sqless', 'password': '<PASSWORD>' }) class User(DbObject): username = fields.CharField(max_length=20) email = fields.CharField(max_length=100) failed_logins = fields.IntegerField(default=0) class Post(DbObject): title = fields.CharField(max_length=100) content = fields.TextField() class Song(DbObject): title = fields.CharField(max_length=100) artist = fields.CharField(max_length=100) album = fields.CharField(max_length=100) in_collection = fields.BooleanField(default=False) Migration.migration_dir = os.path.join(os.getcwd(), 'utils/migrations') migrations = Migration() migrations.create_migrations() migrations.run_migrations() users = [ {"username": "TestUser1", "email": "<EMAIL>"}, {"username": "TestUser2", "email": "<EMAIL>"}, {"username": "TestUser3", "email": "<EMAIL>", "failed_logins": 12} ] for user in users: User.objects.get_or_create(**user) posts = [ {"title": "TestPosting", "content": "Lorem Ipsum Dolor Sit"}, {"title": "SomeOtherStuff", "content": "hello, world!"}, ] for post in posts: Post.objects.get_or_create(**post) songs = [ { "title": "Love Like Cyanide", "artist": "Sirenia", "album": "Arcane Astral Aeons" }, { "title": "The Greatest Show On Earth", "artist": "Nightwish", "album": "Decades" }, { "title": "Ghost Love Score", "artist": "Nightwish", "album": "Decades" }, { "title": "Devil And The Deep Dark Ocean", "artist": "Nightwish", "album": "Decades" }, { "title": "One By One", "artist": "Immortal_", "album": "Sons Of Northern Darkness" }, { "title": "Sons Of Northern Darkness", "artist": "Immortal_", "album": "Sons Of Northern Darkness" } ] for song in songs: Song.objects.get_or_create(**song)
2.609375
3
mp/drawing/aoi_analysis.py
Ecotrust/COMPASS
1
12795084
<reponame>Ecotrust/COMPASS<filename>mp/drawing/aoi_analysis.py<gh_stars>1-10 from django.shortcuts import render #from madrona.raster_stats.models import RasterDataset, zonal_stats from settings import * from general.utils import default_value, sq_meters_to_sq_miles from drawing.models import * ''' ''' def display_aoi_analysis(request, aoi, template='aoi/reports/aoi_report.html'): context = get_wind_analysis(aoi) return render(request, template, context) ''' Run the analysis, create the cache, and return the results as a context dictionary so they may be rendered with template ''' def get_wind_analysis(aoi): #compile context area = sq_meters_to_sq_miles(aoi.geometry_final.area) context = { 'aoi': aoi, 'default_value': default_value, 'area': area } return context
2.234375
2
signaling-games/algs/model_agents/__init__.py
vbhatt-cs/inference-based-messaging
3
12795085
<reponame>vbhatt-cs/inference-based-messaging from .model_s import ModelS from .model_r import ModelR __all__ = ["ModelR", "ModelS"]
0.996094
1
src/kgmk/dsa/misc/online_update_query/set_point_get_range/abstract/segtree/__init__.py
kagemeka/python
0
12795086
<gh_stars>0 from kgmk.dsa.algebra.abstract.structure.monoid import ( Monoid, ) from \ kgmk.dsa.tree.misc.segment.normal.one_indexed.topdown \ .non_recursive \ import ( SegmentTree, ) # TODO cut below import typing import typing T = typing.TypeVar('T') class SetPointGetRange(typing.Generic[T]): def __init__( self, monoid: Monoid[T], a: typing.List[T], ) -> typing.NoReturn: self.__seg = SegmentTree(monoid, a) self.__monoid = monoid def set_point(self, i: int, x: T) -> typing.NoReturn: self.__seg[i] = x def operate_point(self, i: int, x: T) -> typing.NoReturn: self.set_point(i, self.__monoid.op(self.get_point(i), x)) def get_point(self, i: int) -> T: return self.__seg[i] def get_range(self, l: int, r: int) -> T: return self.__seg.get_range(l, r)
2.28125
2
data/us-tn/co-knox/covid_age/harvester.py
mtna/covid-19
10
12795087
import os import math import pandas as pd import datetime variables = [ 'date_stamp', 'age_group', 'cnt_confirmed', 'pct_confirmed' ] def cleanData(data, fileName): # source data frame from csv file source = pd.DataFrame(data) source.columns = ['v1','v2','v3'] print(source) # the target data frame df = pd.DataFrame(columns = variables) df['age_group'] = source['v1'].map({ '0-10':'00', '11-20': '11', '21-30': '21', '31-40': '31', '41-50': '41', '51-60': '51', '61-70': '61', '71-80': '71', '81-90': '81', '90+': '91', 'Age Unknown': '99' }) df['cnt_confirmed'] = source['v2'] df['pct_confirmed'] = list(map(lambda x: x[:-1], source['v3'].values)) df['date_stamp'] = fileName[0:-4] # apply data types df['date_stamp'] = pd.to_datetime(df['date_stamp']).dt.strftime('%Y-%m-%d') df['cnt_confirmed'] = df['cnt_confirmed'].astype(pd.Int32Dtype()) return df def deleteFiles(path): today = datetime.date.today(); one_week = datetime.timedelta(days=7) week = today - one_week week_ago = datetime.datetime.combine(week, datetime.time(0, 0)) for filename in os.listdir(path): if(filename.endswith('.csv')): newFilename = filename.replace('.csv', ''); filedate = datetime.datetime.strptime(newFilename, '%Y-%m-%d') if(filedate < week_ago): print('removing files that are more than a week old: ',path,'/',filename) os.remove(f"{path}/{filename}") return None if __name__ == "__main__": path = os.path # Loop over the files within the folder for filename in sorted(os.listdir('./data/us-tn/co-knox/covid_age/raw')): if filename.endswith('.csv') and path.exists(f"./data/us-tn/co-knox/covid_age/clean/{filename}") == False: print(filename) # For each csv file, map the transformed data to its respective file in the harvested folder data = pd.read_csv(f"./data/us-tn/co-knox/covid_age/raw/{filename}") df = cleanData(data, filename) df.to_csv(f"./data/us-tn/co-knox/covid_age/clean/{filename}", index=False) # if there is no aggregate file create one, otherwise append to it. if path.exists(f"./data/us-tn/co-knox/covid_age/latest.csv"): df.to_csv(f"./data/us-tn/co-knox/covid_age/latest.csv", mode='a', header=False, index=False) else: df.to_csv(f"./data/us-tn/co-knox/covid_age/latest.csv", index=False) deleteFiles('./data/us-tn/co-knox/covid_age/raw') deleteFiles('./data/us-tn/co-knox/covid_age/clean')
3.03125
3
example_algos/models/aes.py
MIC-DKFZ/mood
42
12795088
<gh_stars>10-100 import numpy as np import torch import torch.distributions as dist from example_algos.models.nets import BasicEncoder, BasicGenerator class VAE(torch.nn.Module): def __init__( self, input_size, z_dim=256, fmap_sizes=(16, 64, 256, 1024), to_1x1=True, conv_op=torch.nn.Conv2d, conv_params=None, tconv_op=torch.nn.ConvTranspose2d, tconv_params=None, normalization_op=None, normalization_params=None, activation_op=torch.nn.LeakyReLU, activation_params=None, block_op=None, block_params=None, *args, **kwargs ): """Basic VAE build up of a symetric BasicEncoder (Encoder) and BasicGenerator (Decoder) Args: input_size ((int, int, int): Size of the input in format CxHxW): z_dim (int, optional): [description]. Dimension of the latent / Input dimension (C channel-dim). Defaults to 256 fmap_sizes (tuple, optional): [Defines the Upsampling-Levels of the generator, list/ tuple of ints, where each int defines the number of feature maps in the layer]. Defaults to (16, 64, 256, 1024). to_1x1 (bool, optional): [If True, then the last conv layer goes to a latent dimesion is a z_dim x 1 x 1 vector (similar to fully connected) or if False allows spatial resolution not to be 1x1 (z_dim x H x W, uses the in the conv_params given conv-kernel-size) ]. Defaults to True. conv_op ([torch.nn.Module], optional): [Convolutioon operation used in the encoder to downsample to a new level/ featuremap size]. Defaults to nn.Conv2d. conv_params ([dict], optional): [Init parameters for the conv operation]. Defaults to dict(kernel_size=3, stride=2, padding=1, bias=False). tconv_op ([torch.nn.Module], optional): [Upsampling/ Transposed Conv operation used in the decoder to upsample to a new level/ featuremap size]. Defaults to nn.ConvTranspose2d. tconv_params ([dict], optional): [Init parameters for the conv operation]. Defaults to dict(kernel_size=3, stride=2, padding=1, bias=False). normalization_op ([torch.nn.Module], optional): [Normalization Operation (e.g. BatchNorm, InstanceNorm,...) -> see ConvModule]. Defaults to nn.BatchNorm2d. normalization_params ([dict], optional): [Init parameters for the normalization operation]. Defaults to None. activation_op ([torch.nn.Module], optional): [Actiovation Operation/ Non-linearity (e.g. ReLU, Sigmoid,...) -> see ConvModule]. Defaults to nn.LeakyReLU. activation_params ([dict], optional): [Init parameters for the activation operation]. Defaults to None. block_op ([torch.nn.Module], optional): [Block operation used for each feature map size after each upsample op of e.g. ConvBlock/ ResidualBlock]. Defaults to NoOp. block_params ([dict], optional): [Init parameters for the block operation]. Defaults to None. """ super(VAE, self).__init__() input_size_enc = list(input_size) input_size_dec = list(input_size) self.enc = BasicEncoder( input_size=input_size_enc, fmap_sizes=fmap_sizes, z_dim=z_dim * 2, conv_op=conv_op, conv_params=conv_params, normalization_op=normalization_op, normalization_params=normalization_params, activation_op=activation_op, activation_params=activation_params, block_op=block_op, block_params=block_params, to_1x1=to_1x1, ) self.dec = BasicGenerator( input_size=input_size_dec, fmap_sizes=fmap_sizes[::-1], z_dim=z_dim, upsample_op=tconv_op, conv_params=tconv_params, normalization_op=normalization_op, normalization_params=normalization_params, activation_op=activation_op, activation_params=activation_params, block_op=block_op, block_params=block_params, to_1x1=to_1x1, ) self.hidden_size = self.enc.output_size def forward(self, inpt, sample=True, no_dist=False, **kwargs): y1 = self.enc(inpt, **kwargs) mu, log_std = torch.chunk(y1, 2, dim=1) std = torch.exp(log_std) z_dist = dist.Normal(mu, std) if sample: z_sample = z_dist.rsample() else: z_sample = mu x_rec = self.dec(z_sample) if no_dist: return x_rec else: return x_rec, z_dist def encode(self, inpt, **kwargs): """Encodes a sample and returns the paramters for the approx inference dist. (Normal) Args: inpt ([tensor]): The input to encode Returns: mu : The mean used to parameterized a Normal distribution std: The standard deviation used to parameterized a Normal distribution """ enc = self.enc(inpt, **kwargs) mu, log_std = torch.chunk(enc, 2, dim=1) std = torch.exp(log_std) return mu, std def decode(self, inpt, **kwargs): """Decodes a latent space sample, used the generative model (decode = mu_{gen}(z) as used in p(x|z) = N(x | mu_{gen}(z), 1) ). Args: inpt ([type]): A sample from the latent space to decode Returns: [type]: [description] """ x_rec = self.dec(inpt, **kwargs) return x_rec class AE(torch.nn.Module): def __init__( self, input_size, z_dim=1024, fmap_sizes=(16, 64, 256, 1024), to_1x1=True, conv_op=torch.nn.Conv2d, conv_params=None, tconv_op=torch.nn.ConvTranspose2d, tconv_params=None, normalization_op=None, normalization_params=None, activation_op=torch.nn.LeakyReLU, activation_params=None, block_op=None, block_params=None, *args, **kwargs ): """Basic AE build up of a symetric BasicEncoder (Encoder) and BasicGenerator (Decoder) Args: input_size ((int, int, int): Size of the input in format CxHxW): z_dim (int, optional): [description]. Dimension of the latent / Input dimension (C channel-dim). Defaults to 256 fmap_sizes (tuple, optional): [Defines the Upsampling-Levels of the generator, list/ tuple of ints, where each int defines the number of feature maps in the layer]. Defaults to (16, 64, 256, 1024). to_1x1 (bool, optional): [If True, then the last conv layer goes to a latent dimesion is a z_dim x 1 x 1 vector (similar to fully connected) or if False allows spatial resolution not to be 1x1 (z_dim x H x W, uses the in the conv_params given conv-kernel-size) ]. Defaults to True. conv_op ([torch.nn.Module], optional): [Convolutioon operation used in the encoder to downsample to a new level/ featuremap size]. Defaults to nn.Conv2d. conv_params ([dict], optional): [Init parameters for the conv operation]. Defaults to dict(kernel_size=3, stride=2, padding=1, bias=False). tconv_op ([torch.nn.Module], optional): [Upsampling/ Transposed Conv operation used in the decoder to upsample to a new level/ featuremap size]. Defaults to nn.ConvTranspose2d. tconv_params ([dict], optional): [Init parameters for the conv operation]. Defaults to dict(kernel_size=3, stride=2, padding=1, bias=False). normalization_op ([torch.nn.Module], optional): [Normalization Operation (e.g. BatchNorm, InstanceNorm,...) -> see ConvModule]. Defaults to nn.BatchNorm2d. normalization_params ([dict], optional): [Init parameters for the normalization operation]. Defaults to None. activation_op ([torch.nn.Module], optional): [Actiovation Operation/ Non-linearity (e.g. ReLU, Sigmoid,...) -> see ConvModule]. Defaults to nn.LeakyReLU. activation_params ([dict], optional): [Init parameters for the activation operation]. Defaults to None. block_op ([torch.nn.Module], optional): [Block operation used for each feature map size after each upsample op of e.g. ConvBlock/ ResidualBlock]. Defaults to NoOp. block_params ([dict], optional): [Init parameters for the block operation]. Defaults to None. """ super(AE, self).__init__() input_size_enc = list(input_size) input_size_dec = list(input_size) self.enc = BasicEncoder( input_size=input_size_enc, fmap_sizes=fmap_sizes, z_dim=z_dim, conv_op=conv_op, conv_params=conv_params, normalization_op=normalization_op, normalization_params=normalization_params, activation_op=activation_op, activation_params=activation_params, block_op=block_op, block_params=block_params, to_1x1=to_1x1, ) self.dec = BasicGenerator( input_size=input_size_dec, fmap_sizes=fmap_sizes[::-1], z_dim=z_dim, upsample_op=tconv_op, conv_params=tconv_params, normalization_op=normalization_op, normalization_params=normalization_params, activation_op=activation_op, activation_params=activation_params, block_op=block_op, block_params=block_params, to_1x1=to_1x1, ) self.hidden_size = self.enc.output_size def forward(self, inpt, **kwargs): y1 = self.enc(inpt, **kwargs) x_rec = self.dec(y1) return x_rec def encode(self, inpt, **kwargs): """Encodes a input sample to a latent space sample Args: inpt ([tensor]): Input sample Returns: enc: Encoded input sample in the latent space """ enc = self.enc(inpt, **kwargs) return enc def decode(self, inpt, **kwargs): """Decodes a latent space sample back to the input space Args: inpt ([tensor]): [Latent space sample] Returns: [rec]: [Encoded latent sample back in the input space] """ rec = self.dec(inpt, **kwargs) return rec
2.40625
2
sme/test/test_parameter.py
henryiii/spatial-model-editor
4
12795089
<reponame>henryiii/spatial-model-editor<filename>sme/test/test_parameter.py import unittest import sme class TestParameter(unittest.TestCase): def test_parameter(self): # get an existing parameter m = sme.open_example_model() p = m.parameters["param"] # verify name and properties self.assertEqual(repr(p), "<sme.Parameter named 'param'>") self.assertEqual(str(p)[0:33], "<sme.Parameter>\n - name: 'param'") self.assertEqual(p.name, "param") self.assertEqual(p.value, "1") # assign new values p.name = "New param" p.value = "0.8765" self.assertEqual(repr(p), "<sme.Parameter named 'New param'>") self.assertEqual(str(p)[0:37], "<sme.Parameter>\n - name: 'New param'") self.assertEqual(p.name, "New param") self.assertEqual(p.value, "0.8765") # check change was propagated to model self.assertRaises( sme.InvalidArgument, lambda: m.parameters["param"], ) p2 = m.parameters["New param"] self.assertEqual(p2.name, "New param") self.assertEqual(p2.value, "0.8765") self.assertEqual(p2, p) self.assertEqual(p2, m.parameters[0]) self.assertEqual(p2, m.parameters[-1])
2.953125
3
tests/conftest.py
YellowFlash2012/stock-portfolio-io
0
12795090
import pytest import requests from project import create_app, db from flask import current_app from project.models import Stock, User from datetime import datetime ######################## #### Helper Classes #### ######################## class MockSuccessResponse(object): def __init__(self, url): self.status_code = 200 self.url = url self.headers = {'blaa': '1234'} def json(self): return { 'Meta Data': { "2. Symbol": "MSFT", "3. Last Refreshed": "2022-02-10" }, 'Time Series (Daily)': { "2022-02-10": { "4. close": "302.3800", }, "2022-02-09": { "4. close": "301.9800", } } } class MockFailedResponse(object): def __init__(self, url): self.status_code = 404 self.url = url self.headers = {'blaa': '1234'} def json(self): return {'error': 'bad'} class MockSuccessResponseDaily(object): def __init__(self, url): self.status_code = 200 self.url = url def json(self): return { 'Meta Data': { "2. Symbol": "AAPL", "3. Last Refreshed": "2020-03-24" }, 'Time Series (Daily)': { "2022-02-10": { "4. close": "148.3400", }, "2022-02-09": { "4. close": "135.9800", } } } class MockApiRateLimitExceededResponse(object): def __init__(self, url): self.status_code = 200 self.url = url def json(self): return { 'Note': 'Thank you for using Alpha Vantage! Our standard API call frequency is ' + '5 calls per minute and 500 calls per day.' } class MockFailedResponse(object): def __init__(self, url): self.status_code = 404 self.url = url def json(self): return {'error': 'bad'} class MockSuccessResponseWeekly(object): def __init__(self, url): self.status_code = 200 self.url = url def json(self): return { 'Meta Data': { "2. Symbol": "AAPL", "3. Last Refreshed": "2020-07-28" }, 'Weekly Adjusted Time Series': { "2020-07-24": { "4. close": "379.2400", }, "2020-07-17": { "4. close": "362.7600", }, "2020-06-11": { "4. close": "354.3400", }, "2020-02-25": { "4. close": "432.9800", } } } @pytest.fixture(scope='module') def test_client(): flask_app = create_app() flask_app.config.from_object('config.TestingConfig') flask_app.extensions['mail'].suppress = True #to avoid sending emails during the tests # Create a test client using the Flask application configured for testing with flask_app.test_client() as testing_client: # establish an app ctx be4 accessing the logger with flask_app.app_context(): flask_app.logger.info('Creating database tables in test_client fixture...') yield testing_client #where the test happens @pytest.fixture(scope='function') def new_stock(): stock = Stock('AAPL', '16', '406.78', 7, datetime(2022, 2, 12)) return stock @pytest.fixture(scope='module') def new_user(): user = User('<EMAIL>', '<PASSWORD>') return user # to register a default user @pytest.fixture(scope='module') def register_default_user(test_client): # Register the default user test_client.post('/users/register', data={'name':'<NAME>', 'email': '<EMAIL>', 'password': '<PASSWORD>'}, follow_redirects=True) return # is default user logged in? @pytest.fixture(scope='function') def log_in_default_user(test_client, register_default_user): # Log in the default user test_client.post('/users/login', data={'email': '<EMAIL>', 'password': '<PASSWORD>'}, follow_redirects=True) yield # this is where the testing happens! # Log out the default user test_client.get('/users/logout', follow_redirects=True) @pytest.fixture(scope='function') def confirm_email_default_user(test_client, log_in_default_user): # Mark the user as having their email address confirmed user = User.query.filter_by(email='<EMAIL>').first() user.email_confirmed = True user.email_confirmed_on = datetime(2020, 7, 8) db.session.add(user) db.session.commit() yield user # this is where the testing happens! # Mark the user as not having their email address confirmed (clean up) user = User.query.filter_by(email='<EMAIL>').first() user.email_confirmed = False user.email_confirmed_on = None db.session.add(user) db.session.commit() @pytest.fixture(scope='function') def afterwards_reset_default_user_password(): yield # this is where the testing happens! # Since a test using this fixture could change the password for the default user, # reset the password back to the default password user = User.query.filter_by(email='<EMAIL>').first() user.set_password('<PASSWORD>') db.session.add(user) db.session.commit() @pytest.fixture(scope='function') def add_stocks_for_default_user(test_client, log_in_default_user): # Add three stocks for the default user test_client.post('/add_stock', data={'stock_symbol': 'SAM', 'number_of_shares': '27', 'purchase_price': '301.23', 'purchase_date': '2020-07-01'}) test_client.post('/add_stock', data={'stock_symbol': 'COST', 'number_of_shares': '76', 'purchase_price': '14.67', 'purchase_date': '2019-05-26'}) test_client.post('/add_stock', data={'stock_symbol': 'TWTR', 'number_of_shares': '146', 'purchase_price': '34.56', 'purchase_date': '2020-02-03'}) return # ***fixtures for moking requests.get()*** @pytest.fixture(scope='function') def mock_requests_get_success_daily(monkeypatch): # Create a mock for the requests.get() call to prevent making the actual API call def mock_get(url): return MockSuccessResponseDaily(url) url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=MSFT&apikey=demo' monkeypatch.setattr(requests, 'get', mock_get) @pytest.fixture(scope='function') def mock_requests_get_api_rate_limit_exceeded(monkeypatch): def mock_get(url): return MockApiRateLimitExceededResponse(url) url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=MSFT&apikey=demo' monkeypatch.setattr(requests, 'get', mock_get) @pytest.fixture(scope='function') def mock_requests_get_failure(monkeypatch): def mock_get(url): return MockFailedResponse(url) url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=MSFT&apikey=demo' monkeypatch.setattr(requests, 'get', mock_get) @pytest.fixture(scope='function') def mock_requests_get_success_weekly(monkeypatch): # Create a mock for the requests.get() call to prevent making the actual API call def mock_get(url): return MockSuccessResponseWeekly(url) url = 'https://www.alphavantage.co/query?function=TIME_SERIES_WEEKLY_ADJUSTED&symbol=MSFT&apikey=demo' monkeypatch.setattr(requests, 'get', mock_get) # ***register-login-logout 2nd user*** @pytest.fixture(scope='module') def register_second_user(test_client): """Registers the second user using the '/users/register' route.""" test_client.post('/users/register', data={'name':'<NAME>', 'email': '<EMAIL>', 'password': '<PASSWORD>'}) @pytest.fixture(scope='function') def log_in_second_user(test_client, register_second_user): # Log in the user test_client.post('/users/login', data={'email': '<EMAIL>', 'password': '<PASSWORD>'}) yield # this is where the testing happens! # Log out the user test_client.get('/users/logout', follow_redirects=True)
2.453125
2
extractenronlib/extractenron.py
NitiBaghel/Enron-Dataset-Field-Extraction-Library
0
12795091
import email import pandas as pd def extract(data, structured_fields=[], extract_payload=True): r"""This function extracts data for the given header list from the Enron email dataset. It provides flexibilty to choose which fields needs to be extracted. The header list provided by the user are the tags in the email of Enron dataset, eg. Date, Subject etc. By default, if no header is provided, this function returns only the email text body of the Enron dataset. Arguments: 1) data: Dataframe It is the Enron dataset with column headings. This argument can not be kept empty. 2) structured_fields: List It is a of tags for which data needs to be extracted. Example: ['Date', 'Subject', 'X-To']. This argument can be droppped if not required. 3) extract_pyload: Boolean True if email text body is required. False in case only structured_fields needs to be extracted. This field can alo be dropped while calling the function. In case nothing is specified, default boolean value True is used. return: Dataframe A dataframe with specified fields along with the original columns passsed as the data argument. This function is created to take off the burden of extracting desired fields from the Enron dataset. However, this does not clean the data, eg. it does not remove the empty rows or columns. Neither it does the pre-processing of data like lowercase and removal of unwanted characters. In order to make it more powerful, above functions can be added. """ headers=data.columns emails = data.rename(columns={headers[0]:'email_path', headers[1]:'email'}) #getting structured text def create_dict(dictionary, key, value): if key in dictionary: values = dictionary.get(key) values.append(value) dictionary[key] = values else: dictionary[key] = [value] return dictionary def get_structured_data(df, fields): structured_data = {} messages = df["email"] for message in messages: e = email.message_from_string(message) for header in fields: header_data = e.get(header) create_dict(dictionary = structured_data, key = header, value = header_data) return pd.DataFrame(structured_data) #getting unstructured text def get_unstructured_email(df): messages = [] for item in df["email"]: e = email.message_from_string(item) message_body = e.get_payload() #message_body = message_body.lower() messages.append(message_body) return messages if extract_payload == True: email_body = get_unstructured_email(emails) emails["Message-Body"] = email_body structured_data = get_structured_data(emails, structured_fields) emails = pd.concat([emails, structured_data], axis=1) else: structured_data = get_structured_data(emails, structured_fields) emails = pd.concat([emails, structured_data], axis=1) return emails
3.875
4
python/adjacency_to_edgelist.py
conorfalvey/Python-MultilayerExtraction
1
12795092
<filename>python/adjacency_to_edgelist.py # adjacency_to_edgelist # # Function that converts a list of adjacency matrices to an edgelist # @param adjacency: a list whose ith entry is an adjacency matrix representing the ith layer of a multilayer network # @future_param mode: directed or undirected # @future_param weighted: currently not functioning. Coming in later version. # # @keywords community detection, multilayer networks, configuration model, random graph models # @return edgelist: a matrix with three columns representing edge connections: node1, node2, layer # # Basis: Wilson, <NAME>., Palowitch, <NAME>, Shankar, and Nobel, <NAME>. (2017) "Significance based # extraction in multilayer networks with heterogeneous community structure." Journal of Machine Learning Research # Original R Code: <NAME> # Revised Python Code: <NAME> import networkx as nx import numpy as np import pandas as pd def adjacency_to_edgelist(adjacency): # Instantiate labeled dataframe to make sure appends later on merge correctly edgelist = pd.DataFrame({'node1': [0], 'node2': [0], 'layer': [0]}) m = len(adjacency) for i in range(0, m + 1): # Convert each matrix to a NetworkX Graph temp_graph = nx.from_numpy_matrix(np.asarray(adjacency[i]), False) # Convert NetworkX Graph to an edgelist and preprocess the resulting DataFrame edges = nx.convert_matrix.to_pandas_edgelist(temp_graph) edges = edges.drop(['weight'], axis=1) # Drop unnecessary weight column (Unweighted graph) # Rename source and target columns to node1 and node2 (Undirected graph) edges = edges.rename(columns={"source": "node1", "target": "node2"}) edges['layer'] = i # Set a third column to the layer number edgelist = edgelist.append(edges) # Now with correct data structures, we can append to the edgelist # The indices will be jumbled from many appends, so we can reset the index edgelist = edgelist.reset_index(drop=True) # Since we cannot selectively drop self looping edges in a NetworkX Graph structure, # we can do so here by creating a boolean series of entries who's nodes are equal, # and drop them from the DataFrame to preserve community structure later on. edgelist = edgelist.drop(edgelist[edgelist['node1'] == edgelist['node2']].index) # Since we dropped items in the line above, we must once again reset the indices edgelist = edgelist.reset_index(drop=True) return edgelist
3.546875
4
lab_3/lab_3_2.py
rybkinaliza/Python
0
12795093
#!/usr/bin/env python # coding: utf-8 # In[13]: import json # In[18]: def pluz(arg1, arg2): try: s = arg1 + arg2 except TypeError: s = int(arg1) + int(arg2) return s # In[ ]:
3.1875
3
domonic/events.py
Jordan-Cottle/domonic
1
12795094
""" domonic.events ==================================== dom events """ # from typing import * import time # TODO - bring EventTarget here and get rid of this one? class EventDispatcher(object): """ EventDispatcher is a class you can extend to give your obj event dispatching abilities """ def __init__(self, *args, **kwargs): self.listeners = {} def hasEventListener(self, _type): return _type in self.listeners # TODO - event: str, function, useCapture: bool # def addEventListener(self, event: str, function, useCapture: bool) -> None: def addEventListener(self, _type, callback, *args, **kwargs): if _type not in self.listeners: self.listeners[_type] = [] self.listeners[_type].append(callback) def removeEventListener(self, _type, callback): if _type not in self.listeners: return stack = self.listeners[_type] for thing in stack: if thing == callback: stack.remove(thing) return def dispatchEvent(self, event): if event.type not in self.listeners: return True # huh?. surely false? stack = self.listeners[event.type] # .slice() event.target = self # TODO/NOTE - is this correct? - cant think where else would set it for thing in stack: try: thing(event) # type(thing, (Event,), self) except Exception as e: print(e) thing() # try calling without params, user may not create param return not event.defaultPrevented class Event(object): """ event """ EMPTIED = "emptied" #: ABORT = "abort" #: AFTERPRINT = "afterprint" #: BEFOREPRINT = "beforeprint" #: BEFOREUNLOAD = "beforeunload" #: CANPLAY = "canplay" #: CANPLAYTHROUGH = "canplaythrough" #: CHANGE = "change" #: DURATIONCHANGE = "durationchange" #: ENDED = "ended" #: ERROR = "error" #: FULLSCREENCHANGE = "fullscreenchange" #: FULLSCREENERROR = "fullscreenerror" #: INPUT = "input" #: INVALID = "invalid" #: LOAD = "load" #: LOADEDDATA = "loadeddata" #: LOADEDMETADATA = "loadedmetadata" #: MESSAGE = "message" #: OFFLINE = "offline" #: ONLINE = "online" #: OPEN = "open" #: PAUSE = "pause" #: PLAY = "play" #: PLAYING = "playing" #: PROGRESS = "progress" #: RATECHANGE = "ratechange" #: RESIZE = "resize" #: RESET = "reset" #: SCROLL = "scroll" #: SEARCH = "search" #: SEEKED = "seeked" #: SEEKING = "seeking" #: SELECT = "select" #: SHOW = "show" #: STALLED = "stalled" #: SUBMIT = "submit" #: SUSPEND = "suspend" #: TOGGLE = "toggle" #: UNLOAD = "unload" #: VOLUMECHANGE = "volumechange" #: WAITING = "waiting" #: # Event("look", {"bubbles":true, "cancelable":false}); def __init__(self, _type=None, *args, **kwargs): # print('type', _type) self.type = _type self.bubbles = None self.cancelable = None self.cancelBubble = None self.composed = None self.currentTarget = None self.defaultPrevented = False self.eventPhase = None self.explicitOriginalTarget = None self.isTrusted = None self.originalTarget = None self.returnValue = None self.srcElement = None self.target = None # ms = time.time_ns() // 1000000 3.7 up self.timeStamp = int(round(time.time() * 1000)) def composedPath(self): return self.type + ":" + str(self.timeStamp) def initEvent(self, _type=None, *args, **kwargs): self.__init__(_type, args, kwargs) def stopPropagation(self): """[prevents further propagation of the current event in the capturing and bubbling phases]""" # self.defaultPrevented = True # self.returnValue = None # self.originalTarget = None # self.explicitOriginalTarget = None # self.target = None # self.srcElement = None # self.bubbles = None # self.cancelable = None # self.cancelBubble = None # self.composed = None # self.currentTarget = None # self.eventPhase = None # self.isTrusted = None # self.returnValue = None # self.timeStamp = int(round(time.time() * 1000)) # self.type = None pass def msConvertURL(self): pass def preventDefault(self): pass def stopImmediatePropagation(self): pass class MouseEvent(Event): """ mouse events """ CLICK = "click" #: CONTEXTMENU = "contextmenu" #: DBLCLICK = "dblclick" #: MOUSEDOWN = "mousedown" #: MOUSEENTER = "mouseenter" #: MOUSELEAVE = "mouseleave" #: MOUSEMOVE = "mousemove" #: MOUSEOVER = "mouseover" #: MOUSEOUT = "mouseout" #: MOUSEUP = "mouseup" #: def __init__(self, _type, *args, **kwargs): # self.args = args # self.kwargs = kwargs self.x = 0 self.y = 0 self._clientX = 0 self._clientX = 0 self._altKey = False self._ctrlKey = False self._shiftKey = False self._metaKey = False self._button = None self._buttons = [] super().__init__(_type, *args, **kwargs) def initMouseEvent(self, _type=None, canBubble=True, cancelable=True, view=None, detail=None, screenX=0, screenY=0, clientX=0, clientY=0, ctrlKey=False, altKey=False, shiftKey=False, metaKey=False, button=None, relatedTarget=None, from_json={}, *args, **kwargs): # print('initMouseEvent') self._type = _type self.canBubble = canBubble self.cancelable = cancelable self.view = view self.detail = detail self.screenX = screenX self.screenY = screenY self._clientX = clientX self._clientY = clientY self._ctrlKey = ctrlKey self._altKey = altKey self._shiftKey = shiftKey self._metaKey = metaKey self._button = button self.relatedTarget = relatedTarget # TODO - parse from_json - so can relay @property def clientX(self): return self.x @property def clientY(self): return self.y @property def altKey(self): return self._altKey @property def ctrlKey(self): return self._ctrlKey @property def shiftKey(self): return self._shiftKey @property def metaKey(self): return self._metaKey @property def button(self): return self._button @property def buttons(self): return self._buttons @property def which(self): return self._button # MOUSE_EVENT # getModifierState() Returns an array containing target ranges that will be affected by the insertion/deletion MouseEvent # MovementX Returns the horizontal coordinate of the mouse pointer relative to the position of the last mousemove event MouseEvent # MovementY Returns the vertical coordinate of the mouse pointer relative to the position of the last mousemove event MouseEvent # offsetX Returns the horizontal coordinate of the mouse pointer relative to the position of the edge of the target element MouseEvent # offsetY Returns the vertical coordinate of the mouse pointer relative to the position of the edge of the target element MouseEvent # pageX Returns the horizontal coordinate of the mouse pointer, relative to the document, when the mouse event was triggered MouseEvent # pageY Returns the vertical coordinate of the mouse pointer, relative to the document, when the mouse event was triggered MouseEvent # region MouseEvent # relatedTarget Returns the element related to the element that triggered the mouse event MouseEvent, FocusEvent class KeyboardEvent(Event): """ keyboard events """ KEYDOWN = "keydown" #: KEYPRESS = "keypress" #: KEYUP = "keyup" #: def __init__(self, _type, *args, **kwargs): # self.args = args # self.kwargs = kwargs self._altKey = False self._ctrlKey = False self._shiftKey = False self._metaKey = False self.charCode = None self.code = None self.key = None self.keyCode = None super().__init__(_type, *args, **kwargs) def initKeyboardEvent(self, typeArg, canBubbleArg, cancelableArg, viewArg, charArg, keyArg, locationArg, modifiersListArg, repeat): self._type = typeArg self.canBubbleArg = canBubbleArg self.cancelableArg = cancelableArg self.viewArg = viewArg self.charArg = charArg self.keyArg = keyArg self.locationArg = locationArg self.modifiersListArg = modifiersListArg self.repeat = repeat @property def altKey(self): return self._altKey @property def ctrlKey(self): return self._ctrlKey @property def shiftKey(self): return self._shiftKey @property def metaKey(self): return self._metaKey @property def unicode(self): return self.key # @property # def keyCode(self): # return self.keyCode # @property # def charCode(self): # return self.charCode # @property # def code(self): # return self.code # @property # def key(self): # return self.key # def isComposing(self, *args, **kwargs): # pass # KeyboardEvent # isComposing Returns whether the state of the event is composing or not InputEvent, KeyboardEvent # repeat Returns whether a key is being hold down repeatedly, or not KeyboardEvent # location Returns the location of a key on the keyboard or device KeyboardEvent class UIEvent(Event): """ UIEvent """ def __init__(self, _type, *args, **kwargs): self.detail = None self.view = None super().__init__(_type, *args, **kwargs) class CompositionEvent(UIEvent): """ CompositionEvent """ START = "compositionstart" END = "compositionend" UPDATE = "compositionupdate" def __init__(self, _type, *args, **kwargs): self.data = None #: Returns the characters generated by the input method that raised the event self.locale = None super().__init__(_type, *args, **kwargs) class FocusEvent(Event): """ FocusEvent """ BLUR = "blur" #: FOCUS = "focus" #: FOCUSIN = "focusin" #: FOCUSOUT = "focusout" #: def __init__(self, _type, *args, **kwargs): self.relatedTarget = None super().__init__(_type, *args, **kwargs) class TouchEvent(Event): """ TouchEvent """ TOUCHCANCEL = "touchcancel" #: TOUCHEND = "touchend" #: TOUCHMOVE = "touchmove" #: TOUCHSTART = "touchstart" #: def __init__(self, _type, *args, **kwargs): self.shiftKey = None self.altKey = None self.changedTouches = None self.ctrlKey = None self.metaKey = None self.shiftKey = None self.targetTouches = None self.touches = None super().__init__(_type, *args, **kwargs) class WheelEvent(Event): """ WheelEvent """ MOUSEWHEEL = "mousewheel" # DEPRECATED - USE WHEEL #: WHEEL = "wheel" #: def __init__(self, _type, *args, **kwargs): self.deltaX = None self.deltaY = None self.deltaZ = None self.deltaMode = None super().__init__(_type, *args, **kwargs) class AnimationEvent(Event): """ AnimationEvent """ ANIMATIONEND = "animationend" #: ANIMATIONITERATION = "animationiteration" #: ANIMATIONSTART = "animationstart" #: def __init__(self, _type, *args, **kwargs): self.animationName = None """ Returns the name of the animation """ self.elapsedTime = None """ Returns the number of seconds an animation has been running """ self.pseudoElement = None """ Returns the name of the pseudo-element of the animation """ super().__init__(_type, *args, **kwargs) class ClipboardEvent(Event): """ ClipboardEvent """ COPY = "copy" #: CUT = "cut" #: PASTE = "paste" #: def __init__(self, _type, *args, **kwargs): self.clipboardData = None """ Returns an object containing the data affected by the clipboard operation """ super().__init__(_type, *args, **kwargs) class ErrorEvent(Event): """ ErrorEvent """ ERROR = "error" #: def __init__(self, _type, *args, **kwargs): self.message = None # self.filename=None # self.lineno=0 # self.colno=0 # self.error={} super().__init__(_type, *args, **kwargs) class SubmitEvent(Event): """ SubmitEvent """ SUBMIT = "submit" #: def __init__(self, _type, *args, **kwargs): super().__init__(_type, *args, **kwargs) class PointerEvent(Event): """ PointerEvent """ POINTER = "pointer" #: def __init__(self, _type, *args, **kwargs): self.pointerId = None self.width = None self.height = None self.pressure = None self.tangentialPressure = None self.tiltX = None self.tiltY = None self.twist = None self.pointerType = None self.isPrimary = None super().__init__(_type, *args, **kwargs) class BeforeUnloadEvent(Event): BEFOREUNLOAD = "beforeunload" #: """ BeforeUnloadEvent """ def __init__(self, _type, *args, **kwargs): super().__init__(_type, *args, **kwargs) class SVGEvent(Event): """ SVGEvent """ def __init__(self, _type, *args, **kwargs): super().__init__(_type, *args, **kwargs) class TimerEvent(Event): TIMER = "timer" #: """ TimerEvent """ def __init__(self, _type, *args, **kwargs): super().__init__(_type, *args, **kwargs) class DragEvent(Event): """ DragEvent """ DRAG = "drag" #: END = "dragend" #: ENTER = "dragenter" #: EXIT = "dragexit" #: LEAVE = "dragleave" #: OVER = "dragover" #: START = "dragstart" #: DROP = "drop" #: def __init__(self, _type, *args, **kwargs): self.dataTransfer = None """ Returns the data that is dragged/dropped """ super().__init__(_type, *args, **kwargs) class HashChangeEvent(Event): """ HashChangeEvent """ CHANGE = "hashchange" #: def __init__(self, _type, *args, **kwargs): self.newURL = None self.oldURL = None super().__init__(_type, *args, **kwargs) class InputEvent(Event): """ InputEvent """ def __init__(self, _type, *args, **kwargs): self.data = None """ Returns the inserted characters """ self.dataTransfer """ Returns an object containing information about the inserted/deleted data """ self.getTargetRanges """ Returns an array containing target ranges that will be affected by the insertion/deletion """ self.inputType """ Returns the type of the change (i.e "inserting" or "deleting") """ self.isComposing """ Returns whether the state of the event is composing or not """ super().__init__(_type, *args, **kwargs) class PageTransitionEvent(Event): """ PageTransitionEvent """ PAGEHIDE = "pagehide" #: PAGESHOW = "pageshow" #: def __init__(self, _type, *args, **kwargs): self.persisted = None """ Returns whether the webpage was cached by the browser """ super().__init__(_type, *args, **kwargs) class PopStateEvent(Event): """ PopStateEvent """ def __init__(self, _type, *args, **kwargs): self.state = None """ Returns an object containing a copy of the history entries """ super().__init__(_type, *args, **kwargs) class StorageEvent(Event): """ StorageEvent """ def __init__(self, _type, *args, **kwargs): self.key = None """ Returns the key of the changed storage item """ self.newValue = None """ Returns the new value of the changed storage item """ self.oldValue = None """ Returns the old value of the changed storage item """ self.storageArea = None """ Returns an object representing the affected storage object """ self.url = None """ Returns the URL of the changed item's document """ super().__init__(_type, *args, **kwargs) class TransitionEvent(Event): """ TransitionEvent """ TRANSITIONEND = "transitionend" #: def __init__(self, _type, *args, **kwargs): self.propertyName = None """ Returns the name of the transition""" self.elapsedTime = None """ Returns the number of seconds a transition has been running """ self.pseudoElement = None """ Returns the name of the pseudo-element of the transition """ super().__init__(_type, *args, **kwargs) class ProgressEvent(Event): """ ProgressEvent """ LOADSTART = "loadstart" #: def __init__(self, _type, *args, **kwargs): super().__init__(_type, *args, **kwargs) class CustomEvent(Event): """ CustomEvent """ def __init__(self, _type, *args, **kwargs): self.detail = None super().__init__(_type, *args, **kwargs) def initCustomEvent(self): pass class GamePadEvent(Event): """ GamePadEvent """ START = "gamepadconnected" #: STOP = "gamepaddisconnected" #: def __init__(self, _type, *args, **kwargs): self.gamepad = None super().__init__(_type, *args, **kwargs) class TweenEvent(Event): """ TweenEvent """ START = "onStart" #: STOP = "onStop" #: RESET = "onReset" #: PAUSE = "onPause" #: UNPAUSE = "onUnPause" #: UPDATE_START = "onUpdateStart" #: UPDATE_END = "onUpdateEnd" #: COMPLETE = "onComplete" #: TIMER = "onTimer" #: _source = None @property def source(self): return self._source @source.setter def source(self, source): self._source = source def __init__(self, _type, source=None, bubbles=False, cancelable=False): # super.__init__(self, type, bubbles, cancelable) super().__init__(_type) # TODO - self.source = source class GlobalEventHandler: # (EventDispatcher): # def __init__(self): # super().__init__(self) # self.addEventListener(KeyboardEvent.KEYDOWN, self.onkeydown) # self.addEventListener(KeyboardEvent.KEYUP, self.onkeyup) # self.addEventListener(MouseEvent.MOUSEMOVE, self.onmousemove) # self.addEventListener(MouseEvent.MOUSEDOWN, self.onmousedown) # self.addEventListener(MouseEvent.MOUSEUP, self.onmouseup) # self.addEventListener(DragEvent.DRAG, self.ondrag) # self.addEventListener(DragEvent.END, self.ondragend) # self.addEventListener(DragEvent.ENTER, self.ondragenter) # self.addEventListener(DragEvent.EXIT, self.ondragexit) # self.addEventListener(DragEvent.LEAVE, self.ondragleave) # self.addEventListener(DragEvent.OVER, self.ondragover) # self.addEventListener(DragEvent.START, self.ondragstart) # self.addEventListener(DragEvent.DROP, self.ondrop) # self.addEventListener(ClipboardEvent.CUT, self.oncut) # self.addEventListener(ClipboardEvent.COPY, self.oncopy) # self.addEventListener(ClipboardEvent.PASTE, self.onpaste) def onabort(self, event): print(event) raise NotImplementedError def onblur(self, event): print(event) raise NotImplementedError def oncancel(self, event): print(event) raise NotImplementedError def oncanplay(self, event): print(event) raise NotImplementedError def oncanplaythrough(self, event): print(event) raise NotImplementedError def onchange(self, event): print(event) raise NotImplementedError def onclick(self, event): print(event) raise NotImplementedError def onclose(self, event): print(event) raise NotImplementedError def oncontextmenu(self, event): print(event) raise NotImplementedError def oncuechange(self, event): print(event) raise NotImplementedError def ondblclick(self, event): print(event) raise NotImplementedError def ondrag(self, event): print(event) raise NotImplementedError def ondragend(self, event): print(event) raise NotImplementedError def ondragenter(self, event): print(event) raise NotImplementedError def ondragexit(self, event): print(event) raise NotImplementedError def ondragleave(self, event): print(event) raise NotImplementedError def ondragover(self, event): print(event) raise NotImplementedError def ondragstart(self, event): print(event) raise NotImplementedError def ondrop(self, event): print(event) raise NotImplementedError def ondurationchange(self, event): print(event) raise NotImplementedError def onemptied(self, event): print(event) raise NotImplementedError def onended(self, event): print(event) raise NotImplementedError def onerror(self, event): print(event) raise NotImplementedError def onfocus(self, event): print(event) raise NotImplementedError def ongotpointercapture(self, event): print(event) raise NotImplementedError def oninput(self, event): print(event) raise NotImplementedError def oninvalid(self, event): print(event) raise NotImplementedError def onkeydown(self, event): print(event) raise NotImplementedError def onkeypress(self, event): print(event) raise NotImplementedError def onkeyup(self, event): print(event) raise NotImplementedError def onload(self, event): print(event) raise NotImplementedError def onloadeddata(self, event): print(event) raise NotImplementedError def onloadedmetadata(self, event): print(event) raise NotImplementedError def onloadend(self, event): print(event) raise NotImplementedError def onloadstart(self, event): print(event) raise NotImplementedError def onlostpointercapture(self, event): print(event) raise NotImplementedError def onmouseenter(self, event): print(event) raise NotImplementedError def onmouseleave(self, event): print(event) raise NotImplementedError def onmousemove(self, event): print(event) raise NotImplementedError def onmouseout(self, event): print(event) raise NotImplementedError def onmouseover(self, event): print(event) raise NotImplementedError def onmouseup(self, event): print(event) raise NotImplementedError def onpause(self, event): print(event) raise NotImplementedError def onplay(self, event): print(event) raise NotImplementedError def onplaying(self, event): print(event) raise NotImplementedError def onpointercancel(self, event): print(event) raise NotImplementedError def onpointerdown(self, event): print(event) raise NotImplementedError def onpointerenter(self, event): print(event) raise NotImplementedError def onpointerleave(self, event): print(event) raise NotImplementedError def onpointermove(self, event): print(event) raise NotImplementedError def onpointerout(self, event): print(event) raise NotImplementedError def onpointerover(self, event): print(event) raise NotImplementedError def onpointerup(self, event): print(event) raise NotImplementedError def onprogress(self, event): print(event) raise NotImplementedError def onratechange(self, event): print(event) raise NotImplementedError def onreset(self, event): print(event) raise NotImplementedError def onresize(self, event): print(event) raise NotImplementedError def onscroll(self, event): print(event) raise NotImplementedError def onseeked(self, event): print(event) raise NotImplementedError def onseeking(self, event): print(event) raise NotImplementedError def onselect(self, event): print(event) raise NotImplementedError def onselectionchange(self, event): print(event) raise NotImplementedError def onselectstart(self, event): print(event) raise NotImplementedError def onshow(self, event): print(event) raise NotImplementedError def onstalled(self, event): print(event) raise NotImplementedError def onsubmit(self, event): print(event) raise NotImplementedError def onsuspend(self, event): print(event) raise NotImplementedError def ontimeupdate(self, event): print(event) raise NotImplementedError def onvolumechange(self, event): print(event) raise NotImplementedError def onwaiting(self, event): print(event) raise NotImplementedError def onwheel(self, event): print(event) raise NotImplementedError def onanimationcancel(self, event): print(event) raise NotImplementedError def onanimationend(self, event): print(event) raise NotImplementedError def onanimationiteration(self, event): print(event) raise NotImplementedError def onauxclick(self, event): print(event) raise NotImplementedError def onformdata(self, event): print(event) raise NotImplementedError def onmousedown(self, event): print(event) raise NotImplementedError def ontouchcancel(self, event): print(event) raise NotImplementedError def ontouchstart(self, event): print(event) raise NotImplementedError def ontransitioncancel(self, event): print(event) raise NotImplementedError def ontransitionend(self, event): print(event) raise NotImplementedError
2.6875
3
load_dataset.py
AmanPriyanshu/Mapping-Temperature-using-DBNs
0
12795095
import pandas as pd import numpy as np import torch def min_max_x(x): for index, col in enumerate(x.T): min_col = np.min(col) max_col = np.max(col) if min_col != max_col: x.T[index] = (x.T[index] - min_col)/(max_col - min_col) else: x.T[index] = x.T[index] - min_col return x def load_dataset(path='./processed_dataset/data.csv', split=0.8, shuffle=True, seed=0): np.random.seed(seed) df = pd.read_csv(path) df = df.values if shuffle: np.random.shuffle(df) train = df[:int(df.shape[0]*split)] validation = df[int(df.shape[0]*split):] train_x, train_y = train.T[:12].T, train.T[12:].T validation_x, validation_y = validation.T[:12].T, validation.T[12:].T train_x, validation_x = min_max_x(train_x), min_max_x(validation_x) train_x, train_y, validation_x, validation_y = train_x.astype(np.float32), train_y.astype(np.float32), validation_x.astype(np.float32), validation_y.astype(np.float32) train_x, train_y, validation_x, validation_y = torch.from_numpy(train_x), torch.from_numpy(train_y), torch.from_numpy(validation_x), torch.from_numpy(validation_y) return train_x, train_y, validation_x, validation_y if __name__ == '__main__': train_x, train_y, validation_x, validation_y = load_dataset() print(train_x.shape, train_y.shape, validation_x.shape, validation_y.shape)
2.59375
3
musictools/custom_exceptions.py
zfazli/zfmusicc
49
12795096
class SongNotFound(Exception): def __init__(self, message, dErrorArg): Exception.__init__(self, message, dErrorArg)
2.046875
2
tree_only.py
andrewli77/DISC
7
12795097
""" This code returns a DFA that is equivalent to the Tree constructed by compressing all the traces into one tree. """ import read_traces, DFA_utils_tree_only, time, tree_utils def solve_tree_only(g_pos, G, Sigma, T, timeout, info, be_quiet=False): assert g_pos in G, f"Error, g_pos not in G" # creating the auxiliary tree structure tree = tree_utils.create_tree(g_pos, G, Sigma, T, prune=False) nodes = tree_utils.get_reachable_nodes(tree) # creating an equivalent DFA q_0 = 0 q_pos = 1 q_neg = 2 # assigning ids to each node n_current = 3 for n in nodes: if n.is_root(): n.assign_id(q_0) elif n.is_positive_node(): n.assign_id(q_pos) elif n.is_negative_node(): n.assign_id(q_neg) else: n.assign_id(n_current) n_current += 1 # creating the dfa dfa = {} for ni in nodes: if ni.is_terminal(): continue ni_id = ni.get_id() for nj in ni.get_children(): nj_id = nj.get_id() ni_sigma = nj.get_psigma() dfa[(ni_id,ni_sigma)] = nj_id DFA_utils_tree_only.clean_dfa(q_0, dfa, T) # Adding the probabilities pos_prob = DFA_utils_tree_only.add_probabilities(q_0, dfa, T, g_pos) return q_0, dfa, pos_prob
2.734375
3
reference/read_csv.py
SeanSyue/TensorflowReferences
0
12795098
# Source: # https://www.tensorflow.org/api_guides/python/reading_data import tensorflow as tf # creates a FIFO queue for holding the filenames until the reader needs them. # The following line is equivalent to : # filename_queue = tf.train.string_input_producer(["file0.csv", "file1.csv"]) filename_queue = tf.train.string_input_producer([("file%d" % i) for i in range(2)]) reader = tf.TextLineReader() key, value = reader.read(filename_queue) # Default values, in case of empty columns. Also specifies the type of the decoded result. # Try a simpler expression: # col1, col2, col3, col4, col5 = tf.decode_csv(value, record_defaults=[[1]]*5) record_defaults = [[1], [1], [1], [1], [1]] col1, col2, col3, col4, col5 = tf.decode_csv( value, record_defaults=record_defaults) features = tf.stack([col1, col2, col3, col4]) with tf.Session() as sess: # Start populating the filename queue. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for i in range(1200): # Retrieve a single instance: example, label = sess.run([features, col5]) coord.request_stop() coord.join(threads)
3.421875
3
mlapp/managers/pipeline_manager.py
kerenleibovich/mlapp
33
12795099
<reponame>kerenleibovich/mlapp<filename>mlapp/managers/pipeline_manager.py import time import datetime as dt import importlib.util import sys import os from mlapp.config import settings from mlapp.utils.exceptions.base_exceptions import PipelineManagerException, FrameworkException from mlapp.managers.io_manager import IOManager AVAILABLE_STAGES = {} BASE_CLASS_NAME = '' TIME_FORMAT = '%Y-%m-%d %H:%M:%S' MANAGER_TYPES = { 'data_manager': 'DataManager', 'model_manager': 'ModelManager' } class PipelineManager(object): def __init__(self, run_id, pipeline_input, _input: IOManager, _output: IOManager, config, *args, **kwargs): """ :param pipeline_input: the pipeline name string or list of strings :param _input: IOmanager instance with input to the pipeline :param _output: IOmanager instance to store the outputs of the pipelines to be saved externally :param config: config string of the pipeline :param args: :param kwargs: """ for asset_name in AVAILABLE_STAGES: if asset_name != BASE_CLASS_NAME: AVAILABLE_STAGES[asset_name] = {} self.pipeline_name = '' # pipeline can be either list of stages or string of a default pipeline if isinstance(pipeline_input, list): self.stages = pipeline_input if isinstance(pipeline_input, str): self.pipeline_name = " '" + pipeline_input + "'" self.stages = settings.get('pipelines', {}).get(pipeline_input, []) self.config = config self.run_id = run_id self.input_manager = _input self.output_manager = _output self.asset_name = self.config.get('job_settings', {}).get('asset_name', '') self.data_manager_instance = self.create_manager_instance('data') self.model_manager_instance = self.create_manager_instance('model') # first inputs self.state = dict.fromkeys(self.stages, {}) def create_manager_instance(self, manager_type): """ Creates manager instance which class is defined in the asset. For example: model_manager or data_manader :param manager_type: the type : e.g. "data", "model" :return: instance of the manager """ manager_file_name = self.asset_name + '_' + manager_type + '_manager' manager_module = 'assets.' + self.asset_name + '.' + manager_file_name manager_module_path = os.path.join('assets', self.asset_name, f'{manager_file_name }.py') manager_class_name = ''.join(x.capitalize() or '_' for x in manager_file_name.split('_')) # CamelCase try: spec = importlib.util.spec_from_file_location(manager_module, manager_module_path) module = importlib.util.module_from_spec(spec) sys.modules[spec.name] = module spec.loader.exec_module(module) manager_class = getattr(module, manager_class_name) return manager_class(self.config.copy(), self.input_manager, self.output_manager, self.run_id) except Exception as e: print("Couldn't import class of " + manager_type + " manager for model: " + self.asset_name) print(">>> Please verify your " + manager_type + " manager file/directory/class names are in the following convention:") print(">>> Directory: {{asset_name}}") print(">>> File: {{asset_name}}_" + manager_type + "_manager.py") print(">>> Class: {{asset_name_capitalized}}" + manager_type.capitalize() + "Manager") print(">>> Expected Directory name: " + self.asset_name) print(">>> Expected Manager file name: " + manager_file_name) print(">>> Expected Manager class name: " + manager_class_name) raise FrameworkException(str(e)) def extract_stage(self, stage_name): """ Gets the pipeline stage dictioanry containing the function and the manager class it resides in. :param stage_name: the name of the stage (e.g. "load_data") :return: pipeline stage dictionary """ asset_name = ''.join(x.capitalize() or '_' for x in self.asset_name.split('_')) # CamelCase if asset_name not in AVAILABLE_STAGES: raise PipelineManagerException( "Missing decoration for your pipeline functions! Add '@pipeline' decorator above functions" " you want to use in your asset '{}'s Data Manager and Model Manager.".format(asset_name)) if stage_name not in AVAILABLE_STAGES[asset_name]: # exists in one if the base classes if stage_name in AVAILABLE_STAGES[BASE_CLASS_NAME]: return AVAILABLE_STAGES[BASE_CLASS_NAME][stage_name] raise PipelineManagerException( "Function '{}' was not found in your asset! Add '@pipeline' decorator above your '{}' " "function if you want to use it in your pipeline.".format(stage_name, stage_name)) return AVAILABLE_STAGES[asset_name][stage_name] def extract_manager_instance(self, manager_type): """ Gets the instance of the manager - model_manager instance or data_manager instance :param manager_type: string "data_manager" or "model_manager" :return: model_manager instance or data_manager instance """ if manager_type == 'data_manager': return self.data_manager_instance else: return self.model_manager_instance def run(self, *arguments): """ Runs through the pipeline stages and passes relevant values between them :param arguments: input for the first stage in the pipeline, will be passed with *args :return: IOmanager of all the outputs to be stored """ print(">>>>>> Running pipeline" + self.pipeline_name + "...") prev_stage_name = '' for stage_name in self.stages: start_time = time.strftime(TIME_FORMAT) print(">>>>>> Running stage: {}...".format(stage_name)) stage = self.extract_stage(stage_name) if prev_stage_name: args = self.state[prev_stage_name] else: args = arguments # execute stage self.state[stage_name] = stage['function'](self.extract_manager_instance(stage['manager']), *args) if not isinstance(self.state[stage_name], tuple): self.state[stage_name] = (self.state[stage_name],) prev_stage_name = stage_name end_time = dt.datetime.strptime( time.strftime(TIME_FORMAT), TIME_FORMAT) - dt.datetime.strptime(start_time, TIME_FORMAT) print(">>>>>> It took me, {}.".format(end_time)) print(">>>>>> Finished running pipeline.") return self.output_manager class pipeline: def __init__(self, fn): self.fn = fn def __set_name__(self, owner, name): asset_name = owner.__name__ manager_type = None for manager_type_key in MANAGER_TYPES: if MANAGER_TYPES[manager_type_key] in asset_name: manager_type = manager_type_key if manager_type is None: raise Exception("Wrong class name or placement of decorator! ('{}')".format(asset_name)) asset_name = asset_name.replace('DataManager', '').replace('ModelManager', '') if asset_name not in AVAILABLE_STAGES: AVAILABLE_STAGES[asset_name] = {} if name in AVAILABLE_STAGES[asset_name]: raise Exception("Duplicate stage name '{}' for pipelines found in asset '{}'" .format(asset_name, name)) AVAILABLE_STAGES[asset_name][name] = { 'function': self.fn, 'manager': manager_type } return self.fn
2.3125
2
ajax_datatable/templatetags/ajax_datatable_tags.py
ivi3/django-ajax-datatable
101
12795100
<gh_stars>100-1000 from django import template register = template.Library() ################################################################################ # Support for generic editing in the front-end @register.filter def model_verbose_name(model): """ Sample usage: {{model|model_name}} """ return model._meta.verbose_name @register.filter def model_verbose_name_plural(model): """ Sample usage: {{model|model_name}} """ return model._meta.verbose_name_plural @register.filter def model_name(model): """ Sample usage: {{model|model_name}} """ return model._meta.model_name @register.filter def app_label(model): """ Sample usage: {{model|app_label}} """ return model._meta.app_label @register.simple_tag(takes_context=True) def testhasperm(context, model, action): """ Returns True iif the user have the specified permission over the model. For 'model', we accept either a Model class, or a string formatted as "app_label.model_name". Sample usage: {% testhasperm model 'view' as can_view_objects %} {% if not can_view_objects %} <h2>Sorry, you have no permission to view these objects</h2> {% endif %} """ user = context['request'].user if isinstance(model, str): app_label, model_name = model.split('.') else: app_label = model._meta.app_label model_name = model._meta.model_name required_permission = '%s.%s_%s' % (app_label, action, model_name) return user.is_authenticated and user.has_perm(required_permission) @register.tag def ifhasperm(parser, token): """ Check user permission over specified model. (You can specify either a model or an object). Sample usage: {% ifhasperm model 'add' %} <div style="color: #090">User can add objects</div> {% else %} <div style="color: #900">User cannot add objects</div> {% endifhasperm %} """ # Separating the tag name from the parameters try: tag, model, action = token.contents.split() except (ValueError, TypeError): raise template.TemplateSyntaxError( "'%s' tag takes three parameters" % tag) default_states = ['ifhasperm', 'else'] end_tag = 'endifhasperm' # Place to store the states and their values states = {} # Let's iterate over our context and find our tokens while token.contents != end_tag: current = token.contents states[current.split()[0]] = parser.parse(default_states + [end_tag]) token = parser.next_token() model_var = parser.compile_filter(model) action_var = parser.compile_filter(action) return CheckPermNode(states, model_var, action_var) class CheckPermNode(template.Node): def __init__(self, states, model_var, action_var): self.states = states self.model_var = model_var self.action_var = action_var def render(self, context): # Resolving variables passed by the user model = self.model_var.resolve(context) action = self.action_var.resolve(context) # Check user permission if testhasperm(context, model, action): html = self.states['ifhasperm'].render(context) else: html = self.states['else'].render(context) if 'else' in self.states else '' return html
2.328125
2
vang/pio/replace_in_zip.py
mattiasl/scripts
6
12795101
<filename>vang/pio/replace_in_zip.py<gh_stars>1-10 #!/usr/bin/env python3 from argparse import ArgumentParser from difflib import ndiff from sys import argv from zipfile import ZipFile, ZIP_DEFLATED def diff(name, content, updated_content): diffs = list(ndiff(content.splitlines(1), updated_content.splitlines(1))) if diffs: print(f"{name}\n{''.join(diffs)}") def replace(content, replacements): updated_content = content for old, new in replacements.items(): updated_content = updated_content.replace(old, new) return updated_content def zip_read(zip_file, encoding='utf-8'): with ZipFile(zip_file, 'r') as z: for name in z.namelist(): yield (name, z.read(name).decode(encoding)) def update_zip(original_zip, updated_zip, replacements, encoding='utf-8', verbose=False): with ZipFile(updated_zip, 'w', compression=ZIP_DEFLATED) as z: for name, content in zip_read(original_zip, encoding=encoding): updated_content = replace(content, replacements) if verbose: diff(name, content, updated_content) z.writestr(name, updated_content) def main(original_zip, updated_zip, replacements, encoding='utf-8', verbose=False): # make a dict of replacements list d = dict(zip(replacements[::2], replacements[1::2])) update_zip(original_zip, updated_zip, d, encoding, verbose) def parse_args(args): parser = ArgumentParser(description='Replace in zip (e.g. zip, jar or war') parser.add_argument('original_zip', help='original zip path') parser.add_argument('updated_zip', help='updated zip path') parser.add_argument( 'replacements', nargs='+', help='A list of replacements to be done in the zip. Index 0 will be replaced with index 1 and so on.' ) parser.add_argument( '-e', '--encoding', default='utf-8', help='TFS projects, e.g organisation/project') parser.add_argument( '-v', '--verbose', action='store_true', help='Verbose output') return parser.parse_args(args) if __name__ == '__main__': """ Example: ./replace_in_zip.py original.zip updated.zip old1 new1 old2 new2 oldN newN """ main(**parse_args(argv[1:]).__dict__)
3.078125
3
graphene/dijkstra.py
sushanttripathy/graphene
0
12795102
<filename>graphene/dijkstra.py __author__ = 'Sushant' from graph import Graph import threading from prioritydict import PriorityDict class Dijkstra(Graph): def __init__(self, num_threads=0, use_priority_queue=1): super(Dijkstra, self).__init__() self.shortest_paths = {} self.shortest_paths_guide = {} self.num_threads = num_threads if num_threads: self.lock = threading.Lock() self.use_priority_queue = use_priority_queue return def get_node_with_minimum_distance(self, q, distance, indices): min_dist = float("inf") min_ind = None min_node_id = None for ind, x in enumerate(q): if distance[x] < min_dist: min_ind = ind min_node_id = x min_dist = distance[x] indices.append(min_ind) return min_node_id def calculate_shortest_paths_from(self, source_id): distance = {} previous = {} q = None if self.use_priority_queue: q = PriorityDict() else: q = [] ind = [] distance[source_id] = 0 for x in self.nodes: if x is not source_id: distance[x] = float("inf") previous[x] = None if self.use_priority_queue: q[x] = distance[x] else: q.append(x) while len(q): u = None if self.use_priority_queue: u = q.pop_smallest() else: u = self.get_node_with_minimum_distance(q, distance, ind) index = ind.pop() if type(index) is int: del q[index] else: break if isinstance(self.edges[u], dict): for v in self.edges[u]: if v in q: alt = distance[u] + self.edges[u][v].strength if alt < distance[v]: distance[v] = alt previous[v] = u if self.use_priority_queue: q[v] = distance[v] if not self.num_threads: self.shortest_paths[source_id] = distance self.shortest_paths_guide[source_id] = previous else: self.lock.acquire() self.shortest_paths[source_id] = distance self.shortest_paths_guide[source_id] = previous self.lock.release() return def calculate_all_shortest_paths(self): if not self.num_threads: for source_id in self.nodes: self.calculate_shortest_paths_from(source_id) else: th = [] for source_id in self.nodes: t = threading.Thread(target=self.calculate_shortest_paths_from, args=[source_id]) t.start() th.append(t) if len(th) >= self.num_threads: while len(th): _t = th.pop() _t.join() if len(th): while len(th): _t = th.pop() _t.join() return def get_shortest_path_length(self, source_id, target_id): if source_id in self.shortest_paths and isinstance(self.shortest_paths[source_id], dict): if target_id in self.shortest_paths[source_id]: return self.shortest_paths[source_id][target_id] return None def get_shortest_route(self, source_id, target_id, append_target=1): if source_id in self.shortest_paths_guide and isinstance(self.shortest_paths_guide[source_id], dict): if target_id in self.shortest_paths_guide[source_id]: r = [] if self.shortest_paths_guide[source_id][target_id] is not source_id: r = r + self.get_shortest_route(source_id, self.shortest_paths_guide[source_id][target_id], 0) r.append(self.shortest_paths_guide[source_id][target_id]) if append_target: r.append(target_id) return r return [] """ G = Dijkstra(10, 1) G.add_edge(1, 2, 0.1) G.add_edge(1, 3, 0.3) G.add_edge(2, 3, 0.1) G.add_edge(3, 4, 0.1) G.add_edge(2, 4, 0.5) print "Calculating all possible shortest paths" G.calculate_all_shortest_paths() print "Shortest paths calculation finished" print G.get_shortest_path_length(1, 4) print G.get_shortest_route(1, 4) """
3.125
3
i18nparse/__init__.py
nueh/i18nparse
5
12795103
<reponame>nueh/i18nparse<gh_stars>1-10 from .version import __version__ from .i18nparse import activate, deactivate
0.804688
1
Machine Learning/TensorflowExamples/simple_gradient_descent.py
sarojjethva/Learning-Resources
639
12795104
""" Author: <NAME> Github: github.com/yashbmewada Program for demonstrating simple line fitting using Tensorflow and Gradient Descent Algorithm This program trains the model to fit two values, slope(m) and x-intercept(b) in the equation of line y=mx+b. Here we would provide very small dataset of randomly generated pointset xs and ys and train the tensorflow model to adjust the values of m and b in order to fit a straight line. This straight line can further be used to predict any unknown value Y for a given unknown X based on the learned value of m and b. """ import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' # called in order to minimize the warnings about SSE4.1 instructions. import tensorflow as tf """ Random points of X and Y form the training data. aka Dataset (only training. no validation or test) """ xs = [0.00,2.00,4.00,6.00,8.00,10.00,12.00,14.00] #features ys = [-0.82,-0.90,-0.12,0.26,0.31,0.64,1.02,1.00] #labels (actual outputs) """ Initial values for m and b. These values would be adjusted to fit the above dataset point """ m_initial = -0.50 b_initial = 1.00 """ tf.Variable : allows us to create variables whose values can be adjusted in order to learn at each pass on the dataset. """ m = tf.Variable(m_initial) b = tf.Variable(b_initial) """ In order to adjust and fit the line, we try to minimize the "error" between two given values of (x,y) so that the line can be fit properly as we minimize the value of distances between our m and b i.e. predicted_y and actual y (from "ys"). """ error = 0.0 """ We write an operation for calculation of error and also iteration over the value of X and Y from the Dataset [xs,ys]. Running this over around 1000 times we would be able to minimize the error to a respecable fit for the line. """ for x,y in zip(xs,ys): predicted_y = m*x + b error += (y-predicted_y)**2 # this is the square of difference of error added to the total error 'cost' which we minimize. """ Now, in order to train over this operation set we defined above, we use tensorflow Gradient Descent Optimizer which allows us to train over this data set and we pass the "error" to the minimize() function of this optimizer as a parameter.abs here while initialization of the Gradient Descent optimizer, we define a learning_rate = 0.001. This learning rate defines the magnitude OR "how big" of a jump we want to make while minimizing the "cost" / "error".abs Remember Too Small a learning rate would make your training very slow and Too big learning rate would make the training never find an optimum solution. Best Learning Rate can be found by trying different values. Here we take 0.001 randomly as it usually works in most cases. """ optimizer_op = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(error) """ Tensorflow uses a "session" to run the above mentioned training steps. So before starting the session it is always advisable to initialize variables randomly. """ init_op = tf.global_variables_initializer() """ All the calculations would now be done in a Session """ with tf.Session() as session: session.run(init_op) _ITERATIONS = 1000 #number of passes on the dataset for iteration in range(_ITERATIONS): session.run(optimizer_op) #calling our optimization operator to minimize error slope, intercept = session.run((m,b)) #calling our adjusted values print('slope: ', slope , 'Intercept: ', intercept)
4.09375
4
blog/views/post_view.py
ShahadatShuvo/blood_lagbe
3
12795105
<gh_stars>1-10 from django.shortcuts import render def postView(request, id): return render(request, 'blog/blog.html', context={})
1.5625
2
sandbox/static/robots.txt.py
vituocgia/wshop-core
0
12795106
<filename>sandbox/static/robots.txt.py XXXXXXXXXXX X XXXXXXXXX
1.039063
1
Python/AI-ToolBox/preprocess ToolBox/convert_tool/convert_txt2excel.py
Lornatang/DayHR
7
12795107
# -*- coding: utf-8 -*- """ Created on Wed Jan 23 17:20:22 2019 convert txt to excel @author: zyb_as """ import os import argparse, textwrap import xlwt # set options parser = argparse.ArgumentParser(description = 'convert txt to excel', usage = textwrap.dedent('''\ command example: python %(prog)s --file_name='test.txt' --splitter='\\t' '''), formatter_class = argparse.RawTextHelpFormatter) parser.add_argument('--file_name', type = str, default = 'test.txt', help = 'the path of the txt file') parser.add_argument('--splitter', type = str, default = '\t', help = 'the splitter for each line in the txt file.') #parser.add_argument('--fields_num', type = int, default = 1, # help = 'the fields number each line.') parser.add_argument('--max_lines', type = int, default = 50000, help = 'max lines number in one excel') def download_from_txt(): # get options args = parser.parse_args() file_name = args.file_name splitter = args.splitter #fields_num = args.fields_num max_lines = args.max_lines if not os.path.exists(file_name): print("ERROR! the file need to be convert does't exists") excel_file = '' if file_name[-4:] == '.txt': excel_file = file_name[:-4] + '.xls' else: excel_file = file_name + '.xls' if splitter == '\\t': splitter = '\t' cnt = 0 xls_index = 0 cur_excel_file = excel_file[:-4] + '_' + str(xls_index) + '.xls' # 创建表 workbook = xlwt.Workbook(encoding = 'utf-8') worksheet = workbook.add_sheet('temp', cell_overwrite_ok = True) worksheet.write(0, 0, label = 'Row 0, Column 0 Value') for line in open(file_name, 'r').readlines(): if cnt == max_lines: workbook.save(cur_excel_file) xls_index += 1 cur_excel_file = excel_file[:-4] + '_' + str(xls_index) + '.xls' workbook = xlwt.Workbook(encoding = 'utf-8') worksheet = workbook.add_sheet('temp') cnt = 0 item = line.split(splitter) print(cnt) for idx, it in enumerate(item): worksheet.write(cnt, idx, it.decode('utf-8', 'ignore')) cnt += 1 if cnt <= max_lines: workbook.save(cur_excel_file) if __name__ == "__main__": download_from_txt()
3.484375
3
backend/schema.py
ReynaldoCC/arango-backend
0
12795108
<gh_stars>0 from abc import ABC from django.db.backends.base.schema import BaseDatabaseSchemaEditor class DatabaseSchemaEditor(BaseDatabaseSchemaEditor, ABC): pass
1.484375
1
ex17.py
Eieiphyu/python_exercises
0
12795109
<gh_stars>0 from sys import argv from os.path import exists script, from_file, to_file = argv print(f"Copy from {from_file} to {to_file}") #2 on i line how in_file = open(from_file) indata = in_file.read() print(f"Input file is {len(indata)} bytes long") print(f"Doesoutput file exist? {exists(to_file)}") print(f"Ready, hit RETURN to continute CTRL-C to abort.") out_file = open(to_file, 'w') out_file.write(indata) print("Alright all sone") out_file.close() in_file.close()
3.015625
3
src/x2df/fileIOhandlers/fileIOhandler_parquet.py
mb-89/x2df
0
12795110
<gh_stars>0 from x2df.fileIOhandlers.__fileIOhandler__ import FileIOhandler # we want to do the imports as late as possible to # keep it snappy once we have more and more fileIOhandlers class Handler(FileIOhandler): def dump(self, df, dst, **kwargs): # we import pyarrow here to make sure that is found by pyreqs. # if it is not found, we get an error and need to install it. if not dst: return import pyarrow # noqa: F401 df.to_parquet(dst) def parse(self, path, postprocess=True, **kwargs): import pyarrow # noqa: F401 import pandas as pd dfraw = pd.read_parquet(path) if postprocess: return self.processRawDF(dfraw) else: return [dfraw] def claim(self, path): import pyarrow # noqa: F401 try: pyarrow.parquet.read_schema(path) return [path] except: # noqa: E722 #this is fine. Reject any exception but never crash. return []
2.390625
2
build.py
Dachaz/scenery
9
12795111
from pybuilder.core import init, use_plugin, Author use_plugin('python.core') use_plugin('python.flake8') use_plugin('python.unittest') use_plugin('python.coverage') use_plugin('python.distutils') use_plugin("python.install_dependencies") authors = [Author('Dachaz', '<EMAIL>')] license = 'MIT' name = 'scenery' summary = 'A pattern-based scene release renamer' description = """A command-line tool that automates renaming of so-called "Scene Release" files by fetching episode names (from TVMaze) and which uses pattern-based generic building blocks (show name, season number, episode number, episode title) to format the output. """ url = 'https://github.com/dachaz/scenery' version = '1.0.1' requires_python = ">=2.7" default_task = ["install_dependencies", "analyze", "publish"] @init def initialize(project): project.build_depends_on('mockito') project.set_property('dir_source_main_python', 'src') project.set_property('dir_source_unittest_python', 'test') project.set_property('flake8_break_build', True) project.set_property('flake8_include_test_sources', True) project.set_property('flake8_include_scripts', True) # relevant tests are in Scenery_tests.py project.get_property('coverage_exceptions').append('scenery.__main__') project.get_property('coverage_exceptions').append('scenery') project.set_property('distutils_console_scripts', ['scenery = scenery:main']) project.set_property('distutils_classifiers', [ 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: End Users/Desktop', 'License :: OSI Approved :: MIT License', 'Topic :: Communications :: File Sharing', 'Topic :: Multimedia', 'Topic :: Multimedia :: Video', 'Topic :: Utilities' ])
2.125
2
pygsti/objects/matrixforwardsim.py
drewrisinger/pyGSTi
1
12795112
<filename>pygsti/objects/matrixforwardsim.py<gh_stars>1-10 """ Defines the MatrixForwardSimulator calculator class""" #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import warnings as _warnings import numpy as _np import numpy.linalg as _nla import time as _time import itertools as _itertools import collections as _collections from ..tools import mpitools as _mpit from ..tools import slicetools as _slct from ..tools.matrixtools import _fas from .profiler import DummyProfiler as _DummyProfiler from .label import Label as _Label from .matrixevaltree import MatrixEvalTree as _MatrixEvalTree from .forwardsim import ForwardSimulator _dummy_profiler = _DummyProfiler() # Smallness tolerances, used internally for conditional scaling required # to control bulk products, their gradients, and their Hessians. PSMALL = 1e-100 DSMALL = 1e-100 HSMALL = 1e-100 class MatrixForwardSimulator(ForwardSimulator): """ Encapsulates a calculation tool used by model objects to perform product and derivatives-of-product calculations. This is contained in a class separate from Model to allow for additional model classes (e.g. ones which use entirely different -- non-gate-local -- parameterizations of operation matrices and SPAM vectors) access to these fundamental operations. """ def __init__(self, dim, simplified_op_server, paramvec): """ Construct a new MatrixForwardSimulator object. Parameters ---------- dim : int The gate-dimension. All operation matrices should be dim x dim, and all SPAM vectors should be dim x 1. gates, preps, effects : OrderedDict Ordered dictionaries of LinearOperator, SPAMVec, and SPAMVec objects, respectively. Must be *ordered* dictionaries to specify a well-defined column ordering when taking derivatives. paramvec : ndarray The parameter vector of the Model. autogator : AutoGator An auto-gator object that may be used to construct virtual gates for use in computations. """ super(MatrixForwardSimulator, self).__init__( dim, simplified_op_server, paramvec) if self.evotype not in ("statevec", "densitymx"): raise ValueError(("Evolution type %s is incompatbile with " "matrix-based calculations" % self.evotype)) def copy(self): """ Return a shallow copy of this MatrixForwardSimulator """ return MatrixForwardSimulator(self.dim, self.sos, self.paramvec) def product(self, circuit, bScale=False): """ Compute the product of a specified sequence of operation labels. Note: LinearOperator matrices are multiplied in the reversed order of the tuple. That is, the first element of circuit can be thought of as the first gate operation performed, which is on the far right of the product of matrices. Parameters ---------- circuit : Circuit or tuple of operation labels The sequence of operation labels. bScale : bool, optional When True, return a scaling factor (see below). Returns ------- product : numpy array The product or scaled product of the operation matrices. scale : float Only returned when bScale == True, in which case the actual product == product * scale. The purpose of this is to allow a trace or other linear operation to be done prior to the scaling. """ if bScale: scaledGatesAndExps = {} scale_exp = 0 G = _np.identity(self.dim) for lOp in circuit: if lOp not in scaledGatesAndExps: opmx = self.sos.get_operation(lOp).todense() ng = max(_nla.norm(opmx), 1.0) scaledGatesAndExps[lOp] = (opmx / ng, _np.log(ng)) gate, ex = scaledGatesAndExps[lOp] H = _np.dot(gate, G) # product of gates, starting with identity scale_exp += ex # scale and keep track of exponent if H.max() < PSMALL and H.min() > -PSMALL: nG = max(_nla.norm(G), _np.exp(-scale_exp)) G = _np.dot(gate, G / nG); scale_exp += _np.log(nG) # LEXICOGRAPHICAL VS MATRIX ORDER else: G = H old_err = _np.seterr(over='ignore') scale = _np.exp(scale_exp) _np.seterr(**old_err) return G, scale else: G = _np.identity(self.dim) for lOp in circuit: G = _np.dot(self.sos.get_operation(lOp).todense(), G) # LEXICOGRAPHICAL VS MATRIX ORDER return G def _process_wrtFilter(self, wrtFilter, obj): """ Helper function for doperation and hoperation below: pulls out pieces of a wrtFilter argument relevant for a single object (gate or spam vec) """ #Create per-gate with-respect-to parameter filters, used to # select a subset of all the derivative columns, essentially taking # a derivative of only a *subset* of all the gate's parameters if isinstance(wrtFilter, slice): wrtFilter = _slct.indices(wrtFilter) if wrtFilter is not None: obj_wrtFilter = [] # values = object-local param indices relevant_gpindices = [] # indices into original wrtFilter'd indices gpindices = obj.gpindices_as_array() for ii, i in enumerate(wrtFilter): if i in gpindices: relevant_gpindices.append(ii) obj_wrtFilter.append(list(gpindices).index(i)) relevant_gpindices = _np.array(relevant_gpindices, _np.int64) if len(relevant_gpindices) == 1: #Don't return a length-1 list, as this doesn't index numpy arrays # like length>1 lists do... ugh. relevant_gpindices = slice(relevant_gpindices[0], relevant_gpindices[0] + 1) elif len(relevant_gpindices) == 0: #Don't return a length-0 list, as this doesn't index numpy arrays # like length>1 lists do... ugh. relevant_gpindices = slice(0, 0) # slice that results in a zero dimension else: obj_wrtFilter = None relevant_gpindices = obj.gpindices return obj_wrtFilter, relevant_gpindices #Vectorizing Identities. (Vectorization) # Note when vectorizing op uses numpy.flatten rows are kept contiguous, so the first identity below is valid. # Below we use E(i,j) to denote the elementary matrix where all entries are zero except the (i,j) entry == 1 # if vec(.) concatenates rows (which numpy.flatten does) # vec( A * E(0,1) * B ) = vec( mx w/ row_i = A[i,0] * B[row1] ) = A tensor B^T * vec( E(0,1) ) # In general: vec( A * X * B ) = A tensor B^T * vec( X ) # if vec(.) stacks columns # vec( A * E(0,1) * B ) = vec( mx w/ col_i = A[col0] * B[0,1] ) = B^T tensor A * vec( E(0,1) ) # In general: vec( A * X * B ) = B^T tensor A * vec( X ) def doperation(self, opLabel, flat=False, wrtFilter=None): """ Return the derivative of a length-1 (single-gate) sequence """ dim = self.dim gate = self.sos.get_operation(opLabel) op_wrtFilter, gpindices = self._process_wrtFilter(wrtFilter, gate) # Allocate memory for the final result num_deriv_cols = self.Np if (wrtFilter is None) else len(wrtFilter) flattened_dprod = _np.zeros((dim**2, num_deriv_cols), 'd') _fas(flattened_dprod, [None, gpindices], gate.deriv_wrt_params(op_wrtFilter)) # (dim**2, nParams[opLabel]) if _slct.length(gpindices) > 0: # works for arrays too # Compute the derivative of the entire operation sequence with respect to the # gate's parameters and fill appropriate columns of flattened_dprod. #gate = self.sos.get_operation[opLabel] UNNEEDED (I think) _fas(flattened_dprod, [None, gpindices], gate.deriv_wrt_params(op_wrtFilter)) # (dim**2, nParams in wrtFilter for opLabel) if flat: return flattened_dprod else: # axes = (gate_ij, prod_row, prod_col) return _np.swapaxes(flattened_dprod, 0, 1).reshape((num_deriv_cols, dim, dim)) def hoperation(self, opLabel, flat=False, wrtFilter1=None, wrtFilter2=None): """ Return the hessian of a length-1 (single-gate) sequence """ dim = self.dim gate = self.sos.get_operation(opLabel) op_wrtFilter1, gpindices1 = self._process_wrtFilter(wrtFilter1, gate) op_wrtFilter2, gpindices2 = self._process_wrtFilter(wrtFilter2, gate) # Allocate memory for the final result num_deriv_cols1 = self.Np if (wrtFilter1 is None) else len(wrtFilter1) num_deriv_cols2 = self.Np if (wrtFilter2 is None) else len(wrtFilter2) flattened_hprod = _np.zeros((dim**2, num_deriv_cols1, num_deriv_cols2), 'd') if _slct.length(gpindices1) > 0 and _slct.length(gpindices2) > 0: # works for arrays too # Compute the derivative of the entire operation sequence with respect to the # gate's parameters and fill appropriate columns of flattened_dprod. _fas(flattened_hprod, [None, gpindices1, gpindices2], gate.hessian_wrt_params(op_wrtFilter1, op_wrtFilter2)) if flat: return flattened_hprod else: return _np.transpose(flattened_hprod, (1, 2, 0)).reshape( (num_deriv_cols1, num_deriv_cols2, dim, dim)) # axes = (gate_ij1, gateij2, prod_row, prod_col) def dproduct(self, circuit, flat=False, wrtFilter=None): """ Compute the derivative of a specified sequence of operation labels. Parameters ---------- circuit : Circuit or tuple of operation labels The sequence of operation labels. flat : bool, optional Affects the shape of the returned derivative array (see below). wrtFilter : list of ints, optional If not None, a list of integers specifying which gate parameters to include in the derivative. Each element is an index into an array of gate parameters ordered by concatenating each gate's parameters (in the order specified by the model). This argument is used internally for distributing derivative calculations across multiple processors. Returns ------- deriv : numpy array * if flat == False, a M x G x G array, where: - M == length of the vectorized model (number of model parameters) - G == the linear dimension of a operation matrix (G x G operation matrices). and deriv[i,j,k] holds the derivative of the (j,k)-th entry of the product with respect to the i-th model parameter. * if flat == True, a N x M array, where: - N == the number of entries in a single flattened gate (ordering as numpy.flatten) - M == length of the vectorized model (number of model parameters) and deriv[i,j] holds the derivative of the i-th entry of the flattened product with respect to the j-th model parameter. """ # LEXICOGRAPHICAL VS MATRIX ORDER # we do matrix multiplication in this order (easier to think about) revOpLabelList = tuple(reversed(tuple(circuit))) N = len(revOpLabelList) # length of operation sequence # prod = G1 * G2 * .... * GN , a matrix # noqa # dprod/d(opLabel)_ij = sum_{L s.t. G(L) == oplabel} [ G1 ... G(L-1) dG(L)/dij G(L+1) ... GN ] , a matrix for each given (i,j) # noqa # vec( dprod/d(opLabel)_ij ) = sum_{L s.t. G(L) == oplabel} [ (G1 ... G(L-1)) tensor (G(L+1) ... GN)^T vec( dG(L)/dij ) ] # noqa # = [ sum_{L s.t. G(L) == oplabel} [ (G1 ... G(L-1)) tensor (G(L+1) ... GN)^T ]] * vec( dG(L)/dij) ) # noqa # if dG(L)/dij = E(i,j) # noqa # = vec(i,j)-col of [ sum_{L s.t. G(L) == oplabel} [ (G1 ... G(L-1)) tensor (G(L+1) ... GN)^T ]] # noqa # # So for each opLabel the matrix [ sum_{L s.t. GL == oplabel} [ (G1 ... G(L-1)) tensor (G(L+1) ... GN)^T ]] has # columns which correspond to the vectorized derivatives of each of the product components (i.e. prod_kl) with # respect to a given gateLabel_ij. This function returns a concatenated form of the above matrices, so that # each column corresponds to a (opLabel,i,j) tuple and each row corresponds to an element of the product (els of # prod.flatten()). # # Note: if gate G(L) is just a matrix of parameters, then dG(L)/dij = E(i,j), an elementary matrix dim = self.dim #Cache partial products (relatively little mem required) leftProds = [] G = _np.identity(dim); leftProds.append(G) for opLabel in revOpLabelList: G = _np.dot(G, self.sos.get_operation(opLabel).todense()) leftProds.append(G) rightProdsT = [] G = _np.identity(dim); rightProdsT.append(_np.transpose(G)) for opLabel in reversed(revOpLabelList): G = _np.dot(self.sos.get_operation(opLabel).todense(), G) rightProdsT.append(_np.transpose(G)) # Allocate memory for the final result num_deriv_cols = self.Np if (wrtFilter is None) else len(wrtFilter) flattened_dprod = _np.zeros((dim**2, num_deriv_cols), 'd') # For each operation label, compute the derivative of the entire operation sequence # with respect to only that gate's parameters and fill the appropriate # columns of flattened_dprod. uniqueOpLabels = sorted(list(set(revOpLabelList))) for opLabel in uniqueOpLabels: gate = self.sos.get_operation(opLabel) op_wrtFilter, gpindices = self._process_wrtFilter(wrtFilter, gate) dop_dopLabel = gate.deriv_wrt_params(op_wrtFilter) for (i, gl) in enumerate(revOpLabelList): if gl != opLabel: continue # loop over locations of opLabel LRproduct = _np.kron(leftProds[i], rightProdsT[N - 1 - i]) # (dim**2, dim**2) _fas(flattened_dprod, [None, gpindices], _np.dot(LRproduct, dop_dopLabel), add=True) # (dim**2, nParams[opLabel]) if flat: return flattened_dprod else: # axes = (gate_ij, prod_row, prod_col) return _np.swapaxes(flattened_dprod, 0, 1).reshape((num_deriv_cols, dim, dim)) def hproduct(self, circuit, flat=False, wrtFilter1=None, wrtFilter2=None): """ Compute the hessian of a specified sequence of operation labels. Parameters ---------- circuit : Circuit or tuple of operation labels The sequence of operation labels. flat : bool, optional Affects the shape of the returned derivative array (see below). wrtFilter1, wrtFilter2 : list of ints, optional If not None, a list of integers specifying which gate parameters to differentiate with respect to in the first (row) and second (col) derivative operations, respectively. Each element is an index into an array of gate parameters ordered by concatenating each gate's parameters (in the order specified by the model). This argument is used internally for distributing derivative calculations across multiple processors. Returns ------- hessian : numpy array * if flat == False, a M x M x G x G numpy array, where: - M == length of the vectorized model (number of model parameters) - G == the linear dimension of a operation matrix (G x G operation matrices). and hessian[i,j,k,l] holds the derivative of the (k,l)-th entry of the product with respect to the j-th then i-th model parameters. * if flat == True, a N x M x M numpy array, where: - N == the number of entries in a single flattened gate (ordered as numpy.flatten) - M == length of the vectorized model (number of model parameters) and hessian[i,j,k] holds the derivative of the i-th entry of the flattened product with respect to the k-th then k-th model parameters. """ # LEXICOGRAPHICAL VS MATRIX ORDER # we do matrix multiplication in this order (easier to think about) revOpLabelList = tuple(reversed(tuple(circuit))) # prod = G1 * G2 * .... * GN , a matrix # noqa # dprod/d(opLabel)_ij = sum_{L s.t. GL == oplabel} [ G1 ... G(L-1) dG(L)/dij G(L+1) ... GN ] , a matrix for each given (i,j) # noqa # d2prod/d(opLabel1)_kl*d(opLabel2)_ij = sum_{M s.t. GM == gatelabel1} sum_{L s.t. GL == gatelabel2, M < L} # noqa # [ G1 ... G(M-1) dG(M)/dkl G(M+1) ... G(L-1) dG(L)/dij G(L+1) ... GN ] + {similar with L < M} # noqa # + sum{M==L} [ G1 ... G(M-1) d2G(M)/(dkl*dij) G(M+1) ... GN ] # noqa # a matrix for each given (i,j,k,l) # noqa # vec( d2prod/d(opLabel1)_kl*d(opLabel2)_ij ) = sum{...} [ G1 ... G(M-1) dG(M)/dkl G(M+1) ... G(L-1) tensor (G(L+1) ... GN)^T vec( dG(L)/dij ) ] # noqa # = sum{...} [ unvec( G1 ... G(M-1) tensor (G(M+1) ... G(L-1))^T vec( dG(M)/dkl ) ) # noqa # tensor (G(L+1) ... GN)^T vec( dG(L)/dij ) ] # noqa # + sum{ L < M} [ G1 ... G(L-1) tensor # noqa # ( unvec( G(L+1) ... G(M-1) tensor (G(M+1) ... GN)^T vec( dG(M)/dkl ) ) )^T vec( dG(L)/dij ) ] # noqa # + sum{ L == M} [ G1 ... G(M-1) tensor (G(M+1) ... GN)^T vec( d2G(M)/dkl*dji ) # noqa # # Note: ignoring L == M terms assumes that d^2 G/(dij)^2 == 0, which is true IF each operation matrix element # is at most *linear* in each of the gate parameters. If this is not the case, need LinearOperator objects to # have a 2nd-deriv method in addition of deriv_wrt_params # # Note: unvec( X ) can be done efficiently by actually computing X^T ( note (A tensor B)^T = A^T tensor B^T ) # and using numpy's reshape dim = self.dim uniqueOpLabels = sorted(list(set(revOpLabelList))) used_operations = _collections.OrderedDict() #Cache processed parameter filters for multiple uses below gpindices1 = {}; gate_wrtFilters1 = {} gpindices2 = {}; gate_wrtFilters2 = {} for l in uniqueOpLabels: used_operations[l] = self.sos.get_operation(l) gate_wrtFilters1[l], gpindices1[l] = self._process_wrtFilter(wrtFilter1, used_operations[l]) gate_wrtFilters2[l], gpindices2[l] = self._process_wrtFilter(wrtFilter2, used_operations[l]) #Cache partial products (relatively little mem required) prods = {} ident = _np.identity(dim) for (i, opLabel1) in enumerate(revOpLabelList): # loop over "starting" gate prods[(i, i - 1)] = ident # product of no gates G = ident for (j, opLabel2) in enumerate(revOpLabelList[i:], start=i): # loop over "ending" gate (>= starting gate) G = _np.dot(G, self.sos.get_operation(opLabel2).todense()) prods[(i, j)] = G prods[(len(revOpLabelList), len(revOpLabelList) - 1)] = ident # product of no gates #Also Cache gate jacobians (still relatively little mem required) dop_dopLabel1 = { opLabel: gate.deriv_wrt_params(gate_wrtFilters1[opLabel]) for opLabel, gate in used_operations.items()} if wrtFilter1 == wrtFilter2: dop_dopLabel2 = dop_dopLabel1 else: dop_dopLabel2 = { opLabel: gate.deriv_wrt_params(gate_wrtFilters2[opLabel]) for opLabel, gate in used_operations.items()} #Finally, cache any nonzero gate hessians (memory?) hop_dopLabels = {} for opLabel, gate in used_operations.items(): if gate.has_nonzero_hessian(): hop_dopLabels[opLabel] = gate.hessian_wrt_params( gate_wrtFilters1[opLabel], gate_wrtFilters2[opLabel]) # Allocate memory for the final result num_deriv_cols1 = self.Np if (wrtFilter1 is None) else len(wrtFilter1) num_deriv_cols2 = self.Np if (wrtFilter2 is None) else len(wrtFilter2) flattened_d2prod = _np.zeros((dim**2, num_deriv_cols1, num_deriv_cols2), 'd') # For each pair of gates in the string, compute the hessian of the entire # operation sequence with respect to only those two gates' parameters and fill # add the result to the appropriate block of flattened_d2prod. #NOTE: if we needed to perform a hessian calculation (i.e. for l==m) then # it could make sense to iterate through the self.operations.keys() as in # dproduct(...) and find the labels in the string which match the current # gate (so we only need to compute this gate hessian once). But since we're # assuming that the gates are at most linear in their parameters, this # isn't currently needed. N = len(revOpLabelList) for m, opLabel1 in enumerate(revOpLabelList): inds1 = gpindices1[opLabel1] nDerivCols1 = dop_dopLabel1[opLabel1].shape[1] if nDerivCols1 == 0: continue for l, opLabel2 in enumerate(revOpLabelList): inds2 = gpindices1[opLabel2] #nDerivCols2 = dop_dopLabel2[opLabel2].shape[1] # FUTURE: we could add logic that accounts for the symmetry of the Hessian, so that # if gl1 and gl2 are both in opsToVectorize1 and opsToVectorize2 we only compute d2(prod)/d(gl1)d(gl2) # and not d2(prod)/d(gl2)d(gl1) ... if m < l: x0 = _np.kron(_np.transpose(prods[(0, m - 1)]), prods[(m + 1, l - 1)]) # (dim**2, dim**2) x = _np.dot(_np.transpose(dop_dopLabel1[opLabel1]), x0); xv = x.view() # (nDerivCols1,dim**2) xv.shape = (nDerivCols1, dim, dim) # (reshape without copying - throws error if copy is needed) y = _np.dot(_np.kron(xv, _np.transpose(prods[(l + 1, N - 1)])), dop_dopLabel2[opLabel2]) # above: (nDerivCols1,dim**2,dim**2) * (dim**2,nDerivCols2) = (nDerivCols1,dim**2,nDerivCols2) flattened_d2prod[:, inds1, inds2] += _np.swapaxes(y, 0, 1) # above: dim = (dim2, nDerivCols1, nDerivCols2); # swapaxes takes (kl,vec_prod_indx,ij) => (vec_prod_indx,kl,ij) elif l < m: x0 = _np.kron(_np.transpose(prods[(l + 1, m - 1)]), prods[(m + 1, N - 1)]) # (dim**2, dim**2) x = _np.dot(_np.transpose(dop_dopLabel1[opLabel1]), x0); xv = x.view() # (nDerivCols1,dim**2) xv.shape = (nDerivCols1, dim, dim) # (reshape without copying - throws error if copy is needed) # transposes each of the now un-vectorized dim x dim mxs corresponding to a single kl xv = _np.swapaxes(xv, 1, 2) y = _np.dot(_np.kron(prods[(0, l - 1)], xv), dop_dopLabel2[opLabel2]) # above: (nDerivCols1,dim**2,dim**2) * (dim**2,nDerivCols2) = (nDerivCols1,dim**2,nDerivCols2) flattened_d2prod[:, inds1, inds2] += _np.swapaxes(y, 0, 1) # above: dim = (dim2, nDerivCols1, nDerivCols2); # swapaxes takes (kl,vec_prod_indx,ij) => (vec_prod_indx,kl,ij) else: # l==m, which we *used* to assume gave no contribution since we assume all gate elements are at most # linear in the parameters assert(opLabel1 == opLabel2) if opLabel1 in hop_dopLabels: # indicates a non-zero hessian x0 = _np.kron(_np.transpose(prods[(0, m - 1)]), prods[(m + 1, N - 1)]) # (dim**2, dim**2) # (nDerivCols1,nDerivCols2,dim**2) x = _np.dot(_np.transpose(hop_dopLabels[opLabel1], axes=(1, 2, 0)), x0); xv = x.view() xv = _np.transpose(xv, axes=(2, 0, 1)) # (dim2, nDerivCols1, nDerivCols2) flattened_d2prod[:, inds1, inds2] += xv if flat: return flattened_d2prod # axes = (vectorized_op_el_index, model_parameter1, model_parameter2) else: vec_kl_size, vec_ij_size = flattened_d2prod.shape[1:3] # == num_deriv_cols1, num_deriv_cols2 return _np.rollaxis(flattened_d2prod, 0, 3).reshape((vec_kl_size, vec_ij_size, dim, dim)) # axes = (model_parameter1, model_parameter2, model_element_row, model_element_col) def prs(self, rholabel, elabels, circuit, clipTo, bUseScaling=False, time=None): """ Compute probabilities of a multiple "outcomes" (spam-tuples) for a single operation sequence. The spam tuples may only vary in their effect-label (their prep labels must be the same) Parameters ---------- rholabel : Label The state preparation label. elabels : list A list of :class:`Label` objects giving the *simplified* effect labels. circuit : Circuit or tuple A tuple-like object of *simplified* gates (e.g. may include instrument elements like 'Imyinst_0') clipTo : 2-tuple (min,max) to clip returned probability to if not None. Only relevant when prMxToFill is not None. bUseScaling : bool, optional Whether to use a post-scaled product internally. If False, this routine will run slightly faster, but with a chance that the product will overflow and the subsequent trace operation will yield nan as the returned probability. time : float, optional The *start* time at which `circuit` is evaluated. Returns ------- numpy.ndarray An array of floating-point probabilities, corresponding to the elements of `elabels`. """ assert(time is None), "MatrixForwardSimulator cannot be used to simulate time-dependent circuits" rho, Es = self._rhoEs_from_spamTuples(rholabel, elabels) #shapes: rho = (N,1), Es = (len(elabels),N) if bUseScaling: old_err = _np.seterr(over='ignore') G, scale = self.product(circuit, True) if self.evotype == "statevec": ps = _np.real(_np.abs(_np.dot(Es, _np.dot(G, rho)) * scale)**2) else: # evotype == "densitymx" # probability, with scaling applied (may generate overflow, but OK) ps = _np.real(_np.dot(Es, _np.dot(G, rho)) * scale) _np.seterr(**old_err) else: # no scaling -- faster but susceptible to overflow G = self.product(circuit, False) if self.evotype == "statevec": ps = _np.real(_np.abs(_np.dot(Es, _np.dot(G, rho)))**2) else: # evotype == "densitymx" ps = _np.real(_np.dot(Es, _np.dot(G, rho))) ps = ps.flatten() if _np.any(_np.isnan(ps)): if len(circuit) < 10: strToPrint = str(circuit) else: strToPrint = str(circuit[0:10]) + " ... (len %d)" % len(circuit) _warnings.warn("pr(%s) == nan" % strToPrint) #DEBUG: print "backtrace" of product leading up to nan #G = _np.identity( self.dim ); total_exp = 0.0 #for i,lOp in enumerate(gateLabelList): # G = _np.dot(G,self[lOp]) # product of gates, starting with G0 # nG = norm(G); G /= nG; total_exp += log(nG) # scale and keep track of exponent # # p = _mt.trace( _np.dot(self.SPAMs[spamLabel],G) ) * exp(total_exp) # probability # print "%d: p = %g, norm %g, exp %g\n%s" % (i,p,norm(G),total_exp,str(G)) # if _np.isnan(p): raise ValueError("STOP") if clipTo is not None: ret = _np.clip(ps, clipTo[0], clipTo[1]) else: ret = ps #DEBUG CHECK #check_ps = _np.array( [ self.pr( (rholabel,elabel), circuit, clipTo, bScale) for elabel in elabels ]) #assert(_np.linalg.norm(ps-check_ps) < 1e-8) return ret def dpr(self, spamTuple, circuit, returnPr, clipTo): """ Compute the derivative of a probability generated by a operation sequence and spam tuple as a 1 x M numpy array, where M is the number of model parameters. Parameters ---------- spamTuple : (rho_label, simplified_effect_label) Specifies the prep and POVM effect used to compute the probability. circuit : Circuit or tuple A tuple-like object of *simplified* gates (e.g. may include instrument elements like 'Imyinst_0') returnPr : bool when set to True, additionally return the probability itself. clipTo : 2-tuple (min,max) to clip returned probability to if not None. Only relevant when prMxToFill is not None. Returns ------- derivative : numpy array a 1 x M numpy array of derivatives of the probability w.r.t. each model parameter (M is the length of the vectorized model). probability : float only returned if returnPr == True. """ if self.evotype == "statevec": raise NotImplementedError("Unitary evolution not fully supported yet!") # To support unitary evolution we need to: # - alter product, dproduct, etc. to allow for *complex* derivatives, since matrices can be complex # - update probability-derivative computations: dpr/dx -> d|pr|^2/dx = d(pr*pr.C)/dx = dpr/dx*pr.C + pr*dpr/dx.C # = 2 Re(dpr/dx*pr.C) , where dpr/dx is the usual density-matrix-mode probability # (TODO in FUTURE) # pr = Tr( |rho><E| * prod ) = sum E_k prod_kl rho_l # dpr/d(opLabel)_ij = sum E_k [dprod/d(opLabel)_ij]_kl rho_l # dpr/d(rho)_i = sum E_k prod_ki # dpr/d(E)_i = sum prod_il rho_l rholabel, elabel = spamTuple # can't deal w/"custom" spam label... rho, E = self._rhoE_from_spamTuple(spamTuple) rhoVec = self.sos.get_prep(rholabel) # distinct from rho,E b/c rho,E are EVec = self.sos.get_effect(elabel) # arrays, these are SPAMVecs #Derivs wrt Gates old_err = _np.seterr(over='ignore') prod, scale = self.product(circuit, True) dprod_dOps = self.dproduct(circuit) dpr_dOps = _np.empty((1, self.Np)) for i in range(self.Np): dpr_dOps[0, i] = float(_np.dot(E, _np.dot(dprod_dOps[i], rho))) if returnPr: p = _np.dot(E, _np.dot(prod, rho)) * scale # may generate overflow, but OK if clipTo is not None: p = _np.clip(p, clipTo[0], clipTo[1]) #Derivs wrt SPAM derivWrtAnyRhovec = scale * _np.dot(E, prod) dpr_drhos = _np.zeros((1, self.Np)) _fas(dpr_drhos, [0, self.sos.get_prep(rholabel).gpindices], _np.dot(derivWrtAnyRhovec, rhoVec.deriv_wrt_params())) # may overflow, but OK dpr_dEs = _np.zeros((1, self.Np)) derivWrtAnyEvec = scale * _np.transpose(_np.dot(prod, rho)) # may overflow, but OK # (** doesn't depend on eIndex **) -- TODO: should also conjugate() here if complex? _fas(dpr_dEs, [0, EVec.gpindices], _np.dot(derivWrtAnyEvec, EVec.deriv_wrt_params())) _np.seterr(**old_err) if returnPr: return dpr_drhos + dpr_dEs + dpr_dOps, p else: return dpr_drhos + dpr_dEs + dpr_dOps def hpr(self, spamTuple, circuit, returnPr, returnDeriv, clipTo): """ Compute the Hessian of a probability generated by a operation sequence and spam tuple as a 1 x M x M array, where M is the number of model parameters. Parameters ---------- spamTuple : (rho_label, simplified_effect_label) Specifies the prep and POVM effect used to compute the probability. circuit : Circuit or tuple A tuple-like object of *simplified* gates (e.g. may include instrument elements like 'Imyinst_0') returnPr : bool when set to True, additionally return the probability itself. returnDeriv : bool when set to True, additionally return the derivative of the probability. clipTo : 2-tuple (min,max) to clip returned probability to if not None. Only relevant when prMxToFill is not None. Returns ------- hessian : numpy array a 1 x M x M array, where M is the number of model parameters. hessian[0,j,k] is the derivative of the probability w.r.t. the k-th then the j-th model parameter. derivative : numpy array only returned if returnDeriv == True. A 1 x M numpy array of derivatives of the probability w.r.t. each model parameter. probability : float only returned if returnPr == True. """ if self.evotype == "statevec": raise NotImplementedError("Unitary evolution not fully supported yet!") # pr = Tr( |rho><E| * prod ) = sum E_k prod_kl rho_l # d2pr/d(opLabel1)_mn d(opLabel2)_ij = sum E_k [dprod/d(opLabel1)_mn d(opLabel2)_ij]_kl rho_l # d2pr/d(rho)_i d(opLabel)_mn = sum E_k [dprod/d(opLabel)_mn]_ki (and same for other diff order) # d2pr/d(E)_i d(opLabel)_mn = sum [dprod/d(opLabel)_mn]_il rho_l (and same for other diff order) # d2pr/d(E)_i d(rho)_j = prod_ij (and same for other diff order) # d2pr/d(E)_i d(E)_j = 0 # d2pr/d(rho)_i d(rho)_j = 0 rholabel, elabel = spamTuple rho, E = self._rhoE_from_spamTuple(spamTuple) rhoVec = self.sos.get_prep(rholabel) # distinct from rho,E b/c rho,E are EVec = self.sos.get_effect(elabel) # arrays, these are SPAMVecs d2prod_dGates = self.hproduct(circuit) assert(d2prod_dGates.shape[0] == d2prod_dGates.shape[1]) d2pr_dOps2 = _np.empty((1, self.Np, self.Np)) for i in range(self.Np): for j in range(self.Np): d2pr_dOps2[0, i, j] = float(_np.dot(E, _np.dot(d2prod_dGates[i, j], rho))) old_err = _np.seterr(over='ignore') prod, scale = self.product(circuit, True) if returnPr: p = _np.dot(E, _np.dot(prod, rho)) * scale # may generate overflow, but OK if clipTo is not None: p = _np.clip(p, clipTo[0], clipTo[1]) dprod_dOps = self.dproduct(circuit) assert(dprod_dOps.shape[0] == self.Np) if returnDeriv: # same as in dpr(...) dpr_dOps = _np.empty((1, self.Np)) for i in range(self.Np): dpr_dOps[0, i] = float(_np.dot(E, _np.dot(dprod_dOps[i], rho))) #Derivs wrt SPAM if returnDeriv: # same as in dpr(...) dpr_drhos = _np.zeros((1, self.Np)) derivWrtAnyRhovec = scale * _np.dot(E, prod) _fas(dpr_drhos, [0, self.sos.get_prep(rholabel).gpindices], _np.dot(derivWrtAnyRhovec, rhoVec.deriv_wrt_params())) # may overflow, but OK dpr_dEs = _np.zeros((1, self.Np)) derivWrtAnyEvec = scale * _np.transpose(_np.dot(prod, rho)) # may overflow, but OK _fas(dpr_dEs, [0, EVec.gpindices], _np.dot(derivWrtAnyEvec, EVec.deriv_wrt_params())) dpr = dpr_drhos + dpr_dEs + dpr_dOps d2pr_drhos = _np.zeros((1, self.Np, self.Np)) _fas(d2pr_drhos, [0, None, self.sos.get_prep(rholabel).gpindices], _np.dot(_np.dot(E, dprod_dOps), rhoVec.deriv_wrt_params())[0]) # (= [0,:,:]) d2pr_dEs = _np.zeros((1, self.Np, self.Np)) derivWrtAnyEvec = _np.squeeze(_np.dot(dprod_dOps, rho), axis=(2,)) _fas(d2pr_dEs, [0, None, EVec.gpindices], _np.dot(derivWrtAnyEvec, EVec.deriv_wrt_params())) d2pr_dErhos = _np.zeros((1, self.Np, self.Np)) derivWrtAnyEvec = scale * _np.dot(prod, rhoVec.deriv_wrt_params()) # may generate overflow, but OK _fas(d2pr_dErhos, [0, EVec.gpindices, self.sos.get_prep(rholabel).gpindices], _np.dot(_np.transpose(EVec.deriv_wrt_params()), derivWrtAnyEvec)) #Note: these 2nd derivatives are non-zero when the spam vectors have # a more than linear dependence on their parameters. if self.sos.get_prep(rholabel).has_nonzero_hessian(): derivWrtAnyRhovec = scale * _np.dot(E, prod) # may overflow, but OK d2pr_d2rhos = _np.zeros((1, self.Np, self.Np)) _fas(d2pr_d2rhos, [0, self.sos.get_prep(rholabel).gpindices, self.sos.get_prep(rholabel).gpindices], _np.tensordot(derivWrtAnyRhovec, self.sos.get_prep(rholabel).hessian_wrt_params(), (1, 0))) # _np.einsum('ij,jkl->ikl', derivWrtAnyRhovec, self.sos.get_prep(rholabel).hessian_wrt_params()) else: d2pr_d2rhos = 0 if self.sos.get_effect(elabel).has_nonzero_hessian(): derivWrtAnyEvec = scale * _np.transpose(_np.dot(prod, rho)) # may overflow, but OK d2pr_d2Es = _np.zeros((1, self.Np, self.Np)) _fas(d2pr_d2Es, [0, self.sos.get_effect(elabel).gpindices, self.sos.get_effect(elabel).gpindices], _np.tensordot(derivWrtAnyEvec, self.sos.get_effect(elabel).hessian_wrt_params(), (1, 0))) # _np.einsum('ij,jkl->ikl',derivWrtAnyEvec,self.sos.get_effect(elabel).hessian_wrt_params()) else: d2pr_d2Es = 0 ret = d2pr_dErhos + _np.transpose(d2pr_dErhos, (0, 2, 1)) + \ d2pr_drhos + _np.transpose(d2pr_drhos, (0, 2, 1)) + \ d2pr_dEs + _np.transpose(d2pr_dEs, (0, 2, 1)) + \ d2pr_d2rhos + d2pr_d2Es + d2pr_dOps2 # Note: add transposes b/c spam terms only compute one triangle of hessian # Note: d2pr_d2rhos and d2pr_d2Es terms are always zero _np.seterr(**old_err) if returnDeriv: if returnPr: return ret, dpr, p else: return ret, dpr else: if returnPr: return ret, p else: return ret ## BEGIN CACHE FUNCTIONS def _compute_product_cache(self, evalTree, comm=None): """ Computes a tree of products in a linear cache space. Will *not* parallelize computation, even if given a split tree (since there's no good way to reconstruct the parent tree's *non-final* elements from those of the sub-trees). Note also that there would be no memory savings from using a split tree. In short, parallelization should be done at a higher level. """ dim = self.dim #Note: previously, we tried to allow for parallelization of # _compute_product_cache when the tree was split, but this is was # incorrect (and luckily never used) - so it's been removed. if comm is not None: # ignoring comm since can't do anything with it! #_warnings.warn("More processors than can be used for product computation") pass # this is a fairly common occurrence, and doesn't merit a warning # ------------------------------------------------------------------ if evalTree.is_split(): _warnings.warn("Ignoring tree splitting in product cache calc.") cacheSize = len(evalTree) prodCache = _np.zeros((cacheSize, dim, dim)) scaleCache = _np.zeros(cacheSize, 'd') #First element of cache are given by evalTree's initial single- or zero-operation labels for i, opLabel in zip(evalTree.get_init_indices(), evalTree.get_init_labels()): if opLabel == "": # special case of empty label == no gate prodCache[i] = _np.identity(dim) # Note: scaleCache[i] = 0.0 from initialization else: gate = self.sos.get_operation(opLabel).todense() nG = max(_nla.norm(gate), 1.0) prodCache[i] = gate / nG scaleCache[i] = _np.log(nG) #evaluate operation sequences using tree (skip over the zero and single-gate-strings) #cnt = 0 for i in evalTree.get_evaluation_order(): # combine iLeft + iRight => i # LEXICOGRAPHICAL VS MATRIX ORDER Note: we reverse iLeft <=> iRight from evalTree because # (iRight,iLeft,iFinal) = tup implies circuit[i] = circuit[iLeft] + circuit[iRight], but we want: # since then matrixOf(circuit[i]) = matrixOf(circuit[iLeft]) * matrixOf(circuit[iRight]) (iRight, iLeft) = evalTree[i] L, R = prodCache[iLeft], prodCache[iRight] prodCache[i] = _np.dot(L, R) scaleCache[i] = scaleCache[iLeft] + scaleCache[iRight] if prodCache[i].max() < PSMALL and prodCache[i].min() > -PSMALL: nL, nR = max(_nla.norm(L), _np.exp(-scaleCache[iLeft]), 1e-300), max(_nla.norm(R), _np.exp(-scaleCache[iRight]), 1e-300) sL, sR = L / nL, R / nR prodCache[i] = _np.dot(sL, sR); scaleCache[i] += _np.log(nL) + _np.log(nR) #print "bulk_product DEBUG: %d rescalings out of %d products" % (cnt, len(evalTree)) nanOrInfCacheIndices = (~_np.isfinite(prodCache)).nonzero()[0] # may be duplicates (a list, not a set) # since all scaled gates start with norm <= 1, products should all have norm <= 1 assert(len(nanOrInfCacheIndices) == 0) return prodCache, scaleCache def _compute_dproduct_cache(self, evalTree, prodCache, scaleCache, comm=None, wrtSlice=None, profiler=None): """ Computes a tree of product derivatives in a linear cache space. Will use derivative columns and then (and only when needed) a split tree to parallelize computation, since there are no memory savings from using a split tree. """ if profiler is None: profiler = _dummy_profiler dim = self.dim nDerivCols = self.Np if (wrtSlice is None) \ else _slct.length(wrtSlice) deriv_shape = (nDerivCols, dim, dim) cacheSize = len(evalTree) # ------------------------------------------------------------------ #print("MPI: _compute_dproduct_cache begin: %d deriv cols" % nDerivCols) if comm is not None and comm.Get_size() > 1: #print("MPI: _compute_dproduct_cache called w/comm size %d" % comm.Get_size()) # parallelize of deriv cols, then sub-trees (if available and necessary) if comm.Get_size() > nDerivCols: #If there are more processors than deriv cols, give a # warning -- note that we *cannot* make use of a tree being # split because there's no good way to reconstruct the # *non-final* parent-tree elements from those of the sub-trees. _warnings.warn("Increased speed could be obtained" " by giving dproduct cache computation" " *fewer* processors and *smaller* (sub-)tree" " (e.g. by splitting tree beforehand), as there" " are more cpus than derivative columns.") # Use comm to distribute columns allDerivColSlice = slice(0, nDerivCols) if (wrtSlice is None) else wrtSlice _, myDerivColSlice, _, mySubComm = \ _mpit.distribute_slice(allDerivColSlice, comm) #print("MPI: _compute_dproduct_cache over %d cols (%s) (rank %d computing %s)" \ # % (nDerivCols, str(allDerivColIndices), comm.Get_rank(), str(myDerivColIndices))) if mySubComm is not None and mySubComm.Get_size() > 1: _warnings.warn("Too many processors to make use of in " " _compute_dproduct_cache.") if mySubComm.Get_rank() > 0: myDerivColSlice = slice(0, 0) #don't compute anything on "extra", i.e. rank != 0, cpus my_results = self._compute_dproduct_cache( evalTree, prodCache, scaleCache, None, myDerivColSlice, profiler) # pass None as comm, *not* mySubComm, since we can't do any # further parallelization tm = _time.time() all_results = comm.allgather(my_results) profiler.add_time("MPI IPC", tm) return _np.concatenate(all_results, axis=1) # TODO: remove this concat w/better gather? # ------------------------------------------------------------------ tSerialStart = _time.time() if evalTree.is_split(): _warnings.warn("Ignoring tree splitting in dproduct cache calc.") dProdCache = _np.zeros((cacheSize,) + deriv_shape) # This iteration **must** match that in bulk_evaltree # in order to associate the right single-gate-strings w/indices wrtIndices = _slct.indices(wrtSlice) if (wrtSlice is not None) else None for i, opLabel in zip(evalTree.get_init_indices(), evalTree.get_init_labels()): if opLabel == "": # special case of empty label == no gate dProdCache[i] = _np.zeros(deriv_shape) else: #doperation = self.dproduct( (opLabel,) , wrtFilter=wrtIndices) doperation = self.doperation(opLabel, wrtFilter=wrtIndices) dProdCache[i] = doperation / _np.exp(scaleCache[i]) #profiler.print_mem("DEBUGMEM: POINT1"); profiler.comm.barrier() #evaluate operation sequences using tree (skip over the zero and single-gate-strings) for i in evalTree.get_evaluation_order(): tm = _time.time() # combine iLeft + iRight => i # LEXICOGRAPHICAL VS MATRIX ORDER Note: we reverse iLeft <=> iRight from evalTree because # (iRight,iLeft,iFinal) = tup implies circuit[i] = circuit[iLeft] + circuit[iRight], but we want: # since then matrixOf(circuit[i]) = matrixOf(circuit[iLeft]) * matrixOf(circuit[iRight]) (iRight, iLeft) = evalTree[i] L, R = prodCache[iLeft], prodCache[iRight] dL, dR = dProdCache[iLeft], dProdCache[iRight] dProdCache[i] = _np.dot(dL, R) + \ _np.swapaxes(_np.dot(L, dR), 0, 1) # dot(dS, T) + dot(S, dT) profiler.add_time("compute_dproduct_cache: dots", tm) profiler.add_count("compute_dproduct_cache: dots") scale = scaleCache[i] - (scaleCache[iLeft] + scaleCache[iRight]) if abs(scale) > 1e-8: # _np.isclose(scale,0) is SLOW! dProdCache[i] /= _np.exp(scale) if dProdCache[i].max() < DSMALL and dProdCache[i].min() > -DSMALL: _warnings.warn("Scaled dProd small in order to keep prod managable.") elif _np.count_nonzero(dProdCache[i]) and dProdCache[i].max() < DSMALL and dProdCache[i].min() > -DSMALL: _warnings.warn("Would have scaled dProd but now will not alter scaleCache.") #profiler.print_mem("DEBUGMEM: POINT2"); profiler.comm.barrier() profiler.add_time("compute_dproduct_cache: serial", tSerialStart) profiler.add_count("compute_dproduct_cache: num columns", nDerivCols) return dProdCache def _compute_hproduct_cache(self, evalTree, prodCache, dProdCache1, dProdCache2, scaleCache, comm=None, wrtSlice1=None, wrtSlice2=None): """ Computes a tree of product 2nd derivatives in a linear cache space. Will use derivative rows and columns and then (as needed) a split tree to parallelize computation, since there are no memory savings from using a split tree. """ dim = self.dim # Note: dProdCache?.shape = (#circuits,#params_to_diff_wrt,dim,dim) nDerivCols1 = dProdCache1.shape[1] nDerivCols2 = dProdCache2.shape[1] assert(wrtSlice1 is None or _slct.length(wrtSlice1) == nDerivCols1) assert(wrtSlice2 is None or _slct.length(wrtSlice2) == nDerivCols2) hessn_shape = (nDerivCols1, nDerivCols2, dim, dim) cacheSize = len(evalTree) # ------------------------------------------------------------------ if comm is not None and comm.Get_size() > 1: # parallelize of deriv cols, then sub-trees (if available and necessary) if comm.Get_size() > nDerivCols1 * nDerivCols2: #If there are more processors than deriv cells, give a # warning -- note that we *cannot* make use of a tree being # split because there's no good way to reconstruct the # *non-final* parent-tree elements from those of the sub-trees. _warnings.warn("Increased speed could be obtained" " by giving hproduct cache computation" " *fewer* processors and *smaller* (sub-)tree" " (e.g. by splitting tree beforehand), as there" " are more cpus than hessian elements.") # pragma: no cover # allocate final result memory hProdCache = _np.zeros((cacheSize,) + hessn_shape) # Use comm to distribute columns allDeriv1ColSlice = slice(0, nDerivCols1) allDeriv2ColSlice = slice(0, nDerivCols2) deriv1Slices, myDeriv1ColSlice, deriv1Owners, mySubComm = \ _mpit.distribute_slice(allDeriv1ColSlice, comm) # Get slice into entire range of model params so that # per-gate hessians can be computed properly if wrtSlice1 is not None and wrtSlice1.start is not None: myHessianSlice1 = _slct.shift(myDeriv1ColSlice, wrtSlice1.start) else: myHessianSlice1 = myDeriv1ColSlice #print("MPI: _compute_hproduct_cache over %d cols (rank %d computing %s)" \ # % (nDerivCols2, comm.Get_rank(), str(myDerivColSlice))) if mySubComm is not None and mySubComm.Get_size() > 1: deriv2Slices, myDeriv2ColSlice, deriv2Owners, mySubSubComm = \ _mpit.distribute_slice(allDeriv2ColSlice, mySubComm) # Get slice into entire range of model params (see above) if wrtSlice2 is not None and wrtSlice2.start is not None: myHessianSlice2 = _slct.shift(myDeriv2ColSlice, wrtSlice2.start) else: myHessianSlice2 = myDeriv2ColSlice if mySubSubComm is not None and mySubSubComm.Get_size() > 1: _warnings.warn("Too many processors to make use of in " " _compute_hproduct_cache.") #TODO: remove: not needed now that we track owners #if mySubSubComm.Get_rank() > 0: myDeriv2ColSlice = slice(0,0) # #don't compute anything on "extra", i.e. rank != 0, cpus hProdCache[:, myDeriv1ColSlice, myDeriv2ColSlice] = self._compute_hproduct_cache( evalTree, prodCache, dProdCache1[:, myDeriv1ColSlice], dProdCache2[:, myDeriv2ColSlice], scaleCache, None, myHessianSlice1, myHessianSlice2) # pass None as comm, *not* mySubSubComm, since we can't do any further parallelization _mpit.gather_slices(deriv2Slices, deriv2Owners, hProdCache, [None, myDeriv1ColSlice], 2, mySubComm) # , gatherMemLimit) #gather over col-distribution (Deriv2) #note: gathering axis 2 of hProdCache[:,myDeriv1ColSlice], # dim=(cacheSize,nDerivCols1,nDerivCols2,dim,dim) else: #compute "Deriv1" row-derivatives distribution only; don't use column distribution hProdCache[:, myDeriv1ColSlice] = self._compute_hproduct_cache( evalTree, prodCache, dProdCache1[:, myDeriv1ColSlice], dProdCache2, scaleCache, None, myHessianSlice1, wrtSlice2) # pass None as comm, *not* mySubComm (this is ok, see "if" condition above) _mpit.gather_slices(deriv1Slices, deriv1Owners, hProdCache, [], 1, comm) #, gatherMemLimit) #gather over row-distribution (Deriv1) #note: gathering axis 1 of hProdCache, # dim=(cacheSize,nDerivCols1,nDerivCols2,dim,dim) return hProdCache # ------------------------------------------------------------------ if evalTree.is_split(): _warnings.warn("Ignoring tree splitting in hproduct cache calc.") hProdCache = _np.zeros((cacheSize,) + hessn_shape) #First element of cache are given by evalTree's initial single- or zero-operation labels wrtIndices1 = _slct.indices(wrtSlice1) if (wrtSlice1 is not None) else None wrtIndices2 = _slct.indices(wrtSlice2) if (wrtSlice2 is not None) else None for i, opLabel in zip(evalTree.get_init_indices(), evalTree.get_init_labels()): if opLabel == "": # special case of empty label == no gate hProdCache[i] = _np.zeros(hessn_shape) elif not self.sos.get_operation(opLabel).has_nonzero_hessian(): #all gate elements are at most linear in params, so # all hessians for single- or zero-operation sequences are zero. hProdCache[i] = _np.zeros(hessn_shape) else: hoperation = self.hoperation(opLabel, wrtFilter1=wrtIndices1, wrtFilter2=wrtIndices2) hProdCache[i] = hoperation / _np.exp(scaleCache[i]) #evaluate operation sequences using tree (skip over the zero and single-gate-strings) for i in evalTree.get_evaluation_order(): # combine iLeft + iRight => i # LEXICOGRAPHICAL VS MATRIX ORDER Note: we reverse iLeft <=> iRight from evalTree because # (iRight,iLeft,iFinal) = tup implies circuit[i] = circuit[iLeft] + circuit[iRight], but we want: # since then matrixOf(circuit[i]) = matrixOf(circuit[iLeft]) * matrixOf(circuit[iRight]) (iRight, iLeft) = evalTree[i] L, R = prodCache[iLeft], prodCache[iRight] dL1, dR1 = dProdCache1[iLeft], dProdCache1[iRight] dL2, dR2 = dProdCache2[iLeft], dProdCache2[iRight] hL, hR = hProdCache[iLeft], hProdCache[iRight] # Note: L, R = GxG ; dL,dR = vgs x GxG ; hL,hR = vgs x vgs x GxG dLdRa = _np.swapaxes(_np.dot(dL1, dR2), 1, 2) dLdRb = _np.swapaxes(_np.dot(dL2, dR1), 1, 2) dLdR_sym = dLdRa + _np.swapaxes(dLdRb, 0, 1) hProdCache[i] = _np.dot(hL, R) + dLdR_sym + _np.transpose(_np.dot(L, hR), (1, 2, 0, 3)) scale = scaleCache[i] - (scaleCache[iLeft] + scaleCache[iRight]) if abs(scale) > 1e-8: # _np.isclose(scale,0) is SLOW! hProdCache[i] /= _np.exp(scale) if hProdCache[i].max() < HSMALL and hProdCache[i].min() > -HSMALL: _warnings.warn("Scaled hProd small in order to keep prod managable.") elif _np.count_nonzero(hProdCache[i]) and hProdCache[i].max() < HSMALL and hProdCache[i].min() > -HSMALL: _warnings.warn("hProd is small (oh well!).") return hProdCache ## END CACHE FUNCTIONS def default_distribute_method(self): """ Return the preferred MPI distribution mode for this calculator. """ return "deriv" def estimate_cache_size(self, nCircuits): """ Return an estimate of the ideal/desired cache size given a number of operation sequences. Returns ------- int """ return int(1.3 * nCircuits) def construct_evaltree(self, simplified_circuits, numSubtreeComms): """ Constructs an EvalTree object appropriate for this calculator. Parameters ---------- simplified_circuits : list A list of Circuits or tuples of operation labels which specify the operation sequences to create an evaluation tree out of (most likely because you want to computed their probabilites). These are a "simplified" circuits in that they should only contain "deterministic" elements (no POVM or Instrument labels). numSubtreeComms : int The number of processor groups that will be assigned to subtrees of the created tree. This aids in the tree construction by giving the tree information it needs to distribute itself among the available processors. Returns ------- MatrixEvalTree """ evTree = _MatrixEvalTree() evTree.initialize(simplified_circuits, numSubtreeComms) return evTree def estimate_mem_usage(self, subcalls, cache_size, num_subtrees, num_subtree_proc_groups, num_param1_groups, num_param2_groups, num_final_strs): """ Estimate the memory required by a given set of subcalls to computation functions. Parameters ---------- subcalls : list of strs A list of the names of the subcalls to estimate memory usage for. cache_size : int The size of the evaluation tree that will be passed to the functions named by `subcalls`. num_subtrees : int The number of subtrees to split the full evaluation tree into. num_subtree_proc_groups : int The number of processor groups used to (in parallel) iterate through the subtrees. It can often be useful to have fewer processor groups then subtrees (even == 1) in order to perform the parallelization over the parameter groups. num_param1_groups : int The number of groups to divide the first-derivative parameters into. Computation will be automatically parallelized over these groups. num_param2_groups : int The number of groups to divide the second-derivative parameters into. Computation will be automatically parallelized over these groups. num_final_strs : int The number of final strings (may be less than or greater than `cacheSize`) the tree will hold. Returns ------- int The memory estimate in bytes. """ #Note: num_final_strs is irrelevant here b/c cachesize is always >= num_final_strs # and this dictates how large all the storage arrays are. np1, np2 = num_param1_groups, num_param2_groups FLOATSIZE = 8 # in bytes: TODO: a better way dim = self.dim nspam = int(round(_np.sqrt(self.dim))) # an estimate - could compute? wrtLen1 = (self.Np + np1 - 1) // np1 # ceiling(num_params / np1) wrtLen2 = (self.Np + np2 - 1) // np2 # ceiling(num_params / np2) mem = 0 for fnName in subcalls: if fnName == "bulk_fill_probs": mem += cache_size * dim * dim # product cache mem += cache_size # scale cache (exps) mem += cache_size # scale vals elif fnName == "bulk_fill_dprobs": mem += cache_size * wrtLen1 * dim * dim # dproduct cache mem += cache_size * dim * dim # product cache mem += cache_size # scale cache mem += cache_size # scale vals elif fnName == "bulk_fill_hprobs": mem += cache_size * wrtLen1 * wrtLen2 * dim * dim # hproduct cache mem += cache_size * (wrtLen1 + wrtLen2) * dim * dim # dproduct cache mem += cache_size * dim * dim # product cache mem += cache_size # scale cache mem += cache_size # scale vals elif fnName == "bulk_hprobs_by_block": #Note: includes "results" memory since this is allocated within # the generator and yielded, *not* allocated by the user. mem += 2 * cache_size * nspam * wrtLen1 * wrtLen2 # hprobs & dprobs12 results mem += cache_size * nspam * (wrtLen1 + wrtLen2) # dprobs1 & dprobs2 mem += cache_size * wrtLen1 * wrtLen2 * dim * dim # hproduct cache mem += cache_size * (wrtLen1 + wrtLen2) * dim * dim # dproduct cache mem += cache_size * dim * dim # product cache mem += cache_size # scale cache mem += cache_size # scale vals ## It doesn't make sense to include these since their required memory is fixed ## (and dominated) by the output array size. Could throw more informative error? #elif fnName == "bulk_product": # mem += cache_size * dim * dim # product cache # mem += cache_size # scale cache # mem += cache_size # scale vals # #elif fnName == "bulk_dproduct": # mem += cache_size * num_params * dim * dim # dproduct cache # mem += cache_size * dim * dim # product cache # mem += cache_size # scale cache # mem += cache_size # scale vals # #elif fnName == "bulk_hproduct": # mem += cache_size * num_params**2 * dim * dim # hproduct cache # mem += cache_size * num_params * dim * dim # dproduct cache # mem += cache_size * dim * dim # product cache # mem += cache_size # scale cache # mem += cache_size # scale vals else: raise ValueError("Unknown subcall name: %s" % fnName) return mem * FLOATSIZE def bulk_product(self, evalTree, bScale=False, comm=None): """ Compute the products of many operation sequences at once. Parameters ---------- evalTree : EvalTree given by a prior call to bulk_evaltree. Specifies the operation sequences to compute the bulk operation on. bScale : bool, optional When True, return a scaling factor (see below). comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. This is done over operation sequences when a *split* evalTree is given, otherwise no parallelization is performed. Returns ------- prods : numpy array Array of shape S x G x G, where: - S == the number of operation sequences - G == the linear dimension of a operation matrix (G x G operation matrices). scaleValues : numpy array Only returned when bScale == True. A length-S array specifying the scaling that needs to be applied to the resulting products (final_product[i] = scaleValues[i] * prods[i]). """ prodCache, scaleCache = self._compute_product_cache(evalTree, comm) #use cached data to construct return values Gs = evalTree.final_view(prodCache, axis=0) #shape == ( len(circuit_list), dim, dim ), Gs[i] is product for i-th operation sequence scaleExps = evalTree.final_view(scaleCache) old_err = _np.seterr(over='ignore') scaleVals = _np.exp(scaleExps) # may overflow, but OK if infs occur here _np.seterr(**old_err) if bScale: return Gs, scaleVals else: old_err = _np.seterr(over='ignore') Gs = _np.swapaxes(_np.swapaxes(Gs, 0, 2) * scaleVals, 0, 2) # may overflow, but ok _np.seterr(**old_err) return Gs def bulk_dproduct(self, evalTree, flat=False, bReturnProds=False, bScale=False, comm=None, wrtFilter=None): """ Compute the derivative of a many operation sequences at once. Parameters ---------- evalTree : EvalTree given by a prior call to bulk_evaltree. Specifies the operation sequences to compute the bulk operation on. flat : bool, optional Affects the shape of the returned derivative array (see below). bReturnProds : bool, optional when set to True, additionally return the probabilities. bScale : bool, optional When True, return a scaling factor (see below). comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. Distribution is first done over the set of parameters being differentiated with respect to. If there are more processors than model parameters, distribution over a split evalTree (if given) is possible. wrtFilter : list of ints, optional If not None, a list of integers specifying which gate parameters to include in the derivative. Each element is an index into an array of gate parameters ordered by concatenating each gate's parameters (in the order specified by the model). This argument is used internally for distributing derivative calculations across multiple processors. Returns ------- derivs : numpy array * if flat == False, an array of shape S x M x G x G, where: - S == len(circuit_list) - M == the length of the vectorized model - G == the linear dimension of a operation matrix (G x G operation matrices) and derivs[i,j,k,l] holds the derivative of the (k,l)-th entry of the i-th operation sequence product with respect to the j-th model parameter. * if flat == True, an array of shape S*N x M where: - N == the number of entries in a single flattened gate (ordering same as numpy.flatten), - S,M == as above, and deriv[i,j] holds the derivative of the (i % G^2)-th entry of the (i / G^2)-th flattened operation sequence product with respect to the j-th model parameter. products : numpy array Only returned when bReturnProds == True. An array of shape S x G x G; products[i] is the i-th operation sequence product. scaleVals : numpy array Only returned when bScale == True. An array of shape S such that scaleVals[i] contains the multiplicative scaling needed for the derivatives and/or products for the i-th operation sequence. """ nCircuits = evalTree.num_final_strings() nDerivCols = self.Np if (wrtFilter is None) else _slct.length(wrtFilter) dim = self.dim wrtSlice = _slct.list_to_slice(wrtFilter) if (wrtFilter is not None) else None #TODO: just allow slices as argument: wrtFilter -> wrtSlice? prodCache, scaleCache = self._compute_product_cache(evalTree, comm) dProdCache = self._compute_dproduct_cache(evalTree, prodCache, scaleCache, comm, wrtSlice) #use cached data to construct return values old_err = _np.seterr(over='ignore') scaleExps = evalTree.final_view(scaleCache) scaleVals = _np.exp(scaleExps) # may overflow, but OK if infs occur here _np.seterr(**old_err) if bReturnProds: Gs = evalTree.final_view(prodCache, axis=0) #shape == ( len(circuit_list), dim, dim ), # Gs[i] is product for i-th operation sequence dGs = evalTree.final_view(dProdCache, axis=0) #shape == ( len(circuit_list), nDerivCols, dim, dim ), # dGs[i] is dprod_dOps for ith string if not bScale: old_err = _np.seterr(over='ignore', invalid='ignore') Gs = _np.swapaxes(_np.swapaxes(Gs, 0, 2) * scaleVals, 0, 2) # may overflow, but ok # may overflow or get nans (invalid), but ok dGs = _np.swapaxes(_np.swapaxes(dGs, 0, 3) * scaleVals, 0, 3) # convert nans to zero, as these occur b/c an inf scaleVal is mult by a zero deriv value (see below) dGs[_np.isnan(dGs)] = 0 _np.seterr(**old_err) if flat: dGs = _np.swapaxes(_np.swapaxes(dGs, 0, 1).reshape( (nDerivCols, nCircuits * dim**2)), 0, 1) # cols = deriv cols, rows = flattened everything else return (dGs, Gs, scaleVals) if bScale else (dGs, Gs) else: dGs = evalTree.final_view(dProdCache, axis=0) #shape == ( len(circuit_list), nDerivCols, dim, dim ), # dGs[i] is dprod_dOps for ith string if not bScale: old_err = _np.seterr(over='ignore', invalid='ignore') # may overflow or get nans (invalid), but ok dGs = _np.swapaxes(_np.swapaxes(dGs, 0, 3) * scaleVals, 0, 3) # convert nans to zero, as these occur b/c an inf scaleVal is mult by a zero deriv value, and we dGs[_np.isnan(dGs)] = 0 # assume the zero deriv value trumps since we've renormed to keep all the products within decent bounds #assert( len( (_np.isnan(dGs)).nonzero()[0] ) == 0 ) #assert( len( (_np.isinf(dGs)).nonzero()[0] ) == 0 ) #dGs = clip(dGs,-1e300,1e300) _np.seterr(**old_err) if flat: dGs = _np.swapaxes(_np.swapaxes(dGs, 0, 1).reshape( (nDerivCols, nCircuits * dim**2)), 0, 1) # cols = deriv cols, rows = flattened everything else return (dGs, scaleVals) if bScale else dGs def bulk_hproduct(self, evalTree, flat=False, bReturnDProdsAndProds=False, bScale=False, comm=None, wrtFilter1=None, wrtFilter2=None): """ Return the Hessian of many operation sequence products at once. Parameters ---------- evalTree : EvalTree given by a prior call to bulk_evaltree. Specifies the operation sequences to compute the bulk operation on. flat : bool, optional Affects the shape of the returned derivative array (see below). bReturnDProdsAndProds : bool, optional when set to True, additionally return the probabilities and their derivatives (see below). bScale : bool, optional When True, return a scaling factor (see below). comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. Distribution is first done over the set of parameters being differentiated with respect to when the *second* derivative is taken. If there are more processors than model parameters, distribution over a split evalTree (if given) is possible. wrtFilter1, wrtFilter2 : list of ints, optional If not None, a list of integers specifying which gate parameters to differentiate with respect to in the first (row) and second (col) derivative operations, respectively. Each element is an index into an array of gate parameters ordered by concatenating each gate's parameters (in the order specified by the model). This argument is used internally for distributing derivative calculations across multiple processors. Returns ------- hessians : numpy array * if flat == False, an array of shape S x M x M x G x G, where - S == len(circuit_list) - M == the length of the vectorized model - G == the linear dimension of a operation matrix (G x G operation matrices) and hessians[i,j,k,l,m] holds the derivative of the (l,m)-th entry of the i-th operation sequence product with respect to the k-th then j-th model parameters. * if flat == True, an array of shape S*N x M x M where - N == the number of entries in a single flattened gate (ordering as numpy.flatten), - S,M == as above, and hessians[i,j,k] holds the derivative of the (i % G^2)-th entry of the (i / G^2)-th flattened operation sequence product with respect to the k-th then j-th model parameters. derivs1, derivs2 : numpy array Only returned if bReturnDProdsAndProds == True. * if flat == False, two arrays of shape S x M x G x G, where - S == len(circuit_list) - M == the number of model params or wrtFilter1 or 2, respectively - G == the linear dimension of a operation matrix (G x G operation matrices) and derivs[i,j,k,l] holds the derivative of the (k,l)-th entry of the i-th operation sequence product with respect to the j-th model parameter. * if flat == True, an array of shape S*N x M where - N == the number of entries in a single flattened gate (ordering is the same as that used by numpy.flatten), - S,M == as above, and deriv[i,j] holds the derivative of the (i % G^2)-th entry of the (i / G^2)-th flattened operation sequence product with respect to the j-th model parameter. products : numpy array Only returned when bReturnDProdsAndProds == True. An array of shape S x G x G; products[i] is the i-th operation sequence product. scaleVals : numpy array Only returned when bScale == True. An array of shape S such that scaleVals[i] contains the multiplicative scaling needed for the hessians, derivatives, and/or products for the i-th operation sequence. """ dim = self.dim nDerivCols1 = self.Np if (wrtFilter1 is None) else _slct.length(wrtFilter1) nDerivCols2 = self.Np if (wrtFilter2 is None) else _slct.length(wrtFilter2) nCircuits = evalTree.num_final_strings() # len(circuit_list) wrtSlice1 = _slct.list_to_slice(wrtFilter1) if (wrtFilter1 is not None) else None wrtSlice2 = _slct.list_to_slice(wrtFilter2) if (wrtFilter2 is not None) else None #TODO: just allow slices as argument: wrtFilter -> wrtSlice? prodCache, scaleCache = self._compute_product_cache(evalTree, comm) dProdCache1 = self._compute_dproduct_cache(evalTree, prodCache, scaleCache, comm, wrtSlice1) dProdCache2 = dProdCache1 if (wrtSlice1 == wrtSlice2) else \ self._compute_dproduct_cache(evalTree, prodCache, scaleCache, comm, wrtSlice2) hProdCache = self._compute_hproduct_cache(evalTree, prodCache, dProdCache1, dProdCache2, scaleCache, comm, wrtSlice1, wrtSlice2) #use cached data to construct return values old_err = _np.seterr(over='ignore') scaleExps = evalTree.final_view(scaleCache) scaleVals = _np.exp(scaleExps) # may overflow, but OK if infs occur here _np.seterr(**old_err) if bReturnDProdsAndProds: Gs = evalTree.final_view(prodCache, axis=0) #shape == ( len(circuit_list), dim, dim ), # Gs[i] is product for i-th operation sequence dGs1 = evalTree.final_view(dProdCache1, axis=0) dGs2 = evalTree.final_view(dProdCache2, axis=0) #shape == ( len(circuit_list), nDerivColsX, dim, dim ), # dGs[i] is dprod_dOps for ith string hGs = evalTree.final_view(hProdCache, axis=0) #shape == ( len(circuit_list), nDerivCols1, nDerivCols2, dim, dim ), # hGs[i] is hprod_dGates for ith string if not bScale: old_err = _np.seterr(over='ignore', invalid='ignore') Gs = _np.swapaxes(_np.swapaxes(Gs, 0, 2) * scaleVals, 0, 2) # may overflow, but ok # may overflow or get nans (invalid), but ok dGs1 = _np.swapaxes(_np.swapaxes(dGs1, 0, 3) * scaleVals, 0, 3) # may overflow or get nans (invalid), but ok dGs2 = _np.swapaxes(_np.swapaxes(dGs2, 0, 3) * scaleVals, 0, 3) # may overflow or get nans (invalid), but ok hGs = _np.swapaxes(_np.swapaxes(hGs, 0, 4) * scaleVals, 0, 4) # convert nans to zero, as these occur b/c an inf scaleVal is mult by a zero deriv value (see below) dGs1[_np.isnan(dGs1)] = 0 # convert nans to zero, as these occur b/c an inf scaleVal is mult by a zero deriv value (see below) dGs2[_np.isnan(dGs2)] = 0 # convert nans to zero, as these occur b/c an inf scaleVal is mult by a zero hessian value (see below) hGs[_np.isnan(hGs)] = 0 _np.seterr(**old_err) if flat: # cols = deriv cols, rows = flattened all else dGs1 = _np.swapaxes(_np.swapaxes(dGs1, 0, 1).reshape((nDerivCols1, nCircuits * dim**2)), 0, 1) # cols = deriv cols, rows = flattened all else dGs2 = _np.swapaxes(_np.swapaxes(dGs2, 0, 1).reshape((nDerivCols2, nCircuits * dim**2)), 0, 1) hGs = _np.rollaxis(_np.rollaxis(hGs, 0, 3).reshape( (nDerivCols1, nDerivCols2, nCircuits * dim**2)), 2) # cols = deriv cols, rows = all else return (hGs, dGs1, dGs2, Gs, scaleVals) if bScale else (hGs, dGs1, dGs2, Gs) else: hGs = evalTree.final_view(hProdCache, axis=0) #shape == ( len(circuit_list), nDerivCols, nDerivCols, dim, dim ) if not bScale: old_err = _np.seterr(over='ignore', invalid='ignore') # may overflow or get nans (invalid), but ok hGs = _np.swapaxes(_np.swapaxes(hGs, 0, 4) * scaleVals, 0, 4) # convert nans to zero, as these occur b/c an inf scaleVal is mult by a zero hessian value, and we hGs[_np.isnan(hGs)] = 0 # assume the zero hessian value trumps since we've renormed to keep all the products within decent # bounds #assert( len( (_np.isnan(hGs)).nonzero()[0] ) == 0 ) #assert( len( (_np.isinf(hGs)).nonzero()[0] ) == 0 ) #hGs = clip(hGs,-1e300,1e300) _np.seterr(**old_err) if flat: hGs = _np.rollaxis(_np.rollaxis(hGs, 0, 3).reshape( (nDerivCols1, nDerivCols2, nCircuits * dim**2)), 2) # as above return (hGs, scaleVals) if bScale else hGs def _scaleExp(self, scaleExps): old_err = _np.seterr(over='ignore') scaleVals = _np.exp(scaleExps) # may overflow, but OK if infs occur here _np.seterr(**old_err) return scaleVals def _rhoE_from_spamTuple(self, spamTuple): assert(len(spamTuple) == 2) if isinstance(spamTuple[0], _Label): rholabel, elabel = spamTuple # This calculator uses the convention that rho has shape (N,1) rho = self.sos.get_prep(rholabel).todense()[:, None] E = _np.conjugate(_np.transpose(self.sos.get_effect(elabel).todense() [:, None])) # convention: E has shape (1,N) else: # a "custom" spamLabel consisting of a pair of SPAMVec (or array) # objects: (prepVec, effectVec) rho, Eraw = spamTuple E = _np.conjugate(_np.transpose(Eraw)) return rho, E def _rhoEs_from_spamTuples(self, rholabel, elabels): #Note: no support for "custom" spamlabels... # This calculator uses the convention that rho has shape (N,1) rho = self.sos.get_prep(rholabel).todense()[:, None] Es = [self.sos.get_effect(elabel).todense()[:, None] for elabel in elabels] Es = _np.conjugate(_np.transpose(_np.concatenate(Es, axis=1))) # convention: Es has shape (len(elabels),N) return rho, Es def _probs_from_rhoE(self, rho, E, Gs, scaleVals): if self.evotype == "statevec": raise NotImplementedError("Unitary evolution not fully supported yet!") #Compute probability and save in return array # want vp[iFinal] = float(dot(E, dot(G, rho))) # vp[i] = sum_k,l E[0,k] Gs[i,k,l] rho[l,0] * scaleVals[i] # vp[i] = sum_k E[0,k] dot(Gs, rho)[i,k,0] * scaleVals[i] # vp[i] = dot( E, dot(Gs, rho))[0,i,0] * scaleVals[i] # vp = squeeze( dot( E, dot(Gs, rho)), axis=(0,2) ) * scaleVals return _np.squeeze(_np.dot(E, _np.dot(Gs, rho)), axis=(0, 2)) * scaleVals # shape == (len(circuit_list),) ; may overflow but OK def _dprobs_from_rhoE(self, spamTuple, rho, E, Gs, dGs, scaleVals, wrtSlice=None): if self.evotype == "statevec": raise NotImplementedError("Unitary evolution not fully supported yet!") rholabel, elabel = spamTuple rhoVec = self.sos.get_prep(rholabel) # distinct from rho,E b/c rho,E are EVec = self.sos.get_effect(elabel) # arrays, these are SPAMVecs nCircuits = Gs.shape[0] rho_wrtFilter, rho_gpindices = self._process_wrtFilter(wrtSlice, self.sos.get_prep(rholabel)) E_wrtFilter, E_gpindices = self._process_wrtFilter(wrtSlice, self.sos.get_effect(elabel)) nDerivCols = self.Np if wrtSlice is None else _slct.length(wrtSlice) # GATE DERIVS (assume dGs is already sized/filtered) ------------------- assert(dGs.shape[1] == nDerivCols), "dGs must be pre-filtered!" #Compute d(probability)/dOps and save in return list (now have G,dG => product, dprod_dOps) # prod, dprod_dOps = G,dG # dp_dOps[i,j] = sum_k,l E[0,k] dGs[i,j,k,l] rho[l,0] # dp_dOps[i,j] = sum_k E[0,k] dot( dGs, rho )[i,j,k,0] # dp_dOps[i,j] = dot( E, dot( dGs, rho ) )[0,i,j,0] # dp_dOps = squeeze( dot( E, dot( dGs, rho ) ), axis=(0,3)) old_err2 = _np.seterr(invalid='ignore', over='ignore') dp_dOps = _np.squeeze(_np.dot(E, _np.dot(dGs, rho)), axis=(0, 3)) * scaleVals[:, None] _np.seterr(**old_err2) # may overflow, but OK ; shape == (len(circuit_list), nDerivCols) # may also give invalid value due to scaleVals being inf and dot-prod being 0. In # this case set to zero since we can't tell whether it's + or - inf anyway... dp_dOps[_np.isnan(dp_dOps)] = 0 #SPAM ------------- # Get: dp_drhos[i, rho_gpindices] = dot(E,Gs[i],drho/drhoP) # dp_drhos[i,J0+J] = sum_kl E[0,k] Gs[i,k,l] drhoP[l,J] # dp_drhos[i,J0+J] = dot(E, Gs, drhoP)[0,i,J] # dp_drhos[:,J0+J] = squeeze(dot(E, Gs, drhoP),axis=(0,))[:,J] dp_drhos = _np.zeros((nCircuits, nDerivCols)) _fas(dp_drhos, [None, rho_gpindices], _np.squeeze(_np.dot(_np.dot(E, Gs), rhoVec.deriv_wrt_params(rho_wrtFilter)), axis=(0,)) * scaleVals[:, None]) # may overflow, but OK # Get: dp_dEs[i, E_gpindices] = dot(transpose(dE/dEP),Gs[i],rho)) # dp_dEs[i,J0+J] = sum_lj dEPT[J,j] Gs[i,j,l] rho[l,0] # dp_dEs[i,J0+J] = sum_j dEP[j,J] dot(Gs, rho)[i,j] # dp_dEs[i,J0+J] = sum_j dot(Gs, rho)[i,j,0] dEP[j,J] # dp_dEs[i,J0+J] = dot(squeeze(dot(Gs, rho),2), dEP)[i,J] # dp_dEs[:,J0+J] = dot(squeeze(dot(Gs, rho),axis=(2,)), dEP)[:,J] dp_dEs = _np.zeros((nCircuits, nDerivCols)) # may overflow, but OK (deriv w.r.t any of self.effects - independent of which) dp_dAnyE = _np.squeeze(_np.dot(Gs, rho), axis=(2,)) * scaleVals[:, None] _fas(dp_dEs, [None, E_gpindices], _np.dot(dp_dAnyE, EVec.deriv_wrt_params(E_wrtFilter))) sub_vdp = dp_drhos + dp_dEs + dp_dOps return sub_vdp #def _get_filter_info(self, wrtSlices): # """ # Returns a "filter" object containing info about the mapping # of prep and effect parameters onto a final "filtered" set. # """ # PrepEffectFilter = _collections.namedtuple( # 'PrepEffectFilter', 'rho_local_slices rho_global_slices ' + # 'e_local_slices e_global_slices num_rho_params num_e_params') # # if wrtSlices is not None: # loc_rho_slices = [ # _slct.shift(_slct.intersect( # wrtSlices['preps'], # slice(self.rho_offset[i],self.rho_offset[i+1])), # -self.rho_offset[i]) for i in range(len(self.preps))] # tmp_num_params = [_slct.length(s) for s in loc_rho_slices] # tmp_offsets = [ sum(tmp_num_params[0:i]) for i in range(len(self.preps)+1) ] # global_rho_slices = [ slice(tmp_offsets[i],tmp_offsets[i+1]) # for i in range(len(self.preps)) ] # # loc_e_slices = [ # _slct.shift(_slct.intersect( # wrtSlices['effects'], # slice(self.e_offset[i],self.e_offset[i+1])), # -self.e_offset[i]) for i in range(len(self.effects))] # tmp_num_params = [_slct.length(s) for s in loc_e_slices] # tmp_offsets = [ sum(tmp_num_params[0:i]) for i in range(len(self.effects)+1) ] # global_e_slices = [ slice(tmp_offsets[i],tmp_offsets[i+1]) # for i in range(len(self.effects)) ] # # return PrepEffectFilter(rho_local_slices=loc_rho_slices, # rho_global_slices=global_rho_slices, # e_local_slices=loc_e_slices, # e_global_slices=global_e_slices, # num_rho_params=_slct.length(wrtSlices['preps']), # num_e_params=_slct.length(wrtSlices['effects'])) # else: # loc_rho_slices = [slice(None,None)]*len(self.preps) # loc_e_slices = [slice(None,None)]*len(self.effects) # global_rho_slices = [slice(self.rho_offset[i],self.rho_offset[i+1]) for i in range(len(self.preps)) ] # global_e_slices = [slice(self.e_offset[i],self.e_offset[i+1]) for i in range(len(self.effects)) ] # return PrepEffectFilter(rho_local_slices=loc_rho_slices, # rho_global_slices=global_rho_slices, # e_local_slices=loc_e_slices, # e_global_slices=global_e_slices, # num_rho_params=self.tot_rho_params, # num_e_params=self.tot_e_params) def _hprobs_from_rhoE(self, spamTuple, rho, E, Gs, dGs1, dGs2, hGs, scaleVals, wrtSlice1=None, wrtSlice2=None): if self.evotype == "statevec": raise NotImplementedError("Unitary evolution not fully supported yet!") rholabel, elabel = spamTuple rhoVec = self.sos.get_prep(rholabel) # distinct from rho,E b/c rho,E are EVec = self.sos.get_effect(elabel) # arrays, these are SPAMVecs nCircuits = Gs.shape[0] rho_wrtFilter1, rho_gpindices1 = self._process_wrtFilter(wrtSlice1, self.sos.get_prep(rholabel)) rho_wrtFilter2, rho_gpindices2 = self._process_wrtFilter(wrtSlice2, self.sos.get_prep(rholabel)) E_wrtFilter1, E_gpindices1 = self._process_wrtFilter(wrtSlice1, self.sos.get_effect(elabel)) E_wrtFilter2, E_gpindices2 = self._process_wrtFilter(wrtSlice2, self.sos.get_effect(elabel)) nDerivCols1 = self.Np if wrtSlice1 is None else _slct.length(wrtSlice1) nDerivCols2 = self.Np if wrtSlice2 is None else _slct.length(wrtSlice2) #flt1 = self._get_filter_info(wrtSlices1) #flt2 = self._get_filter_info(wrtSlices2) # GATE DERIVS (assume hGs is already sized/filtered) ------------------- assert(hGs.shape[1] == nDerivCols1), "hGs must be pre-filtered!" assert(hGs.shape[2] == nDerivCols2), "hGs must be pre-filtered!" #Compute d2(probability)/dGates2 and save in return list # d2pr_dOps2[i,j,k] = sum_l,m E[0,l] hGs[i,j,k,l,m] rho[m,0] # d2pr_dOps2[i,j,k] = sum_l E[0,l] dot( dGs, rho )[i,j,k,l,0] # d2pr_dOps2[i,j,k] = dot( E, dot( dGs, rho ) )[0,i,j,k,0] # d2pr_dOps2 = squeeze( dot( E, dot( dGs, rho ) ), axis=(0,4)) old_err2 = _np.seterr(invalid='ignore', over='ignore') d2pr_dOps2 = _np.squeeze(_np.dot(E, _np.dot(hGs, rho)), axis=(0, 4)) * scaleVals[:, None, None] _np.seterr(**old_err2) # may overflow, but OK ; shape == (len(circuit_list), nDerivCols, nDerivCols) # may also give invalid value due to scaleVals being inf and dot-prod being 0. In # this case set to zero since we can't tell whether it's + or - inf anyway... d2pr_dOps2[_np.isnan(d2pr_dOps2)] = 0 # SPAM DERIVS (assume dGs1 and dGs2 are already sized/filtered) -------- assert(dGs1.shape[1] == nDerivCols1), "dGs1 must be pre-filtered!" assert(dGs2.shape[1] == nDerivCols2), "dGs1 must be pre-filtered!" # Get: d2pr_drhos[i, j, rho_gpindices] = dot(E,dGs[i,j],drho/drhoP)) # d2pr_drhos[i,j,J0+J] = sum_kl E[0,k] dGs[i,j,k,l] drhoP[l,J] # d2pr_drhos[i,j,J0+J] = dot(E, dGs, drhoP)[0,i,j,J] # d2pr_drhos[:,:,J0+J] = squeeze(dot(E, dGs, drhoP),axis=(0,))[:,:,J] drho = rhoVec.deriv_wrt_params(rho_wrtFilter2) d2pr_drhos1 = _np.zeros((nCircuits, nDerivCols1, nDerivCols2)) _fas(d2pr_drhos1, [None, None, rho_gpindices2], _np.squeeze(_np.dot(_np.dot(E, dGs1), drho), axis=(0,)) * scaleVals[:, None, None]) # overflow OK # get d2pr_drhos where gate derivatives are wrt the 2nd set of gate parameters if dGs1 is dGs2 and wrtSlice1 == wrtSlice2: # TODO: better check for equivalence: maybe let dGs2 be None? assert(nDerivCols1 == nDerivCols2) d2pr_drhos2 = _np.transpose(d2pr_drhos1, (0, 2, 1)) else: drho = rhoVec.deriv_wrt_params(rho_wrtFilter1) d2pr_drhos2 = _np.zeros((nCircuits, nDerivCols2, nDerivCols1)) _fas(d2pr_drhos2, [None, None, rho_gpindices1], _np.squeeze(_np.dot(_np.dot(E, dGs2), drho), axis=(0,)) * scaleVals[:, None, None]) # overflow OK d2pr_drhos2 = _np.transpose(d2pr_drhos2, (0, 2, 1)) # Get: d2pr_dEs[i, j, E_gpindices] = dot(transpose(dE/dEP),dGs[i,j],rho) # d2pr_dEs[i,j,J0+J] = sum_kl dEPT[J,k] dGs[i,j,k,l] rho[l,0] # d2pr_dEs[i,j,J0+J] = sum_k dEP[k,J] dot(dGs, rho)[i,j,k,0] # d2pr_dEs[i,j,J0+J] = dot( squeeze(dot(dGs, rho),axis=(3,)), dEP)[i,j,J] # d2pr_dEs[:,:,J0+J] = dot( squeeze(dot(dGs, rho),axis=(3,)), dEP)[:,:,J] d2pr_dEs1 = _np.zeros((nCircuits, nDerivCols1, nDerivCols2)) dp_dAnyE = _np.squeeze(_np.dot(dGs1, rho), axis=(3,)) * scaleVals[:, None, None] # overflow OK devec = EVec.deriv_wrt_params(E_wrtFilter2) _fas(d2pr_dEs1, [None, None, E_gpindices2], _np.dot(dp_dAnyE, devec)) # get d2pr_dEs where gate derivatives are wrt the 2nd set of gate parameters if dGs1 is dGs2 and wrtSlice1 == wrtSlice2: # TODO: better check for equivalence: maybe let dGs2 be None? assert(nDerivCols1 == nDerivCols2) d2pr_dEs2 = _np.transpose(d2pr_dEs1, (0, 2, 1)) else: d2pr_dEs2 = _np.zeros((nCircuits, nDerivCols2, nDerivCols1)) dp_dAnyE = _np.squeeze(_np.dot(dGs2, rho), axis=(3,)) * scaleVals[:, None, None] # overflow OK devec = EVec.deriv_wrt_params(E_wrtFilter1) _fas(d2pr_dEs2, [None, None, E_gpindices1], _np.dot(dp_dAnyE, devec)) d2pr_dEs2 = _np.transpose(d2pr_dEs2, (0, 2, 1)) # Get: d2pr_dErhos[i, e_offset[eIndex]:e_offset[eIndex+1], e_offset[rhoIndex]:e_offset[rhoIndex+1]] = # dEP^T * prod[i,:,:] * drhoP # d2pr_dErhos[i,J0+J,K0+K] = sum jk dEPT[J,j] prod[i,j,k] drhoP[k,K] # d2pr_dErhos[i,J0+J,K0+K] = sum j dEPT[J,j] dot(prod,drhoP)[i,j,K] # d2pr_dErhos[i,J0+J,K0+K] = dot(dEPT,prod,drhoP)[J,i,K] # d2pr_dErhos[i,J0+J,K0+K] = swapaxes(dot(dEPT,prod,drhoP),0,1)[i,J,K] # d2pr_dErhos[:,J0+J,K0+K] = swapaxes(dot(dEPT,prod,drhoP),0,1)[:,J,K] d2pr_dErhos1 = _np.zeros((nCircuits, nDerivCols1, nDerivCols2)) drho = rhoVec.deriv_wrt_params(rho_wrtFilter2) dp_dAnyE = _np.dot(Gs, drho) * scaleVals[:, None, None] # overflow OK devec = EVec.deriv_wrt_params(E_wrtFilter1) _fas(d2pr_dErhos1, (None, E_gpindices1, rho_gpindices2), _np.swapaxes(_np.dot(_np.transpose(devec), dp_dAnyE), 0, 1)) # get d2pr_dEs where E derivatives are wrt the 2nd set of gate parameters if wrtSlice1 == wrtSlice2: # Note: this doesn't involve gate derivatives d2pr_dErhos2 = _np.transpose(d2pr_dErhos1, (0, 2, 1)) else: d2pr_dErhos2 = _np.zeros((nCircuits, nDerivCols2, nDerivCols1)) drho = rhoVec.deriv_wrt_params(rho_wrtFilter1) dp_dAnyE = _np.dot(Gs, drho) * scaleVals[:, None, None] # overflow OK devec = EVec.deriv_wrt_params(E_wrtFilter2) _fas(d2pr_dErhos2, [None, E_gpindices2, rho_gpindices1], _np.swapaxes(_np.dot(_np.transpose(devec), dp_dAnyE), 0, 1)) d2pr_dErhos2 = _np.transpose(d2pr_dErhos2, (0, 2, 1)) #Note: these 2nd derivatives are non-zero when the spam vectors have # a more than linear dependence on their parameters. if self.sos.get_prep(rholabel).has_nonzero_hessian(): dp_dAnyRho = _np.dot(E, Gs).squeeze(0) * scaleVals[:, None] # overflow OK d2pr_d2rhos = _np.zeros((nCircuits, nDerivCols1, nDerivCols2)) _fas(d2pr_d2rhos, [None, rho_gpindices1, rho_gpindices2], _np.tensordot(dp_dAnyRho, self.sos.get_prep(rholabel).hessian_wrt_params( rho_wrtFilter1, rho_wrtFilter2), (1, 0))) # _np.einsum('ij,jkl->ikl', dp_dAnyRho, self.sos.get_prep(rholabel).hessian_wrt_params( # rho_wrtFilter1, rho_wrtFilter2)) else: d2pr_d2rhos = 0 if self.sos.get_effect(elabel).has_nonzero_hessian(): dp_dAnyE = _np.dot(Gs, rho).squeeze(2) * scaleVals[:, None] # overflow OK d2pr_d2Es = _np.zeros((nCircuits, nDerivCols1, nDerivCols2)) _fas(d2pr_d2Es, [None, E_gpindices1, E_gpindices2], _np.tensordot(dp_dAnyE, self.sos.get_effect(elabel).hessian_wrt_params( E_wrtFilter1, E_wrtFilter2), (1, 0))) # _np.einsum('ij,jkl->ikl', dp_dAnyE, self.sos.get_effect(elabel).hessian_wrt_params( # E_wrtFilter1, E_wrtFilter2)) else: d2pr_d2Es = 0 # END SPAM DERIVS ----------------------- ret = d2pr_d2rhos + d2pr_dErhos2 + d2pr_drhos2 # wrt rho ret += d2pr_dErhos1 + d2pr_d2Es + d2pr_dEs2 # wrt E ret += d2pr_drhos1 + d2pr_dEs1 + d2pr_dOps2 # wrt gates return ret def _check(self, evalTree, prMxToFill=None, dprMxToFill=None, hprMxToFill=None, clipTo=None): # compare with older slower version that should do the same thing (for debugging) master_circuit_list = evalTree.generate_circuit_list(permute=False) # raw operation sequences for spamTuple, (fInds, gInds) in evalTree.spamtuple_indices.items(): circuit_list = master_circuit_list[gInds] if prMxToFill is not None: check_vp = _np.array([self.prs(spamTuple[0], [spamTuple[1]], circuit, clipTo, False)[0] for circuit in circuit_list]) if _nla.norm(prMxToFill[fInds] - check_vp) > 1e-6: _warnings.warn("norm(vp-check_vp) = %g - %g = %g" % (_nla.norm(prMxToFill[fInds]), _nla.norm(check_vp), _nla.norm(prMxToFill[fInds] - check_vp))) # pragma: no cover if dprMxToFill is not None: check_vdp = _np.concatenate( [self.dpr(spamTuple, circuit, False, clipTo) for circuit in circuit_list], axis=0) if _nla.norm(dprMxToFill[fInds] - check_vdp) > 1e-6: _warnings.warn("norm(vdp-check_vdp) = %g - %g = %g" % (_nla.norm(dprMxToFill[fInds]), _nla.norm(check_vdp), _nla.norm(dprMxToFill[fInds] - check_vdp))) # pragma: no cover if hprMxToFill is not None: check_vhp = _np.concatenate( [self.hpr(spamTuple, circuit, False, False, clipTo) for circuit in circuit_list], axis=0) if _nla.norm(hprMxToFill[fInds][0] - check_vhp[0]) > 1e-6: _warnings.warn("norm(vhp-check_vhp) = %g - %g = %g" % (_nla.norm(hprMxToFill[fInds]), _nla.norm(check_vhp), _nla.norm(hprMxToFill[fInds] - check_vhp))) # pragma: no cover def bulk_fill_probs(self, mxToFill, evalTree, clipTo=None, check=False, comm=None): """ Compute the outcome probabilities for an entire tree of operation sequences. This routine fills a 1D array, `mxToFill` with the probabilities corresponding to the *simplified* operation sequences found in an evaluation tree, `evalTree`. An initial list of (general) :class:`Circuit` objects is *simplified* into a lists of gate-only sequences along with a mapping of final elements (i.e. probabilities) to gate-only sequence and prep/effect pairs. The evaluation tree organizes how to efficiently compute the gate-only sequences. This routine fills in `mxToFill`, which must have length equal to the number of final elements (this can be obtained by `evalTree.num_final_elements()`. To interpret which elements correspond to which strings and outcomes, you'll need the mappings generated when the original list of `Circuits` was simplified. Parameters ---------- mxToFill : numpy ndarray an already-allocated 1D numpy array of length equal to the total number of computed elements (i.e. evalTree.num_final_elements()) evalTree : EvalTree given by a prior call to bulk_evaltree. Specifies the *simplified* gate strings to compute the bulk operation on. clipTo : 2-tuple, optional (min,max) to clip return value if not None. check : boolean, optional If True, perform extra checks within code to verify correctness, generating warnings when checks fail. Used for testing, and runs much slower when True. comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. Distribution is performed over subtrees of evalTree (if it is split). Returns ------- None """ #get distribution across subtrees (groups if needed) subtrees = evalTree.get_sub_trees() mySubTreeIndices, subTreeOwners, mySubComm = evalTree.distribute(comm) #eval on each local subtree for iSubTree in mySubTreeIndices: evalSubTree = subtrees[iSubTree] #Free memory from previous subtree iteration before computing caches scaleVals = Gs = prodCache = scaleCache = None #Fill cache info prodCache, scaleCache = self._compute_product_cache(evalSubTree, mySubComm) #use cached data to final values scaleVals = self._scaleExp(evalSubTree.final_view(scaleCache)) Gs = evalSubTree.final_view(prodCache, axis=0) # ( nCircuits, dim, dim ) def calc_and_fill(spamTuple, fInds, gInds, pslc1, pslc2, sumInto): """ Compute and fill result quantities for given arguments """ old_err = _np.seterr(over='ignore') rho, E = self._rhoE_from_spamTuple(spamTuple) _fas(mxToFill, [fInds], self._probs_from_rhoE(rho, E, Gs[gInds], scaleVals[gInds]), add=sumInto) _np.seterr(**old_err) self._fill_result_tuple((mxToFill,), evalSubTree, slice(None), slice(None), calc_and_fill) #collect/gather results subtreeElementIndices = [t.final_element_indices(evalTree) for t in subtrees] _mpit.gather_indices(subtreeElementIndices, subTreeOwners, mxToFill, [], 0, comm) #note: pass mxToFill, dim=(KS), so gather mxToFill[felslc] (axis=0) if clipTo is not None: _np.clip(mxToFill, clipTo[0], clipTo[1], out=mxToFill) # in-place clip if check: self._check(evalTree, mxToFill, clipTo=clipTo) def bulk_fill_dprobs(self, mxToFill, evalTree, prMxToFill=None, clipTo=None, check=False, comm=None, wrtFilter=None, wrtBlockSize=None, profiler=None, gatherMemLimit=None): """ Compute the outcome probability-derivatives for an entire tree of gate strings. Similar to `bulk_fill_probs(...)`, but fills a 2D array with probability-derivatives for each "final element" of `evalTree`. Parameters ---------- mxToFill : numpy ndarray an already-allocated ExM numpy array where E is the total number of computed elements (i.e. evalTree.num_final_elements()) and M is the number of model parameters. evalTree : EvalTree given by a prior call to bulk_evaltree. Specifies the *simplified* gate strings to compute the bulk operation on. prMxToFill : numpy array, optional when not None, an already-allocated length-E numpy array that is filled with probabilities, just like in bulk_fill_probs(...). clipTo : 2-tuple, optional (min,max) to clip return value if not None. check : boolean, optional If True, perform extra checks within code to verify correctness, generating warnings when checks fail. Used for testing, and runs much slower when True. comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. Distribution is first performed over subtrees of evalTree (if it is split), and then over blocks (subsets) of the parameters being differentiated with respect to (see wrtBlockSize). wrtFilter : list of ints, optional If not None, a list of integers specifying which parameters to include in the derivative dimension. This argument is used internally for distributing calculations across multiple processors and to control memory usage. Cannot be specified in conjuction with wrtBlockSize. wrtBlockSize : int or float, optional The maximum number of derivative columns to compute *products* for simultaneously. None means compute all requested columns at once. The minimum of wrtBlockSize and the size that makes maximal use of available processors is used as the final block size. This argument must be None if wrtFilter is not None. Set this to non-None to reduce amount of intermediate memory required. profiler : Profiler, optional A profiler object used for to track timing and memory usage. gatherMemLimit : int, optional A memory limit in bytes to impose upon the "gather" operations performed as a part of MPI processor syncronization. Returns ------- None """ tStart = _time.time() if profiler is None: profiler = _dummy_profiler if wrtFilter is not None: assert(wrtBlockSize is None) # Cannot specify both wrtFilter and wrtBlockSize wrtSlice = _slct.list_to_slice(wrtFilter) else: wrtSlice = None profiler.mem_check("bulk_fill_dprobs: begin (expect ~ %.2fGB)" % (mxToFill.nbytes / (1024.0**3))) ## memory profiling of python objects (never seemed very useful ## since numpy does all the major allocation/deallocation). #if comm is None or comm.Get_rank() == 0: # import objgraph # objgraph.show_growth(limit=50) #get distribution across subtrees (groups if needed) subtrees = evalTree.get_sub_trees() mySubTreeIndices, subTreeOwners, mySubComm = evalTree.distribute(comm) #if comm is not None: # print("MPI DEBUG: Rank%d subtee sizes = %s" % # (comm.Get_rank(),",".join([str(len(subtrees[i])) # for i in mySubTreeIndices]))) #eval on each local subtree #my_results = [] for iSubTree in mySubTreeIndices: evalSubTree = subtrees[iSubTree] felInds = evalSubTree.final_element_indices(evalTree) #Free memory from previous subtree iteration before computing caches scaleVals = Gs = dGs = None prodCache = scaleCache = dProdCache = None #Fill cache info (not requiring column distribution) tm = _time.time() prodCache, scaleCache = self._compute_product_cache(evalSubTree, mySubComm) profiler.add_time("bulk_fill_dprobs: compute_product_cache", tm) #use cached data to final values scaleVals = self._scaleExp(evalSubTree.final_view(scaleCache)) Gs = evalSubTree.final_view(prodCache, axis=0) #( nCircuits, dim, dim ) profiler.mem_check("bulk_fill_dprobs: post compute product") def calc_and_fill(spamTuple, fInds, gInds, pslc1, pslc2, sumInto): """ Compute and fill result quantities for given arguments """ tm = _time.time() old_err = _np.seterr(over='ignore') rho, E = self._rhoE_from_spamTuple(spamTuple) if prMxToFill is not None: _fas(prMxToFill, [fInds], self._probs_from_rhoE( rho, E, Gs[gInds], scaleVals[gInds]), add=sumInto) _fas(mxToFill, [fInds, pslc1], self._dprobs_from_rhoE( spamTuple, rho, E, Gs[gInds], dGs[gInds], scaleVals[gInds], wrtSlice), add=sumInto) _np.seterr(**old_err) profiler.add_time("bulk_fill_dprobs: calc_and_fill", tm) #Set wrtBlockSize to use available processors if it isn't specified if wrtFilter is None: blkSize = wrtBlockSize # could be None if (mySubComm is not None) and (mySubComm.Get_size() > 1): comm_blkSize = self.Np / mySubComm.Get_size() blkSize = comm_blkSize if (blkSize is None) \ else min(comm_blkSize, blkSize) # override with smaller comm_blkSize else: blkSize = None # wrtFilter dictates block if blkSize is None: #Fill derivative cache info tm = _time.time() dProdCache = self._compute_dproduct_cache(evalSubTree, prodCache, scaleCache, mySubComm, wrtSlice, profiler) dGs = evalSubTree.final_view(dProdCache, axis=0) #( nCircuits, nDerivCols, dim, dim ) profiler.add_time("bulk_fill_dprobs: compute_dproduct_cache", tm) profiler.mem_check("bulk_fill_dprobs: post compute dproduct") #Compute all requested derivative columns at once self._fill_result_tuple((prMxToFill, mxToFill), evalSubTree, slice(None), slice(None), calc_and_fill) profiler.mem_check("bulk_fill_dprobs: post fill") dProdCache = dGs = None # free mem else: # Divide columns into blocks of at most blkSize assert(wrtFilter is None) # cannot specify both wrtFilter and blkSize nBlks = int(_np.ceil(self.Np / blkSize)) # num blocks required to achieve desired average size == blkSize blocks = _mpit.slice_up_range(self.Np, nBlks, start=0) # Create placeholder dGs for *no* gate params to compute # derivatives wrt all spam parameters dGs = _np.empty((Gs.shape[0], 0, self.dim, self.dim), 'd') def calc_and_fill_p(spamTuple, fInds, gInds, pslc1, pslc2, sumInto): """ Compute and fill result quantities for given arguments """ tm = _time.time() old_err = _np.seterr(over='ignore') rho, E = self._rhoE_from_spamTuple(spamTuple) _fas(prMxToFill, [fInds], self._probs_from_rhoE(rho, E, Gs[gInds], scaleVals[gInds]), add=sumInto) _np.seterr(**old_err) profiler.add_time("bulk_fill_dprobs: calc_and_fill_p", tm) # Compute all probabilities all at once so they're not repeatedly # computed for each block of derivative columns if prMxToFill is not None: self._fill_result_tuple((prMxToFill,), evalSubTree, slice(None), slice(None), calc_and_fill_p) profiler.mem_check("bulk_fill_dprobs: post fill probs") #distribute derivative computation across blocks myBlkIndices, blkOwners, blkComm = \ _mpit.distribute_indices(list(range(nBlks)), mySubComm) if blkComm is not None: _warnings.warn("Note: more CPUs(%d)" % mySubComm.Get_size() + " than derivative columns(%d)!" % self.Np + " [blkSize = %.1f, nBlks=%d]" % (blkSize, nBlks)) # pragma: no cover def calc_and_fill_blk(spamTuple, fInds, gInds, pslc1, pslc2, sumInto): """ Compute and fill result quantities blocks for given arguments """ tm = _time.time() old_err = _np.seterr(over='ignore') rho, E = self._rhoE_from_spamTuple(spamTuple) block_wrtSlice = pslc1 _fas(mxToFill, [fInds, pslc1], self._dprobs_from_rhoE( spamTuple, rho, E, Gs[gInds], dGs[gInds], scaleVals[gInds], block_wrtSlice), add=sumInto) _np.seterr(**old_err) profiler.add_time("bulk_fill_dprobs: calc_and_fill_blk", tm) for iBlk in myBlkIndices: tm = _time.time() block_wrtSlice = blocks[iBlk] dProdCache = self._compute_dproduct_cache(evalSubTree, prodCache, scaleCache, blkComm, block_wrtSlice, profiler) profiler.add_time("bulk_fill_dprobs: compute_dproduct_cache", tm) profiler.mem_check( "bulk_fill_dprobs: post compute dproduct blk (expect " " +%.2fGB, shape=%s)" % (dProdCache.nbytes / (1024.0**3), str(dProdCache.shape))) dGs = evalSubTree.final_view(dProdCache, axis=0) #( nCircuits, nDerivCols, dim, dim ) self._fill_result_tuple( (mxToFill,), evalSubTree, blocks[iBlk], slice(None), calc_and_fill_blk) profiler.mem_check("bulk_fill_dprobs: post fill blk") dProdCache = dGs = None # free mem #gather results tm = _time.time() _mpit.gather_slices(blocks, blkOwners, mxToFill, [felInds], 1, mySubComm, gatherMemLimit) #note: gathering axis 1 of mxToFill[felInds], dim=(ks,M) profiler.add_time("MPI IPC", tm) profiler.mem_check("bulk_fill_dprobs: post gather blocks") #collect/gather results tm = _time.time() subtreeElementIndices = [t.final_element_indices(evalTree) for t in subtrees] _mpit.gather_indices(subtreeElementIndices, subTreeOwners, mxToFill, [], 0, comm, gatherMemLimit) #note: pass mxToFill, dim=(KS,M), so gather mxToFill[felInds] (axis=0) if prMxToFill is not None: _mpit.gather_indices(subtreeElementIndices, subTreeOwners, prMxToFill, [], 0, comm) #note: pass prMxToFill, dim=(KS,), so gather prMxToFill[felInds] (axis=0) profiler.add_time("MPI IPC", tm) profiler.mem_check("bulk_fill_dprobs: post gather subtrees") if clipTo is not None and prMxToFill is not None: _np.clip(prMxToFill, clipTo[0], clipTo[1], out=prMxToFill) # in-place clip if check: self._check(evalTree, prMxToFill, mxToFill, clipTo=clipTo) profiler.add_time("bulk_fill_dprobs: total", tStart) profiler.add_count("bulk_fill_dprobs count") profiler.mem_check("bulk_fill_dprobs: end") def bulk_fill_hprobs(self, mxToFill, evalTree, prMxToFill=None, deriv1MxToFill=None, deriv2MxToFill=None, clipTo=None, check=False, comm=None, wrtFilter1=None, wrtFilter2=None, wrtBlockSize1=None, wrtBlockSize2=None, gatherMemLimit=None): """ Compute the outcome probability-Hessians for an entire tree of gate strings. Similar to `bulk_fill_probs(...)`, but fills a 3D array with probability-Hessians for each "final element" of `evalTree`. Parameters ---------- mxToFill : numpy ndarray an already-allocated ExMxM numpy array where E is the total number of computed elements (i.e. evalTree.num_final_elements()) and M1 & M2 are the number of selected gate-set parameters (by wrtFilter1 and wrtFilter2). evalTree : EvalTree given by a prior call to bulk_evaltree. Specifies the *simplified* gate strings to compute the bulk operation on. prMxToFill : numpy array, optional when not None, an already-allocated length-E numpy array that is filled with probabilities, just like in bulk_fill_probs(...). derivMxToFill1, derivMxToFill2 : numpy array, optional when not None, an already-allocated ExM numpy array that is filled with probability derivatives, similar to bulk_fill_dprobs(...), but where M is the number of model parameters selected for the 1st and 2nd differentiation, respectively (i.e. by wrtFilter1 and wrtFilter2). clipTo : 2-tuple, optional (min,max) to clip return value if not None. check : boolean, optional If True, perform extra checks within code to verify correctness, generating warnings when checks fail. Used for testing, and runs much slower when True. comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. Distribution is first performed over subtrees of evalTree (if it is split), and then over blocks (subsets) of the parameters being differentiated with respect to (see wrtBlockSize). wrtFilter1, wrtFilter2 : list of ints, optional If not None, a list of integers specifying which model parameters to differentiate with respect to in the first (row) and second (col) derivative operations, respectively. wrtBlockSize2, wrtBlockSize2 : int or float, optional The maximum number of 1st (row) and 2nd (col) derivatives to compute *products* for simultaneously. None means compute all requested rows or columns at once. The minimum of wrtBlockSize and the size that makes maximal use of available processors is used as the final block size. These arguments must be None if the corresponding wrtFilter is not None. Set this to non-None to reduce amount of intermediate memory required. profiler : Profiler, optional A profiler object used for to track timing and memory usage. gatherMemLimit : int, optional A memory limit in bytes to impose upon the "gather" operations performed as a part of MPI processor syncronization. Returns ------- None """ if wrtFilter1 is not None: assert(wrtBlockSize1 is None and wrtBlockSize2 is None) # Cannot specify both wrtFilter and wrtBlockSize wrtSlice1 = _slct.list_to_slice(wrtFilter1) else: wrtSlice1 = None if wrtFilter2 is not None: assert(wrtBlockSize1 is None and wrtBlockSize2 is None) # Cannot specify both wrtFilter and wrtBlockSize wrtSlice2 = _slct.list_to_slice(wrtFilter2) else: wrtSlice2 = None #get distribution across subtrees (groups if needed) subtrees = evalTree.get_sub_trees() mySubTreeIndices, subTreeOwners, mySubComm = evalTree.distribute(comm) #eval on each local subtree for iSubTree in mySubTreeIndices: evalSubTree = subtrees[iSubTree] felInds = evalSubTree.final_element_indices(evalTree) #Free memory from previous subtree iteration before computing caches scaleVals = Gs = dGs1 = dGs2 = hGs = None prodCache = scaleCache = None #Fill product cache info (not requiring row or column distribution) prodCache, scaleCache = self._compute_product_cache(evalSubTree, mySubComm) scaleVals = self._scaleExp(evalSubTree.final_view(scaleCache)) Gs = evalSubTree.final_view(prodCache, axis=0) #( nCircuits, dim, dim ) def calc_and_fill(spamTuple, fInds, gInds, pslc1, pslc2, sumInto): """ Compute and fill result quantities for given arguments """ old_err = _np.seterr(over='ignore') rho, E = self._rhoE_from_spamTuple(spamTuple) if prMxToFill is not None: _fas(prMxToFill, [fInds], self._probs_from_rhoE(rho, E, Gs[gInds], scaleVals[gInds]), add=sumInto) if deriv1MxToFill is not None: _fas(deriv1MxToFill, [fInds, pslc1], self._dprobs_from_rhoE( spamTuple, rho, E, Gs[gInds], dGs1[gInds], scaleVals[gInds], wrtSlice1), add=sumInto) if deriv2MxToFill is not None: _fas(deriv2MxToFill, [fInds, pslc2], self._dprobs_from_rhoE( spamTuple, rho, E, Gs[gInds], dGs2[gInds], scaleVals[gInds], wrtSlice2), add=sumInto) _fas(mxToFill, [fInds, pslc1, pslc2], self._hprobs_from_rhoE( spamTuple, rho, E, Gs[gInds], dGs1[gInds], dGs2[gInds], hGs[gInds], scaleVals[gInds], wrtSlice1, wrtSlice2), add=sumInto) _np.seterr(**old_err) #Set wrtBlockSize to use available processors if it isn't specified if wrtFilter1 is None and wrtFilter2 is None: blkSize1 = wrtBlockSize1 # could be None blkSize2 = wrtBlockSize2 # could be None if (mySubComm is not None) and (mySubComm.Get_size() > 1): comm_blkSize = self.Np / mySubComm.Get_size() blkSize1 = comm_blkSize if (blkSize1 is None) \ else min(comm_blkSize, blkSize1) # override with smaller comm_blkSize blkSize2 = comm_blkSize if (blkSize2 is None) \ else min(comm_blkSize, blkSize2) # override with smaller comm_blkSize else: blkSize1 = blkSize2 = None # wrtFilter1 & wrtFilter2 dictates block if blkSize1 is None and blkSize2 is None: #Fill hessian cache info dProdCache1 = self._compute_dproduct_cache( evalSubTree, prodCache, scaleCache, mySubComm, wrtSlice1) dProdCache2 = dProdCache1 if (wrtSlice1 == wrtSlice2) else \ self._compute_dproduct_cache(evalSubTree, prodCache, scaleCache, mySubComm, wrtSlice2) dGs1 = evalSubTree.final_view(dProdCache1, axis=0) dGs2 = evalSubTree.final_view(dProdCache2, axis=0) #( nCircuits, nDerivColsX, dim, dim ) hProdCache = self._compute_hproduct_cache(evalSubTree, prodCache, dProdCache1, dProdCache2, scaleCache, mySubComm, wrtSlice1, wrtSlice2) hGs = evalSubTree.final_view(hProdCache, axis=0) #( nCircuits, len(wrtFilter1), len(wrtFilter2), dim, dim ) #Compute all requested derivative columns at once self._fill_result_tuple((prMxToFill, deriv1MxToFill, deriv2MxToFill, mxToFill), evalSubTree, slice(None), slice(None), calc_and_fill) else: # Divide columns into blocks of at most blkSize assert(wrtFilter1 is None and wrtFilter2 is None) # cannot specify both wrtFilter and blkSize nBlks1 = int(_np.ceil(self.Np / blkSize1)) nBlks2 = int(_np.ceil(self.Np / blkSize2)) # num blocks required to achieve desired average size == blkSize1 or blkSize2 blocks1 = _mpit.slice_up_range(self.Np, nBlks1) blocks2 = _mpit.slice_up_range(self.Np, nBlks2) #distribute derivative computation across blocks myBlk1Indices, blk1Owners, blk1Comm = \ _mpit.distribute_indices(list(range(nBlks1)), mySubComm) myBlk2Indices, blk2Owners, blk2Comm = \ _mpit.distribute_indices(list(range(nBlks2)), blk1Comm) if blk2Comm is not None: _warnings.warn("Note: more CPUs(%d)" % mySubComm.Get_size() + " than hessian elements(%d)!" % (self.Np**2) + " [blkSize = {%.1f,%.1f}, nBlks={%d,%d}]" % (blkSize1, blkSize2, nBlks1, nBlks2)) # pragma: no cover # noqa for iBlk1 in myBlk1Indices: blk_wrtSlice1 = blocks1[iBlk1] dProdCache1 = self._compute_dproduct_cache( evalSubTree, prodCache, scaleCache, blk1Comm, blk_wrtSlice1) dGs1 = evalSubTree.final_view(dProdCache1, axis=0) for iBlk2 in myBlk2Indices: blk_wrtSlice2 = blocks2[iBlk2] if blk_wrtSlice1 == blk_wrtSlice2: dProdCache2 = dProdCache1; dGs2 = dGs1 else: dProdCache2 = self._compute_dproduct_cache( evalSubTree, prodCache, scaleCache, blk2Comm, blk_wrtSlice2) dGs2 = evalSubTree.final_view(dProdCache2, axis=0) hProdCache = self._compute_hproduct_cache( evalSubTree, prodCache, dProdCache1, dProdCache2, scaleCache, blk2Comm, blk_wrtSlice1, blk_wrtSlice2) hGs = evalSubTree.final_view(hProdCache, axis=0) #Set filtering for calc_and_fill wrtSlice1 = blocks1[iBlk1] wrtSlice2 = blocks2[iBlk2] self._fill_result_tuple((prMxToFill, deriv1MxToFill, deriv2MxToFill, mxToFill), evalSubTree, blocks1[iBlk1], blocks2[iBlk2], calc_and_fill) hProdCache = hGs = dProdCache2 = dGs2 = None # free mem dProdCache1 = dGs1 = None # free mem #gather column results: gather axis 2 of mxToFill[felInds,blocks1[iBlk1]], dim=(ks,blk1,M) _mpit.gather_slices(blocks2, blk2Owners, mxToFill, [felInds, blocks1[iBlk1]], 2, blk1Comm, gatherMemLimit) #gather row results; gather axis 1 of mxToFill[felInds], dim=(ks,M,M) _mpit.gather_slices(blocks1, blk1Owners, mxToFill, [felInds], 1, mySubComm, gatherMemLimit) if deriv1MxToFill is not None: _mpit.gather_slices(blocks1, blk1Owners, deriv1MxToFill, [felInds], 1, mySubComm, gatherMemLimit) if deriv2MxToFill is not None: _mpit.gather_slices(blocks2, blk2Owners, deriv2MxToFill, [felInds], 1, blk1Comm, gatherMemLimit) #Note: deriv2MxToFill gets computed on every inner loop completion # (to save mem) but isn't gathered until now (but using blk1Comm). # (just as prMxToFill is computed fully on each inner loop *iteration*!) #collect/gather results subtreeElementIndices = [t.final_element_indices(evalTree) for t in subtrees] _mpit.gather_indices(subtreeElementIndices, subTreeOwners, mxToFill, [], 0, comm, gatherMemLimit) if deriv1MxToFill is not None: _mpit.gather_indices(subtreeElementIndices, subTreeOwners, deriv1MxToFill, [], 0, comm, gatherMemLimit) if deriv2MxToFill is not None: _mpit.gather_indices(subtreeElementIndices, subTreeOwners, deriv2MxToFill, [], 0, comm, gatherMemLimit) if prMxToFill is not None: _mpit.gather_indices(subtreeElementIndices, subTreeOwners, prMxToFill, [], 0, comm) if clipTo is not None and prMxToFill is not None: _np.clip(prMxToFill, clipTo[0], clipTo[1], out=prMxToFill) # in-place clip if check: self._check(evalTree, prMxToFill, deriv1MxToFill, mxToFill, clipTo) def bulk_hprobs_by_block(self, evalTree, wrtSlicesList, bReturnDProbs12=False, comm=None): """ Constructs a generator that computes the 2nd derivatives of the probabilities generated by a each gate sequence given by evalTree column-by-column. This routine can be useful when memory constraints make constructing the entire Hessian at once impractical, and one is able to compute reduce results from a single column of the Hessian at a time. For example, the Hessian of a function of many gate sequence probabilities can often be computed column-by-column from the using the columns of the operation sequences. Parameters ---------- spam_label_rows : dictionary a dictionary with keys == spam labels and values which are integer row indices into mxToFill, specifying the correspondence between rows of mxToFill and spam labels. evalTree : EvalTree given by a prior call to bulk_evaltree. Specifies the operation sequences to compute the bulk operation on. This tree *cannot* be split. wrtSlicesList : list A list of `(rowSlice,colSlice)` 2-tuples, each of which specify a "block" of the Hessian to compute. Iterating over the output of this function iterates over these computed blocks, in the order given by `wrtSlicesList`. `rowSlice` and `colSlice` must by Python `slice` objects. bReturnDProbs12 : boolean, optional If true, the generator computes a 2-tuple: (hessian_col, d12_col), where d12_col is a column of the matrix d12 defined by: d12[iSpamLabel,iOpStr,p1,p2] = dP/d(p1)*dP/d(p2) where P is is the probability generated by the sequence and spam label indexed by iOpStr and iSpamLabel. d12 has the same dimensions as the Hessian, and turns out to be useful when computing the Hessian of functions of the probabilities. comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. Distribution is performed as in bulk_product, bulk_dproduct, and bulk_hproduct. Returns ------- block_generator A generator which, when iterated, yields the 3-tuple `(rowSlice, colSlice, hprobs)` or `(rowSlice, colSlice, dprobs12)` (the latter if `bReturnDProbs12 == True`). `rowSlice` and `colSlice` are slices directly from `wrtSlicesList`. `hprobs` and `dprobs12` are arrays of shape K x S x B x B', where: - K is the length of spam_label_rows, - S is the number of operation sequences (i.e. evalTree.num_final_strings()), - B is the number of parameter rows (the length of rowSlice) - B' is the number of parameter columns (the length of colSlice) If `mx`, `dp1`, and `dp2` are the outputs of :func:`bulk_fill_hprobs` (i.e. args `mxToFill`, `deriv1MxToFill`, and `deriv1MxToFill`), then: - `hprobs == mx[:,:,rowSlice,colSlice]` - `dprobs12 == dp1[:,:,rowSlice,None] * dp2[:,:,None,colSlice]` """ assert(not evalTree.is_split()), "`evalTree` cannot be split" nElements = evalTree.num_final_elements() #Fill product cache info (not distributed) prodCache, scaleCache = self._compute_product_cache(evalTree, comm) scaleVals = self._scaleExp(evalTree.final_view(scaleCache)) Gs = evalTree.final_view(prodCache, axis=0) #( nCircuits, dim, dim ) #Same as in bulk_fill_hprobs (TODO consolidate?) #NOTE: filtering is done via the yet-to-be-defined local variables # wrtSlice1 and wrtSlice2, of the parent-function scope. This use of # closures seems confusing and we should do something else LATER. def calc_and_fill(spamTuple, fInds, gInds, pslc1, pslc2, sumInto): """ Compute and fill result quantities for given arguments """ old_err = _np.seterr(over='ignore') rho, E = self._rhoE_from_spamTuple(spamTuple) #if prMxToFill is not None: # _fas(prMxToFill, [fInds], # self._probs_from_rhoE(rho, E, Gs[gInds], scaleVals[gInds]), add=sumInto) if deriv1MxToFill is not None: _fas(deriv1MxToFill, [fInds, pslc1], self._dprobs_from_rhoE( spamTuple, rho, E, Gs[gInds], dGs1[gInds], scaleVals[gInds], wrtSlice1), add=sumInto) if deriv2MxToFill is not None: _fas(deriv2MxToFill, [fInds, pslc2], self._dprobs_from_rhoE( spamTuple, rho, E, Gs[gInds], dGs2[gInds], scaleVals[gInds], wrtSlice2), add=sumInto) _fas(mxToFill, [fInds, pslc1, pslc2], self._hprobs_from_rhoE( spamTuple, rho, E, Gs[gInds], dGs1[gInds], dGs2[gInds], hGs[gInds], scaleVals[gInds], wrtSlice1, wrtSlice2), add=sumInto) _np.seterr(**old_err) #NOTE: don't distribute wrtSlicesList across comm procs, # as we assume the user has already done any such distribution # and has given each processor a list appropriate for it. # Use comm only for speeding up the calcs of the given # wrtSlicesList last_wrtSlice1 = None # keep last dProdCache1 for wrtSlice1, wrtSlice2 in wrtSlicesList: if wrtSlice1 != last_wrtSlice1: dProdCache1 = dGs1 = None # free Mem dProdCache1 = self._compute_dproduct_cache( evalTree, prodCache, scaleCache, comm, wrtSlice1) dGs1 = evalTree.final_view(dProdCache1, axis=0) last_wrtSlice1 = wrtSlice1 if (wrtSlice1 == wrtSlice2): dProdCache2 = dProdCache1; dGs2 = dGs1 else: dProdCache2 = self._compute_dproduct_cache( evalTree, prodCache, scaleCache, comm, wrtSlice2) dGs2 = evalTree.final_view(dProdCache2, axis=0) hProdCache = self._compute_hproduct_cache( evalTree, prodCache, dProdCache1, dProdCache2, scaleCache, comm, wrtSlice1, wrtSlice2) hGs = evalTree.final_view(hProdCache, axis=0) if bReturnDProbs12: dprobs1 = _np.zeros((nElements, _slct.length(wrtSlice1)), 'd') dprobs2 = _np.zeros((nElements, _slct.length(wrtSlice2)), 'd') else: dprobs1 = dprobs2 = None hprobs = _np.zeros((nElements, _slct.length(wrtSlice1), _slct.length(wrtSlice2)), 'd') #prMxToFill = None deriv1MxToFill = dprobs1 deriv2MxToFill = dprobs2 mxToFill = hprobs #Fill arrays self._fill_result_tuple((None, dprobs1, dprobs2, hprobs), evalTree, slice(None), slice(None), calc_and_fill) hProdCache = hGs = dProdCache2 = dGs2 = None # free mem if bReturnDProbs12: dprobs12 = dprobs1[:, :, None] * dprobs2[:, None, :] # (KM,N,1) * (KM,1,N') = (KM,N,N') yield wrtSlice1, wrtSlice2, hprobs, dprobs12 else: yield wrtSlice1, wrtSlice2, hprobs dProdCache1 = dGs1 = None # free mem def _fill_result_tuple(self, result_tup, evalTree, param_slice1, param_slice2, calc_and_fill_fn): """ This function takes a "calc-and-fill" function, which computes and *fills* (i.e. doesn't return to save copying) some arrays. The arrays that are filled internally to `calc_and_fill_fn` must be the same as the elements of `result_tup`. The fill function computes values for only a single spam label (specified to it by the first two arguments), and in general only a specified slice of the values for this spam label (given by the subsequent arguments, except for the last). The final argument is a boolean specifying whether the filling should overwrite or add to the existing array values, which is a functionality needed to correctly handle the remainder spam label. """ pslc1 = param_slice1 pslc2 = param_slice2 for spamTuple, (fInds, gInds) in evalTree.spamtuple_indices.items(): # fInds = "final indices" = the "element" indices in the final # filled quantity combining both spam and gate-sequence indices # gInds = "gate sequence indices" = indices into the (tree-) list of # all of the raw operation sequences which need to be computed # for the current spamTuple (this list has the SAME length as fInds). calc_and_fill_fn(spamTuple, fInds, gInds, pslc1, pslc2, False) # TODO: remove SumInto == True cases return
1.640625
2
tests/testing/test_check_data.py
Lambda-School-Labs/cryptolytic-ds
13
12795113
<filename>tests/testing/test_check_data.py import cryptolytic.data.sql as sql import cryptolytic.util as util import cryptolytic.data.historical as h def test_check_tables(): util.timeout(h.live_update, 10) for api, exchange_id, trading_pair in h.yield_unique_pair(): df = (sql.get_some_candles ({'api': api, 'exchange_id': exchange_id, 'trading_pair': trading_pair, 'period' : 300}, n=100000, verbose=True)) assert df.shape[0] > 100 # check to see that every trading pair has candles for it
2.28125
2
src/activity_notifications.py
yxtay/code-ex
0
12795114
<reponame>yxtay/code-ex from collections import Counter def activity_notifications(expenditure, d): count = 0 counter = Counter(expenditure[:d]) for i in range(len(expenditure) - d): median = compute_median(counter) if expenditure[i + d] >= 2 * median: count += 1 counter[expenditure[i]] -= 1 counter[expenditure[i + d]] += 1 return count def compute_median(counter): d = sum(counter.values()) mid = d // 2 count = 0 sorted_keys = sorted(counter.keys()) for i, k in enumerate(sorted_keys): count += counter[k] if count > mid: if d % 2 == 1: return k else: if counter[k] > 1: return k else: return (k + sorted_keys[i - 1]) / 2
2.71875
3
movies/utils2.py
Saifur43/Movie-Success-Prediction
7
12795115
<filename>movies/utils2.py from selenium import webdriver from selenium.webdriver.firefox.options import Options from .models import Star, Director def stars_update(): stars = Star.objects.all() for star in stars: if star.insta_followers == 0: print(star.s_name) url = star.star_link # page = requests.get(url) options = Options() options.headless = True driver = webdriver.Firefox(options=options, executable_path='E:\geckodriver.exe') driver.get(url) try: x = driver.find_element_by_xpath("//span[contains(text(),'Actor')]").text except: x = driver.find_element_by_xpath("//span[contains(text(),'Actress')]").text if x == "Actor": try: credit = driver.find_element_by_xpath("//div[@id='filmo-head-actor']").text image = driver.find_element_by_xpath("//img[@id='name-poster']").get_attribute('src') about = driver.find_element_by_xpath("//div[@class='inline']").text credit = float(credit[13:16]) star.weight = credit star.about = about star.star_img = image except: continue elif x == "Actress": try: credit = driver.find_element_by_xpath("//div[@id='filmo-head-actress']").text image = driver.find_element_by_xpath("//img[@id='name-poster']").get_attribute('src') about = driver.find_element_by_xpath("//div[@class='inline']").text credit = float(credit[15:18]) star.weight = credit star.about = about star.star_img = image except: continue title = str(star.s_name) + " instagram" driver.get("https://duckduckgo.com/") driver.find_element_by_xpath("//input[@name='q']").send_keys(str(title)) driver.find_element_by_id("search_button_homepage").click() data = driver.find_element_by_xpath("//div[@id='r1-0']//a[contains(@class,'result__check')]") star.star_insta = data.get_attribute('href') try: followers_data = driver.find_element_by_xpath( "//div[contains(@class,'results js-results')]//div[1]//div[1]//div[2]").text followers_insta = followers_data.split(" ") followers = followers_insta[0] if followers[-1] == 'k': followers = followers[:-1] followers = float(followers) * 1000 star.insta_followers = int(followers) elif followers[-1] == 'm': followers = followers[:-1] followers = float(followers) * 1000000 star.insta_followers = int(followers) else: followers = float(followers) star.insta_followers = int(followers) except: continue driver.quit() try: star.save() except: continue else: continue def director_update(): directors = Director.objects.all() for director in directors: url = director.director_link options = Options() options.headless = True driver = webdriver.Firefox(options=options, executable_path='E:\geckodriver.exe') driver.get(url) try: credit = driver.find_element_by_xpath("//div[@id='filmo-head-director']").text image = driver.find_element_by_xpath("//img[@id='name-poster']").get_attribute('src') about = driver.find_element_by_xpath("//div[@class='inline']").text credit = float(credit[16:18]) director.weight = credit director.about = about if director.id is None: director.d_img = "https://images-na.ssl-images-amazon.com/images/I/818%2BI9cEsEL._SY606_.jpg" director.save() except: continue driver.quit()
3
3
epm/epm_logical_if.py
btc-ag/revengtools
2
12795116
<gh_stars>1-10 # -*- coding: UTF-8 -*- ''' Created on 29.09.2010 @author: SIGIESEC ''' from commons.core_if import EnumerationItem, Enumeration class _LogicalEntityType(EnumerationItem): pass class LogicalEntityTypes(Enumeration): Component = _LogicalEntityType Interface = _LogicalEntityType Configurator = _LogicalEntityType class LogicalElement(object): def __init__(self, element_type, element_name): self.__type = element_type self.__name = element_name def get_type(self): return self.__type def get_name(self): return self.__name
2.390625
2
tests/test_structures.py
UMDBPP/PacketRaven
4
12795117
from packetraven.packets.structures import DoublyLinkedList def test_index(): list_1 = DoublyLinkedList([0, 5, 4, 'foo', 5, 6]) assert list_1[0] == 0 assert list_1[0] is list_1.head.value assert list_1[3] == 'foo' assert list_1[-2] == 5 assert list_1[-1] == 6 assert list_1[-1] is list_1.tail.value assert list_1[:2] == [0, 5] assert list_1[[1, 3, 0]] == [5, 'foo', 0] def test_length(): list_1 = DoublyLinkedList() assert len(list_1) == 0 list_2 = DoublyLinkedList([0, 'foo']) assert len(list_2) == 2 def test_extend(): list_1 = DoublyLinkedList([0]) list_1.extend(['foo', 5]) assert list_1 == [0, 'foo', 5] assert list_1.head is not list_1.tail def test_append(): list_1 = DoublyLinkedList() list_1.append(0) assert list_1[0] == 0 assert list_1[-1] == 0 assert list_1.head is list_1.tail def test_insert(): list_1 = DoublyLinkedList([0, 'foo']) list_1.insert('bar', 0) assert list_1 == ['bar', 0, 'foo'] def test_equality(): list_1 = DoublyLinkedList([5, 4, 'foo']) assert list_1 == [5, 4, 'foo'] assert list_1 == (5, 4, 'foo') assert list_1 != [5, 4, 'foo', 6, 2] def test_remove(): list_1 = DoublyLinkedList(['a', 'a']) list_1.remove('a') assert len(list_1) == 0 assert list_1.head is None assert list_1.tail is None list_2 = DoublyLinkedList(['a', 'b', 'c']) del list_2[0] del list_2[-1] assert len(list_2) == 1 assert list_2[0] == 'b' assert list_2[-1] == 'b' list_3 = DoublyLinkedList([0, 5, 4, 'foo', 0, 0]) list_3.remove(0) assert list_3 == [5, 4, 'foo'] assert list_3[0] == 5 assert list_3[-1] == 'foo'
2.796875
3
tests/test_functions.py
rohankumardubey/griffe
0
12795118
"""Test functions loading.""" import inspect from griffe.loader import GriffeLoader from tests import FIXTURES_DIR loader = GriffeLoader() def test_loading_functions_arguments(): # noqa: WPS218 """Test functions arguments loading.""" module = loader.load_module(FIXTURES_DIR / "functions" / "arguments.py") assert module.members assert len(module.members) == 11 # noqa: WPS432 function = module["f_posonly"] assert len(function.arguments) == 1 arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default is None function = module["f_posonly_default"] assert len(function.arguments) == 1 arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default == "0" function = module["f_posonly_poskw"] assert len(function.arguments) == 2 arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default is None arg = function.arguments[1] assert arg is function.arguments["poskw"] assert arg.name == "poskw" assert arg.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD assert arg.default is None function = module["f_posonly_poskw_default"] assert len(function.arguments) == 2 arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default is None arg = function.arguments[1] assert arg is function.arguments["poskw"] assert arg.name == "poskw" assert arg.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD assert arg.default == "0" function = module["f_posonly_default_poskw_default"] assert len(function.arguments) == 2 arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default == "0" arg = function.arguments[1] assert arg is function.arguments["poskw"] assert arg.name == "poskw" assert arg.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD assert arg.default == "1" function = module["f_posonly_poskw_kwonly"] assert len(function.arguments) == 3 arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default is None arg = function.arguments[1] assert arg is function.arguments["poskw"] assert arg.name == "poskw" assert arg.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD assert arg.default is None arg = function.arguments[2] assert arg is function.arguments["kwonly"] assert arg.name == "kwonly" assert arg.kind is inspect.Parameter.KEYWORD_ONLY assert arg.default is None function = module["f_posonly_poskw_kwonly_default"] assert len(function.arguments) == 3 arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default is None arg = function.arguments[1] assert arg is function.arguments["poskw"] assert arg.name == "poskw" assert arg.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD assert arg.default is None arg = function.arguments[2] assert arg is function.arguments["kwonly"] assert arg.name == "kwonly" assert arg.kind is inspect.Parameter.KEYWORD_ONLY assert arg.default == "0" function = module["f_posonly_poskw_default_kwonly_default"] assert len(function.arguments) == 3 arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default is None arg = function.arguments[1] assert arg is function.arguments["poskw"] assert arg.name == "poskw" assert arg.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD assert arg.default == "0" arg = function.arguments[2] assert arg is function.arguments["kwonly"] assert arg.name == "kwonly" assert arg.kind is inspect.Parameter.KEYWORD_ONLY assert arg.default == "1" function = module["f_posonly_default_poskw_default_kwonly_default"] arg = function.arguments[0] assert arg is function.arguments["posonly"] assert arg.name == "posonly" assert arg.kind is inspect.Parameter.POSITIONAL_ONLY assert arg.default == "0" arg = function.arguments[1] assert arg is function.arguments["poskw"] assert arg.name == "poskw" assert arg.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD assert arg.default == "1" arg = function.arguments[2] assert arg is function.arguments["kwonly"] assert arg.name == "kwonly" assert arg.kind is inspect.Parameter.KEYWORD_ONLY assert arg.default == "2" function = module["f_var"] assert len(function.arguments) == 3 arg = function.arguments[0] assert arg.name == "*args" assert arg.annotation == "str" arg = function.arguments[1] assert arg.annotation is None arg = function.arguments[2] assert arg.name == "**kwargs" assert arg.annotation == "int" function = module["f_annorations"] assert len(function.arguments) == 4 arg = function.arguments[0] assert arg.annotation == "str" arg = function.arguments[1] assert arg.annotation == "Any" arg = function.arguments[2] assert arg.annotation == "typing.Optional[typing.List[int]]" arg = function.arguments[3] assert arg.annotation == "float | None"
2.796875
3
EXAMPLES/DATA TYPES/String/password_generator.py
nkpydev/Python-Learning
0
12795119
<gh_stars>0 #--- Generic Imports ---# import string import random from random import randint if __name__ == '__main__': characters = string.ascii_lowercase + string.ascii_uppercase + string.digits password = ''.join(random.choice(characters) for x in range(randint(8,16))) print('Password:\t',password)
3.234375
3
python/specex_compute_sky.py
marcelo-alvarez/specex
0
12795120
#!/usr/bin/env python import pyfits,sys,json,pylab,string,numpy,os,scipy,scipy.sparse,scipy.linalg from scipy.sparse.linalg import spsolve from math import * from specex_cholesky import * if len(sys.argv)<3 : print sys.argv[0],"inspec.fits plPlugMapM.par outspec.fits (sky.fit)" sys.exit(12); infilename=sys.argv[1] plplgmap=sys.argv[2] outfilename=sys.argv[3] skyfilename="" if(len(sys.argv)>3) : skyfilename=sys.argv[4] # get spectrograph id, hardcoded for now, will be read in fits camera=pyfits.open(infilename)[0].header["CAMERAS"] specid=string.atoi(camera[1]) # find sky fibers skyfibers=[] file=open(plplgmap) for line in file.readlines() : if line.find("PLUGMAPOBJ") != 0 : continue vals=string.split(line," ") holetype=vals[8] if holetype != "OBJECT" : continue objType=vals[21] if objType != "SKY" : continue spectrographId=string.atoi(vals[24]) if spectrographId != specid : continue fiberId=string.atoi(vals[25]) #print line #print objType,spectrographId,fiberId myfiberid=fiberId-1 if specid==2 : myfiberid-=500 skyfibers.append(myfiberid) file.close() print "skyfibers (now starting at 0)=",skyfibers hdulist=pyfits.open(infilename) spectra=hdulist[0].data invar=hdulist[1].data wave=hdulist[2].data Rdata=hdulist[3].data mask=hdulist["FMASK"].data skyfibers=numpy.intersect1d(skyfibers,numpy.where(mask==0)[0]) print "skyfibers (after masking)=",skyfibers skyspectra=spectra[skyfibers,:] skyinvar=invar[skyfibers,:] nskyfibers=len(skyfibers) nfibers=Rdata.shape[0] d=Rdata.shape[1]/2 nwave=Rdata.shape[2] offsets = range(d,-d-1,-1) print "solving for the mean deconvolved sky" print "filling A and B" A=numpy.matrix(numpy.zeros((nwave,nwave))) # dense because additions of band matrices not implemented B=numpy.zeros((1,nwave)) for fiber in skyfibers: R=scipy.sparse.dia_matrix((Rdata[fiber],offsets),(nwave,nwave)) Ninv=scipy.sparse.dia_matrix((invar[fiber,:],[0]),(nwave,nwave)) tmp=invar[fiber,:]*spectra[fiber,:] tmp2=R.transpose()*Ninv*R A+=tmp2.todense() B+=R.transpose().dot(tmp) print "done" print "solving" deconvolvedsky,dskycovmat=cholesky_solve_and_invert(A,B[0]) print "done" # compute only once the sky variance because expensive and in any case approximate because we only keep the diagonal # most conservative is to evaluate it at the highest resolution (most variance) # also the *mean* sky statistical uncertainty is negligible wrt to the Poisson noise of the subtracted sky of each # fiber that is already included in the invar of each spectrum # last point, the sky error is certainly dominated by sky variations in field of view that we have neglected R=scipy.sparse.dia_matrix((Rdata[nfibers/2],offsets),(nwave,nwave)) Rt=R.transpose() sky=numpy.dot(R.toarray(),deconvolvedsky) print "computing covmat" skycovmat=Rt.dot(Rt.dot(dskycovmat).transpose()) skyvar=numpy.diag(skycovmat) print "done" if skyfilename != "" : print "writing skymodel to",skyfilename skyinvar=1/numpy.diag(skycovmat) sky_array=numpy.zeros((1,sky.shape[0])) sky_array[0]=sky skyinvar_array=numpy.zeros((1,skyinvar.shape[0])) skyinvar_array[0]=skyinvar pyfits.HDUList([pyfits.PrimaryHDU(sky_array),pyfits.ImageHDU(skyinvar_array),pyfits.ImageHDU(wave)]).writeto(skyfilename,clobber=True) #pyfits.HDUList([pyfits.PrimaryHDU(skycovmat)]).writeto("skycovmat.fits",clobber=True) print "subtracting sky to all fibers" valid_fibers=numpy.where(mask==0)[0] for fiber in valid_fibers : R=scipy.sparse.dia_matrix((Rdata[fiber],offsets),(nwave,nwave)) Rt=R.transpose() sky=numpy.dot(R.toarray(),deconvolvedsky) # it is a numpy.matrix that has to be converted to a numpy.array spectra[fiber] -= sky invar[fiber] = 1/( 1/invar[fiber] + skyvar ) print "done" print "writing result to",outfilename hdulist.writeto(outfilename,clobber=True) sys.exit(0)
2.25
2
configmanager/base.py
haizaar/configmanager
13
12795121
<reponame>haizaar/configmanager<filename>configmanager/base.py from .utils import not_set class BaseItem(object): is_item = True is_section = False is_config = False def is_config_item(obj): return isinstance(obj, BaseItem) class BaseSection(object): """ A base class to allow detection of section classes and instances. No other functionality to be added here. """ is_item = False is_section = True is_config = False def is_config_section(obj): return isinstance(obj, BaseSection) class ItemAttribute(object): """ Class used in :class:`.Item` class to declare attributes of config items. """ def __init__(self, name, default=not_set, value=not_set, allow_dynamic_override=False): self.name = name self.default = default self.value = value self.attr_name = '_{}'.format(self.name) # If set to True, this becomes an expensive attribute because now when # its value is requested we will check for a registered # dynamic attribute with the same name and if available use the dynamic value instead of set value. # Attributes that are used in majority of value calculation should avoid this. # For example, envvar, which is consulted on every value request, is designed # to be a cheap attribute. Users can, however, override envvar_name which is # used only if envvar is set to True. self.allow_dynamic_override = allow_dynamic_override def __set__(self, instance, value): setattr(instance, self.attr_name, value) def __get__(self, instance, owner): if self.allow_dynamic_override: if instance.section: try: return instance.section.get_item_attribute(instance, self.name) except AttributeError: pass return getattr(instance, self.attr_name, self.default)
2.765625
3
forms.py
EricSekyere/Find-Mate
0
12795122
from flask_wtf import FlaskForm, RecaptchaField from wtforms import StringField , PasswordField, SubmitField from wtforms.validators import DataRequired, Email, Length class SignupForm(FlaskForm): firstname = StringField("First name", validators=[DataRequired("Enter your name")]) lastname = StringField("Last name", validators=[DataRequired("Enter your last name")]) email = StringField("Email", validators=[DataRequired("Provide your email"), Email("Please enter a valid email")]) password = PasswordField("Password", validators=[DataRequired("Enter a valid password"), Length(min=8, message="Password must be a minimum of 8 charaters")]) submit = SubmitField("Submit", validators=[DataRequired()]) #recaptcha = RecaptchaField({'hl': 'zh', 'render': 'explicit'})
3.109375
3
before-2021/src/main/python/loadenv.py
wangyaomail/zzti-spark-learn
1
12795123
import sys import os from os.path import * def pl(): return dirname(dirname(dirname(dirname(os.path.abspath(__file__))))) class SparkEnv: def __init__(self, name): os.environ['HADOOP_HOME'] = dirname(dirname(dirname(dirname(os.path.abspath(__file__))))) + r'/hadoopdir' os.environ['SPARK_HOME'] = r"D:\assistlibs\hadoop\spark-2.2.3-bin-hadoop2.6" sys.path.append(r"D:\assistlibs\hadoop\spark-2.2.3-bin-hadoop2.6\python") from pyspark import SparkContext self.sc = SparkContext("local", name) self.sc.setLogLevel("WARN") from pyspark.sql import SparkSession self.ss = SparkSession.builder.appName(name).getOrCreate() def postInit(self): return (self, self.sc, self.ss) def projLoc(self): return dirname(dirname(dirname(dirname(os.path.abspath(__file__)))))
2.5625
3
HackerRank/Python3/set_union.py
santoshgawande/DS-Algorithms
0
12795124
am = int(input()) a = set(map(int,input().split())) bm = int(input()) b =set(map(int,input().split())) print(len(a.union(b)))
2.96875
3
EulerProject/0xx/00x/006/main.py
mathtimes/math-lab
1
12795125
<reponame>mathtimes/math-lab i1 = i2 = 0 for i in range(1,101): i1 += i i2 += i**2 print(i1**2-i2)
3.203125
3
app/core/module/chat_main.py
xiaomi2019/lolita_son
0
12795126
<gh_stars>0 # coding: utf-8 # import app.base.game_module_mgr from app.core.game_event_def import * from app.protocol.ProtocolDesc import * import app.protocol.netutil as netutil from twisted.python import log import app.util.helper as helper import app.util.lang_config as lang_config import app.chat.memmode as memmode from firefly.server.globalobject import GlobalObject import app.core.game_module_def as game_module_def class chat_main(app.base.game_module_mgr.game_module): def __init__(self): super(chat_main,self).__init__(); self.character_map = {}; return def start(self): super(chat_main,self).start(); self.register_event(EVENT_LOGIN,self.on_login); self.register_event(EVENT_LOGOUT,self.on_logout); self.register_event(EVENT_RELOGIN,self.on_relogin); self.register_net_event(C2S_CHAT,self.on_chat); self.register_event(EVENT_SEND2CLIENT,self._send2client); self.register_event(EVENT_SEND2CLIENTBYCID,self._send2clientbycid) return def _getdidbycid(self,cId): if self.character_map.has_key(cId): return self.character_map[cId]; return def _send2clientbycid(self,ud): cmd = ud[0] cId = ud[1]; dId = self._getdidbycid(cId); if dId == None: log.err("_send2clientbycid err:%s %s"%(cId,ud)); return data = ud[2]; buf = netutil.s2c_data2bufbycmd(cmd,data); GlobalObject().remote['gate'].callRemote("pushObject",cmd,buf, [dId]) return def _send2client(self,ud): cmd = ud[0] dId = ud[1]; data = ud[2]; buf = netutil.s2c_data2bufbycmd(cmd,data); GlobalObject().remote['gate'].callRemote("pushObject",cmd,buf, [dId]) return def _float_msg(self,cId,msg): c_data = {}; c_data['msg'] = msg; self.fire_event(EVENT_SEND2CLIENTBYCID,[S2C_NOTIFY_FLOAT,cId,c_data]); return; def _is_cId_valid(self,cId):#其实就是角色是否在线的判定 return self.character_map.has_key(cId); def on_relogin(self,ud): dId = ud["dId"]; cId = ud["cId"]; if self.character_map.has_key(cId): self.character_map[cId] = dId; return def on_login(self,ud): dId = ud["dId"]; cId = ud["cId"]; self.character_map[cId] = dId; c_data = memmode.tb_character_admin.getObj(cId); if not c_data: log.msg('chat_main on_login fatal err %d'%(cId)); return c_info = c_data.get('data'); return def on_logout(self,ud): dId = ud["dId"]; cId = ud["cId"]; if self.character_map.has_key(cId): del self.character_map[cId]; return def on_chat(self,ud): dId = ud["dId"]; cId = ud["cId"]; data = ud["data"]; ch = data["ch"]; msg = data["msg"]; #todo print "on_chat %d %s"%(cId,msg); c_data = memmode.tb_character_admin.getObj(cId); if not c_data: log.msg('chat_main on_chat fatal err %d'%(cId)); return c_info = c_data.get('data'); data = {}; data['ch'] = ch; data['srvid'] = 0; data['pid'] = cId; data['shape'] = c_info["figure"]; data['vip'] = 0; data['name'] = c_info["nickname"]; data['msg'] = msg; cmd = S2C_CHAT; buf = netutil.s2c_data2bufbycmd(cmd,data); exclude_list = []; GlobalObject().remote['gate'].callRemote("pushObjectOthers",cmd,buf,exclude_list); return def dispose(self): super(chat_main,self).dispose(); return
1.859375
2
predict.py
binh234/capu
0
12795127
<reponame>binh234/capu<filename>predict.py import argparse from utils.helpers import read_lines from gector.gec_model import GecBERTModel from tqdm import tqdm import re def predict_for_file( input_file, output_file, model, batch_size=32, split_chunk=False, chunk_size=32, overlap_size=8, min_words_cut=4 ): test_data = read_lines(input_file) predictions = [] cnt_corrections = 0 batch = [] for sent in tqdm(test_data): batch.append(sent.split()) if len(batch) == batch_size: if split_chunk: batch, batch_indices = split_chunks(batch, chunk_size, overlap_size) preds, cnt = model.handle_batch(batch) preds = merge_chunk([" ".join(x) for x in preds], batch_indices, overlap_size, min_words_cut) else: preds, cnt = model.handle_batch(batch) preds = [" ".join(x) for x in preds] predictions.extend(preds) cnt_corrections += cnt batch = [] if batch: if split_chunk: batch, batch_indices = split_chunks(batch, chunk_size, overlap_size) preds, cnt = model.handle_batch(batch) preds = merge_chunk([" ".join(x) for x in preds], batch_indices, overlap_size, min_words_cut) else: preds, cnt = model.handle_batch(batch) preds = [" ".join(x) for x in preds] predictions.extend(preds) cnt_corrections += cnt with open(output_file, 'w') as f: f.write("\n".join(predictions) + '\n') return cnt_corrections def split_chunks(batch, chunk_size=32, overlap_size=8): # return batch pairs of indices stride = chunk_size - overlap_size result = [] indices = [] for tokens in batch: start = len(result) num_token = len(tokens) if num_token <= overlap_size: result.append(tokens) for i in range(0, num_token - overlap_size, stride): result.append(tokens[i: i + chunk_size]) indices.append((start, len(result))) return result, indices def merge_chunk(batch, indices, overlap_size=8, min_words_cut=4): head = overlap_size - min_words_cut tail = min_words_cut result = [] for (start, end) in indices: tokens = [] for i in range(start, end): try: sub_text = batch[i].strip() sub_text = re.sub(r'([\.\,\?\:]\s+)+', r'\1', sub_text) sub_text = re.sub(r'\s+([\.\,\?\:])', r'\1', sub_text) sub_tokens = sub_text.split() if i == start: if i == end - 1: tokens = sub_tokens else: tokens.extend(sub_tokens[:-tail]) elif i == end - 1: tokens.extend(sub_tokens[head:]) else: tokens.extend(sub_tokens[head:-tail]) except Exception as e: print(e) text = " ".join(tokens) text = re.sub(r'([\,\.\?\:])', r' \1', text) result.append(text) return result def main(args): # get all paths model = GecBERTModel(vocab_path=args.vocab_path, model_paths=args.model_path, max_len=args.max_len, min_len=args.min_len, iterations=args.iteration_count, min_error_probability=args.min_error_probability, lowercase_tokens=args.lowercase_tokens, model_name=args.transformer_model, special_tokens_fix=args.special_tokens_fix, log=False, confidence=args.additional_confidence, is_ensemble=args.is_ensemble, weigths=args.weights) cnt_corrections = predict_for_file(args.input_file, args.output_file, model, batch_size=args.batch_size, split_chunk=args.split_chunk, chunk_size=args.chunk_size, overlap_size=args.overlap_size, min_words_cut=args.min_words_cut) # evaluate with m2 or ERRANT print(f"Produced overall corrections: {cnt_corrections}") if __name__ == '__main__': # read parameters parser = argparse.ArgumentParser() parser.add_argument('--model_path', help='Path to the model file.', nargs='+', required=True) parser.add_argument('--vocab_path', help='Path to the model file.', default='data/output_vocabulary' # to use pretrained models ) parser.add_argument('--input_file', help='Path to the evalset file', required=True) parser.add_argument('--output_file', help='Path to the output file', required=True) parser.add_argument('--max_len', type=int, help='The max sentence length' '(all longer will be truncated)', default=64) parser.add_argument('--min_len', type=int, help='The minimum sentence length' '(all longer will be returned w/o changes)', default=3) parser.add_argument('--batch_size', type=int, help='The size of hidden unit cell.', default=128) parser.add_argument('--lowercase_tokens', action='store_true', help='Whether to lowercase tokens.',) parser.add_argument('--transformer_model', choices=['bert', 'gpt2', 'transformerxl', 'xlnet', 'distilbert', 'roberta', 'albert' 'bert-large', 'roberta-large', 'xlnet-large', 'vinai/phobert-base', 'vinai/phobert-large', 'xlm-roberta-base'], help='Name of the transformer model.', default='roberta') parser.add_argument('--iteration_count', type=int, help='The number of iterations of the model.', default=5) parser.add_argument('--additional_confidence', type=float, help='How many probability to add to $KEEP token.', default=0) parser.add_argument('--min_error_probability', type=float, help='Minimum probability for each action to apply. ' 'Also, minimum error probability, as described in the paper.', default=0.0) parser.add_argument('--special_tokens_fix', type=int, help='Whether to fix problem with [CLS], [SEP] tokens tokenization. ' 'For reproducing reported results it should be 0 for BERT/XLNet and 1 for RoBERTa.', default=1) parser.add_argument('--is_ensemble', action='store_true', help='Whether to do ensembling.',) parser.add_argument('--weights', help='Used to calculate weighted average', nargs='+', default=None) parser.add_argument('--split_chunk', action='store_true', help='Whether to use chunk merging or not') parser.add_argument('--chunk_size', type=int, help='Chunk size for chunk merging', default=32) parser.add_argument('--overlap_size', type=int, help='Overlapped words between two continuous chunks', default=8) parser.add_argument('--min_words_cut', type=int, help='number of words at the end the first chunk to be removed during merge', default=4) args = parser.parse_args() main(args)
2.34375
2
admin/client.py
stackriot/flocker
2,690
12795128
# Copyright 2015 ClusterHQ Inc. See LICENSE file for details. """ Run the client installation tests. """ import os import shutil import sys import tempfile from characteristic import attributes import docker from effect import TypeDispatcher, sync_performer, perform from twisted.python.usage import Options, UsageError from flocker.provision import PackageSource from flocker.provision._effect import Sequence, perform_sequence from flocker.provision._install import ( ensure_minimal_setup, task_cli_pkg_install, task_cli_pip_prereqs, task_cli_pip_install, cli_pip_test, ) from flocker.provision._ssh import ( Run, Sudo, Put, Comment, perform_sudo, perform_put) @attributes(['image', 'package_manager']) class DockerImage(object): """Holder for Docker image information.""" DOCKER_IMAGES = { 'centos-7': DockerImage(image='centos:7', package_manager='yum'), 'debian-8': DockerImage(image='debian:8', package_manager='apt'), 'fedora-22': DockerImage(image='fedora:22', package_manager='dnf'), 'ubuntu-14.04': DockerImage(image='ubuntu:14.04', package_manager='apt'), 'ubuntu-16.04': DockerImage(image='ubuntu:16.04', package_manager='apt'), } # No distribution is officially supported using pip, but the code can # test the pip instructions using any of the images. PIP_DISTRIBUTIONS = DOCKER_IMAGES.keys() # Some distributions have packages created for them. # Although CentOS 7 is not a supported client distribution, the client # packages get built, and can be tested. PACKAGED_CLIENT_DISTRIBUTIONS = ( 'centos-7', 'ubuntu-14.04', 'ubuntu-16.04', ) class ScriptBuilder(TypeDispatcher): """ Convert an Effect sequence to a shell script. The effects are those defined in flocker.provision._effect and flocker.provision._ssh._model. """ def __init__(self, effects): self.lines = [ '#!/bin/bash', 'set -ex' ] TypeDispatcher.__init__(self, { Run: self.perform_run, Sudo: perform_sudo, Put: perform_put, Comment: self.perform_comment, Sequence: perform_sequence }) perform(self, effects) # Add blank line to terminate script with a newline self.lines.append('') self._script = '\n'.join(self.lines) @sync_performer def perform_run(self, dispatcher, intent): """ For Run effects, add the command line. """ self.lines.append(intent.command) @sync_performer def perform_comment(self, dispatcher, intent): """ For Comment effects, prefix the comment with # """ self.lines.append('# ' + intent.comment) def script(self): """ Return the generated shell script. """ return self._script def make_script_file(directory, effects): """ Create a shell script file from a sequence of effects. :param bytes directory: The directory in which to create the script. :param Effect effects: An effect which contains the commands, typically a Sequence containing multiple commands. :return: The base filename of the script. """ builder = ScriptBuilder(effects) fd, filename = tempfile.mkstemp(dir=directory, text=True) os.write(fd, builder.script()) os.close(fd) os.chmod(filename, 0555) return os.path.basename(filename) class DockerContainer: """ Run commands in a Docker container. """ def __init__(self, image): # Getting Docker to work correctly on any client platform can # be tricky. See # http://doc-dev.clusterhq.com/gettinginvolved/client-testing.html # for details. params = docker.utils.kwargs_from_env(assert_hostname=False) self.docker = docker.Client(version='1.16', **params) self.image = image @classmethod def from_distribution(cls, distribution): """ Create a DockerContainer with a given distribution name. """ return cls(DOCKER_IMAGES[distribution].image) def start(self): """ Start the Docker container. """ # On OS X, shared volumes must be in /Users, so use the home directory. # See 'Mount a host directory as a data volume' at # https://docs.docker.com/userguide/dockervolumes/ self.tmpdir = tempfile.mkdtemp(dir=os.path.expanduser('~')) try: self.docker.pull(self.image) container = self.docker.create_container( image=self.image, command='/bin/bash', tty=True, volumes=['/mnt/script'], ) self.container_id = container[u'Id'] self.docker.start( self.container_id, binds={ self.tmpdir: {'bind': '/mnt/script', 'ro': True}, } ) except: os.rmdir(self.tmpdir) raise def stop(self): """ Stop the Docker container. """ self.docker.stop(self.container_id) self.docker.remove_container(self.container_id) shutil.rmtree(self.tmpdir) def execute(self, commands, out=sys.stdout): """ Execute a set of commands in the Docker container. The set of commands provided to one call of ``execute`` will be executed in a single session. This means commands will see the environment created by previous commands. The output of the commands is sent to the ``out`` file object, which must have a ``write`` method. :param Effect commands: An Effect containing the commands to run, probably a Sequence of Effects, one for each command to run. :param out: Where to send command output. Any object with a ``write`` method. :return int: The exit status of the commands. If all commands succeed, this will be zero. If any command fails, this will be non-zero. """ script_file = make_script_file(self.tmpdir, commands) script = '/mnt/script/{}'.format(script_file) session = self.docker.exec_create(self.container_id, script) session_id = session[u'Id'] for output in self.docker.exec_start(session, stream=True): out.write(output) return self.docker.exec_inspect(session_id)[u'ExitCode'] class RunOptions(Options): description = "Run the client tests." optParameters = [ ['distribution', None, None, 'The target distribution. ' 'One of {}. With --pip, one of {}'.format( ', '.join(PACKAGED_CLIENT_DISTRIBUTIONS), ', '.join(PIP_DISTRIBUTIONS))], ['branch', None, None, 'Branch to grab packages from'], ['flocker-version', None, None, 'Flocker version to install'], ['build-server', None, 'http://build.clusterhq.com/', 'Base URL of build server for package downloads'], ] optFlags = [ ['pip', None, 'Install using pip rather than packages.'], ] synopsis = ('Usage: run-client-tests --distribution <distribution> ' '[--branch <branch>] [--flocker-version <version>] ' '[--build-server <url>] [--pip]') def __init__(self, top_level): """ :param FilePath top_level: The top-level of the flocker repository. """ Options.__init__(self) self.top_level = top_level def postOptions(self): if self['distribution'] is None: raise UsageError("Distribution required.") self['package_source'] = PackageSource( version=self['flocker-version'], branch=self['branch'], build_server=self['build-server'], ) def get_steps_pip(distribution, package_source=PackageSource()): """ Get commands to run for testing client pip installation. :param bytes distribution: The distribution the node is running. :param PackageSource package_source: The source from which to install the package. :return: An ``Effect`` to pass to a ``Dispatcher`` that supports ``Sequence``, ``Run``, ``Sudo``, ``Comment``, and ``Put``. """ if distribution not in PIP_DISTRIBUTIONS: raise UsageError( "Distribution %r not supported. Available distributions: %s" % (distribution, ', '.join(PIP_DISTRIBUTIONS))) package_manager = DOCKER_IMAGES[distribution].package_manager virtualenv = 'flocker-client' steps = [ ensure_minimal_setup(package_manager), task_cli_pip_prereqs(package_manager), task_cli_pip_install(virtualenv, package_source), cli_pip_test(virtualenv, package_source), ] return steps def get_steps_pkg(distribution, package_source=PackageSource()): """ Get commands to run for testing client package installation. :param bytes distribution: The distribution the node is running. :param PackageSource package_source: The source from which to install the package. :return: An ``Effect`` to pass to a ``Dispatcher`` that supports ``Sequence``, ``Run``, ``Sudo``, ``Comment``, and ``Put``. """ if distribution not in PACKAGED_CLIENT_DISTRIBUTIONS: raise UsageError( "Distribution %r not supported. Available distributions: %s" % (distribution, ', '.join(PACKAGED_CLIENT_DISTRIBUTIONS))) package_manager = DOCKER_IMAGES[distribution].package_manager steps = [ ensure_minimal_setup(package_manager), task_cli_pkg_install(distribution, package_source), ] return steps def run_steps(container, steps, out=sys.stdout): """ Run a sequence of commands in a container. :param DockerContainer container: Container in which to run the test. :param Effect steps: Steps to to run the test. :param file out: Stream to write output. :return int: Exit status of steps. """ container.start() try: for commands in steps: status = container.execute(commands, out) if status != 0: return status finally: container.stop() return 0 def main(args, base_path, top_level): """ :param list args: The arguments passed to the script. :param FilePath base_path: The executable being run. :param FilePath top_level: The top-level of the Flocker repository. """ options = RunOptions(top_level=top_level) try: options.parseOptions(args) except UsageError as e: sys.exit("%s: %s\n" % (base_path.basename(), e)) distribution = options['distribution'] package_source = options['package_source'] if options['pip']: get_steps = get_steps_pip else: get_steps = get_steps_pkg steps = get_steps(distribution, package_source) container = DockerContainer.from_distribution(distribution) status = run_steps(container, steps) sys.exit(status)
1.929688
2
util/unit_test/bc_test/bc_normal_testing.py
ajupatatero/neurasim
0
12795129
<gh_stars>0 import numpy as np from engines.phi.torch.flow import * from numpy.core import shape_base from scipy.signal.filter_design import _vratio from util.plot.plot_tools import * from analysis.mesure import * from neurasim import * from util.operations.field_operate import * out_dir='./' Nx=10 Ny=10 Ly=10 Lx=10 dx=Lx/Nx dy=Ly/Ny xD=5 D=4 DOMAIN = Domain(x=Nx, y=Ny, boundaries=[OPEN, STICKY], bounds=Box[0:Lx, 0:Ly]) velocity = ((DOMAIN.staggered_grid(Noise(batch=1)) * 0 )+1) *(1,1) BOX_MASK = HardGeometryMask(Box[xD-D:xD+D, Ly/2-D:Ly/2+D]) >> DOMAIN.scalar_grid() FORCES_MASK = HardGeometryMask(Sphere([xD, Ly/2], radius=D/2 )) >> DOMAIN.scalar_grid() zoom_pos=[xD + D -1, xD + D +1, Ly/2 + D -1, Ly/2 + D +1 ] vl = -1 vr = 2 vb = -1 vt = 2 vl = 0 vr = 0 vb = 0 vt = 0 #FUNCTION [ [edge_hl_x, edge_hl_y], [edge_hr_x, edge_hr_y], [edge_vb_x, edge_vb_y], [edge_vt_x, edge_vt_y] ] = get_exterior_edges(FORCES_MASK) [ [edge_hl_x, edge_hl_y], [edge_hr_x, edge_hr_y], [edge_vb_x, edge_vb_y], [edge_vt_x, edge_vt_y] ] = exterior_edge_to_interior_edge(edge_hl_x=edge_hl_x, edge_hl_y=edge_hl_y, edge_hr_x=edge_hr_x, edge_hr_y=edge_hr_y, edge_vb_x=edge_vb_x, edge_vb_y=edge_vb_y, edge_vt_x=edge_vt_x, edge_vt_y=edge_vt_y) velocity = to_numpy(velocity) u = velocity[0] v = velocity[1] plot_field(FORCES_MASK, plot_type=['surface'], options=[ ['limits', [0, 1]], #['full_zoom', True], ['zoom_position', zoom_pos], ['aux_contourn', False], ['grid', True], ['edges', [ [edge_hl_x, edge_hl_y], [edge_hr_x, edge_hr_y], [edge_vb_x, edge_vb_y], [edge_vt_x, edge_vt_y] ]], ['velocity', velocity], ], Lx=Lx, Ly=Ly, dx=dx, dy=dy, lx='x', ly='y',lbar='mask', save=True, filename=f'{out_dir}normal_test_in.png') #Set normal velocities u[edge_hl_x, edge_hl_y] = vl u[edge_hr_x +1, edge_hr_y] = vr v[edge_vb_x, edge_vb_y] = vb v[edge_vt_x, edge_vt_y + 1] = vt #Pass to phiflow velocity = to_staggered([u,v], Lx, Ly) # vel= torch.zeros((1, 2, Nx+1, Ny+1)) # vel[0,0,:,:] = torch.from_numpy(u) # vel[0,1,:,:] = torch.from_numpy(v) # velocity_init = DOMAIN.staggered_grid(1) # tensor_U = math.wrap(vel.cuda(), 'batch,vector,x,y') # lower = math.wrap(velocity_init.box.lower) # upper = math.wrap(velocity_init.box.upper) # extrapolation = math.extrapolation.ZERO # tensor_U_unstack = unstack_staggered_tensor(tensor_U) # velocity = StaggeredGrid(tensor_U_unstack, geom.Box(lower, upper), extrapolation) # END FUNCTION #################################################### ###################################################### #FINAL FUNCTION ##################################3 out_dir='./' Nx=10 Ny=10 Ly=10 Lx=10 dx=Lx/Nx dy=Ly/Ny xD=5 D=4 DOMAIN = Domain(x=Nx, y=Ny, boundaries=[OPEN, STICKY], bounds=Box[0:Lx, 0:Ly]) velocity = ((DOMAIN.staggered_grid(Noise(batch=1)) * 0 )+1) *(1,1) BOX_MASK = HardGeometryMask(Box[xD-D:xD+D, Ly/2-D:Ly/2+D]) >> DOMAIN.scalar_grid() FORCES_MASK = HardGeometryMask(Sphere([xD, Ly/2], radius=D/2 )) >> DOMAIN.scalar_grid() zoom_pos=[xD + D -1, xD + D +1, Ly/2 + D -1, Ly/2 + D +1 ] velocity = set_normal_bc(FORCES_MASK, velocity = velocity, velocity_BC = [0,0,0,0]) plot_field(FORCES_MASK, plot_type=['surface'], options=[ ['limits', [0, 1]], #['full_zoom', True], ['zoom_position', zoom_pos], ['aux_contourn', False], ['grid', True], ['edges', [ [edge_hl_x, edge_hl_y], [edge_hr_x, edge_hr_y], [edge_vb_x, edge_vb_y], [edge_vt_x, edge_vt_y] ]], ['velocity', velocity], ], Lx=Lx, Ly=Ly, dx=dx, dy=dy, lx='x', ly='y',lbar='mask', save=True, filename=f'{out_dir}normal_test_out.png')
1.601563
2
shooting.py
hcbh96/SC_Coursework_1
2
12795130
from scipy.optimize import root from scipy.integrate import solve_ivp import numpy as np def phase_cond(u, dudt): res= np.array(dudt(0,u)) return res def periodicity_cond(u, dudt, T): # integrate the ode for time t from starting position U res = np.array(u - solve_ivp(dudt, (0, T), u).y[:,-1]) return res def g(state_vec, dudt): T = state_vec[-1] u=state_vec[0:-1] res = np.concatenate(( periodicity_cond(u, dudt, T), phase_cond(u, dudt), )) return res def shooting(state_vec, dudt): """ A function that returns an estimation of the starting condition of a BVP subject to the first order differential equations USAGE: shooting(state_vec, dudt) INPUTS: state_vec : ndarray the state_vector to solve, [u0...uN,T] the final argument should be the expected period of the limit cycle or the period of the limit cycle. dudt : ndarray containing the first order differtial equations to be solved ---------- OUTPUT : an ndarray containing the corrected initial values for the limit cycle. NOTE: This function is currently having issues when used with npc however it is also currently passing all of its tests """ sol = root(g, state_vec, args=(dudt,), method="lm") if sol["success"] == True: print("Root finder found the solution u={} after {} function calls" .format(sol["x"], sol["nfev"])) return sol["x"] else: print("Root finder failed with error message: {}".format(sol["message"])) return None
2.78125
3
utils/deployment/link_cover.py
jstavr/SDN_Project
0
12795131
<reponame>jstavr/SDN_Project #!/usr/bin/python import networkx as nx import time, random, copy topology_file = open("data/topology.data") G=nx.read_edgelist(topology_file) topology_file.close() #Only numbers are end terminals end_terminals = [unicode(str(x)) for x in range(1, 100)] links = G.edges() shortest_paths = nx.shortest_path(G) rule_lists = [] for source in end_terminals: for destination in end_terminals: try: if destination != source: rule_lists.append(shortest_paths[source][destination]) except: pass start_packets = len(rule_lists) result_rule_lists = [] st = time.time() # Remove end links new_links = copy.deepcopy(links) for link in links: (source, destination) = link if source in end_terminals or destination in end_terminals: new_links.remove(link) links = new_links # Min-Set-Cover while len(links) > 0: lucky_index = random.randint(0, len(rule_lists)-1) lucky_path = rule_lists[lucky_index] # Break the path into links, excluding the end terminals for index in xrange(1, len(lucky_path)-2): new = False if (lucky_path[index],lucky_path[index+1]) in links: new = True result_rule_lists.append(lucky_path) # Rules that have been hit already if new: for index2 in xrange(1, len(lucky_path)-2): if (lucky_path[index],lucky_path[index+1]) in links: links.remove((lucky_path[index],lucky_path[index+1])) break end_packets = len(result_rule_lists) en = time.time() print "Compression: Start=%d, End=%d, Ratio=%f, Time=%f" % (start_packets, end_packets, float(end_packets)/start_packets, en-st) # Now we start to filter CSV file to select ones that we're interested in. # Step 1: Build "DNS" hosts_file = open('data/hosts.txt') ips_file = open('data/ips.txt') ip_to_host_dict = {} for ip in ips_file: host = hosts_file.readline().split('.')[0] ip_to_host_dict[ip.strip()] = host hosts_file.close() ips_file.close() # Step 2: Build test pairs test_pairs = [] for rule_list in result_rule_lists: test_pairs.append(("swan-ap%s"%rule_list[0], "swan-ap%s"%rule_list[-1])) # Step 3: Filter results_file = open('data/output.csv') new_results_file = open('data/output_filtered.csv', 'w') for line in results_file: components = line.split(',') source = components[1].strip('\"') try: destination = ip_to_host_dict[components[2].strip('\"')] except: continue if (source, destination) in test_pairs or (destination, source) in test_pairs: new_results_file.write(line) results_file.close() new_results_file.close()
2.5
2
agrirouter/onboarding/exceptions.py
DKE-Data/agrirouter-sdk-python
0
12795132
class AgriRouuterBaseException(Exception): _message = ... def __init__(self, message=None): if not message: message = self._message self.message = message class WrongCertificationType(AgriRouuterBaseException): _message = "Wrong Certification type. Use onboarding.enums.CertificationTypes values instead." class WrongGateWay(AgriRouuterBaseException): _message = "Wrong Gate Way Id. Use onboarding.enums.GateWays values instead." class RequestNotSigned(AgriRouuterBaseException): _message = """ Request does not contain signature header. Please sign the request with request.sign() method.\n Details on: https://docs.my-agrirouter.com/agrirouter-interface-documentation/latest/ integration/onboarding.html#signing-requests """ class BadMessagingResult(AgriRouuterBaseException): _message = "Messaging Request failed"
2.6875
3
unnoise/medianV1.py
Krown0s/TraitementsImages
0
12795133
<reponame>Krown0s/TraitementsImages<filename>unnoise/medianV1.py # -*- encoding: utf-8 -*- from copy import deepcopy from numpy import * """ Débruitage par filtrage médian <image> l'image à débruiter retourne l'image débruitée """ def median(image): nombrePixel = 0 newimg = deepcopy(image) # Parcours des lignes de pixels for x in range(newimg.shape[0]): # Parcours des colonnes de pixels for y in range(newimg.shape[1]): newimg[x][y] = getPixels(newimg, x, y) if(image[x][y] == newimg[x][y]): nombrePixel = nombrePixel + 1 #print("Nombre de pixels non modifies : " + str(nombrePixel)) #print("Pourcentage de pixels non modifes : " + str(image.shape[0]*image.shape[1]/nombrePixel) + str(" %")) return newimg # Il faut prendre les 8 pixels qui sont autours du pixel sur lequel nous travaillons # Il faut ranger les pixels par valeurs croissantes # Et ensuite prendre la mediane de cette liste ordonnee """ Image: Image sur laquelle nous travaillons x : position x du pixel y : position y du pixel return : retourne une liste qui contient les 8 pixels autours du pixel sur lequel nous travaillons """ def getPixels(image, x, y): liste = zeros(8, float) if image.shape[0] - 1 >= x - 1 >= image.shape[0] - 1 >= 0 and image.shape[1] - 1 >= y - 1 >= 0: liste[0] = image[x - 1][y - 1] if image.shape[0] - 1 >= x - 1 >= 0: liste[1] = image[x - 1][y] if image.shape[0] - 1 >= x - 1 >= 0 and image.shape[1] - 1 >= y + 1 >= 0: liste[2] = image[x - 1][y + 1] if image.shape[1] - 1 >= y - 1 >= 0: liste[3] = image[x][y - 1] if image.shape[1] - 1 >= y + 1 >= 0: liste[4] = image[x][y + 1] if image.shape[0] - 1 >= x + 1 >= 0 and image.shape[1] - 1 >= y - 1 >= 0: liste[5] = image[x + 1][y - 1] if image.shape[0] - 1 >= x + 1 >= 0: liste[6] = image[x + 1][y] if image.shape[0] - 1 >= x + 1 >= 0 and image.shape[1] - 1 >= y + 1 >= 0: liste[7] = image[x + 1][y + 1] # Permet de trier notre liste liste = sorted(liste) mediane = (liste[3] + liste[4]) / 2.0 # Retourne la mediane (8 pixels donc 8/2 = 4) return mediane
2.984375
3
src/zope/pluggableauth/plugins/httpplugins.py
zopefoundation/zope.pluggableauth
2
12795134
<gh_stars>1-10 ############################################################################## # # Copyright (c) 2004 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """PAS plugins related to HTTP """ __docformat__ = "reStructuredText" import base64 from zope.interface import implementer, Interface from zope.publisher.interfaces.http import IHTTPRequest from zope.schema import TextLine from zope.pluggableauth import interfaces try: unicode except NameError: # Py3: define unicode unicode = str class IHTTPBasicAuthRealm(Interface): """HTTP Basic Auth Realm Represents the realm string that is used during basic HTTP authentication """ realm = TextLine(title=u'Realm', description=u'HTTP Basic Authentication Realm', required=True, default=u'Zope') @implementer(interfaces.ICredentialsPlugin, IHTTPBasicAuthRealm) class HTTPBasicAuthCredentialsPlugin(object): realm = 'Zope' protocol = 'http auth' def extractCredentials(self, request): """Extracts HTTP basic auth credentials from a request. First we need to create a request that contains some credentials. >>> from zope.publisher.browser import TestRequest >>> request = TestRequest( ... environ={'HTTP_AUTHORIZATION': u'Basic bWdyOm1ncnB3'}) Now create the plugin and get the credentials. >>> plugin = HTTPBasicAuthCredentialsPlugin() >>> from pprint import pprint >>> pprint(plugin.extractCredentials(request)) {'login': u'mgr', 'password': u'<PASSWORD>'} Make sure we return `None`, if no authentication header has been specified. >>> print(plugin.extractCredentials(TestRequest())) None Also, this plugin can *only* handle basic authentication. >>> request = TestRequest(environ={'HTTP_AUTHORIZATION': 'foo bar'}) >>> print(plugin.extractCredentials(TestRequest())) None This plugin only works with HTTP requests. >>> from zope.publisher.base import TestRequest >>> print(plugin.extractCredentials(TestRequest('/'))) None According to RFC 2617, password can contain one or more colons; user ID can't contain any colon. >>> from zope.publisher.browser import TestRequest as BrowserRequest >>> request = BrowserRequest('/', ... environ={'HTTP_AUTHORIZATION': u'Basic bWdyOm1ncnB3OndpdGg6Y29sb24='}) >>> pprint(plugin.extractCredentials(request)) {'login': u'mgr', 'password': u'<PASSWORD>'} """ if not IHTTPRequest.providedBy(request): return None if request._auth: if request._auth.lower().startswith(u'basic '): credentials = request._auth.split()[-1] if isinstance(credentials, unicode): # No encoding needed, should be base64 string anyways. credentials = credentials.encode() login, password = base64.b64decode(credentials).split(b':', 1) return {'login': login.decode('utf-8'), 'password': password.decode('utf-8')} return None def challenge(self, request): """Issues an HTTP basic auth challenge for credentials. The challenge is issued by setting the appropriate response headers. To illustrate, we'll create a plugin: >>> plugin = HTTPBasicAuthCredentialsPlugin() The plugin adds its challenge to the HTTP response. >>> from zope.publisher.browser import TestRequest >>> request = TestRequest() >>> response = request.response >>> plugin.challenge(request) True >>> response._status 401 >>> response.getHeader('WWW-Authenticate', literal=True) 'basic realm="Zope"' Notice that the realm is quoted, as per RFC 2617. The plugin only works with HTTP requests. >>> from zope.publisher.base import TestRequest >>> request = TestRequest('/') >>> response = request.response >>> print(plugin.challenge(request)) False """ if not IHTTPRequest.providedBy(request): return False request.response.setHeader("WWW-Authenticate", 'basic realm="%s"' % self.realm, literal=True) request.response.setStatus(401) return True def logout(self, request): """Always returns False as logout is not supported by basic auth. >>> plugin = HTTPBasicAuthCredentialsPlugin() >>> from zope.publisher.browser import TestRequest >>> plugin.logout(TestRequest()) False """ return False
2.0625
2
cmscalibration/workflows/gridkacalibration.py
mxsg/CMS-Model-Calibration
0
12795135
import logging import os from datetime import datetime import pandas as pd from analysis import calibrationreport, resource_usage, cpuefficiency, sampling from analysis import jobreportanalysis from analysis import jobreportcleaning from analysis import nodeanalysis from analysis.demandextraction import FilteredJobClassifier, JobDemandExtractor from data.dataset import Metric from exporters.datasetexport import ReferenceWalltimeExporter from importers.dataset_import import DatasetImporter from importers.gridkadata import GridKaNodeDataImporter, ColumnCoreUsageImporter, \ CPUEfficiencyReferenceImporter from importers.jmimport import JMImporter from importers.jobcounts import JobCountImporter from importers.wmaimport import SummarizedWMAImporter from interfaces.workflow import CalibrationWorkflow from merge import job_node from merge.merge_datasets import UnionDatasetMerge from merge.reportmatching import JobReportMatcher from utils import config, visualization from utils import report as rp from utils.report import ReportBuilder from workflows.workflowutils import export_job_counts, export_parameters # Todo Split this up into smaller methods class GridKaCalibration(CalibrationWorkflow): def __init__(self): self.report = ReportBuilder(base_path=config.outputDirectory, filename='calibration-report.md') def run(self): self.report.append('# GridKa Calibration Run') time_now = datetime.now().strftime('%Y-%m-%d, %H:%M:%S') self.report.append('at {}'.format(time_now)) logging.info("Model Calibration run at {}".format(time_now)) start_date = pd.to_datetime(config.startDate) end_date = pd.to_datetime(config.endDate) day_count = (end_date - start_date).days self.report.append() self.report.append("Start date: {} \nEnd date: {}".format(start_date, end_date)) # Import data sets ################## # Timezone correction correct for errors in timestamps of JobMonitoring data dataset_importer = DatasetImporter( JMImporter(timezone_correction='Europe/Berlin', hostname_suffix='.gridka.de', with_files=False)) jm_dataset = dataset_importer.import_dataset(config.inputPaths['jm'], start_date, end_date) wm_dataset = DatasetImporter(SummarizedWMAImporter(with_files=False)) \ .import_dataset(config.inputPaths['wma'], start_date, end_date) cached_matches = None use_caching = config.cacheDir is not None if use_caching: match_cache_file = os.path.join(config.cacheDir, 'jm-wma-matches.csv') if os.path.isfile(match_cache_file): try: cached_matches = pd.read_csv(match_cache_file, usecols=[jm_dataset.df.index.name, wm_dataset.df.index.name]) logging.info( "Loaded {} matches from match cache {}!".format(cached_matches.shape[0], match_cache_file)) except Exception: logging.warning("No match cache found at {}!".format(match_cache_file)) # Match Jobmonitoring and WMArchive job reports matcher = JobReportMatcher(timestamp_tolerance=10, time_grouping_freq='D') matches = matcher.match_reports(jm_dataset, wm_dataset, use_files=False, previous_matches=cached_matches) if use_caching: match_cache_file = os.path.join(config.cacheDir, 'jm-wma-matches.csv') logging.info("Writing {} matches to file {}".format(matches.shape[0], match_cache_file)) matches.to_csv(match_cache_file) jobs_dataset = UnionDatasetMerge().merge_datasets(matches, jm_dataset, wm_dataset, left_index='UniqueID', right_index='wmaid', left_suffix='jm', right_suffix='wma') jobs_dataset.df = jobreportcleaning.clean_job_reports(jobs_dataset.df) # Import node information nodes = GridKaNodeDataImporter().import_file(config.inputPaths['nodeInfo']) nodes = nodeanalysis.add_performance_data(nodes, simulated_cores=config.workflowOptions['coreSimulationMethod'], thread_rate_method=config.workflowOptions['threadPerformanceMethod']) # Match jobs to nodes matched_jobs = job_node.match_jobs_to_node(jobs_dataset.df, nodes) matched_jobs = jobreportanalysis.add_missing_node_info(matched_jobs, nodes) jm_dataset.df = jobreportanalysis.add_performance_data(matched_jobs) job_data = jm_dataset.df # Import additional information for usage of GridKa site core_importer = ColumnCoreUsageImporter() core_df = core_importer.import_file(config.inputPaths['coreUsage'], start_date, end_date) cms_avg_cores = core_df['cms'].mean() avg_jobslots_reports = self.draw_jobslot_usage(jm_dataset, core_df) # Visualize number of jobs in calibration report job_counts_reference_summary = self.add_jobs_over_time(start_date, end_date) # CPU Efficiencies self.add_cpu_efficiency(job_data, start_date, end_date) # Compute calibration parameters node_types = nodeanalysis.extract_node_types(nodes) # Scale the resource environment with both information from the job reports and the Pilot jobs scaled_nodes_pilots = nodeanalysis.scale_site_by_jobslots(node_types, cms_avg_cores) scaled_nodes_reports = nodeanalysis.scale_site_by_jobslots(node_types, avg_jobslots_reports) type_split_cols = config.workflowOptions['typeSplitCols'] split_types = None if 'splitTypes' in config.workflowOptions: split_types = list(map(tuple, config.workflowOptions['splitTypes'])) job_classifier = FilteredJobClassifier(type_split_cols, split_types=split_types) job_groups = job_classifier.split(job_data) job_demand_extractor = JobDemandExtractor(self.report, equal_width=False, bin_count=60, cutoff_quantile=0.95, overflow_agg=config.workflowOptions['overflowAggregationMethod'], additional_job_options=config.workflowOptions['additionalJobOptions'], drop_overflow=config.workflowOptions.get('dropOverflow', False)) demands, partitions = job_demand_extractor.extract_job_demands(job_groups) export_parameters('parameters_slots_from_pilots', scaled_nodes_pilots, demands) export_parameters('parameters_slots_from_reports', scaled_nodes_reports, demands) # Sample half of the reports, fix random state for reproducibility reports_train, reports_test = sampling.split_samples(job_data, frac=0.5, random_state=38728) sampling_report = ReportBuilder(base_path=config.outputDirectory, filename='calibration-report-sampled.md', resource_dir='figures-sampling') job_groups_train = job_classifier.split(reports_train) job_demand_extractor.report = sampling_report sample_demands, sample_partitions = job_demand_extractor.extract_job_demands(job_groups_train) sampling_report.write() export_parameters('parameters_slots_from_pilots_sampled0.5', scaled_nodes_pilots, sample_demands) export_parameters('parameters_slots_from_reports_sampled0.5', scaled_nodes_reports, sample_demands) # Export job throughputs from analyzed jobs jobs_from_reports = job_data.copy() jobs_from_reports[Metric.JOB_TYPE.value] = jobs_from_reports[Metric.JOB_TYPE.value].fillna('unknown') job_counts_reports = jobs_from_reports.groupby(Metric.JOB_TYPE.value).size().reset_index() job_counts_reports.columns = ['type', 'count'] job_counts_reports['throughput_day'] = job_counts_reports['count'].divide(day_count) export_job_counts(job_counts_reports, 'parameters_slots_from_pilots', config.outputPaths['jobCountReports']) # Export walltimes walltime_path = os.path.join(config.outputDirectory, 'parameters_slots_from_pilots', config.outputPaths['walltimeReference']) ReferenceWalltimeExporter().export_to_json_file(partitions, walltime_path) # Write jobs to report calibrationreport.add_jobs_report_section(jm_dataset, self.report) # Write report out to disk self.report.write() def draw_jobslot_usage(self, jm_dataset, core_reference): jobslot_timeseries = resource_usage.calculate_jobslot_usage(jm_dataset.df, jm_dataset.start, jm_dataset.end, start_ts_col=Metric.START_TIME.value, end_ts_col=Metric.STOP_TIME.value, slot_col=Metric.USED_CORES.value) jobslots_from_reports = jobslot_timeseries['totalSlots'].resample('s').pad().resample('H').mean() avg_jobslots_reports = jobslots_from_reports.mean() fig, axes = calibrationreport.multiple_jobslot_usage( {'Extracted from job reports': jobslots_from_reports, 'Allocated to GridKa CMS pilots': core_reference['cms']}) self.report.add_figure(fig, axes, 'jobslot_usage_reference') return avg_jobslots_reports def add_jobs_over_time(self, start_date, end_date): self.report.append("## Number of jobs completed over time") job_counts = JobCountImporter().import_file(config.inputPaths['jobCountsReference'], start_date, end_date) fig, axes = calibrationreport.jobtypes_over_time_df(job_counts, 'date', 'type') self.report.add_figure(fig, axes, 'job_counts_reference', tight_layout=False) job_counts_reference_summary = job_counts.groupby('type')['count'].sum().reset_index() job_counts_reference_summary.columns = ['type', 'count'] job_counts_reference_summary['share'] = job_counts_reference_summary['count'] / job_counts_reference_summary[ 'count'].sum() job_counts_reference_summary['throughput_day'] = job_counts_reference_summary['count'].divide( (end_date - start_date).days) self.report.append("Job throughput from CMS Dashboard:") self.report.append() self.report.append_paragraph(rp.CodeBlock().append(job_counts_reference_summary.to_string())) return job_counts_reference_summary def add_cpu_efficiency(self, job_data, start_date, end_date): efficiency_reference = CPUEfficiencyReferenceImporter(col='cms', output_column='value').import_file( config.inputPaths['CPUEfficiencyReference'], start_date, end_date) efficiency_timeseries, reports_average = cpuefficiency.calculate_efficiencies(job_data, freq='12h') reference = efficiency_reference['value'].resample('12h').mean().rename('reference') reference_mean = efficiency_reference['value'].mean() from_reports = efficiency_timeseries.rename('measured') # cpu_eff = pd.concat([reference, from_reports], axis=1) fig, axes = visualization.draw_efficiency_timeseries( {'extracted from job reports': from_reports, 'reference from GridKa monitoring': reference}) axes.set_ylabel("CPU efficiency (CPU time / wall time)") axes.legend(['Extracted from job reports (average {:.2f}%)'.format(reports_average * 100), 'Reference from GridKa monitoring (average {:.2f}%)'.format(reference_mean * 100)]) axes.set_title("CPU efficiencies ({}, {} days)".format(config.runName, (end_date - start_date).days)) axes.set_xlim(left=start_date, right=(end_date - pd.Timedelta('1 days'))) fig.set_size_inches(8, 4.5) self.report.add_figure(fig, axes, 'cpu_efficiencies_reference') self.report.append("Efficiency from job reports: {} ".format(reports_average)) self.report.append("Efficiency from GridKa: {}".format(reference_mean))
2
2
src/hello_world.py
DreamMazeTeam/BootSrc
0
12795136
<gh_stars>0 import module1 module1.hello()
1.007813
1
django/wx/apps.py
yanhuaijun/learngit
2
12795137
from django.apps import AppConfig class WxConfig(AppConfig): name = 'wx'
1.210938
1
02_P12.py
wiphoo/computer_programing_101
0
12795138
#!/usr/bin/env python3 inputList = input() abcList = sorted( [ int( x ) for x in inputList.split() ] ) print( 'abcList = {}'.format( abcList ) ) print( 'YES' if abcList[0] + abcList[1] > abcList[2] else 'NO' )
3.875
4
scripts/AQP_byPath/collect_results.py
TranslatorIIPrototypes/robo-commons
1
12795139
<reponame>TranslatorIIPrototypes/robo-commons<filename>scripts/AQP_byPath/collect_results.py from neo4j.v1 import GraphDatabase import redis import json import os import time def get_hits(b_id,atype,edge_name,neo4j): cypher = f'MATCH (a:{atype})-[:{edge_name}]-(b {{id:"{b_id}"}}) RETURN distinct a.id' rlist = run_query(cypher,neo4j) return [ r['a.id'] for r in rlist ] def run_query(cypherquery,driver): start = time.time() with driver.session() as session: results = session.run(cypherquery) end = time.time() lr = list(results) print (f' {end-start}, {len(lr)}') return lr def get_redis(): redis_host = '127.0.0.1' redis_port = 6767 redis_db = 4 redis_driver = redis.StrictRedis(host=redis_host, port=int(redis_port), db=int(redis_db)) return redis_driver def create_neo4j(): url = 'bolt://127.0.0.1:7687' driver = GraphDatabase.driver(url, auth=("neo4j", os.environ['NEO4J_PASSWORD'])) return driver def get_topologies(b_id,max_graphs,atype,predicting_edge,red): key=f'MatchingTopologies({b_id},{max_graphs})' print(key) all_topologies = json.loads(red.get(key)) return [tuple(x) for x in all_topologies] #return all_topologies def assess_topology(topology,b_id,max_graphs,atype,predicting_edge,hits,redis): rkey = f'MatchResults({b_id},{max_graphs},{topology})' value = redis.get(rkey) if value is None: print(rkey) exit() all_results = json.loads(value) retres = [] for one_result in all_results: a_s = set(one_result['results']) nhits = len( a_s.intersection(hits) ) recall = nhits / len(hits) precision = nhits / len(a_s) retres.append( (one_result['nodes'],one_result['edges'],len(a_s),nhits,recall,precision) ) return retres def go(b_id, atype, predicting_edge, max_graphs): #Currently, I have not added atype or predicting edge to the redis keys, but I should red = get_redis() neo = create_neo4j() hits = get_hits(b_id,atype,predicting_edge,neo) #for the given b, graphsize, what topologies do I need to check on? topologies = get_topologies(b_id,max_graphs,atype,predicting_edge,red) with open(f'results_{b_id}_{max_graphs}','w') as rfile, open(f'defs_{b_id}_{max_graphs}','w') as gfile: rfile.write('query_id\tNumberResults\tNumberTruePostitives\tRecall\tPrecision\n') gfile.write('query_id\ttopology\tnodes\tedges\n') query_id = 0 for topology in topologies: results = assess_topology(topology,b_id,max_graphs,atype,predicting_edge,hits,red) for res in results: #yuck yuck clean up gfile.write(f'{query_id}\t{topology}\t{res[0]}\t{res[1]}\n') rfile.write(f'{query_id}\t{res[2]}\t{res[3]}\t{res[4]}\t{res[5]}\n') query_id += 1 if __name__ == '__main__': go('MONDO:0005136','chemical_substance','treats',100000)
2.15625
2
cli/prog/cluster.py
rushk014/manager
19
12795140
<gh_stars>10-100 import click from prog.cli import cli from prog.cli import create from prog.cli import delete from prog.cli import request from prog.cli import set from prog.cli import unset from prog.cli import show from prog import client from prog import output from prog import utils @show.group("cluster", invoke_without_command=True) @click.pass_obj @click.pass_context def show_cluster(ctx, data): """Show clusters.""" if ctx.invoked_subcommand is not None: return clusters = data.client.list("experimental/cluster", "cluster") if clusters is None: return columns = ("name", "api_server", "api_port", "username") output.list(columns, clusters) @show_cluster.command() @click.argument("id_or_name") @click.pass_obj def detail(data, id_or_name): """Show cluster detail.""" cluster = data.client.show("experimental/cluster", "cluster", id_or_name) if not cluster: return columns = ("name", "api_server", "api_port", "username") output.show(columns, cluster) @create.command("cluster") @click.argument('name') @click.argument('server') @click.argument('port', type=int) @click.argument('username') @click.pass_obj def create_cluster(data, name, server, port, username): """Create cluster.""" pass1 = click.prompt("User Password", hide_input=True) pass2 = click.prompt("Confirm User Password", hide_input=True) if pass1 != pass2: click.echo("Passwords do not match") return cfg = {"name": name, "api_server": server, "api_port": port, "username": username, "password": <PASSWORD>} data.client.create("experimental/cluster", {"config": cfg}) @set.command("cluster") @click.argument('name') @click.option('--server', help="Set API server.") @click.option('--port', type=int, help="Set API server port.") @click.option('-u', '--username', help="Set username.") @click.option("-p", "--password", is_flag=True, help="Set password.") @click.pass_obj def set_cluster(data, name, server, port, username, password): """Set cluster configuration.""" cfg = {"name": name} doit = False if server is not None: doit = True cfg["api_server"] = server if port is not None: doit = True cfg["api_port"] = port if username is not None: doit = True cfg["username"] = username if password: pass1 = click.prompt("Password", hide_input=True) pass2 = click.prompt("Confirm Password", hide_input=True) if pass1 != pass2: click.echo("Passwords do not match") return cfg["password"] = <PASSWORD> doit = True if doit: data.client.config("experimental/cluster", name, {"config": cfg}) else: click.echo("Please specify configurations to be set.") @delete.command("cluster") @click.argument('name') @click.pass_obj def delete_cluster(data, name): """Delete cluster.""" data.client.delete("experimental/cluster", name) @request.group('cluster') @click.pass_obj def request_cluster(data): """Request cluster""" @request_cluster.command("test") @click.argument('name') @click.argument('server') @click.argument('port', type=int) @click.argument('username') @click.pass_obj def test_cluster(data, name, server, port, username): """test cluster.""" pass1 = click.prompt("User Password", hide_input=True) cfg = {"name": name, "api_server": server, "api_port": port, "username": username, "password": <PASSWORD>} data.client.request("experimental/debug", "cluster", "test", {"test": cfg})
2.421875
2
scripts/searchbibs.py
acumb/SearchRefs
0
12795141
<reponame>acumb/SearchRefs<gh_stars>0 #!/usr/env python """Search bibliography database. The search string takes the format of field:[field name] followed by a list of terms to search for in that field. The implied boolean operator between these terms is "and". To use other boolean operators with the same field, the field:[field name] must be repeated after the operator. More generally, the boolean operators "and", "or", and "not" can be placed before the field specifier. The "and" operator is again the default between field specifiers. The same field names are used to specify the desired output. Example: searchbibs.py -s field:keywords anillin and not field:keywords review -t title year author keywords """ import argparse import bibtools.bib as btl def main(): args = parse_args() bibliography = btl.Bibliography(btl.BIB_DIRECTORY) search_string = btl.SearchString(args.search_string) bibliography.match_and_print_fields(search_string, args.terms) def parse_args(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( '-s', type=str, nargs='+', dest='search_string', help='Search string') parser.add_argument( '-t', type=str, nargs='+', default=['title', 'year', 'author', 'annote'], dest='terms', help='Terms to print') return parser.parse_args() if __name__ == '__main__': main()
3.546875
4
integration/tests/integration/tests/smoke/instance.py
sapcc/trove
1
12795142
from proboscis.asserts import assert_equal from proboscis import test from proboscis import before_class from trove.common.utils import poll_until from trove.tests.util import create_client class InstanceGenerator(object): def __init__(self, client, status=None, name=None, flavor=None, account_id=None, created_at=None, databases=None, users=None, volume_size=None): self.client = client self.status = status self.name = name self.flavor = flavor self.account_id = account_id self.databases = databases self.users = users self.volume_size = volume_size self.id = None def create_instance(self): #make the call to create the instance instance = self.client.instances.create(self.name, self.flavor, self.volume_size, self.databases, self.users) self.client.assert_http_code(200) #verify we are in a build state assert_equal(instance.status, "BUILD") #pull out the ID self.id = instance.id return instance def wait_for_build_to_finish(self): poll_until(lambda: self.client.instance.get(self.id), lambda instance: instance.status != "BUILD", time_out=600) def get_active_instance(self): instance = self.client.instance.get(self.id) self.client.assert_http_code(200) #check the container name assert_equal(instance.name, self.name) #pull out volume info and verify assert_equal(str(instance.volume_size), str(self.volume_size)) #pull out the flavor and verify assert_equal(str(instance.flavor), str(self.flavor)) return instance @test(groups=['smoke', 'positive']) class CreateInstance(object): @before_class def set_up(self): client = create_client(is_admin=False) name = 'test_createInstance_container' flavor = 1 volume_size = 1 db_name = 'test_db' databases = [ { "name": db_name } ] users = [ { "name": "lite", "password": "<PASSWORD>", "databases": [{"name": db_name}] } ] #create the Instance instance = InstanceGenerator(client, name=self.name, flavor=flavor, volume_size=self.volume_size, databases=databases, users=users) instance.create_instance() #wait for the instance instance.wait_for_build_to_finish() #get the active instance inst = instance.get_active_instance() #list out the databases for our instance and verify the db name dbs = client.databases.list(inst.id) client.assert_http_code(200) assert_equal(len(dbs), 1) assert_equal(dbs[0].name, instance.db_name) client.instance.delete(inst.id) client.assert_http_code(202)
2.53125
3
LC218.py
XinnWang/PythonLab
0
12795143
<gh_stars>0 buildings = [ [2,9,10], [3,7,15], [5,12,12], [15,20,10], [19,24,8] ] #buildings = [[0,2,3],[2,5,3]] s = [] for e in buildings: s.append([e[0],e[2]]) s.append([e[1],-e[2]]) s = sorted(s,key=lambda x:(x[0],-x[1])) print(s) res = [] h = [0] max_h = 0 for e in s: if e[1] < 0: h.remove(-e[1]) else: h.append(e[1]) if max_h != max(h): max_h = max(h) res.append([e[0],max_h]) print(res)
2.875
3
Data Science and Machine Learning/Machine-Learning-In-Python-THOROUGH/EXAMPLES/EDABIT/EARLIER/23_sales_season.py
okara83/Becoming-a-Data-Scientist
0
12795144
""" Sales Season A retailer is having a store-wide "buy 3, get 1 free" sale. For legal reasons, they can't charge their customers $0 for an article so a discount is applied to all products instead. For example, if a customer gets three products a, b and c: Product A Product B Product C $15.99 $23.50 $10.75 She gets the cheapest one for free, so she ends up paying $15.99 + $23.50 = $39.49, but what her receipt says is: Product A: $15.99 − Special Discount = $12.57 Product B: $23.50 − Special Discount = $18.47 Product C: $10.75 − Special Discount = $8.45 Total: $39.49 Create a function that takes in a list of prices for a customer's shopping cart and returns the prices with the discount applied. Round all prices to the cent. Examples discount([2.99, 5.75, 3.35, 4.99]) ➞[2.47, 4.74, 2.76, 4.12] # First product for free. discount([10.75, 11.68]) ➞ [10.75, 11.68] # No discounts applied. discount([68.74, 17.85, 55.99]) ➞ [60.13, 15.62, 48.98] # Second product for free. Notes The discount is calculated in percentual terms. The deal applies to sets of three products: if a customer gets 9 products, she will get the three cheapest ones for free, but if she gets 10 or 11 products, she will still get three for free. Buying a 12th product would get her a fourth free product. No cart splitting allowed. """ def discount(lst): if len(lst)<3: return(lst) e = [] a = len(lst)//3 b = sorted(lst,reverse=True) c = sum(b) d= sum(b[:-a]) for i in lst: e.append(round(i*(d/c),2)) return (e) #discount([2.99, 5.75, 3.35, 4.99]) #, [2.47, 4.74, 2.76, 4.12]) #discount([10.75, 11.68]) #, [10.75, 11.68]) #discount([68.74, 17.85, 55.99]) #, [60.13, 15.62, 48.98]) discount([5.75, 14.99, 36.83, 12.15, 25.30, 5.75, 5.75, 5.75]) #, [5.16, 13.45, 33.06, 10.91, 22.71, 5.16, 5.16, 5.16]) #discount([14.15, 9.45, 3.72, 5.99, 8.13, 8.85]) #, [11.42, 7.63, 3.0, 4.83, 6.56, 7.14]) #discount([2.98, 0.25, 1.25]) #, [2.81, 0.24, 1.18]) #discount([9.20]) #, [9.20])
4.15625
4
tests/test_load.py
yaniv-aknin/fafalytics
1
12795145
<filename>tests/test_load.py import testutils from fafalytics import loader from fafalytics.pyutils import Query as Q def test_load(): dump = testutils.testdata / 'dump.json' with open(dump) as handle: resolver = loader.GameJsonResolver.from_handle(handle) games = {game['id']: game for game in resolver} game = games['14395861'] assert Q('playerStats/0/id')(game) == '28030229'
2.53125
3
manager.py
contrailnfx/Controller
0
12795146
<reponame>contrailnfx/Controller<filename>manager.py import sys import os from orchestrator.app import app from flask_sqlalchemy import SQLAlchemy from flask.ext.migrate import Migrate, MigrateCommand from flask.ext.script import Manager, Server host = app.config['HOST'] db_url= app.config['SQLALCHEMY_DATABASE_URI'] db = SQLAlchemy(app) # default to dev config env = os.environ.get('WEBAPP_ENV', 'dev') app = app() migrate = Migrate(app, db) manager = Manager(app) manager.add_command("server", Server()) manager.add_command('db', MigrateCommand) @manager.shell def make_shell_context(): return dict( app=app, db=db, ) if __name__ == "__main__": manager.run()
2.28125
2
src/graph_transpiler/webdnn/frontend/chainer/functions/noise.py
steerapi/webdnn
1
12795147
<gh_stars>1-10 import chainer from webdnn.frontend.chainer.converter import ChainerConverter from webdnn.util import console @ChainerConverter.register_handler("Dropout") def _convert_dropout(converter: ChainerConverter, c_op: "chainer.functions.Dropout"): console.warning("[ChainerConverter] Dropout is ignored") x = converter.get_variable(c_op.inputs[0]) converter.set_variable(c_op.outputs[0](), x) # noinspection PyUnusedLocal @ChainerConverter.register_handler("Gaussian") def _convert_gaussian(converter: ChainerConverter, c_op: "chainer.functions.Gaussian"): # TODO raise NotImplementedError("[ChainerConverter] Gaussian is not supported") # noinspection PyUnusedLocal @ChainerConverter.register_handler("SimplifiedDropconnect") def _convert_simplified_dropconnect(converter: ChainerConverter, c_op: "chainer.functions.SimplifiedDropconnect"): # TODO raise NotImplementedError("[ChainerConverter] SimplifiedDropconnect is not supported") # noinspection PyUnusedLocal @ChainerConverter.register_handler("Zoneout") def _convert_zoneout(converter: ChainerConverter, c_op: "chainer.functions.Zoneout"): # TODO raise NotImplementedError("[ChainerConverter] Zoneout is not supported")
2.5
2
mini-projects/aic-15-image-search-engine/utils/utils.py
elbertsoftware/SpringboardAIC
3
12795148
<gh_stars>1-10 import numpy as np from scipy.spatial.distance import hamming, cosine, euclidean def compare_color(color_vectors, uploaded_image_colors, ids): ''' Comparing color vectors of closest images from the training set with a color vector of a uploaded image (query image). :param color_vectors: color features vectors of closest training set images to the uploaded image :param uploaded_image_colors: color vector of the uploaded image :param ids: indices of training images being closest to the uploaded image (output from a distance function) ''' color_distances = [] for i in range(len(color_vectors)): color_distances.append(euclidean(color_vectors[i], uploaded_image_colors)) #The 15 is just an random number that I have choosen, you can return as many as you need/want return ids[np.argsort(color_distances)[:15]] def cosine_distance(training_set_vectors, query_vector, top_n=50): ''' Calculates cosine distances between query image (vector) and all training set images (vectors). :param training_set_vectors: numpy Matrix, vectors for all images in the training set :param query_vector: numpy vector, query image (new image) vector :param top_n: integer, number of closest images to return ''' distances = [] for i in range(len(training_set_vectors)): #For Cifar 10 -> 50k images distances.append(cosine(training_set_vectors[i], query_vector[0])) return np.argsort(distances)[:top_n] def hamming_distance(training_set_vectors, query_vector, top_n=50): ''' Calculates hamming distances between query image (vector) and all training set images (vectors). :param training_set_vectors: numpy Matrix, vectors for all images in the training set :param query_vector: numpy vector, query image (new image) vector :param top_n: Integer, number of closest images to return ''' distances = [] for i in range(len(training_set_vectors)): #For Cifar 10 -> 50k images distances.append(hamming(training_set_vectors[i], query_vector[0])) return np.argsort(distances)[:top_n] def sparse_accuracy(true_labels, predicted_labels): ''' Calculates accuracy of a model based on softmax outputs. :param true_labels: numpy array, real labels of each sample. Example: [1, 2, 1, 0, 0] :param predicted_labels: numpy matrix, softmax probabilities. Example [[0.2, 0.1, 0.7], [0.9, 0.05, 0.05]] ''' assert len(true_labels) == len(predicted_labels) correct = 0 for i in range(len(true_labels)): if np.argmax(predicted_labels[i]) == true_labels[i]: correct += 1 return correct / len(true_labels)
2.90625
3
shell/lab0.py
utep-cs-systems-courses/os-shell-janguiano4
0
12795149
#<NAME> #CS4375: OS #3 methods from os import read #from os library import read method next = 0 limit = 0 #This method calls read to fill a buffer, and gets one char at at time def my_getChar(): #define = creating method : use method, loops, tryCatch global next, limit #initializing 2 variables if next == limit: next = 0 limit = read(0,1000) # if limit == 0: return "EOF" if next < len(limit) -1: #Check to make sure limit[next] wont go out of bounds. c = chr(limit[next])#converting from ascii to char next += 1 return c else: return "EOF" def my_getLine(): global next global limit line = "" char = my_getChar() while (char != '' and char != "EOF"): line += char char = my_getChar() next = 0 limit = 0 return line def my_readLines(): numLines = 0 inLine = my_getLine() while len(inLine): numLines += 1 print(f"### Line {numLines}: <{str(inLine)}> ###\n") inLine = my_getLine() print(f"EOF after {numLines}\n")
3.6875
4
app/__init__.py
sebbesiren/game-api
0
12795150
<reponame>sebbesiren/game-api from eve import Eve from app.domain import DOMAIN from app.services import Services from config import Config def create_app(): app = Eve() Services.init_services(app=app, domain=DOMAIN) return app
1.609375
2