max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
hackerrank/all-domains/data-structures/arrays/2d-array-ds/solution.py
arvinsim/coding-site-solutions
0
12795251
#!/bin/python #https://www.hackerrank.com/challenges/2d-array # KEY INSIGHTS # 1. Variables in list comprehensians are not encapsulated. They could shadow # local variables if you name them the same # 2. When looping 2-dimensional arrays, the outer loop should represent the # y-axis while the inner loop should represent the x-axis import sys ARRAY_DIMENSION = 6 HOURGLASS_WIDTH = 3 HOURGLASS_HEIGHT = 3 def get_2d_array_visualization(items): visualization = '' for rows in items: visualization += ' '.join([str(row) for row in rows]) + '\n' return visualization def get_array_input(): # return [ # [1, 1, 1, 0, 0, 0], # [0, 1, 0, 0, 0, 0], # [1, 1, 1, 0, 0, 0], # [0, 9, 2, -4, -4, 0], # [0, 0, 0, -2, 0, 0], # [0, 0, -1, -2, -4, 0], # ] # return [ # [-1, -1, 0, -9, -2, -2, ], # [-2, -1, -6, -8, -2, -5], # [-1, -1, -1, -2, -3, -4], # [-1, -9, -2, -4, -4, -5], # [-7, -3, -3, -2, -9, -9], # [-1, -3, -1, -2, -4, -5], # ] arr = [] for arr_i in xrange(ARRAY_DIMENSION): arr_temp = map(int,raw_input().strip().split(' ')) arr.append(arr_temp) return arr def is_part_of_hourglass(x, y): if (x == 1 and y == 0) or (x == 1 and y == 2): return False else: return True def get_hourglass_sum(hourglass): s = 0 for row in hourglass: for item in row: s += item return s def get_hourglass(arr, x, y): hourglass = [[0 for foo in xrange(HOURGLASS_WIDTH)] for bar in xrange(HOURGLASS_HEIGHT)] for b in xrange(HOURGLASS_HEIGHT): for a in xrange(HOURGLASS_WIDTH): if is_part_of_hourglass(a, b): current_x = a + x current_y = b + y hourglass[a][b] = arr[current_x][current_y] return hourglass arr = get_array_input() greatest_sum = None for x in xrange(ARRAY_DIMENSION - HOURGLASS_WIDTH + 1): for y in xrange(ARRAY_DIMENSION - HOURGLASS_HEIGHT + 1): hg = get_hourglass(arr, x, y) shg = get_hourglass_sum(hg) # print(get_2d_array_visualization(hg)) # print(shg) # print('==========') if greatest_sum is None: greatest_sum = shg if shg > greatest_sum: greatest_sum = shg print(greatest_sum)
4.125
4
psosc.py
AlgoLab/pso-cancer-evolution
1
12795252
<filename>psosc.py """ Particle Swarm Optimization Single Cell inference Usage: psosc.py (-i infile) (-c cores) (-k k) (-a alpha) (-b beta) [-p particles] [-g gamma] [-t iterations] [-d max_deletions] [-e mutfile] [-T tolerance] [-m maxtime] [-I truematrix] [--quiet] [--output output] psosc.py --help psosc.py --version Options: -i infile Matrix input file -c cores Number of CPU cores -k k K value of Dollo(k) model used as phylogeny tree -a alpha False negative rate in input file or path of the file containing different FN rates for each mutations -b beta False positive rate -p particles Number of particles (single or multiple values, separated by commas, for a multiple run); by default it is calculated proportionally to the size of the matrix -g gamma Loss rate in input file or path of the file containing different GAMMA rates for each mutations [default: 1] -t iterations Number of iterations (-m argument will be ignored; not used by default) -d max_deletions Maximum number of total deletions allowed [default: +inf] -e mutfile Path of the mutation names. If not used, mutations will be named progressively from 1 to mutations (not used by default) -T tolerance Tolerance, minimum relative improvement (between 0 and 1) in the last iterations in order to keep going, if iterations are not used [default: 0.005] -m maxtime Maximum time (in seconds) of total PSOSC execution (not used by default) -I truematrix Actual correct matrix, for algorithm testing (not used by default) --quiet Doesn't print anything (not used by default) --output output Limit the output (files created) to: (image | plots | text_file | all) [default: all] """ from Helper import Helper from Particle import Particle from Tree import Tree from Data import Data import os import sys import time from docopt import docopt from datetime import datetime import multiprocessing import threading import psutil def main(argv): arguments = docopt(__doc__, version = "PSOSC-Cancer-Evolution 2.0") base_dir = "results" + datetime.now().strftime("%Y%m%d%H%M%S") helper = Helper(arguments) if helper.multiple_runs: runs_data = [] for r, n_particles in enumerate(helper.n_particles): print ("\n\n======= Run number %d =======" % (r+1)) run_dir = base_dir + "/particles%d_run%d" % (n_particles, (r+1)) if not os.path.exists(base_dir): os.makedirs(base_dir) data = pso(helper, n_particles) data.summary(helper, run_dir) runs_data.append(data) Data.runs_summary(helper.n_particles, runs_data, base_dir) else: data = pso(helper) data.summary(helper, base_dir) def pso(helper, n_particles=None): # assigning process to cores selected_cores = get_least_used_cores(helper.cores) assign_to_cores(os.getpid(), selected_cores) if n_particles == None: n_particles = helper.n_particles if not helper.quiet: print("\n • %d PARTICLES START-UP" % (n_particles)) Tree.set_probabilities(helper.alpha, helper.beta) data = Data(helper.filename, n_particles, helper.output) data.pso_start = time.time() # creating shared memory between processes manager = multiprocessing.Manager() assign_to_cores(manager._process.ident, selected_cores) lock = manager.Lock() ns = manager.Namespace() # selecting particles to assign to processes assigned_numbers = [[] for i in range(helper.cores)] for i in range(n_particles): assigned_numbers[i%(helper.cores)].append(i) # coping data into shared memory ns.best_swarm = None ns.swarm_best_likelihoods = [] ns.particle_best_likelihoods = [[] for x in range(helper.n_particles)] ns.iterations_performed = data.iterations_performed ns.stop = False ns.operations = [2,3] ns.attach = True if not helper.quiet: print("\n • PSO RUNNING...") print("\t Time\t\t Best likelihood so far") # creating and starting processes processes = [] for i in range(helper.cores): processes.append(multiprocessing.Process(target = start_threads, args = (selected_cores, assigned_numbers[i], data, helper, ns, lock))) for p in processes: p.start() for p in processes: p.join() # copying back data from shared memory data.swarm_best_likelihoods = ns.swarm_best_likelihoods data.particle_best_likelihoods = ns.particle_best_likelihoods data.iterations_performed = ns.iterations_performed data.best = ns.best_swarm.copy() data.pso_end = time.time() if not helper.quiet: print("\n • FINAL RESULTS") print("\t- time to complete pso with %d particles: %s seconds" % (data.n_particles, str(round(data.get_total_time(), 2)))) print("\t- best likelihood: %s\n" % str(round(data.best.likelihood, 2))) return data def start_threads(selected_cores, assigned_numbers, data, helper, ns, lock): assign_to_cores(os.getpid(), selected_cores) particles = [] for i in assigned_numbers: p = Particle(helper.cells, helper.mutation_number, helper.mutation_names, i) p.current_tree.likelihood = Tree.greedy_loglikelihood(p.current_tree, helper.matrix, helper.cells, helper.mutation_number) if ns.best_swarm is None: ns.best_swarm = p.current_tree.copy() p.thread = threading.Thread(target = p.run_iterations, args = (helper, ns, lock)) particles.append(p) for p in particles: p.thread.start() for p in particles: p.thread.join() def get_least_used_cores(n_cores): cpu_usage = psutil.cpu_percent(percpu=True) cores = [] for i in range(n_cores): c = cpu_usage.index(min(cpu_usage)) cores.append(c) cpu_usage[c] = float("+inf") return cores def assign_to_cores(pid, cores): proc = psutil.Process(pid) proc.cpu_affinity(cores) if __name__ == "__main__": main(sys.argv[1:])
2.296875
2
drf_nested/mixins/base_nestable_mixin.py
promoteinternational/drf-nested
1
12795253
<reponame>promoteinternational/drf-nested from rest_framework import serializers class BaseNestableMixin(serializers.ModelSerializer): def _get_model_pk(self): if isinstance(self, serializers.ListSerializer): model = self.child.Meta.model else: model = self.Meta.model return model._meta.pk.attname def _set_instance_from_queryset(self, validated_data, queryset): pk = self._get_model_pk() self.instance = None if validated_data and isinstance(validated_data, dict) and pk in validated_data: try: instance = queryset.get(pk=validated_data.get(pk)) self.instance = instance except queryset.model.DoesNotExist: pass def _set_instance_from_existing(self, validated_data, instance): pk = self._get_model_pk() if validated_data and isinstance(validated_data, dict) and pk in validated_data: validated_data_pk = validated_data.get(pk) if self.instance is not None: model_class = instance.__class__ if self.instance.pk != validated_data_pk: try: self.instance = model_class.objects.get(pk=validated_data_pk) except model_class.model.DoesNotExist: pass def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass class Meta: model = None
2.015625
2
eval.py
EkdeepSLubana/OrthoReg
9
12795254
<reponame>EkdeepSLubana/OrthoReg # -*- coding: utf-8 -*- import torch import torchvision from torchvision import datasets, models, transforms import numpy as np import torch.optim as optim import os import shutil from models import * from pruner import * from config import * from ptflops import get_model_complexity_info import argparse ######### Parser ######### parser = argparse.ArgumentParser() parser.add_argument("-m", "--model", help="architecture model to be analyzed", default='vgg', choices=['vgg', 'mobilenet', 'resnet', 'resnet-56']) parser.add_argument("--model_path", help="path where the model to be analyzed is stored", default='0') parser.add_argument("--data_path", help="path to dataset", default='CIFAR100') parser.add_argument("--pruned", help="is the model to be analyzed a pruned model?", default='False', choices=['True', 'False']) parser.add_argument("--train_acc", help="evaluate train accuracy", default='False', choices=['True', 'False']) parser.add_argument("--test_acc", help="evaluate test accuracy", default='False', choices=['True', 'False']) parser.add_argument("--flops", help="calculate flops in a model", default='False', choices=['True', 'False']) parser.add_argument("--compression", help="calculate compression ratio for model", default='False', choices=['True', 'False']) parser.add_argument("--eval_ortho", help="evaluate how orthogonal a model is", default='False', choices=['True', 'False']) parser.add_argument("--finetune", help="fine-tune a model", default='False', choices=['True', 'False']) args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' criterion = nn.CrossEntropyLoss() ######### Functions to evaluate different properties ######### # Accuracy def cal_acc(net, use_loader): net.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(use_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() return correct / total # FLOPs def cal_flops(net): with torch.cuda.device(0): flops, params = get_model_complexity_info(net, (3, 32, 32), as_strings=False, print_per_layer_stat=False) print(' FLOPs: {:<8}'.format(flops)) # Compression Ratio def cal_compression_ratio(net_path, model): temp_path = "./temp_models/" base_model = create_model(name=model, is_pruned=False) if os.path.exists(temp_path): shutil.rmtree(temp_path) os.mkdir(temp_path) state = {'net': base_model.state_dict()} torch.save(state, temp_path+'temp_base.pth') base_size = os.path.getsize(temp_path+'temp_base.pth') model_size = os.path.getsize(net_path) print(" Compression ratio: {:.3}".format(base_size / model_size)) shutil.rmtree(temp_path) # Fine-tune def finetune(net): net.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) # Orthogonality evaluator def eval_ortho(): if(args.model == 'vgg'): w_mat = net.module.features[0].weight w_mat1 = (w_mat.reshape(w_mat.shape[0],-1)) b_mat = net.module.features[0].bias b_mat1 = (b_mat.reshape(b_mat.shape[0],-1)) params = torch.cat((w_mat1, b_mat1), dim=1) angle_mat = torch.matmul(torch.t(params), params) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(" Conv_{ind}: {num:.2}".format(ind=0, num=(L_diag.cpu()/L_angle.cpu()).item())) for conv_ind in [3, 7, 10, 14, 17, 21, 24, 28, 31]: w_mat = net.module.features[conv_ind].weight w_mat1 = (w_mat.reshape(w_mat.shape[0],-1)) b_mat = net.module.features[conv_ind].bias b_mat1 = (b_mat.reshape(b_mat.shape[0],-1)) params = torch.cat((w_mat1, b_mat1), dim=1) angle_mat = torch.matmul(params, torch.t(params)) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(" Conv_{ind}: {num:.2}".format(ind=conv_ind, num=(L_diag.cpu()/L_angle.cpu()).item())) elif(args.model == 'mobilenet'): w_mat = net.module.conv1.weight params = (w_mat.reshape(w_mat.shape[0],-1)) angle_mat = torch.matmul(torch.t(params), params) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(" Conv_base: {num:.2}".format(num=(L_diag.cpu()/L_angle.cpu()).item())) for lnum in range(13): w_mat = net.module.layers[lnum].conv1.weight params = (w_mat.reshape(w_mat.shape[0],-1)) angle_mat = torch.matmul(params.t(), params) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(" Conv_{ind} -depthwise: {num:.2}".format(ind=lnum, num=(L_diag.cpu()/L_angle.cpu()).item())) w_mat = net.module.layers[lnum].conv2.weight params = (w_mat.reshape(w_mat.shape[0],-1)) angle_mat = torch.matmul(params.t(), params) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(" Conv_{ind} -pointwise: {num:.2}".format(ind=lnum, num=(L_diag.cpu()/L_angle.cpu()).item())) elif(args.model == 'resnet'): num_blocks = [3,4,6,3] w_mat = net.module.conv1.weight params = (w_mat.reshape(w_mat.shape[0],-1)) angle_mat = torch.matmul(torch.t(params), params) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(" base layer:", (L_diag.cpu()/L_angle.cpu()).item()) mod_id = 0 for module_id in [net.module.layer1, net.module.layer2, net.module.layer3, net.module.layer4]: for b_id in range(num_blocks[mod_id]): w_mat = module_id[b_id].conv1.weight params = (w_mat.reshape(w_mat.shape[0],-1)) if(params.shape[1] < params.shape[0]): params = params.t() angle_mat = torch.matmul(params, torch.t(params)) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(' layer_'+str(mod_id)+', block', str(b_id)+'_1: %.2f' % (L_diag.cpu()/L_angle.cpu()).item()) w_mat = module_id[b_id].conv2.weight params = (w_mat.reshape(w_mat.shape[0],-1)) if(params.shape[1] < params.shape[0]): params = params.t() angle_mat = torch.matmul(params, torch.t(params)) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(' layer_'+str(mod_id)+', block', str(b_id)+'_2: %.2f' % (L_diag.cpu()/L_angle.cpu()).item()) try: w_mat = module_id[b_id].shortcut[0].weight params = (w_mat.reshape(w_mat.shape[0],-1)) if(params.shape[1] < params.shape[0]): params = params.t() angle_mat = torch.matmul(params, torch.t(params)) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(' layer_'+str(mod_id) + ', shortcut: %.2f' % (L_diag.cpu()/L_angle.cpu()).item()) except: pass mod_id += 1 elif(args.model == 'resnet-56'): num_blocks = [9,9,9] w_mat = net.module.conv1.weight params = (w_mat.reshape(w_mat.shape[0],-1)) angle_mat = torch.matmul(torch.t(params), params) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(" base layer:", (L_diag.cpu()/L_angle.cpu()).item()) mod_id = 0 for module_id in [net.module.layer1, net.module.layer2, net.module.layer3]: for b_id in range(num_blocks[mod_id]): w_mat = module_id[b_id].conv1.weight params = (w_mat.reshape(w_mat.shape[0],-1)) if(params.shape[1] < params.shape[0]): params = params.t() angle_mat = torch.matmul(params, torch.t(params)) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(' layer_'+str(mod_id)+', block', str(b_id)+'_1: %.2f' % (L_diag.cpu()/L_angle.cpu()).item()) w_mat = module_id[b_id].conv2.weight params = (w_mat.reshape(w_mat.shape[0],-1)) if(params.shape[1] < params.shape[0]): params = params.t() angle_mat = torch.matmul(params, torch.t(params)) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(' layer_'+str(mod_id)+', block', str(b_id)+'_2: %.2f' % (L_diag.cpu()/L_angle.cpu()).item()) try: w_mat = module_id[b_id].shortcut[0].weight params = (w_mat.reshape(w_mat.shape[0],-1)) if(params.shape[1] < params.shape[0]): params = params.t() angle_mat = torch.matmul(params, torch.t(params)) L_diag = (angle_mat.diag().norm(1)) L_angle = (angle_mat.norm(1)) print(' layer_'+str(mod_id) + ', shortcut: %.2f' % (L_diag.cpu()/L_angle.cpu()).item()) except: pass mod_id += 1 # Create model for evaluation#net = torch.nn.DataParallel(VGG()) def create_model(name, is_pruned): if(name == 'vgg'): if(is_pruned == True): cfg_p = net_dict['cfg'] net = torch.nn.DataParallel(VGG_p(cfg_p)) else: net = torch.nn.DataParallel(VGG()) elif(name == 'mobilenet'): if(is_pruned == True): cfg_p = net_dict['cfg'] net = torch.nn.DataParallel(MobileNet_p(cfg_p[0], cfg_p[1:])) else: net = torch.nn.DataParallel(MobileNet()) elif(name == 'resnet'): if(is_pruned == True): cfg_p = net_dict['cfg'] net = torch.nn.DataParallel(ResPruned(cfg_p)) else: net = torch.nn.DataParallel(ResNet34()) elif(name == 'resnet-56'): if(is_pruned == True): cfg_p = net_dict['cfg'] net = torch.nn.DataParallel(ResPruned_cifar(cfg_p)) else: net = torch.nn.DataParallel(ResNet56()) return net ######### Print model name ######### print((args.model).upper()) ######### Dataloader ######### if(args.train_acc == 'True' or args.test_acc == 'True' or args.finetune == 'True'): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) transform_test = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) if(args.data_path=='CIFAR100'): trainset = torchvision.datasets.CIFAR100(root='./../data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR100(root='./../data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) else: trainset = datasets.ImageFolder(root=args.data_path+'/train', transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = datasets.ImageFolder(root=args.data_path+'/test', transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) # Testing def test(net): global best_acc net.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) acc = 100. * correct/total if acc > best_acc: print("best accuracy:", acc) best_acc = acc ######### Load network or create new ######### if(args.train_acc == 'True' or args.test_acc == 'True' or args.flops=='True' or args.eval_ortho=='True'): net_dict = torch.load(args.model_path) net = create_model(name=args.model, is_pruned=(args.pruned=='True')) net.load_state_dict(net_dict['net']) ######### FLOPs evaluation ######### if(args.flops == 'True'): cal_flops(net) ######### Compression ratio evaluation ######### if(args.compression == 'True'): cal_compression_ratio(net_path=args.model_path, model=args.model) ######### Train accuracy evaluation ######### if(args.train_acc == 'True'): acc = cal_acc(net, use_loader=trainloader) print(" Train accuracy: {:.2%}".format(acc)) ######### Test accuracy evaluation ######### if(args.test_acc == 'True'): acc = cal_acc(net, use_loader=testloader) print(" Test accuracy: {:.2%}".format(acc)) ######### Orthogonality evaluation ######### if(args.eval_ortho == 'True'): eval_ortho() if(args.finetune == 'True'): net_dict = torch.load(args.model_path) net = create_model(name=args.model, is_pruned=(args.pruned=='True')) net.load_state_dict(net_dict['net']) base_sched, base_epochs, wd = pruned_sched_iter, pruned_epochs_iter, wd_iter best_acc = 0 lr_ind = 0 epoch = 0 optimizer = optim.SGD(net.parameters(), lr=base_sched[lr_ind], momentum=0.9, weight_decay=wd) while(lr_ind < len(base_sched)): optimizer.param_groups[0]['lr'] = base_sched[lr_ind] for n in range(base_epochs[lr_ind]): print('\nEpoch: {}'.format(epoch)) finetune(net) test(net) epoch += 1 lr_ind += 1
2.25
2
ansible_lib/firebrew.py
mrk21/ansible-lib
3
12795255
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import absolute_import from __future__ import generators from __future__ import division import pipes from ansible.module_utils.basic import * class Firebrew(object): STATUS_SUCCESS = 0 STATUS_FAILURE = 1 STATUS_NOT_CHANGED = 2 def __init__(self, AnsibleModule = AnsibleModule): self.module = AnsibleModule( argument_spec = dict( state = dict(type='str', default='present', choices=['present', 'absent']), name = dict(type='str', required=True), base_dir = dict(type='str'), profile = dict(type='str'), firefox = dict(type='str') ) ) def build_command(self): params = self.module.params command = [ self.module.get_bin_path('firebrew'), {'present': 'install', 'absent': 'uninstall'}[params['state']], pipes.quote(params['name']) ] for opt in ['base_dir','profile','firefox']: if opt in params and params[opt] != None and params[opt].strip() != '': command.append('--%s=%s' % (opt.replace('_','-'), pipes.quote(params[opt]))) return ' '.join(command) def execute(self): (rc,out,err) = self.module.run_command(self.build_command()) if rc == self.STATUS_SUCCESS: self.module.exit_json(changed=True) elif rc == self.STATUS_NOT_CHANGED: self.module.exit_json(changed=False) else: self.module.fail_json(msg = err) if __name__ == '__main__': Firebrew().execute()
2.0625
2
main/consecutive-array-elements/consecutive-array-elements.py
EliahKagan/old-practice-snapshot
0
12795256
<filename>main/consecutive-array-elements/consecutive-array-elements.py #!/usr/bin/env python3 def read_record(): return list(map(int, input().split())) def is_consecutive(a): return max(a) - min(a) + 1 == len(a) == len(frozenset(a)) for _ in range(int(input())): input() # don't need n print('Yes' if is_consecutive(read_record()) else 'No')
4
4
examples/util/lookups.py
OptionMetrics/petl
495
12795257
from __future__ import division, print_function, absolute_import # lookup() ########## import petl as etl table1 = [['foo', 'bar'], ['a', 1], ['b', 2], ['b', 3]] lkp = etl.lookup(table1, 'foo', 'bar') lkp['a'] lkp['b'] # if no valuespec argument is given, defaults to the whole # row (as a tuple) lkp = etl.lookup(table1, 'foo') lkp['a'] lkp['b'] # compound keys are supported table2 = [['foo', 'bar', 'baz'], ['a', 1, True], ['b', 2, False], ['b', 3, True], ['b', 3, False]] lkp = etl.lookup(table2, ('foo', 'bar'), 'baz') lkp[('a', 1)] lkp[('b', 2)] lkp[('b', 3)] # data can be loaded into an existing dictionary-like # object, including persistent dictionaries created via the # shelve module import shelve lkp = shelve.open('example.dat', flag='n') lkp = etl.lookup(table1, 'foo', 'bar', lkp) lkp.close() lkp = shelve.open('example.dat', flag='r') lkp['a'] lkp['b'] # lookupone() ############# import petl as etl table1 = [['foo', 'bar'], ['a', 1], ['b', 2], ['b', 3]] # if the specified key is not unique and strict=False (default), # the first value wins lkp = etl.lookupone(table1, 'foo', 'bar') lkp['a'] lkp['b'] # if the specified key is not unique and strict=True, will raise # DuplicateKeyError try: lkp = etl.lookupone(table1, 'foo', strict=True) except etl.errors.DuplicateKeyError as e: print(e) # compound keys are supported table2 = [['foo', 'bar', 'baz'], ['a', 1, True], ['b', 2, False], ['b', 3, True], ['b', 3, False]] lkp = etl.lookupone(table2, ('foo', 'bar'), 'baz') lkp[('a', 1)] lkp[('b', 2)] lkp[('b', 3)] # data can be loaded into an existing dictionary-like # object, including persistent dictionaries created via the # shelve module import shelve lkp = shelve.open('example.dat', flag='n') lkp = etl.lookupone(table1, 'foo', 'bar', lkp) lkp.close() lkp = shelve.open('example.dat', flag='r') lkp['a'] lkp['b'] # dictlookup() ############## import petl as etl table1 = [['foo', 'bar'], ['a', 1], ['b', 2], ['b', 3]] lkp = etl.dictlookup(table1, 'foo') lkp['a'] lkp['b'] # compound keys are supported table2 = [['foo', 'bar', 'baz'], ['a', 1, True], ['b', 2, False], ['b', 3, True], ['b', 3, False]] lkp = etl.dictlookup(table2, ('foo', 'bar')) lkp[('a', 1)] lkp[('b', 2)] lkp[('b', 3)] # data can be loaded into an existing dictionary-like # object, including persistent dictionaries created via the # shelve module import shelve lkp = shelve.open('example.dat', flag='n') lkp = etl.dictlookup(table1, 'foo', lkp) lkp.close() lkp = shelve.open('example.dat', flag='r') lkp['a'] lkp['b'] # dictlookupone() ################# import petl as etl table1 = [['foo', 'bar'], ['a', 1], ['b', 2], ['b', 3]] # if the specified key is not unique and strict=False (default), # the first value wins lkp = etl.dictlookupone(table1, 'foo') lkp['a'] lkp['b'] # if the specified key is not unique and strict=True, will raise # DuplicateKeyError try: lkp = etl.dictlookupone(table1, 'foo', strict=True) except etl.errors.DuplicateKeyError as e: print(e) # compound keys are supported table2 = [['foo', 'bar', 'baz'], ['a', 1, True], ['b', 2, False], ['b', 3, True], ['b', 3, False]] lkp = etl.dictlookupone(table2, ('foo', 'bar')) lkp[('a', 1)] lkp[('b', 2)] lkp[('b', 3)] # data can be loaded into an existing dictionary-like # object, including persistent dictionaries created via the # shelve module import shelve lkp = shelve.open('example.dat', flag='n') lkp = etl.dictlookupone(table1, 'foo', lkp) lkp.close() lkp = shelve.open('example.dat', flag='r') lkp['a'] lkp['b']
2.46875
2
OptWind/WindFarm/flow_field.py
ArjunRameshV/OptWind
1
12795258
<gh_stars>1-10 # -*- coding: utf-8 -*- import numpy as np class FlowField(object): def __init__(self, wf_design, getAkf, height_ref, alpha=0.04, ws_binned=np.linspace(1, 30, 30), wd_binned=np.linspace(0, 330, 12), z0=0.01 ): self.complete_layout = wf_design.complete_layout self.getAkf = getAkf self.height_ref = height_ref self.alpha = alpha self.ws_binned = ws_binned self.wd_binned = wd_binned self.z0=z0 self.wt_types = wf_design.wt_types self.wind_shear_multi = self.wind_shear_log(self.complete_layout[:, 2], height_ref) self.num_wt = wf_design.num_wt self.num_ws_bin = len(ws_binned) self.num_wd_bin = len(wd_binned) self.ws_bin_size = ws_binned[1] - ws_binned[0] self.wd_bin_size = wd_binned[1] - wd_binned[0] self.R_list = wf_design.D_list/2 self.Ar_list = wf_design.Ar_list self.type_list = np.array([int(t) for t in self.complete_layout[:, 3]], dtype='int') self.M_ijl = np.zeros((self.num_wt, self.num_wt, self.num_wd_bin)) self.v_ikl_ideal = np.zeros( (self.num_wt, self.num_ws_bin, self.num_wd_bin)) self.v_ikl_real = np.zeros( (self.num_wt, self.num_ws_bin, self.num_wd_bin)) self.pdf_ikl = np.zeros( (self.num_wt, self.num_ws_bin, self.num_wd_bin)) def wind_shear_log(self, H, H_ref): return np.log(H/self.z0)/np.log(H_ref/self.z0) def change_layout(self, complete_layout_new): """ Assume only locations of turbines changed, and number, hub-height and types of turbines remained the same.""" self.complete_layout = complete_layout_new def cal_flow_field(self): ###################################################################### # 1. calculate ideal wind speed v_ik = np.expand_dims( np.matmul(np.expand_dims(self.wind_shear_multi, axis=-1), np.expand_dims(self.ws_binned, axis=0)), axis=-1) self.v_ikl_ideal = np.concatenate([v_ik for l_wd in range(self.num_wd_bin)], axis=-1) ###################################################################### # 2. calculate pdf of local ideal wind speed x_il = np.concatenate([np.expand_dims(self.complete_layout[:, 0], axis=-1) for l_wd in range(self.num_wd_bin)], axis=-1) y_il = np.concatenate([np.expand_dims(self.complete_layout[:, 1], axis=-1) for l_wd in range(self.num_wd_bin)], axis=-1) wd_il = np.concatenate([np.expand_dims(self.wd_binned, axis=0) for l_wt in range(self.num_wt)], axis=0) A_il, k_il, f_il = self.getAkf(x_il, y_il, wd_il) for k_ws in range(self.num_ws_bin): self.pdf_ikl[:, k_ws, :] = self.cal_pdf_Weibull( self.ws_binned[k_ws]*np.ones_like(A_il), A_il, k_il) * f_il dist_down = np.zeros((self.num_wt, self.num_wt, self.num_wd_bin)) dist_cross = np.zeros((self.num_wt, self.num_wt, self.num_wd_bin)) R_wake = np.zeros((self.num_wt, self.num_wt, self.num_wd_bin)) A_ol = np.zeros((self.num_wt, self.num_wt, self.num_wd_bin)) ####################################################################### # 3. calculate real wind speed # calculate M_ijl matrix for l_wd in range(self.num_wd_bin): rotate_angle = (270 - self.wd_binned[l_wd])*np.pi/180.0 cos_rotate = np.cos(rotate_angle) sin_rotate = np.sin(rotate_angle) x_rotated = (self.complete_layout[:, 0]*cos_rotate + self.complete_layout[:, 1]*sin_rotate) y_rotated = (self.complete_layout[:, 1]*cos_rotate - self.complete_layout[:, 0]*sin_rotate) downwind_order = np.argsort(x_rotated) for i_up in range(self.num_wt-1): index_up = downwind_order[i_up] index_down = downwind_order[i_up+1:] dist_down[index_down, index_up, l_wd] = ( x_rotated[index_down] - x_rotated[index_up]) dist_cross[index_down, index_up, l_wd] = np.sqrt( (y_rotated[index_down] - y_rotated[index_up])**2 + (self.complete_layout[index_down, 2] - self.complete_layout[index_up, 2])**2) R_wake[index_down, index_up, l_wd] = ( self.alpha*dist_down[index_down, index_up, l_wd] + self.R_list[index_up]) R = np.concatenate([ np.expand_dims(self.R_list[i_wt]*np.ones( (self.num_wt, self.num_wd_bin)), axis=1) for i_wt in range(self.num_wt)], axis=1) R1 = np.concatenate([ np.expand_dims(self.R_list[i_wt]*np.ones( (self.num_wt, self.num_wd_bin)), axis=0) for i_wt in range(self.num_wt)], axis=0) A_ol = self.cal_overlapping_area(R_wake, R, dist_cross) self.M_ijl = np.where(dist_down>0, (A_ol/(np.pi*R**2))**2 / (1 + self.alpha*dist_down/R1)**4, 0) # calculate N_jk matrix v_jk = self.v_ikl_ideal[:, :, 0] N_jk = np.zeros_like(v_jk) for m_type in set(self.type_list): index_cal = self.type_list == m_type N_jk[index_cal, :] = self.wt_types[m_type].get_Ct( v_jk[index_cal, :]) N_jk = v_jk**2*(1-np.sqrt(1-N_jk))**2 self.v_ikl_real = self.v_ikl_ideal - np.sqrt( np.einsum('jk, ijl->ikl', N_jk, self.M_ijl)) def cal_flow_field_naive(self): ###################################################################### # 1. calculate ideal wind speed v_ik = np.expand_dims( np.matmul(np.expand_dims(self.wind_shear_multi, axis=-1), np.expand_dims(self.ws_binned, axis=0)), axis=-1) self.v_ikl_ideal = np.concatenate([v_ik for l_wd in range(self.num_wd_bin)], axis=-1) ###################################################################### # 2. calculate pdf of local ideal wind speed x_il = np.concatenate([np.expand_dims(self.complete_layout[:, 0], axis=-1) for l_wd in range(self.num_wd_bin)], axis=-1) y_il = np.concatenate([np.expand_dims(self.complete_layout[:, 1], axis=-1) for l_wd in range(self.num_wd_bin)], axis=-1) wd_il = np.concatenate([np.expand_dims(self.wd_binned, axis=0) for l_wt in range(self.num_wt)], axis=0) A_il, k_il, f_il = self.getAkf(x_il, y_il, wd_il) for k_ws in range(self.num_ws_bin): self.pdf_ikl[:, k_ws, :] = self.cal_pdf_Weibull( self.ws_binned[k_ws]*np.ones_like(A_il), A_il, k_il) * f_il ####################################################################### # 3. calculate real wind speed # calculate M_ijl matrix for l_wd in range(self.num_wd_bin): rotate_angle = (270 - self.wd_binned[l_wd])*np.pi/180.0 cos_rotate = np.cos(rotate_angle) sin_rotate = np.sin(rotate_angle) x_rotated = (self.complete_layout[:, 0]*cos_rotate + self.complete_layout[:, 1]*sin_rotate) y_rotated = (self.complete_layout[:, 1]*cos_rotate - self.complete_layout[:, 0]*sin_rotate) downwind_order = np.argsort(x_rotated) for i_up in range(self.num_wt-1): index_up = downwind_order[i_up] index_down = downwind_order[i_up+1:] dist_down = x_rotated[index_down] - x_rotated[index_up] dist_cross = np.sqrt( (y_rotated[index_down] - y_rotated[index_up])**2 + (self.complete_layout[index_down, 2] - self.complete_layout[index_up, 2])**2) R_wake = self.alpha*dist_down + self.R_list[index_up] A_ol = self.cal_overlapping_area(R_wake, self.R_list[index_down], dist_cross) self.M_ijl[index_down, index_up, l_wd] = ( (A_ol/self.Ar_list[index_down])**2 / (1 + self.alpha*dist_down/self.R_list[index_up])**4) # calculate N_jk matrix v_jk = self.v_ikl_ideal[:, :, 0] N_jk = np.zeros_like(v_jk) for m_type in set(self.type_list): index_cal = self.type_list == m_type N_jk[index_cal, :] = self.wt_types[m_type].get_Ct( v_jk[index_cal, :]) N_jk = v_jk**2*(1-np.sqrt(1-N_jk))**2 self.v_ikl_real = self.v_ikl_ideal - np.sqrt( np.einsum('jk, ijl->ikl', N_jk, self.M_ijl)) def cal_overlapping_area(self, R1, R2, d): """ Calculate the overlapping area of two circles with radius R1 and R2, centers distanced d. The calculation formula can be found in Eq. (A1) of : [Ref] <NAME>, <NAME>, Solving the wind farm layout optimization problem using Random search algorithm, Reneable Energy 78 (2015) 182-192 Note that however there are typos in Equation (A1), '2' before alpha and beta should be 1. Parameters ---------- R1: array:float Radius of the first circle [m] R2: array:float Radius of the second circle [m] d: array:float Distance between two centers [m] Returns ------- A_ol: array:float Overlapping area [m^2] """ # treat all input as array R1, R2, d = np.array(R1), np.array(R2), np.array(d), A_ol = np.zeros_like(R1) p = (R1 + R2 + d)/2.0 # make sure R_big >= R_small Rmax = np.where(R1 < R2, R2, R1) Rmin = np.where(R1 < R2, R1, R2) # full wake cases index_fullwake = (d<= (Rmax -Rmin)) A_ol[index_fullwake] = np.pi*Rmin[index_fullwake]**2 # partial wake cases index_partialwake = np.logical_and(d > (Rmax -Rmin), d < (Rmin + Rmax)) alpha = np.arccos( (Rmax[index_partialwake]**2.0 + d[index_partialwake]**2 - Rmin[index_partialwake]**2) /(2.0*Rmax[index_partialwake]*d[index_partialwake]) ) beta = np.arccos( (Rmin[index_partialwake]**2.0 + d[index_partialwake]**2 - Rmax[index_partialwake]**2) /(2.0*Rmin[index_partialwake]*d[index_partialwake]) ) A_triangle = np.sqrt( p[index_partialwake]* (p[index_partialwake]-Rmin[index_partialwake])* (p[index_partialwake]-Rmax[index_partialwake])* (p[index_partialwake]-d[index_partialwake]) ) A_ol[index_partialwake] = ( alpha*Rmax[index_partialwake]**2 + beta*Rmin[index_partialwake]**2 - 2.0*A_triangle ) return A_ol def cal_pdf_Weibull(self, v, A, k): return ((k / A) * (v / A) ** (k - 1) * np.exp(-(v / A) ** k))
2.265625
2
lambdata/fibo.py
mudesir/lambdata-mudesir
0
12795259
""" Fibonancci series up to n""" def fib(n): # write Fibonacci series up to n a, b = 0, 1 while a < n: print(a, end=' ') a, b = b, a + b print() def fib2(n): # return Fibonacci series up to n result = [] a, b = 0, 1 while a < n: result.append(a) a, b = b, a + b return result def num(n1, n2): n3=random.randint(n1, n2) return n3
4.03125
4
DataTypes.py
jingr1/SelfDrivingCar
0
12795260
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-10-14 19:45:05 # @Author : jingray (<EMAIL>) # @Link : http://www.jianshu.com/u/01fb0364467d # @Version : $Id$ import os # STRINGS print("STRINGS") my_string_1 = "hello" my_string_2 = 'world' my_multiline_string = """ Dear World, Hello. I am a multiline python string. I'm enclosed in triple quotes. I'd write them here, but that would end the string! I know! I'll use a slash as an escape character. Triple quotes look like this: \"\"\" Sincerely, Python """ newline_character = "\n" print(my_string_1, my_string_2) print(my_multiline_string) print(newline_character) print("-----------") print(newline_character) # NUMBERS AND BOOLEANS print("NUMBERS") my_float = 0.5 my_integer = 7 my_negative = -3.5 my_fraction = 1/2 # what do you think THIS line of code will assign to the variable # does_half_equal_point_five? does_half_equal_point_five = (my_fraction == my_float) print("The absolute value of", my_negative, "is", abs(my_negative)) print(my_integer, "squared is equal to", my_integer ** 2) print("Does", my_fraction, "equal", my_float, "?", does_half_equal_point_five) for left_num in range(10): for right_num in range(10): product = left_num * right_num print(left_num, "x", right_num, "=", product) print ("\n") #List my_list = [1, 2, 3, "a", "b", "c"] print("my_list is:", my_list) print("Enumerating a list...") for i, item in enumerate(my_list): print("item number", i, "is", item) print("Another way to enumerate using a list 'method'...") for item in my_list: index = my_list.index(item) print("item", item, "has index", index) #List Comprehensions numbers_0_to_9 = [x for x in range(10)] print("Numbers 0 to 9", numbers_0_to_9) squares = [x * x for x in range(10)] print("Squares ", squares) odds = [x for x in range(10) if x % 2 == 1] print("Odds ", odds) # This example uses a data type called a namedtuple which is similar to a struct data type in other languages. from collections import namedtuple Person = namedtuple("Person", ["name", "age", "gender"]) people = [ Person("Andy", 30, "m"), Person("Ping", 1, "m"), Person("Tina", 32, "f"), Person("Abby", 14, "f"), Person("Adah", 13, "f"), Person("Sebastian", 42, "m"), Person("Carol" , 68, "f"), ] # first, let's show how this namedtuple works. andy = people[0] print("name: ", andy.name) print("age: ", andy.age) print("gender:", andy.gender) # now let's show what we can do with a list comprehension # male_names = [person.name for person in people if person.gender=="m"] print("Male names:", male_names) teen_names = [p.name for p in people if 13 <= p.age <= 18 ] print("Teen names:", teen_names) # random import random as rd a = rd.random() b = rd.random() c = rd.random() print("a is", a) print("b is", b) print("c is", c)
4.40625
4
pitch_table.py
andrewtron3000/jampy
0
12795261
pitch_table = { "C-1" : 8.176, "C#-1": 8.662, "D-1" : 9.177, "D#-1": 9.723, "E-1" : 10.301, "F-1" : 10.913, "F#-1": 11.562, "G-1" : 12.250, "G#-1": 12.978, "A-1" : 13.750, "A#-1": 14.568, "B-1" : 15.434, "C0" : 16.352, "C#0" : 17.324, "D0" : 18.354, "D#0" : 19.445, "E0" : 20.602, "F0" : 21.827, "F#0" : 23.125, "G0" : 24.500, "G#0" : 25.957, "A0" : 27.500, "A#0" : 29.135, "B0" : 30.868, "C1" : 32.703, "C#1" : 34.648, "D1" : 36.708, "D#1" : 38.891, "E1" : 41.203, "F1" : 43.654, "F#1" : 46.249, "G1" : 48.999, "G#1" : 51.913, "A1" : 55.000, "A#1" : 58.270, "B1" : 61.735, "C2" : 65.406, "C#2" : 69.296, "D2" : 73.416, "D#2" : 77.782, "E2" : 82.407, "F2" : 87.307, "F#2" : 92.499, "G2" : 97.999, "G#2" : 103.826, "A2" : 110.000, "A#2" : 116.541, "B2" : 123.471, "C3" : 130.813, "C#3" : 138.591, "D3" : 146.832, "D#3" : 155.563, "E3" : 164.814, "F3" : 174.614, "F#3" : 184.997, "G3" : 195.998, "G#3" : 207.652, "A3" : 220.000, "A#3" : 233.082, "B3" : 246.942, "C4" : 261.626, "C#4" : 277.183, "D4" : 293.665, "D#4" : 311.127, "E4" : 329.628, "F4" : 349.228, "F#4" : 369.994, "G4" : 391.995, "G#4" : 415.305, "A4" : 440.000, "A#4" : 466.164, "B4" : 493.883, "C5" : 523.251, "C#5" : 554.365, "D5" : 587.330, "D#5" : 622.254, "E5" : 659.255, "F5" : 698.456, "F#5" : 739.989, "G5" : 783.991, "G#5" : 830.609, "A5" : 880.000, "A#5" : 932.328, "B5" : 987.767, "C6" : 1046.502, "C#6" : 1108.731, "D6" : 1174.659, "D#6" : 1244.508, "E6" : 1318.510, "F6" : 1396.913, "F#6" : 1479.978, "G6" : 1567.982, "G#6" : 1661.219, "A6" : 1760.000, "A#6" : 1864.655, "B6" : 1975.533, "C7" : 2093.005, "C#7" : 2217.461, "D7" : 2349.318, "D#7" : 2489.016, "E7" : 2637.020, "F7" : 2793.826, "F#7" : 2959.955, "G7" : 3135.963, "G#7" : 3322.438, "A7" : 3520.000, "A#7" : 3729.310, "B7" : 3951.066, "C8" : 4186.009, "C#8" : 4434.922, "D8" : 4698.636, "D#8" : 4978.032, "E8" : 5274.041, "F8" : 5587.652, "F#8" : 5919.911, "G8" : 6271.927, "G#8" : 6644.875, "A8" : 7040.000, "A#8" : 7458.620, "B8" : 7902.133, "C9" : 8372.018, "C#9" : 8869.844, "D9" : 9397.273, "D#9" : 9956.063, "E9" : 10548.08, "F9" : 11175.30, "F#9" : 11839.82, "G9" : 12543.85, }
1.609375
2
code/utils/memory_file_utils.py
ahillbs/minimum_scan_cover
0
12795262
"""These utils can be used to get an StringIO objects that can be written like a file but does not close at the end of a "with" statement. Objects can be retrieved with the virtual path. This was implemented to use in configargparser in mind. To use it, call for example: holder = StringIOHolder() parser = configargparse.ArgumentParser(description="Parser for the instance evolver", config_file_open_func=holder) ... parsed = parser.parse_args() parser.write_config_file(parsed, ["virt_path"]) holder["virt_path"].getvalue() # Holds the config data """ import io class NotWithCloseStringIO(io.StringIO): """This class is just the normal StringIO with the exception of not closing the memory file on exit of a "with" statement """ def __exit__(self, type, value, traceback): pass class StringIOHolder(): """Holds NotWithCloseStringIO objects and can be called to replace an "open" call and write to memory file. File content is then """ def __init__(self): self._string_ios = {} def __call__(self, virt_path, bla): self._string_ios[virt_path] = NotWithCloseStringIO() return self.string_ios[virt_path] def __get__(self, key): return self._string_ios[key] def close(self): for key in self._string_ios: self._string_ios[key].close()
3.28125
3
tests/lib/test_time_util.py
daisuke19891023/covid19-yamanashi-scraping
4
12795263
import pytest from src.lib.time_util import TimeUtil import datetime @pytest.fixture(scope="module", autouse=True) def tmu_object(): tmu = TimeUtil() yield tmu class TestTimeUtil: @pytest.mark.parametrize("test_input, expected_wareki, expected_other", [( '令和2年10月31日', '令和', '2年10月31日' ), ('平成30年1月31日', '平成', '30年1月31日'), ('大正1年1月31日', None, None)]) def test_get_wareki(self, tmu_object, test_input, expected_wareki, expected_other): wareki, other = tmu_object.get_wareki(test_input) assert wareki == expected_wareki assert other == expected_other def test_get_ymd_int_each(self, tmu_object): result = tmu_object.get_ymd_int_each('2年3月9日') assert result == [2, 3, 9] def test_get_ymd_int_each_2020(self, tmu_object): result = tmu_object.get_ymd_int_each('3月1日', need_year=False) assert result == [3, 1] def test_parse_date_span(self, tmu_object): target_char = "test1~ \ntest2" result = tmu_object.parse_date_span(target_char) assert result == ["test1", "test2"] def test_get_ad_dt_fmt(self, tmu_object): iso_format = tmu_object.get_ad_dt_fmt('令和', 2, 4, 29) assert iso_format == "2020-04-29T00:00:00+09:00" def test_get_ad_date_iso_fmt(self, tmu_object): iso_format = tmu_object.get_ad_date_iso_fmt(4, 3) assert iso_format == "2020-04-03T00:00:00+09:00" def test_get_ad_default_year_dt_fmt(self, tmu_object): datetime_format = tmu_object.get_ad_default_year_dt_fmt(4, 3) assert datetime_format == datetime.datetime( 2020, 4, 3, 0, 0, tzinfo=datetime.timezone(datetime.timedelta(0, 32400), 'JST')) def test_convert_wareki_to_ad(self, tmu_object): result = tmu_object.convert_wareki_to_ad('令和2年10月23日') assert result == "2020-10-23T00:00:00+09:00" def test_convert_wareki_to_ad_error(self, tmu_object): with pytest.raises(ValueError): tmu_object.convert_wareki_to_ad('大正2年10月23日') @pytest.mark.parametrize( "pattern, end, start, need_day, expected", [ ("No_start_No_needDay", datetime.datetime(2020, 3, 2), None, False, [{"日付": "2020-03-01T00:00:00+09:00", "小計": 0}, {"日付": "2020-03-02T00:00:00+09:00", "小計": 0}]), ("start_No_needDay", datetime.datetime( 2020, 3, 2), datetime.datetime(2020, 3, 1, 0, 0, 0, 0, tzinfo=datetime.timezone( datetime.timedelta(hours=9), name='JST')), False, [{"日付": "2020-03-01T00:00:00+09:00", "小計": 0}, {"日付": "2020-03-02T00:00:00+09:00", "小計": 0}]), ("start_needDay", datetime.datetime( 2020, 3, 2), datetime.datetime(2020, 3, 1, 0, 0, 0, 0, tzinfo=datetime.timezone( datetime.timedelta(hours=9), name='JST')), True, [{"日付": "2020-03-01T00:00:00+09:00", "day": 1, "小計": 0}, {"日付": "2020-03-02T00:00:00+09:00", "小計": 0, "day": 2}]), ("NO_start_needDay", datetime.datetime( 2020, 3, 2), None, True, [{"日付": "2020-03-01T00:00:00+09:00", "day": 1, "小計": 0}, {"日付": "2020-03-02T00:00:00+09:00", "小計": 0, "day": 2}]) ] ) def test_create_dt_dict(self, tmu_object, pattern, end, start, need_day, expected): print(pattern) result = tmu_object.create_dt_dict( end, start=start, need_day=need_day) assert result == expected def test_get_dt_dict_from_text(self, tmu_object): target_char = "3月1日~ \n3月2日" result = tmu_object.get_dt_dict_from_text(target_char) assert result == [{"日付": "2020-03-01T00:00:00+09:00", "day": 1, "小計": 0}, {"日付": "2020-03-02T00:00:00+09:00", "小計": 0, "day": 2}] if __name__ == '__main__': pytest.main(['-v', __file__])
2.484375
2
scripts/Portfolio.py
jcoffi/FuturesAndOptionsTradingSimulation
14
12795264
class Portfolio: # define array of items that are the trades in the portfolio # run-time interpretation will handle polymorphism for me Trades = [] Cash = 0.0 Name = '' def __init__(self,name=''): self.Name = name self.Trades = [] self.Cash = 0.0 def Append(self,X): self.Trades.append(X) def TradeCount(self): return len(self.Trades) def NPV(self,SCENARIO): dblTotal = 0.0 for trade in self.Trades: dblTotal += trade.NPV(SCENARIO) return dblTotal def Deltas(self,SCENARIO,RISK): for trade in self.Trades: trade.Deltas(SCENARIO,RISK) def Gammas(self,SCENARIO,RISK): for trade in self.Trades: trade.Gammas(SCENARIO,RISK) def Vegas(self,SCENARIO,RISK): for trade in self.Trades: trade.Vegas(SCENARIO,RISK) def Rhos(self,SCENARIO,RISK): for trade in self.Trades: trade.Rhos(SCENARIO,RISK)
3.125
3
tests/api/testDepositLog.py
starkbank/sdk-python
6
12795265
<reponame>starkbank/sdk-python<filename>tests/api/testDepositLog.py import starkbank from unittest import TestCase, main from starkbank.error import InputErrors from tests.utils.user import exampleProject starkbank.user = exampleProject class TestDepositLogGet(TestCase): def test_success(self): logs = list(starkbank.deposit.log.query(limit=10)) logs = list(starkbank.deposit.log.query(limit=10, deposit_ids={log.deposit.id for log in logs}, types={log.type for log in logs})) print("Number of logs:", len(logs)) class TestDepositLogInfoGet(TestCase): def test_success(self): logs = starkbank.deposit.log.query() log_id = next(logs).id logs = starkbank.deposit.log.get(id=log_id) def test_fail_invalid_log(self): log_id = "123" with self.assertRaises(InputErrors) as context: log = starkbank.deposit.log.get(id=log_id) errors = context.exception.errors for error in errors: print(error) self.assertEqual('invalidDepositLog', error.code) self.assertEqual(1, len(errors)) if __name__ == '__main__': main()
3.078125
3
main.py
shizacat/pdf-add-watermark
0
12795266
#!/usr/bin/env python3 """ sudo apt-get install libqpdf-dev """ import zlib import argparse import pikepdf from pikepdf import Pdf, PdfImage, Name from reportlab.pdfgen import canvas from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.lib import units class PdfWatermark: def __init__(self, pdf_in: str, pdf_out: str, text: str): self.pdf_in = pdf_in self.pdf_out = pdf_out self.pdf_watermark = "wm.pdf" self.wm_font_size = 20 self.wm_text = text self.wm_alpha = 0.2 def apply(self): self._create_watermark_pdf() with pikepdf.open(self.pdf_in) as pdf_main: with pikepdf.open(self.pdf_watermark) as pdf_wm: for page in pdf_main.pages: page.add_underlay(pdf_wm.pages[0]) pdf_main.save(self.pdf_out) def _create_watermark_pdf(self): c = canvas.Canvas(self.pdf_watermark) pdfmetrics.registerFont( TTFont('times new roman', 'Times New Roman.ttf')) c.setFont('times new roman', self.wm_font_size) pw, ph = c._pagesize c.setFillGray(0.5, self.wm_alpha) c.saveState() c.translate(500, 100) c.rotate(45) c.drawCentredString(pw / 2 - 50, ph - 400, self.wm_text) c.restoreState() c.save() def main_cli(): parser = argparse.ArgumentParser() parser.add_argument( "--input", type=str, required=True, help="The PDF file in which will be inserted watermark" ) parser.add_argument( "--out", type=str, required=True, help="The PDF file in which will be saved result" ) parser.add_argument( "--text", type=str, required=True, help="The text of watermark" ) args = parser.parse_args() srv = PdfWatermark(args.input, args.out, args.text) srv.apply() if __name__ == "__main__": main_cli()
2.484375
2
code/test1-eng.py
jdellert/ccnc
0
12795267
<reponame>jdellert/ccnc<gh_stars>0 # TEST 1: Validation of shared bigram significance test on English data from ccnc.algorithm import ccnc_statistic from ccnc.data import LexicalDataset, ShuffledVariant from ccnc.filters import AnySubsequenceFilter from clics2.model import Clics2Model import statistics # define segments for English IPA representation (determines tokenization, # and thereby what counts as a shared two-segment subsequence) english_segments = ["a","ɑ","ɒ","ɑː","æ","ʌ","aʊ","b","d","dʒ","ð","ɛ","ə","eɪ","ɛə","f", "g","h","ɪ","i","iː","aɪ","ɪə","j","k","l","m","n","ŋ","ɔː","əʊ","ɔɪ", "p","r","s","ʃ","t","tʃ","θ","u","ʊ","uː","ɜː","ʊə","w","v","z"] if __name__ == '__main__': eng_lexicon = LexicalDataset("../eng-data/english.tsv",english_segments) concepts = sorted(eng_lexicon.concept_to_forms.keys()) print(str(len(concepts)) + " concepts: " + str(concepts)) # load the CLICS2 network from the associated (data-specific) model files network = Clics2Model("../clics-data/clics2-network-ids.txt", "../clics-data/clics2-network-edges.txt") any_bigram_filter = AnySubsequenceFilter(2) print("English:") true_score = ccnc_statistic(eng_lexicon, network, any_bigram_filter, 2, True) num_samples = 1000 num_scores_above_true_score = 0 scores = list() for i in range(0,num_samples): pseudo_eng = ShuffledVariant(eng_lexicon) resampled_score = ccnc_statistic(pseudo_eng, network, any_bigram_filter, 2, False) scores.append(resampled_score) if resampled_score > true_score: num_scores_above_true_score += 1 print("p-value: " + str(num_scores_above_true_score/num_samples)) mu = sum(scores)/len(scores) sigma = statistics.stdev(scores) zscore = (true_score - mu)/sigma print("z-score: " + str(zscore)) print()
2.34375
2
hw_asr/model/quartznet_model.py
art591/dla_asr
0
12795268
<reponame>art591/dla_asr<gh_stars>0 from torch import nn from torch.nn import Sequential from hw_asr.base import BaseModel class TCSConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, dilation=1, activation=nn.ReLU, separable=True): super().__init__() tcsconv = [] if separable: tcsconv += [ nn.Conv1d(in_channels, in_channels, kernel_size, padding='same', groups=in_channels, dilation=dilation), nn.Conv1d(in_channels, out_channels, kernel_size=1, padding='same', dilation=dilation) ] else: tcsconv += [ nn.Conv1d(in_channels, out_channels, kernel_size, padding='same', dilation=dilation) ] tcsconv.append(nn.BatchNorm1d(out_channels)) if activation is not None: tcsconv.append(activation()) self.tcsconv = nn.Sequential(*tcsconv) def forward(self, x): return self.tcsconv(x) class ResidualTCSConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, num_blocks, activation=nn.ReLU): super().__init__() self.num_blocks = num_blocks self.layers = [] for i in range(num_blocks): if i + 1 == num_blocks: self.layers.append(TCSConv(in_channels, out_channels, kernel_size, activation=None)) continue self.layers.append(TCSConv(in_channels, in_channels, kernel_size, activation=activation)) self.layers = nn.Sequential(*self.layers) self.res_block = nn.Sequential(nn.Conv1d(in_channels, out_channels, kernel_size=1, padding='same'), nn.BatchNorm1d(out_channels)) self.last_activation = activation() def forward(self, x): y = self.layers(x) return self.last_activation(self.res_block(x) + y) class Quartznet(BaseModel): def __init__(self, n_feats, n_class, *args, **kwargs): super().__init__(n_feats, n_class, *args, **kwargs) self.model = nn.Sequential(* [ nn.Conv1d(n_feats, out_channels=256, kernel_size=33, stride=2, padding=16), ResidualTCSConvBlock(256, 256, 33, 5), ResidualTCSConvBlock(256, 256, 39, 5), ResidualTCSConvBlock(256, 512, 51, 5), ResidualTCSConvBlock(512, 512, 63, 5), ResidualTCSConvBlock(512, 512, 75, 5), TCSConv(512, 512, 87, dilation=2), TCSConv(512, 1024, 1, separable=False), nn.Conv1d(1024, n_class, kernel_size=1, padding='same') ] ) def forward(self, spectrogram, *args, **kwargs): res = self.model(spectrogram.transpose(2, 1)).transpose(1, 2) return res def transform_input_lengths(self, input_lengths): return input_lengths // 2 class QuartznetSmall(BaseModel): def __init__(self, n_feats, n_class, *args, **kwargs): super().__init__(n_feats, n_class, *args, **kwargs) self.model = nn.Sequential(* [ nn.Conv1d(n_feats, out_channels=256, kernel_size=33, stride=2, padding=16), ResidualTCSConvBlock(256, 256, 33, 5), TCSConv(256, 256, 1, separable=False), nn.Conv1d(256, n_class, kernel_size=1, padding='same') ] ) def forward(self, spectrogram, *args, **kwargs): res = self.model(spectrogram.transpose(2, 1)).transpose(1, 2) return res def transform_input_lengths(self, input_lengths): return input_lengths // 2
1.96875
2
app/migrations/0007_auto_20190909_1207.py
LuoBingjun/Pic_demo
1
12795269
<reponame>LuoBingjun/Pic_demo # Generated by Django 2.2 on 2019-09-09 04:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0006_auto_20190908_1239'), ] operations = [ migrations.RemoveField( model_name='record', name='result', ), migrations.AddField( model_name='record', name='classify', field=models.CharField(blank=True, max_length=128), ), ]
1.578125
2
Introduction to Artificial Intelligence/PA3/src/rnn.py
youyl/Programming-Assignments-THU
0
12795270
<reponame>youyl/Programming-Assignments-THU<filename>Introduction to Artificial Intelligence/PA3/src/rnn.py<gh_stars>0 import torch import torch.nn as nn import torch.nn.functional as F class Rnn(nn.Module): def __init__(self): super(Rnn,self).__init__() self.lstm=nn.LSTM(input_size=300,hidden_size=150,bidirectional=True) self.final=nn.Linear(600,8) def forward(self,x): tmp1,tmp2=self.lstm(x)#[500,45,300] x=torch.cat((tmp1[0],tmp1[-1]),1)#[45,600] output=self.final(x)#[45,8] return output
3.78125
4
scholarship_graph/profiles.py
Tutt-Library/cc-scholarship-graph
1
12795271
"""Profiles for Scholarship App""" __author__ = "<NAME>" import base64 import bibcat import datetime import hashlib import io import os import pprint import smtplib import subprocess import threading import uuid from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import mimetypes import click import rdflib import requests from bs4 import BeautifulSoup from flask import current_app from github import Github, GithubException import utilities from .sparql import EMAIL_LOOKUP, SUBJECTS_IRI, RESEARCH_STMT_IRI from .sparql import add_qualified_generation, add_qualified_revision BF = rdflib.Namespace("http://id.loc.gov/ontologies/bibframe/") CITE = rdflib.Namespace("https://www.coloradocollege.edu/library/ns/citation/") PROV = rdflib.Namespace("http://www.w3.org/ns/prov#") SCHEMA = rdflib.Namespace("http://schema.org/") class GitProfile(object): def __init__(self, config): self.graph_hashes = {} cc_github = Github(config.get("GITHUB_USER"), config.get("GITHUB_PWD")) self.triplestore_url = config.get("TRIPLESTORE_URL") self.tutt_github = cc_github.get_organization("Tutt-Library") # Start retrieving and parsing latest RDF for current academic year # and CC people now = datetime.datetime.utcnow() if now.month < 7: start_year = now.year - 1 end_year = now.year else: start_year = now.year end_year = now.year + 1 self.current_year_path = "/KnowledgeGraph/cc-{0}-{1}.ttl".format( start_year, end_year) self.current_year = rdflib.Graph() self.cc_people = rdflib.Graph() self.tiger_repo = self.tutt_github.get_repo("tiger-catalog") for content in self.tiger_repo.get_dir_contents("/KnowledgeGraph/"): raw_turtle = self.__get_content__("tiger_repo", content) if content.name.startswith(self.current_year_path.split("/")[-1]): self.current_year_git = content self.current_year.parse(data=raw_turtle, format='turtle') if content.name.startswith("cc-people"): self.cc_people_git = content self.cc_people.parse(data=raw_turtle, format='turtle') self.graph_hashes["cc_people"] = hashlib.sha1( self.cc_people.serialize(format='n3')).hexdigest() self.graph_hashes["current_year"] = hashlib.sha1( self.current_year.serialize(format='n3')).hexdigest() # Start retrieving and parsing latest RDF for creative works, # research statements, and FAST subjects self.creative_works = rdflib.Graph() self.research_statements = rdflib.Graph() self.fast_subjects = rdflib.Graph() self.scholarship_repo = self.tutt_github.get_repo("cc-scholarship-graph") for content in self.scholarship_repo.get_dir_contents("/data/"): raw_turtle = self.__get_content__("scholarship_repo", content) if content.name.startswith("cc-research-statements"): self.research_statements_git = content self.research_statements.parse( data=raw_turtle, format='turtle') if content.name.startswith("cc-fast-subjects"): self.fast_subjects_git = content self.fast_subjects.parse( data=raw_turtle, format='turtle') if content.name.startswith("creative-works"): self.creative_works_git = content self.creative_works.parse( data=raw_turtle, format='turtle') self.graph_hashes["creative_works"] = hashlib.sha1( self.creative_works.serialize(format='n3')).hexdigest() self.graph_hashes["research_statements"] = hashlib.sha1( self.research_statements.serialize(format='n3')).hexdigest() self.graph_hashes["fast_subjects"] = hashlib.sha1( self.fast_subjects.serialize(format='n3')).hexdigest() def __get_content__(self, repo_name, content): raw_turtle = None try: raw_turtle = content.decoded_content except GithubException: repo = getattr(self, repo_name) blob = repo.get_git_blob(content.sha) raw_turtle = base64.b64decode(blob.content) return raw_turtle def __save_graph__(self, **kwargs): git_repo = kwargs.get("git_repo") file_path = kwargs.get("file_path") graph_name = kwargs.get("graph_name") branch = kwargs.get("branch") message = kwargs.get("message", "Updating {}".format(graph_name)) graph = getattr(self, graph_name) graph_sha1 = hashlib.sha1(graph.serialize(format='n3')).hexdigest() if graph_sha1 == self.graph_hashes[graph_name]: return git_graph = getattr(self, "{}_git".format(graph_name)) if branch: git_repo.update_file(file_path, message, graph.serialize(format='turtle'), git_graph.sha, branch=branch) else: git_repo.update_file(file_path, message, graph.serialize(format='turtle'), git_graph.sha) def update_all(self, person_label, action="Add", connection=None): self.__save_graph__( git_repo=self.tiger_repo, file_path="/KnowledgeGraph/cc-people.ttl", graph_name="cc_people", message="{} {} to CC People".format(action, person_label)) self.__save_graph__( git_repo=self.tiger_repo, file_path=self.current_year_path, graph_name="current_year", message="{} person to Department for school year".format(action)) self.__save_graph__( git_repo=self.scholarship_repo, file_path="/data/cc-research-statements.ttl", graph_name="research_statements", message="{} Research Statement for {}".format( action, person_label)) self.__save_graph__( git_repo=self.scholarship_repo, file_path ="/data/cc-fast-subjects.ttl", graph_name="fast_subjects", message="Fast subject added") self.__save_graph__( git_repo=self.scholarship_repo, file_path ="/data/creative-works.ttl", graph_name="creative_works", message="Creative Works added") if connection: self.__reload_triplestore__(connection) def __reload_triplestore__(self, config_mgr): data_upload = [] for row in config_mgr.get("CONNECTIONS"): if row.get("name").startswith("datastore"): for directory_row in row.get("data_upload"): data_upload.append(directory_row[1]) # Pull in the latest changes in each repository for directory in data_upload: os.chdir(directory) result = subprocess.run(['git', 'pull', 'origin', 'master']) click.echo(result.returncode, result.stdout) config_mgr.conns.datastore.mgr.reset() class ProfileUpdateThread(threading.Thread): def __init__(self, **kwargs): threading.Thread.__init__(self) config = kwargs.get("config") cc_github = Github(config.get("GITHUB_USER"), config.get("GITHUB_PWD")) self.tutt_github = cc_github.get_organization("Tutt-Library") self.statement_msg = kwargs.get("msg") self.person_iri = kwargs.get("person") self.research_statements = rdflib.Graph() self.fast_subjects = rdflib.Graph() self.profile = kwargs.get("profile") self.scholarship_repo = self.tutt_github.get_repo("cc-scholarship-graph") for content in self.scholarship_repo.get_dir_contents("/data/"): try: raw_turtle = content.decoded_content except GithubException: blob = self.scholarship_repo.get_git_blob(content.sha) raw_turtle = base64.b64decode(blob.content) if content.name.startswith("cc-research-statements"): self.research_statements_git = content self.research_statements.parse( data=raw_turtle, format='turtle') if content.name.startswith("cc-fast-subjects"): self.fast_subjects_git = content self.fast_subjects.parse( data=raw_turtle, format='turtle') def __save_graph__(self, **kwargs): file_path = kwargs.get("file_path") branch = kwargs.get("branch") graph_name = kwargs.get("graph_name") graph = getattr(self, graph_name) message = kwargs.get("message", "Updating {}".format(graph_name)) git_graph = getattr(self, "{}_git".format(graph_name)) if branch: self.scholarship_repo.update_file(file_path, message, graph.serialize(format='turtle'), git_graph.sha, branch=branch) else: self.scholarship_repo.update_file(file_path, message, graph.serialize(format='turtle'), git_graph.sha) def __update_fast_subjects__(self): existing_subjects, new_subjects = set(), set() existing_stmt = self.research_statements.value( predicate=SCHEMA.accountablePerson, object=self.person_iri) for row in self.research_statements.objects( subject=existing_stmt, predicate=SCHEMA.about): existing_subjects.add(row) for fast_heading in self.profile.graph.objects( subject=existing_stmt, predicate=SCHEMA.about): new_subjects.add(fast_heading) for subject in list(existing_subjects.difference(new_subjects)): self.research_statements.remove((existing_stmt, SCHEMA.about, subject)) for subject in list(new_subjects.difference(existing_subjects)): # Add new subject to research statements and fast subjects self.research_statements.add((existing_stmt, SCHEMA.about, subject)) self.fast_subjects.add((subject, rdflib.RDF.type, BF.Topic)) subject_label = self.profile.graph.value(subject=subject, predicate=rdflib.RDFS.label) if subject_label is not None: self.fast_subjects.add((subject, rdflib.RDFS.label, subject_label)) def __update_research_statements__(self): existing_stmt = self.research_statements.value( predicate=SCHEMA.accountablePerson, object=self.person_iri) current_description = self.research_statements.value( subject=existing_stmt, predicate=SCHEMA.description) new_description = self.profile.graph.value( subject=existing_stmt, predicate=SCHEMA.description) if new_description is not None \ and str(current_description) != str(new_description): self.research_statements.remove((existing_stmt, SCHEMA.description, current_description)) self.research_statements.replace('"','\"') self.research_statements.add((existing_stmt, SCHEMA.description, new_description)) def run(self): # Function iterates and commits any changes to self.__update_fast_subjects__() self.__update_research_statements__() self.__save_graph__( file_path="/data/cc-research-statements.ttl", graph_name="research_statements", message=self.statement_msg) self.__save_graph__( file_path ="/data/cc-fast-subjects.ttl", graph_name="fast_subjects", message="Fast subject added") class EmailProfile(object): """Simple Email Profile class that creates a local RDF graph for new profile or editing profile that is send via email to the Administrators for review.""" def __init__(self, config, person_iri): self.config = config self.triplestore_url = self.config.get("TRIPLESTORE_URL") self.graph = rdflib.Graph() self.graph.namespace_manager.bind("bf", BF) self.graph.namespace_manager.bind("cite", CITE) self.graph.namespace_manager.bind("schema", SCHEMA) self.graph.namespace_manager.bind("prov", PROV) self.email = config.get("EMAIL") self.recipients = config.get("ADMINS") self.person_iri = person_iri def __send_email__(self, subject, body): """Sends email to administrators with attached profile graph""" message = MIMEMultipart() message["From"] = self.email.get("user") message["To"] = ",".join(["<{0}>".format(r) for r in self.recipients]) message["Subject"] = subject email_server = smtplib.SMTP( self.email.get("host"), self.email.get("port")) email_server.ehlo() if self.email.get("tls"): email_server.starttls() body = MIMEText(body, _charset="UTF-8") message.attach(body) graph_turtle = io.StringIO( self.graph.serialize(format='turtle').decode()) attachment = MIMEText(graph_turtle.read()) attachment.add_header('Content-Disposition', 'attachment', filename='profile.ttl') message.attach(attachment) email_server.login( self.email.get("user"), self.email.get("password")) recipients = list(set(self.recipients)) # Quick dedup email_server.sendmail(self.email.get("user"), recipients, message.as_string()) email_server.close() def __add_article__(self, work_iri, work_form): """Article specific data added to creative work Args: work_iri(rdflib.URIRef): Creative Work IRI for Article work_form(Flask.request.form): Dict of form values """ self.graph.add((work_iri, rdflib.RDF.type, SCHEMA.ScholarlyArticle)) self.graph.add((work_iri, SCHEMA.name, rdflib.Literal(work_form.article_title.data))) if work_form.page_start.data !=None: self.graph.add((work_iri, SCHEMA.pageStart, rdflib.Literal(work_form.page_start.data))) if work_form.page_end.data !=None: self.graph.add((work_iri, SCHEMA.pageEnd, rdflib.Literal(work_form.page_end.data))) journal = rdflib.BNode() self.graph.add((journal, rdflib.RDF.type, SCHEMA.Periodical)) self.graph.add((journal, SCHEMA.name, rdflib.Literal(work_form.journal_title.data))) issue, volume = None, None if work_form.volume_number.data != None: volume = rdflib.BNode() self.graph.add((volume, rdflib.RDF.type, SCHEMA.PublicationVolume)) self.graph.add((volume, SCHEMA.volumeNumber, rdflib.Literal(work_form.volume_number.data))) self.graph.add((volume, SCHEMA.partOf, journal)) if work_form.issue_number.data != None: issue = rdflib.BNode() self.graph.add((issue, rdflib.RDF.type, SCHEMA.PublicationIssue)) self.graph.add((issue, SCHEMA.issueNumber, rdflib.Literal(work_form.issue_number.data))) if volume is not None: self.graph.add((issue, SCHEMA.partOf, volume)) else: self.graph.add((issue, SCHEMA.partOf, journal)) self.graph.add((work_iri, SCHEMA.partOf, issue)) elif volume is not None: self.graph.add((work_iri, SCHEMA.partOf, volume)) else: # Add work_iri to Journal as last resort self.graph.add((work_iri, SCHEMA.partOf, journal)) if work_form.month.data != None: self.graph.add((work_iri, CITE.month, rdflib.Literal(work_form.month.data))) def __add_book__(self, work, work_form): self.graph.add((work, rdflib.RDF.type, SCHEMA.Book)) self.graph.add((work, SCHEMA.title, rdflib.Literal(work_form.book_title.data))) if work_form.isbn.data is not None: self.graph.add((work, SCHEMA.isbn, rdflib.Literal(work_form.isbn.data))) if work_form.editionStatement.data is not None: self.graph.add( (work, SCHEMA.editionStatement, rdflib.Literal(work_form.editionStatement.data))) if work_form.editor.data is not None: self.graph.add((work, SCHEMA.editor, rdflib.Literal(work_form.editor.data))) if work_form.provisionActivityStatement.data is not None: self.graph.add( (work, SCHEMA.provisionActivityStatement, rdflib.Literal(work_form.provisionActivityStatement.data))) if work_form.notes.data is not None: self.graph.add( (work, SCHEMA.description, rdflib.Literal(work_form.notes.data))) def __populate_work__(self, work_form, generated_by=None): """Populates graph with new work Args: form(Flask.request.form): Dict of form values """ if len(work_form.iri.data) > 0: work_iri = rdflib.URIRef(work_form.iri.data) else: # Mint IRI for new work if "doi" in work_form and len(work_form.doi.data) > 0: work_iri = rdflib.URIRef(work_form.doi.data) else: work_iri = rdflib.URIRef( "http://catalog.coloradocollege.edu/{}".format( uuid.uuid1())) self.graph.add((work_iri, SCHEMA.dataPublished, rdflib.Literal(work_form.datePublished.data))) self.graph.add((work_iri, CITE.authorString, rdflib.Literal(work_form.author_string.data))) if generated_by: add_qualified_generation(self.graph, work_iri, generated_by) citation_type = work_form.citation_type.data self.graph.add((work_iri, CITE.citationType, rdflib.Literal(citation_type))) if "author" in work_form and len(work_form.author.data) > 0: self.person_iri = rdflib.URIRef(work_form.author.data) self.graph.add((work_iri, SCHEMA.author, self.person_iri)) elif generated_by: self.person_iri = generated_by self.graph.add((work_iri, SCHEMA.author, generated_by)) if "url" in work_form and len(work_form.url.data) > 0: self.graph.add((work_iri, SCHEMA.url, rdflib.URIRef(work_form.url.data))) if work_form.abstract.data != None: self.graph.add((work_iri, SCHEMA.about, rdflib.Literal(work_form.abstract.data))) if citation_type.startswith("article"): self.__add_article__(work_iri, work_form) elif citation_type.startswith("book chapter"): self.graph.add((work_iri, rdflib.RDF.type, SCHEMA.Chapter)) book_bnode = rdflib.BNode() self.graph.add((work_iri, SCHEMA.partOf, book_bnode)) self.__add_book__(book_bnode, work_form) elif citation_type.startswith("book"): self.__add_book__(work_iri, work_form) else: abort(500) if work_form.abstract.data != None: self.graph.add((work_iri, SCHEMA.about, rdflib.Literal(work_form.abstract.data))) return work_iri def add(self, work_form, generated_by=None): work_iri = self.__populate_work__(work_form, generated_by) email_body = "Properties and Values for Creative Work {}".format(work_iri) for row in work_form._fields: if row.startswith("csrf_token"): continue field = getattr(work_form, row) email_body += "\n{}:\t{}".format(row, field.data) self.__send_email__("Added New Work", email_body) return work_iri def new(self, message): """Adds a new profile""" self.__send_email__("Add new profile", message) def update(self, message): """Edits existing profile""" global BACKGROUND_THREAD BACKGROUND_THREAD = ProfileUpdateThread( config=self.config, msg=message, person=self.person_iri, profile=self) BACKGROUND_THREAD.start() self.__send_email__("Updating Profile", message) def __email_work__(**kwargs): """Function takes a work graph and configuration and emails the graph in turtle format to the administrators for review before adding to production. Keyword args: work_graph(rdflib.Graph): RDF Graph of Citation config: Configuration includes logins and administor """ work_graph = kwargs.get("graph") config = kwargs.get("config") sender = config.get('EMAIL')['user'] recipients = config.get("ADMINS") subject = kwargs.get('subject') text = kwargs.get('text') carbon_copy = kwargs.get("carbon_copy", []) message = MIMEMultipart() message["From"] = sender message["Subject"] = subject message["To"] = ",".join(["<{0}>".format(r) for r in recipients]) if len(carbon_copy) > 0: message["Cc"] = ','.join(carbon_copy) recipients.extend(carbon_copy) body = MIMEText(text, _charset="UTF-8") message.attach(body) if work_graph: work_turtle = io.StringIO( work_graph.serialize(format='turtle').decode()) attachment = MIMEText(work_turtle.read()) attachment.add_header('Content-Disposition', 'attachment', filename='work.ttl') message.attach(attachment) #try: server = smtplib.SMTP(config.get('EMAIL')['host'], config.get('EMAIL')['port']) server.ehlo() if config.get('EMAIL')['tls']: server.starttls() server.ehlo() server.login(sender, config.get("EMAIL")["password"]) recipients = list(set(recipients)) # Quick dedup server.sendmail(sender, recipients, message.as_string()) server.close() def generate_citation_html(citation): soup = BeautifulSoup("", 'lxml') div = soup.new_tag("div", **{"class": "row"}) col_1 = soup.new_tag("div", **{"class": "col-1"}) citation_type = citation.get("ENTRYTYPE") if citation_type.startswith("article"): col_1.append(soup.new_tag("i", **{"class": "fas fa-file-alt"})) elif citation_type.endswith("book"): col_1.append(soup.new_tag("i", **{"class": "fas fa-book"})) under_review = soup.new_tag("em") under_review.string = "In Review" col_1.append(under_review) div.append(col_1) col_2 = soup.new_tag("div", **{"class": "col-7"}) if "article_title" in citation: name = citation.get("article_title") elif "title" in citation: name = citation.get("title") if "url" in citation: work_link = soup.new_tag("a", href=citation.get("url")) work_link.string = name col_2.append(work_link) else: span = soup.new_tag("span") span.string = name col_2.append(span) if "journal_title" in citation: em = soup.new_tag("em") em.string = citation.get("journal_title") col_2.append(em) if "year" in citation: span = soup.new_tag("span") span.string = "({0})".format(citation.get("year")) col_2.append(span) vol_number = citation.get("volume_number") if vol_number and len(vol_number) > 0: span = soup.new_tag("span") span.string = "v. {}".format(vol_number) col_2.append(span) issue_number = citation.get("issue_number") if issue_number and len(issue_number ) > 0: span = soup.new_tag("span") span.string = " no. {}".format(issue_number) col_2.append(span) page_start = citation.get("page_start") if page_start and len(page_start) > 0: span = soup.new_tag("span") span.string = "p. {}".format(page_start) col_2.append(span) page_end = citation.get("page_end") if page_end and len(page_end) > 0: span = soup.new_tag("span") if "page_start" in citation: page_string = "- {}." else: page_string = "{}." span.string = page_string.format(page_end) col_2.append(span) div.append(col_2) col_3 = soup.new_tag("div", **{"class": "col-4"}) iri = citation.get("iri") if iri: edit_click = "editCitation('{}');".format(iri) delete_click = "deleteCitation('{}');".format(iri) edit_a = soup.new_tag("a", **{"class": "btn btn-warning disabled", "onclick": edit_click, "type=": "input"}) edit_a.append(soup.new_tag("i", **{"class": "fas fa-edit"})) col_3.append(edit_a) delete_a = soup.new_tag("a", **{"class": "btn btn-danger", "onclick": delete_click, "type=": "input"}) delete_a.append(soup.new_tag("i", **{"class": "fas fa-trash-alt"})) col_3.append(delete_a) div.append(col_3) return div.prettify() def __reconcile_article__(work_graph, connection): SCHEMA = rdflib.Namespace("http://schema.org/") for row in work_graph.query( """SELECT ?entity ?label WHERE { ?entity rdf:type schema:Periodical ; schema:name ?label . } """): entity, label = row break volume, issue = None, None volume_or_issue = work_graph.value(predicate=SCHEMA.partOf, object=entity) schema_class = work_graph.value(subject=volume_or_issue, predicate=rdflib.RDF.type) if schema_class is SCHEMA.volumeNumber: volume = volume_or_issue issue = work_graph.value(predicate=SCHEMA.partOf, object=volume) elif schema_class is SCHEMA.issueNumber: issue = volume_or_issue result = connection.datastore.query("""SELECT ?periodical WHERE {{ ?periodical schema:name ?name . FILTER(CONTAINS(?name, "{0}")) }}""".format(label)) if result and len(result) > 0: periodical = result[0].get("periodical").get("value") if periodical != str(entity): new_work = rdflib.URIRef(periodical) bibcat.replace_iri(work_graph, entity, new_work) entity = new_work if volume is not None: vol_num = work_graph.value(subject=volume, predicate=SCHEMA.volumeNumber) result = connection.datastore.query("""SELECT ?volume WHERE {{ ?volume schema:partOf ?work ; schema:volumeNumber ?volumeNumber . BIND(<{0}> as ?work) BIND("{1}" as ?volumeNumber) }}""".format(entity, vol_num)) if result and len(result) > 0: new_volume = rdflib.URIRef(result[0].get("volume").get("value")) bibcat.replace_iri(work_graph, volume, new_volume) if issue is not None: issue_number = work_graph.value(subject=issue, predicate=SCHEMA.issueNumber) result = connection.datastore.query("""SELECT ?issue WHERE {{ ?issue rdf:type schema:issueNumber ; schema:issueNumber ?issue_number . OPTIONAL {{ ?issue schema:partOf ?volume . }} OPTIONAL {{ ?issue schema:partOf ?periodical . }} BIND(<{0}> as ?volume) BIND(<{1}> as ?periodical) BIND("{2}" as ?issue_number) }}""".format(volume, periodical, issue_number) ) if result and len(result) > 0: new_issue = rdflib.URIRef(result[0].get("issue").get("value")) bibcat.replace_iri(work_graph, issue, new_issue) def add_creative_work(**kwargs): """Calls utilities to populate and save to datastore""" config = kwargs.get("config") profile = EmailProfile(config) current_user = kwargs.get("current_user") config_manager = kwargs.get('config_manager') connection = config_manager.conns generated_by = kwargs.get("generated_by") work_form = kwargs.get("work_form") BF = config_manager.nsm.bf SCHEMA = config_manager.nsm.schema sparql = EMAIL_LOOKUP.format( current_user.data.get('mail').lower()) email_results = connection.datastore.query(sparql) if len(email_results) > 0: generated_by = rdflib.URIRef( email_results[0].get("person").get('value')) work_iri = rdflib.URIRef(profile.add(work_form, generated_by)) #profile.update("Added or Updated Creative Work") return {"message": "New work has been submitted for review", "status": True, "iri": work_iri} def add_profile(**kwargs): """Adds a profile stub to scholarship graph""" config = kwargs.get("config") current_user = kwargs.get("current_user") config_manager = kwargs.get('config_manager') profile = EmailProfile(config) connection = config_manager.conns BF = config_manager.nsm.bf SCHEMA = config_manager.nsm.schema results = connection.datastore.query( EMAIL_LOOKUP.format( current_user.data.get('mail').lower())) if len(results) > 0: generated_by = rdflib.URIRef(results[0].get("person").get('value')) else: generated_by = None form = kwargs.get("form") if form.get("orcid"): person_uri = form.get("orcid") else: person_uri = "http://catalog.coloradocollege.edu/{}".format( uuid.uuid1()) person_iri = rdflib.URIRef(person_uri) if generated_by is None: generated_by = person_iri profile.graph.add( (person_iri, rdflib.RDF.type, BF.Person.rdflib)) given_name = form.get("given_name") if given_name is not None: profile.graph.add( (person_iri, SCHEMA.givenName.rdflib, rdflib.Literal(given_name, lang="en"))) family_name = form.get("family_name") if family_name is not None: profile.graph.add((person_iri, SCHEMA.familyName.rdflib, rdflib.Literal(family_name, lang="en"))) label = "{} {}".format(given_name, family_name) profile.graph.add((person_iri, rdflib.RDFS.label, rdflib.Literal(label, lang="en"))) email = form.get("email") profile.graph.add((person_iri, SCHEMA.email.rdflib, rdflib.Literal(email))) add_qualified_generation(profile.graph, person_iri, generated_by) dept_year = kwargs.get("year-iri") if dept_year is not None: dept_year_iri = rdflib.URIRef(dept_year_iri) title = kwargs.get("title-iri") profile.graph.add( (dept_year_iri, rdflib.URIRef(title), person_iri)) statement = kwargs.get("statement", form.get("research_stmt")) if statement is not None: statement_iri = rdflib.URIRef("http://catalog.coloradocollege.edu/{}".format( uuid.uuid1())) profile.graph.add( (statement_iri, rdflib.RDF.type, SCHEMA.DigitalDocument.rdflib)) profile.graph.add( (statement_iri, rdflib.RDFS.label, rdflib.Literal("Research Statement for {}".format(label), lang="en"))) profile.graph.add( (statement_iri, SCHEMA.accountablePerson.rdflib, person_iri)) profile.graph.add( (statement_iri, SCHEMA.description.rdflib, rdflib.Literal(statement, lang="en"))) add_qualified_generation(profile.graph, statement_iri, generated_by) form_subjects = form.getlist("subjects") new_subjects = {} for row in form_subjects: fast_id, fast_label = row.split("==") if fast_id.startswith("http"): fast_uri = fast_id else: fast_uri = "http://id.worldcat.org/fast/{}".format(fast_id[3:]) new_subjects[fast_uri] = fast_label for fast_subject, fast_label in new_subjects.items(): iri_subject = rdflib.URIRef(fast_subject) profile.graph.add( (statement_iri, SCHEMA.about.rdflib, iri_subject)) existing_label = profile.fast_subjects.value( subject=iri_subject, predicate=rdflib.RDFS.label) if existing_label is None: profile.graph.add( (iri_subject, rdflib.RDF.type, BF.Topic.rdflib)) profile.graph.add( (iri_subject, rdflib.RDFS.label, rdflib.Literal(fast_label, lang="en"))) message = "New {} as {} to Colorado College's Scholarship Graph".format( label, person_iri) profile.new(message) def delete_creative_work(**kwargs): config = kwargs.get("config") git_profile = GitProfile(config) current_user = kwargs.get("current_user") config_manager = kwargs.get('config_manager') author = kwargs.get("author") connection = config_manager.conns iri = kwargs.get("iri") __email_work__( config=config, carbon_copy=[current_user.data.get('mail'),], subject="Delete Request", text="Delete citation {} for {}\nrequested by {} on {}".format( iri, author, current_user.data.get('mail'), datetime.datetime.utcnow().isoformat()) ) return {"message": "Deletion of {} for {} under review".format( iri, author), "status": True} def edit_creative_work(**kwargs): config = kwargs.get("config") git_profile = GitProfile(config) current_user_email = kwargs.get("current_user_email") config_manager = kwargs.get('config_manager') connection = config_manager.conns revised_by = kwargs.get("revised_by") raw_citation = kwargs.get("citation") work_type = kwargs.get("work_type", "article") if revised_by is None and current_user_email: sparql = EMAIL_LOOKUP.format( current_user_email.lower()) email_results = connection.datastore.query(sparql) if len(email_results) > 0: revised_by = rdflib.URIRef( email_results[0].get("person").get('value')) temp_work = rdflib.Graph() temp_work.namespace_manager.bind("cite", rdflib.Namespace("https://www.coloradocollege.edu/library/ns/citation/")) for prefix, namespace in git_profile.cc_people.namespaces(): temp_work.namespace_manager.bind(prefix, namespace) if work_type.startswith("article"): citation = utilities.Article_Citation(raw_citation, temp_work, git_profile.cc_people, False) citation.populate() citation.populate_article() citation.add_article() elif work_type.startswith("book"): citation = utilities.Book_Citation(raw_citation, temp_work, git_profile.cc_people, False) citation.populate() citation.populate_book() citation.add_book() if revised_by: add_qualified_revision(temp_work, rdflib.URIRef(citation.iri), revised_by) email_subject = 'Edited Creative Work {}'.format(citation.iri) __email_work__(graph=temp_work, config=config, carbon_copy=[current_user_email,], subject=email_subject, text="Edited {} revised by {} on {}, see attached RDF turtle file".format( citation.citation_type, revised_by, datetime.datetime.utcnow().isoformat()) ) return {"message": "Changes to work has been submitted for review", "status": True} def update_profile(**kwargs): """Updates existing triples based on form values""" config_manager = kwargs.get('config_manager') connection = config_manager.conns BF = config_manager.nsm.bf SCHEMA = config_manager.nsm.schema form = kwargs.get('form') current_user = kwargs.get("current_user") output = '' person_iri = rdflib.URIRef(form.get("iri")) profile = EmailProfile(config_manager, person_iri) msg = "" results = connection.datastore.query( EMAIL_LOOKUP.format( current_user.data.get('mail').lower())) if len(results) > 0: generated_by = rdflib.URIRef(results[0].get("person").get('value')) else: generated_by = person_iri msg = "{} made the following changes to {}'s academic profile:\n".format( generated_by, form['label']) statement_iri_results = connection.datastore.query( RESEARCH_STMT_IRI.format( person_iri)) if len(statement_iri_results) > 0: statement_iri = rdflib.URIRef( statement_iri_results[0].get("iri").get("value")) add_qualified_revision(profile.graph, statement_iri, generated_by) else: statement_iri = rdflib.URIRef( "http://catalog.coloradocollege.edu/{}".format(uuid.uuid1())) profile.graph.add( (statement_iri, rdflib.RDF.type, SCHEMA.DigitalDocument.rdflib)) profile.graph.add( (statement_iri, SCHEMA.accountablePerson.rdflib, person_iri)) profile.graph.add( (statement_iri, rdflib.RDFS.label, rdflib.Literal("Research Statement for {} {}".format( form.get('given_name'), form.get('family_name')), lang="en"))) add_qualified_generation( profile.graph, statement_iri, generated_by) citations = form.getlist("citations") for uri in citations: profile.graph.add( (rdflib.URIRef(uri), SCHEMA.author.rdflib, person_iri)) statement = form.get("research_stmt") if len(statement) > 0: profile.graph.add( (statement_iri, SCHEMA.description.rdflib, rdflib.Literal(statement, lang="en"))) form_subjects = form.getlist("subjects") new_subjects = {} for row in form_subjects: fast_id, fast_label = row.split("==") if fast_id.startswith("http"): fast_uri = fast_id else: fast_uri = "http://id.worldcat.org/fast/{}".format(fast_id[3:]) iri_subject = rdflib.URIRef(fast_uri) profile.graph.add( (statement_iri, SCHEMA.about.rdflib, iri_subject)) profile.graph.add( (iri_subject, rdflib.RDF.type, BF.Topic.rdflib)) profile.graph.add( (iri_subject, rdflib.RDFS.label, rdflib.Literal(fast_label, lang="en"))) profile.update(msg) return {"message": msg, "status": True}
2.25
2
DeepLearning from scratch/example3.py
Nikeshbajaj/MachineLearningFromScratch
15
12795272
<reponame>Nikeshbajaj/MachineLearningFromScratch ''' Example 3: Deep Neural Network from scrach @Author _ <NAME> PhD Student at Queen Mary University of London & University of Genova Conact _ http://nikeshbajaj.in n[dot]<EMAIL> bajaj[dot]<EMAIL> ''' import numpy as np import matplotlib.pyplot as plt from DeepNet import deepNet import DataSet as ds plt.close('all') Xi, yi = ds.mclassGaus(N=500, nClasses = 4,var =0.25,ShowPlot=False) [n,N] =Xi.shape r = np.random.permutation(N) X = Xi[:,r[:N//2]] y = yi[:,r[:N//2]] Xts =Xi[:,r[N//2:]] yts =yi[:,r[N//2:]] print(X.shape, y.shape,Xts.shape,yts.shape) NN = deepNet(X,y,Xts=Xts, yts=yts, Net = [8,8,5],NetAf =['tanh'], alpha=0.01,miniBatchSize = 0.3, printCostAt =-1,AdamOpt=True,lambd=0,keepProb =[1.0]) plt.ion() for i in range(10): NN.fit(itr=10) NN.PlotLCurve() NN.PlotBoundries(Layers=True) NN.PlotLCurve() NN.PlotBoundries(Layers=True) print(NN) yi,yp = NN.predict(X) yti,ytp = NN.predict(Xts) print('Accuracy::: Training :',100*np.sum(yi==y)/yi.shape[1], ' Testing :',100*np.sum(yti==yts)/yti.shape[1])
3.640625
4
session-3/tflite/converter.py
darkling-thrush/MLIntroduction
0
12795273
''' Created on Dec 23, 2019 @author: mohammedmostafa ''' import tensorflow as tf modelPath = "../model/CNDetector_5.h5" converter = tf.lite.TFLiteConverter.from_keras_model_file(modelPath) converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE] lite_model = converter.convert() open("../model/CNDetector_Lite_5.tflite", "wb").write(lite_model)
2.46875
2
am_exps/__init__.py
AxlAlm/SegNLP
1
12795274
from .jpnn_exp import jpnn from .lstm_cnn_crf_exp import lstm_cnn_crf from .lstm_crf_exp import lstm_crf from .lstm_dist_exp import lstm_dist from .lstm_er_exp import lstm_er
1.015625
1
scripts/AIA_CH_spoca_jobs.py
bmampaey/spoca4rwc
0
12795275
<gh_stars>0 #!/usr/bin/env python3 import os import sys import logging import argparse from glob import glob from datetime import datetime, timedelta from job import Job, JobError from AIA_quality import get_quality, get_quality_errors # Path to the classification program classification_exec = '/opt/spoca4rwc/SPoCA/bin/classification.x' # Path to the classification program config file classification_config_file = '/opt/spoca4rwc/scripts/AIA_CH_classification.config' # Path to the centers file classification_centers_file = '/data/spoca/spoca4rwc/quicklook/CH_maps/centers.txt' # The frequency to run the classification program classification_run_frequency = timedelta(hours = 4) # Path to the get_CH_map program get_CH_map_exec = '/opt/spoca4rwc/SPoCA/bin/get_CH_map.x' # Path to the get_CH_map program config file get_CH_map_config_file = '/opt/spoca4rwc/scripts/AIA_CH_get_CH_map.config' # Path to the tracking program tracking_exec = '/opt/spoca4rwc/SPoCA/bin/tracking.x' # Path to the tracking program config file tracking_config_file = '/opt/spoca4rwc/scripts/AIA_CH_tracking.config' # Path to the tracking color file tracking_color_file = '/data/spoca/spoca4rwc/quicklook/CH_maps/tracking_color.txt' # The minimum number of files that overlaps with the previous tracking (see maxDeltaT) tracking_overlap = 6 # The number of CH maps to run the tracking program on tracking_run_count = 3 # Directory to output the maps maps_directory = '/data/spoca/spoca4rwc/quicklook/CH_maps/' # Directory where the prepped AIA files are located aia_file_pattern = '/data/SDO/public/AIA_quicklook/{wavelength:04d}/{date.year:04d}/{date.month:02d}/{date.day:02d}/H{date.hour:02d}00/AIA.{date.year:04d}{date.month:02d}{date.day:02d}_{date.hour:02d}*.{wavelength:04d}.*.fits' # Directory where the prepped HMI files are located hmi_file_pattern = '/data/SDO/public/HMI_quicklook/magnetogram/{date.year:04d}/{date.month:02d}/{date.day:02d}/HMI.{date.year:04d}{date.month:02d}{date.day:02d}_{date.hour:02d}*.*.fits' # Wavelengths of AIA data to run the classification program on AIA_wavelengths = [193] def date_range(start, end, step): '''Equivalent to range for date''' date = start.replace() while date < end: yield date date += step def parse_tracking_color_file(tracking_color_file): try: with open(tracking_color_file, 'tr') as f: text = f.readline() last_color = int(text.split(':')[1]) except Exception as why: logging.warning('Could not read tracking color from file "%s": %s', tracking_color_file, why) return 0 else: logging.debug('Found last color %s from file %s', last_color, tracking_color_file) return last_color def get_good_file(file_pattern, ignore_bits = None): '''Return the first file that matches the file_pattern and has a good quality''' for file_path in sorted(glob(file_pattern)): # Get the quality of the file if ignore_bits is None: quality = get_quality(file_path) else: quality = get_quality(file_path, ignore_bits) # A quality of 0 means no defect if quality == 0: return file_path else: logging.info('Skipping file %s with bad quality: %s', file_path, get_quality_errors(quality)) def get_AIA_files(date, wavelengths): '''Return a list of AIA files for the specified date and wavelengths''' file_paths = list() for wavelength in wavelengths: file_path = get_good_file(aia_file_pattern.format(date=date, wavelength=wavelength)) if file_path is None: raise FileNotFoundError('AIA file for date %s and wavelength %s was not found' % (date, wavelengths)) else: file_paths.append(file_path) return file_paths def get_HMI_files(date): '''Return a list of HMI files for the specified date''' file_path = get_good_file(hmi_file_pattern.format(date=date)) if file_path is None: raise FileNotFoundError('HMI file for date %s was not found' % date) else: return [file_path] def create_segmented_map(AIA_images, date): '''Run the classification program''' # File path for the Segmented map to create segmented_map = os.path.join(maps_directory, date.strftime('%Y%m%d_%H%M%S') + '.SegmentedMap.fits') # Create a job for the classification program with the appropriate parameters job = Job(classification_exec, *AIA_images, config = classification_config_file, centersFile = classification_centers_file, output = segmented_map) logging.info('Running job\n%s', job) # Run the classification job return_code, output, error = job() # Check if the job ran succesfully if return_code != 0: raise JobError(return_code, output, error, job_name = 'classification', AIA_images = AIA_images) elif not os.path.exists(segmented_map): raise JobError(message = 'Could not find output file {segmented_map}', segmented_map = segmented_map) else: logging.debug('Job ran without errors, output: %s', output) return segmented_map def create_CH_map(segmented_map, date, images): '''Run the get_CH_map program''' # File path for the CH map to create CH_map = os.path.join(maps_directory, date.strftime('%Y%m%d_%H%M%S') + '.CHMap.fits') # Create a job for the get_CH_map program with the appropriate parameters job = Job(get_CH_map_exec, segmented_map, *images, config = get_CH_map_config_file, output = CH_map) logging.info('Running job\n%s', job) # Run the get_CH_map job return_code, output, error = job() # Check if the job ran succesfully if return_code != 0: raise JobError(return_code, output, error, job_name = 'get_CH_map', segmented_map = segmented_map) elif not os.path.exists(CH_map): raise JobError(message = 'Could not find output file {CH_map}', CH_map = CH_map) else: logging.debug('Job ran without errors, output: %s', output) return CH_map def track_maps(tracked_maps, untracked_maps, newly_tracked_maps): '''Run the tracking program''' # File paths of the maps to run the tracking on maps = tracked_maps[-tracking_overlap:] + untracked_maps # last color of the previous tracking last_color = parse_tracking_color_file(tracking_color_file) # Create a job for the tracking program with the appropriate parameters job = Job(tracking_exec, *maps, config = tracking_config_file, maxDeltaT = (tracking_overlap * classification_run_frequency).total_seconds(), newColor = last_color) logging.info('Running job\n%s', job) # Run the tracking job return_code, output, error = job() # Check if the job ran succesfully if return_code != 0: raise JobError(return_code, output, error, job_name = 'tracking', maps = maps) else: logging.debug('Job ran without errors, output: %s', output) try: with open(tracking_color_file, 'tw') as f: f.write(output) except Exception as why: logging.error('Could not write tracking color to file "%s": %s', tracking_color_file, why) return tracked_maps + untracked_maps, [], newly_tracked_maps + untracked_maps def run_spoca_jobs(start_date, end_date, tracked_maps = None, untracked_maps = None): '''Run the SPoCA jobs to create and track the CHMaps''' # If no tracked maps were given, we assumed all existing are if tracked_maps is None: tracked_maps = sorted(glob(os.path.join(maps_directory, '*.CHMap.fits'))) # If no untracked maps were given, we assume none are if untracked_maps is None: untracked_maps = list() else: # We need to remove the untracked maps from the tracked maps for untracked_map in untracked_maps: tracked_maps = list(filter(lambda tracked_map: not os.path.samefile(tracked_map, untracked_map), tracked_maps)) # We will return the list of all newly tracked maps newly_tracked_maps = list() # Start the loop for date in date_range(start_date, end_date, classification_run_frequency): # Get the AIA files for the classification try: AIA_images = get_AIA_files(date, AIA_wavelengths) except FileNotFoundError as why: logging.warning('Missing AIA files for date %s, skipping missing files!', date) continue # Get the list of HMI images try: HMI_images = get_HMI_files(date) except FileNotFoundError as why: # It's okay if HMI files are missing, we just won't have HMI stats for the CH HMI_images = list() # Create the Segmented map segmented_map = create_segmented_map(AIA_images, date) # Create the CH map CH_map = create_CH_map(segmented_map, date, AIA_images + HMI_images) # Add the CH map to the list of untracked maps untracked_maps.append(CH_map) # If we have enough untracked maps, we run the tracking program if len(untracked_maps) >= tracking_run_count: tracked_maps, untracked_maps, newly_tracked_maps = track_maps(tracked_maps, untracked_maps, newly_tracked_maps) else: logging.debug('Not enough maps to run tracking, need %s but have only %s', tracking_run_count, len(untracked_maps)) # Track the remaing untracked maps if untracked_maps: tracked_maps, untracked_maps, newly_tracked_maps = track_maps(tracked_maps, untracked_maps, newly_tracked_maps) return newly_tracked_maps # Start point of the script if __name__ == '__main__': # Get the arguments parser = argparse.ArgumentParser(description = 'Create and track CH maps') parser.add_argument('--debug', '-d', default = False, action = 'store_true', help = 'Set the logging level to debug') parser.add_argument('--log_file', '-l', help = 'The file path of the log file') parser.add_argument('--start_date', '-s', default = '2010-05-20', help = 'Start date of AIA files, in form YYYY-MM-DD') parser.add_argument('--end_date', '-e', default = datetime.utcnow().strftime('%Y-%m-%d'), help = 'End date of AIA files, in form YYYY-MM-DD') parser.add_argument('--tracked_maps', '-t', metavar = 'MAP', nargs='*', help = 'File paths of previously tracked CH maps') parser.add_argument('--untracked_maps', '-u', metavar = 'MAP', nargs='*', help = 'File paths of not yet tracked CH maps') args = parser.parse_args() # Setup the logging if args.log_file: logging.basicConfig(level = logging.DEBUG if args.debug else logging.INFO, format='%(asctime)s : %(levelname)-8s : %(message)s', filename=args.log_file) else: logging.basicConfig(level = logging.DEBUG if args.debug else logging.INFO, format='%(asctime)s : %(levelname)-8s : %(message)s') # Parse the start and end date start_date = datetime.strptime(args.start_date, '%Y-%m-%d') end_date = datetime.strptime(args.end_date, '%Y-%m-%d') if args.end_date else datetime.utcnow() # Run the SPoCA jobs try: CH_maps = run_spoca_jobs(start_date, end_date, args.tracked_maps, args.untracked_maps) except Exception as why: logging.critical(str(why)) sys.exit(1)
2.015625
2
frontend/model/migrations/versions/d385c3eb6937_users_autoincrement_set_to_pk.py
MarioBartolome/GII_0_17.02_SNSI
1
12795276
"""USERS - Autoincrement set to PK Revision ID: d385c3eb6937 Revises: ee2cbe4166fb Create Date: 2018-02-16 11:23:29.705565 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'd385c3eb6937' down_revision = 'ee2cbe4166fb' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('user', sa.Column('name', sa.String(length=20), nullable=True)) op.add_column('user', sa.Column('surname', sa.String(length=20), nullable=True)) op.create_index(op.f('ix_user_surname'), 'user', ['surname'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_user_surname'), table_name='user') op.drop_column('user', 'surname') op.drop_column('user', 'name') # ### end Alembic commands ###
1.476563
1
algeria.py
yasserkaddour/covid19-icu-data-algeria
5
12795277
# A large portion of the code came from the COVID-19 Dataset project by Our World in Data # https://github.com/owid/covid-19-data/tree/master/scripts/scripts/vaccinations/src/vax/manual/twitter # Mainly contributed by <NAME> https://github.com/lucasrodes # The code is under completely open access under the Creative Commons BY license # https://creativecommons.org/licenses/by/4.0/ import os import pandas as pd import re import tweepy try: from config import TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET except ImportError: TWITTER_CONSUMER_KEY = os.getenv('TWITTER_CONSUMER_KEY') TWITTER_CONSUMER_SECRET = os.getenv('TWITTER_CONSUMER_SECRET') class TwitterAPI: def __init__(self, consumer_key: str, consumer_secret: str): self._api = self._get_api(consumer_key, consumer_secret) def _get_api(self, consumer_key, consumer_secret): auth = tweepy.AppAuthHandler(consumer_key, consumer_secret) return tweepy.API(auth) def get_tweets(self, username, num_tweets=30): tweets = tweepy.Cursor(self._api.user_timeline, screen_name=username, include_rts=False, tweet_mode='extended', exclude_replies=False, ).items(num_tweets) return tweets class TwitterCollectorBase: def __init__(self, api, username: str, location: str, num_tweets=100): self.username = username self.location = location self.tweets = api.get_tweets(self.username, num_tweets) self.tweets_relevant = [] self.output_path = "./algeria-covid19-icu-data.csv" self._data_old = self._get_current_data() def _set_output_path(self, paths, output_path): if output_path is None: if paths is not None: return paths.tmp_vax_out_proposal(self.location) else: raise AttributeError( "Either specify attribute `paths` or method argument `output_path`") def _get_current_data(self): if os.path.isfile(self.output_path): return pd.read_csv(self.output_path) else: None @property def last_update(self): if self._data_old is not None: return self._data_old.date.max() else: return None def _propose_df(self): raise NotImplementedError def propose_df(self): df = ( self._propose_df() .pipe(self.merge_with_current_data) .sort_values("date") ) return df def build_post_url(self, tweet_id: str): return f"https://twitter.com/{self.username}/status/{tweet_id}" def merge_with_current_data(self, df: pd.DataFrame) -> pd.DataFrame: if df.empty: return self._data_old if self._data_old is not None: df_current = self._data_old[~self._data_old.date.isin(df.date)] df = pd.concat([df, df_current]).sort_values(by="date") return df def stop_search(self, dt): if self._data_old is None: return False elif dt >= self.last_update: return False elif dt < self.last_update: return True def to_csv(self): df = self.propose_df() df.to_csv(self.output_path, index=False) class Algeria(TwitterCollectorBase): def __init__(self, api, **kwargs): super().__init__( api=api, username="Sante_Gouv_dz", location="Algeria", **kwargs ) def _propose_df(self): data = [] for tweet in self.tweets: match = re.search(r"مؤشرات الترصد لوباء كوفيد-19", tweet.full_text) or re.search( r"حصيلة وباء كورونا كوفيد-19 ليوم", tweet.full_text) or re.search( r"نوافيكم بالحصيلة الكاملة", tweet.full_text) match2 = re.search(r"العناية المركز", tweet.full_text) if match and match2: dt_match = re.search( r"(\d{1,2})\s*([ء-ي]+)\s*[ء-ي]*(202\d)", tweet.full_text) dt = dt_match.group( 3)+"-"+arabicMonthToNum(dt_match.group(2))+"-"+dt_match.group(1).zfill(2) if self.stop_search(dt): break new_cases_line = re.findall( "^.*جديدة.*$", tweet.full_text, re.MULTILINE)[0] new_cases = int(re.search(r'\d+', new_cases_line).group(0)) recoveries_line = re.findall( "^.*للشفاء.*$", tweet.full_text, re.MULTILINE)[0] recoveries = int(re.search(r'\d+', recoveries_line).group(0)) in_icu_line = re.findall( "^.*العناية المركز.*$", tweet.full_text, re.MULTILINE)[0] in_icu = int(re.search(r'\d+', in_icu_line).group(0)) new_deaths_line = re.findall( "^.*وفيات.*$", tweet.full_text, re.MULTILINE) if(new_deaths_line): new_deaths = int( re.search(r'\d+', new_deaths_line[0]).group(0)) else: if(re.findall( "^.*وفاة واحدة.*$", tweet.full_text, re.MULTILINE)[0]): new_deaths = 1 data.append({ "date": dt, "new_cases": new_cases, "recoveries": recoveries, "in_icu": in_icu, "death": new_deaths, "text": tweet.full_text, "source_url": self.build_post_url(tweet.id), }) df = pd.DataFrame(data) return df def arabicMonthToNum(month): return { 'جانفي': "01", 'فيفري': "02", 'مارس': "03", 'أفريل': "04", 'ماي': "05", 'جوان': "06", 'جويلية': "07", 'اوت': "08", 'أوت': "08", 'سبتمبر': "09", 'أكتوبر': "10", 'اكتوبر': "10", 'كتوبر': "10", 'نوفمبر': "11", 'ديسمبر': "12" }[month] def main(): api = TwitterAPI(TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET) Algeria(api).to_csv() if __name__ == "__main__": main()
2.6875
3
hiMoon/haplotype.py
sadams2013/hiMoon
4
12795278
<reponame>sadams2013/hiMoon # Copyright 2021 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import itertools import pandas as pd import numpy as np from pulp import * from .gene import AbstractGene from . import LOGGING class NoVariantsException(Exception): """ Exception to call if a sample is attempted that has zero variants defined. """ pass class Haplotype: def __init__(self, gene: AbstractGene, sample_prefix: str, config = None) -> None: """ Create a new haplotype object This object is not a subclass, but inherits data from the Gene class Conceptually, Gene is a fairly abstract class that has meta information used by the subject and haplotype classes. Args: gene (Gene): gene.Gene object sample_prefix (str): Sample ID """ self.phased = gene.phased self.config = config self.solver = gene.solver self.matched = False self.sample_prefix = sample_prefix self.genotypes = gene.get_sample_vars(sample_prefix) if len(self.genotypes) == 0: raise NoVariantsException self.translation_table = gene.get_translation_table_copy() self.chromosome = gene.chromosome self.version = gene.version self.reference = gene.reference def table_matcher(self) -> None: """ Matches variants in the translation table with the subject's variants """ self.matched = True matches = self.translation_table.apply(self._match, axis = 1) self.translation_table["MATCH"] = [m[0] for m in matches] self.translation_table["STRAND"] = [m[1] for m in matches] self.translation_table["VAR_ID"] = self.translation_table.apply( lambda x: f'{x["ID"]}_{str(x.iloc[6]).strip("<>")}_{str(x.iloc[7]).strip("<>")}', axis = 1 ) self.translation_table = self.translation_table.drop(self.translation_table.index[self.translation_table["MATCH"] == 99].tolist()) haps = self.translation_table["Haplotype Name"] no_match = self.translation_table[self.translation_table["MATCH"] == 0].iloc[:,0] # Haplotypes where there is any variant not matching drops = [] for i in no_match.unique(): if sum([i == k for k in no_match]) > 0: drops.append(i) self.translation_table = self.translation_table[~self.translation_table.iloc[:,0].isin(drops)] # Drop haplotypes that don't match 100% self.variants = self.translation_table.loc[:,["VAR_ID", "MATCH", "STRAND", "Type", "Variant Start"]].drop_duplicates() # List of matched variants self.haplotypes = [hap for hap in self.translation_table.iloc[:,0].unique().tolist()] # List of possible haplotypes def _mod_vcf_record(self, alt: str, ref: str) -> str: """ Modifies record from VCF to standardized form Args: alt (str): alt allele ref (str): ref allele Returns: str: reformatted alt allele """ if alt is None: return "-" if "<" in alt: return f"s{alt.strip('<>')}" elif len(ref) > len(alt): return "id-" elif len(ref) < len(alt): return f'id{alt[1:]}' # Remove first position else: return f's{alt}' def _mod_tt_record(self, var_type: str, alt: str) -> list: """ Modifies the translation table ref to a standardized form Args: var_type (str): insertion, deletion, or substitution alt (str): allele from translation table Returns: [list]: modified allele as list based on iupac """ alt = alt.strip("<>") if var_type == "insertion": return [f'id{alt}'] elif var_type == "deletion": return [f'id-'] else: try: return [f's{a}' for a in self.config.IUPAC_CODES[alt]] except KeyError: return [f's{alt}'] def _match(self, row: pd.core.series.Series) -> (int, int): """ Evaluate match in a single translation table row with a sample Args: row (pd.core.series.Series): single row from translation table genotypes ([type]): list of genotypes Returns: int: 99 (missing), 0, 1, or 2 (corresponds to the number of matched alleles for a particular position) """ strand = 0 if row.iloc[8] in ["insertion", "deletion"]: new_pos = int(row["ID"].split("_")[1]) - 1 ID = f'{row["ID"].split("_")[0]}_{new_pos}_SID' else: ID = row["ID"] try: genotype = self.genotypes[ID] except KeyError: # Not in VCF return int(self.config.MISSING_DATA_PARAMETERS["missing_variants"]), strand try: vcf_geno = [self._mod_vcf_record(g, genotype["ref"]) for g in genotype["alleles"]] except AttributeError: return int(self.config.MISSING_DATA_PARAMETERS["missing_variants"]), strand if vcf_geno == ["-", "-"]: return int(self.config.MISSING_DATA_PARAMETERS["missing_variants"]), strand tt_alt_geno = self._mod_tt_record(row.iloc[8], row.iloc[7]) alt_matches = sum([vcf_geno.count(a) for a in tt_alt_geno]) if alt_matches == 1 and genotype["phased"]: strand = 1 if max([vcf_geno.index(a) for a in tt_alt_geno]) == 1 else -1 elif alt_matches == 2 and genotype["phased"]: strand = 3 return alt_matches, strand def _haps_from_prob(self, lp_problem: object) -> tuple: """ Take a optimally solved lp problem Produce called haplotypes Args: lp_problem (object): solved lp problem Returns: tuple: called haplotypes and associated information """ is_ref = False haps = [] variants = [] for v in lp_problem.variables(): if v.varValue: if v.varValue > 0: if v.name.split("_")[0] == f'c{self.chromosome}': variants.append(v.name) else: haps.append((v.name, v.varValue)) if len(haps) == 0: called = [self.reference, self.reference] is_ref = True elif len(haps) == 2: called = [haps[0][0], haps[1][0]] else: called = np.array([np.repeat(i[0], i[1]) for i in haps]).flatten().tolist() if len(called) == 1: called.append(self.reference) return called, variants, len(haps), is_ref def _solve(self, hap_prob: object) -> object: if self.solver == "GLPK": hap_prob.solve(GLPK(msg=0)) else: hap_prob.solve(PULP_CBC_CMD(msg=0)) def lp_hap(self) -> tuple: """ Build and run the LP problem Returns: tuple: list of possible haplotypes and list of associated variants """ possible_haplotypes = [] haplotype_variants = [] num_vars = self.variants.shape[0] num_haps = len(self.haplotypes) hap_vars = [] for hap in self.haplotypes: trans = self.translation_table[self.translation_table.iloc[:,0] == hap] hap_vars.append([1 if var in trans["VAR_ID"].unique() else 0 for var in self.variants["VAR_ID"]]) hap_prob = LpProblem("Haplotype Optimization", LpMaximize) # Define the haplotypes and variants variables haplotypes = [LpVariable(hap, cat = "Integer", lowBound=0, upBound=2) for hap in self.haplotypes] variants = [LpVariable(var, cat = "Binary") for var in self.variants["VAR_ID"]] # Set constraint of two haplotypes selected hap_prob += (lpSum(haplotypes[i] for i in range(num_haps)) <= int(self.config.LP_PARAMS["max_haps"])) # Cannot choose more than x haplotypes (may be increased to find novel sub-alleles) # Limit alleles that can be chosen based on zygosity for i in range(num_vars): # Iterate over every variant # A variant allele can only be used once per haplotype, up to two alleles per variant hap_prob += (variants[i] <= (lpSum(hap_vars[k][i] * haplotypes[k] for k in range(num_haps)))) # A given variant cannot be used more than "MATCH" hap_prob += ((lpSum(hap_vars[k][i] * haplotypes[k] for k in range(num_haps))) <= self.variants.iloc[i,1] * variants[i]) # Any CNV variants defined, if matched with a haplotype, MUST be used # Otherwise, variants like CYP2D6*5 will be missed by the other methods if self.variants.iloc[i,3] == "CNV": hap_prob += ((lpSum(hap_vars[k][i] * haplotypes[k] for k in range(num_haps))) == self.variants.iloc[i,1]) if self.phased: for i in range(num_haps): hap_prob += lpSum(haplotypes[i] * self._get_strand_constraint(i, []).size) <= 1 # max one strand hap_prob += lpSum(haplotypes[i] * self._get_strand_constraint(i, [0])[0] for i in range(num_haps)) <= 1 hap_prob += lpSum(haplotypes[i] * self._get_strand_constraint(i, [0])[0] for i in range(num_haps)) >= -1 # Set to maximize the number of variant alleles used hap_prob += lpSum( self.translation_table[ (self.translation_table.iloc[:,0] == self.haplotypes[i]) & (self.translation_table["MATCH"] > 0) ].shape[0] * haplotypes[i] for i in range(num_haps)) self._solve(hap_prob) if hap_prob.status != 1: if self.phased: LOGGING.warning(f"No feasible solution found, {self.sample_prefix} will be re-attempted with phasing off.") return None, None else: LOGGING.warning(f"No feasible solution found, {self.sample_prefix} will not be called") return [], [] else: called, variants, hap_len, is_ref = self._haps_from_prob(hap_prob) if is_ref: possible_haplotypes.append(tuple(called)) haplotype_variants.append(tuple(variants)) return possible_haplotypes, haplotype_variants max_opt = hap_prob.objective.value() opt = max_opt while opt >= (max_opt - float(self.config.LP_PARAMS["optimal_decay"])) and not is_ref and hap_prob.status >= 0: possible_haplotypes.append(tuple(sorted(called))) haplotype_variants.append(tuple(sorted(variants))) hap_prob += lpSum([h.value() * h for h in haplotypes]) <= hap_len - 1 self._solve(hap_prob) if hap_prob.status != 1: break opt = hap_prob.objective.value() new_called, variants, hap_len, is_ref = self._haps_from_prob(hap_prob) if new_called == called or len(new_called) == 0: break called = new_called return possible_haplotypes, haplotype_variants def _get_strand_constraint(self, i: int, default: list) -> list: """ Helps to assemble the constraint for phased data Looks at all strands that are part of a haplotype Removes homozygous calls Args: i (int): haplotype index default (list): default return if nothing matches or if all are homozygous Returns: list: [description] """ sc = self.translation_table[self.translation_table.iloc[:,0] == self.haplotypes[i]]["STRAND"].unique() sc = np.delete(sc, np.where(sc == [3])) return(sc if sc.size > 0 else np.array(default)) def optimize_hap(self) -> (): """ Solve for the most likely diplotype Returns: (): Results """ if not self.matched: print("You need to run the table_matcher function with genotyped before you can optimize") sys.exit(1) called, variants = self.lp_hap() if called is None: # Happens when a phased call attempt fails self.phased = False called, variants = self.lp_hap() if len(called) > 1: LOGGING.warning(f"Multiple genotypes possible for {self.sample_prefix}.") return called, variants
2.4375
2
pioneer/das/api/sensors/radar_conti.py
leddartech/pioneer.das.api
8
12795279
<reponame>leddartech/pioneer.das.api from pioneer.das.api.interpolators import nearest_interpolator from pioneer.das.api.samples import Sample, XYZVI from pioneer.das.api.sensors.sensor import Sensor class RadarConti(Sensor): def __init__(self, name, platform): super(RadarConti, self).__init__(name, platform, {'xyzvi': (XYZVI, nearest_interpolator)}) self.amplitude_type = 'velocity' # types = ['i', 'velocity'] def get_corrected_cloud(self, _timestamp, pts, _dtype): return pts
2.234375
2
scripts/f247.py
Eve-ning/aleph0
0
12795280
from math import pi import numpy as np from aleph.consts import * from reamber.algorithms.generate.sv.generators.svOsuMeasureLineMD import svOsuMeasureLineMD, SvOsuMeasureLineEvent from reamber.osu.OsuMap import OsuMap # notes: 01:37:742 (97742|2,125moves993|2) - SHAKES = np.array( [100560, 100790, 101018, 101245, 104124, 104340, 104556, 104770, 107487, 107692, 107896, 108099, 110674, 110867, 111059, 111156, 111252, 111348, 113698, 113882, 114065, 114248, 116577, 116753, 116928, 117103, 119326, 119494, 119661, 119827, 121953, 122114, 122275, 122434, 122594, 122673, 122752, 122831, 123068, 123147, 123226, 123304, 123383, 123539, 123618, 123696, 123773, 123851, 124007, 124084, 124162, 124239, 124316, 124471, 124547, 124624, 124701, 124778, 124932, 125008, 125084, 125160, 125236, 125388, 125464, 125540, 125616, 125692, 125767, 125842, 125918, 125993]) def f247(m: OsuMap): notes = sorted([n for n in m.notes.hits() if 97742 < n.offset <= 125993]) BASE_SHAKE_AMP = 0.010 INC_SHAKE_AMP = 0.0010 SHAKE_WINDOW = 250 NOTE_DURATION = 2000 # noinspection PyTypeChecker events = [ *[SvOsuMeasureLineEvent( firstOffset=n.offset - NOTE_DURATION - t, lastOffset=n.offset - t, startX=n.offset - NOTE_DURATION - t, endX=n.offset - t, startY=-1 + en / 500 , endY=1 - en / 500, funcs=[ lambda x, n=n, t=t: # This flips the board if it's < 2 (-1 if n.column < 2 else 1) * ( np.piecewise(x, [(i <= x) & (x < i + SHAKE_WINDOW) for i in SHAKES], [*[lambda x, i=i, es=es: (BASE_SHAKE_AMP + es * INC_SHAKE_AMP) * np.sin((x - i) * pi / (SHAKE_WINDOW - es * 3)) for es, i in enumerate(SHAKES)], lambda x: 0]) + (x - (n.offset - t)) / NOTE_DURATION ) ]) for en, n in enumerate(notes) for t in np.linspace(0, 24, NOTE_THICKNESS)] ] svs, bpms = svOsuMeasureLineMD(events, scalingFactor=SCALE, firstOffset=97742, lastOffset=125993, paddingSize=PADDING, endBpm=250) m.svs.extend(svs) m.bpms.extend(bpms)
2
2
bin/flt-include-doc-map.py
tapaswenipathak/MkTechDocs
9
12795281
#!/usr/bin/env python3 # Copyright (c) 2017 AT&T Intellectual Property. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## # This filter is identical to the include filter, except # that while building a document, it outputs a document # map on stderr so that a script can figure out where each part of # the document came from. E.g. # # ```include # includethisfile.md # ``` # This filter is recursive, so you markdown can include # other markdown to any level. # import os import sys import json import re from subprocess import Popen, PIPE from pandocfilters import toJSONFilter, walk, get_value, Str, Header, Para, Space REFFILE="" def md_to_json(s): p = Popen(["pandoc", "-f", "markdown", "-t", "json"], stdin=PIPE, stdout=PIPE) p.stdin.write(s.encode()) (stdout, stderr) = p.communicate() if str(stderr) != "None": sys.stderr.write("WARNING: Conversion to json had results in stderr: " + str(stderr)) return stdout.decode() def get_contents_of_file(f, levels=u"0"): numLevels = int(levels) # Return the contents of file unchanged if no change in level is needed if numLevels == 0: if os.path.isfile(f): with open(f, "r") as myFile: return myFile.read() else: sys.stderr.write("WARNING: cannot read " + f) return "FILE NOT FOUND: " + f # Alter the level alterLevelBy = abs(numLevels) pre = "in" if numLevels > 0 else "de" if alterLevelBy > 5: sys.stderr.write("WARNING: Header change out of bounds. Will stick at a maximum of 6 or minimum of 0\n") alterLevelBy = 5 p = Popen(["pandoc", "-f", "markdown", "-t", "markdown", "-F", "flt-" + pre + "crement-header-" + str(alterLevelBy) + ".py", f], stdout=PIPE) (stdout, stderr) = p.communicate() stdout = stdout.decode() if stderr is not None: stderr = stderr.decode() if stderr != "None": sys.stderr.write("WARNING: Conversion to json had results in stderr: " + stderr) return stdout def docmap(key, value, format, meta): global REFFILE if key == 'Header': [level, attr, inline] = value [ids, classes, keyvals] = attr # Change the reference file if we see a new level-1 header if level == 1 and 'fromfile' in meta: reffile = re.sub("\.md", ".html", meta['fromfile']['c']) REFFILE="~~" + reffile + "~~" sys.stderr.write(reffile + "\n") return Header(level, [REFFILE + str(ids), [], []], inline) elif key == 'CodeBlock': [[ident, classes, keyvals], code] = value if "include" in classes: rv = [] for l in code.splitlines(): l = l.strip() if os.path.isfile(l): (headingLevel, dummy) = get_value(keyvals, "heading-level") if not headingLevel: headingLevel = 0 contents = get_contents_of_file(l, headingLevel) doc = json.loads(md_to_json(contents)) if 'meta' in doc: meta = doc['meta'] elif doc[0]: # old API meta = doc[0]['unMeta'] else: meta = {} # Add a file to the meta info meta['fromfile']= {u'c':l, u't':'MetaString'} altered = walk(doc, docmap, format, meta) rv.append(altered['blocks']) else: sys.stderr.write("WARNING: Can't read file '" + l + "'. Skipping.") # Return a flattened list using nested list comprehension # # The following is equivalent to: # # flattened = [] # for sublist in rv: # for item in sublist: # flattened.append(item) # return flattened return [item for sublist in rv for item in sublist] if __name__ == "__main__": toJSONFilter(docmap)
2.703125
3
src/rez/command.py
alexey-pelykh/rez
0
12795282
# SPDX-License-Identifier: Apache-2.0 # Copyright Contributors to the Rez Project from rez.config import config class Command(object): """An interface for registering custom Rez subcommand To register plugin and expose subcommand, the plugin module.. * MUST have a module-level docstring (used as the command help) * MUST provide a `setup_parser()` function * MUST provide a `command()` function * MUST provide a `register_plugin()` function * SHOULD have a module-level attribute `command_behavior` For example, a plugin named 'foo' and this is the `foo.py`: '''The docstring for command help, this is required. ''' from rez.command import Command command_behavior = { "hidden": False, # optional: bool "arg_mode": None, # optional: None, "passthrough", "grouped" } def setup_parser(parser, completions=False): parser.add_argument("--hello", ...) def command(opts, parser=None, extra_arg_groups=None): if opts.hello: print("world") class CommandFoo(Command): schema_dict = {} @classmethod def name(cls): return "foo" def register_plugin(): return CommandFoo """ def __init__(self): self.type_settings = config.plugins.extension self.settings = self.type_settings.get(self.name()) @classmethod def name(cls): """Return the name of the Command and rez-subcommand.""" raise NotImplementedError
2.546875
3
src/streetool/classifications.py
actionprojecteu/action-tool
0
12795283
# -*- coding: utf-8 -*- # ---------------------------------------------------------------------- # Copyright (c) 2021 # # See the LICENSE file for details # see the AUTHORS file for authors # ---------------------------------------------------------------------- #-------------------- # System wide imports # ------------------- import os import os.path import logging #-------------- # local imports # ------------- from streetool.utils import get_image, paging # ----------------------- # Module global variables # ----------------------- log = logging.getLogger("streetoool") # ---------------- # Module constants # ---------------- def dynamic_sql(options): columns = list() headers = list() where = "" if options.workflow: columns.append("workflow_id") headers.append("Workflow Id") if options.user: columns.append("user_id") headers.append("User Id") elif options.anon_user: columns.append("user_ip") headers.append("User IP") where = "WHERE user_id IS NULL" if options.subject: columns.append("subject_id") headers.append("Subject Id") if options.classification: columns.append("classification_id") headers.append("Classification Id") if options.source: columns.append("cluster_id") headers.append("Source Id") if len(columns) == 0: raise ValueError("At least one --<flag> must be specified") headers.append("# Classif") sql = f"SELECT {','.join(columns)}, COUNT(*) FROM spectra_classification_v {where} GROUP BY {','.join(columns)} ORDER BY {','.join(columns)}" return sql, headers # ======== # COMMANDS # ======== def view(connection, options): sql, headers = dynamic_sql(options) cursor = connection.cursor() cursor.execute(sql) paging( iterable = cursor, headers = headers, )
2.125
2
kerasAC/interpret/form_modisco_inputs.py
kundajelab/kerasAC
6
12795284
import argparse import math import pysam import shap import tensorflow from deeplift.dinuc_shuffle import dinuc_shuffle from scipy.spatial.distance import jensenshannon from scipy.special import logit, softmax tensorflow.compat.v1.disable_v2_behavior() import kerasAC import matplotlib import pandas as pd from kerasAC.interpret.deepshap import * from kerasAC.interpret.profile_shap import * from kerasAC.util import * from tensorflow.keras.models import load_model from tensorflow.keras.utils import get_custom_objects from kerasAC.custom_losses import * from kerasAC.metrics import * def parse_args(): parser = argparse.ArgumentParser(description="Argument Parser for SNP scoring") parser.add_argument("--model_hdf5") parser.add_argument("--peak_file") parser.add_argument("--npeaks_to_sample",type=int,default=30000) parser.add_argument("--out_prefix") parser.add_argument( "--ref_fasta", default="/data/GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta" ) parser.add_argument("--dinuc_shuffle_input",action='store_true',default=False) parser.add_argument("--chrom_sizes", default="/data/hg38.chrom.sizes") parser.add_argument("--flank_size", type=int, default=1057) parser.add_argument("--batch_size",type=int,default=100) return parser.parse_args() def load_model_wrapper(model_hdf5): # load the model! custom_objects = { "recall": recall, "sensitivity": recall, "specificity": specificity, "fpr": fpr, "fnr": fnr, "precision": precision, "f1": f1, "ambig_binary_crossentropy": ambig_binary_crossentropy, "ambig_mean_absolute_error": ambig_mean_absolute_error, "ambig_mean_squared_error": ambig_mean_squared_error, "MultichannelMultinomialNLL": MultichannelMultinomialNLL, } get_custom_objects().update(custom_objects) return load_model(model_hdf5) def combine_mult_and_diffref(mult, orig_inp, bg_data): to_return = [] for l in [0]: projected_hypothetical_contribs = np.zeros_like(bg_data[l]).astype("float") assert len(orig_inp[l].shape) == 2 for i in range(orig_inp[l].shape[-1]): hypothetical_input = np.zeros_like(orig_inp[l]).astype("float") hypothetical_input[:, i] = 1.0 hypothetical_difference_from_reference = ( hypothetical_input[None, :, :] - bg_data[l] ) hypothetical_contribs = hypothetical_difference_from_reference * mult[l] projected_hypothetical_contribs[:, :, i] = np.sum( hypothetical_contribs, axis=-1 ) to_return.append(np.mean(projected_hypothetical_contribs, axis=0)) to_return.append(np.zeros_like(orig_inp[1])) return to_return def shuffle_several_times(s): numshuffles = 20 return [ np.array([dinuc_shuffle(s[0]) for i in range(numshuffles)]), np.array([s[1] for i in range(numshuffles)]), ] def main(): args = parse_args() chrom_sizes=open(args.chrom_sizes,'r').read().strip().split('\n') chrom_size_dict={} for line in chrom_sizes: tokens=line.split('\t') chrom_size_dict[tokens[0]]=int(tokens[1]) ref=pysam.FastaFile(args.ref_fasta) # load the model model = load_model_wrapper(args.model_hdf5) print("loaded model") # create the count & profile explainers model_wrapper = (model.input, model.outputs[1][:, 0:1]) count_explainer = shap.DeepExplainer( model_wrapper, data=create_background_atac, combine_mult_and_diffref=combine_mult_and_diffref_atac ) prof_explainer = create_explainer(model, ischip=False, task_index=0) print("made explainers") #read in the peaks peaks=pd.read_csv(args.peak_file,header=None,sep='\t') nrow=peaks.shape[0] tosample=round(int(args.npeaks_to_sample)/nrow,2) peaks = peaks.sample(frac=tosample).reset_index(drop=True) nrow=peaks.shape[0] print("sampled peaks:"+str(nrow)) #allocate space for numpy arrays for modisco hypothetical_profile_scores=np.empty((nrow,2*args.flank_size,4)) hypothetical_count_scores=np.empty((nrow,2*args.flank_size,4)) observed_profile_scores=np.empty((nrow,2*args.flank_size,4)) observed_count_scores=np.empty((nrow,2*args.flank_size,4)) seq=np.empty((nrow,2*args.flank_size,4)) print("pre-allocted output arrays") #generate one-hot-encoded inputs start_index=0 while start_index < nrow: cur_batch_size=min(args.batch_size,nrow-start_index) print(str(start_index)+":"+str(start_index+cur_batch_size)) batch_chroms=peaks[0][start_index:start_index+cur_batch_size].tolist() batch_start_pos=peaks[1]+peaks[9]-args.flank_size batch_start_pos=batch_start_pos.tolist() batch_start_pos=[max(0,i) for i in batch_start_pos] batch_start_pos=[min(batch_start_pos[i],chrom_size_dict[batch_chroms[i]]-2*args.flank_size) for i in range(cur_batch_size)] seq_batch=[ref.fetch(batch_chroms[i],batch_start_pos[i],batch_start_pos[i]+2*args.flank_size) for i in range(cur_batch_size)] if args.dinuc_shuffle_input is True: seq_batch=[dinuc_shuffle(i) for i in seq_batch] seq_batch=one_hot_encode(seq_batch) seq[start_index:start_index+cur_batch_size,:,:]=seq_batch #get the hypothetical scores for the batch hypothetical_profile_scores[start_index:start_index+cur_batch_size,:,:]= prof_explainer(seq_batch, None) observed_profile_scores[start_index:start_index+cur_batch_size,:,:]=hypothetical_profile_scores[start_index:start_index+cur_batch_size,:,:]*seq_batch hypothetical_count_scores[start_index:start_index+cur_batch_size,:,:]= np.squeeze(count_explainer.shap_values(seq_batch)[0]) observed_count_scores[start_index:start_index+cur_batch_size,:,:]=hypothetical_count_scores[start_index:start_index+cur_batch_size,:,:]*seq_batch start_index+=args.batch_size #save print("saving outputs") np.save(args.out_prefix+'.hyp.profile.npy',hypothetical_profile_scores) np.save(args.out_prefix+'.observed.profile.npy',observed_profile_scores) np.save(args.out_prefix+'.hyp.count.npy',hypothetical_count_scores) np.save(args.out_prefix+'.observed.count.npy',observed_count_scores) np.save(args.out_prefix+'.seq.npy',seq) if __name__ == "__main__": main()
1.851563
2
wd_cw05/wd_cw05_zadanie_2.py
pawel2706111/wizualizacja-danych
0
12795285
# Przeciąż metodę __add__() dla klasy Kwadrat, # która będzie zwracała instancje klasy Kwadrat o nowym boku, # będącym sumą boków dodawanych do siebie kwadratów. class Ksztalty: def __init__(self, x, y): self.x=x self.y=y self.opis = "To będzie klasa dla ogólnych kształtów" def pole(self): return self.x * self.y def obwod(self): return 2 * self.x + 2 * self.y def dodaj_opis(self, text): self.opis = text def skalowanie(self, czynnik): self.x = self.x * czynnik self.x = self.y * czynnik class Kwadrat(Ksztalty): def __init__(self, x): self.x = x self.y = x def __add__(self, other): return self.x + other.x kw1 = Kwadrat(5) kw2 = Kwadrat(6) kw3 = Kwadrat(kw1 + kw2) kw4 = Kwadrat(kw1 + kw3) print('kw1 ma wymiary:', kw1.x,'x', kw1.y) print('kw2 ma wymiary:', kw2.x,'x', kw2.y) print('kw3 ma wymiary:', kw3.x,'x', kw3.y) print('kw4 ma wymiary:', kw4.x,'x', kw4.y)
4.0625
4
cpmpy/ski_assignment.py
tias/hakank
279
12795286
<gh_stars>100-1000 """ Ski assignment in cpmpy From <NAME>, Jr.: PIC 60, Fall 2008 Final Review, December 12, 2008 http://www.math.ucla.edu/~jhellrun/course_files/Fall%25202008/PIC%252060%2520-%2520Data%2520Structures%2520and%2520Algorithms/final_review.pdf ''' 5. Ski Optimization! Your job at Snapple is pleasant but in the winter you've decided to become a ski bum. You've hooked up with the Mount Baldy Ski Resort. They'll let you ski all winter for free in exchange for helping their ski rental shop with an algorithm to assign skis to skiers. Ideally, each skier should obtain a pair of skis whose height matches his or her own height exactly. Unfortunately, this is generally not possible. We define the disparity between a skier and his or her skis to be the absolute value of the difference between the height of the skier and the pair of skis. Our objective is to find an assignment of skis to skiers that minimizes the sum of the disparities. ... Illustrate your algorithm by explicitly filling out the A[i, j] table for the following sample data: * Ski heights: 1, 2, 5, 7, 13, 21. * Skier heights: 3, 4, 7, 11, 18. ''' This cpmpy model was written by <NAME> (<EMAIL>) See also my cpmpy page: http://hakank.org/cpmpy/ """ from cpmpy import * import cpmpy.solvers import numpy as np from cpmpy_hakank import * def ski_assignment(): # data num_skis = 6 num_skiers = 5 ski_heights = [1, 2, 5, 7, 13, 21] skier_heights = [3, 4, 7, 11, 18] # which ski to choose for each skier x = intvar(0,num_skis-1,shape=num_skiers,name="x") z = intvar(0, sum(ski_heights), name="z") model = Model(minimize=z) # constraints model += [AllDifferent(x)] # model += [z == sum([abs(ski_heights[x[i]] - skier_heights[i]) for i in range(num_skiers)] )] model += [z == sum([abs(Element(ski_heights,x[i]) - skier_heights[i]) for i in range(num_skiers)] )] ss = CPM_ortools(model) num_solutions = 0 if ss.solve(): num_solutions += 1 print("total differences:", z.value()) for i in range(num_skiers): x_val = x[i].value() ski_height = ski_heights[x[i].value()] diff = ski_height - skier_heights[i] print('Skier %i: Ski %i with length %2i (diff: %2i)' %\ (i, x_val, ski_height, diff)) print() print() print('num_solutions:', num_solutions) return ss ss = ski_assignment()
3.265625
3
maya/maximumreplacer/maximumreplacer.py
KasumiL5x/misc-scripts
0
12795287
# # Maximum Replacer # <NAME>, 2019 # GitHub: KasumiL5x import re import PySide2.QtCore as QC import PySide2.QtGui as QG import PySide2.QtWidgets as QW import shiboken2 import maya.cmds as mc import maya.mel as mel import maya.OpenMayaUI as omui def get_maya_window(): ptr = omui.MQtUtil.mainWindow() parent = shiboken2.wrapInstance(long(ptr), QW.QDialog) return parent #end class MaximumReplacer(QW.QDialog): def __init__(self, parent=get_maya_window()): QW.QDialog.__init__(self, parent=parent) # [(short_name, long_name), ...] self.selected_items = [] # [(regexed_short_name, different_from_original), ...] maps 1-1 with the above in size self.regexed_items = [] self.setWindowFlags(QC.Qt.Window) self.setWindowTitle('Maximum Replacer') self.setMinimumWidth(380) self.setMinimumHeight(400) self.setLayout(QW.QVBoxLayout()) self.layout().setContentsMargins(5, 5, 5, 5) self.layout().setSpacing(5) self.layout().setAlignment(QC.Qt.AlignTop) # Selection Section # gb_selection = QW.QGroupBox() gb_selection.setLayout(QW.QHBoxLayout()) gb_selection.layout().setContentsMargins(2,2,2,2) gb_selection.layout().setSpacing(5) gb_selection.setTitle('Selection') self.layout().addWidget(gb_selection) # self.rb_select_all = QW.QRadioButton() self.rb_select_all.setText('All') self.rb_select_all.setChecked(True) gb_selection.layout().addWidget(self.rb_select_all) # self.rb_select_sel = QW.QRadioButton() self.rb_select_sel.setText('Selected') gb_selection.layout().addWidget(self.rb_select_sel) # self.txt_filter_name = QW.QLineEdit() self.txt_filter_name.setPlaceholderText('Pattern...') gb_selection.layout().addWidget(self.txt_filter_name) # self.txt_filter_type = QW.QLineEdit() self.txt_filter_type.setPlaceholderText('Type (e.g. transform)...') gb_selection.layout().addWidget(self.txt_filter_type) # Expression Section # gb_expression = QW.QGroupBox() gb_expression.setLayout(QW.QVBoxLayout()) gb_expression.layout().setContentsMargins(2,2,2,2) gb_expression.layout().setSpacing(5) gb_expression.setTitle('Regular Expression') self.layout().addWidget(gb_expression) # expr_widget = QW.QWidget() expr_widget.setLayout(QW.QHBoxLayout()) expr_widget.layout().setContentsMargins(2,2,2,2) expr_widget.layout().setSpacing(5) gb_expression.layout().addWidget(expr_widget) # lbl_regex = QW.QLabel() lbl_regex.setText('Pattern') expr_widget.layout().addWidget(lbl_regex) # self.txt_replace_expr = QW.QLineEdit() self.txt_replace_expr.setPlaceholderText('Regex...') expr_widget.layout().addWidget(self.txt_replace_expr) # subs_widget = QW.QWidget() subs_widget.setLayout(QW.QHBoxLayout()) subs_widget.layout().setContentsMargins(2,2,2,2) subs_widget.layout().setSpacing(5) gb_expression.layout().addWidget(subs_widget) # lbl_subst = QW.QLabel() lbl_subst.setText('Substitute') subs_widget.layout().addWidget(lbl_subst) # self.txt_replace_subs = QW.QLineEdit() self.txt_replace_subs.setPlaceholderText('Substitute...') subs_widget.layout().addWidget(self.txt_replace_subs) # Preview Section # gb_preview = QW.QGroupBox() gb_preview.setLayout(QW.QVBoxLayout()) gb_preview.layout().setContentsMargins(2,2,2,2) gb_preview.layout().setSpacing(5) gb_preview.setTitle('Preview') self.layout().addWidget(gb_preview) # self.lv_preview = QW.QListWidget() gb_preview.layout().addWidget(self.lv_preview) # Button! self.btn_commit = QW.QPushButton() self.btn_commit.setText('Commit') self.layout().addWidget(self.btn_commit) # footer footer_widget = QW.QWidget() footer_widget.setLayout(QW.QHBoxLayout()) footer_widget.layout().setContentsMargins(0,0,0,0) footer_widget.layout().setSpacing(5) self.layout().addWidget(footer_widget) # copyright! info_lbl = QW.QLabel() info_lbl.setTextFormat(QC.Qt.RichText) info_lbl.setOpenExternalLinks(True) info_lbl.setText('Maximum Replacer v1.2 <a href=\"http://www.dgreen.me/\">www.dgreen.me</a>') footer_widget.layout().addWidget(info_lbl, 0, QC.Qt.AlignLeft) # update while typing checkbox self.chk_update_while_typing = QW.QCheckBox() self.chk_update_while_typing.setText('Update while typing') self.chk_update_while_typing.setChecked(True) footer_widget.layout().addWidget(self.chk_update_while_typing, 0, QC.Qt.AlignRight) # connections self.txt_filter_name.textChanged.connect(self.on_text_changed) self.txt_filter_type.textChanged.connect(self.on_text_changed) self.txt_replace_expr.textChanged.connect(self.on_text_changed) self.txt_replace_subs.textChanged.connect(self.on_text_changed) self.txt_filter_name.editingFinished.connect(self.on_text_edited) self.txt_filter_type.editingFinished.connect(self.on_text_edited) self.txt_replace_expr.editingFinished.connect(self.on_text_edited) self.txt_replace_subs.editingFinished.connect(self.on_text_edited) self.rb_select_all.clicked.connect(self.update) self.rb_select_sel.clicked.connect(self.update) self.btn_commit.clicked.connect(self.commit) # initial self.update() #end # called when any text changes in text fields def on_text_changed(self): if not self.chk_update_while_typing.isChecked(): return self.update() #end # called when changes have been committed in text fields (e.g. return pressed) def on_text_edited(self): if self.chk_update_while_typing.isChecked(): return self.update() #end def edit_done(self): print 'Editing done' #end def get_real_short_names(self, selected): result = [] for x in mc.ls(sl=selected, shortNames=True): result.append(x[x.rfind('|')+1:]) # basically strip all after last | (the |+1 becomes 0 if the find fails, so it's okay to fail) return result #end def get_selection(self, regex=None): result = [] # all objects if self.rb_select_all.isChecked(): result = zip(self.get_real_short_names(False), mc.ls(long=True)) # selected objects if self.rb_select_sel.isChecked(): result = zip(self.get_real_short_names(True), mc.ls(sl=True, long=True)) # filter by type filter_type = self.txt_filter_type.text() if len(filter_type): to_remove = [] for idx in range(len(result)): node_type = mc.nodeType(result[idx][1]) try: if None == re.search(filter_type, node_type): to_remove.append(idx) except: continue #end for # remove all non-matching elements result = [x for idx, x in enumerate(result) if idx not in to_remove] #end # filter by expression pattern = self.txt_filter_name.text() if len(pattern): to_remove = [] for idx in range(len(result)): try: if None == re.search(pattern, result[idx][0]): to_remove.append(idx) except: continue #end for # remove all non-matching elements result = [x for idx, x in enumerate(result) if idx not in to_remove] #end return result #end def calculate_regexed_names(self): pattern = self.txt_replace_expr.text() subs = self.txt_replace_subs.text() result = [] for x in self.selected_items: subbed_name = x[0] try: subbed_name = re.sub(pattern, subs, x[0]) subbed_name = mel.eval('formValidObjectName(\"{0}\");'.format(subbed_name)) # make it maya-valid result.append((subbed_name, subbed_name != x[0])) # (regex name, changed from original) except: result.append((subbed_name, False)) # failed so just pass through data and make it not changed return result #end def update(self): # 1. get the selection self.selected_items = self.get_selection() # 2. get the regex'd versions self.regexed_items = self.calculate_regexed_names() # 3. update list view with a preview of changes bold_font = QG.QFont('', -1, QG.QFont.Bold, False) self.lv_preview.clear() for x in range(len(self.selected_items)): short_old = self.selected_items[x][0] short_new = self.regexed_items[x][0] if self.regexed_items[x][1]: txt = short_old + ' => ' + short_new else: txt = short_old self.lv_preview.addItem(txt) if self.regexed_items[x][1]: self.lv_preview.item(self.lv_preview.count()-1).setFont(bold_font) #end def commit(self): # safety check if None == self.selected_items or None == self.regexed_items: return # confirm dialog number_different = len([x for x in self.regexed_items if x[1]]) dialog_msg = 'Confirm rename of ' + str(number_different) + ' objects?' dialog_result = mc.confirmDialog(title='Maximum Replacer', message=dialog_msg, button=['Yes', 'No'], defaultButton='Yes', cancelButton='No', dismissString='No') if 'No' == dialog_result: return # undo chunk for all names mc.undoInfo(openChunk=True, chunkName='MaximumReplacer') # rename all objects (in REVERSE order as to not break the hierarchy) for x in reversed(range(len(self.selected_items))): # ignore nodes that don't need changing if not self.regexed_items[x][1]: continue old_name = self.selected_items[x][1] # old LONG name new_name = self.regexed_items[x][0] # new SHORT name try: mc.rename(old_name, new_name) except Exception as e: print 'Failed to rename %s: %s' % (old_name, e) # end chunk! mc.undoInfo(closeChunk=True) # refresh view self.update() #end #end def create(): global g_maximum_replacer_inst try: g_maximum_replacer_inst.close() g_maximum_replacer_inst.deleteLater() except: pass g_maximum_replacer_inst = MaximumReplacer() g_maximum_replacer_inst.setAttribute(QC.Qt.WA_DeleteOnClose) g_maximum_replacer_inst.show() #end # uncomment this to run directly from the script editor (or call it from a shelf) # create()
2.078125
2
poradnia/advicer/migrations/0017_auto_20190404_0337.py
efefre/poradnia
23
12795288
# Generated by Django 1.11.13 on 2019-04-04 01:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("advicer", "0016_auto_20190404_0320")] operations = [ migrations.AlterField( model_name="advice", name="subject", field=models.CharField( blank=True, max_length=100, null=True, verbose_name="Subject" ), ) ]
1.421875
1
python/GV.py
lehaianh3112/ProjectLeHaiAnh
2
12795289
from __future__ import division, print_function, unicode_literals import streamlit as st from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import matplotlib.pyplot as plt st.title('Mô hình dự đoán giá nhà đất tại hồ gươm ') # x1 là diện tích của lô đất(m2) # x2 là chiều dài mặt tiền (m) # x3 là số tầng nhà # x4 là khoảng cách tới hồ gươm (m) X = np.array([[40, 8, 2, 1800], [36, 3.5, 6, 450], [35, 4.5, 6, 450], [39, 9, 2, 1800], [40, 9, 1, 1800], [36, 4.5, 5, 450], [36, 4.5, 6, 450], [40, 9, 2, 1800], [36, 4.5, 7, 450], [40, 9, 3, 1800], [44, 4, 5, 350], [41, 9, 2, 1800], [37, 4.5, 6, 450], [36, 5.5, 6, 450], [40, 10, 2, 1800], [45, 3, 4, 350], [45, 4, 3, 350], [45, 4, 4, 350], [45, 4, 5, 350], [45, 5, 4, 350], [45, 3, 4, 350], [60, 2.3, 5, 450], [59, 3.3, 5, 450], [60, 3.3, 4, 450], [85, 4, 4, 950], [85, 4, 5, 950], [60, 3.3, 5, 450], [61, 6, 1, 800], [62, 5, 1, 800], [85, 4, 6, 950], [84, 6, 5, 950], [86, 2.5, 3, 900], [60, 3.3, 6, 450], [85, 5, 5, 950], [85, 3.5, 3, 900], [86, 3.5, 2, 900], [31.2, 3, 4, 450], [61, 3.3, 5, 450], [62, 6, 1, 800], [85, 6, 5, 950], [86, 3.5, 3, 900], [62, 6, 2, 800], [86, 3.5, 4, 900], [87, 3.5, 3, 900], [30.2, 4, 4, 450], [62, 6, 3, 800], [86, 4.5, 3, 900], [86, 6, 5, 950], [60, 4.3, 5, 450], [62, 7, 1, 800], [63, 6, 1, 800], [31.2, 4, 4, 450], [31.2, 4, 3, 450], [62, 4, 5, 550], [31.2, 4, 5, 450], [63, 5, 3, 550], [63, 4, 5, 550], [32.2, 4 , 4, 450], [31.2, 5, 4, 450], [63, 5, 5, 550], [64, 4, 5, 550], [63, 5, 6 , 550], [63, 6, 4, 550], [80, 5.8, 7, 1100], [80, 4.8, 8, 1100], [80, 5.8, 8, 1100], [79, 5.8, 8, 1100], [80, 5.8, 9, 1100], [81, 5.8, 8, 1100], [80, 6.8, 8, 1100], [80, 3.5, 6, 300], [80, 4.5, 5, 300], [80, 4.5, 6, 300], [79, 4.5, 6, 300], [81, 4.5, 6, 300], [88, 3.5, 4, 850], [88, 4.5, 3, 850], [88, 4.5, 4, 850], [87, 4.5, 4, 850], [88, 4.5, 5, 850], [89, 4.5, 4, 850], [88, 5.5, 4, 850], [80, 5.5, 7, 300], [63, 6, 4, 250], [62, 7, 4, 250], [63, 7, 3, 250], [63, 7, 4, 250], [63, 7, 5, 250], [64, 7, 4, 250], [63, 8, 4, 250], [140, 4.5, 5, 500], [139, 5.5, 5, 500], [140, 5.5, 4, 500], [140, 5.5, 5, 500], [140, 5.5, 6, 500], [141, 5.5, 5, 500], [140, 6.5, 5, 500]]) Y = np.array([[ 19, 19.3, 19.45, 19.48, 19.5, 19.7, 20, 20, 20.3, 20.5, 20.5, 20.52, 20.55, 20.7, 21, 21, 21.3, 21.5, 21.7, 22, 22.5, 29, 30, 30.5, 30.5, 30.8, 31, 31, 31, 31, 31.3, 31.35, 31.5, 31.5, 31.63, 31.7, 32, 32, 32, 32, 32, 32.3, 32.3, 32.37, 32.4, 32.5, 32.65, 32.7, 33, 33, 33, 33.5, 33.5, 33.6, 34, 34, 34.3, 34.6, 35, 35, 35, 35.5, 35.7, 42.5, 42.9, 43, 43.463, 43.5, 43.537, 44.1, 50, 52.3, 53, 53.38, 53.62, 54, 54.5, 55, 55.46, 55.5, 55.54, 56, 56.7, 60, 62.3, 62.5, 63, 63.5, 63.7, 66, 96.5, 97.3, 97.5, 98, 98.5, 98.7, 99.5 ]]).T def duel_plot(X1, X2, Y): fig = plt.figure(figsize=(15, 5)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.plot(Y, X[:, 0]) ax1.set_title('xét diện tích với giá tiền') ax1.set_xlabel('giá tiền') ax1.set_ylabel('Diện tích m2') ax2.plot(Y, X[:, 1]) ax2.set_title('xét số mét mặt tiền với giá tiền') ax2.set_xlabel('giá tiền') ax2.set_ylabel('số mét mặt tiền') return fig def duel_plot2(X4, X5, Y): fig = plt.figure(figsize=(15, 5)) ax3 = fig.add_subplot(1, 2, 1) ax4 = fig.add_subplot(1, 2, 2) ax3.plot(Y, X[:, 2]) ax3.set_title('xét số tầng nhà với giá tiền') ax3.set_xlabel('giá tiền') ax3.set_ylabel('số tầng nhà') ax4.plot(Y, X[:, 3]) ax4.set_title('xét khoảng cách với giá tiền') ax4.set_xlabel('giá tiền') ax4.set_ylabel('khoảng cách tới hồ gươm') return fig st.set_option('deprecation.showPyplotGlobalUse', False) st.pyplot(duel_plot(X[:, 0], X[:, 1], Y)) st.pyplot(duel_plot2(X[:, 2], X[:, 3], Y)) st.sidebar.title('Dự đoán giá các mẫu nhà') dt_name = st.sidebar.text_input('Nhập diện tích đất(m2) ') cd_name = st.sidebar.text_input('Nhập chiều dài mặt tiền(m) ') tn_name = st.sidebar.text_input('Nhập số tầng nhà(tầng) ') kc_name = st.sidebar.text_input('Nhập khoảng cách nhà tới hồ gươm(m) ') one = np.ones((X.shape[0], 1)) Xbar = np.concatenate((one, X), axis=1) x_train, x_test, y_train, y_test = train_test_split(Xbar, Y, test_size=0.2) A = np.dot(Xbar.T, Xbar) b = np.dot(Xbar.T, Y) w = np.dot(np.linalg.pinv(A), b) w_0 = w[0][0] w_1 = w[1][0] w_2 = w[2][0] w_3 = w[3][0] w_4 = w[4][0] st.write("Độ chính xác (R2 square) : ", r2_score(y_test, np.dot(x_test, w))) vd = np.array([dt_name, cd_name, tn_name, kc_name, 1]) if st.sidebar.button('Dự đoán'): y1 = w_1*float(dt_name)+w_2*float(cd_name)+w_3 * \ float(tn_name)+w_4*float(kc_name) + w_0 st.sidebar.write('Giá của ngôi nhà là : ', y1, 'tỷ đồng')
2.640625
3
tests/test_toBig.py
andreacosolo/granite
3
12795290
################################################################# # Libraries ################################################################# import sys, os import pytest import bitarray from granite.toBig import ( main as main_toBig ) from granite.lib.shared_functions import * ################################################################# # Tests ################################################################# def test_run_toBig_rdthr_2_all(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz', 'tests/files/input_toBig_2.rck.gz', 'tests/files/input_toBig_3.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '3', 'rdthr': '2', 'ncores': '2', 'abthr': None, 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [11001, 11007, 11010] ins_expect = [11005, 11022] del_expect = [11017, 11030] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def def test_run_toBig_rdthr_2_2(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz', 'tests/files/input_toBig_2.rck.gz', 'tests/files/input_toBig_3.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '2', 'rdthr': '2', 'ncores': '2', 'abthr': None, 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [11001, 11002, 11007, 11010, 11013, 11023] ins_expect = [11005, 11022] del_expect = [11017, 11030] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def def test_run_toBig_rdthr_17_all(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz', 'tests/files/input_toBig_2.rck.gz', 'tests/files/input_toBig_3.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '3', 'rdthr': '17', 'ncores': None, 'abthr': None, 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [11007] ins_expect = [] del_expect = [] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def def test_run_toBig_rdthr_17_2(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz', 'tests/files/input_toBig_2.rck.gz', 'tests/files/input_toBig_3.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '2', 'rdthr': '17', 'ncores': '1', 'abthr': None, 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [11007, 11010] ins_expect = [] del_expect = [] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def def test_run_toBig_abthr_15_all(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz', 'tests/files/input_toBig_2.rck.gz', 'tests/files/input_toBig_3.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '3', 'rdthr': None, 'ncores': '2', 'abthr': None, 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [11007, 11010, 11013] ins_expect = [11022] del_expect = [11030] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def def test_run_toBig_abthr_25_all(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz', 'tests/files/input_toBig_2.rck.gz', 'tests/files/input_toBig_3.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '3', 'rdthr': None, 'ncores': '2', 'abthr': '25', 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [11010] ins_expect = [] del_expect = [] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def def test_run_toBig_abthr_25_2(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz', 'tests/files/input_toBig_2.rck.gz', 'tests/files/input_toBig_3.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '2', 'rdthr': None, 'ncores': '1', 'abthr': '25', 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [11007, 11010] ins_expect = [] del_expect = [] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def def test_run_toBig_rdthr_2_1_single(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '1', 'rdthr': '2', 'ncores': '2', 'abthr': None, 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [11001, 11002, 11007, 11010, 11013, 11023] ins_expect = [11005, 11022] del_expect = [11017, 11030] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def def test_run_toBig_rdthr_2_2_single(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '2', 'rdthr': '2', 'ncores': '2', 'abthr': None, 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run main_toBig(args) # Expected snv_expect = [] ins_expect = [] del_expect = [] # Tests bit = bitarray.bitarray(11030 + 1) big_dict = load_big('tests/files/main_test.out') # Check snv bit.setall(False) for i in snv_expect: bit[i] = True #end for assert big_dict['13_snv'][:11031] == bit # Check ins bit.setall(False) for i in ins_expect: bit[i] = True #end for assert big_dict['13_ins'][:11031] == bit # Check del bit.setall(False) for i in del_expect: bit[i] = True #end for assert big_dict['13_del'][:11031] == bit # Clean os.remove('tests/files/main_test.out') #end def ################################################################# # Errors ################################################################# def test_run_toBig_rdthr_2_all_miss_pos(): ''' ''' # Variables args = {'file': ['tests/files/input_toBig_1.rck.gz', 'tests/files/input_toBig_2.rck.gz', 'tests/files/input_toBig_3.rck.gz', 'tests/files/input_toBig_miss_pos.rck.gz'], 'outputfile': 'tests/files/main_test.out', 'fithr': '4', 'rdthr': '2', 'ncores': '2', 'abthr': None, 'regionfile': 'tests/files/input_toBig.regions', 'chromfile': 'tests/files/input_toBig.chrom.size'} # Run and Tests with pytest.raises(Exception) as e: assert main_toBig(args) assert str(e.value) == '\nERROR in file: position 13:11006 in file tests/files/input_toBig_miss_pos.rck.gz is not consistent with other files\n' #end def
1.875
2
src/melissa/__init__.py
aleksandrgordienko/melissa-quiz
0
12795291
<reponame>aleksandrgordienko/melissa-quiz<gh_stars>0 from melissa.melissa import Melissa
0.945313
1
Lecture_notes/数据提取与验证码的识别(下)/code/lol_test.py
littleturings/2021PythonWebCrawler
1
12795292
<reponame>littleturings/2021PythonWebCrawler from selenium import webdriver from time import sleep driver = webdriver.Chrome() driver.get("https://www.huya.com/g/lol") while True: names = driver.find_elements_by_class_name("nick") counts = driver.find_elements_by_class_name("js-num") for name, count in zip(names,counts): print(name.text,":",count.text) if driver.page_source.find("laypage_next") != -1: driver.find_element_by_class_name("laypage_next").click() sleep(3) else: break driver.quit()
3.15625
3
notas/urls.py
shiminasai/cafodca
0
12795293
from django.conf.urls import url from django.views.generic import ListView, DetailView from models import Notas from .views import * urlpatterns = [ url(r'^$', list_notas,name='notas_list'), # url(r'^$', 'lista_notas', name="notas_list"), url(r'^pais/(?P<id>\d+)/$', lista_notas_pais, name="notas_list_pais"), url(r'^coparte/(?P<id>\d+)/$', lista_notas_copartes, name="notas_list_copartes"), # url(r'^ver/(?P<id>\d+)/$', 'comentar_nota', name='comentar-nota'), url(r'^(?P<id>\d+)/$', nota_detail, name='notas-detail'), url(r'^crear/$', crear_nota, name="crear-nota"), # url(r'^editar/(?P<id>\d+)/$', 'editar_nota', name='editar-nota'), # url(r'^borrar/(?P<id>\d+)/$', 'borrar_nota', name='borrar-nota'), url(r'^imagenes/$', ver_imagenes, name="imagenes-nota"), url(r'^videos/$', ver_videos, name="videos-nota"), ]
1.992188
2
dev/tools/leveleditor/direct/directbase/DirectStart.py
CrankySupertoon01/Toontown-2
1
12795294
<gh_stars>1-10 # This is a hack fix to get the graphics pipes to load with my # hacked up Panda3D. If you want to load the level editor # using DirectX 8 or DirectX 9, uncomment the import for the # pipe you want to use. Make sure the pipe you want to load # first is imported first. # DirectX 9 #try: # import libpandadx9 #except: # pass # DirectX 8 #try: # import libpandadx8 #except: # pass # OpenGL try: import libpandagl except: pass print 'DirectStart: Starting the game.' from direct.showbase import ShowBase base = ShowBase.ShowBase()
1.804688
2
python/terminal/question.py
VEXG/experimental
1
12795295
get_nama = input('Masukan nama : ') try: get_umur = int(input('Masukan umur : ')) except Exception as e: print('Harus pakek angka ya') else: print(f'Halo {get_nama.capitalize()}!') print(f'Umur kamu {str(get_umur)}')
3.546875
4
loopChat.py
ThePenultimatum/transformer
0
12795296
# -*- coding: utf-8 -*- #/usr/bin/python2 ''' June 2017 by <NAME>. <EMAIL>. https://www.github.com/kyubyong/transformer ''' from __future__ import print_function import codecs import os import tensorflow as tf import numpy as np from hyperparams import Hyperparams as hp from data_load import load_test_data, load_de_vocab, load_en_vocab from train import Graph #from nltk.translate.bleu_score import corpus_bleu def eval(): # Load graph g = Graph(is_training=False) print("Graph loaded") # Load data # X, Sources, Targets = load_test_data() """ x_list, y_list, Sources, Targets = [], [], [], [] for source_sent, target_sent in zip(source_sents, target_sents): x = [de2idx.get(word, 1) for word in (source_sent + u" </S>").split()] # 1: OOV, </S>: End of Text y = [en2idx.get(word, 1) for word in (target_sent + u" </S>").split()] if max(len(x), len(y)) <=hp.maxlen: x_list.append(np.array(x)) y_list.append(np.array(y)) Sources.append(source_sent) Targets.append(target_sent) # Pad X = np.zeros([len(x_list), hp.maxlen], np.int32) Y = np.zeros([len(y_list), hp.maxlen], np.int32) for i, (x, y) in enumerate(zip(x_list, y_list)): X[i] = np.lib.pad(x, [0, hp.maxlen-len(x)], 'constant', constant_values=(0, 0)) """ en2idx, idx2en = load_en_vocab() # Start session with g.graph.as_default(): sv = tf.train.Supervisor() with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: ## Restore parameters sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)) while(True): prompt = raw_input() xlist = [] xval = [en2idx.get(word, 1) for word in (target_sent + u" </S>").split()] if (len(xval) <= hp.maxlen): xlist.append(np.array(xval)) X = np.zeros([len(xlist), hp.maxlen], np.int32) for i, xi in enumerate(xlist): X[i] = np.lib.pad(x, [0, hp.maxlen - len(x)], 'constant', constant_values=(0, 0)) list_of_refs, hypotheses = [], [] for i in range(len(X) // hp.batch_size): ### Get mini-batches x = X[i*hp.batch_size: (i+1)*hp.batch_size] prompt = raw_input() ### Autoregressive inference preds = np.zeros((hp.batch_size, hp.maxlen), np.int32) for j in range(hp.maxlen): #print("j: " + str(j)) _preds = sess.run(g.preds, {g.x: x, g.y: preds}) preds[:, j] = _preds[:, j] #print(pred) # pred should be length 1 each time due to the cycling of the while loop in main for pred in preds: got = " ".join(idx2en[idx] for idx in pred).split("</S>")[0].strip() #return got print(got) if __name__ == '__main__': eval()
2.453125
2
minik/models.py
bafio/minik
86
12795297
<filename>minik/models.py import json from minik.status_codes import codes class MinikRequest: """ Simple wrapper of the data object received from API Gateway. This object will parse a given API gateway event and it will transform it into a more user friendly object to operate on. The idea is that a view does not need to be concerned with the inner representation of the APIGateway's event as long as it has access to the underlaying data values in the event. """ __slots__ = ['request_type', 'path', 'resource', 'query_params', 'headers', 'uri_params', 'method', 'body', '_json_body', 'aws_context', 'aws_event'] def __init__(self, request_type, path, resource, query_params, headers, uri_params, method, body, context, event): self.request_type = request_type self.path = path self.resource = resource self.query_params = query_params self.headers = headers self.uri_params = uri_params self.method = method self.body = body self.aws_context = context self.aws_event = event # The parsed JSON from the body. This value should # only be set if the Content-Type header is application/json, # which is the default content type. self._json_body = None @property def json_body(self): """ Lazy loading/parsing of the json payload. """ if self.headers.get('content-type', '').startswith('application/json'): if self._json_body is None: self._json_body = json.loads(self.body) return self._json_body class Response: __slots__ = ['body', 'headers', 'status_code'] def __init__(self, body='', headers=None, status_code=codes.ok): self.body = body self.headers = headers or {} self.status_code = status_code @property def content_type(self): return { key.lower(): value for key, value in self.headers.items() }.get('content-type') def to_dict(self, binary_types=None): return { 'headers': self.headers, 'statusCode': self.status_code, 'body': self.body }
2.5
2
manage.py
DzoanaZ/Aplikacje-internetowe2
0
12795298
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "forecastsite.settings") try: from django.core.management import execute_from_command_line except ImportError: try: import django except ImportError: raise ImportError( "Nie można zaimportować Django" ) raise execute_from_command_line(sys.argv)
1.359375
1
No_0171_Excel Sheet Column Number/excel_sheet_column_number_by_recursion.py
coderMaruf/leetcode-1
32
12795299
''' Description: Given a column title as appear in an Excel sheet, return its corresponding column number. For example: A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -> 28 ... Example 1: Input: "A" Output: 1 Example 2: Input: "AB" Output: 28 Example 3: Input: "ZY" Output: 701 ''' class Solution: def titleToNumber(self, s: str) -> int: if len(s) == 1: # base case return ord(s)-64 else: # general case return 26*self.titleToNumber( s[:-1] ) + self.titleToNumber( s[-1] ) # n : the length of input string s ## Time Complexity: O( n ) # # The major overhead in time is the call depth of recursion, which is of O( n ). ## Space Complexity: O( n ) # # The major overhead in space is to maintain call stack for recursion, which is of O( n ). def test_bench(): test_data = ['A', 'AB', 'AZ', 'BA','ZY', 'ZZ','AAA'] for s in test_data: n = Solution().titleToNumber(s) print(n) return if __name__ == '__main__': test_bench()
3.765625
4
utils/criterion.py
zjunlp/SemEval2021Task4
8
12795300
import torch.nn as nn import torch class LabelSmoothing(nn.Module): def __init__(self, size, smoothing=0.0): super(LabelSmoothing, self).__init__() self.criterion = nn.KLDivLoss(size_average=False) #self.padding_idx = padding_idx self.confidence = 1.0 - smoothing self.smoothing = smoothing self.size = size self.true_dist = None def forward(self, x, target): """ x表示输入 (M,N)N个样本,M表示总类数,每一个类的概率log P target表示label(M,) """ assert x.size(1) == self.size x = x.log() true_dist = x.data.clone()#先深复制过来 #print true_dist true_dist.fill_(self.smoothing / (self.size - 1))#otherwise的公式 #print true_dist #变成one-hot编码,1表示按列填充, #target.data.unsqueeze(1)表示索引,confidence表示填充的数字 true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) self.true_dist = true_dist # print(x.shape,true_dist.shape) return self.criterion(x, true_dist) class LabelSmoothingLoss(nn.Module): def __init__(self, classes, smoothing=0.0, dim=-1): super(LabelSmoothingLoss, self).__init__() self.confidence = 1.0 - smoothing self.smoothing = smoothing self.cls = classes self.dim = dim def forward(self, pred, target): pred = pred.log_softmax(dim=self.dim) with torch.no_grad(): true_dist = pred.data.clone() true_dist = torch.zeros_like(pred) true_dist.fill_(self.smoothing / (self.cls - 1)) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) return torch.mean(torch.sum(-true_dist * pred, dim=self.dim))
2.90625
3
studzie/keras_gym/mountain_car_v0.py
amozie/amozie
0
12795301
<filename>studzie/keras_gym/mountain_car_v0.py import numpy as np import matplotlib.pyplot as plt import gym import time import copy from keras.models import Sequential, Model from keras.layers import Dense, Activation, Flatten, Lambda, Input, Reshape, concatenate, Merge from keras.optimizers import Adam, RMSprop from keras.callbacks import History from keras import backend as K import tensorflow as tf from gym import Env, Space, spaces from gym.utils import seeding from rl.agents.dqn import DQNAgent from rl.policy import BoltzmannQPolicy, EpsGreedyQPolicy from rl.memory import SequentialMemory, EpisodeParameterMemory from rl.agents.cem import CEMAgent from rl.agents import SARSAAgent from rl.callbacks import TrainEpisodeLogger, CallbackList class MountainCarEnv(Env): metadata = {'render.modes': ['human', 'rgb_array']} def __init__(self) -> None: self.env = gym.make('MountainCar-v0') self.action_space = self.env.action_space self.observation_space = self.env.observation_space def _step(self, action): step = self.env.step(action) step = list(step) step[1] = np.abs(step[0][1]) - 0.05 return tuple(step) def _reset(self): return self.env.reset() def _seed(self, seed=None): return self.env.seed(seed) def _render(self, mode='human', close=False): return self.env.render(mode, close) def _close(self): return self.env.close() env = MountainCarEnv() env.seed() nb_actions = env.action_space.n x = Input((1,) + env.observation_space.shape) y = Flatten()(x) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(nb_actions)(y) y = Activation('linear')(y) model = Model(x, y) memory = SequentialMemory(limit=10000, window_length=1) # policy = BoltzmannQPolicy() policy = EpsGreedyQPolicy() dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=1000, gamma=.9, batch_size=32, enable_dueling_network=False, dueling_type='avg', target_model_update=.1, policy=policy) dqn.compile(Adam(), metrics=['mae']) hist = dqn.fit(env, nb_steps=10000, visualize=False, verbose=2, callbacks=None) state = env.reset() action = env.action_space.sample() print(action) state_list= [] for i in range(500): action = np.argmax(dqn.model.predict(np.expand_dims(np.expand_dims(state, 0), 0))[0]) state, reward, done, _ = env.step(2) state_list.append(reward) env.render() env.render(close=True) dqn.test(env, nb_episodes=5, visualize=True) env.render(close=True)
2.46875
2
PGMF/script/focaljunction.py
haiwangyang/PGMF
0
12795302
<reponame>haiwangyang/PGMF<gh_stars>0 #!/usr/bin/env python """ Purpose: Handling normalized read count of genes """ import focalannotation import focalgene import sharedinfo import pandas as pd from sharedinfo import exist_file, get_lines def get_junction_of_species_by_partiallocation(species, partiallocation): """ species (e.g., dyak) location is partial location (e.g., 3L_17475) output is all possible junctions with coverage """ geneid = sharedinfo.tra_species2geneid[species] gen = focalgene.FocalGene(species, geneid, "M") for sex in sharedinfo.ordered_sex: for tissue in sharedinfo.ordered_tissue7: jun = FocalJunction(species, sex, tissue) for range in jun.juncinfo.keys(): if range.startswith(partiallocation): print(species + "_" + sex + "_" + tissue, partiallocation, range, jun.juncinfo[range]) def get_junction_of_species_by_location(species, location): """ species (e.g., dyak) location is whole range (e.g., 3L_17475357_17475426_+) output is a dict of junctions with coverage """ geneid = sharedinfo.tra_species2geneid[species] gen = focalgene.FocalGene(species, geneid, "M") dct = dict() for sex in sharedinfo.ordered_sex: for tissue in sharedinfo.ordered_tissue7: dct[species + "_" + sex + "_" + tissue] = dict() jun = FocalJunction(species, sex, tissue) if location in jun.juncinfo: dct[species + "_" + sex + "_" + tissue][location] = jun.juncinfo[location] else: dct[species + "_" + sex + "_" + tissue][location] = 0 return dct def merge_dcts(dcts): mdct = dict() for d in dcts: for sst in d.keys(): # species_sex_tissue if not sst in mdct.keys(): mdct[sst] = dict() for range in d[sst].keys(): mdct[sst][range] = d[sst][range] return mdct class FocalJunction: """FocalJunction object""" def __init__(self, species, sex, tissue): self.species = species self.sex = sex self.tissue = tissue # self.filename = self.species + "_" + sex + "_" + tissue + ".merged.juncs" # spanki juncs self.filename = self.species + "_" + sex + "_" + tissue + ".sorted.junc.bed" self.lines = get_lines("../data/junction", self.filename) self.juncinfo = self.get_juncinfo() def get_juncinfo(self): """ get junction info """ dct = dict() for line in self.lines: # (juncid, dinucleotide, intron_size, annostatus, gmcode, regcode, geneassign, cov, lirt, rirt, irt, dncov, ancov, numsamps) = line.rstrip().split("\t") # spanki junc (chrom, chromStart, chromEnd, name, score, strand, thickStart, thickEnd, itemRgb, blockCount, blockSizes, blockStarts) = line.rstrip().split("\t") chromStart = int(chromStart) chromEnd = int(chromEnd) bs1, bs2 = blockSizes.split(",") bs1 = int(bs1) bs2 = int(bs2) juncstart = chromStart + bs1 + 1 juncend = chromEnd - bs2 dct[chrom + ":" + str(juncstart) + "-" + str(juncend) + "_" + strand] = score return dct if __name__ == '__main__': # consensus splicing junction of tra in dyak dct_cs = get_junction_of_species_by_location("dyak", "3L:17475357-17475426_+") # alternative splicing junction (short) of tra in dyak dct_as1 = get_junction_of_species_by_location("dyak", "3L:17474772-17474844_+") # alternative splicing junction (long) of tra in dyak dct_as2 = get_junction_of_species_by_location("dyak", "3L:17474772-17475015_+") mdct = merge_dcts([dct_cs, dct_as1, dct_as2]) mpd = pd.DataFrame.from_dict(mdct) mpd.to_csv("../data/output/dyak.tra.junc.summary.txt", sep="\t")
2.375
2
comb_spec_searcher/tree_searcher.py
odinn13/comb_spec_searcher-1
0
12795303
<reponame>odinn13/comb_spec_searcher-1 """ Finds and returns a combinatorial specification, that we call a proof tree. """ import time from collections import defaultdict, deque from copy import deepcopy from itertools import chain, product from random import choice, shuffle from typing import Dict, FrozenSet, Iterator, List, Optional, Sequence, Set, Tuple __all__ = ("prune", "proof_tree_generator_dfs", "proof_tree_generator_bfs") RulesDict = Dict[int, Set[Tuple[int, ...]]] class Node: """A node for a proof tree.""" def __init__(self, n: int, children: Optional[List["Node"]] = None): if children is None: children = [] self.label = n self.children = children def labels(self) -> Set[int]: """Return the set of all labels in the proof tree.""" res = set([self.label]) res.update(chain.from_iterable(node.labels() for node in self.children)) return res def nodes(self) -> Iterator["Node"]: """Yield all nodes in the proof tree.""" yield self for node in self.children: yield from node.nodes() def __str__(self) -> str: return "".join(["(", str(self.label), *map(str, self.children), ")"]) def __len__(self) -> int: """Return the number nodes in the proof tree.""" return 1 + sum(len(c) for c in self.children) def prune(rdict: RulesDict) -> None: """ Prune all nodes not in a combinatorial specification. This changes rdict in place. """ changed = True while changed: changed = False for k, rule_set in list(rdict.items()): for rule in list(rule_set): if any(x not in rdict for x in rule): rule_set.remove(rule) changed = True if not rule_set: del rdict[k] def iterative_prune(rules_dict: RulesDict, root: Optional[int] = None) -> RulesDict: """Prune all nodes not iteratively verifiable.""" verified_labels: Set[int] = set() if root is not None: verified_labels.add(root) rdict = deepcopy(rules_dict) new_rules_dict: RulesDict = defaultdict(set) while True: changed = False for k, rule_set in list(rdict.items()): for rule in list(rule_set): if all(x in verified_labels for x in rule): changed = True verified_labels.add(k) new_rules_dict[k].add(rule) rdict[k].remove(rule) if not rule_set: del rdict[k] if not changed: break return new_rules_dict def proof_tree_dfs(rules_dict: RulesDict, root: int, seen: Optional[Set[int]] = None): """Return random proof tree found by depth first search.""" if seen is None: seen = set() seen = seen.copy() if root in rules_dict: rule_set = rules_dict[root] root_node = Node(root) if root in seen or () in rule_set: seen.add(root) return seen, root_node seen.add(root) rule = choice(list(rule_set)) visited, trees = all_proof_trees_dfs(rules_dict, rule, seen) root_node.children = trees return visited, root_node def all_proof_trees_dfs( rules_dict: RulesDict, roots: Sequence[int], seen: Optional[Set[int]] = None ) -> Tuple[Set[int], List[Node]]: """Return all labels which have been seen, together with all of the trees using the given roots..""" if seen is None: seen = set() if not roots: return seen, [] root, roots = roots[0], roots[1:] seen1, tree = proof_tree_dfs(rules_dict, root, seen) seen2, trees = all_proof_trees_dfs(rules_dict, roots, seen1) return seen1.union(seen2), [tree] + trees def iterative_proof_tree_bfs(rules_dict: RulesDict, root: int) -> Node: """Takes in a iterative pruned rules_dict and returns iterative proof tree.""" root_node = Node(root) queue = deque([root_node]) while queue: v = queue.popleft() rule = sorted(rules_dict[v.label])[0] if not rule == (): children = [Node(i) for i in rule] queue.extend([child for child in children if not child.label == root]) v.children = children return root_node def random_proof_tree(rules_dict: RulesDict, root: int) -> Node: """Return random tree found by breadth first search.""" seen: Set[int] = set() root_node = Node(root) queue = deque([root_node]) while queue: v = queue.popleft() rule = choice(list(rules_dict[v.label])) if not (v.label in seen or rule == ()): children = [Node(i) for i in rule] shuffle(children) queue.extend(children) v.children = children seen.add(v.label) return root_node def smallish_random_proof_tree( rules_dict: RulesDict, root: int, minimization_time_limit: float ) -> Node: """ Searches a rule_dict known to contain at least one specification for a small specification. Spends minimization_time_limit seconds searching. """ start_time = time.time() smallest_so_far = random_proof_tree(rules_dict, root=root) smallest_size = len(smallest_so_far) while time.time() - start_time < minimization_time_limit: next_tree = random_proof_tree(rules_dict, root=root) next_tree_size = len(next_tree) if next_tree_size < smallest_size: smallest_so_far = next_tree smallest_size = next_tree_size return smallest_so_far def proof_tree_generator_bfs(rules_dict: RulesDict, root: int) -> Iterator[Node]: """A generator for all proof trees using breadth first search. N.B. The rules_dict is assumed to be pruned. """ def _bfs_helper(root_label: int, seen: FrozenSet[int]): if root_label in seen: yield Node(root_label) return next_seen = seen.union((root_label,)) for rule in rules_dict[root_label]: for children in product( *[_bfs_helper(child_label, next_seen) for child_label in rule] ): root_node = Node(root_label) root_node.children = children yield root_node sorted_rules_dict = { start: tuple(sorted(ends)) for start, ends in rules_dict.items() } if root in sorted_rules_dict: yield from _bfs_helper(root, frozenset()) def proof_tree_generator_dfs( rules_dict: RulesDict, root: int, maximum: Optional[int] = None ) -> Iterator[Node]: """A generator for all proof trees using depth first search. N.B. The rules_dict is assumed to be pruned. """ def _dfs_tree( root_label: int, seen: FrozenSet[int], maximum: int = None ) -> Iterator[Tuple[FrozenSet[int], Node]]: if maximum is not None and maximum <= 0: return if root_label in seen: yield seen, Node(root_label) return seen = seen.union((root_label,)) for rule in sorted_rules_dict[root_label]: if rule == (): yield seen, Node(root_label) else: for new_seen, children in _dfs_forest(rule, seen, maximum): root_node = Node(root_label) root_node.children = children yield new_seen, root_node def _dfs_forest( root_labels: Sequence[int], seen: FrozenSet[int], maximum: Optional[int] = None ) -> Iterator[Tuple[FrozenSet[int], List[Node]]]: if maximum is not None and maximum <= 0: return if not root_labels: yield seen, [] else: root, roots = root_labels[0], root_labels[1:] new_max = maximum - len(root_labels) + 1 if maximum is not None else None for seen1, tree in _dfs_tree(root, seen, new_max): length = len(tree) new_maximum = maximum - length if maximum is not None else None for seen2, trees in _dfs_forest(roots, seen1, new_maximum): actual_length = length + sum(len(t) for t in trees) if maximum is not None and actual_length < maximum: yield seen1.union(seen2), [tree] + trees sorted_rules_dict = { start: tuple(sorted(ends)) for start, ends in rules_dict.items() } if root in sorted_rules_dict: for _, tree in _dfs_tree(root, frozenset(), maximum): yield tree def iterative_proof_tree_finder(rules_dict: RulesDict, root: int) -> Node: """Finds an iterative proof tree for root, if one exists. """ trees: Dict[int, Node] = {} def get_tree(start): if start == root: return Node(start) if start in trees: return trees[start] raise KeyError("{} is not in trees".format(start)) def create_tree(start, end): if start in trees: return root = Node(start) children = [get_tree(i) for i in end] root.children = children trees[start] = root verified_labels = set() if root is not None: verified_labels.add(root) rdict = deepcopy(rules_dict) new_rules_dict: RulesDict = defaultdict(set) while True: changed = False for k, rule_set in list(rdict.items()): for rule in list(rule_set): if all(x in verified_labels for x in rule): changed = True verified_labels.add(k) new_rules_dict[k].add(rule) create_tree(k, rule) rdict[k].remove(rule) if not rule_set: del rdict[k] if not changed: break if root in trees: return trees[root] raise ValueError("{} has no tree in rules_dict".format(root))
2.71875
3
openbabel-2.4.1/scripts/python/setup.py
sxhexe/reaction-route-search
1
12795304
<gh_stars>1-10 #!/usr/bin/env python import os import subprocess import sys from distutils.command.build import build from distutils.command.sdist import sdist from distutils.errors import DistutilsExecError from distutils.version import StrictVersion from setuptools.command.build_ext import build_ext from setuptools.command.install import install from setuptools import setup, Extension __author__ = '<NAME>' __email__ = '<EMAIL>' __version__ = '2.4.0' __license__ = 'GPL' if os.path.exists('README.rst'): long_description = open('README.rst').read() else: long_description = ''' The Open Babel package provides a Python wrapper to the Open Babel C++ chemistry library. Open Babel is a chemical toolbox designed to speak the many languages of chemical data. It's an open, collaborative project allowing anyone to search, convert, analyze, or store data from molecular modeling, chemistry, solid-state materials, biochemistry, or related areas. It provides a broad base of chemical functionality for custom development. ''' class PkgConfigError(Exception): pass def pkgconfig(package, option): """Wrapper around pkg-config command line tool.""" try: p = subprocess.Popen(['pkg-config', option, package], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) stdout, stderr = p.communicate() if stderr: raise PkgConfigError('package %s could not be found by pkg-config' % package) return stdout.strip() except OSError: raise PkgConfigError('pkg-config could not be found') def locate_ob(): """Try use pkgconfig to locate Open Babel, otherwise guess default location.""" try: version = pkgconfig('openbabel-2.0', '--modversion') if not StrictVersion(version) >= StrictVersion('2.3.0'): print('Warning: Open Babel 2.3.0 or later is required. Your version (%s) may not be compatible.' % version) include_dirs = pkgconfig('openbabel-2.0', '--variable=pkgincludedir') library_dirs = pkgconfig('openbabel-2.0', '--variable=libdir') print('Open Babel location automatically determined by pkg-config:') except PkgConfigError as e: print('Warning: %s.\nGuessing Open Babel location:' % e) include_dirs = '/usr/local/include/openbabel-2.0' library_dirs = '/usr/local/lib' return include_dirs, library_dirs class CustomBuild(build): """Ensure build_ext runs first in build command.""" def run(self): self.run_command('build_ext') build.run(self) class CustomInstall(install): """Ensure build_ext runs first in install command.""" def run(self): self.run_command('build_ext') install.run(self) class CustomSdist(sdist): """Add swig interface files into distribution from parent directory.""" def make_release_tree(self, base_dir, files): sdist.make_release_tree(self, base_dir, files) link = 'hard' if hasattr(os, 'link') else None self.copy_file('../stereo.i', base_dir, link=link) self.copy_file('../openbabel-python.i', base_dir, link=link) class CustomBuildExt(build_ext): """Custom build_ext to set SWIG options and print a better error message.""" def finalize_options(self): # Setting include_dirs, library_dirs, swig_opts here instead of in Extension constructor allows them to be # overridden using -I and -L command line options to python setup.py build_ext. build_ext.finalize_options(self) include_dirs, library_dirs = locate_ob() self.include_dirs.append(include_dirs) self.library_dirs.append(library_dirs) self.swig_opts = ['-c++', '-small', '-O', '-templatereduce', '-naturalvar'] self.swig_opts += ['-I%s' % i for i in self.include_dirs] print('- include_dirs: %s\n- library_dirs: %s' % (self.include_dirs, self.library_dirs)) def swig_sources(self, sources, extension): try: return build_ext.swig_sources(self, sources, extension) except DistutilsExecError: print('\nError: SWIG failed. Is Open Babel installed?\n' 'You may need to manually specify the location of Open Babel include and library directories. ' 'For example:\n' ' python setup.py build_ext -I/usr/local/include/openbabel-2.0 -L/usr/local/lib\n' ' python setup.py install') sys.exit(1) obextension = Extension('_openbabel', ['openbabel-python.i'], libraries=['openbabel']) setup(name='openbabel', version=__version__, author=__author__, author_email=__email__, license=__license__, url='http://openbabel.org/', description='Python interface to the Open Babel chemistry library', long_description=long_description, zip_safe=False, cmdclass={'build': CustomBuild, 'build_ext': CustomBuildExt, 'install': CustomInstall, 'sdist': CustomSdist}, py_modules=['openbabel', 'pybel'], ext_modules=[obextension], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Other Environment', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License (GPL)', 'Natural Language :: English', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft :: Windows', 'Operating System :: OS Independent', 'Operating System :: POSIX', 'Operating System :: POSIX :: Linux', 'Operating System :: Unix', 'Programming Language :: C++', 'Programming Language :: Python', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Chemistry', 'Topic :: Software Development :: Libraries' ] )
1.835938
2
tests/scheme/test_stochastic.py
olivierverdier/odelab
15
12795305
# -*- coding: utf-8 -*- from __future__ import division import unittest import odelab from odelab.scheme.stochastic import * from odelab.system import * from odelab.solver import * import numpy as np class Test_OU(unittest.TestCase): def test_run(self): sys = OrnsteinUhlenbeck() scheme = EulerMaruyama() scheme.h = .01 self.s = SingleStepSolver(scheme, sys) self.s.initialize(u0=np.array([1.])) self.s.run(time=1.) class Test_Differentiator(unittest.TestCase): t0 = 5e-9 V0 = .01 def test_run(self): sys = Differentiator(LinBumpSignal(self.V0,self.t0)) ## sys.kT = 0. # no noise scheme = EulerMaruyama() ## scheme.h = 2.5e-11 scheme.h = self.t0 self.s = SingleStepSolver(scheme, sys) self.s.initialize(u0 = np.array([0,0,0,0,0.])) self.s.run(time=5*self.t0)
2.625
3
src/polybius.py
nicholasz2510/Polybius
1
12795306
<reponame>nicholasz2510/Polybius<filename>src/polybius.py import asyncio import discord from discord.ext import commands import json import math import datetime import os import random trivia_answers = [":regional_indicator_a:", ":regional_indicator_b:", ":regional_indicator_c:", ":regional_indicator_d:"] unicode_max_answers = ['🇦', '🇧', '🇨', '🇩'] bot = commands.Bot(command_prefix='$') with open("../data.json") as data_file: data = json.load(data_file) @bot.event async def on_ready(): print('Logged on as ' + str(bot.user)) @bot.event async def on_command_error(ctx, error): if isinstance(error, commands.CommandNotFound): await ctx.send("That wasn't a valid command!\nType `$help` to see a list of commands.") else: raise error @bot.command() @commands.cooldown(1, 60 * 60 * 24, commands.BucketType.user) async def daily(ctx): discord_id = str(ctx.message.author.id) if discord_id not in data: await ctx.send("You need to register first! Do `$register`") else: data[discord_id]["points"] += 1 await ctx.send("You got 1 :candy:") _save() @daily.error async def daily_error(ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send('You already claimed your daily reward! Try again in ' + str(datetime.timedelta(seconds=math.floor(error.retry_after)))) else: raise error @bot.command() @commands.cooldown(1, 60 * 60 * 24 * 30, commands.BucketType.user) async def monthly(ctx): discord_id = str(ctx.message.author.id) if discord_id not in data: await ctx.send("You need to register first! Do `$register`") else: data[discord_id]["points"] += 10 await ctx.send("You got 1 :chocolate_bar: (equivalent to 10 :candy:)") _save() @monthly.error async def monthly_error(ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send('You already claimed your monthly reward! Try again in ' + str(datetime.timedelta(seconds=math.floor(error.retry_after)))) else: raise error @bot.command() async def pot(ctx, recipient: discord.Member): if str(ctx.message.author.id) in data: if data[str(ctx.message.author.id)]["honey_potter"]: if not str(recipient.id) in data: await ctx.send("The person you're giving a :honey_pot: to hasn't registered yet! Tell them to do `$register`") return if ctx.message.author.id == recipient.id: await ctx.send("You can't pot yourself... :unamused:") return data[str(recipient.id)]["points"] += 100 _save() await ctx.send("Wow! <@" + str(ctx.message.author.id) + "> just gave <@" + str(recipient.id) + "> a :honey_pot:! (worth 100 :candy:)") else: await ctx.send("Hey, you don't have permission to do that!") else: await ctx.send("You need to register first! Do `$register`") @pot.error async def pot_error(ctx, error): await ctx.send('Make sure you have the recipient in the command: `$pot <recipient>`') @bot.command() async def trivia(ctx): discord_id = str(ctx.message.author.id) if discord_id not in data: await ctx.send("You need to register first! Do `$register`") return with open("../trivia/" + random.choice(os.listdir("../trivia")), encoding="utf-8") as trivia_file: trivia_questions = json.load(trivia_file) question = trivia_questions[random.randint(0, len(trivia_questions) - 1)] message = "Question for <@" + str(ctx.message.author.id) + ">:\n" + question["question"] + "\n\n" unicode_answers = unicode_max_answers[:len(question["choices"])] answer = question["choices"].index(question["answer"]) for i in range(len(question["choices"])): message += trivia_answers[i] + " " + question["choices"][i] + "\n" sent = await ctx.send(message) for c in unicode_answers: await sent.add_reaction(c) print(trivia_answers[answer] + " " + question["answer"]) def check(reaction_arg, user_arg): return user_arg == ctx.message.author try: reaction, user = await bot.wait_for('reaction_add', timeout=60.0, check=check) except asyncio.TimeoutError: await ctx.send("Trivia question for <@" + str(ctx.message.author.id) + "> timed out.") return if unicode_answers.index(str(reaction)) == answer: data[discord_id]["points"] += 5 await ctx.send("<@" + str(ctx.message.author.id) + "> " + trivia_answers[answer] + " " + question["answer"] + " was correct! You received 1 :lollipop: (equivalent to 5 :candy:)") _save() else: data[discord_id]["points"] -= 1 await ctx.send("<@" + str(ctx.message.author.id) + "> " + str(reaction) + " " + question["choices"][unicode_answers.index(str(reaction))] + " was incorrect... The correct answer was " + trivia_answers[answer] + " " + question["answer"] + ". You lost 1 :candy:") _save() @bot.command() async def bal(ctx): discord_id = str(ctx.message.author.id) if discord_id in data: await ctx.send("You have " + str(data[discord_id]["points"]) + " :candy:") else: await ctx.send("You need to register first! Do `$register`") @bot.command() async def register(ctx): discord_id = str(ctx.message.author.id) if discord_id not in data: data[discord_id] = {} data[discord_id]["points"] = 0 data[discord_id]["honey_potter"] = False await ctx.send("You've been registered!") _save() daily.reset_cooldown(ctx) monthly.reset_cooldown(ctx) else: await ctx.send("You are already registered!") def _save(): with open('../data.json', 'w+') as file_save: json.dump(data, file_save) with open('../secret.txt', 'r') as f: bot.run(f.readline())
2.6875
3
pnno/engine/processor.py
zjykzj/pnno
3
12795307
# -*- coding: utf-8 -*- """ @date: 2020/7/14 下午8:34 @file: processor.py @author: zj @description: """ from ..anno import build_anno from ..util.logger import setup_logger class Processor(object): """ The labeled data is processed to create training data with specified format """ def __init__(self, cfg): self.parser = build_anno(cfg.ANNO.PARSER, cfg) self.creator = build_anno(cfg.ANNO.CREATOR, cfg) self.logger = setup_logger(__name__) self.verbose = cfg.ANNO.VERBOSE def process(self): verbose = self.verbose logger = self.logger if verbose: logger.info('Processing original data') output_data = self.parser.process() if verbose: logger.info('Save data in specified format') self.creator.save(output_data) if verbose: logger.info('Finish!!!')
2.515625
3
800/11_05_2021/236A.py
hieuptch2012001/Python_codeforces
0
12795308
def main(): a = input() set_a = set(a) if len(set_a) % 2 == 0: print('CHAT WITH HER!') else: print('IGNORE HIM!') if __name__ == "__main__": main()
3.515625
4
plugins/supervisor/__init__.py
ajenti/ajen
3,777
12795309
<gh_stars>1000+ # pyflakes: disable-all from .api import * from .aug import * from .main import *
1.078125
1
src/apps/core/admin_actions.py
crivet/HydroLearn
0
12795310
# potentially not, may be better to use 'ModelAdmin' methods # 'https://docs.djangoproject.com/en/2.0/ref/contrib/admin/actions/#advanced-action-techniques' # # def delete_with_placeholders(modeladmin, request, queryset): # for obj in queryset: # obj.delete() # # # delete_with_placeholders.short_description = "Delete Selected Items"
1.90625
2
tests/seahub/utils/test_get_conf_test_ext.py
jjzhang166/seahub
0
12795311
<gh_stars>0 from constance import config from django.conf import settings from seahub.utils import get_conf_text_ext from seahub.test_utils import BaseTestCase class GetConfTextExtTest(BaseTestCase): def setUp(self): self.clear_cache() def tearDown(self): self.clear_cache() def test_get(self): assert config.TEXT_PREVIEW_EXT == settings.TEXT_PREVIEW_EXT orig_preview_ext = settings.TEXT_PREVIEW_EXT config.TEXT_PREVIEW_EXT = orig_preview_ext + ',az' assert 'az' in get_conf_text_ext()
1.820313
2
ch5/op_test.py
oysstu/pyopencl-in-action
21
12795312
''' Listing 5.1: Operator usage (and vector usage) ''' import pyopencl as cl import pyopencl.array import utility kernel_src = ''' __kernel void op_test(__global int4 *output) { int4 vec = (int4)(1, 2, 3, 4); /* Adds 4 to every element of vec */ vec += 4; /* Sets the third element to 0 Doesn't change the other elements (-1 in hexadecimal = 0xFFFFFFFF */ if(vec.s2 == 7){ vec &= (int4)(-1, -1, 0, -1); } /* Sets the first element to -1, the second to 0 */ vec.s01 = vec.s23 < 7; /* Divides the last element by 2 until it is less than or equal to 7 */ while(vec.s3 > 7 && (vec.s0 < 16 || vec.s1 < 16)){ vec.s3 >>= 1; } *output = vec; } ''' # Get device and context, create command queue and program dev = utility.get_default_device() context = cl.Context(devices=[dev]) queue = cl.CommandQueue(context, dev) # Build program in the specified context using the kernel source code prog = cl.Program(context, kernel_src) try: prog.build(options=['-Werror'], devices=[dev]) except: print('Build log:') print(prog.get_build_info(dev, cl.program_build_info.LOG)) raise # Create output buffer out = cl.array.vec.zeros_int4() buffer_out = cl.Buffer(context, cl.mem_flags.WRITE_ONLY, size=out.itemsize) # Enqueue kernel (with argument specified directly) n_globals = (1,) n_locals = None prog.op_test(queue, n_globals, n_locals, buffer_out) # Enqueue command to copy from buffer_out to host memory cl.enqueue_copy(queue, dest=out, src=buffer_out, is_blocking=True) print('Output: ' + str(out))
2.765625
3
regulator.py
Jerry-Terrasse/LlfSystem
6
12795313
import time from surgeon import * ori_time=int() cur_time=int() pre_time=int() waves=int() double_water=False AUTO=False def fight_start(): global ori_time,started,double_water,pre_time ori_time=time.time() pre_time=0 started=True double_water=False def fight_end(): global started print("Fight Finished.") if AUTO: next_fight() fight_start() else: exit() def time_past(): global cur_time cur_time=time.time() return int(cur_time-ori_time) def wait(): global double_water,cur_time if double_water: time.sleep(3) else: cur_time=time.time() if cur_time-ori_time>=120: double_water=True time.sleep(3) else: time.sleep(5) def Fight(): global waves,cur_time,pre_time cur_time=time.time() if cur_time-pre_time>=30: waves+=1 # pre_time=cur_time return True else: return False def set_pre_time(): global pre_time pre_time=time.time() if __name__=='__main__': print("Regulator Here")
2.90625
3
src/day17.py
nlasheras/aoc-2021
0
12795314
""" https://adventofcode.com/2021/day/17 """ import re import math from typing import Tuple class Rect: """A 2D rectangle defined by top-left and bottom-right positions""" def __init__(self, left, right, bottom, top): self.left = left self.right = right self.bottom = bottom self.top = top def inside(self, x, y): """Checks if a given x, y point is inside the rect""" return (self.left <= x <= self.right) and (self.bottom <= y <= self.top) @staticmethod def from_input(string): match = re.search(r"target area: x=(-?\d*)..(-?\d*), y=(-?\d*)..(-?\d*)", string) if match: left = int(match.group(1)) right = int(match.group(2)) bottom = int(match.group(3)) top = int(match.group(4)) return Rect(left, right, bottom, top) assert False # Shouldn't reach return None def sign(_n): if _n > 0: return 1 if _n < 0: return -1 return 0 def hit_target(vx0, vy0, target:Rect) -> Tuple[bool, int]: """Simulate the probe shooting and check if the probe reaches the target area. Returns wether probe reaches the target area in a discrete t and, in that case, the maximum height it reaches on the trajectory.""" velocity_x = vx0 velocity_y = vy0 probe_x = 0 probe_y = 0 _t = 0 max_height = 0 while probe_x < target.right and probe_y > target.bottom: probe_x += velocity_x probe_y += velocity_y max_height = max(max_height, probe_y) velocity_x -= sign(velocity_x) velocity_y -= 1 _t += 1 if target.inside(probe_x, probe_y): return True, max_height return False, 0 puzzle = Rect.from_input("target area: x=209..238, y=-86..-59") example = Rect.from_input("target area: x=20..30, y=-10..-5") def both_parts_bruteforce(target): global_maxima = 0 hit_count = 0 # do a smart brute-force over sensible ranges min_vx = 0 max_vx = target.right # max speed is hitting the right of the area in t=1 min_vy = min(target.bottom, target.top) # use the same reasoning as for maxvy max_vy = -min_vy # not much thinkin here (explore the same range in positive than in negative) for velocity_x in range(min_vx, max_vx+1): min_vx = math.floor((1 + math.sqrt(1 + target.left * 8)) / 2) max_vx = target.right for velocity_y in range(min_vy, max_vy+1): hit, maxy = hit_target(velocity_x, velocity_y, target) if hit: global_maxima = max(global_maxima, maxy) hit_count += 1 print(f"What is the highest y position it reaches on this trajectory? {global_maxima}") print(f"How many distinct initial velocity values cause the probe to be within the target area after any step?: {hit_count}") both_parts_bruteforce(example) both_parts_bruteforce(puzzle)
4.25
4
ehelp/application/urls.py
Taimur-DevOps/ehelp_fyp
7
12795315
<filename>ehelp/application/urls.py from django.urls import path, include from django.conf.urls import url from .views import ( view_dashboard, view_home, view_queue, view_privacy, view_requests, view_responses, view_login, view_logout, view_signup, view_activate, view_profile, view_request_description, view_add_update_request, view_add_to_queue_required, view_delete_from_queue_required, view_delete_request_required, view_delete_response_required, view_add_response_required, ) from django.contrib.auth import views as auth_views app_name = 'application' urlpatterns = [ url(r'^activate/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[<KEY>})/$', view_activate, name='activate'), path('', view_home, name='home'), path('dashboard/', view_dashboard, name='dashboard'), path('profile/', view_profile, name='profile'), path('dashboard/<int:pk>/', view_dashboard, name='dashboard-specific'), path('queue/', view_queue, name='queue'), path('privacy/', view_privacy, name='privacy'), path('requests/', view_requests, name='requests'), path('add/request/', view_add_update_request, name='add-request'), path('update/request/<int:pk>/', view_add_update_request, name='update-request'), path('request/description/<int:pk>/', view_request_description, name='request-description'), path('responses/', view_responses, name='responses'), path('response/', view_responses, name='response'), path('accounts/login/', view_login, name='login'), path('accounts/logout/', view_logout, name='logout'), path('signup/', view_signup, name='signup'), path('update/request/', view_responses, name='update-request'), path('settings/', view_privacy, name='settings'), path('delete/request/<int:pk>/', view_delete_request_required, name='delete-request-required'), path('delete/response/<int:req_id>/<int:res_id>/', view_delete_response_required, name='delete-response-required'), path('queue/add/<int:pk>/', view_add_to_queue_required, name='add-to-queue-required'), path('add/response/<int:pk>/', view_add_response_required, name='add-response-required'), path('queue/delete/<int:pk>/', view_delete_from_queue_required, name='delete-from-queue-required'), path( 'change-password/', auth_views.PasswordChangeView.as_view( template_name='application/password_change.html', success_url='/' ), name='change_password' ), ]
1.96875
2
awx/main/migrations/_rbac.py
Avinesh/awx
1
12795316
<reponame>Avinesh/awx import logging from time import time from awx.main.models.rbac import Role, batch_role_ancestor_rebuilding logger = logging.getLogger('rbac_migrations') def create_roles(apps, schema_editor): ''' Implicit role creation happens in our post_save hook for all of our resources. Here we iterate through all of our resource types and call .save() to ensure all that happens for every object in the system before we get busy with the actual migration work. This gets run after migrate_users, which does role creation for users a little differently. ''' models = [ apps.get_model('main', m) for m in [ 'Organization', 'Team', 'Inventory', 'Project', 'Credential', 'CustomInventoryScript', 'JobTemplate', ] ] with batch_role_ancestor_rebuilding(): for model in models: for obj in model.objects.iterator(): obj.save() def rebuild_role_hierarchy(apps, schema_editor): logger.info('Computing role roots..') start = time() roots = Role.objects \ .all() \ .values_list('id', flat=True) stop = time() logger.info('Found %d roots in %f seconds, rebuilding ancestry map' % (len(roots), stop - start)) start = time() Role.rebuild_role_ancestor_list(roots, []) stop = time() logger.info('Rebuild completed in %f seconds' % (stop - start)) logger.info('Done.') def delete_all_user_roles(apps, schema_editor): ContentType = apps.get_model('contenttypes', "ContentType") Role = apps.get_model('main', "Role") User = apps.get_model('auth', "User") user_content_type = ContentType.objects.get_for_model(User) for role in Role.objects.filter(content_type=user_content_type).iterator(): role.delete()
2.21875
2
tests/test_contrast.py
bunkahle/PILasOPENCV
19
12795317
<filename>tests/test_contrast.py<gh_stars>10-100 # from PIL import Image, ImageEnhance import PILasOPENCV as Image import PILasOPENCV as ImageEnhance img = Image.open('lena.jpg') # enhancer = ImageEnhance.Contrast(img) enhancer.enhance(0.0).save( "ImageEnhance_Contrast_000.jpg") enhancer.enhance(0.25).save( "ImageEnhance_Contrast_025.jpg") enhancer.enhance(0.5).save( "ImageEnhance_Contrast_050.jpg") enhancer.enhance(0.75).save( "ImageEnhance_Contrast_075.jpg") enhancer.enhance(1.0).save( "ImageEnhance_Contrast_100.jpg")
2.671875
3
TEP-IFPI-2017_8-master/django-api-atv1-master/app/settings.py
danieldsf/ads-activities
1
12795318
<reponame>danieldsf/ads-activities import os, raven, logging from unipath import Path from decouple import config BASE_DIR = Path(__file__).parent PROJECT_DIR = BASE_DIR.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY', default=os.environ.get('SECRET_KEY'), cast=str) LOGIN_URL = '/login/' LOGOUT_URL = '/logout/' LOGIN_REDIRECT_URL = '/' PASSWORD_HASHERS = ( 'django.contrib.auth.hashers.MD5PasswordHasher', ) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = DEBUG ALLOWED_HOSTS = ('*',) INTERNAL_IPS = ('127.0.0.1','192.168.0.1','localhost') # Email settings EMAIL_HOST = config('EMAIL_HOST', default=os.environ.get('EMAIL_HOST'), cast=str) EMAIL_PORT = config('EMAIL_PORT', default=os.environ.get('EMAIL_PORT'), cast=int) EMAIL_HOST_USER = config('EMAIL_HOST_USER', default=os.environ.get('EMAIL_HOST_USER'), cast=str) EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD', default=os.environ.get('EMAIL_HOST_PASSWORD'), cast=str) EMAIL_USE_TLS = config('EMAIL_USE_TLS', default=os.environ.get('EMAIL_USE_TLS'), cast=bool) DEFAULT_FROM_EMAIL = 'StudentMy Team <<EMAIL>>' EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # During development only # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = BASE_DIR.parent.child('static') # Application definition INSTALLED_APPS = [ 'rest_framework', 'django.contrib.auth', 'core', 'django.contrib.admin', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # Extra Apps: 'raven.contrib.django.raven_compat', ] IMPORT_EXPORT_USE_TRANSACTIONS = True MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', #Extra context processors: #'django.core.context_processors.i18n', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Fortaleza' USE_I18N = True USE_L10N = True USE_TZ = True DEFAULT_CHARSET = 'utf-8' LOCALE_PATHS = ( BASE_DIR.child('locale'), ) MEDIA_URL = '/media/' MEDIA_ROOT = BASE_DIR.parent.child('media') STATICFILES_DIRS = ( BASE_DIR.parent.child('node_modules'), STATIC_ROOT.child('custom'), ) # BASE_DIR.parent.child('static'), STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) # Raven Settings: RAVEN_CONFIG = { 'dsn': config('RAVEN_DSN', default=os.environ.get('RAVEN_DSN'), cast=str), #'release': raven.fetch_git_sha(BASE_DIR.child('.git').child('HEAD')), }
1.882813
2
python/vsi/utils/image_iterators.py
cabdiweli1/vsi_common
7
12795319
import numpy as np from collections import namedtuple import skimage.measure #import matplotlib.pyplot as plt #import ipdb # could maybe turn this into a generic mutable namedtuple class Point2D(object): __slots__ = "x", "y" def __init__(self, x, y): self.x = x self.y = y def __iter__(self): '''iterate over fields tuple/list style''' for field_name in self.__slots__: yield getattr(self, field_name) def __getitem__(self, index): '''tuple/list style getitem''' return getattr(self, self.__slots__[index]) # NOTE IterateOverWindows and IterateOverSuperpixels must share the same iter() interface # TODO create IterateOverOverlappingWindows(IterateOverWindows), which enforces # pixel_stride <= pixels_per_cell # # NOTE if pixel_stride > pixels_per_cell/2, it is possible to leave data unseen on the # right/bottom boarder of an image # # this is similar to matlab's im2col class IterateOverWindows(object): def __init__(self, pixels_per_cell, pixel_stride=None, image=None, mode='constant', cval=0, start_pt=(0, 0), stop_pt=(None, None)): ''' Sliding window iterator. Parameters ---------- pixels_per_cell : array_like x,y - let x,y be odd so the window can be easily centered pixel_stride : array_like, optional x,y image : array_like, optional like numpy.array (ndim == 2 or 3) mode : str, optional Points outside the boundaries of the input are filled according to the given mode. Only ``mode='constant'``, ``mode='discard'`` and ``mode='reflect'`` are currently supported, although others could be added (e.g., 'nearest' and 'wrap') cval : float, optional Value used for points outside the boundaries of the input if ``mode='constant'``. Default is 0.0 start_pt : array_like, optional (x,y) stop_pt : array_like, optional (x,y) >>> tot = 0; im = np.arange(100).reshape((10,10)) >>> for i,ret in enumerate(IterateOverWindows((5,5),(2,2),cval=1).iter(im)): ... tot += ret[0].sum() ... #print(i, ':\n', ret[0]) >>> print(tot) # weak test 22647 >>> tot = 0; im = np.arange(81).reshape((9,9)).T >>> for i,ret in enumerate(IterateOverWindows((5,5),(2,2),mode='reflect').iter(im)): ... tot += ret[0].sum() ... #print(i, ':\n', ret[0]) >>> print(tot) # weak test 25000 ''' assert pixels_per_cell[0] % 2 == 1 and pixels_per_cell[1] % 2 == 1, \ 'provide an odd number for pixels_per_cell to easily center the window' self.pixels_per_cell = tuple(pixels_per_cell) self.pixel_stride = self.pixels_per_cell if pixel_stride is None else pixel_stride self.image = image self.mode = mode self.cval = cval self.start_pt = Point2D(*(int(s) for s in start_pt)) self.stop_pt = Point2D(*(stop_pt)) def setImage(self, image): ''' Parameters ---------- image : array_like like numpy.array (ndim == 2 or 3) ''' self.image = image return self def shape(self): if self.image is None: raise TypeError("self.image cannot be of type NoneType") nrows, ncols = self.image.shape[0:2] stop_x = ncols if self.stop_pt.x is None else int(self.stop_pt.x) stop_y = nrows if self.stop_pt.y is None else int(self.stop_pt.y) roi_height = stop_y-self.start_pt.y roi_width = stop_x-self.start_pt.x #print(roi_width, roi_height, self.pixel_stride) nrows = np.ceil(float(roi_height)/self.pixel_stride[1]).astype(int) ncols = np.ceil(float(roi_width)/self.pixel_stride[0]).astype(int) return (nrows, ncols) def iter(self,image=None): '''Next window generator Parameters ---------- image : array_like like numpy.array (ndim == 2 or 3) Returns ------- numpy.array, optional chip : pixels within the current window. Points outside the boundaries of the input are filled according to the given mode. numpy.array mask : the binary mask of the window within the chip BoundingBox bbox : the inclusive extents of the chip (which may exceed the bounds of the image) MODIFICATIONS sgr : turned into a class sgr : added mode='reflect' ''' if image is not None: self.image = image elif self.image is None: raise TypeError("self.image cannot be of type NoneType") nrows, ncols = self.image.shape[0:2] # NOTE could iterate over the interior of the image without bounds checking # for additional speedup BoundingBox = namedtuple("BoundingBox", "min_x max_x min_y max_y") pixels_per_half_cell = self.pixels_per_cell[0]//2, self.pixels_per_cell[1]//2 ystrides_per_image, xstrides_per_image = self.shape() # iterate around the boarder of the image for r in xrange(ystrides_per_image): for c in xrange(xstrides_per_image): # chip out pixels in this sliding window min_x = self.start_pt.x + self.pixel_stride[0]*c - pixels_per_half_cell[0] max_x = min_x+self.pixels_per_cell[0] min_y = self.start_pt.y + self.pixel_stride[1]*r - pixels_per_half_cell[1] max_y = min_y+self.pixels_per_cell[1] bbox = BoundingBox(min_x,max_x,min_y,max_y) min_x, max_x = max(0, bbox.min_x), min(ncols, bbox.max_x) min_y, max_y = max(0, bbox.min_y), min(nrows, bbox.max_y) #print('c=%d'%c, 'r=%d'%r, min_x, max_x, min_y, max_y) chip = self.image[min_y:max_y, min_x:max_x, ...] # couch chip in a fixed-size window # REVIEW I could refactor handling the boarder into pad_image(). then mode wouldn't # be necessary here and I could simply loop over the image. # RE this is more efficient though if self.mode == 'constant' or self.mode == 'reflect': chunk = np.empty( self.pixels_per_cell + ((self.image.shape[2],) if self.image.ndim == 3 else ()), dtype=self.image.dtype.type) chunk[:] = self.cval mask = np.zeros(self.pixels_per_cell) min_x = self.start_pt.x + self.pixel_stride[0]*c - pixels_per_half_cell[0] max_x = min(self.pixels_per_cell[0], ncols - min_x) min_x = max(0, -min_x) min_y = self.start_pt.y + self.pixel_stride[1]*r - pixels_per_half_cell[1] max_y = min(self.pixels_per_cell[1], nrows - min_y) min_y = max(0, -min_y) #print('c=%d'%c, 'r=%d'%r, min_x, max_x, min_y, max_y) #print() chunk[min_y:max_y, min_x:max_x, ...] = chip mask[min_y:max_y, min_x:max_x] = 1 if self.mode == 'reflect': nrows_chunk, ncols_chunk = chunk.shape[0:2] # NOTE assume the points outside the boundaries of input can be filled from chip. # this seems harder than it should be... chunk[:min_y, min_x:max_x, ...] = np.flipud(np.atleast_2d( # top border chip[:min_y, :, ...])) chunk[min_y:max_y, :min_x, ...] = np.fliplr(np.atleast_2d( # left border chip[:, :min_x, ...])) # NOTE neg indice trikery (flipping first simplifies indexing) chunk[max_y:, min_x:max_x, ...] = np.atleast_2d( # bottom border np.flipud(chip)[:nrows_chunk-max_y, :, ...]) chunk[min_y:max_y, max_x:, ...] = np.atleast_2d( # right border np.fliplr(chip)[:, :ncols_chunk-max_x, ...]) chunk[:min_y, :min_x, ...] = np.fliplr(np.flipud(np.atleast_2d( # top-left corner chip[:min_y, :min_x, ...]))) chunk[:min_y, max_x:, ...] = np.flipud(np.atleast_2d( # top-right corner np.fliplr(chip)[:min_y, :ncols_chunk-max_x, ...])) chunk[max_y:, max_x:, ...] = np.atleast_2d( # bottom-right corner np.flipud(np.fliplr(chip))[:nrows_chunk-max_y, :ncols_chunk-max_x, ...]) chunk[max_y:, :min_x, ...] = np.fliplr(np.atleast_2d( # bottom-left corner np.flipud(chip)[:nrows_chunk-max_y, :min_x, ...])) elif self.mode == 'discard': mask = np.ones_like(chip) chunk = chip else: assert False, 'unrecognized mode' # FIXME should bbox be max-1 like in the superpixel version yield chunk, mask, bbox class IterateOverSuperpixels(object): def __init__(self, segmented, image=None): self.segmented = segmented self.image = image ''' Parameters ---------- segmented : array_like Superpixel labeled segmentation (like numpy.array) NOTE regionprops expects labels to be sequential and start at 1: {1,2,...}. label 0 is treated as unlabeled. image : array_like, optional like numpy.array (ndim == 2 or 3) ''' def setImage(self, image): ''' Parameters ---------- image : array_like like numpy.array (ndim == 2 or 3) ''' self.image = image return self def iter(self, image=None): '''Next superpixel generator Parameters ---------- image : array_like, optional like numpy.array (ndim == 2 or 3) Returns ------- numpy.array, optional chip : pixels within the current window. Points outside the boundaries of the input are filled according to the given mode. numpy.array mask : the binary mask of the window within the chip BoundingBox bbox : the inclusive extents of the chip (which may exceed the bounds of the image) MODIFICATIONS sgr : optimized sgr : turned into a class ''' if image is not None: self.image = image elif self.image is None: raise TypeError("self.image cannot be of type NoneType") # regionprops() treats label zero (0) as unlabeled and ignores it # TODO remove small, unconnected components properties = skimage.measure.regionprops(self.segmented) BoundingBox = namedtuple("BoundingBox", "min_x max_x min_y max_y") for rp in properties: if rp._slice is None: continue (min_y,min_x,max_y,max_x) = rp.bbox chip = image[min_y:max_y, min_x:max_x,...] mask = rp.filled_image bbox = BoundingBox(min_x,max_x-1,min_y,max_y-1) yield (chip, mask, bbox)
2.65625
3
lib/firmware/ap_firmware_config/grunt.py
khromiumos/chromiumos-chromite
0
12795320
# -*- coding: utf-8 -*- # Copyright 2019 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Grunt configs.""" from __future__ import print_function def is_fast_required(use_futility, servo): """Returns true if --fast is necessary to flash successfully. The configurations in this function consistently fail on the verify step, adding --fast removes verification of the flash and allows these configs to flash properly. Meant to be a temporary hack until b/143240576 is fixed. Args: use_futility (bool): True if futility is to be used, False if flashrom. servo (servo_lib.Servo): The type name of the servo device being used. Returns: bool: True if fast is necessary, False otherwise. """ return use_futility and servo.is_v4 def get_commands(servo): """Get specific flash commands for grunt Each board needs specific commands including the voltage for Vref, to turn on and turn off the SPI flash. The get_*_commands() functions provide a board-specific set of commands for these tasks. The voltage for this board needs to be set to 1.8 V. Args: servo (servo_lib.Servo): The servo connected to the target DUT. Returns: list: [dut_control_on, dut_control_off, flashrom_cmd, futility_cmd] dut_control*=2d arrays formmated like [["cmd1", "arg1", "arg2"], ["cmd2", "arg3", "arg4"]] where cmd1 will be run before cmd2 flashrom_cmd=command to flash via flashrom futility_cmd=command to flash via futility """ dut_control_on = [] dut_control_off = [] if servo.is_v2: dut_control_on.append([ 'spi2_vref:pp1800', 'spi2_buf_en:on', 'spi2_buf_on_flex_en:on', 'cold_reset:on', ]) dut_control_off.append([ 'spi2_vref:off', 'spi2_buf_en:off', 'spi2_buf_on_flex_en:off', 'cold_reset:off', ]) programmer = 'ft2232_spi:type=google-servo-v2,serial=%s' % servo.serial elif servo.is_micro: dut_control_on.append(['spi2_vref:pp1800', 'spi2_buf_en:on']) dut_control_off.append(['spi2_vref:off', 'spi2_buf_en:off']) programmer = 'raiden_debug_spi:serial=%s' % servo.serial elif servo.is_ccd: # Note nothing listed for flashing with ccd_cr50 on go/grunt-care. # These commands were based off the commands for other boards. programmer = 'raiden_debug_spi:target=AP,serial=%s' % servo.serial else: raise Exception('%s not supported' % servo.version) flashrom_cmd = ['flashrom', '-p', programmer, '-w'] futility_cmd = ['futility', 'update', '-p', programmer, '-i'] return [dut_control_on, dut_control_off, flashrom_cmd, futility_cmd]
2.234375
2
foundation/organisation/migrations/0001_initial.py
Mindelirium/foundation
0
12795321
<reponame>Mindelirium/foundation # -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Person' db.create_table(u'organisation_person', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('created_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('updated_at', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('email', self.gf('django.db.models.fields.EmailField')(max_length=75)), ('photo', self.gf('django.db.models.fields.files.ImageField')(max_length=100, blank=True)), ('twitter', self.gf('django.db.models.fields.CharField')(max_length=18, blank=True)), ('url', self.gf('django.db.models.fields.URLField')(max_length=200, blank=True)), )) db.send_create_signal(u'organisation', ['Person']) # Adding model 'Unit' db.create_table(u'organisation_unit', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('created_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('updated_at', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), )) db.send_create_signal(u'organisation', ['Unit']) # Adding model 'UnitMembership' db.create_table(u'organisation_unitmembership', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('created_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('updated_at', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=100)), ('person', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['organisation.Person'])), ('unit', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['organisation.Unit'])), )) db.send_create_signal(u'organisation', ['UnitMembership']) # Adding model 'Board' db.create_table(u'organisation_board', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('created_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('updated_at', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('description', self.gf('django.db.models.fields.TextField')()), )) db.send_create_signal(u'organisation', ['Board']) # Adding model 'BoardMembership' db.create_table(u'organisation_boardmembership', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('created_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('updated_at', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=100)), ('person', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['organisation.Person'])), ('board', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['organisation.Board'])), )) db.send_create_signal(u'organisation', ['BoardMembership']) def backwards(self, orm): # Deleting model 'Person' db.delete_table(u'organisation_person') # Deleting model 'Unit' db.delete_table(u'organisation_unit') # Deleting model 'UnitMembership' db.delete_table(u'organisation_unitmembership') # Deleting model 'Board' db.delete_table(u'organisation_board') # Deleting model 'BoardMembership' db.delete_table(u'organisation_boardmembership') models = { u'organisation.board': { 'Meta': {'object_name': 'Board'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'organisation.boardmembership': { 'Meta': {'object_name': 'BoardMembership'}, 'board': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['organisation.Board']"}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['organisation.Person']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'organisation.person': { 'Meta': {'object_name': 'Person'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'photo': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'twitter': ('django.db.models.fields.CharField', [], {'max_length': '18', 'blank': 'True'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, u'organisation.unit': { 'Meta': {'object_name': 'Unit'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'organisation.unitmembership': { 'Meta': {'object_name': 'UnitMembership'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['organisation.Person']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'unit': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['organisation.Unit']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) } } complete_apps = ['organisation']
2.171875
2
make_validation_set.py
lelloman/python-languagedetector
0
12795322
from common import * from os.path import join as join_path, isdir from shutil import rmtree from os import mkdir import feedparser from bs4 import BeautifulSoup as bs languages_names = [x['name'] for x in languages] rss_sources = { 'da': [ 'https://politiken.dk/rss/senestenyt.rss', 'https://borsen.dk/rss/' ], 'de': [ 'http://www.spiegel.de/index.rss', 'https://www.faz.net/rss/aktuell/' ], 'en': [ 'http://feeds.washingtonpost.com/rss/rss_powerpost', 'http://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml' ], 'es': [ 'http://ep00.epimg.net/rss/elpais/portada.xml', 'https://e00-elmundo.uecdn.es/elmundo/rss/espana.xml' ], 'fi': [ 'https://www.iltalehti.fi/rss/uutiset.xml', 'https://www.uusisuomi.fi/raha/feed' ], 'fr': [ 'https://www.lemonde.fr/rss/une.xml', 'http://www.lefigaro.fr/rss/figaro_flash-actu.xml' ], 'hu': [ 'https://nepszava.hu/feed', 'https://www.vg.hu/feed/' ], 'it': [ 'https://www.fanpage.it/feed/', 'http://www.ansa.it/campania/notizie/campania_rss.xml' ], 'nl': [ 'https://www.telegraaf.nl/rss', 'https://www.ad.nl/nieuws/rss.xml' ], 'no': [ 'https://www.vg.no/rss/feed/forsiden/?format=rss', 'https://www.aftenposten.no/rss' ], 'pl': [ 'http://rss.gazeta.pl/pub/rss/najnowsze_wyborcza.xml', 'https://www.rp.pl/rss/1019' ], 'pt': [ 'https://feeds.folha.uol.com.br/emcimadahora/rss091.xml', 'http://feeds.jn.pt/JN-Nacional' ], 'ro': [ 'https://evz.ro/rss.xml', 'https://adevarul.ro/rss/' ], 'ru': [ 'https://www.mk.ru/rss/index.xml', 'https://iz.ru/xml/rss/all.xml' ], 'sv': [ 'https://www.di.se/rss', 'https://www.arbetarbladet.se/feed' ], 'uk': [ 'https://ukurier.gov.ua/uk/feed/', 'http://day.kyiv.ua/uk/news-rss.xml' ], 'vi': [ 'https://vnexpress.net/rss/tin-moi-nhat.rss', 'https://www.tienphong.vn/rss/ho-chi-minh-288.rss' ] } def text_from_html(html): return bs(html, "lxml").text if __name__ == '__main__': if isdir(VALIDATION_SET_DIR): user_input = input("Validation set directory already exists, should delete it and re-fetch the data? Y/N\n") if user_input.lower() != 'y': print("Nothing to do.") exit(0) else: print("Deleting old validate set dir", VALIDATION_SET_DIR) rmtree(VALIDATION_SET_DIR) print("Creating new directory", VALIDATION_SET_DIR) mkdir(VALIDATION_SET_DIR) # for lang in ['vi']: for lang in languages_names: print(lang) if lang not in rss_sources: print("\tSkipping", lang, "as there are no sources.") continue with open(join_path(VALIDATION_SET_DIR, lang), 'wb') as f: for source in rss_sources[lang]: feed = feedparser.parse(source) items = feed.entries for item in items: title = text_from_html(item['title']) summary = text_from_html(item['summary']) validation_text = sanitize_text(title) + ' ' + sanitize_text(summary) if len(validation_text) > 200: validation_text = validation_text[:200] f.write(validation_text.encode("UTF-8")) f.write('\n'.encode("UTF-8")) # print('\t', title, ' -> ', summary, ' -> ', validation_text) print("\tfound", len(items), "feeds in", source)
2.484375
2
train.py
liujiachang/Graph-WaveNet
0
12795323
<reponame>liujiachang/Graph-WaveNet import torch import numpy as np import argparse import time import util import matplotlib.pyplot as plt from engine import trainer parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cuda:0', help='') parser.add_argument('--data', type=str, default='data/METR-LA', help='data path') parser.add_argument('--adjdata', type=str, default='data/sensor_graph/adj_mx.pkl', help='adj data path') parser.add_argument('--adjtype', type=str, default='doubletransition', help='adj type') parser.add_argument('--gcn_bool', action='store_true', help='whether to add graph convolution layer') parser.add_argument('--aptonly', action='store_true', help='whether only adaptive adj') parser.add_argument('--addaptadj', action='store_true', help='whether add adaptive adj') parser.add_argument('--randomadj', action='store_true', help='whether random initialize adaptive adj') parser.add_argument('--seq_length', type=int, default=12, help='') parser.add_argument('--nhid', type=int, default=32, help='') parser.add_argument('--in_dim', type=int, default=2, help='inputs dimension') parser.add_argument('--num_nodes', type=int, default=207, help='number of nodes') parser.add_argument('--batch_size', type=int, default=64, help='batch size') parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate') parser.add_argument('--dropout', type=float, default=0.3, help='dropout rate') parser.add_argument('--weight_decay', type=float, default=0.0001, help='weight decay rate') parser.add_argument('--epochs', type=int, default=50, help='') parser.add_argument('--print_every', type=int, default=50, help='') # parser.add_argument('--seed',type=int,default=99,help='random seed') parser.add_argument('--save', type=str, default='./garage/metr', help='save path') parser.add_argument('--expid', type=int, default=1, help='experiment id') args = parser.parse_args() def main(): # set seed # torch.manual_seed(args.seed) # np.random.seed(args.seed) # load data device = torch.device(args.device) sensor_ids, sensor_id_to_ind, adj_mx = util.load_adj(args.adjdata, args.adjtype) dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size) scaler = dataloader['scaler'] supports = [torch.tensor(i).to(device) for i in adj_mx] print(args) if args.randomadj: adjinit = None else: adjinit = supports[0] if args.aptonly: supports = None engine = trainer(scaler, args.in_dim, args.seq_length, args.num_nodes, args.nhid, args.dropout, args.learning_rate, args.weight_decay, device, supports, args.gcn_bool, args.addaptadj, adjinit) print("start training...") his_loss = [] val_time = [] train_time = [] for i in range(1, args.epochs + 1): # if i % 10 == 0: # lr = max(0.000002,args.learning_rate * (0.1 ** (i // 10))) # for g in engine.optimizer.param_groups: # g['lr'] = lr train_loss = [] train_mape = [] train_rmse = [] t1 = time.time() dataloader['train_loader'].shuffle() for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()): trainx = torch.Tensor(x).to(device) trainx = trainx.transpose(1, 3) trainy = torch.Tensor(y).to(device) trainy = trainy.transpose(1, 3) metrics = engine.train(trainx, trainy[:, 0, :, :]) train_loss.append(metrics[0]) train_mape.append(metrics[1]) train_rmse.append(metrics[2]) if iter % args.print_every == 0: log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}' print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1])) t2 = time.time() train_time.append(t2 - t1) # validation valid_loss = [] valid_mape = [] valid_rmse = [] s1 = time.time() for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) testy = torch.Tensor(y).to(device) testy = testy.transpose(1, 3) metrics = engine.eval(testx, testy[:, 0, :, :]) valid_loss.append(metrics[0]) valid_mape.append(metrics[1]) valid_rmse.append(metrics[2]) s2 = time.time() log = 'Epoch: {:03d}, Inference Time: {:.4f} secs' print(log.format(i, (s2 - s1))) val_time.append(s2 - s1) mtrain_loss = np.mean(train_loss) mtrain_mape = np.mean(train_mape) mtrain_rmse = np.mean(train_rmse) mvalid_loss = np.mean(valid_loss) mvalid_mape = np.mean(valid_mape) mvalid_rmse = np.mean(valid_rmse) his_loss.append(mvalid_loss) log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch' print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1))) torch.save(engine.model.state_dict(), args.save + "_epoch_" + str(i) + "_" + str(round(mvalid_loss, 2)) + ".pth") print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time))) print("Average Inference Time: {:.4f} secs".format(np.mean(val_time))) # testing bestid = np.argmin(his_loss) engine.model.load_state_dict( torch.load(args.save + "_epoch_" + str(bestid + 1) + "_" + str(round(his_loss[bestid], 2)) + ".pth")) outputs = [] realy = torch.Tensor(dataloader['y_test']).to(device) realy = realy.transpose(1, 3)[:, 0, :, :] for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()): testx = torch.Tensor(x).to(device) testx = testx.transpose(1, 3) with torch.no_grad(): preds = engine.model(testx).transpose(1, 3) outputs.append(preds.squeeze()) yhat = torch.cat(outputs, dim=0) yhat = yhat[:realy.size(0), ...] print("Training finished") print("The valid loss on best model is", str(round(his_loss[bestid], 4))) amae = [] amape = [] armse = [] for i in range(12): pred = scaler.inverse_transform(yhat[:, :, i]) real = realy[:, :, i] metrics = util.metric(pred, real) log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(i + 1, metrics[0], metrics[1], metrics[2])) amae.append(metrics[0]) amape.append(metrics[1]) armse.append(metrics[2]) log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}' print(log.format(np.mean(amae), np.mean(amape), np.mean(armse))) torch.save(engine.model.state_dict(), args.save + "_exp" + str(args.expid) + "_best_" + str(round(his_loss[bestid], 2)) + ".pth") if __name__ == "__main__": t1 = time.time() main() t2 = time.time() print("Total time spent: {:.4f}".format(t2 - t1))
2.109375
2
modules/tankshapes/base.py
bullseyestudio/guns-game
0
12795324
<filename>modules/tankshapes/base.py """ Base tank shape -- all other shapes derive from this Minimal requirements: - typeID - position (relative to tank origin) - size (fixed for most shapes) - layer (fixed for most shapes) - anchor rectangle (what portion of the shape must be supported by the lower layer; most shapes will define their entire extent as their anchor rectangle) """ class base_shape(object): type = 0 position = (0,0) size = (0,0) anchor = (0,0) layer = 0 def __init__(self, type, position, size, layer=0, anchor=None): # TODO: Don't forget to do some kind of validation! self.type = type self.position = position self.size = size self.layer = layer if anchor: self.anchor = anchor else: self.anchor = (0,0) + size def absanchor(self): """ Returns the anchor rectangle relative to the tank origin (i.e. NOT relative to the shape) """ return self.position + (self.position[0]+self.anchor[2], self.position[1]+self.anchor[3]) def __repr__(self): return '<shape(type={self.type})>'.format(self=self) def __str__(self): return '{0}(type={self.type},position={self.position},size={self.size},layer={self.layer},anchor={self.anchor})'.format( type(self), self=self)
3.25
3
news/migrations/0001_initial.py
SIBSIND/PHPMYADMINWEBSITE
31
12795325
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import markupfield.fields import django.utils.timezone from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Planet', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('url', models.URLField(unique=True)), ('title', models.CharField(max_length=100)), ('date', models.DateTimeField(default=django.utils.timezone.now, db_index=True)), ], options={ 'ordering': ['-date'], }, ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=100)), ('slug', models.SlugField(unique_for_date=b'date')), ('date', models.DateTimeField(default=django.utils.timezone.now, db_index=True)), ('body', markupfield.fields.MarkupField(rendered_field=True)), ('body_markup_type', models.CharField(default=b'markdown', max_length=30, choices=[(b'', b'--'), (b'html', 'HTML'), (b'plain', 'Plain'), (b'markdown', 'Markdown'), (b'restructuredtext', 'Restructured Text')])), ('_body_rendered', models.TextField(editable=False)), ('author', models.ForeignKey(editable=False, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-date'], }, ), ]
1.992188
2
chapters/10/src/biglittle/domain/loan.py
PacktPublishing/-Learn-MongoDB-4.0
13
12795326
<reponame>PacktPublishing/-Learn-MongoDB-4.0 """ biglittle.domain.loan Description: module which interacts with the "loans" collection """ import pymongo import decimal from config.config import Config from pymongo.cursor import CursorType from decimal import Decimal from bson.decimal128 import Decimal128 from utils.utils import Utils from biglittle.domain.base import Base from biglittle.entity.loan import Payment, LoanInfo, Loan class LoanService(Base) : # defaults collectName = 'biglittle.loans' """ Generates a proposal Formula: M = P * ( J / (1 - (1 + J)**-N)) M == monthly payment P == principal J == effective rate N == total number of payments @param float principal @param int numPayments @param float annualRate @param string currency @param string borrowerKey @param string lenderKey @param string lenderName @param string lenderBusiness @return dict """ def generateProposal(self, principal, numPayments, annualRate, currency, borrowerKey, lenderKey, lenderName, lenderBusiness) : # calc effective rate and monthly payment effective_rate = annualRate / 100 / 12; monthly_payment = principal * ( effective_rate / (1 - (1 + effective_rate) ** -numPayments )) # create LoanInfo and Loan documents loanInfo = { 'principal' : principal, 'numPayments' : numPayments, 'annualRate' : annualRate, 'effectiveRate' : effective_rate * 1000, 'currency' : currency, 'monthlyPymt' : monthly_payment } loan = { 'borrowerKey' : borrowerKey, 'lenderKey' : lenderKey, 'lenderName' : lenderName, 'lenderBusiness' : lenderBusiness, 'overpayment' : 0.00, 'loanInfo' : loanInfo, 'payments' : [] } return loan """ Generates a series of simulated proposals @param float principal @param int numPayments @param list lenders : list of lender keys @return dict """ def generateMany(self, principal, numPayments, currency, borrowerKey, lenders) : proposals = {} for item in lenders : # pick an annual rate at random import random annualRate = random.randint(1000,20000) / 1000 # add a new proposal doc = self.generateProposal(principal, numPayments, annualRate, currency, borrowerKey, item['key'], item['name'], item['business']) proposals.update({ item['key'] : doc }) return proposals """ Generates loan key @param biglittle.entity.loan.Loan loan @return string loanKey """ def generateLoanKey(self, loan) : from time import gmtime, strftime date = strftime('%Y%m%d', gmtime()) loan['loanKey'] = loan['borrowerKey'] + '_' + loan['lenderKey'] + '_' + date return loan """ Saves loan document @param biglittle.entity.loan.Loan loan @return bool True if success else False """ def save(self, loan) : # generate loanKey loan = self.generateLoanKey(loan) # convert values to NumberDecimal loan.convertDecimalToBson() # save return self.collection.insert(loan) """ Retrieves amount due for given borrower @param string borrowerKey @return Decimal amtDue """ def fetchAmtDueForBorrower(self, borrowerKey) : amtDue = Decimal(0.00) loan = self.collection.find_one({"borrowerKey":borrowerKey}) if loan : loanInfo = loan.getLoanInfo() amtDue = loanInfo.get('monthlyPymt').to_decimal() return amtDue """ Retrieves loan for given borrower Converts all BSON Decimal128 financial data fields to Decimal @param string borrowerKey @return biglittle.entity.users.User instance """ def fetchLoanByBorrowerKey(self, borrowerKey) : loan = self.collection.find_one({"borrowerKey":borrowerKey}) loan.convertBsonToDecimal() return loan """ Looks for next scheduled payment for this borrower @param string borrowerKey @param float amtPaid @param biglittle.entity.loan.Loan loan @return bool True if payment processed OK | False otherwise """ def processPayment(self, borrowerKey, amtPaid, loan) : # init vars config = Config() utils = Utils() result = False loanInfo = loan.getLoanInfo() amtDue = loanInfo.getMonthlyPayment() overpayment = 0.00 # convert amount paid to decimal.Decimal for processing purposes if not isinstance(amtPaid, Decimal) : amtPaid = Decimal(amtPaid) # find first payment where nothing has been paid for doc in loan['payments'] : if doc['amountPaid'] == 0 : # if underpayment, add to "overpayment" but do no further processing if amtPaid < amtDue : overpayment = amtPaid else : overpayment = amtPaid - amtDue # apply payment doc['amountPaid'] = doc['amountDue'] doc['status'] = 'received' # save var today from time import gmtime, strftime now = strftime('%Y-%m-%d', gmtime()) doc['recvdate'] = now break # update overpayment field currentOver = loan.get('overpayment') loan.set('overpayment', currentOver + overpayment) # convert values to NumberDecimal loan.convertDecimalToBson() # update by replacement filt = { 'borrowerKey' : borrowerKey } result = self.collection.replace_one(filt,loan) # send out pub/sub notifications if result : # convert values to Decimal loan.convertBsonToDecimal() # have publisher notify subscribers self.publisher.trigger(self.publisher.EVENT_LOAN_UPDATE_BORROWER, {'loan':loan, 'amtPaid':amtPaid}) # done return result
2.6875
3
examples/retrieve_folders.py
swimlane/python-office365
21
12795327
<reponame>swimlane/python-office365<filename>examples/retrieve_folders.py from office365api import Mail from dotenv import load_dotenv from os.path import join, dirname, normpath from os import environ dot_env_path = normpath(join(dirname(__file__), '../', '.env')) load_dotenv(dot_env_path) def simplest(auth): mail = Mail(auth=auth) c = mail.folders.get_count() print('Folder count {0}'.format(c)) m = mail.folders.get_all_folders() print('Folder names.') for folder in m: print(" {id} {name}".format(id=folder.Id, name=folder.DisplayName)) for folder in (f for f in m if f.ChildFolderCount > 0): f_info = mail.folders.get_folder(folder_id=folder.Id) print('Subfolders of {name}'.format(name=folder.DisplayName)) sf = mail.folders.get_sub_folders(folder.Id) for f in sf: print(" {id} {name}".format(id=f.Id, name=f.DisplayName)) if __name__ == '__main__': authorization = (environ.get('OFFICE_USER'), environ.get('OFFICE_USER_PASSWORD')) simplest(authorization)
3.015625
3
ExtractionModule/fileStructureIdentifier.py
k41nt/ECEN403-ML-for-Data-Organization
0
12795328
""" Title:: File Structure Identifier Brief:: Implementation of the program that trains the model for identifying a known set of document classes Author:: <NAME> Date:: 04/02/2019 """
0.648438
1
notice.py
rookiesmile/yibanAutoSgin
24
12795329
# -*- coding: utf-8 -*- """ @Time : 2021/8/24 13:00 @Auth : apecode @File :notice.py @IDE :PyCharm @Blog:https://liiuyangxiong.cn """ import json import time from email.mime.text import MIMEText from email.header import Header from smtplib import SMTP_SSL import requests import config class Notice: def __init__(self, admin: dict, account: dict): self.admin = admin, self.account = account def send(self, content): if self.account.get("notice") == "" or self.account.get("notice") == "local": return Notice.saveLocal(content) elif self.account.get("notice") == "mail": if self.admin[0]["mail"]["sendMail"] == "" and self.admin[0]["mail"]["authCode"] == "": print("未设置发送者邮箱信息,转为本地记录") Notice.saveLocal(content) else: self.send_mail(content) else: self.sendPushPlus(content) print(content) def send_mail(self, message: str): try: host_server = self.admin[0]["mail"]["smtpServer"] # 发件人的邮箱 sendMail = self.admin[0]["mail"]["sendMail"] # 邮箱的授权码 authCode = self.admin[0]["mail"]["authCode"] # 收件人邮箱 receiver = self.account.get("mail") # 邮件标题 mail_title = "易班 " + time.strftime("%Y-%m-%d", time.localtime(int(time.time()))) + " 签到情况" # ssl登录 smtp = SMTP_SSL(host_server) smtp.ehlo(host_server) smtp.login(sendMail, authCode) msg = MIMEText(message, "html", 'utf-8') msg["Subject"] = Header(mail_title, 'utf-8') msg["From"] = sendMail msg["To"] = receiver smtp.sendmail(sendMail, receiver, msg.as_string()) smtp.quit() return True except Exception as e: print(e) return False # 发送pushPlus def sendPushPlus(self, content: str): url = 'https://www.pushplus.plus/send' headers = {"Content-Type": "application/json"} data = json.dumps({ "token": self.account.get("pushToken"), "title": "易班签到通知", "content": content, "template": "txt" }) response = requests.post(url=url, data=data, headers=headers).json() if response['code'] == 200: return Notice.log(f"{self.account.get('mobile')}\tPush Plus发送成功!\n") else: print("发送失败,转为本地记录") Notice.saveLocal(content) return Notice.log(f"{self.account.get('mobile')}\tPush Plus发送失败!原因: {response['msg']}\n") @staticmethod def log(message: str): with open(file="data/logs.log", mode="a+", encoding="utf-8") as f: f.write(message) print(message) @staticmethod def saveLocal(message): with open("data/result.log", mode="a+", encoding="utf-8") as w: w.write(message)
2.796875
3
app/storage/storage_encryption.py
pricem14pc/eq-questionnaire-runner
0
12795330
<gh_stars>0 import hashlib from typing import Optional, Union from jwcrypto import jwe, jwk from jwcrypto.common import base64url_encode from structlog import get_logger from app.utilities.json import json_dumps from app.utilities.strings import to_bytes, to_str logger = get_logger() class StorageEncryption: def __init__( self, user_id: Optional[str], user_ik: Optional[str], pepper: Optional[str] ) -> None: if not user_id: raise ValueError("user_id not provided") if not user_ik: raise ValueError("user_ik not provided") if not pepper: raise ValueError("pepper not provided") self.key = self._generate_key(user_id, user_ik, pepper) @staticmethod def _generate_key(user_id: str, user_ik: str, pepper: str) -> jwk.JWK: sha256 = hashlib.sha256() sha256.update(to_str(user_id).encode("utf-8")) sha256.update(to_str(user_ik).encode("utf-8")) sha256.update(to_str(pepper).encode("utf-8")) # we only need the first 32 characters for the CEK cek = to_bytes(sha256.hexdigest()[:32]) password = {"<PASSWORD>": "<PASSWORD>", "k": base64url_encode(cek)} return jwk.JWK(**password) def encrypt_data(self, data: Union[str, dict]) -> str: if isinstance(data, dict): data = json_dumps(data) protected_header = {"alg": "dir", "enc": "A256GCM", "kid": "1,1"} jwe_token = jwe.JWE( plaintext=data, protected=protected_header, recipient=self.key ) serialized_token: str = jwe_token.serialize(compact=True) return serialized_token def decrypt_data(self, encrypted_token: str) -> bytes: jwe_token = jwe.JWE(algs=["dir", "A256GCM"]) jwe_token.deserialize(encrypted_token, self.key) payload: bytes = jwe_token.payload return payload
2.375
2
models/__init__.py
bdbaraban/mlb_tweets
1
12795331
<gh_stars>1-10 import json from models.league import League from models.standings import Standings league = League() league.reload() standings = Standings() standings.reload()
1.679688
2
aries_cloudagent/did/tests/test_did_key_bls12381g1.py
kuraakhilesh8230/aries-cloudagent-python
247
12795332
from unittest import TestCase from ...wallet.key_type import KeyType from ...wallet.util import b58_to_bytes from ..did_key import DIDKey, DID_KEY_RESOLVERS from .test_dids import ( DID_B<KEY>, ) TEST_BLS12381G1_BASE58_KEY = ( "<KEY>" ) TEST_BLS12381G1_FINGERPRINT = ( "<KEY>" ) TEST_BLS12381G1_DID = f"did:key:{TEST_BLS12381G1_FINGERPRINT}" TEST_BLS12381G1_KEY_ID = f"{TEST_BLS12381G1_DID}#{TEST_BLS12381G1_FINGERPRINT}" TEST_BLS12381G1_PREFIX_BYTES = b"".join( [b"\xea\x01", b58_to_bytes(TEST_BLS12381G1_BASE58_KEY)] ) class TestDIDKey(TestCase): def test_bls12381g1_from_public_key(self): key_bytes = b58_to_bytes(TEST_BLS12381G1_BASE58_KEY) did_key = DIDKey.from_public_key(key_bytes, KeyType.BLS12381G1) assert did_key.did == TEST_BLS12381G1_DID def test_bls12381g1_from_public_key_b58(self): did_key = DIDKey.from_public_key_b58( TEST_BLS12381G1_BASE58_KEY, KeyType.BLS12381G1 ) assert did_key.did == TEST_BLS12381G1_DID def test_bls12381g1_from_fingerprint(self): did_key = DIDKey.from_fingerprint(TEST_BLS12381G1_FINGERPRINT) assert did_key.did == TEST_BLS12381G1_DID assert did_key.public_key_b58 == TEST_BLS12381G1_BASE58_KEY def test_bls12381g1_from_did(self): did_key = DIDKey.from_did(TEST_BLS12381G1_DID) assert did_key.public_key_b58 == TEST_BLS12381G1_BASE58_KEY def test_bls12381g1_properties(self): did_key = DIDKey.from_did(TEST_BLS12381G1_DID) assert did_key.fingerprint == TEST_BLS12381G1_FINGERPRINT assert did_key.did == TEST_BLS12381G1_DID assert did_key.public_key_b58 == TEST_BLS12381G1_BASE58_KEY assert did_key.public_key == b58_to_bytes(TEST_BLS12381G1_BASE58_KEY) assert did_key.key_type == KeyType.BLS12381G1 assert did_key.key_id == TEST_BLS12381G1_KEY_ID assert did_key.prefixed_public_key == TEST_BLS12381G1_PREFIX_BYTES def test_bls12381g1_diddoc(self): did_key = DIDKey.from_did(TEST_BLS12381G1_DID) resolver = DID_KEY_RESOLVERS[KeyType.BLS12381G1] assert resolver(did_key) == did_key.did_doc def test_bls12381g1_resolver(self): did_key = DIDKey.from_did(TEST_BLS12381G1_DID) resolver = DID_KEY_RESOLVERS[KeyType.BLS12381G1] did_doc = resolver(did_key) assert ( did_doc == DID_BLS12381G1_z3tEFALUKUzzCAvytMHX8X4SnsNsq6T5tC5Zb18oQEt1FqNcJXqJ3AA9umgzA9yoqPBeWA )
2.390625
2
tests/test_executable.py
cirosantilli/python-utils
1
12795333
#!/usr/bin/env python """ this calls test_executable_caller as it should be called for the test to work. """ import subprocess if __name__ == '__main__': process = subprocess.Popen( ['python', 'test_executable_caller.py','test_executable_callee.py'], shell = False, universal_newlines = True ) exit_status = process.wait()
2.21875
2
quiz/tests/test_models.py
Palombredun/django_quiz
0
12795334
import datetime from django.contrib.auth.models import User from quiz.models import ( AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore, ) import pytest ### FIXTURES ### @pytest.fixture def category_m(db): return Category.objects.create(category="m") @pytest.fixture def sub_category_n(db, category_m): return SubCategory.objects.create(category=category_m, sub_category="n") @pytest.fixture def user_A(db): return User.objects.create_user(username="A") @pytest.fixture def quiz_q(db, category_m, sub_category_n, user_A): date = datetime.datetime.now() return Quiz.objects.create( title="title", description="Long description", creator=user_A, category=category_m, category_name="m", sub_category=sub_category_n, created=date, random_order=False, difficulty=1, ) @pytest.fixture def question_q(db, quiz_q): return Question.objects.create( quiz=quiz_q, difficulty=1, order=1, figure=None, content="question", explanation=None, theme1="t1", theme2="t2", theme3="t3", ) @pytest.fixture def answerUser(db, question_q, user_A): a = AnswerUser.objects.create(correct=True) a.save() a.question.add(question_q) a.user.add(user_A) return a @pytest.fixture def stats_s(db, quiz_q): return Statistic.objects.create( quiz=quiz_q, number_participants=10, mean=15, easy=5, medium=5, difficult=5 ) @pytest.fixture def grade_g(db, stats_s): return Grade.objects.create(grade=5, number=10, statistics=stats_s) @pytest.fixture def questionScore_qs(db, stats_s, question_q): return QuestionScore.objects.create( question=question_q, statistics=stats_s, score=5 ) @pytest.fixture def themeScore_ts(db, stats_s, quiz_q): return ThemeScore.objects.create( theme="t1", score=5, statistics=stats_s, quiz=quiz_q ) ### TESTS ### def test_category(category_m): assert isinstance(category_m, Category) assert category_m.category == "m" assert str(category_m) == "m" def test_sub_category(category_m, sub_category_n): assert sub_category_n.sub_category == "n" assert sub_category_n.category == category_m assert isinstance(sub_category_n, SubCategory) assert str(sub_category_n) == "n (m)" def test_quiz(quiz_q, user_A, category_m, sub_category_n): date = datetime.datetime.now() assert quiz_q.title == "title" assert quiz_q.description == "Long description" assert quiz_q.creator == user_A assert quiz_q.category == category_m assert quiz_q.sub_category == sub_category_n assert isinstance(quiz_q.created, datetime.datetime) assert quiz_q.created.year == date.year assert quiz_q.created.month == date.month assert quiz_q.created.day == date.day assert quiz_q.random_order == False assert quiz_q.difficulty == 1 assert str(quiz_q) == "title" def test_question(quiz_q, question_q): assert question_q.quiz == quiz_q assert question_q.difficulty == 1 assert question_q.order == 1 assert question_q.figure == None assert question_q.content == "question" assert question_q.explanation == None assert question_q.theme1 == "t1" assert question_q.theme2 == "t2" assert question_q.theme3 == "t3" assert str(question_q) == "question" def test_answerUser(answerUser, question_q, user_A): assert answerUser.correct == True assert answerUser.question.get(pk=question_q.id) == question_q assert answerUser.user.get(pk=user_A.id) == user_A def test_statisc(stats_s, quiz_q): assert stats_s.quiz == quiz_q assert stats_s.number_participants == 10 assert stats_s.mean == 15 assert stats_s.easy == 5 assert stats_s.medium == 5 assert stats_s.difficult == 5 def test_grade(grade_g, stats_s): assert grade_g.grade == 5 assert grade_g.number == 10 assert grade_g.statistics == stats_s def test_questionScore(stats_s, question_q, questionScore_qs): assert questionScore_qs.question == question_q assert questionScore_qs.statistics == stats_s assert questionScore_qs.score == 5 def test_themeScore(themeScore_ts, stats_s, quiz_q): assert themeScore_ts.theme == "t1" assert themeScore_ts.score == 5 assert themeScore_ts.statistics == stats_s assert themeScore_ts.quiz == quiz_q
2.203125
2
ex_017.py
antonioravila/Exercicios-CEV-Python
0
12795335
''' #Método 1 de calcular a hipotenusa (sem o módulo math) co = float(input('comprimento do cateto oposto: ')) ca = float(input('comprimento do cateto adjacente: ')) h = (co ** 2) + (ca ** 2) ** (1/2) print(f'a hipotenusa equivale a {h:.2f}') ''' # Método 2 de calcular a hipotenusa (com o módulo math) import math co = float(input('comprimento do cateto oposto: ')) ca = float(input('comprimento do cateto adjacente: ')) h = math.hypot(co, ca) print(f'a hipotenusa equivale a {h:.2f}')
3.9375
4
src/backend/data/bofa.py
akmadian/openfinance
1
12795336
import csv import json from ofxtools.Parser import OFXTree """ statement schema: { "id":int, "ref_no": int, "date": string, "account": int, account code, "isincome": bool, "countinbudget": bool, "payee": string, "notes": { "bank": string, "personal": string }, "categories": [strings], "totalamount": float, "splits":[ { "amount": float, "categories": [], "linked_transaction": int, "countinbudget": bool } ] } """ def fetch_all_transactions(): cc = import_cc_statement() acct = import_acct_statement() return cc + acct def convert_acct_fitid(id): if "-" in id: return id.split("-")[0] else: return id.split(".")[0] def convert_date_to_ISO(datestring): return "{}-{}-{}T{}:{}:{}Z".format( datestring[:4], datestring[4:6], datestring[6:8], datestring[8:10], datestring[10:12], datestring[12:14], ) def import_acct_statement(): print("Importing BOFA Account Statement") parser = OFXTree() parser.parse("./data/stmt.qfx") transactions_root = parser.find(".//BANKTRANLIST")[:] transactions = [] for trans in transactions_root[2:]: transactions.append({ "id": 0, "ref_no": int(convert_acct_fitid(trans[3].text)), "date": convert_date_to_ISO(trans[1].text), "account": "BOFA_CHECKING", "payee": trans[4].text, "notes": { "bank": "", "personal": "" }, "categories": [], "totalamount": float(trans[2].text), "splits": [] }) return transactions def import_cc_statement(): print("Importing BOFA CC Statement") parser = OFXTree() parser.parse("./data/currentTransaction_1626.qfx") transactions_root = parser.find(".//BANKTRANLIST")[:] id = 0 transactions = [] for trans in transactions_root[2:]: transactions.append({ "id": id, "ref_no": int(trans[3].text), "date": convert_date_to_ISO(trans[1].text), "account": "BOFA_CASHREWARDS_CC", "payee": trans[6].text, "notes": { "bank": "", "personal": "" }, "categories": [], "totalamount": float(trans[2].text), "splits": [] }) return transactions def fetch_acct_info(): print("Updating Account Information") accounts = [] parser = OFXTree() parser.parse('./data/currentTransaction_1626.qfx') accounts.append({ "name": "BOFA_CASHREWARDS_CC", "id": 2, "balance": parser.find(".//BALAMT").text, "last_updated": convert_date_to_ISO(parser.find(".//DTASOF").text) }) parser.parse('./data/stmt.qfx') accounts.append({ "name": "BOFA_CHECKING", "id": 0, "balance": parser.find(".//BALAMT").text, "last_updated": convert_date_to_ISO(parser.find(".//DTASOF").text) }) return accounts if __name__ == '__main__': accts = fetch_acct_info() for acct in accts: print(acct)
2.75
3
code_transformer/configuration/great_transformer.py
SpirinEgor/code-transformer
0
12795337
<gh_stars>0 from code_transformer.configuration.configuration_utils import ModelConfiguration class GreatTransformerConfig(ModelConfiguration): def __init__( self, num_layers: int, positional_encoding=None, embed_dim=256, num_heads=8, ff_dim=1024, dropout_rate=0.1, is_encoder_decoder=False, ): super(GreatTransformerConfig, self).__init__() self.num_layers = num_layers self.positional_encoding = positional_encoding self.embed_dim = embed_dim self.hidden_dim = embed_dim self.attention_dim = embed_dim self.bias_dim = embed_dim self.num_heads = num_heads self.ff_dim = ff_dim self.dropout_rate = dropout_rate self.is_encoder_decoder = is_encoder_decoder class GreatEncoderConfig(ModelConfiguration): def __init__( self, transformer_config: GreatTransformerConfig, vocab_size=32000, num_node_types=None, subtokens_per_token=5, num_languages=None, ): super(GreatEncoderConfig, self).__init__() self.transformer_config = transformer_config self.vocab_size = vocab_size self.num_node_types = num_node_types self.subtokens_per_token = subtokens_per_token self.num_languages = num_languages
2.015625
2
adminmgr/testmgr/testoutput.py
IamMayankThakur/test-bigdata
9
12795338
<reponame>IamMayankThakur/test-bigdata<filename>adminmgr/testmgr/testoutput.py import os from hdfs import InsecureClient from .config import * def test_task_3(output_paths): if(output_paths[0] == None): return [0] path_to_correct_output_1 = os.path.join(SETTERS_OUTPUT_BASE_PATH, "Task3", "0.txt") path_to_correct_output_2 = os.path.join(SETTERS_OUTPUT_BASE_PATH, "Task3", "1.txt") x_1 = os.system("diff -wBZ "+path_to_correct_output_1 + " " + output_paths[0] + "> abc") x_2 = os.system("diff -wBZ "+path_to_correct_output_2 + " " + output_paths[0] + "> abc") if x_1 == 0 or x_2 == 0: return [4] return [0] def test_task_1_2(output_paths, task_number): if(output_paths[0] == None): return [0] path_to_correct_output_1 = os.path.join(SETTERS_OUTPUT_BASE_PATH, "Task"+task_number, "0.txt") '''path_to_correct_output_2 = os.path.join(SETTERS_OUTPUT_BASE_PATH, "Task"+task_number, "1.txt") path_to_correct_output_3 = os.path.join(SETTERS_OUTPUT_BASE_PATH, "Task"+task_number, "2.txt") path_to_correct_output_4 = os.path.join(SETTERS_OUTPUT_BASE_PATH, "Task"+task_number, "3.txt")''' x_1 = os.system("diff -wBZ "+path_to_correct_output_1 + " " + output_paths[0] + "> abc") if x_1 == 0: return [4] '''x_2 = os.system("diff -wBZ "+path_to_correct_output_2 + " " + output_paths[0] + "> abc") if x_2 == 0: return [3] x_3 = os.system("diff -wBZ "+path_to_correct_output_3 + " " + output_paths[0] + "> abc") if x_3 == 0: return [2] x_4 = os.system("diff -wBZ "+path_to_correct_output_4 + " " + output_paths[0] + "> abc") # print("x_1 = " + str(x_1)) # print("x_2 = " + str(x_2)) # print("x_3 = " + str(x_3)) # print("x_4 = " + str(x_4)) if x_4 == 0: return [1]''' return [0] def test(output_paths, task_number): correctness = [] for output_path in output_paths: scores = [] if output_path is None: print("SKIPPING TEST CASE ") continue print(output_path) test_case = output_paths.index(output_path) + 1 for i in range(4): score = check_test_case(output_path, (os.path.join(SETTERS_OUTPUT_BASE_PATH, "Task"+task_number, str(i) + ".txt")), str(i)) if(score != 0): scores.append(score) break if(len(scores) == 0): correctness.append(0) else: correctness.append(scores[0]) print("CORRECTNESS") print(correctness) return correctness def check_test_case(path_to_team_output, path_to_correct_output, test_case_number): print("team_output = " + path_to_team_output) print("setters_output = " + path_to_correct_output) score = 4 - int(test_case_number) x = os.system("diff -wBZ "+path_to_team_output+" "+path_to_correct_output + " > abc") print("x = "+str(x)) if x == 0: print("TEST CASE " + str(test_case_number) + " PASSED") return score else: return 0
2.28125
2
setup.py
kipparker/django-trello-webhooks
11
12795339
import os from setuptools import setup README = open(os.path.join(os.path.dirname(__file__), 'README.rst')).read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name="django-trello-webhooks", version="0.3", packages=[ 'trello_webhooks', 'trello_webhooks.management', 'trello_webhooks.management.commands', 'trello_webhooks.migrations', 'trello_webhooks.templatetags', 'trello_webhooks.tests', ], install_requires=['django>=1.7.1'], include_package_data=True, description='Django Trello Webhooks - Trello callback integration for Django.', long_description=README, url='https://github.com/yunojuno/django-trello-webhooks', author='<NAME>', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
1.242188
1
examples/lightfm_recs.py
ankane/pgvector-python
10
12795340
from lightfm import LightFM from lightfm.datasets import fetch_movielens from pgvector.sqlalchemy import Vector from sqlalchemy import create_engine, text, Column, Float, Integer, String from sqlalchemy.orm import declarative_base, Session engine = create_engine('postgresql+psycopg2://localhost/pgvector_example', future=True) with engine.connect() as conn: conn.execute(text('CREATE EXTENSION IF NOT EXISTS vector')) conn.commit() Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) factors = Column(Vector(20)) class Item(Base): __tablename__ = 'item' id = Column(Integer, primary_key=True) title = Column(String) factors = Column(Vector(20)) bias = Column(Float) Base.metadata.drop_all(engine) Base.metadata.create_all(engine) data = fetch_movielens(min_rating=5.0) model = LightFM(loss='warp', no_components=20) model.fit(data['train'], epochs=30) user_biases, user_factors = model.get_user_representations() item_biases, item_factors = model.get_item_representations() users = [dict(id=i, factors=factors) for i, factors in enumerate(user_factors)] items = [dict(id=i, title=data['item_labels'][i], factors=factors, bias=item_biases[i].item()) for i, factors in enumerate(item_factors)] session = Session(engine) session.bulk_insert_mappings(User, users) session.bulk_insert_mappings(Item, items) session.commit() user = session.query(User).get(1) # subtract item bias for negative inner product items = session.query(Item).order_by(Item.factors.max_inner_product(user.factors) - Item.bias).limit(5).all() print('user-based recs:', [item.title for item in items]) item = session.query(Item).filter(Item.title == 'Star Wars (1977)').first() items = session.query(Item).filter(Item.id != item.id).order_by(Item.factors.cosine_distance(item.factors)).limit(5).all() print('item-based recs:', [item.title for item in items])
2.390625
2
src/SimpleSchemaGenerator/Plugins/PicklePlugin.py
davidbrownell/Common_SimpleSchemaGenerator
0
12795341
<filename>src/SimpleSchemaGenerator/Plugins/PicklePlugin.py # ---------------------------------------------------------------------- # | # | PicklePlugin.py # | # | <NAME> <<EMAIL>> # | 2020-07-24 15:08:32 # | # ---------------------------------------------------------------------- # | # | Copyright <NAME> 2020-21 # | Distributed under the Boost Software License, Version 1.0. See # | accompanying file LICENSE_1_0.txt or copy at # | http://www.boost.org/LICENSE_1_0.txt. # | # ---------------------------------------------------------------------- """Contains the Plugin object""" import os import pickle import sys import CommonEnvironment from CommonEnvironment.Interface import staticderived, override, DerivedProperty from CommonEnvironmentEx.Package import InitRelativeImports # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- with InitRelativeImports(): from ..Plugin import Plugin as PluginBase, ParseFlag, Extension # ---------------------------------------------------------------------- @staticderived class Plugin(PluginBase): # ---------------------------------------------------------------------- # | Public Properties Name = DerivedProperty("Pickle") Description = DerivedProperty("Pickles each element to a file") Flags = DerivedProperty(ParseFlag.AllFlags) # ---------------------------------------------------------------------- # | Public Methods @staticmethod @override def IsValidEnvironment(): return True # ---------------------------------------------------------------------- @staticmethod @override def GenerateCustomSettingsAndDefaults(): return [] # ---------------------------------------------------------------------- @staticmethod @override def GenerateOutputFilenames(context): # Return a single item (that will never be used), as an empty lists # aren't supported. return ["{}.{}".format(context["output_name"], ext) for ext in ["pickle", "path"]] # ---------------------------------------------------------------------- @staticmethod @override def Generate( simple_schema_generator, invoke_reason, input_filenames, output_filenames, name, elements, include_indexes, status_stream, verbose_stream, verbose, **custom_settings ): assert len(output_filenames) == 2, output_filenames # Pickle status_stream.write("Creating '{}'...".format(output_filenames[0])) with status_stream.DoneManager() as status_dm: with open(output_filenames[0], "wb") as f: pickle.dump(elements, f) # Path status_stream.write("Creating '{}'...".format(output_filenames[1])) with status_stream.DoneManager() as status_dm: generator_path = os.path.dirname(simple_schema_generator.OriginalModuleFilename) assert os.path.isdir(generator_path), generator_path generator_path = os.path.dirname(generator_path) with open(output_filenames[1], "w") as f: f.write(generator_path)
1.984375
2
2019/Lecture02/02Examples/Lecture02_Profiling02.py
cbchoi/SIT32004
1
12795342
<gh_stars>1-10 # calculate 10! import time from functools import wraps def timefn(fn): @wraps(fn) def measure_time(*args, **kwargs): t1 = time.perf_counter() result = fn(*args, **kwargs) t2 = time.perf_counter() print("@timefn: {} took {} seconds".format(fn.__name__, t2 - t1)) return result return measure_time def factorial(num): if num == 1: return 1 else: print("Caluating " + str(num) + "!") return factorial(num -1) * num @timefn def profiling_factorial(): value = 10 result = factorial(value) print("10!= " + str(result)) if __name__ == "__main__": profiling_factorial()
3.28125
3
catkin_ws/build/simple_applications/cmake/simple_applications-genmsg-context.py
a-yildiz/ROS-Simple-Sample-Packages
1
12795343
<filename>catkin_ws/build/simple_applications/cmake/simple_applications-genmsg-context.py # generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/yildiz/GitRepos/ROS_Samples/catkin_ws/src/simple_applications/msg/Distance.msg" services_str = "/home/yildiz/GitRepos/ROS_Samples/catkin_ws/src/simple_applications/srv/CircularMotion.srv" pkg_name = "simple_applications" dependencies_str = "" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "simple_applications;/home/yildiz/GitRepos/ROS_Samples/catkin_ws/src/simple_applications/msg" PYTHON_EXECUTABLE = "/usr/bin/python3" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/noetic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
1.179688
1
tail.py
doctoryes/python-morsels
0
12795344
def tail(things, num_items): if num_items <= 0: return [] x = list(things) return [i for i in x[max(len(x)-num_items, 0):]]
3.5625
4
xarray/tests/test_tutorial.py
apkrelling/xarray
0
12795345
<reponame>apkrelling/xarray import os import pytest from xarray import DataArray, tutorial from . import assert_identical, network @network class TestLoadDataset: @pytest.fixture(autouse=True) def setUp(self): self.testfile = "tiny" def test_download_from_github(self, tmp_path, monkeypatch): monkeypatch.setenv("XDG_CACHE_DIR", os.fspath(tmp_path)) ds = tutorial.open_dataset(self.testfile).load() tiny = DataArray(range(5), name="tiny").to_dataset() assert_identical(ds, tiny) def test_download_from_github_load_without_cache(self, tmp_path, monkeypatch): monkeypatch.setenv("XDG_CACHE_DIR", os.fspath(tmp_path)) ds_nocache = tutorial.open_dataset(self.testfile, cache=False).load() ds_cache = tutorial.open_dataset(self.testfile).load() assert_identical(ds_cache, ds_nocache) def test_download_rasterio_from_github_load_without_cache( self, tmp_path, monkeypatch ): monkeypatch.setenv("XDG_CACHE_DIR", os.fspath(tmp_path)) ds_nocache = tutorial.open_dataset("RGB.byte", cache=False).load() ds_cache = tutorial.open_dataset("RGB.byte", cache=True).load() assert_identical(ds_cache, ds_nocache)
2.1875
2
qb_to_dynaboard.py
Pinafore/qb
122
12795346
<gh_stars>100-1000 import argparse import json from pathlib import Path DS_VERSION = "2018.04.18" LOCAL_QANTA_PREFIX = "data/external/datasets/" QANTA_TRAIN_DATASET_PATH = f"qanta.train.{DS_VERSION}.json" QANTA_DEV_DATASET_PATH = f"qanta.dev.{DS_VERSION}.json" QANTA_TEST_DATASET_PATH = f"qanta.test.{DS_VERSION}.json" def main(): parser = argparse.ArgumentParser() parser.add_argument('output_dir', type=str) args = parser.parse_args() output_dir = Path(args.output_dir) output_dir.mkdir(exist_ok=True, parents=True) for split, path in [('train', QANTA_TRAIN_DATASET_PATH), ('dev', QANTA_DEV_DATASET_PATH), ('test', QANTA_TEST_DATASET_PATH)]: with open(Path(LOCAL_QANTA_PREFIX) / path) as f: data = json.load(f) output = [] for q in data['questions']: output.append({'uid': q['qanta_id'], 'question': q['text'], 'answer': q['page'], 'context': ''}) with open(output_dir / f'qb-{split}-{DS_VERSION}.jsonl', 'w') as f: for r in output: f.write(f'{json.dumps(r)}\n') if __name__ == '__main__': main()
2.421875
2
CodeUp/1546.py
chae-heechan/Algorithm_Study
0
12795347
# 함수로 plus/minus/0 판별하기 def f(key): if key>0: print("plus") elif key==0: print("zero") else: print("minus") f(int(input()))
3.890625
4
Python/PythonExercicios/ex014.py
isabellathome/College-Activities
0
12795348
<reponame>isabellathome/College-Activities celsius = float(input('Informe a temperatura em graus ºC: ')) fah = ((celsius * 9) / 5) + 32 print('A temperatura de {}ºC corresponde a {}ºF'.format(celsius, fah))
3.84375
4
ecorelevesensor/models/animal.py
NaturalSolutions/ecoReleve-Server
0
12795349
<filename>ecorelevesensor/models/animal.py from sqlalchemy import ( Column, Index, Integer, Sequence, String, ) from ecorelevesensor.models import Base class Animal(Base): #TODO: Ajouter un autoincrément à la fin d'eRelevé __tablename__ = 'T_Animal' id = Column('PK_id', Integer, primary_key=True) chip_code = Column(String(10)) __table_args__ = ( Index('idx_Tanimal_chipcode_pk', chip_code, id), )
2.40625
2
billforward/apis/profiles_api.py
billforward/bf-python
2
12795350
# coding: utf-8 """ BillForward REST API OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class ProfilesApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def get_all_profiles(self, **kwargs): """ Returns a collection of all profiles. By default 10 values are returned. Records are returned in natural order {\"nickname\":\"Get all profiles\",\"response\":\"getProfileAll.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_all_profiles(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_all_profiles_with_http_info(**kwargs) else: (data) = self.get_all_profiles_with_http_info(**kwargs) return data def get_all_profiles_with_http_info(self, **kwargs): """ Returns a collection of all profiles. By default 10 values are returned. Records are returned in natural order {\"nickname\":\"Get all profiles\",\"response\":\"getProfileAll.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_all_profiles_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['organizations', 'offset', 'records', 'order_by', 'order'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_all_profiles" % key ) params[key] = val del params['kwargs'] resource_path = '/profiles'.replace('{format}', 'json') path_params = {} query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] if 'offset' in params: query_params['offset'] = params['offset'] if 'records' in params: query_params['records'] = params['records'] if 'order_by' in params: query_params['order_by'] = params['order_by'] if 'order' in params: query_params['order'] = params['order'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type([]) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def get_profile(self, profile_id, **kwargs): """ Returns a single profile, specified by the ID parameter. {\"nickname\":\"Retrieve an existing profile\",\"response\":\"getProfileByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile(profile_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str profile_id: ID of the Profile. (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_profile_with_http_info(profile_id, **kwargs) else: (data) = self.get_profile_with_http_info(profile_id, **kwargs) return data def get_profile_with_http_info(self, profile_id, **kwargs): """ Returns a single profile, specified by the ID parameter. {\"nickname\":\"Retrieve an existing profile\",\"response\":\"getProfileByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_with_http_info(profile_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str profile_id: ID of the Profile. (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['profile_id', 'organizations'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_profile" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'profile_id' is set if ('profile_id' not in params) or (params['profile_id'] is None): raise ValueError("Missing the required parameter `profile_id` when calling `get_profile`") resource_path = '/profiles/{profile-ID}'.replace('{format}', 'json') path_params = {} if 'profile_id' in params: path_params['profile-ID'] = params['profile_id'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def get_profile_by_account_id(self, account_id, **kwargs): """ Returns a collection of profiles, specified by the account-ID parameter. By default 10 values are returned. Records are returned in natural order {\"nickname\":\"Retrieve by account\",\"response\":\"getProfileByAccountID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_by_account_id(account_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str account_id: The account-ID of the profile. (required) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_profile_by_account_id_with_http_info(account_id, **kwargs) else: (data) = self.get_profile_by_account_id_with_http_info(account_id, **kwargs) return data def get_profile_by_account_id_with_http_info(self, account_id, **kwargs): """ Returns a collection of profiles, specified by the account-ID parameter. By default 10 values are returned. Records are returned in natural order {\"nickname\":\"Retrieve by account\",\"response\":\"getProfileByAccountID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_by_account_id_with_http_info(account_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str account_id: The account-ID of the profile. (required) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['account_id', 'organizations', 'offset', 'records', 'order_by', 'order'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_profile_by_account_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'account_id' is set if ('account_id' not in params) or (params['account_id'] is None): raise ValueError("Missing the required parameter `account_id` when calling `get_profile_by_account_id`") resource_path = '/profiles/account/{account-ID}'.replace('{format}', 'json') path_params = {} if 'account_id' in params: path_params['account-ID'] = params['account_id'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] if 'offset' in params: query_params['offset'] = params['offset'] if 'records' in params: query_params['records'] = params['records'] if 'order_by' in params: query_params['order_by'] = params['order_by'] if 'order' in params: query_params['order'] = params['order'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def get_profile_by_email_address(self, email, **kwargs): """ Returns a single profile, specified by the email parameter. {\"nickname\":\"Retrieve by e-mail\",\"response\":\"getProfileByEmail.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_by_email_address(email, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email: The email address of the profile. (required) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :param bool include_retired: Whether retired profiles should be returned. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_profile_by_email_address_with_http_info(email, **kwargs) else: (data) = self.get_profile_by_email_address_with_http_info(email, **kwargs) return data def get_profile_by_email_address_with_http_info(self, email, **kwargs): """ Returns a single profile, specified by the email parameter. {\"nickname\":\"Retrieve by e-mail\",\"response\":\"getProfileByEmail.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_by_email_address_with_http_info(email, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email: The email address of the profile. (required) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :param bool include_retired: Whether retired profiles should be returned. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['email', 'organizations', 'offset', 'records', 'order_by', 'order', 'include_retired'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_profile_by_email_address" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'email' is set if ('email' not in params) or (params['email'] is None): raise ValueError("Missing the required parameter `email` when calling `get_profile_by_email_address`") resource_path = '/profiles/email/{email}'.replace('{format}', 'json') path_params = {} if 'email' in params: path_params['email'] = params['email'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] if 'offset' in params: query_params['offset'] = params['offset'] if 'records' in params: query_params['records'] = params['records'] if 'order_by' in params: query_params['order_by'] = params['order_by'] if 'order' in params: query_params['order'] = params['order'] if 'include_retired' in params: query_params['include_retired'] = params['include_retired'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def update_profile(self, request, **kwargs): """ Update a profile {\"nickname\":\"Update a profile\",\"request\":\"updateProfileRequest.html\",\"response\":\"updateProfileResponse.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_profile(request, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param UpdateProfileRequest request: The profile object to be updated. (required) :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.update_profile_with_http_info(request, **kwargs) else: (data) = self.update_profile_with_http_info(request, **kwargs) return data def update_profile_with_http_info(self, request, **kwargs): """ Update a profile {\"nickname\":\"Update a profile\",\"request\":\"updateProfileRequest.html\",\"response\":\"updateProfileResponse.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_profile_with_http_info(request, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param UpdateProfileRequest request: The profile object to be updated. (required) :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['request'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_profile" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'request' is set if ('request' not in params) or (params['request'] is None): raise ValueError("Missing the required parameter `request` when calling `update_profile`") resource_path = '/profiles'.replace('{format}', 'json') path_params = {} query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None if 'request' in params: body_params = params['request'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['text/xml', 'application/xml', 'application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'))
1.65625
2