max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
test.py
ahwhbc/LookIntoPerson
79
12794851
<gh_stars>10-100 # import the necessary packages import argparse import os import cv2 as cv import keras.backend as K import numpy as np from config import num_classes from data_generator import random_choice, safe_crop, to_bgr from model import build_model if __name__ == '__main__': # Parse arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", help="path to the image to be processed") args = vars(ap.parse_args()) filename = args["image"] img_rows, img_cols = 320, 320 channel = 3 model_weights_path = 'models/model.54-2.2507.hdf5' model = build_model() model.load_weights(model_weights_path) print(model.summary()) image = cv.imread(filename) image = cv.resize(image, (img_rows, img_cols), cv.INTER_CUBIC) image_size = image.shape[:2] x, y = random_choice(image_size) image = safe_crop(image, x, y) print('Start processing image: {}'.format(filename)) x_test = np.empty((1, img_rows, img_cols, 3), dtype=np.float32) x_test[0, :, :, 0:3] = image / 255. out = model.predict(x_test) out = np.reshape(out, (img_rows, img_cols, num_classes)) out = np.argmax(out, axis=2) out = to_bgr(out) ret = image * 0.6 + out * 0.4 ret = ret.astype(np.uint8) if not os.path.exists('images'): os.makedirs('images') cv.imwrite('images/test_image.png', image) cv.imwrite('images/test_merged.png', ret) cv.imwrite('images/test_out.png', out) K.clear_session()
2.453125
2
tests/func_indycmd_test.py
pustotnik/raven
2
12794852
# coding=utf-8 # # pylint: disable = wildcard-import, unused-wildcard-import # pylint: disable = missing-docstring, invalid-name # pylint: disable = unused-argument, no-member, attribute-defined-outside-init # pylint: disable = too-many-lines, too-many-branches, too-many-statements """ Copyright (c) 2020, <NAME>. All rights reserved. license: BSD 3-Clause License, see LICENSE for more details. """ from zipfile import is_zipfile as iszip import pytest from zm import zipapp from tests.func_utils import * class TestIndyCmd(object): @pytest.fixture(params = getZmExecutables(), autouse = True) def allZmExe(self, request): self.zmExe = zmExes[request.param] def teardown(): printErrorOnFailed(self, request) request.addfinalizer(teardown) def testZipAppCmd(self, tmpdir): cmdLine = ['zipapp'] self.cwd = str(tmpdir.realpath()) exitcode = runZm(self, cmdLine)[0] assert exitcode == 0 zipAppPath = joinpath(self.cwd, zipapp.ZIPAPP_NAME) assert isfile(zipAppPath) assert iszip(zipAppPath) def testVersionCmd(self, tmpdir): cmdLine = ['version'] self.cwd = str(tmpdir.realpath()) exitcode, stdout, _ = runZm(self, cmdLine) assert exitcode == 0 assert 'version' in stdout def testSysInfoCmd(self, tmpdir): cmdLine = ['sysinfo'] self.cwd = str(tmpdir.realpath()) exitcode, stdout, _ = runZm(self, cmdLine) assert exitcode == 0 assert 'information' in stdout
1.867188
2
Forum/views.py
Galbar/django-forum
2
12794853
# -*- coding: utf-8 -*- import json from django.http import Http404, HttpResponse from django.views.decorators.csrf import csrf_protect from django.contrib.auth.decorators import login_required from django.contrib.auth import logout as lgout, authenticate, login as lgin from django.shortcuts import render, redirect from datetime import datetime from Forum.models import * from Forum.settings import * from Forum.forms import * from Forum.lib import * from Forum.getInstanceLib import * from Forum.modelsLib import * import Forum.signals as signals from math import ceil # Create your views here. def login(request, forum_id, template="Forum/forms/login.html", template_ajax="Forum/forms/ajax/login.html"): form = None if request.method == 'POST': form = FormUserLogin(request.POST) if form.is_valid(): user = authenticate(username=form.data['username'], password=form.data['password']) if user: lgin(request, user) forum = get_forum_instance(forum_id) if forum: return redirect('base_forum', forum_id=forum.local_id) else: raise Http404 if not form: form = FormUserLogin() c = { 'forum_id':forum_id, 'form': form, } if request.is_ajax(): return render(request, template_ajax, c) else: return render(request, template, c) @login_required def logout(request, forum_id): lgout(request) forum = get_forum_instance(forum_id) if forum: return redirect('base_forum', forum_id=forum.local_id) raise Http404 def forum(request, forum_id, page=1, template=MAIN_FORUM_TEMPLATE): forum = get_forum_instance(forum_id) if forum: subforum_slug = forum.main_forum.slug() return subforum(request, forum_id, 0, subforum_slug, page, template=template) raise Http404 def subforum(request, forum_id, subforum_id, subforum_slug, page=1, template=SUBFORUM_TEMPLATE): forum = get_forum_instance(forum_id) if forum: subforum = get_subforum_instance(forum, subforum_id) if subforum: if not check_slug(subforum, subforum_slug): if page == 1: return redirect('Forum.views.subforum', forum_id=forum_id, subforum_id=subforum_id, subforum_slug=subforum.slug()) else: return redirect('Forum.views.subforum', forum_id=forum_id, subforum_id=subforum_id, subforum_slug=subforum.slug(), page=page) if subforum.canView(request.user): is_mod = subforum.canModerate(request.user) can_create_thread = subforum.canCreateThread(request.user) subforum_list = [] for sf in subforum.child_set.order_by('local_id'): if sf.canView(request.user): sf.is_visited = sf.isVisited(request.user) subforum_list.append(sf) sf_th_set = subforum.thread_set.order_by('-pinned', '-last_publication_datetime', 'name') if not subforum.canModerate(request.user): sf_th_set = sf_th_set.exclude(hidden=True) thread_list = [] for th in sf_th_set: th.is_visited = th.isVisited(request.user) thread_list.append(th) page = int(page) -1 subforum_num_pages = int(ceil(float(len(thread_list))/float(forum.threads_per_page))) if (subforum_num_pages > page and 0 <= page) or subforum_num_pages == 0: c = { 'forum_id':forum_id, 'forum': subforum, 'subforum_list':subforum_list, 'thread_list':thread_list[(page*forum.threads_per_page):(page*forum.threads_per_page)+forum.threads_per_page], 'subforum_current_page':page+1, 'subforum_pages':range(max(page, 1), min(page+3, subforum_num_pages+1)), 'is_admin':user_has_permission(forum.admin_permission, request.user), 'is_moderator': is_mod, 'can_create_thread':can_create_thread and request.user.is_authenticated(), } return render(request, template, c) else: c = { 'forum_id':forum_id, } return render(request, CANT_VIEW_CONTENT, c) raise Http404 @login_required @csrf_protect def newSubforum(request, forum_id, subforum_id, subforum_slug, template=FORM_TEMPLATE): check_user_is_spamming(request.user) forum = get_forum_instance(forum_id) if forum: subforum = get_subforum_instance(forum, subforum_id) if subforum: if not check_slug(subforum, subforum_slug): return redirect('Forum.views.newSubforum', forum_id=forum_id, subforum_id=subforum_id, subforum_slug=subforum.slug()) if forum.canAdministrate(request.user): if request.method == 'POST': new_subforum_form = Subforum(forum=forum) new_subforum_form = FormSubforum(request.POST, instance=new_subforum_form) if new_subforum_form.is_valid(): new_subforum = new_subforum_form.save(commit=False) new_subforum.local_id = forum.subforum_set.count() new_subforum.parent = subforum new_subforum.forum = forum new_subforum.creator = request.user new_subforum.save() return redirect('subforum', forum_id=forum_id, subforum_id=new_subforum.local_id, subforum_slug=new_subforum.slug()) else: new_subforum = Subforum( forum = subforum.forum, view_permission = subforum.view_permission, mod_permission = subforum.mod_permission, create_thread_permission = subforum.create_thread_permission, reply_thread_permission = subforum.reply_thread_permission, ) new_subforum_form = FormSubforum(instance=new_subforum) c = { 'forum_id':forum_id, 'form': new_subforum_form, 'page_title': 'Create Subforum', 'title': 'Create Subforum', 'submit_btn_text': 'Create', } return render(request, template, c) else: c = { 'forum_id':forum_id, } return render(request, CANT_VIEW_CONTENT, c) raise Http404 def thread(request, forum_id, thread_id, thread_slug, page=1, template=THREAD_TEMPLATE): forum = get_forum_instance(forum_id) if forum: thread = get_thread_instance(forum, thread_id) if thread: if not check_slug(thread, thread_slug): if page == 1: return redirect('Forum.views.thread', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug()) else: return redirect('Forum.views.thread', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug(), page=page) subforum = thread.parent is_mod = subforum.canModerate(request.user) if subforum.canView(request.user) and (not thread.hidden or is_mod): can_post = subforum.canReplyThread(request.user) post_list = [] unfiltered_post_list = thread.post_set.order_by('local_id') if not subforum.canModerate(request.user): unfiltered_post_list = unfiltered_post_list.exclude(hidden=True) for pt in unfiltered_post_list: if request.user.is_authenticated(): pt.is_quoted = get_quote_instance(request.user, pt) pt.vote = get_vote_instance(request.user, pt) post_list.append(pt) if request.user.is_authenticated() and thread.poll_set.count() and thread.poll_set.first().userCanVote(request.user): poll = thread.poll_set.first() else: poll = None page = int(page) -1 thread_num_pages = int(ceil(float(len(post_list))/float(forum.posts_per_page))) if thread_num_pages > page and 0 <= page: set_visit(thread, request.user) thread.visit_counter += 1 thread.save() c = { 'forum_id':forum_id, 'thread': thread, 'post_list':post_list[(page*forum.posts_per_page):(page*forum.posts_per_page)+forum.posts_per_page], 'thread_current_page':page+1, 'thread_pages':range(max(page, 1), min(page+3, thread_num_pages+1)), 'is_moderator': is_mod, 'is_admin':forum.canAdministrate(request.user), 'can_post':can_post and request.user.is_authenticated() and (not thread.closed or is_mod), 'poll': poll, } return render(request, template, c) else: c = { 'forum_id':forum_id, } return render(request, CANT_VIEW_CONTENT, c) raise Http404 def threadLastPage(request, forum_id, thread_id, thread_slug): forum = get_forum_instance(forum_id) if forum: thread = get_thread_instance(forum, thread_id) if thread: if not check_slug(thread, thread_slug): return redirect('Forum.views.threadLastPage', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug()) subforum = thread.parent post_list = [] unfiltered_post_list = thread.post_set.order_by('local_id') for pt in unfiltered_post_list: if (not pt.hidden) or subforum.canModerate(request.user): post_list.append(pt) thread_num_pages = int(ceil(float(len(post_list))/float(forum.posts_per_page))) page = thread_num_pages return redirect('Forum.views.thread', forum_id=forum_id, thread_id=thread.local_id, thread_slug=thread.slug(), page=page) raise Http404 @csrf_protect def saveThreadSettings(request, forum_id, thread_id, thread_slug, template="Forum/forms/thread_settings.html"): forum = get_forum_instance(forum_id) if forum: thread = get_thread_instance(forum, thread_id) if thread: if not check_slug(thread, thread_slug): return redirect('Forum.views.saveThreadSettings', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug()) if thread.parent.canModerate(request.user): if (request.method == 'POST'): form = FormThreadSettings(request.POST, instance=thread) if form.is_valid(): thread.save() return redirect('Forum.views.thread', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug()) else: form = FormThreadSettings(instance=thread) c = { 'forum_id':forum_id, 'form': form, 'thread': thread, } return render(request, template, c) raise Http404 @login_required def firstPostUnreadThread(request, forum_id, thread_id, thread_slug): forum = get_forum_instance(forum_id) if forum: thread = get_thread_instance(forum, thread_id) if thread: if not check_slug(thread, thread_slug): return redirect('Forum.views.firstPostUnreadThread', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug()) last_visit = get_last_visit_instance(request.user, thread) if last_visit: last_post = Post.objects.order_by('publication_datetime').filter(thread=thread, publication_datetime__gt=last_visit.datetime).first() if last_post: return redirect('Forum.views.post', forum_id=forum_id, post_id=last_post.local_id) print("shiet") return redirect('Forum.views.post', forum_id=forum.local_id, post_id=thread.getLastPublishedPost().local_id) raise Http404 @login_required @csrf_protect def newThread(request, forum_id, subforum_id, subforum_slug, template="Forum/forms/thread.html"): check_user_is_spamming(request.user) forum = get_forum_instance(forum_id) if forum: subforum = get_subforum_instance(forum, subforum_id) if subforum: if not check_slug(subforum, subforum_slug): return redirect('Forum.views.newThread', forum_id=forum_id, subforum_id=subforum_id, subforum_slug=subforum.slug()) if subforum.canCreateThread(request.user): if request.method == 'POST': new_post = Post(publisher=request.user) new_post_form = FormNewThread(request.POST, instance=new_post) if new_post_form.is_valid(): new_post = new_post_form.save(commit=False) new_post.local_id = forum.post_set.count() new_thread = Thread( local_id=forum.thread_set.count(), name=new_post.title, parent=subforum, forum=forum, creator=request.user, last_publication_datetime=datetime.now(), hidden=new_post.hidden, ) new_thread.save() if request.POST.get("add_poll", "False") == "True" and request.POST.get("question", "") != "": rang = range(0, int(request.POST.get("poll_option_count", "2"))) question = request.POST.get("question") option_list = [] for i in rang: opt = request.POST.get("poll-option["+str(i)+"]", "") if opt != "": option_list.append(opt) if len(option_list) >= 2: new_thread.setPoll(question, option_list) new_post.hidden=False new_post.forum=forum new_post.thread=new_thread new_post.save() # Send new thread signal signals.thread_published.send(sender=forum, thread=new_thread) return redirect('Forum.views.thread', forum_id=forum_id, thread_id=new_thread.local_id, thread_slug=new_thread.slug()) else: new_post = Post() new_post_form = FormNewThread(instance=new_post) c = { 'forum_id':forum_id, 'form': new_post_form, 'page_title': 'New Thread', 'title': 'New Thread', 'submit_btn_text': 'Create', } return render(request, template, c) else: c = { 'forum_id':forum_id, } return render(request, CANT_VIEW_CONTENT, c) raise Http404 @login_required @csrf_protect def replyThread(request, forum_id, thread_id, thread_slug, template="Forum/forms/post.html", template_ajax="Forum/forms/ajax/post.html"): check_user_is_spamming(request.user) forum = get_forum_instance(forum_id) if forum: thread = get_thread_instance(forum, thread_id) if thread and (not thread.closed or thread.parent.canModerate(request.user)): if not check_slug(thread, thread_slug): return redirect('Forum.views.replythread', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug()) if thread.parent.canReplyThread(request.user) and request.user.is_authenticated(): if request.method == 'POST': new_post = Post(publisher=request.user) if thread.parent.canModerate(request.user): new_post_form = FormPost_Mod(request.POST, instance=new_post) else: new_post_form = FormPost(request.POST, instance=new_post) if new_post_form.is_valid(): new_post = new_post_form.save(commit=False) new_post.local_id = forum.post_set.count() new_post.forum=forum new_post.thread=thread new_post.save() # Send signal new post published signals.post_published.send(sender=forum, post=new_post) thread.last_publication_datetime=new_post.publication_datetime thread.save() quote_list = Quote.objects.filter(user=request.user, thread=thread) for quote in quote_list: quote.delete() return redirect('Forum.views.post', forum_id=forum_id, post_id=new_post.local_id) else: new_post = Post() quotes_text = "" quote_list = Quote.objects.filter(user=request.user, thread=thread) for quote in quote_list: quotes_text += "[quote="+quote.post.publisher.username+"]"+quote.post.content+"[/quote]\n\n" new_post.content = quotes_text if thread.parent.canModerate(request.user): new_post_form = FormPost_Mod(instance=new_post) else: new_post_form = FormPost(instance=new_post) if request.is_ajax(): template = template_ajax c = { 'forum_id':forum_id, 'form': new_post_form, 'thread':thread, } else: c = { 'forum_id':forum_id, 'form': new_post_form, 'page_title': 'Reply Thread', 'title': 'Reply Thread', 'submit_btn_text': 'Send', } return render(request, template, c) else: c = { 'forum_id':forum_id, } return render(request, CANT_VIEW_CONTENT, c) raise Http404 @login_required @csrf_protect def voteThreadPoll(request, forum_id, thread_id, thread_slug): forum = get_forum_instance(forum_id) if forum: thread = get_thread_instance(forum, thread_id) if thread: if not check_slug(thread, thread_slug): return redirect('Forum.views.voteThreadPoll', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug()) subforum = thread.parent is_mod = subforum.canModerate(request.user) if subforum.canView(request.user) and (not thread.hidden or is_mod): if thread.poll: if thread.poll.userCanVote(request.user) and request.method == 'POST': answer = request.POST.get("poll_answer", False) if answer: thread.poll.vote(request.user, answer) return redirect('Forum.views.thread', forum_id=forum_id, thread_id=thread_id, thread_slug=thread.slug()) def post(request, forum_id, post_id): forum = get_forum_instance(forum_id) if forum: post = get_post_instance(forum, post_id) if post: thread = post.thread post_list = thread.post_set.order_by('local_id') num = 0 found = False for pt in post_list: if pt == post: found = True break num += 1 if found: page = (num/forum.posts_per_page)+1 return redirect('Forum.views.thread', forum_id=forum_id, thread_id=post.thread.local_id, thread_slug=post.thread.slug(), page=page, post_id=post_id) raise Http404 @login_required @csrf_protect def editPost(request, forum_id, post_id, template="Forum/forms/edit_post.html", template_ajax="Forum/forms/ajax/edit_post.html"): check_user_is_spamming(request.user) forum = get_forum_instance(forum_id) if forum: post = get_post_instance(forum, post_id) if post and post.thread.parent.canView(request.user): post_old_title = post.title post_old_content = post.content if request.method == 'POST': if post.thread.parent.canModerate(request.user): edit_post_form = FormPost_Mod(request.POST, instance=post) else: edit_post_form = FormPost(request.POST, instance=post) if edit_post_form.is_valid(): post_edited = PostEdited( post=post, user=request.user, datetime=datetime.now(), reason='', old_title=post_old_title, old_content=post_old_content, user_is_moderator = post.thread.parent.canModerate(request.user), user_is_administrator = forum.canAdministrate(request.user), ) post = edit_post_form.save(commit=False) if post.thread.post_set.first() == post: if post.title == "": post.title = post_old_title post.thread.name = post.title post.thread.save() post_edited.save() post.save() return redirect('Forum.views.post', forum_id=forum_id, post_id=post.local_id) else: if post.thread.parent.canModerate(request.user): edit_post_form = FormPost_Mod(instance=post) elif post.publisher == request.user: edit_post_form = FormPost(instance=post) else: c = { 'forum_id':forum_id, } return render(request, CANT_VIEW_CONTENT, c) c = { 'forum_id':forum_id, 'form': edit_post_form, 'post':post, 'user_is_mod':user_has_permission(post.thread.parent.mod_permission, request.user), } if request.is_ajax(): return render(request, template_ajax, c) else: return render(request, template, c) raise Http404 @login_required @csrf_protect def reportPost(request, forum_id, post_id, template="Forum/forms/report_post.html", template_ajax="Forum/forms/ajax/report_post.html"): check_user_is_spamming(request.user) forum = get_forum_instance(forum_id) if forum: post = get_post_instance(forum, post_id) if post and post.thread.parent.canView(request.user): if request.method == 'POST': report_post_form = FormReportPost(request.POST) if report_post_form.is_valid(): report_post = report_post_form.save(commit=False) report_post.user = request.user report_post.post = post report_post.save() return redirect('Forum.views.post', forum_id=forum_id, post_id=post.local_id) else: report_post_form = FormReportPost() c = { 'forum_id':forum_id, 'form': report_post_form, 'post': post, } if request.is_ajax(): return render(request, template_ajax, c) else: return render(request, template, c) raise Http404 @login_required def quotePost(request, forum_id, post_id): forum = get_forum_instance(forum_id) if forum: post = get_post_instance(forum, post_id) if post and post.thread.parent.canView(request.user): quote = get_quote_instance(request.user, post) response_data = {} if quote: quote.delete() response_data['action'] = 'removed' else: Quote(user=request.user, post=post, thread=post.thread).save() response_data['action'] = 'added' return HttpResponse(json.dumps(response_data), content_type="application/json") raise Http404 @login_required def votePostUp(request, forum_id, post_id): forum = get_forum_instance(forum_id) if forum and forum.allow_up_votes: post = get_post_instance(forum, post_id) if post and post.thread.parent.canView(request.user): vote = get_vote_instance(request.user, post) response_data = {} if vote: if vote.type == "Up": vote.delete() response_data['action'] = 'removed' else: vote.type = "Up" vote.save() response_data['action'] = 'added' else: Vote(user=request.user, post=post, type="Up").save() response_data['action'] = 'added' # Send signal signals.upvote.send(sender=forum, user=request.user, post=post) if not post.score_event_sent and post.score() >= forum.positive_score_event: post.score_event_sent = True post.save() signals.positive_score_event.send(sender=forum, post=post) response_data['score'] = post.score() return HttpResponse(json.dumps(response_data), content_type="application/json") raise Http404 @login_required def votePostDown(request, forum_id, post_id): forum = get_forum_instance(forum_id) if forum and forum.allow_down_votes: post = get_post_instance(forum, post_id) if post and post.thread.parent.canView(request.user): vote = get_vote_instance(request.user, post) response_data = {} if vote: if vote.type == "Down": vote.delete() response_data['action'] = 'removed' elif vote.type == "Up": vote.type = "Down" vote.save() response_data['action'] = 'added' else: Vote(user=request.user, post=post, type="Down").save() response_data['action'] = 'added' # Send signal signals.downvote.send(sender=forum, user=request.user, post=post) if not post.score_event_sent and post.score() <= forum.negative_score_event: post.score_event_sent = True post.save() signals.negative_score_event.send(sender=forum, post=post) response_data['score'] = post.score() return HttpResponse(json.dumps(response_data), content_type="application/json") raise Http404
2.03125
2
spinup/algos/ude_td3_new/uncertainty_on_rnd.py
LinghengMeng/spinningup
0
12794854
<reponame>LinghengMeng/spinningup import numpy as np import tensorflow as tf import time from spinup.algos.ude_td3_new.core import MLP, BeroulliDropoutMLP, BootstrappedEnsemble, get_vars, count_vars from spinup.algos.ude_td3_new.replay_buffer import ReplayBuffer, RandomNetReplayBuffer from spinup.utils.logx import EpochLogger, Logger class UncertaintyOnRandomNetwork(object): def __init__(self, x_dim, y_dim, hidden_sizes, post_sample_size, logger_kwargs, loger_file_name='unc_on_random_net.txt'): """ :param x_dim: input size :param y_dim: output size :param hidden_sizes: hidden layer sizes """ self.replay_size = int(1e6) self.learning_rate = 1e-3 self.mlp_kernel_regularizer = None # tf.keras.regularizers.l2(l=0.01) self.bernoulli_dropout_weight_regularizer = 1e-6 self.dropout_rate = 0.05 self.ensemble_size = post_sample_size self.post_sample_size = post_sample_size self.batch_size = 100 self.bootstrapp_p = 0.75 # probability used to add to replay buffer self.x_dim = x_dim self.y_dim = y_dim self.layer_sizes = hidden_sizes + [y_dim] self.x_ph = tf.placeholder(dtype=tf.float32, shape=(None, x_dim)) self.y_ph = tf.placeholder(dtype=tf.float32, shape=(None, y_dim)) ###################################################################################################### # Define random target network # Note: initialize RNT weights far away from 0 and keep fixed random_net = MLP(self.layer_sizes, kernel_initializer=tf.keras.initializers.random_uniform(minval=-0.8, maxval=0.8), bias_initializer=tf.keras.initializers.random_uniform(minval=-0.8, maxval=0.8), hidden_activation=tf.keras.activations.relu, output_activation=tf.keras.activations.sigmoid) self.random_net_y = random_net(self.x_ph) # target y ###################################################################################################### # Define LazyBernoulliDropout MLP # 1. Create MLP to learn RTN: which is only used for LazyBernoulliDropoutMLP. self.mlp_replay_buffer = RandomNetReplayBuffer(self.x_dim, self.y_dim, size=self.replay_size) with tf.variable_scope('MLP'): mlp = MLP(self.layer_sizes, kernel_regularizer=self.mlp_kernel_regularizer, hidden_activation=tf.keras.activations.relu, output_activation=tf.keras.activations.sigmoid) mlp_y = mlp(self.x_ph) self.mlp_loss = tf.reduce_mean((self.y_ph - mlp_y) ** 2) # mean-square-error mlp_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.mlp_train_op = mlp_optimizer.minimize(self.mlp_loss, var_list=get_vars('MLP')) # 2. Create lazy BernoulliDropoutMLP: # which copys weights from MLP by # sess.run(lazy_ber_drop_mlp_update) # , then post sample predictions with dropout masks. with tf.variable_scope('LazyBernoulliDropoutUncertaintySample'): # define placeholder for parallel sampling # batch x n_post x dim lazy_bernoulli_dropout_mlp = BeroulliDropoutMLP(self.layer_sizes, weight_regularizer=1e-6, dropout_rate=self.dropout_rate, hidden_activation=tf.keras.activations.relu, output_activation=tf.keras.activations.sigmoid) self.lazy_ber_drop_mlp_y = lazy_bernoulli_dropout_mlp(self.x_ph, training=True) # Set training=True to sample with dropout masks self.lazy_ber_drop_mlp_update = tf.group([tf.assign(v_lazy_ber_drop_mlp, v_mlp) for v_mlp, v_lazy_ber_drop_mlp in zip(mlp.variables, lazy_bernoulli_dropout_mlp.variables)]) ###################################################################################################### # Define BernoulliDropout MLP: # which is trained with dropout masks and regularization term with tf.variable_scope('BernoulliDropoutUncertaintyTrain'): bernoulli_dropout_mlp = BeroulliDropoutMLP(self.layer_sizes, weight_regularizer=self.bernoulli_dropout_weight_regularizer, dropout_rate=self.dropout_rate, hidden_activation=tf.keras.activations.relu, output_activation=tf.keras.activations.sigmoid) self.ber_drop_mlp_y = bernoulli_dropout_mlp(self.x_ph, training=True) # Must set training=True to use dropout mask ber_drop_mlp_reg_losses = tf.reduce_sum( tf.losses.get_regularization_losses(scope='BernoulliDropoutUncertaintyTrain')) self.ber_drop_mlp_loss = tf.reduce_mean( (self.y_ph - self.ber_drop_mlp_y) ** 2 + ber_drop_mlp_reg_losses) # TODO: heteroscedastic loss ber_drop_mlp_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.ber_drop_mlp_train_op = ber_drop_mlp_optimizer.minimize(self.ber_drop_mlp_loss, var_list=get_vars( 'BernoulliDropoutUncertaintyTrain')) ###################################################################################################### # Define BootstrappedEnsemble # Create BootstrappedEnsembleNN with tf.variable_scope('BootstrappedEnsembleUncertainty'): self.boots_ensemble = BootstrappedEnsemble(ensemble_size=self.ensemble_size, x_dim=self.x_dim, y_dim=self.y_dim, replay_size=self.replay_size, x_ph=self.x_ph, y_ph=self.y_ph, layer_sizes=self.layer_sizes, kernel_regularizer=self.mlp_kernel_regularizer, learning_rate=self.learning_rate) ###################################################################################################### # Define logger self.uncertainty_on_random_net_logger = Logger(output_fname=loger_file_name, **logger_kwargs) def get_predError_and_uncerEstimate_on_policy_based_input(self, input, sess, t, start_time): x = input # Generate target for the selected input y = sess.run(self.random_net_y, feed_dict={self.x_ph: x.reshape(1, -1)})[0] # store the (input, target) to replay buffer self.mlp_replay_buffer.store(x, y) # add (x, y) to ensemble's replay buffer with probability bootstrapp_p self.boots_ensemble.add_to_replay_buffer(x, y, self.bootstrapp_p) if t<self.batch_size: lazy_ber_drop_mlp_pred_error = 0 ber_drop_mlp_pred_error = 0 boots_ensemble_pred_error = 0 lazy_ber_drop_mlp_postSample_unc = 0 ber_drop_mlp_postSample_unc = 0 boots_ensemble_preds_unc = 0 lazy_ber_drop_mlp_loss = 0 ber_drop_mlp_loss = 0 boots_ensemble_loss = 0 else: ########################################################################################### # Post Sample and estimate uncertainty x_postSampling = np.matlib.repmat(x, self.post_sample_size, 1) # repmat x for post sampling # LazyBernoulliDropoutMLP lazy_ber_drop_mlp_postSample = sess.run(self.lazy_ber_drop_mlp_y, feed_dict={self.x_ph: x_postSampling}) lazy_ber_drop_mlp_pred = np.mean(lazy_ber_drop_mlp_postSample, axis=0) lazy_ber_drop_mlp_pred_error = np.linalg.norm((y - lazy_ber_drop_mlp_pred), ord=2) lazy_ber_drop_mlp_postSample_cov = np.cov(lazy_ber_drop_mlp_postSample, rowvar=False) lazy_ber_drop_mlp_postSample_unc = np.sum(np.diag(lazy_ber_drop_mlp_postSample_cov)) # BernoulliDropoutMLP ber_drop_mlp_postSample = sess.run(self.ber_drop_mlp_y, feed_dict={self.x_ph: x_postSampling}) ber_drop_mlp_pred = np.mean(ber_drop_mlp_postSample, axis=0) ber_drop_mlp_pred_error = np.linalg.norm((y - ber_drop_mlp_pred), ord=2) ber_drop_mlp_postSample_cov = np.cov(ber_drop_mlp_postSample, rowvar=False) ber_drop_mlp_postSample_unc = np.sum(np.diag(ber_drop_mlp_postSample_cov)) # BootstrappedEnsemble boots_ensemble_preds = self.boots_ensemble.prediction(sess, x) boots_ensemble_preds_pred = np.mean(boots_ensemble_preds, axis=0) boots_ensemble_pred_error = np.linalg.norm((y - boots_ensemble_preds_pred), ord=2) boots_ensemble_preds_cov = np.cov(boots_ensemble_preds, rowvar=False) boots_ensemble_preds_unc = np.sum(np.diag(boots_ensemble_preds_cov)) ######################################################################################## # train lazy_ber_drop_mlp_loss, ber_drop_mlp_loss, boots_ensemble_loss = self._train(sess) ######################################################################################## # log data self.uncertainty_on_random_net_logger.log_tabular('Step', t) self.uncertainty_on_random_net_logger.log_tabular('LBDPredError', lazy_ber_drop_mlp_pred_error) self.uncertainty_on_random_net_logger.log_tabular('BDPredError', ber_drop_mlp_pred_error) self.uncertainty_on_random_net_logger.log_tabular('BEPredError', boots_ensemble_pred_error) self.uncertainty_on_random_net_logger.log_tabular('LBDUnc', lazy_ber_drop_mlp_postSample_unc) self.uncertainty_on_random_net_logger.log_tabular('BDUnc', ber_drop_mlp_postSample_unc) self.uncertainty_on_random_net_logger.log_tabular('BEUnc', boots_ensemble_preds_unc) self.uncertainty_on_random_net_logger.log_tabular('LBDLoss', lazy_ber_drop_mlp_loss) self.uncertainty_on_random_net_logger.log_tabular('BDLoss', ber_drop_mlp_loss) self.uncertainty_on_random_net_logger.log_tabular('BELoss', boots_ensemble_loss) self.uncertainty_on_random_net_logger.log_tabular('Time', time.time() - start_time) self.uncertainty_on_random_net_logger.dump_tabular(print_data=False) return [lazy_ber_drop_mlp_pred_error, ber_drop_mlp_pred_error, boots_ensemble_pred_error, lazy_ber_drop_mlp_postSample_unc, ber_drop_mlp_postSample_unc, boots_ensemble_preds_unc, lazy_ber_drop_mlp_loss, ber_drop_mlp_loss, boots_ensemble_loss] def _train(self, sess): # Train MLP mlp_batch = self.mlp_replay_buffer.sample_batch(self.batch_size) mlp_outs = sess.run([self.mlp_loss, self.mlp_train_op], feed_dict={self.x_ph: mlp_batch['x'], self.y_ph: mlp_batch['y']}) sess.run(self.lazy_ber_drop_mlp_update) # Train BernoulliDropoutMLP on the same batch with MLP ber_drop_outs = sess.run([self.ber_drop_mlp_loss, self.ber_drop_mlp_train_op], feed_dict={self.x_ph: mlp_batch['x'], self.y_ph: mlp_batch['y']}) # Train BootstrappedEnsemble boots_ensemble_loss = self.boots_ensemble.train(sess, self.batch_size) return mlp_outs[0], ber_drop_outs[0], boots_ensemble_loss.mean()
1.984375
2
venv/lib/python2.7/dist-packages/landscape/monitor/plugin.py
pengwu/scapy_env
0
12794855
<reponame>pengwu/scapy_env from logging import info from twisted.internet.defer import succeed from landscape.log import format_object from landscape.lib.log import log_failure from landscape.broker.client import BrokerClientPlugin class MonitorPlugin(BrokerClientPlugin): """ @cvar persist_name: If specified as a string, a C{_persist} attribute will be available after registration. """ persist_name = None scope = None def register(self, monitor): super(MonitorPlugin, self).register(monitor) if self.persist_name is not None: self._persist = self.monitor.persist.root_at(self.persist_name) else: self._persist = None def _reset(self): if self.persist_name is not None: self.registry.persist.remove(self.persist_name) @property def persist(self): """Return our L{Persist}, if any.""" return self._persist @property def monitor(self): """An alias for the C{client} attribute.""" return self.client class DataWatcher(MonitorPlugin): """ A utility for plugins which send data to the Landscape server which does not constantly change. New messages will only be sent when the result of get_data() has changed since the last time it was called. Subclasses should provide a get_data method, and message_type, message_key, and persist_name class attributes. """ message_type = None message_key = None def get_message(self): """ Construct a message with the latest data, or None, if the data has not changed since the last call. """ data = self.get_data() if self._persist.get("data") != data: self._persist.set("data", data) return {"type": self.message_type, self.message_key: data} def send_message(self, urgent): message = self.get_message() if message is not None: info("Queueing a message with updated data watcher info " "for %s.", format_object(self)) result = self.registry.broker.send_message( message, self._session_id, urgent=urgent) def persist_data(message_id): self.persist_data() result.addCallback(persist_data) result.addErrback(log_failure) return result return succeed(None) def persist_data(self): """ Sub-classes that need to defer the saving of persistent data should override this method. """ pass def exchange(self, urgent=False): """ Conditionally add a message to the message store if new data is available. """ return self.registry.broker.call_if_accepted(self.message_type, self.send_message, urgent)
2.3125
2
Desafio 4/main.py
nathaliadv/AceleraDevDS_Codenation
1
12794856
#!/usr/bin/env python # coding: utf-8 # # Desafio 4 # # Neste desafio, vamos praticar um pouco sobre testes de hipóteses. Utilizaremos o _data set_ [2016 Olympics in Rio de Janeiro](https://www.kaggle.com/rio2016/olympic-games/), que contém dados sobre os atletas das Olimpíadas de 2016 no Rio de Janeiro. # # Esse _data set_ conta com informações gerais sobre 11538 atletas como nome, nacionalidade, altura, peso e esporte praticado. Estaremos especialmente interessados nas variáveis numéricas altura (`height`) e peso (`weight`). As análises feitas aqui são parte de uma Análise Exploratória de Dados (EDA). # # > Obs.: Por favor, não modifique o nome das funções de resposta. # ## _Setup_ geral # In[1]: import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy.stats as sct import seaborn as sns import statsmodels.api as sm # In[2]: #%matplotlib inline from IPython.core.pylabtools import figsize figsize(12, 8) sns.set() # In[3]: athletes = pd.read_csv("athletes.csv") # In[4]: athletes.info() # In[5]: athletes.head() # In[6]: athletes[['height','weight']].describe() # In[7]: athletes[['height','weight']].hist() # In[8]: def get_sample(df, col_name, n=100, seed=42): """Get a sample from a column of a dataframe. It drops any numpy.nan entries before sampling. The sampling is performed without replacement. Example of numpydoc for those who haven't seen yet. Parameters ---------- df : pandas.DataFrame Source dataframe. col_name : str Name of the column to be sampled. n : int Sample size. Default is 100. seed : int Random seed. Default is 42. Returns ------- pandas.Series Sample of size n from dataframe's column. """ np.random.seed(seed) random_idx = np.random.choice(df[col_name].dropna().index, size=n, replace=False) #retorna uma array com index das colunas return df.loc[random_idx, col_name] #retorna uma series com index e valor da coluna # ## Inicia sua análise a partir daqui # In[9]: # Sua análise começa aqui. # ## Questão 1 # # Considerando uma amostra de tamanho 3000 da coluna `height` obtida com a função `get_sample()`, execute o teste de normalidade de Shapiro-Wilk com a função `scipy.stats.shapiro()`. Podemos afirmar que as alturas são normalmente distribuídas com base nesse teste (ao nível de significância de 5%)? Responda com um boolean (`True` ou `False`). # In[10]: def q1(): amostra_q1 = get_sample(athletes,'height', n=3000, seed=42) stat, p = sct.shapiro(amostra_q1) print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[11]: q1() # __Para refletir__: # # * Plote o histograma dessa variável (com, por exemplo, `bins=25`). A forma do gráfico e o resultado do teste são condizentes? Por que? # * Plote o qq-plot para essa variável e a analise. # * Existe algum nível de significância razoável que nos dê outro resultado no teste? (Não faça isso na prática. Isso é chamado _p-value hacking_, e não é legal). # In[12]: amostra_q1 = get_sample(athletes,'height', n=3000, seed=42) # In[13]: sns.distplot(amostra_q1, bins=25, hist_kws={"density": True}) plt.show () # In[14]: sm.qqplot(amostra_q1, fit=True, line="45") plt.show () # In[15]: amostra_q1 = get_sample(athletes,'height', n=3000, seed=42) stat, p = sct.shapiro(amostra_q1) p > 0.0000001 # ## Questão 2 # # Repita o mesmo procedimento acima, mas agora utilizando o teste de normalidade de Jarque-Bera através da função `scipy.stats.jarque_bera()`. Agora podemos afirmar que as alturas são normalmente distribuídas (ao nível de significância de 5%)? Responda com um boolean (`True` ou `False`). # In[16]: def q2(): amostra_q2 = get_sample(athletes,'height', n=3000, seed=42) stat, p = sct.jarque_bera(amostra_q2) print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[17]: q2() # __Para refletir__: # # * Esse resultado faz sentido? # In[18]: amostra_q2 = get_sample(athletes,'height', n=3000, seed=42) sm.qqplot(amostra_q2, fit=True, line="45") plt.show () # ## Questão 3 # # Considerando agora uma amostra de tamanho 3000 da coluna `weight` obtida com a função `get_sample()`. Faça o teste de normalidade de D'Agostino-Pearson utilizando a função `scipy.stats.normaltest()`. Podemos afirmar que os pesos vêm de uma distribuição normal ao nível de significância de 5%? Responda com um boolean (`True` ou `False`). # In[19]: def q3(): amostra_q3 = get_sample(athletes,'weight', n=3000, seed=42) stat, p = sct.normaltest(amostra_q3) print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[20]: q3() # __Para refletir__: # # * Plote o histograma dessa variável (com, por exemplo, `bins=25`). A forma do gráfico e o resultado do teste são condizentes? Por que? # * Um _box plot_ também poderia ajudar a entender a resposta. # In[21]: amostra_q3 = get_sample(athletes,'weight', n=3000, seed=42) sns.distplot(amostra_q3, bins=25, hist_kws={"density": True}) plt.show () # In[22]: sns.boxplot(data = amostra_q3) # ## Questão 4 # # Realize uma transformação logarítmica em na amostra de `weight` da questão 3 e repita o mesmo procedimento. Podemos afirmar a normalidade da variável transformada ao nível de significância de 5%? Responda com um boolean (`True` ou `False`). # In[23]: def q4(): amostra_q4 = get_sample(athletes,'weight', n=3000, seed=42) amostra_q4_transformada = np.log(amostra_q4) stat, p = sct.normaltest(amostra_q4_transformada) print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[24]: q4() # __Para refletir__: # # * Plote o histograma dessa variável (com, por exemplo, `bins=25`). A forma do gráfico e o resultado do teste são condizentes? Por que? # * Você esperava um resultado diferente agora? # In[25]: amostra_q4 = get_sample(athletes,'weight', n=3000, seed=42) amostra_q4_transformada = np.log(amostra_q4) sns.distplot(amostra_q4_transformada, bins=25, hist_kws={"density": True}) plt.show () # In[26]: sns.boxplot(data = amostra_q4_transformada) # > __Para as questão 5 6 e 7 a seguir considere todos testes efetuados ao nível de significância de 5%__. # ## Questão 5 # # Obtenha todos atletas brasileiros, norte-americanos e canadenses em `DataFrame`s chamados `bra`, `usa` e `can`,respectivamente. Realize um teste de hipóteses para comparação das médias das alturas (`height`) para amostras independentes e variâncias diferentes com a função `scipy.stats.ttest_ind()` entre `bra` e `usa`. Podemos afirmar que as médias são estatisticamente iguais? Responda com um boolean (`True` ou `False`). # In[27]: athletes.columns # In[45]: athletes[(athletes.nationality == 'BRA') | (athletes.nationality == 'USA') | (athletes.nationality == 'CAN')] # In[28]: bra = athletes[athletes.nationality == 'BRA'] usa = athletes[athletes.nationality == 'USA'] can = athletes[athletes.nationality == 'CAN'] # In[29]: bra['height'].describe() # In[30]: bra.isna().sum() # In[31]: usa['height'].describe() # In[32]: usa.isna().sum() # In[46]: can['height'].describe() # In[47]: can.isna().sum() # In[33]: def q5(): stat, p = sct.ttest_ind(bra['height'], usa['height'], equal_var = False, nan_policy = 'omit') #False: se falso, execute o teste t de Welch, que não assume igual variação populaciona print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[34]: q5() # In[35]: sns.distplot(bra['height'], bins=25, hist=False, rug=True, label='BRA') sns.distplot(usa['height'], bins=25, hist=False, rug=True, label='USA') # ## Questão 6 # # Repita o procedimento da questão 5, mas agora entre as alturas de `bra` e `can`. Podemos afimar agora que as médias são estatisticamente iguais? Reponda com um boolean (`True` ou `False`). # In[48]: def q6(): stat, p = sct.ttest_ind(bra['height'], can['height'], equal_var = False, nan_policy = 'omit') #False: se falso, execute o teste t de Welch, que não assume igual variação populaciona print('stat= {}, p={}'.format(stat,p)) return bool(p> 0.05) # In[49]: q6() # In[50]: sns.distplot(bra['height'], bins=25, hist=False, rug=True, label='BRA') sns.distplot(can['height'], bins=25, hist=False, rug=True, label='CAN') # ## Questão 7 # # Repita o procedimento da questão 6, mas agora entre as alturas de `usa` e `can`. Qual o valor do p-valor retornado? Responda como um único escalar arredondado para oito casas decimais. # In[87]: def q7(): stat, p = sct.ttest_ind(usa['height'], can['height'], equal_var = False, nan_policy = 'omit') #False: se falso, execute o teste t de Welch, que não assume igual variação populaciona print('stat= {}, p={}'.format(stat,p)) if p > 0.05: print('Probably the same distribution') else: print('Probably different distributions') return float(np.round(p, 8)) # In[88]: q7() # __Para refletir__: # # * O resultado faz sentido? # * Você consegue interpretar esse p-valor? # * Você consegue chegar a esse valor de p-valor a partir da variável de estatística? # In[72]: stat, p = sct.ttest_ind(usa['height'], can['height'], equal_var = True, nan_policy = 'omit') print('stat= {}, p={}'.format(stat,p)) # In[69]: #grau de liberdade para o teste t independente com variancias semelhantes: df = n1 + n2 - 2 gl = len(usa) + len(can) - 2 print(f"Graus de liberdade: {gl}") q7_sf = sct.t.sf(stat, gl)*2 #Para Hipótese Bicaudal print(q7_sf) # In[77]: sns.distplot(usa['height'], bins=25, hist=False, rug=True, label='USA') sns.distplot(can['height'], bins=25, hist=False, rug=True, label='CAN')
3.828125
4
blog/migrations/0003_auto_20190504_0806.py
avahmh/Drman
0
12794857
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-05-04 08:06 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import mptt.fields class Migration(migrations.Migration): dependencies = [ ('blog', '0002_post_likes'), ] operations = [ migrations.CreateModel( name='Categories', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('slug', models.SlugField(allow_unicode=True)), ('lft', models.PositiveIntegerField(db_index=True, editable=False)), ('rght', models.PositiveIntegerField(db_index=True, editable=False)), ('tree_id', models.PositiveIntegerField(db_index=True, editable=False)), ('level', models.PositiveIntegerField(db_index=True, editable=False)), ('parent', mptt.fields.TreeForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='category', to='blog.Categories')), ], options={ 'verbose_name': 'دسته بندی', 'verbose_name_plural': 'دسته بندی ها', }, ), migrations.AddField( model_name='post', name='categories', field=mptt.fields.TreeManyToManyField(related_name='categories', to='blog.Categories'), ), migrations.AlterUniqueTogether( name='categories', unique_together=set([('parent', 'slug')]), ), ]
1.570313
2
src/cautious_invention/utils.py
MerktSimon/cautious-invention
0
12794858
# -*- coding: utf-8 -*- """Contain the utilities of cautious-invention.""" my_awesome_constant = 4 def hello_world(): """Print hello World.""" print("Hello, I am a cautious invention") def add(x, y): """Add two numbers together.""" return x+y
2.59375
3
SparkProgramming/2.4.MovieRatingData/p24_spark.py
yevheniyku/Cloud-and-Big-Data
0
12794859
<gh_stars>0 from pyspark import SparkConf, SparkContext def rating(x): if(x <= 1) : return 1 if(x <= 2) : return 2 if(x <= 3) : return 3 if(x <= 4) : return 4 else : return 5 def movieRating(input): ratingsRDD = input.map(lambda x: x.split(",")) ratingsRDD = ratingsRDD.map(lambda x: (x[1], float(x[2]))) ratingsRDD = ratingsRDD.groupByKey().sortByKey() ratingsRDD = ratingsRDD.map(lambda x: (x[0], sum(list(x[1]))/len(x[1]))) ratingsRDD = ratingsRDD.map(lambda x: (x[0], rating(float(x[1])))) ratingsRDD.sortByKey() ratingsRDD.saveAsTextFile("output") def main(): conf = SparkConf().setMaster('local').setAppName('MovieRating') sc = SparkContext(conf = conf) input = sc.textFile("ratings.csv") movieRating(input) if __name__ == '__main__': main()
3.234375
3
tests/test_content_search.py
TAPP-TV/django-bulbs
0
12794860
from __future__ import absolute_import import itertools import datetime from django.utils import timezone from django.test.client import Client from django.template.defaultfilters import slugify from bulbs.content.models import Content, Tag, FeatureType from elastimorphic.tests.base import BaseIndexableTestCase from tests.testcontent.models import TestContentObj, TestContentObjTwo class PolyContentTestCase(BaseIndexableTestCase): def setUp(self): super(PolyContentTestCase, self).setUp() """ Normally, the "Content" class picks up available doctypes from installed apps, but in this case, our test models don't exist in a real app, so we'll hack them on. """ # generate some data one_hour_ago = timezone.now() - datetime.timedelta(hours=1) two_days_ago = timezone.now() - datetime.timedelta(days=2) words = ['spam', 'driver', 'dump truck', 'restaurant'] self.num_subclasses = 2 self.combos = list(itertools.combinations(words, 2)) self.all_tags = [] ft_one = FeatureType.objects.create(name="Obj one", slug="obj-one") ft_two = FeatureType.objects.create(name="Obj two", slug="obj-two") for i, combo in enumerate(self.combos): tags = [] for atom in combo: tag, created = Tag.objects.get_or_create(name=atom, slug=slugify(atom)) tags.append(tag) self.all_tags.append(tag) obj = TestContentObj.objects.create( title=' '.join(combo), description=' '.join(reversed(combo)), foo=combo[0], published=one_hour_ago, feature_type=ft_one ) obj.tags.add(*tags) obj.index() obj2 = TestContentObjTwo.objects.create( title=' '.join(reversed(combo)), description=' '.join(combo), foo=combo[1], bar=i, published=two_days_ago, feature_type=ft_two ) obj2.tags.add(*tags) obj2.index() obj = TestContentObj.objects.create( title="Unpublished draft", description="Just to throw a wrench", foo="bar", feature_type=ft_one ) # We need to let the index refresh TestContentObj.search_objects.refresh() TestContentObjTwo.search_objects.refresh() def test_filter_search_content(self): self.assertEqual(Content.objects.count(), 13) # The 12, plus the unpublished one q = Content.search_objects.search() self.assertEqual(q.count(), 12) q = Content.search_objects.search(query="spam") self.assertEqual(q.count(), 6) q = Content.search_objects.search(tags=["spam"]) self.assertEqual(q.count(), 6) for content in q.full(): self.assertTrue("spam" in content.tags.values_list("slug", flat=True)) q = Content.search_objects.search(feature_types=["obj-one"]) self.assertEqual(q.count(), 6) for content in q.full(): self.assertEqual("Obj one", content.feature_type.name) q = Content.search_objects.search(types=["testcontent_testcontentobj"]) self.assertEqual(q.count(), 6) q = Content.search_objects.search(before=timezone.now()) self.assertEqual(q.count(), 12) q = Content.search_objects.search(before=timezone.now() - datetime.timedelta(hours=4)) self.assertEqual(q.count(), 6) q = Content.search_objects.search(after=timezone.now() - datetime.timedelta(hours=4)) self.assertEqual(q.count(), 6) q = Content.search_objects.search(after=timezone.now() - datetime.timedelta(days=40)) self.assertEqual(q.count(), 12) q = Content.search_objects.search(types=["testcontent_testcontentobjtwo"]).full() self.assertEqual(q.count(), 6) q = Content.search_objects.search(types=[ "testcontent_testcontentobjtwo", "testcontent_testcontentobj"]) self.assertEqual(q.count(), 12) def test_status_filter(self): q = Content.search_objects.search(status="final") self.assertEqual(q.count(), 12) q = Content.search_objects.search(status="draft") self.assertEqual(q.count(), 1) def test_negative_filters(self): q = Content.search_objects.search(tags=["-spam"]) self.assertEqual(q.count(), 6) q = Content.search_objects.search(feature_types=["-obj-one"]) self.assertEqual(q.count(), 6) for content in q.full(): self.assertNotEqual("Obj one", content.feature_type.name) def test_content_subclasses(self): # We created one of each subclass per combination so the following should be true: self.assertEqual(Content.objects.count(), (len(self.combos) * self.num_subclasses) + 1) self.assertEqual(TestContentObj.objects.count(), len(self.combos) + 1) self.assertEqual(TestContentObjTwo.objects.count(), len(self.combos)) def test_content_list_view(self): client = Client() response = client.get('/content_list_one.html') self.assertEqual(response.status_code, 200) self.assertEqual( len(response.context['object_list']), len(self.combos) * self.num_subclasses) def test_num_polymorphic_queries(self): with self.assertNumQueries(1 + self.num_subclasses): for content in Content.objects.all(): self.assertIsInstance(content, (TestContentObj, TestContentObjTwo)) def test_add_remove_tags(self): content = Content.objects.all()[0] original_tag_count = len(content.tags.all()) new_tag = Tag.objects.create(name='crankdat') content.tags.add(new_tag) self.assertEqual(len(content.tags.all()), original_tag_count + 1) self.assertEqual(len(content.tags.all()), len(content.extract_document()['tags'])) def test_search_exact_name_tags(self): Tag.objects.create(name='Beeftank') Tag.search_objects.refresh() results = Tag.search_objects.query(name__match='beeftank').full() self.assertTrue(len(results) > 0) tag_result = results[0] self.assertIsInstance(tag_result, Tag) def test_in_bulk_performs_polymorphic_query(self): content_ids = [c.id for c in Content.objects.all()] results = Content.objects.in_bulk(content_ids) subclasses = tuple(Content.__subclasses__()) for result in results.values(): self.assertIsInstance(result, subclasses)
2.125
2
misc.py
Friendly0Fire/manim-utils
0
12794861
<gh_stars>0 def split_on_condition(seq, condition): a, b = [], [] for item in seq: (a if condition(item) else b).append(item) return a, b
2.8125
3
gwtarget/DESI_mainInjector/Main-Injector-master/python/sourceProb.py
rknop/timedomain
1
12794862
import numpy as np import os import scipy.stats import mags import hp2np import warnings license=""" Copyright (C) 2014 <NAME> This program is free software; you can redistribute it and/or modify it under the terms of version 3 of the GNU General Public License as published by the Free Software Foundation. More to the points- this code is science code: buggy, barely working, with little or no documentation. Science code in the the alpine fast & light style. (Note the rate at which people who stand on the summit of K2 successfully make it down.) This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ class map(object): """ """ def __init__(self, observation, type="bright", apparent_mag_source=21.5) : """ """ data_dir = os.environ["DESGW_DATA_DIR"] self.limitingMag = observation.maglim self.limits = observation.limits tryApparent = True if type == "bright" : if tryApparent : self.lumModel = "apparent" self.modelAbsoluteMagnitude = apparent_mag_source self.modelAbsoluteMagnitudeSigma = 0 else : # this can be used to scale the magnitudes from the source model # this can be done as the source abs magnitude for calculations # is taken from self.absMagMean, self.absMagSigma # whereas we're setting the absolute scale here with # self.modelAbsoluteMagnitude, self.modelAbsoluteMagnitudeSigma # Currently this is done in mapsAtTimeT.probabilityMaps self.lumModel = "kn-gaussian" # LIGO O1 and O2 #self.modelAbsoluteMagnitude = -11.1 # LIGO O3 self.modelAbsoluteMagnitude = -15.5 self.modelAbsoluteMagnitudeSigma = 1.0 elif type == "dark" : if tryApparent : self.lumModel = "apparent" self.modelAbsoluteMagnitude = 21.5 self.modelAbsoluteMagnitudeSigma = 0 else : # fixed luminosity self.lumModel = "bh-gaussian" self.modelAbsoluteMagnitude = -25.0 self.modelAbsoluteMagnitudeSigma = 1.0 else : raise Exception ( "only trigger types known are bright and dark, not {}".format(type)) self.absMagMean = self.modelAbsoluteMagnitude self.absMagSigma = self.modelAbsoluteMagnitudeSigma # get the P_recognition self.pra = observation.pra self.pdec = observation.pdec self.precog = observation.precog # keep the answer self.probMap = "" # for plotting contours, keep the intermediate data around self.xi, self.yi, self.zi = ["","",""] self.lastCtype = "" def calculateProb(self, ligo, ligo_distance, ligo_distance_sigma, verbose = True) : import scipy.integrate warnings.filterwarnings("ignore") # bookkeeping for plotting self.zi= "" # telescopeLimits = self.limits limitingMag = self.limitingMag # check if sun is up if limitingMag.mean() < -9 : self.probMap = np.zeros(ligo.size) return 0 # realwork ligo_spatial = ligo ligo_d_mean = ligo_distance ligo_d_var = ligo_distance_sigma**2 # we are going to change variables to distance modulus (magnitude), # then, assume error is gaussian in DM and in absolute magnitude # so that we can add guassians to get a gaussian. absMag_mean = self.absMagMean absMag_var = self.absMagSigma**2 test_sum = ligo_d_var.sum() if self.lumModel == "apparent" : # implementing this in Feb 2020 prob_map = np.zeros(ligo_spatial.size) apparent_mag = absMag_mean ix, = np.where(apparent_mag < limitingMag) prob_map[ix] = 1.0 ix, = np.where((apparent_mag >= limitingMag) & (apparent_mag < limitingMag+0.5)) prob_map[ix] = 0.5 else : # we can't afford to do every pixel. # for res= 128, a cut at > 1e-8 brings the number of pixels # down from 196,608 to 10^4 ix = (ligo_spatial > 1e-8) & (ligo_d_mean > 0) & (limitingMag > 0) distance_mod = 5*np.log10(ligo_d_mean[ix]*1e6/10.) # error propgation on converting from distance to distance modulus dm_var = ligo_d_var[ix]*(5./np.log(10)/ligo_d_mean[ix]) # assume gaussians, so adding gaussians to get a gaussian ap_mag_mean = distance_mod + absMag_mean ap_mag_var = absMag_var + dm_var ic = 0 prob_map = np.copy(ligo_spatial)*0.0 for pix in np.nonzero(ix)[0] : mag = ap_mag_mean[ic] var = ap_mag_var[ic] # Now we weight by r^2 dr , thus assuming equal probability per unit volume # We will also drop constants, equivalent to assuming we are going # to renormalize by integrating from 0 to infinity # normalize norm_min, norm_max = 7.0, 25.0 # magnitudes ans = scipy.integrate.quad(self.probability_density, norm_min, norm_max, args=(mag, var ) ) norm = ans[0]; norm_error = ans[1] # calculate prob mag_min, mag_max = 7.0, limitingMag[pix] ans = scipy.integrate.quad(self.probability_density, mag_min, mag_max, args=(mag, var ) ) prob = ans[0]; prob_error = ans[1] prob = prob/norm prob_map[pix] = prob ic += 1 print "\t probMap: made for source absMag {:.1f}".format(absMag_mean) # probability of recognition propto star density prob_map = prob_map * self.precog # finally, eliminate every where the telescope cannot point prob_map = prob_map * telescopeLimits self.probMap = prob_map return 1 # # This is a gaussian in apparent magnitude, weighted by r^2 (itself # trasformed into a distance modulus (i.e. magnitude) # # Now we weight by r^2 dr , thus assuming equal probability per unit volume # probability_density = np.exp( (m - ap_mag_mean)/2/ap_mag_var) * \ # np.exp(0.6*np.log(10.)*(m - ap_mag_mean)) def probability_density(self,m, mag_mean, mag_var ) : #print m, mag_mean, mag_var pd= np.exp( -(m-mag_mean)/2/mag_var) * \ np.exp(0.6*np.log(10.)*(m -mag_mean)) return pd # one can choose to plot the ligo contours # or the ligo*obs_prob contours # type="ligo" type="ls" # houranlge chooses HA instead of RA projected into mcbryde coords def plotLigoContours(self, obs, type="ligo", whiteLine="False", hourangle=False) : import matplotlib import matplotlib.pyplot as plt con_levels=10 if self.zi == "" or self.lastCtype != type: print "\t calculating contours for type = ",type if hourangle == False : xmin = obs.x.min(); xmax = obs.x.max() ymin = obs.y.min(); ymax = obs.y.max() else : xmin = obs.hx.min(); xmax = obs.hx.max() ymin = obs.hy.min(); ymax = obs.y.max() xi=np.linspace(xmin, xmax, 500) yi=np.linspace(ymin, ymax, 500) if type == "ligo" : probMap = obs.map if type == "ls" : probMap = obs.map*self.probMap if hourangle == False : x = obs.x; y = obs.y else : x = obs.hx; y = obs.hy zi = matplotlib.mlab.griddata(x,y,probMap,xi,yi) self.xi, self.yi, self.zi = xi,yi,zi self.lastCtype = type if not whiteLine : plt.contour(self.xi,self.yi,self.zi,con_levels,linewidths=3,colors="k") plt.contour(self.xi,self.yi,self.zi,con_levels,linewidths=0.66,colors="w")
1.953125
2
Python/Maths/matrices.py
GeneralNZR/maths-and-javascript
3
12794863
<filename>Python/Maths/matrices.py<gh_stars>1-10 """ Description: Différentes fonctions pour manipuler des matrices. Auteur: <NAME> Version: 1.0 """ def matrice_identite(n: int) -> list: """ Description: Crée une matrice identité de taille n. Paramètres: n: {int} -- Taille de la matrice. Retourne: {list} -- Matrice identité de taille n. Exemple: >>> matrice_identite(3) [[1, 0, 0], [0, 1, 0], [0, 0, 1]] """ matrice = [] for i in range(n): matrice.append([]) for j in range(n): if i == j: matrice[i].append(1) else: matrice[i].append(0) return matrice def dimension_matrice(matrice: list, n: int) -> bool: """ Description: Vérifie si la matrice est de taille n. Paramètres: matrice: {list} -- Matrice à vérifier. n: {int} -- Taille de la matrice. Retourne: {bool} -- True si la matrice est de taille n, False sinon. Exemple: >>> dimension_matrice([[0, 0, 0], [0, 0, 0], [0, 0, 0]], 3) True """ if len(matrice) == n and len(matrice[0]) == n: return True else: return False # TESTS print( 'matrice_identite(3)'+' ----------------------------> ', matrice_identite(3), '\ndimension_matrice(matrice_identite(3), 3)'+' ------> ', dimension_matrice(matrice_identite(3), 3) )
3.59375
4
app/__init__.py
onyxcherry/OnyxcherryOTP
1
12794864
<reponame>onyxcherry/OnyxcherryOTP<gh_stars>1-10 import os from dataclasses import dataclass from config import Config, CSPSettings from dotenv import load_dotenv from flask import Flask, current_app, render_template, request from flask_babel import Babel from flask_babel import lazy_gettext as _l from flask_bcrypt import Bcrypt from flask_login import LoginManager from flask_mail import Mail from flask_migrate import Migrate from flask_sqlalchemy import SQLAlchemy from flask_talisman import Talisman from flask_wtf.csrf import CSRFProtect db = SQLAlchemy() migrate = Migrate() login = LoginManager() login.login_view = "auth.login" login.login_message = _l("Please log in to access this page.") login.refresh_view = "auth.refresh_login" login.needs_refresh_message = _l( u"To protect your account, please reauthenticate to access this page." ) login.needs_refresh_message_category = "info" # login.session_protection = "strong" # Above strong mode causes deleting session cookie after recovered # cookie by remember-me option mail = Mail() flask_bcrypt = Bcrypt() babel = Babel() csrf = CSRFProtect() talisman = Talisman() def page_not_found(e): return render_template("errors/404.html"), 404 def internal_error(e): db.session.rollback() return render_template("errors/500.html"), 500 def create_app(config_class=Config): app = Flask(__name__) app.config.from_object(config_class) db.init_app(app) login.init_app(app) mail.init_app(app) csrf.init_app(app) babel.init_app(app) flask_bcrypt.init_app(app) csp = CSPSettings() talisman.init_app( app, content_security_policy=csp.content_security_policy, content_security_policy_nonce_in=csp.content_security_policy_nonce_in, force_https=csp.force_https, frame_options=csp.frame_options, session_cookie_secure=csp.session_cookie_secure, session_cookie_http_only=csp.session_cookie_http_only, strict_transport_security=csp.strict_transport_security, referrer_policy=csp.referrer_policy, ) with app.app_context(): if db.engine.url.drivername == "sqlite": migrate.init_app(app, db, render_as_batch=True) else: migrate.init_app(app, db) from app.errors import bp as errors_bp app.register_blueprint(errors_bp) app.register_error_handler(404, page_not_found) app.register_error_handler(500, internal_error) from app.auth import bp as auth_bp app.register_blueprint(auth_bp, url_prefix="/auth") from app.twofa import bp as twofa_bp app.register_blueprint(twofa_bp, url_prefix="/twofa") from app.webauthn import bp as webauthn_bp app.register_blueprint(webauthn_bp, url_prefix="/webauthn") csrf.exempt(webauthn_bp) from app.main import bp as main_bp app.register_blueprint(main_bp) return app @babel.localeselector def get_locale(): return request.accept_languages.best_match(current_app.config["LANGUAGES"]) from app import models
2.265625
2
silverpieces/__init__.py
fareedmirza/silverpieces
1
12794865
<reponame>fareedmirza/silverpieces<filename>silverpieces/__init__.py # required for python2?
0.984375
1
RetrieveMolWeights.py
dcoukos/CHO_network
1
12794866
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 24 16:03:28 2018 @author: dimitricoukos Test: in command line: python RetrieveUniProt.py 'Unit Tests/sample_brenda_parameters.json' """ import sys import cobra_services as CS from multiprocessing import Pool from urllib.error import HTTPError from DataTreatment import openJson, write mammals = ['HSA', 'PTR', 'PPS', 'GGO', 'PON', 'NLE', 'MCC', 'MCF', 'RRO', 'RBB', 'CJC', 'SBQ', 'MMU', 'RNO', 'CGE', 'NGI', 'HGL', 'OCU', 'TUP', 'CFA', 'AML', 'UMR', 'ORO', 'FCA', 'PTG', 'AJU', 'BTA', 'BOM', 'BIU', 'PHD', 'CHX', 'OAS', 'SSC', 'CFR', 'CDK', 'LVE', 'OOR', 'ECB', 'EPZ', 'EAI', 'MYB', 'MYD', 'HAI', 'RSS', 'LAV', 'TMU', 'MDO', 'SHR', 'OAA'] animals = ['HSA', 'PTR', 'PPS', 'GGO', 'PON', 'NLE', 'MCC', 'MCF', 'RRO', 'RBB', 'CJC', 'SBQ', 'MMU', 'RNO', 'CGE', 'NGI', 'HGL', 'OCU', 'TUP', 'CFA', 'AML', 'UMR', 'ORO', 'FCA', 'PTG', 'AJU', 'BTA', 'BOM', 'BIU', 'PHD', 'CHX', 'OAS', 'SSC', 'CFR', 'CDK', 'LVE', 'OOR', 'ECB', 'EPZ', 'EAI', 'MYB', 'MYD', 'HAI', 'RSS', 'LAV', 'TMU', 'MDO', 'SHR', 'OAA', 'GGA', 'MGP', 'CJO', 'TGU', 'GFR', 'FAB', 'PHI', 'CCW', 'FPG', 'FCH', 'CLV', 'EGZ', 'AAM', 'ASN', 'AMJ', 'PSS', 'CMY', 'SEA', 'ACS', 'PVT', 'PBI', 'GJA', 'XLA', 'XTR', 'NPR', 'DRE', 'SRX', 'SGH', 'IPU', 'TRU', 'TNG', 'LCO', 'NCC', 'MZE', 'OLA', 'XMA', 'NFU', 'LCF', 'HCQ', 'ELS', 'SFM', 'LCM', 'CMK'] def returnBestAddress(genes, loop): """Searches for available genes matching kegg enzyme entry. This function searches 'sequentially'. It returns the best available model organism genes. Organisms phylogenetically closer to Cricetulus griseus are preferred, but they are chosen by approximation. A detailed study of the phylogenetic tree has not been done for this project. Hopefully going sequentially increases both readability and efficiency. Parameters ---------- genes : dict key: value pair is organism: address loop : string Indicates the highest potential group of matching organisms to search in. Returns ------- dict key: kegg organism code. value: gene addresses for enzyme and organism """ if loop == 'best': if 'CGE' in genes: return genes['CGE'] elif 'MMU' in genes: return genes['MMU'] elif 'RNO' in genes: return genes['RNO'] elif 'HSA' in genes: return genes['HSA'] else: loop = 'mammals' if loop == 'mammals': mammal_match = set(genes.keys()).intersection(mammals) if bool(mammal_match): return mammal_match else: loop = 'vertebrates' if loop == 'vertebrates': animal_match = set(genes.keys()).intersection(animals) if bool(animal_match): return animal_match else: loop = 'csm' # Stands for "common simple models" if loop == 'csm': if 'DME' in genes: return genes['DME'] elif 'SCE' in genes: return genes['SCE'] elif 'ECO' in genes: return genes['ECO'] def loopHandler(mol_weights, ec_number, genes, loop): """Calls the correct loop of returnBestAddress based on best potential genes matches. Parameters ---------- mol_weights : list empty list. will contain estimated molecular weights of enzymes. ec_number : string genes : list Addresses of genes corresponding to ec number. loop : string """ searching = True while searching: best = returnBestAddress(genes, loop) if not best: if loop == 'best': loop = 'mammals' break if loop == 'mammals': loop = 'vertebrates' break if loop == 'vertebrates': loop = 'csm' break if loop == 'csm': searching = False return None searching = False mol_weights[ec_number]['weights'] = [] mol_weights[ec_number]['uniprot_ids'] = [] if loop == 'best' or loop == 'csm': for address in best: organism = best # for readability try: fillData(mol_weights, ec_number, organism, address) except HTTPError as err: if err.code == 404: pass else: for gene in best: for address in best[gene]: organism = best[gene] # for readability try: fillData(mol_weights, ec_number, organism, address) except HTTPError as err: if err.code == 404: pass def fillData(mol_weights, ec_number, organism, address): """Searches kegg for enzyme uniprot id and AA sequence. Parameters ---------- mol_weights : dict object containing all information collected by program. ec_number : string enzyme classification number used to organize data. address : string gene address for sequence lookup. """ mol_weights[ec_number]['genes'].append(organism.lower() + ':' + address) sequence = CS.kegggene_to_sequence(organism, address) weight = CS.sequence_weight(sequence) mol_weights[ec_number]['weights'].append(weight) uniprot = CS.kegggene_to_uniprotid(organism, address) if uniprot: mol_weights[ec_number]['uniprot_ids'].uniprot def mainSubprocess(bigg_ids, del_ec): """Main function called by each multiprocessing.process. Parameters ---------- bigg_ids : dict key: ec_number. value: corresponding bigg ids. del_ec : list empty list which is appended to here containing depicrated ec numbers Returns ------- dict key: ec number. value: all collected data in program by this process. """ try: mol_weights = {} for ec_number in bigg_ids: # WARNING: joblib may require list mol_weights[ec_number] = {} print('Currently processing BiGG id: ' + ec_number) mol_weights[ec_number]['bigg ids'] = bigg_ids[ec_number] try: genes = CS.ecnumber_to_genes(ec_number) except HTTPError as err: if err.code == 404: print('Excepted: No entry for ec number: '+ec_number) continue else: raise if genes: loop = 'best' searching = True while searching: try: loopHandler(mol_weights, ec_number, genes, loop) searching = False except HTTPError as err: if err.code == 404 and loop == 'csm': searching = False except TypeError as err: if loop == 'best': loop = 'mammals' if loop == 'mammals': loop = 'vertebrates' if loop == 'vertebrates': loop = 'csm' if loop == 'csm': searching = False finally: return mol_weights if __name__ == '__main__': sub_dict_1 = {} sub_dict_2 = {} sub_dict_3 = {} sub_dict_4 = {} mol_weights = {} if len(sys.argv) == 1: brenda_parameters = openJson('JSONs/brenda_parameters.json') else: brenda_parameters = openJson(sys.argv[1]) simplified_brenda = {} for bigg_id in brenda_parameters: simplified_brenda[bigg_id] = brenda_parameters[bigg_id][0] optimized_bigg = {} for k, v in simplified_brenda.items(): optimized_bigg[v] = optimized_bigg.get(v, []) optimized_bigg[v].append(k) counter = 0 for ec_number in optimized_bigg: if counter % 4 == 0: sub_dict_1[ec_number] = optimized_bigg[ec_number] if counter % 4 == 1: sub_dict_2[ec_number] = optimized_bigg[ec_number] if counter % 4 == 2: sub_dict_3[ec_number] = optimized_bigg[ec_number] if counter % 4 == 3: sub_dict_4[ec_number] = optimized_bigg[ec_number] counter = counter + 1 try: with Pool(processes=4) as pool: del_ec1 = [] del_ec2 = [] del_ec3 = [] del_ec4 = [] mw_1 = pool.apply_async(mainSubprocess, (sub_dict_1, del_ec1,)) mw_2 = pool.apply_async(mainSubprocess, (sub_dict_2, del_ec2,)) mw_3 = pool.apply_async(mainSubprocess, (sub_dict_3, del_ec3,)) mw_4 = pool.apply_async(mainSubprocess, (sub_dict_4, del_ec4,)) pool.close() pool.join() for ec in del_ec1: mw_1.pop(ec, None) for ec in del_ec2: mw_2.pop(ec, None) for ec in del_ec3: mw_3.pop(ec, None) for ec in del_ec4: mw_4.pop(ec, None) finally: mol_weights.update(mw_1.get()) mol_weights.update(mw_2.get()) mol_weights.update(mw_3.get()) mol_weights.update(mw_4.get()) if len(sys.argv) > 1: write('Unit Tests/multiprocessing_sub_output1.json', mw_1.get()) write('Unit Tests/multiprocessing_sub_output3.json', mw_3.get()) mol_weights_to_write = {} for ec_number in mol_weights: for bigg_id in mol_weights[ec_number]['bigg ids']: mol_weights_to_write[bigg_id] = {} mol_weights_to_write[bigg_id]['ec_number'] = ec_number mol_weights_to_write[bigg_id].update(mol_weights[ec_number]) write('JSONs/molecular_weights.json', mol_weights_to_write)
1.75
2
local-pipelines/python-ggnn-expr-completion/datagen/get_data.py
kiteco/kiteco-public
17
12794867
import argparse import datetime import json import logging import pickle import time import shutil from kite.graph_data.data_feeder import EndpointDataFeeder from kite.graph_data.session import RequestInit from kite.graph_data.graph_feed import GraphFeedConfig from kite.infer_expr.config import MetaInfo, Config from kite.infer_call.request import Request as CallRequest, KwargRequest, ArgTypeRequest, ArgPlaceholderRequest from kite.infer_expr.request import Request as ExprRequest from kite.infer_expr.attr_base import Request as AttrBaseRequest from kite.infer_attr.request import Request as AttrRequest logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)-8s %(message)s') def get_filename(cur_sample: int, total: int, timestamp: int) -> str: n_digits = len(str(total)) format_str = "{{:0{}d}}".format(n_digits) + "-of-{}-{}.pickle" return format_str.format(cur_sample, total, timestamp) def main(): parser = argparse.ArgumentParser() parser.add_argument('--endpoint', type=str, default='http://localhost:3039') parser.add_argument('--random_seed', type=int) parser.add_argument('--batch', type=int, default=10) parser.add_argument('--samples', type=int, default=1000, help='number of samples to generate') parser.add_argument('--meta_info', type=str) parser.add_argument('--out_dir', type=str, default='data') parser.add_argument('--samples_per_file', type=int, default=500) parser.add_argument('--max_samples', type=int) parser.add_argument('--attr_base_proportion', type=float) parser.add_argument('--attr_proportion', type=float) parser.add_argument('--call_proportion', type=float) parser.add_argument('--arg_type_proportion', type=float) parser.add_argument('--kwarg_name_proportion', type=float) parser.add_argument('--arg_placeholder_proportion', type=float) args = parser.parse_args() meta_info = MetaInfo.from_json(json.load(open(args.meta_info, 'r'))) config = Config() req = RequestInit( config=GraphFeedConfig(edge_set=config.ggnn.edge_set), random_seed=args.random_seed, num_batches=args.batch, max_hops=config.max_hops, name_subtoken_index=meta_info.name_subtoken_index, type_subtoken_index=meta_info.type_subtoken_index, production_index=meta_info.production, expr=ExprRequest( max_samples=args.max_samples, call=CallRequest( symbols=meta_info.call.dist, batch_proportion=args.call_proportion, ), attr=AttrRequest( symbols=meta_info.attr.dist, batch_proportion=args.attr_proportion, parents=meta_info.attr.parents, ), attr_base=AttrBaseRequest( symbols=meta_info.attr_base.dist, batch_proportion=args.attr_base_proportion, ), arg_type=ArgTypeRequest( symbols=meta_info.call.dist, batch_proportion=args.arg_type_proportion, ), kwarg_name=KwargRequest( symbols=meta_info.call.dist, keywords=meta_info.call.keywords, batch_proportion=args.kwarg_name_proportion, ), arg_placeholder=ArgPlaceholderRequest( symbols=meta_info.call.dist, batch_proportion=args.arg_placeholder_proportion, ) ), ) logging.info("will write {} samples to {}, random seed = {}".format( args.samples, args.out_dir, args.random_seed)) feeder = EndpointDataFeeder(args.endpoint, req) try: tmp_filename = None filename = None file = None file_samples = 0 start = None n_names = 0 n_production = 0 def finish_file(): file.close() shutil.move(tmp_filename, filename) end = datetime.datetime.now() logging.info( "sample {}: saved {} with {} samples ({} name, {} production), took {}".format( i, filename, args.samples_per_file, n_names, n_production, end - start )) for i in range(args.samples): if not file or file_samples >= args.samples_per_file: if file: finish_file() file_samples = 0 ts = int(time.time() * 1000) filename = "{}/{}".format(args.out_dir, get_filename(i, args.samples, ts)) tmp_filename = "{}.part".format(filename) file = open(tmp_filename, 'wb') start = datetime.datetime.now() logging.info("writing to {}".format(tmp_filename)) sample = feeder.next() pickle.dump(sample, file) n_names += len(sample.data.expr.infer_name.prediction_nodes) n_production += len(sample.data.expr.infer_production.prediction_nodes) file_samples += 1 if file_samples > 0: finish_file() finally: feeder.stop() if __name__ == "__main__": main()
2.140625
2
experiments/utils/nets/cnn_factory.py
ezetl/deep-learning-techniques-thesis
0
12794868
<filename>experiments/utils/nets/cnn_factory.py #!/usr/bin/env python2.7 import caffe from caffe import (layers as L, params as P) from layers_wrappers import * caffe.set_device(0) caffe.set_mode_gpu() class MNISTNetFactory: @staticmethod def standar(lmdb_path=None, batch_size=125, scale=1.0, is_train=True, learn_all=True): """ Creates a protoxt similar to the first layers of AlexNet architecture for the MNIST experiment :param lmdb_path: str. Path to train LMDB :param batch_size: int. Batch size :param scale: float. How to scale the images :param is_train: bool. Flag indicating if this is for testing or training :returns: Caffe NetSpec, tuple with names of loss blobs, tuple with name of accuracy blobs """ n = caffe.NetSpec() phase = caffe.TRAIN if is_train else caffe.TEST n.data, n.label = L.Data(include=dict(phase=phase), batch_size=batch_size, backend=P.Data.LMDB, source=lmdb_path, transform_param=dict(scale=scale), ntop=2) n.conv1 = L.Convolution(n.data, kernel_size=11, stride=4, num_output=96, param=[weight_param('conv1_w', learn_all=learn_all), bias_param('conv1_b', learn_all=learn_all)], weight_filler=weight_filler, bias_filler=bias_filler_0) n.relu1 = L.ReLU(n.conv1, in_place=True) n.pool1 = L.Pooling(n.relu1, pool=P.Pooling.MAX, kernel_size=3, stride=2) n.norm1 = L.LRN(n.pool1, local_size=5, alpha=1e-4, beta=0.75) n.conv2 = L.Convolution(n.norm1, kernel_size=5, num_output=256, pad=2, group=2, param=[weight_param('conv2_w', learn_all=learn_all), bias_param('conv2_b', learn_all=learn_all)], weight_filler=weight_filler, bias_filler=bias_filler_0) n.relu2 = L.ReLU(n.conv2, in_place=True) n.pool2 = L.Pooling(n.relu2, pool=P.Pooling.MAX, kernel_size=3, stride=2) n.norm2 = L.LRN(n.pool2, local_size=5, alpha=1e-4, beta=0.75) n.fc500 = L.InnerProduct(n.norm2, num_output=500, param=[weight_param('fc500_w', learn_all=True), bias_param('fc500_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu3 = L.ReLU(n.fc500, in_place=True) if is_train: n.dropout = fc10input = L.Dropout(n.relu3, in_place=True) else: fc10input = n.relu3 # Learn all true because we always want to train the top classifier no matter if we are training from scratch or finetuning n.fc10 = L.InnerProduct(fc10input, num_output=10, param=[weight_param('fc10_w', learn_all=True), bias_param('fc10_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc10, n.label) n.acc = L.Accuracy(n.fc10, n.label, include=dict(phase=caffe.TEST)) # Returning the name of the loss/acc layers is useful because then we can # know which outputs of the net we can track to test the 'health' # of the training process return n, ('loss',), ('acc',) @staticmethod def siamese_egomotion(lmdb_path=None, labels_lmdb_path=None, batch_size=125, scale=1.0, is_train=True, learn_all=False, sfa=False): """ Creates a protoxt for the AlexNet architecture for the MNIST experiment Uses Egomotion as stated in the paper :param lmdb_path: str. Path to train LMDB :param labels_lmdb_path: str. Path to train LMDB labels :param batch_size: int. Batch size :param scale: float. How to scale the images :param is_train: bool. Flag indicating if this is for testing or training :param learn_all: bool. Flag indicating if we should learn all the layers from scratch :returns: Caffe NetSpec, tuple with names of loss blobs, tuple with name of accuracy blobs """ n = caffe.NetSpec() n.data, n.label = input_layers(lmdb_path=lmdb_path, labels_lmdb_path=labels_lmdb_path, batch_size=batch_size, scale=scale, is_train=is_train) # Slice data/labels for MNIST n.data0, n.data1 = L.Slice(n.data, slice_param=dict(axis=1, slice_point=1), ntop=2) n.labelx, n.labely, n.labelz = L.Slice(n.label, slice_param=dict(axis=1, slice_point=[1,2]), ntop=3) # BCNN n.norm2, n.norm2_p = bcnn(n.data0, n.data1, n, learn_all, True) # TCNN n.concat = L.Concat(n.norm2, n.norm2_p, concat_param=dict(axis=1)) n.fc1000 = L.InnerProduct(n.concat, num_output=1000, param=[weight_param('fc1000_w', learn_all=True), bias_param('fc1000_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu3 = L.ReLU(n.fc1000, in_place=True) if is_train: n.dropout = fcxinput = fcyinput = fczinput = L.Dropout(n.relu3, in_place=True) else: fcxinput = fcyinput = fczinput = n.relu3 # Classifiers n.fcx = L.InnerProduct(fcxinput, num_output=7, param=[weight_param('fcx_w', learn_all=True), bias_param('fcx_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.fcy = L.InnerProduct(fcyinput, num_output=7, param=[weight_param('fcy_w', learn_all=True), bias_param('fcy_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.fcz = L.InnerProduct(fczinput, num_output=20, param=[weight_param('fcz_w', learn_all=True), bias_param('fcz_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.loss_x = L.SoftmaxWithLoss(n.fcx, n.labelx) n.loss_y = L.SoftmaxWithLoss(n.fcy, n.labely) n.loss_z = L.SoftmaxWithLoss(n.fcz, n.labelz) n.acc_x = L.Accuracy(n.fcx, n.labelx, include=dict(phase=caffe.TEST)) n.acc_y = L.Accuracy(n.fcy, n.labely, include=dict(phase=caffe.TEST)) n.acc_z = L.Accuracy(n.fcz, n.labelz, include=dict(phase=caffe.TEST)) return n, ('loss_x', 'loss_y', 'loss_z'), ('acc_x', 'acc_y', 'acc_z') @staticmethod def siamese_contrastive(lmdb_path=None, labels_lmdb_path=None, batch_size=125, scale=1.0, contrastive_margin=10, is_train=True, learn_all=False, sfa=False): """ Creates a protoxt for the AlexNet architecture for the MNIST experiment Uses Contrastive loss :param lmdb_path: str. Path to train LMDB :param labels_lmdb_path: str. Path to train LMDB labels :param batch_size: int. Batch size :param scale: float. How to scale the images :param contrastive_margin: int. Margin for the contrastive loss layer :param is_train: bool. Flag indicating if this is for testing or training :param learn_all: bool. Flag indicating if we should learn all the layers from scratch :returns: Caffe NetSpec, tuple with names of loss blobs, tuple with name of accuracy blobs """ n = caffe.NetSpec() n.data, n.label = input_layers(lmdb_path=lmdb_path, labels_lmdb_path=labels_lmdb_path, batch_size=batch_size, scale=scale, is_train=is_train) # Slice data/labels for MNIST n.data0, n.data1 = L.Slice(n.data, slice_param=dict(axis=1, slice_point=1), ntop=2) # BCNN n.norm2, n.norm2_p = bcnn(n.data0, n.data1, n, learn_all, True) # TCNNs n.fc1 = L.InnerProduct(n.norm2, num_output=500, param=[weight_param('fc1_p_w', learn_all=True), bias_param('fc1_p_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu3 = L.ReLU(n.fc1, in_place=True) n.dropout1 = L.Dropout(n.relu3, in_place=True) n.fc2 = L.InnerProduct(n.relu3, num_output=100, param=[weight_param('fc2_p_w', learn_all=True), bias_param('fc2_p_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.fc1_p = L.InnerProduct(n.norm2_p, num_output=500, param=[weight_param('fc1_p_w', learn_all=True), bias_param('fc1_p_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu3_p = L.ReLU(n.fc1_p, in_place=True) n.dropout1_p = L.Dropout(n.relu3_p, in_place=True) n.fc2_p = L.InnerProduct(n.relu3_p, num_output=100, param=[weight_param('fc2_p_w', learn_all=True), bias_param('fc2_p_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.contrastive = L.ContrastiveLoss(n.fc2, n.fc2_p, n.label, contrastive_loss_param=dict(margin=contrastive_margin)) return n, ('contrastive',), None class KITTINetFactory: @staticmethod def siamese_egomotion(lmdb_path=None, labels_lmdb_path=None, mean_file=None, batch_size=125, scale=1.0, is_train=True, learn_all=True): """ Creates a protoxt for the AlexNet architecture :param lmdb_path: str. Path to train LMDB :param labels_lmdb_path: str. Path to train LMDB labels :param test_lmdb: str. Path to train LMDB :param test_labels_lmdb: str. Path to test LMDB labels :param batch_size: int. Batch size :param scale: float. How to scale the images :param is_train: bool. Flag indicating if this is for testing or training :param learn_all: bool. Flag indicating if we should learn all the layers from scratch :returns: Caffe NetSpec, tuple with names of loss blobs, tuple with name of accuracy blobs """ n = caffe.NetSpec() n.data, n.label = input_layers(lmdb_path=lmdb_path, labels_lmdb_path=labels_lmdb_path, mean_file=mean_file, batch_size=batch_size, scale=scale, is_train=is_train) # Slice data/labels n.data0, n.data1 = L.Slice(n.data, slice_param=dict(axis=1, slice_point=3), ntop=2) n.labelx, n.labely, n.labelz = L.Slice(n.label, slice_param=dict(axis=1, slice_point=[1,2]), ntop=3) # BCNN relu5, relu5_p = bcnn(n.data0, n.data1, n, learn_all, False) # TCNN n.concat = L.Concat(relu5, relu5_p, concat_param=dict(axis=1)) n.conv6 = L.Convolution(n.concat, kernel_size=3, stride=2, num_output=256, param=[weight_param('conv6_w', learn_all=learn_all), bias_param('conv6_b', learn_all=learn_all)], weight_filler=weight_filler_fc, bias_filler=bias_filler_0) n.relu6 = L.ReLU(n.conv6, in_place=True) n.conv7 = L.Convolution(n.relu6, kernel_size=3, stride=2, num_output=128, param=[weight_param('conv7_w', learn_all=learn_all), bias_param('conv7_b', learn_all=learn_all)], weight_filler=weight_filler, bias_filler=bias_filler_0) n.relu7 = L.ReLU(n.conv7, in_place=True) n.fc7_ego = L.InnerProduct(n.relu7, num_output=500, param=[weight_param('fc7_ego_w', learn_all=True), bias_param('fc7_ego_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu8 = L.ReLU(n.fc7_ego, in_place=True) if is_train: n.drop = fcxinput = fcyinput = fczinput = L.Dropout(n.relu8, dropout_param=dict(dropout_ratio=0.5), in_place=True) else: fcxinput = fcyinput = fczinput = n.relu8 # Classifiers n.fcx = L.InnerProduct(fcxinput, num_output=20, param=[weight_param('fcx_w', learn_all=True), bias_param('fcx_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.fcy = L.InnerProduct(fcyinput, num_output=20, param=[weight_param('fcy_w', learn_all=True), bias_param('fcy_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.fcz = L.InnerProduct(fczinput, num_output=20, param=[weight_param('fcz_w', learn_all=True), bias_param('fcz_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss_x = L.SoftmaxWithLoss(n.fcx, n.labelx) n.loss_y = L.SoftmaxWithLoss(n.fcy, n.labely) n.loss_z = L.SoftmaxWithLoss(n.fcz, n.labelz) n.acc_x = L.Accuracy(n.fcx, n.labelx, include=dict(phase=caffe.TEST)) n.acc_y = L.Accuracy(n.fcy, n.labely, include=dict(phase=caffe.TEST)) n.acc_z = L.Accuracy(n.fcz, n.labelz, include=dict(phase=caffe.TEST)) return n, ('loss_x', 'loss_y', 'loss_z'), ('acc_x', 'acc_y', 'acc_z') @staticmethod def siamese_contrastive(lmdb_path=None, labels_lmdb_path=None, mean_file=None, batch_size=125, scale=1.0, contrastive_margin=10, is_train=True, learn_all=True): """ Creates a protoxt for siamese AlexNet architecture with a contrastive loss layer on top :param lmdb_path: str. Path to train LMDB :param labels_lmdb_path: str. Path to train LMDB labels :param test_lmdb: str. Path to train LMDB :param test_labels_lmdb: str. Path to test LMDB labels :param batch_size: int. Batch size :param scale: float. How to scale the images :param contrastive_margin: int. Margin for the contrastive loss layer :param is_train: bool. Flag indicating if this is for testing or training :param learn_all: bool. Flag indicating if we should learn all the layers from scratch :returns: Caffe NetSpec, tuple with names of loss blobs, tuple with name of accuracy blobs """ n = caffe.NetSpec() n.data, n.label = input_layers(lmdb_path=lmdb_path, labels_lmdb_path=labels_lmdb_path, mean_file=mean_file, batch_size=batch_size, scale=scale, is_train=is_train) # Slice data/labels n.data0, n.data1 = L.Slice(n.data, slice_param=dict(axis=1, slice_point=3), ntop=2) # BCNN relu5, relu5_p = bcnn(n.data0, n.data1, n, learn_all, False) # TCNNs n.fc1 = L.InnerProduct(relu5, num_output=500, param=[weight_param('fc1_p_w', learn_all=True), bias_param('fc1_p_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu6 = L.ReLU(n.fc1, in_place=True) n.dropout1 = L.Dropout(n.relu6, in_place=True) n.fc2 = L.InnerProduct(n.relu6, num_output=100, param=[weight_param('fc2_p_w', learn_all=True), bias_param('fc2_p_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.fc1_p = L.InnerProduct(relu5_p, num_output=500, param=[weight_param('fc1_p_w', learn_all=True), bias_param('fc1_p_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu6_p = L.ReLU(n.fc1_p, in_place=True) n.dropout1_p = L.Dropout(n.relu6_p, in_place=True) n.fc2_p = L.InnerProduct(n.relu6_p, num_output=100, param=[weight_param('fc2_p_w', learn_all=True), bias_param('fc2_p_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.contrastive = L.ContrastiveLoss(n.fc2, n.fc2_p, n.label, contrastive_loss_param=dict(margin=contrastive_margin)) return n, ('contrastive',), None @staticmethod def standar(lmdb_path=None, labels_lmdb_path=None, batch_size=126, mean_file=None, scale=1.0, is_train=True, num_classes=397, learn_all=True, layers='5', is_imagenet=False): """ Creates a protoxt for the AlexNet architecture :param lmdb_path: str. Path to train LMDB :param labels_lmdb_path: str. Path to train LMDB labels :param test_lmdb: str. Path to train LMDB :param test_labels_lmdb: str. Path to test LMDB labels :param batch_size: int. Batch size :param scale: float. How to scale the images :param is_train: bool. Flag indicating if this is for testing or training :param num_classes: int. number of classes for the top classifier :param classifier_name: str. name of the top classifier :param learn_all: bool. Flag indicating if we should learn all the layers from scratch :param layers: str. from which layer we will extract features to train a classifier :returns: Caffe NetSpec, tuple with names of loss blobs, tuple with name of accuracy blobs """ n = caffe.NetSpec() n.data, n.label = input_layers(lmdb_path=lmdb_path, labels_lmdb_path=labels_lmdb_path, mean_file=mean_file, batch_size=batch_size, scale=scale, is_train=is_train) n.conv1 = L.Convolution(n.data, kernel_size=11, stride=4, num_output=96, param=[weight_param('conv1_w', learn_all=learn_all), bias_param('conv1_b', learn_all=learn_all)], weight_filler=weight_filler, bias_filler=bias_filler_0) n.relu1 = L.ReLU(n.conv1, in_place=True) n.pool1 = L.Pooling(n.relu1, pool=P.Pooling.MAX, kernel_size=3, stride=2) n.norm1 = L.LRN(n.pool1, local_size=5, alpha=1e-4, beta=0.75) if layers == '1': n.fc_intermediate = L.InnerProduct(n.norm1, num_output=num_classes, param=[weight_param('fc_intermediate_w', learn_all=True), bias_param('fc_intermediate_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc_intermediate, n.label) n.acc = L.Accuracy(n.fc_intermediate, n.label, include=dict(phase=caffe.TEST)) return n, ('loss',), ('acc',) n.conv2 = L.Convolution(n.norm1, kernel_size=5, num_output=256, pad=2, group=2, param=[weight_param('conv2_w', learn_all=learn_all), bias_param('conv2_b', learn_all=learn_all)], weight_filler=weight_filler, bias_filler=bias_filler_0) n.relu2 = L.ReLU(n.conv2, in_place=True) n.pool2 = L.Pooling(n.relu2, pool=P.Pooling.MAX, kernel_size=3, stride=2) n.norm2 = L.LRN(n.pool2, local_size=5, alpha=1e-4, beta=0.75) if layers == '2': n.fc_intermediate = L.InnerProduct(n.norm2, num_output=num_classes, param=[weight_param('fc_intermediate_w', learn_all=True), bias_param('fc_intermediate_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc_intermediate, n.label) n.acc = L.Accuracy(n.fc_intermediate, n.label, include=dict(phase=caffe.TEST)) return n, ('loss',), ('acc',) n.conv3 = L.Convolution(n.norm2, kernel_size=3, num_output=384, pad=1, param=[weight_param('conv3_w', learn_all=learn_all), bias_param('conv3_b', learn_all=learn_all)], weight_filler=weight_filler, bias_filler=bias_filler_0) n.relu3 = L.ReLU(n.conv3, in_place=True) if layers == '3': n.fc_prev = L.InnerProduct(n.relu3, num_output=1000, param=[weight_param('fc_prev_w', learn_all=True), bias_param('fc_prev_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu_prev = L.ReLU(n.fc_prev, in_place=True) n.fc_intermediate = L.InnerProduct(n.relu_prev, num_output=num_classes, param=[weight_param('fc_intermediate_w', learn_all=True), bias_param('fc_intermediate_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc_intermediate, n.label) n.acc = L.Accuracy(n.fc_intermediate, n.label, include=dict(phase=caffe.TEST)) return n, ('loss',), ('acc',) n.conv4 = L.Convolution(n.relu3, kernel_size=3, num_output=384, pad=1, group=2, param=[weight_param('conv4_w', learn_all=learn_all), bias_param('conv4_b', learn_all=learn_all)], weight_filler=weight_filler, bias_filler=bias_filler_0) n.relu4 = L.ReLU(n.conv4, in_place=True) if layers == '4': n.fc_prev = L.InnerProduct(n.relu4, num_output=1000, param=[weight_param('fc_prev_w', learn_all=True), bias_param('fc_prev_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu_prev = L.ReLU(n.fc_prev, in_place=True) n.fc_intermediate = L.InnerProduct(n.relu_prev, num_output=num_classes, param=[weight_param('fc_intermediate_w', learn_all=True), bias_param('fc_intermediate_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc_intermediate, n.label) n.acc = L.Accuracy(n.fc_intermediate, n.label, include=dict(phase=caffe.TEST)) return n, ('loss',), ('acc',) n.conv5 = L.Convolution(n.relu4, kernel_size=3, num_output=256, pad=1, group=2, param=[weight_param('conv5_w', learn_all=learn_all), bias_param('conv5_b', learn_all=learn_all)], weight_filler=weight_filler, bias_filler=bias_filler_0) n.relu5 = L.ReLU(n.conv5, in_place=True) if not is_imagenet: if layers == '5': n.fc_prev = L.InnerProduct(n.relu5, num_output=1000, param=[weight_param('fc_prev_w', learn_all=True), bias_param('fc_prev_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu_prev = L.ReLU(n.fc_prev, in_place=True) n.fc_intermediate = L.InnerProduct(n.relu_prev, num_output=num_classes, param=[weight_param('fc_intermediate_w', learn_all=True), bias_param('fc_intermediate_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc_intermediate, n.label) n.acc = L.Accuracy(n.fc_intermediate, n.label, include=dict(phase=caffe.TEST)) return n, ('loss',), ('acc',) n.fc6 = L.InnerProduct(n.relu5, num_output=4096, param=[weight_param('fc6_w', learn_all=True), bias_param('fc6_b', learn_all=learn_all)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu6 = L.ReLU(n.fc6, in_place=True) if is_train: n.drop6 = fc7input = L.Dropout(n.relu6, in_place=True) else: fc7input = n.relu6 n.fc7 = L.InnerProduct(fc7input, num_output=4096, param=[weight_param('fc7_w', learn_all=True), bias_param('fc7_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu7 = L.ReLU(n.fc7, in_place=True) if is_train: n.drop7 = fc8input = L.Dropout(n.relu7, in_place=True) else: fc8input = n.relu7 n.fc8 = L.InnerProduct(fc8input, num_output=num_classes, param=[weight_param('fc8_w', learn_all=True), bias_param('fc8_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc8, n.label) n.acc = L.Accuracy(n.fc8, n.label, include=dict(phase=caffe.TEST)) else: if layers == '5': n.fc_imgnet = L.InnerProduct(n.relu5, num_output=num_classes, param=[weight_param('fc_w', learn_all=True), bias_param('fc_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc_imgnet, n.label) n.acc = L.Accuracy(n.fc_imgnet, n.label, include=dict(phase=caffe.TEST)) return n, ('loss',), ('acc',) n.fc6_imgnet = L.InnerProduct(n.relu5, num_output=4096, param=[weight_param('fc6_w', learn_all=True), bias_param('fc6_b', learn_all=learn_all)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu6 = L.ReLU(n.fc6_imgnet, in_place=True) if is_train: n.drop6 = fc7input = L.Dropout(n.relu6, in_place=True) else: fc7input = n.relu6 n.fc7_imgnet = L.InnerProduct(fc7input, num_output=4096, param=[weight_param('fc7_w', learn_all=True), bias_param('fc7_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) n.relu7 = L.ReLU(n.fc7_imgnet, in_place=True) if is_train: n.drop7 = fc8input = L.Dropout(n.relu7, in_place=True) else: fc8input = n.relu7 n.fc8_imgnet = L.InnerProduct(fc8input, num_output=num_classes, param=[weight_param('fc8_w', learn_all=True), bias_param('fc8_b', learn_all=True)], weight_filler=weight_filler_fc, bias_filler=bias_filler_1) if is_train: n.loss = L.SoftmaxWithLoss(n.fc8_imgnet, n.label) n.acc = L.Accuracy(n.fc8_imgnet, n.label, include=dict(phase=caffe.TEST)) return n, ('loss',), ('acc',)
2.796875
3
solveLinearEquation/gauss-with-pivot.py
terasakisatoshi/pythonCodes
0
12794869
<gh_stars>0 import numpy as np # Example1 a = np.matrix([[0, 4, 5, 2], [1, 0, 2, -6], [4, 1, 0, -2], [1, 7, 1, 0]], dtype='float64') b = np.matrix([9, -3, 1, -3], dtype='float64').T x = np.matrix([None]*4, dtype='float64').T # Example2 a = np.matrix([[2, 4, 6], [1, -1, 5], [4, 1, -2]], dtype='float64') b = np.matrix([28, 7, 21], dtype='float64').T x = np.matrix([None]*3, dtype='float64').T # for check sum ori_a = a # define extended coefficient matrix of eq ax=b a = np.concatenate([a, b], axis=1) (row, col) = a.shape for j in range(row): # search pivot max_idx = j+np.argmax(abs(a[j:, j])) # swap! a[[j, max_idx]] = a[[max_idx, j]] # push forward for i in range(j+1, row): p = -a[i, j] / a[j, j] a[i] += p*a[j] print('extended coefficient matrix applied gauss method \n a={}'.format(a)) # back forward for i in range(row)[::-1]: x[i] = (a[i, -1]-np.dot(a[i, i+1:row], x[i+1:row]))/a[i, i] print('x={}'.format(x)) # confirm print("ax-b\n={}".format(ori_a@x-b))
2.234375
2
setup.py
hansek/django-groups-sync
0
12794870
<gh_stars>0 import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="django-groups-sync", version="0.0.7", author="<NAME>", author_email="<EMAIL>", description="A set of management commands to export and sync Django User Groups permissions between environments.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/hansek/django-groups-sync", license="License :: OSI Approved :: MIT License", packages=setuptools.find_packages(exclude=["contrib", "docs", "tests*"]), install_requires=[], scripts=[], entry_points={}, classifiers=[ "Intended Audience :: Developers", "Operating System :: OS Independent", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Framework :: Django", "Framework :: Django :: 1.11", "Framework :: Django :: 2.2", "Framework :: Django :: 3.0", "Intended Audience :: Developers", ], )
1.289063
1
VGGish/f_XGboost_spatial_class_hand.py
ducphucnguyen/TransferLearningWFN
0
12794871
<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Thu Dec 23 11:24:09 2021 @author: nguy0936 I used this code to classify noise at different location using Xhand data """ # load packages import pandas as pd import umap import matplotlib.pyplot as plt import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import xgboost as xgb from xgboost import XGBClassifier from xgboost import cv from sklearn.metrics import roc_auc_score from hyperopt import STATUS_OK, Trials, fmin, hp, tpe from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import roc_curve from sklearn.preprocessing import label_binarize ##========== load low-high level features mdir1 = 'R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\Data set\\set1\\' mdir2 = 'R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\Data set\\set2\\' mdir6 = 'R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\Data set\\set6\\' mdir9 = 'R:\\CMPH-Windfarm Field Study\\Duc Phuc Nguyen\\4. Machine Listening\Data set\\set9_WL8\\' def load_feature(mdir): # function to load data conv1 = pd.read_csv(mdir + 'result_conv1.csv', header=None) # conv1 conv2 = pd.read_csv(mdir + 'result_conv2.csv', header=None) # conv2 embedding = pd.read_csv(mdir + 'result_embedding.csv', header=None) # embedding X_hand = pd.read_csv(mdir + 'X_hand.csv') # bias features X_hand = X_hand.fillna(0) Y = pd.read_csv(mdir + 'Y.csv', header=None) # score y = Y y[:]=np.where(y<3,0,1) # combine data lowd_conv1 = PCA(n_components=10).fit_transform(conv1) lowd_conv2 = PCA(n_components=10).fit_transform(conv2) lowd_embedding = PCA(n_components=20).fit_transform(embedding) lowd_frames = [pd.DataFrame(lowd_conv1), pd.DataFrame(lowd_conv2), pd.DataFrame(lowd_embedding)] lowd_df = pd.concat(lowd_frames, axis=1) scaled_lowd_df = StandardScaler().fit_transform(lowd_df) return lowd_conv1, lowd_embedding, y, X_hand lowd_conv1_1, lowd_embedding1, y1, X_hand1 = load_feature(mdir1) # set1 lowd_conv1_2, lowd_embedding2, y2, X_hand2 = load_feature(mdir2) # set2 lowd_conv1_6, lowd_embedding6, y6, X_hand6 = load_feature(mdir6) # set6 lowd_conv1_9, lowd_embedding9, y9, X_hand9 = load_feature(mdir9) # set9 df = np.concatenate((X_hand1, X_hand2, X_hand6), axis=0) #df_hand = np.concatenate((X_hand1, X_hand2), axis=0) #y_AM = np.concatenate((y1, y2), axis=0) scaled_df = StandardScaler().fit_transform(df) y1 = 1*np.ones((5000,), dtype=int) y2 = 2*np.ones((3000,), dtype=int) y6 = 3*np.ones((1000,), dtype=int) #y9 = 4*np.ones((1000,), dtype=int) y = np.concatenate((y1, y2, y6), axis=0) # plot umap reducer = umap.UMAP(random_state=42, n_neighbors=20, min_dist=0.0, metric='euclidean', n_components=2) data_umap = reducer.fit_transform(scaled_df) def clf_location(df,y): #========Split data for tranning and testing # split data into train and test sets (80% for training and 20% for testing) X_train, X_test, y_train, y_test = train_test_split(df, y, test_size = 0.2) # note X vs Xhand params_deep = {"objective":"multi:softmax", 'max_depth': 19, 'learning_rate': 0.13, 'gamma': 1.11, 'min_child_weight': 31, 'colsample_bytree': 0.92, 'reg_alpha': 5.0, 'reg_lambda': 0.796, 'scale_pos_weight': 1, 'n_estimators': 200} # train the classifier to the training data xgb_clf = XGBClassifier(**params_deep) xgb_clf.fit(X_train, y_train ) # train with deep features y_test_pred = xgb_clf.predict_proba(X_test) y_test = label_binarize(y_test, classes=[1, 2, 3]) # print( roc_auc_score(y_test, y_test_pred) ) return roc_auc_score(y_test, y_test_pred) #AUC = np.empty([10, 1]) #for i in range(0,10): # AUC[i] = clf_location(data_umap,y) LALC = df[:, [13, 15]] LALC[:,1] = np.multiply(LALC[:,0], LALC[:,1]) AUC2 = np.empty([10, 1]) for i in range(0,10): AUC2[i] = clf_location(LALC,y)
2.1875
2
examples/control_point_av.py
aleixq/python3-brisa
4
12794872
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php or see LICENSE file. # Copyright 2007-2008 <NAME> <<EMAIL>> from brisa.core.reactors import install_default_reactor reactor = install_default_reactor() import sys from brisa.upnp.control_point.control_point_av import ControlPointAV from brisa.core.threaded_call import run_async_function class CommandLineControlPointAV(ControlPointAV): def __init__(self): ControlPointAV.__init__(self) self.running = True self._initial_subscribes() self.devices_found = [] self.commands = {'start': self._search, 'stop': self._stop, 'list': self._cmd_list_devices, 'exit': self._exit, 'help': self._help} def _initial_subscribes(self): self.subscribe('new_device_event', self.on_new_device) self.subscribe('remove_device_event', self.on_remove_device) def on_new_device(self, dev): self.devices_found.append(dev) def on_remove_device(self, udn): for dev in self.devices: if dev.udn == udn: self.devices_found.remove(dev) break def _cmd_list_devices(self): n = 0 for dev in self.devices_found: print 'device %d:' % n print '\tudn:', dev.udn print '\tfriendly_name:', dev.friendly_name print '\tservices:', dev.services print '\ttype:', dev.device_type if dev.devices: print '\tchild devices:' for child_dev in dev.devices.values(): print '\t\tudn:', child_dev.udn print '\t\tfriendly_name:', child_dev.friendly_name print '\t\tservices:', dev.services print '\t\ttype:', child_dev.device_type print n += 1 def _cmd_set_server(self, id): self._current_server = self.devices_found[id] def _cmd_set_render(self, id): self._current_renderer = self.devices_found[id] def _cmd_browse(self, id): result = self.browse(id, 'BrowseDirectChildren', '*', 0, 10) result = result['Result'] for d in result: print "%s %s %s" % (d.id, d.title, d.upnp_class) def _search(self): self.start_search(600, 'upnp:rootdevice') print 'search started' def _stop(self): self.stop_search() print 'search stopped' def _help(self): print 'commands: start, stop, list, ' \ 'browse, set_server, set_render, play, exit, help' def _exit(self): self.running = False def run(self): self.start() run_async_function(self._handle_cmds) reactor.add_after_stop_func(self.stop) reactor.main() def _handle_cmds(self): try: while self.running: command = str(raw_input('>>> ')) try: self.commands[command]() except KeyError: if command.startswith('browse'): self._cmd_browse(command.split(' ')[1]) elif command.startswith('set_server'): self._cmd_set_server(int(command.split(' ')[1])) elif command.startswith('set_render'): self._cmd_set_render(int(command.split(' ')[1])) elif command.startswith('play'): self.av_play(command.split(' ')[1]) else: print 'Invalid command, try help' command = '' except KeyboardInterrupt, k: print 'quiting' reactor.main_quit() def main(): print "BRisa ControlPointAV example\n" cmdline = CommandLineControlPointAV() cmdline.run() if __name__ == "__main__": main()
1.90625
2
OnlineStudy/rbac/service/routers.py
NanRenTeam-9/MongoMicroCourse
132
12794873
from collections import OrderedDict from django.utils.module_loading import import_string from django.conf import settings from django.urls.resolvers import URLResolver, URLPattern import re def check_url_exclude(url): for regex in settings.AUTO_DISCOVER_EXCLUDE: if re.match(regex, url): return True def recursive_url(pre_namespace, pre_url, urlpattern, url_order_dict): """ 递归发现url :param pre_namespace: 根别名 :param pre_url: url前缀 :param urlpattern: 路由关系表 :param url_order_dict 有序url字典,用于保存递归中获取的所有路由 :return: """ for item in urlpattern: if isinstance(item, URLPattern): # 非路由分发 if not item.name: continue if pre_namespace: name = '%s:%s' % (pre_namespace, item.name) else: name = item.name url = pre_url + item.pattern.regex.pattern url = url.replace('^', '').replace('$', '') # 去掉正则表达式里的前缀和后缀 if check_url_exclude(url): continue url_order_dict[name] = {'name': name, 'url': url} elif isinstance(item, URLResolver): # 路由分发 if pre_namespace: if item.namespace: namespace = '%s:%s' % (pre_namespace, item.namespace) else: # namespace = item.namespace # 另一种写法 namespace = pre_namespace else: if item.namespace: namespace = item.namespace else: namespace = None # print(item.pattern.regex.pattern) recursive_url(namespace, pre_url + item.pattern.regex.pattern, item.url_patterns, url_order_dict) def get_all_url_dict(): url_order_dict = OrderedDict() root = import_string(settings.ROOT_URLCONF) recursive_url(None, '/', root.urlpatterns, url_order_dict) return url_order_dict
2.375
2
tests/views/test_camera_control_widget.py
lsst-sitcom/spot_motion_monitor
0
12794874
# This file is part of spot_motion_monitor. # # Developed for LSST System Integration, Test and Commissioning. # # See the LICENSE file at the top-level directory of this distribution # for details of code ownership. # # Use of this source code is governed by a 3-clause BSD-style # license that can be found in the LICENSE file. from PyQt5.QtCore import Qt from spot_motion_monitor.views.camera_control_widget import CameraControlWidget class TestCameraControl(): def setup_class(self): self.fast_timeout = 250 # ms def stateIsFalse(self, state): return not state def stateIsTrue(self, state): print("A:", state) return state def test_startStopCameraButton(self, qtbot): cc = CameraControlWidget() cc.show() qtbot.addWidget(cc) assert not cc.startStopButton.isChecked() assert cc.startStopButton.text() == "Start Camera" assert cc.acquireRoiCheckBox.isEnabled() is False assert cc.acquireFramesButton.isEnabled() is False with qtbot.waitSignal(cc.cameraState, timeout=self.fast_timeout, check_params_cb=self.stateIsTrue): qtbot.mouseClick(cc.startStopButton, Qt.LeftButton) assert cc.startStopButton.isChecked() assert cc.startStopButton.text() == "Stop Camera" assert cc.acquireRoiCheckBox.isEnabled() is True assert cc.acquireFramesButton.isEnabled() is True with qtbot.waitSignal(cc.cameraState, timeout=self.fast_timeout, check_params_cb=self.stateIsFalse): qtbot.mouseClick(cc.startStopButton, Qt.LeftButton) assert not cc.startStopButton.isChecked() assert cc.startStopButton.text() == "Start Camera" def test_acquireFramesButton(self, qtbot): cc = CameraControlWidget() cc.show() qtbot.addWidget(cc) qtbot.mouseClick(cc.startStopButton, Qt.LeftButton) assert not cc.acquireFramesButton.isChecked() assert cc.acquireFramesButton.text() == "Start Acquire Frames" with qtbot.waitSignal(cc.acquireFramesState, timeout=self.fast_timeout, check_params_cb=self.stateIsTrue): qtbot.mouseClick(cc.acquireFramesButton, Qt.LeftButton) assert cc.acquireFramesButton.isChecked() assert not cc.startStopButton.isEnabled() assert cc.acquireFramesButton.text() == "Stop Acquire Frames" with qtbot.waitSignal(cc.acquireFramesState, timeout=self.fast_timeout, check_params_cb=self.stateIsFalse): qtbot.mouseClick(cc.acquireFramesButton, Qt.LeftButton) assert not cc.acquireFramesButton.isChecked() assert cc.acquireFramesButton.text() == "Start Acquire Frames" assert cc.startStopButton.isEnabled() def test_acquireRoiCheckbox(self, qtbot): cc = CameraControlWidget() cc.show() qtbot.addWidget(cc) qtbot.mouseClick(cc.startStopButton, Qt.LeftButton) assert not cc.acquireRoiCheckBox.isChecked() with qtbot.waitSignal(cc.acquireRoiState, timeout=self.fast_timeout, check_params_cb=self.stateIsTrue): qtbot.mouseClick(cc.acquireRoiCheckBox, Qt.LeftButton) assert cc.acquireRoiCheckBox.isChecked() assert not cc.roiFpsSpinBox.isEnabled() assert not cc.bufferSizeSpinBox.isEnabled() with qtbot.waitSignal(cc.acquireRoiState, timeout=self.fast_timeout, check_params_cb=self.stateIsFalse): qtbot.mouseClick(cc.acquireRoiCheckBox, Qt.LeftButton) assert not cc.acquireRoiCheckBox.isChecked() assert cc.roiFpsSpinBox.isEnabled() assert cc.bufferSizeSpinBox.isEnabled() def test_roiFpsSpinBox(self, qtbot): cc = CameraControlWidget() cc.show() qtbot.addWidget(cc) assert cc.roiFpsSpinBox.value() == 40 cc.roiFpsSpinBox.setValue(0) assert cc.roiFpsSpinBox.value() == 1 cc.roiFpsSpinBox.setValue(200) assert cc.roiFpsSpinBox.value() == 150 cc.roiFpsSpinBox.stepUp() assert cc.roiFpsSpinBox.value() == 150 cc.roiFpsSpinBox.stepDown() assert cc.roiFpsSpinBox.value() == 149 def test_bufferSizeSpinBox(self, qtbot): cc = CameraControlWidget() cc.show() qtbot.addWidget(cc) assert cc.bufferSizeSpinBox.value() == 1024 cc.bufferSizeSpinBox.stepUp() assert cc.bufferSizeSpinBox.value() == 2048 cc.bufferSizeSpinBox.setValue(1024) cc.bufferSizeSpinBox.stepDown() assert cc.bufferSizeSpinBox.value() == 512 def test_showFramesCheckBox(self, qtbot): cc = CameraControlWidget() cc.show() qtbot.addWidget(cc) assert cc.showFramesCheckBox.isChecked() qtbot.mouseClick(cc.showFramesCheckBox, Qt.LeftButton) assert not cc.showFramesCheckBox.isChecked() def test_takeScreenshotButton(self, qtbot): cc = CameraControlWidget() cc.show() qtbot.addWidget(cc) assert cc.takeScreenshotButton.isEnabled() is False qtbot.mouseClick(cc.startStopButton, Qt.LeftButton) qtbot.mouseClick(cc.acquireFramesButton, Qt.LeftButton) assert cc.takeScreenshotButton.isEnabled() is True with qtbot.waitSignal(cc.takeScreenshotState, timeout=self.fast_timeout): qtbot.mouseClick(cc.takeScreenshotButton, Qt.LeftButton)
2.15625
2
baselines/neural_best_buddies/get_missing.py
iviazovetskyi/rewriting
526
12794875
<reponame>iviazovetskyi/rewriting import os from netdissect import pidfile from options.options import Options from tqdm import tqdm opt = Options().parse() def get_imgs(): img_nums = sorted([int(f.strip().split(f'{base_name}_')[1].split('.')[0]) for f in os.listdir(opt.source)]) file_names = [f'{base_name}_{num}.png' for num in img_nums] return img_nums, file_names def get_imgnums(root): base_name = os.path.basename(root) img_nums = sorted([int(f.strip().split(f'{base_name}_')[1].split('.')[0]) for f in os.listdir(root)]) file_names = [f'{base_name}_{num}.png' for num in img_nums] return list(zip(img_nums, file_names))[:10000] def check_missing(src_root, corr_root): dne = [] for imgnum, file_path in tqdm(get_imgnums(src_root)): if not os.path.exists(os.path.join(corr_root, str(imgnum), 'BtoA.npy')): dne.append(imgnum) return dne missing = check_missing(opt.source, opt.results_dir) base_name = os.path.basename(opt.source) def main(): import numpy as np from models import vgg19_model from algorithms import neural_best_buddies as NBBs from util import util from util import MLS vgg19 = vgg19_model.define_Vgg19(opt) img_nums, images = get_imgs() for imgnum in tqdm(missing): print(imgnum) save_dir = os.path.join(opt.results_dir, str(imgnum)) if os.path.exists(os.path.join(save_dir, 'BtoA.npy')): continue try: print('Working on', imgnum) source_path = os.path.join(opt.source, f'{base_name}_{imgnum}.png') A = util.read_image(source_path, opt.imageSize) B = util.read_image(opt.target, opt.imageSize) print(A.shape, B.shape) nbbs = NBBs.sparse_semantic_correspondence(vgg19, opt.gpu_ids, opt.tau, opt.border_size, save_dir, opt.k_per_level, opt.k_final, opt.fast) points = nbbs.run(A, B) mls = MLS.MLS(v_class=np.int32) mls.run_MLS_in_folder(root_folder=save_dir) except Exception as e: print(e) with open(os.path.join(save_dir, 'no_correspondence.txt'), 'w') as f: f.write('') if __name__ == "__main__": main()
2.21875
2
asyncio_connection_pool/contrib/datadog.py
fellowinsights/asyncio-connection-pool
6
12794876
<gh_stars>1-10 from contextlib import asynccontextmanager, AsyncExitStack from datadog import statsd from ddtrace import tracer from typing import AsyncIterator, TypeVar from asyncio_connection_pool import ConnectionPool as _ConnectionPool __all__ = ("ConnectionPool",) Conn = TypeVar("Conn") class ConnectionPool(_ConnectionPool[Conn]): def __init__(self, service_name, *args, extra_tags=None, **kwargs): super().__init__(*args, **kwargs) self._connections_acquiring = 0 self._service_name = service_name self._is_bursting = False self._reported_hitting_burst_limit = False self._extra_tags = extra_tags or [] self._loop.call_soon(self._periodically_send_metrics) def _periodically_send_metrics(self): try: self._record_pressure() finally: self._loop.call_later(60, self._periodically_send_metrics) def _record_pressure(self): statsd.gauge( f"{self._service_name}.pool.total_connections", self._total, tags=self._extra_tags, ) statsd.gauge( f"{self._service_name}.pool.available_connections", self.available.qsize(), tags=self._extra_tags, ) statsd.gauge( f"{self._service_name}.pool.waiting", self._waiters, tags=self._extra_tags ) statsd.gauge( f"{self._service_name}.pool.connections_used", self.in_use, tags=self._extra_tags, ) self._record_connection_acquiring() if self._total > self.max_size: if not self._is_bursting: self._is_bursting = True statsd.event( f"{self._service_name} pool using burst capacity", f"Pool max size of {self.max_size} will be exceeded temporarily, up to {self.burst_limit}", # noqa E501 alert_type="warning", tags=self._extra_tags, ) elif self._is_bursting: self._is_bursting = False self._reported_hitting_burst_limit = False statsd.event( f"{self._service_name} pool no longer bursting", f"Number of connections has dropped below {self.max_size}", alert_type="success", tags=self._extra_tags, ) if self._total == self.burst_limit: self._reported_hitting_burst_limit = True statsd.event( f"{self._service_name} pool reached burst limit", "There are not enough redis connections to satisfy all users", alert_type="error", tags=self._extra_tags, ) def _record_connection_acquiring(self, value=0): self._connections_acquiring += value statsd.gauge( f"{self._service_name}.pool.connections_acquiring", self._connections_acquiring, tags=self._extra_tags, ) def _connection_maker(self): statsd.increment( f"{self._service_name}.pool.getting_connection", tags=self._extra_tags + ["method:new"], ) async def connection_maker(self): with tracer.trace( f"{self._service_name}.pool._create_new_connection", service=self._service_name, ): return await super()._connection_maker() return connection_maker(self) def _connection_waiter(self): statsd.increment( f"{self._service_name}.pool.getting_connection", tags=self._extra_tags + ["method:wait"], ) async def connection_waiter(self): with tracer.trace( f"{self._service_name}.pool._wait_for_connection", service=self._service_name, ): return await super()._connection_waiter() return connection_waiter(self) def _get_conn(self): if not self.available.empty(): statsd.increment( f"{self._service_name}.pool.getting_connection", tags=self._extra_tags + ["method:available"], ) return super()._get_conn() @asynccontextmanager async def get_connection(self) -> AsyncIterator[Conn]: # type: ignore async with AsyncExitStack() as stack: self._record_connection_acquiring(1) try: with tracer.trace( f"{self._service_name}.pool.acquire_connection", service=self._service_name, ): conn = await stack.enter_async_context(super().get_connection()) finally: self._record_connection_acquiring(-1) self._record_pressure() yield conn self._record_pressure()
2.234375
2
parse_map.py
cadoman/map-parser
0
12794877
<filename>parse_map.py import argparse import matplotlib.pyplot as plt from shapely import geometry from map_extractor import preprocessing, shape_extraction, country_naming import skimage.color from map_extractor.PolygonGroup import PolygonGroup import json import numpy as np import cv2 def display_img(img, title="", big=False) : if big : plt.figure(figsize=(18, 16), dpi= 80, facecolor='w', edgecolor='k') plt.title(title) plt.imshow(img, cmap='gray') plt.show() def parse_ignored_boxes(box_string): return [geometry.box(tup[0], tup[1], tup[2], tup[3]) for tup in eval(box_string)] def get_args() : parser = argparse.ArgumentParser(description='Parse a map to labelled svgs') parser.add_argument("--input", type=str, dest="input_file", help="Path of the map to parse", required=True) parser.add_argument("--ignore", type=str, dest="ignored_boxes", help='A list of comma separated rectangle (minx, miny, maxx, maxy), ex : "(20, 30, 200, 400) , (0, 0, 100, 100)"') parser.add_argument( "--colors", type=int, dest="nb_colors", help="The estimated number of color on the map (usually works better by over-estimating the number of colors)", required=True ) return parser.parse_args() def main() : args = get_args() print('Loading image...') image = skimage.color.rgba2rgb(plt.imread(args.input_file)) if args.ignored_boxes : print('Removing ignored areas...') image = preprocessing.remove_ignored_areas(image, parse_ignored_boxes(args.ignored_boxes)) print('Clustering image colors..') image_clustered = preprocessing.regroup_image_colors(image, args.nb_colors) # image_clustered = skimage.color.rgba2rgb(plt.imread('notebooks/tmp/clustered_europe.png')) polygon_groups = shape_extraction.extract_shapes(image_clustered) # for i, shape in enumerate(shapes) : # with open('/tmp/shape_'+str(i)+'.json', 'w') as f : # dict_shape = shape.to_dict() # json_rep = json.dumps(dict_shape) # f.write(json_rep) # for i in range(16) : # with open('/tmp/shape_'+str(i)+'.json', 'r') as f : # jsonrep = f.read() # a = PolygonGroup.from_dict(json.loads(jsonrep)) # polygon_groups.append(a) # img = skimage.color.rgba2rgb(plt.imread('notebooks/tmp/europe_cleaned.png')) pg_group_named = [] print('Performing OCR with Tesseract ...') ocr_results = country_naming.apply_tesseract(image) print('Extracting OCR results..') for group in polygon_groups: pg_group_named = np.concatenate((pg_group_named, country_naming.label_polygon_group(ocr_results, group))) print('Done') def disp_ocr_results(img, ocr_results) : todisp = img.copy() disp_color = (int(np.max(img)) , 0, 0) for i, row in ocr_results.iterrows(): (minx, miny, maxx, maxy) = np.array(row['bbox'].bounds).astype(int) cv2.rectangle(todisp, (minx, miny), (maxx, maxy),disp_color , 2) cv2.putText(todisp,row['text'], (maxx+3,maxy), cv2.FONT_HERSHEY_SIMPLEX, 1, disp_color, 2) display_img(todisp, '', True) if __name__ == "__main__" : main()
2.828125
3
assemblyline/assemblyline/common/yara/yara_importer.py
dendisuhubdy/grokmachine
46
12794878
<reponame>dendisuhubdy/grokmachine import os import logging from assemblyline.common import isotime from assemblyline.al.common import forge class YaraImporter(object): REQUIRED_META = ['description', 'id', 'organisation', 'poc', 'rule_version', 'yara_version', 'rule_group'] def __init__(self, logger=None): if not logger: from assemblyline.al.common import log as al_log al_log.init_logging('yara_importer') logger = logging.getLogger('assemblyline.yara_importer') logger.setLevel(logging.INFO) yara_parser_class = forge.get_yara_parser() self.ds = forge.get_datastore() self.yp = yara_parser_class() self.log = logger self._id_cache = {} self._name_cache = [] def _get_next_id(self, org): if org in self._id_cache: self._id_cache[org] += 1 else: self._id_cache[org] = self.ds.get_last_signature_id(org) + 1 return self._id_cache[org] # noinspection PyMethodMayBeStatic def translate_rule(self, rule): return rule def display_rule(self, rule): return self.yp.dump_rule_file([rule], fake_dependencies=True) def display_rules(self, rules): return self.yp.dump_rule_file(rules, fake_dependencies=True) def import_now(self, rules): failed_list = [] for rule in rules: validation_error = rule.get('validation_error', None) if validation_error: failed_list.append((rule['name'], "Previously failed rule validation (%s)" % validation_error)) continue if rule['meta']['id'] == "<AUTO_INCREMENT>": rule['meta']['id'] = "%s_%06d" % (rule['meta']['organisation'], self._get_next_id(rule['meta']['organisation'])) if rule['meta']['rule_version'] == "<AUTO_INCREMENT>": rule['meta']['rule_version'] = self.ds.get_last_rev_for_id(rule['meta']['id']) if rule.get('is_new_revision', False): del rule['is_new_revision'] new_id, new_rev = self.ds.get_next_rev_for_name(rule['meta']['organisation'], rule['name']) if new_id is not None and new_rev is not None: rule['meta']['id'], rule['meta']['rule_version'] = new_id, new_rev else: failed_list.append((rule['name'], "Could not find matching rule to increment revision number.")) continue key = "%sr.%s" % (rule['meta']['id'], rule['meta']['rule_version']) yara_version = rule['meta'].get('yara_version', None) rule['meta']['creation_date'] = isotime.now_as_iso() rule['meta']['last_saved_by'] = rule['meta']['al_imported_by'] rule['depends'], rule['modules'] = self.yp.parse_dependencies(rule['condition'], self.yp.YARA_MODULES.get(yara_version, None)) res = self.yp.validate_rule(rule) if res['valid']: rule['warning'] = res.get('warning', None) self.ds.save_signature(key, rule) self.log.info("Added signature %s" % rule['name']) else: failed_list.append((rule['name'], "Failed rule validation (%s)" % res['message']['error'])) return failed_list def validate_rule(self, rule): return self.yp.validate_rule(rule) # noinspection PyBroadException def validate(self, field, value, rule): if not value: return False, "%s cannot be empty." % field elif field == "name": if " " in value: return False, "There should be no space in the name." elif field == "yara_version": if value not in self.yp.VALID_YARA_VERSION: return False, "yara_version should be one of the following: %s" % ", ".join(self.yp.VALID_YARA_VERSION) elif field == "rule_version": try: int(value) except: return False, "rule_version should be a simple integer value" elif field == "rule_group": if value not in self.yp.RULE_GROUPS: return False, "rule_group should be one of the following: %s" % ", ".join(self.yp.RULE_GROUPS) elif field == "organisation": if value != value.upper(): return False, "organisation should be in all CAPS." elif field == "id": if not value == "<AUTO_INCREMENT>": try: org, num = value.split("_") if len(num) != 6: error = True elif org != rule['meta']['organisation']: error = True else: int(num) error = False except: error = True if error: return False, "id should have the following schema: ORG_000000" return True, "" def check_for_id_conflicts(self, rid, rev): if rid is None or rev is None: return False key = "%sr.%s" % (rid, rev) id_lookup = self.ds.get_signature(key) if id_lookup: return True return False def check_for_name_conflicts(self, name): try: name_lookup = self.ds.search_signature(query="name:%s" % name, rows=0) if name_lookup['total'] > 0: return True if name in self._name_cache: return True return False finally: self._name_cache.append(name) def parse_data(self, yara_bin, force_safe_str=False): output = [] parsed_rules = self.yp.parse_rule_file(yara_bin, force_safe_str=force_safe_str) for rule in parsed_rules: missing_meta = [] for item in self.REQUIRED_META: if item not in rule['meta']: missing_meta.append(item) id_conflict = self.check_for_id_conflicts(rule['meta'].get('id', None), rule['meta'].get('rule_version', None)) name_conflict = self.check_for_name_conflicts(rule['name']) output.append({'rule': rule, "missing_meta": sorted(missing_meta, reverse=True), "id_conflict": id_conflict, "name_conflict": name_conflict}) return output def parse_file(self, cur_file, force_safe_str=False): cur_file = os.path.expanduser(cur_file) if os.path.exists(cur_file): with open(cur_file, "rb") as yara_file: yara_bin = yara_file.read() return self.parse_data(yara_bin, force_safe_str=force_safe_str) else: raise Exception("File '%s' does not exists.") def parse_files(self, files, force_safe_str=False): output = {} for cur_file in files: try: output[cur_file] = self.parse_file(cur_file, force_safe_str=force_safe_str) except Exception, e: output[cur_file] = e return output
1.757813
2
test.py
doncat99/zvt
10
12794879
<filename>test.py # import asyncio # import functools # import time # import random # import multiprocessing # import aiomultiprocess # import uvloop # import numpy as np # from tqdm import tqdm # # # 下载协程 # # async def download(url): # # cost = time.time() # # await asyncio.sleep(3) # 模拟1秒的下载过程 # # return 'cost: {}'.format(round(time.time()-cost, 3)) # # # 回调函数 # # def on_finish(task): # # print('下载完成:', task.result()) # 获取协程返回值或者抛出的异常 # # def mp_schedule(): # # pages = list(range(500)) # # prefix = 'https://yuerblog.cc/' # # urls = ['{}{}'.format(prefix, page) for page in pages] # # # url_chunks = np.array_split(urls ,5) # # with multiprocessing.Pool(processes=5) as pool: # # for url_chunk in urls: # # pool.apply_async(download, args = (url_chunk, ), callback = on_finish) # # async def aio_mp_schedule(): # # pages = list(range(500)) # # prefix = 'https://yuerblog.cc/' # # urls = ['{}{}'.format(prefix, page) for page in pages] # # pbar = tqdm(total=len(urls), ncols=80) # # async with aiomultiprocess.Pool(processes=5, loop_initializer=uvloop.new_event_loop) as pool: # # async for result in pool.map(download, urls): # # pbar.update() # # async def schedule(): # # pages = list(range(500)) # # prefix = 'https://yuerblog.cc/' # # tasks = [asyncio.create_task(download('{}{}'.format(prefix, page))) for page in pages] # # responses = [await t for t in tqdm(asyncio.as_completed(tasks), total=len(tasks), ncols=80)] # # if __name__ == '__main__': # # uvloop.install() # # cost = time.time() # # # asyncio.run(schedule()) # # mp_schedule() # # print("total time cost: {}".format(round(time.time()-cost, 3))) # import multiprocessing as mp # import time # async def foo_pool(x): # await asyncio.sleep(2) # return x*x # result_list = [] # def log_result(result): # # This is called whenever foo_pool(i) returns a result. # # result_list is modified only by the main process, not the pool workers. # result_list.append(result) # print(result) # def apply_async_with_callback(): # pool = mp.Pool(processes=3) # for i in range(10): # pool.apply_async(foo_pool, args = (i, ), callback = log_result) # pool.close() # pool.join() # print(result_list) # if __name__ == '__main__': # cost = time.time() # apply_async_with_callback() # print("total cost: {}".format(round(time.time()-cost, 3))) # # def on_finish(future, n): # # print('{}: future done: {}'.format(n, future.result())) # # async def register_callbacks(all_done): # # print('registering callbacks on future') # # page = 1 # # while True: # # all_done.add_done_callback(functools.partial(on_finish, n=page)) # # page += 1 # # if page > 5: # # return # # async def main(all_done): # # await register_callbacks(all_done) # # print('setting result of future') # # all_done.set_result('the result') # # event_loop = asyncio.get_event_loop() # # try: # # all_done = asyncio.Future() # # event_loop.run_until_complete(main(all_done)) # # finally: # # event_loop.close() # # async def download(fut, delay, value): # # cost = time.time() # # # Sleep for *delay* seconds. # # await asyncio.sleep(delay) # # # Set *value* as a result of *fut* Future. # # fut.set_result('task: {} cost: {}'.format(value, round(time.time()-cost, 3))) # # async def main(): # # # Get the current event loop. # # # loop = asyncio.get_running_loop() # # # Create a new Future object. # # # fut = loop.create_future() # # # Run "set_after()" coroutine in a parallel Task. # # # We are using the low-level "loop.create_task()" API here because # # # we already have a reference to the event loop at hand. # # # Otherwise we could have just used "asyncio.create_task()". # # while True: # # page = 1 # # asyncio.create_task(download(fut, 1, page)) # # if page > 5: # # break # # # Wait until *fut* has a result (1 second) and print it. # # print(await fut) # # asyncio.run(main()) # import aiohttp # import asyncio # import time # from bs4 import BeautifulSoup # from urllib.request import urljoin # import re # import multiprocessing as mp # base_url = "https://morvanzhou.github.io/" # seen = set() # unseen = set([base_url]) # def parse(html): # soup = BeautifulSoup(html, 'lxml') # urls = soup.find_all('a', {"href": re.compile('^/.+?/$')}) # title = soup.find('h1').get_text().strip() # page_urls = set([urljoin(base_url, url['href']) for url in urls]) # url = soup.find('meta', {'property': "og:url"})['content'] # return title, page_urls, url # async def crawl(url, session): # r = await session.get(url) # html = await r.text() # await asyncio.sleep(0.1) # slightly delay for downloading # return html # async def main(loop): # processes = 8 # pool = mp.Pool(processes) # slightly affected # async with aiohttp.ClientSession() as session: # count = 1 # while len(unseen) != 0: # print('\nAsync Crawling...') # tasks = [loop.create_task(crawl(url, session)) for url in unseen] # finished, unfinished = await asyncio.wait(tasks) # htmls = [f.result() for f in finished] # print('\nDistributed Parsing...') # parse_jobs = [pool.apply_async(parse, args=(html,)) for html in htmls] # results = pool.map(parse, htmls) # # results = pool.map_async(parse, htmls).get() # # print(parse_jobs.get()) # results = [j.get() for j in parse_jobs] # # print(results) # print('\nAnalysing...') # seen.update(unseen) # unseen.clear() # for title, page_urls, url in results: # # print(count, title, url) # unseen.update(page_urls - seen) # count += 1 # if __name__ == "__main__": # t1 = time.time() # loop = asyncio.get_event_loop() # loop.run_until_complete(main(loop)) # loop.close() # print("Async total time: ", time.time() - t1) import requests import json import pandas as pd url = 'http://127.0.0.1:5010/get_all/' def a(): try: resp = requests.get(url) except Exception as e: print(f'url: {url}, error: {e}') return pd.DataFrame() proxy_list_string = json.loads(resp.content) for proxy in proxy_list_string: print(proxy) # proxy_dict = json.loads(proxy) # print(proxy_dict) a()
2.609375
3
teamdjibouti-solutions/teamdjibouti_contains.py
benkhaireh/parcrobotic
0
12794880
# Script pour rechercher un entier x dans un tableau # ------------------------------------------------------------ # Fonction de recherche d'un entier x dans un tableau def contient(arr, taille, x): # Recherche de l'entier x dans le tableau. if x in arr: print("true") else: print("false") # ------------------------------------------------------------ # Execution de la fonction de recherche contient([1, 2, 3, 4, 5, 6], 6, 4)
3.6875
4
pyny/fields.py
7pairs/pyny
0
12794881
<filename>pyny/fields.py # -*- coding: utf-8 -*- # # Copyright 2015−2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from abc import ABCMeta, abstractmethod import datetime import decimal class BaseField(metaclass=ABCMeta): """ すべてのフィールドクラスのスーパークラス。 新しいフィールドクラスを実装する場合は当クラスを継承すること。 """ def __init__(self, name=None): """ BaseFieldを構築する。 :param name: 当フィールドが参照する項目のキー :type name: str """ # プロパティを設定する self.name = name @abstractmethod def convert(self, target): """ 指定された値をそのフィールドクラスに適した型に変換する。 サブクラスでそれぞれのクラスに応じた値を返すようオーバーライドすること。 :param target: 変換対象の値 :type target: object :return: 変換後の値 :rtype: object """ raise NotImplementedError() class StringField(BaseField): """ 文字列を表現するフィールドクラス。 """ def __init__(self, name=None): """ StringFieldを構築する。 :param name: 当フィールドが参照する項目のキー :type name: str """ # プロパティを設定する super().__init__(name) def convert(self, target): """ 指定された値を文字列に変換する。 :param target: 変換対象の値 :type target: object :return: 変換後の値 :rtype: str """ # 対象が文字列の場合はそのまま返却する if isinstance(target, str): return target # 対象を文字列に変換する return str(target) class IntegerField(BaseField): """ 整数を表現するフィールドクラス。 """ def __init__(self, name=None): """ IntegerFieldを構築する。 :param name: 当フィールドが参照する項目のキー :type name: str """ # プロパティを設定する super().__init__(name) def convert(self, target): """ 指定された値を整数に変換する。 :param target: 変換対象の値 :type target: object :return: 変換後の値 :rtype: int """ # 対象が整数の場合はそのまま返却する if isinstance(target, int): return target # 対象を整数に変換する return int(target) class DecimalField(BaseField): """ 固定小数点数を表現するフィールドクラス。 """ def __init__(self, name=None): """ DecimalFieldを構築する。 :param name: 当フィールドが参照する項目のキー :type name: str """ # プロパティを設定する super().__init__(name) def convert(self, target): """ 指定された値を固定小数点数に変換する。 :param target: 変換対象の値 :type target: object :return: 変換後の値 :rtype: decimal.Decimal """ # 対象が固定小数点数の場合はそのまま返却する if isinstance(target, decimal.Decimal): return target # 対象を固定小数点数に変換する return decimal.Decimal(str(target)) class FloatField(BaseField): """ 浮動小数点数を表現するフィールドクラス。 """ def __init__(self, name=None): """ FloatFieldを構築する。 :param name: 当フィールドが参照する項目のキー :type name: str """ # プロパティを設定する super().__init__(name) def convert(self, target): """ 指定された値を浮動小数点数に変換する。 :param target: 変換対象の値 :type target: object :return: 変換後の値 :rtype: float """ # 対象が浮動小数点数の場合はそのまま返却する if isinstance(target, float): return target # 対象を浮動小数点数に変換する return float(target) class DateField(BaseField): """ 日付を表現するフィールドクラス。 """ def __init__(self, name=None, fmt='%Y/%m/%d'): """ DateFieldを構築する。 :param name: 当フィールドが参照する項目のキー :type name: str :param fmt: 日付のフォーマット :type fmt: str """ # プロパティを設定する super().__init__(name) self._fmt = fmt def convert(self, target): """ 指定された値を日付に変換する。 :param target: 変換対象の値 :type target: object :return: 変換後の値 :rtype: datetime.date """ # 対象が日付の場合はそのまま返却する if isinstance(target, datetime.date): return target # 対象を日付に変換する return datetime.datetime.strptime(str(target), self._fmt).date() class DateTimeField(BaseField): """ 日時を表現するフィールドクラス。 """ def __init__(self, name=None, fmt='%Y/%m/%d %H:%M:%S'): """ DateTimeFieldを構築する。 :param name: 当フィールドが参照する項目のキー :type name: str :param fmt: 日時のフォーマット :type fmt: str """ # プロパティを設定する super().__init__(name) self._fmt = fmt def convert(self, target): """ 指定された値を日時に変換する。 :param target: 変換対象の値 :type target: object :return: 変換後の値 :rtype: datetime.datetime """ # 対象が日時の場合はそのまま返却する if isinstance(target, datetime.datetime): return target # 対象を日時に変換する return datetime.datetime.strptime(str(target), self._fmt)
2.234375
2
idingtalk/idingtalk/__init__.py
icmdb/iwebhooks
0
12794882
# -*- coding: utf-8 -*- from .incoming import dingtalk_incoming if __name__ == "__main__": token = "" payload = { "msgtype" : "markdown", "markdown": { "title": "This is the title!", "text" : "\n\n".join([ "# This is title", "> This is first line.", "> This is second line.", ]) }, "at" : { "atMobiles": ["18600000000"], "isAll": False } } dingtalk_incoming(token, payload=payload, at_mobiles=["18600000000"])
2.0625
2
yolov5-coreml-tflite-converter/utils/constants.py
SchweizerischeBundesbahnen/sbb-ml-models
0
12794883
<filename>yolov5-coreml-tflite-converter/utils/constants.py<gh_stars>0 import os # -------------------------------------------------------------------------------------------------------------------- # # Constants # -------------------------------------------------------------------------------------------------------------------- # # General # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # DATA_DIR = os.path.join('data') OUTPUT_DIR = os.path.join(DATA_DIR, 'output') FLOAT32 = 'float32' FLOAT16 = 'float16' INT8 = 'int8' FULLINT8 = 'fullint8' FLOAT32_SUFFIX = '_float32' FLOAT16_SUFFIX = '_float16' INT8_SUFFIX = '_int8' FULLINT8_SUFFIX = '_fullint8' BATCH_SIZE = 1 NB_CHANNEL = 3 # x, y, w, h, score, class1, class2, ... XY_SLICE = (0, 2) WH_SLICE = (2, 4) SCORE_SLICE = (4, 5) CLASSES_SLICE = (5, 0) NB_OUTPUTS = 5 # 1 objectness score + 4 bounding box coordinates NORMALIZATION_FACTOR = 255. # Input names IMAGE_NAME = 'image' NORMALIZED_SUFFIX = '_normalized' QUANTIZED_SUFFIX = '_quantized' IOU_NAME = 'iou threshold' CONF_NAME = 'conf threshold' # Colors BLUE = '\033[36m' GREEN = '\033[32m' RED = '\033[31m' YELLOW = '\033[33m' PURPLE = '\033[34m' END_COLOR = '\033[0m' BOLD = '\033[1m' # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # CoreML converter # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # COREML_SUFFIX = '.mlmodel' TORCHSCRIPT_SUFFIX = '.torchscript.pt' # Outputs names CONFIDENCE_NAME = 'confidence' # list of class scores COORDINATES_NAME = 'coordinates' # (x, y, w, h) RAW_PREFIX = 'raw_' # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # TFLite converter # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # TFLITE_SUFFIX = '.tflite' LABELS_NAME = 'labels.txt' # Format TFLITE = 'tflite' SAVED_MODEL = 'saved_model' GRAPH_DEF_SUFFIX = '.pb' # NMS PADDED = 'padded' SIMPLE = 'simple' COMBINED = 'combined' # Representative dataset BAHNHOF = 'bahnhof' WAGEN = 'wagen' TRAKTION = 'traktion' # Output names BOUNDINGBOX_NAME = 'location' # (y1, x1, y2, x2) CLASSES_NAME = 'category' # class index SCORES_NAME = 'score' # confidence score NUMBER_NAME = 'number of detections' # number of detected object in the image DETECTIONS_NAME = 'detection results' PREDICTIONS_NAME = 'predictions' # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # ONNX converter # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # ONNX_SUFFIX = '.onnx' OPSET = 12 # -------------------------------------------------------------------------------------------------------------------- # # Default values # -------------------------------------------------------------------------------------------------------------------- # DEFAULT_COREML_NAME = 'yolov5-coreML' DEFAULT_TFLITE_NAME = 'yolov5-TFLite' DEFAULT_ONNX_NAME = 'yolov5-ONNX' # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # Common values # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # DEFAULT_MODEL_OUTPUT_DIR = os.path.join(OUTPUT_DIR, 'converted_models') DEFAULT_PT_MODEL = os.path.join('data', 'models', 'best.pt') DEFAULT_INPUT_RESOLUTION = 640 DEFAULT_QUANTIZATION_TYPE = FLOAT32 DEFAULT_IOU_THRESHOLD = 0.45 DEFAULT_CONF_THRESHOLD = 0.25 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # TFlite additional default values # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # DEFAULT_SOURCE_DATASET = WAGEN DEFAULT_NB_CALIBRATION = 500 DEFAULT_MAX_NUMBER_DETECTION = 20 def get_zipfile_path(source): return os.path.join(DATA_DIR, f'{source}_500.zip') def get_dataset_url(source): return f'https://sbb-ml-public-resources-prod.s3.eu-central-1.amazonaws.com/quantization/{source}_500.zip' # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # Inference # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # DEFAULT_DETECTED_IMAGE_DIR = os.path.join(OUTPUT_DIR, 'detections')
1.734375
2
subsworld/subsEnd.py
mugdhaadhav/subsworld
1
12794884
<filename>subsworld/subsEnd.py def endSubStatus(val): if val == 0: print('\nSubtitle Downloaded Successfully... ') if not input('\nPlease press enter to keep searching the same or press any other key to search other substitle: '): return else: from subsworld import subsworld subsworld() elif val == 1: print('\nUnknown Error Occured... ') return elif val == 2: print('\nSubtitles not found... ') if not input('\nPlease press enter to exit or press any other key to search other substitle: '): print('Thanks for using subsworld ... ') exit(0) else: return
3.34375
3
src/setup.py
GML22/GeocoderPL
0
12794885
<reponame>GML22/GeocoderPL from setuptools import setup setup( name='geocoderpl', version='1.1', description='GeocoderPL is an application written in Python, which can be used for geocoding address points in ' + 'Poland along with the possibility to display basic information about a given address point and the ' + 'building assigned to this address. GeocoderPL has a form of search engine with three map layers: ' + 'OpenStreetMap, Google Maps and Stamens Map.', author='<NAME>', author_email='<EMAIL>', license="MIT License", keywords="search-engine geocoding numpy pyqt5 geospatial sqlite3 gdal-python superpermutation folium-maps", url="https://github.com/GML22/GeocoderPL", packages=['geocoderpl'], install_requires=['folium', 'numpy', 'pyqt5', 'unidecode', 'pyproj', 'lxml', 'geocoder', 'pandas', 'matplotlib', 'setuptools', 'sqlalchemy', 'python-dotenv'], )
2.453125
2
tests/plugins/test_yum_inject.py
goldmann/dock
0
12794886
""" Copyright (c) 2015 Red Hat, Inc All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. """ from __future__ import print_function import os try: from collections import OrderedDict except ImportError: # Python 2.6 from ordereddict import OrderedDict from dock.core import DockerTasker from dock.inner import DockerBuildWorkflow from dock.plugin import PreBuildPluginsRunner, PostBuildPluginsRunner from dock.plugins.pre_inject_yum_repo import InjectYumRepoPlugin, alter_yum_commands from dock.util import ImageName from tests.constants import DOCKERFILE_GIT class X(object): pass def test_yuminject_plugin(tmpdir): df = """\ FROM fedora RUN yum install -y python-django CMD blabla""" tmp_df = os.path.join(str(tmpdir), 'Dockerfile') with open(tmp_df, mode="w") as fd: fd.write(df) tasker = DockerTasker() workflow = DockerBuildWorkflow(DOCKERFILE_GIT, "test-image") setattr(workflow, 'builder', X) metalink = 'https://mirrors.fedoraproject.org/metalink?repo=fedora-$releasever&arch=$basearch' workflow.repos['yum'] = [OrderedDict( (('name', 'my-repo'), ('metalink', metalink), ('enabled', 1), ('gpgcheck', 0)), )] setattr(workflow.builder, 'image_id', "asd123") setattr(workflow.builder, 'df_path', tmp_df) setattr(workflow.builder, 'base_image', ImageName(repo='Fedora', tag='21')) setattr(workflow.builder, 'git_dockerfile_path', None) setattr(workflow.builder, 'git_path', None) runner = PreBuildPluginsRunner(tasker, workflow, [{ 'name': InjectYumRepoPlugin.key, 'args': {}}]) runner.run() assert InjectYumRepoPlugin.key is not None with open(tmp_df, 'r') as fd: altered_df = fd.read() expected_output = r"""FROM fedora RUN printf "[my-repo]\nname=my-repo\nmetalink=https://mirrors.fedoraproject.org/metalink?repo=fedora-\$releasever&arch=\$basearch\nenabled=1\ngpgcheck=0\n" >/etc/yum.repos.d/dock-injected.repo && yum install -y python-django && yum clean all && rm -f /etc/yum.repos.d/dock-injected.repo CMD blabla""" assert expected_output == altered_df def test_yuminject_multiline(tmpdir): df = """\ FROM fedora RUN yum install -y httpd \ uwsgi CMD blabla""" tmp_df = os.path.join(str(tmpdir), 'Dockerfile') with open(tmp_df, mode="w") as fd: fd.write(df) tasker = DockerTasker() workflow = DockerBuildWorkflow(DOCKERFILE_GIT, "test-image") setattr(workflow, 'builder', X) metalink = r'https://mirrors.fedoraproject.org/metalink?repo=fedora-$releasever&arch=$basearch' workflow.repos['yum'] = [OrderedDict( (('name', 'my-repo'), ('metalink', metalink), ('enabled', 1), ('gpgcheck', 0)), )] setattr(workflow.builder, 'image_id', "asd123") setattr(workflow.builder, 'df_path', tmp_df) setattr(workflow.builder, 'base_image', ImageName(repo='Fedora', tag='21')) setattr(workflow.builder, 'git_dockerfile_path', None) setattr(workflow.builder, 'git_path', None) runner = PreBuildPluginsRunner(tasker, workflow, [{'name': InjectYumRepoPlugin.key, 'args': {}}]) runner.run() assert InjectYumRepoPlugin.key is not None with open(tmp_df, 'r') as fd: altered_df = fd.read() expected_output = r"""FROM fedora RUN printf "[my-repo]\nname=my-repo\nmetalink=https://mirrors.fedoraproject.org/metalink?repo=fedora-\$releasever&arch=\$basearch\nenabled=1\ngpgcheck=0\n" >/etc/yum.repos.d/dock-injected.repo && yum install -y httpd uwsgi && yum clean all && rm -f /etc/yum.repos.d/dock-injected.repo CMD blabla""" assert altered_df == expected_output def test_complex_df(): df = """\ FROM fedora RUN asd RUN yum install x ENV x=y RUN yum install \ x \ y \ && something else CMD asd""" wrap_cmd = "RUN test && %(yum_command)s && asd" out = alter_yum_commands(df, wrap_cmd) expected_output = """\ FROM fedora RUN asd RUN test && yum install x && asd ENV x=y RUN test && yum install x y && something else && asd CMD asd""" assert out == expected_output
2.03125
2
run/base/hpe_base_util.py
KAIST-HCIL/DeepFisheyeNet
23
12794887
from dataset.data_model import HandDataModel def unpack_data(results, is_eval = False): joint_out = results['joint'] heatmap = None heatmap_true = None if not is_eval: heatmap = results['heatmap'] heatmap_true = results['heatmap_true'] heatmap_reprojected = results['heatmap_reprojected'] return joint_out, heatmap, heatmap_true, heatmap_reprojected
2.234375
2
leetcode/1143.最长公共子序列/1143-最长公共子序列.py
ruisunyc/-
2
12794888
<reponame>ruisunyc/-<gh_stars>1-10 class Solution: def longestCommonSubsequence(self, text1: str, text2: str) -> int: m = len(text1)+1 n = len(text2)+1 dp = [[0]*n for _ in range(m)] for i in range(1,m): for j in range(1,n): if text1[i-1]==text2[j-1]: dp[i][j]=dp[i-1][j-1]+1 else: dp[i][j] = max(dp[i-1][j],dp[i][j-1]) return dp[-1][-1]
2.78125
3
neurokit2/hrv/hrv.py
vansjyo/NeuroKit
0
12794889
# -*- coding: utf-8 -*- import pandas as pd import matplotlib import matplotlib.pyplot as plt from .hrv_time import hrv_time from .hrv_frequency import hrv_frequency from .hrv_frequency import _hrv_frequency_show from .hrv_nonlinear import hrv_nonlinear from .hrv_nonlinear import _hrv_nonlinear_show from .hrv_utils import _hrv_get_rri from .hrv_utils import _hrv_sanitize_input from ..stats import summary_plot def hrv(peaks, sampling_rate=1000, show=False): """ Computes indices of Heart Rate Variability (HRV). Computes HRV indices in the time-, frequency-, and nonlinear domain. Note that a minimum duration of the signal containing the peaks is recommended for some HRV indices to be meaninful. For instance, 1, 2 and 5 minutes of high quality signal are the recomended minima for HF, LF and LF/HF, respectively. See references for details. Parameters ---------- peaks : dict Samples at which cardiac extrema (i.e., R-peaks, systolic peaks) occur. Dictionary returned by ecg_findpeaks, ecg_peaks, ppg_findpeaks, or ppg_peaks. sampling_rate : int, optional Sampling rate (Hz) of the continuous cardiac signal in which the peaks occur. Should be at least twice as high as the highest frequency in vhf. By default 1000. show : bool, optional If True, returns the plots that are generates for each of the domains. Returns ------- DataFrame Contains HRV metrics from three domains: - frequency (for details see hrv_frequency) - time (for details see hrv_time) - non-linear (for details see hrv_nonlinear) See Also -------- ecg_peaks, ppg_peaks, hrv_time, hrv_frequency, hrv_nonlinear Examples -------- >>> import neurokit2 as nk >>> >>> # Download data >>> data = nk.data("bio_resting_5min_100hz") >>> >>> # Find peaks >>> peaks, info = nk.ecg_peaks(data["ECG"], sampling_rate=100) >>> >>> # Compute HRV indices >>> nk.hrv(peaks, sampling_rate=100, show=True) References ---------- - <NAME>. (2002). Assessing heart rate variability from real-world Holter reports. Cardiac electrophysiology review, 6(3), 239-244. - <NAME>., & <NAME>. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 5, 258. """ # Get indices out = [] # initialize empty container # Gather indices out.append(hrv_time(peaks, sampling_rate=sampling_rate)) out.append(hrv_frequency(peaks, sampling_rate=sampling_rate)) out.append(hrv_nonlinear(peaks, sampling_rate=sampling_rate)) out = pd.concat(out, axis=1) # Plot if show: _hrv_plot(peaks, out, sampling_rate) return out def _hrv_plot(peaks, hrv, sampling_rate=1000): fig = plt.figure(constrained_layout=False) spec = matplotlib.gridspec.GridSpec(ncols=2, nrows=2, height_ratios=[1, 1], width_ratios=[1, 1]) # Arrange grids ax_distrib = fig.add_subplot(spec[0, :-1]) ax_distrib.set_xlabel('R-R intervals (ms)') ax_distrib.set_title("Distribution of R-R intervals") ax_psd = fig.add_subplot(spec[1, :-1]) ax_poincare = fig.add_subplot(spec[:, -1]) # Distribution of RR intervals peaks = _hrv_sanitize_input(peaks) rri = _hrv_get_rri(peaks, sampling_rate=sampling_rate, interpolate=False) ax_distrib = summary_plot(rri, ax=ax_distrib) # Poincare plot out_poincare = hrv.copy() out_poincare.columns = [col.replace('HRV_', '') for col in out_poincare.columns] ax_poincare = _hrv_nonlinear_show(rri, out_poincare, ax=ax_poincare) # PSD plot rri, sampling_rate = _hrv_get_rri(peaks, sampling_rate=sampling_rate, interpolate=True) _hrv_frequency_show(rri, out_poincare, sampling_rate=sampling_rate, ax=ax_psd)
3.0625
3
disno/objects/__init__.py
QwireDev/disno
0
12794890
""" disno.objects ~~~~~~~~~~~~~ Independently usable object models for the Discord API. Docs reference: https://discord.dev :copyright: (c) 2021-present Qwire Development Team :license: MIT, see LICENSE for more details. """ from .user import *
0.839844
1
tensorstream/helpers/any_nan_spec.py
clems4ever/tensorstream
5
12794891
import math import tensorflow as tf import unittest from tensorstream.helpers.any_nan import any_nan def in_tf(x): with tf.Session() as sess: return sess.run(x) class AnyNanSpec(unittest.TestCase): def test_any_nan_scalar(self): x = any_nan(tf.constant(4.0)) self.assertEqual(in_tf(x), False) y = any_nan(tf.constant(math.nan)) self.assertEqual(in_tf(y), True) def test_any_nan_tensor(self): x = any_nan(tf.constant([4.0, 3.0, 2.0])) self.assertEqual(in_tf(x), False) y = any_nan(tf.constant([math.nan, 3.0, 2.0])) self.assertEqual(in_tf(y), True) z = any_nan(tf.constant([math.nan, math.nan, math.nan])) self.assertEqual(in_tf(z), True) def test_any_nan_complex_type(self): x = any_nan({ 'a': tf.constant([3.0, 2.0]), 'b': [tf.constant(3.2), tf.constant([2.1, 2.3, 4.3])], 'c': { 'z': tf.constant([5.2, 5.2]), 'y': tf.constant([3.4, 5.2]) } }) self.assertEqual(in_tf(x), False) y = any_nan({ 'a': tf.constant([3.0, 2.0]), 'b': [tf.constant(3.2), tf.constant([2.1, 2.3, math.nan])], 'c': { 'z': tf.constant([5.2, 5.2]), 'y': tf.constant([3.4, 5.2]) } }) self.assertEqual(in_tf(y), True) z = any_nan({ 'a': tf.constant([math.nan, math.nan]), 'b': [tf.constant(math.nan), tf.constant([math.nan, math.nan, math.nan])], 'c': { 'z': tf.constant([math.nan, math.nan]), 'y': tf.constant([math.nan, math.nan]) } }) self.assertEqual(in_tf(z), True)
2.6875
3
texaslan/voting/views.py
hsmeans/texaslan.org
2
12794892
from django.http import HttpResponseRedirect from django.shortcuts import get_object_or_404 from django.core.urlresolvers import reverse from django.contrib import messages from django.views.generic import ListView, CreateView, DetailView, FormView from django.forms import ValidationError from .models import Candidate, VoteBallot, CANDIDATE_POSITIONS, VoteService, VoteStatus, POSITION_NUMS from .forms import StartElectionForm, CreateCandidateApplicationForm, VoteForm from texaslan.utils.utils import PledgeOrActiveRequiredMixin, HasNotAppliedRequiredMixin, HasNotVotedRequiredMixin from texaslan.site_settings.models import SiteSettingService class CandidateListView(PledgeOrActiveRequiredMixin, FormView): template_name = 'voting/candidate_list.html' form_class = StartElectionForm def get_context_data(self, **kwargs): context = super(CandidateListView, self).get_context_data(**kwargs) context['voting_closed'] = SiteSettingService.is_voting_closed() if context['voting_closed']: return context context['voting_open'] = SiteSettingService.is_voting_currently() context['has_not_voted'] = True try: vote_status = VoteStatus.objects.get(voter__username=self.request.user.username) context['has_not_voted'] = not vote_status.has_voted except VoteStatus.DoesNotExist: pass positions_list = [] for (position_code, position_name) in CANDIDATE_POSITIONS: has_winner = False has_applied = False is_applying_open = SiteSettingService.is_voting_applications_open() try: list = Candidate.objects.filter(position=position_code) for cand in list: if cand.user.pk == self.request.user.pk: has_applied = True if cand.has_won: has_winner = True except Candidate.DoesNotExist: list = [] positions_list.append((position_name, position_code, has_winner, has_applied, is_applying_open, list,)) context['positions'] = positions_list return context def get_success_url(self): messages.add_message(self.request, messages.SUCCESS, 'Election was successful!') return reverse('voting:list') class CandidateApplyView(HasNotAppliedRequiredMixin, CreateView): template_name = 'voting/candidate_apply.html' model = Candidate form_class = CreateCandidateApplicationForm def get_context_data(self, **kwargs): context = super(CandidateApplyView, self).get_context_data(**kwargs) context['position_id'] = self.kwargs.get("position") context['position'] = VoteService.get_position_str(context['position_id']) return context def form_valid(self, form): # This method is called when valid form data has been POSTed. # It should return an HttpResponse. candidate = form.instance candidate.position = form.data['position_id'] candidate.user = self.request.user return super(CandidateApplyView, self).form_valid(form) def get_success_url(self): messages.add_message(self.request, messages.SUCCESS, 'Application was submitted!') return reverse('voting:list') class CandidateDetailsView(PledgeOrActiveRequiredMixin, DetailView): template_name = 'voting/candidate_detail.html' model = Candidate def get_context_data(self, **kwargs): context = super(CandidateDetailsView, self).get_context_data(**kwargs) context['position_id'] = self.kwargs.get("position") context['position'] = VoteService.get_position_str(context['position_id']) return context def get_object(self, queryset=None): return get_object_or_404(Candidate, position=self.kwargs.get('position'), user__username=self.kwargs.get('username')) class VoteView(HasNotVotedRequiredMixin, FormView): template_name = 'voting/vote.html' form_class = VoteForm def form_invalid(self, form): messages.add_message(self.request, messages.ERROR, form.errors.as_data()['__all__'][0].message) return super(VoteView, self).form_invalid(form) def get_success_url(self): messages.add_message(self.request, messages.SUCCESS, 'Successfully voted!') return reverse('voting:list') def form_valid(self, form): # This method is called when valid form data has been POSTed. # It should return an HttpResponse. form.submit_ballot(self.request.user) return super(VoteView, self).form_valid(form) def get_form_kwargs(self): kwargs = super(VoteView, self).get_form_kwargs() extra = [] for (position_id, position) in CANDIDATE_POSITIONS: # If we have all our winners, no need to fill this out. if len(set(Candidate.objects.filter(position=position_id, has_won=True))) == POSITION_NUMS[position_id]: continue extra.append((position_id, position, set(Candidate.objects.filter(position=position_id)),)) kwargs['extra'] = extra kwargs['user'] = self.request.user return kwargs
1.953125
2
remote/task.py
jackyin68/paramiko-windows
1
12794893
from multiprocessing import Process import os import time def run_proc(process_name): print('running subprocess %s(%s)......' % (process_name, os.getpid())) count = 100 for i in range(count): print("*** {} ***".format(i)) time.sleep(1) os.mkdir(str(count)) print('sub process end') if __name__ == '__main__': print('Process %s' % os.getpid()) p = Process(target=run_proc, args=('test',)) print('sub process beginning') p.start() # p.join() # print('sub process end') print('Process end')
2.921875
3
src/affe/tests/__init__.py
eliavw/affe
1
12794894
<filename>src/affe/tests/__init__.py from .resources import get_dummy_flow
1.109375
1
DeepHyperion-MNIST/train_model.py
IharBakhanovich/DeepHyperion
5
12794895
<reponame>IharBakhanovich/DeepHyperion<filename>DeepHyperion-MNIST/train_model.py import argparse import sys import numpy as np from os import makedirs from os.path import exists import tensorflow as tf CLIP_MIN = -0.5 CLIP_MAX = 0.5 K = tf.keras.backend mnist = tf.keras.datasets.mnist np_utils = tf.keras.utils Sequential = tf.keras.models.Sequential Dense = tf.keras.layers.Dense Dropout = tf.keras.layers.Dropout Activation = tf.keras.layers.Activation Flatten = tf.keras.layers.Flatten Conv2D = tf.keras.layers.Conv2D MaxPooling2D = tf.keras.layers.MaxPooling2D l2 = tf.keras.regularizers.l2 def train(name): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(-1, 28, 28, 1) x_test = x_test.reshape(-1, 28, 28, 1) layers = [ Conv2D(64, (3, 3), padding="valid", input_shape=(28, 28, 1)), Activation("relu"), Conv2D(64, (3, 3)), Activation("relu"), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Flatten(), Dense(128), Activation("relu"), Dropout(0.5), Dense(10), ] x_train = x_train.astype("float32") x_test = x_test.astype("float32") x_train = (x_train / 255.0) - (1.0 - CLIP_MAX) x_test = (x_test / 255.0) - (1.0 - CLIP_MAX) y_train = np_utils.to_categorical(y_train, 10) y_test = np_utils.to_categorical(y_test, 10) model = Sequential() for layer in layers: model.add(layer) model.add(Activation("softmax")) print(model.summary()) model.compile( loss="categorical_crossentropy", optimizer="adadelta", metrics=["accuracy"] ) model.fit( x_train, y_train, epochs=50, batch_size=128, shuffle=True, verbose=1, validation_data=(x_test, y_test), ) if not exists("model"): makedirs("model") model.save(f"./models/{name}.h5") if __name__ == "__main__": name = str(sys.argv[1]) train(name)
2.65625
3
2new_task.py
booiljung/pymqdemo
0
12794896
<filename>2new_task.py # 참조: https://blog.storyg.co/rabbitmqs/tutorials/python/02-work-queue import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='task_queue', durable=True) message = ' '.join(sys.argv[1:]) or "Hello World!" channel.basic_publish(exchange='', routing_key='task_queue', body=message, properties=pika.BasicProperties( delivery_mode = 2, ) ) print(" [x] Sent %r" % message)
2.75
3
read_shapefile.py
clearedTakeoff/Bridge-Reconstruction
0
12794897
<gh_stars>0 import shapefile class ShapefileReader: def __init__(self, filename): # Open and read the shapefile (file extension not required, only filename) self.sf = shapefile.Reader(filename) # Save all entries in the file, each entry containing both shape and record object self.entries = self.sf.shapeRecords() self.bridges = [] for entry in self.entries: # Only extract shapeRecord entries of bridges (tipobj 3), limit also by coordinates?? if entry.record["TIPOBJ_CES"] == 3: self.bridges.append(entry) # print(len(self.bridges)) # Returns bridges inside coordinates bound between points (lowX, lowY) and (highX, highY) def bridgesInsideCoords(self, lowX, lowY, highX, highY): bridges = [] for bridge in self.bridges: if lowX <= bridge.shape.bbox[0] <= highX and lowY <= bridge.shape.bbox[1] <= highY\ and lowX <= bridge.shape.bbox[2] <= highX and lowY <= bridge.shape.bbox[3] <= highY: bridges.append(bridge) # print("Found", len(bridges), "bridges") return bridges def writeBridges(self, lowX, lowY, highX, highY, output): sf = shapefile.Writer(output) sf.fields = self.sf.fields[1:] for bridge in self.sf.iterShapeRecords(): if lowX <= bridge.shape.bbox[0] <= highX and lowY <= bridge.shape.bbox[1] <= highY\ and lowX <= bridge.shape.bbox[2] <= highX and lowY <= bridge.shape.bbox[3] <= highY: sf.record(*bridge.record) sf.shape(bridge.shape) sf.close() if __name__ == "__main__": s = ShapefileReader("TN_CESTE_L")
3.25
3
timelap/models.py
TonyEight/django-timelap
0
12794898
from django.db import models from django.core.exceptions import ValidationError from django.utils.translation import ugettext as _ __all__ = ['ModelWithDateRange', 'ModelWithDateTimeRange',] class ModelWithDateRange(models.Model): # Attributes start_date = models.DateField() end_date = models.DateField() # Methods def clean(self): if self.start_date and self.end_date\ and self.start_date > self.end_date: raise ValidationError(_('End date must be greater or ' \ 'equal to start date.')) # Meta-data class Meta: abstract = True class ModelWithDateTimeRange(models.Model): # Attributes start_datetime = models.DateTimeField() end_datetime = models.DateTimeField() # Methods def clean(self): if self.start_datetime and self.end_datetime\ and self.start_datetime > self.end_datetime: raise ValidationError(_('End datetime must be greater or equal' \ ' to start datetime.')) # Meta-data class Meta: abstract = True
2.421875
2
28_uvm_component/testbench.py
raysalemi/python4uvm_examples
1
12794899
<reponame>raysalemi/python4uvm_examples<filename>28_uvm_component/testbench.py import pyuvm from pyuvm import * # # uvm_component # ## Running the phases # Figure 1: A uvm_test demonstrating the phase methods @pyuvm.test() class PhaseTest(uvm_test): # uvm_test extends uvm_component def build_phase(self): print("1 build_phase") def connect_phase(self): print("2 connect_phase") def end_of_elaboration_phase(self): print("3 end_of_elaboration_phase") def start_of_simulation_phase(self): print("4 start_of_simulation_phase") async def run_phase(self): self.raise_objection() print("5 run_phase") self.drop_objection() def extract_phase(self): print("6 extract_phase") def check_phase(self): print("7 check_phase") def report_phase(self): print("8 report_phase") def final_phase(self): print("9 final_phase") # ## Building the testbench hierarchy # ### TestTop (uvm_test_top) # Figure 4: pyuvm instantiates TestTop as uvm_test_top # The test is always named uvm_test_top @pyuvm.test() class TestTop(uvm_test): def build_phase(self): self.logger.info(f"{self.get_name()} build_phase") self.mc = MiddleComp("mc", self) def final_phase(self): self.logger.info("final phase") # ### MiddleComp (uvm_test_top.mc) # Figure 5: The middle component is instantiated by # uvm_test_top as "mc" and instantiates "bc". class MiddleComp(uvm_component): def build_phase(self): self.bc = BottomComp(name="bc", parent=self) def end_of_elaboration_phase(self): self.logger.info(f"{self.get_name()} end of elaboration phase") # ### BottomComp (uvm_test_top.mc.bc) # Figure 6: The bottom component is instantiated by # the middle component and is at "uvm_test_top.mc.bc" class BottomComp(uvm_component): async def run_phase(self): self.raise_objection() self.logger.info(f"{self.get_name()} run phase") self.drop_objection()
2.25
2
degvabank/degvabank/apps/transaction/urls.py
Vixx-X/DEGVABanck-backend
0
12794900
from django.urls.conf import path, include from rest_framework import routers from . import views router = routers.DefaultRouter() router.register( r"transactions", views.TransactionViewSet, ) user_transaction_urls = [ path( "transactions/", views.UserTransactionListCreateView.as_view(), name="user-transactions", ), path( "transactions/<int:id>/", views.UserTransactionView.as_view(), name="user-transactions-detail", ), ] urlpatterns = [ path( "user/", include(user_transaction_urls), ), path( "", include(router.urls), ), path( "bank/transaction/", views.ForeignTransactionView.as_view(), name="bank-transaction", ), ]
1.875
2
cardinal_pythonlib/openxml/pause_process_by_disk_space.py
RudolfCardinal/pythonlib
10
12794901
#!/usr/bin/env python3 # cardinal_pythonlib/openxml/pause_process_by_disk_space.py """ =============================================================================== Original code copyright (C) 2009-2021 <NAME> (<EMAIL>). This file is part of cardinal_pythonlib. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =============================================================================== **Pauses and resumes a process by disk space; LINUX ONLY.** """ from argparse import ArgumentParser import logging import shutil import subprocess import sys from time import sleep from typing import NoReturn from cardinal_pythonlib.logs import ( BraceStyleAdapter, main_only_quicksetup_rootlogger, ) from cardinal_pythonlib.sizeformatter import human2bytes, sizeof_fmt log = BraceStyleAdapter(logging.getLogger(__name__)) def is_running(process_id: int) -> bool: """ Uses the Unix ``ps`` program to see if a process is running. """ pstr = str(process_id) encoding = sys.getdefaultencoding() s = subprocess.Popen(["ps", "-p", pstr], stdout=subprocess.PIPE) for line in s.stdout: strline = line.decode(encoding) if pstr in strline: return True return False def main() -> NoReturn: """ Command-line handler for the ``pause_process_by_disk_space`` tool. Use the ``--help`` option for help. """ parser = ArgumentParser( description="Pauses and resumes a process by disk space; LINUX ONLY." ) parser.add_argument( "process_id", type=int, help="Process ID." ) parser.add_argument( "--path", required=True, help="Path to check free space for (e.g. '/')" ) parser.add_argument( "--pause_when_free_below", type=str, required=True, help="Pause process when free disk space below this value (in bytes " "or as e.g. '50G')" ) parser.add_argument( "--resume_when_free_above", type=str, required=True, help="Resume process when free disk space above this value (in bytes " "or as e.g. '70G')" ) parser.add_argument( "--check_every", type=int, required=True, help="Check every n seconds (where this is n)" ) parser.add_argument( "--verbose", action="store_true", help="Verbose output" ) args = parser.parse_args() main_only_quicksetup_rootlogger( level=logging.DEBUG if args.verbose else logging.INFO) minimum = human2bytes(args.pause_when_free_below) maximum = human2bytes(args.resume_when_free_above) path = args.path process_id = args.process_id period = args.check_every pause_args = ["kill", "-STOP", str(process_id)] resume_args = ["kill", "-CONT", str(process_id)] assert minimum < maximum, "Minimum must be less than maximum" log.info( f"Starting: controlling process {process_id}; " f"checking disk space every {period} s; " f"will pause when free space on {path} " f"is less than {sizeof_fmt(minimum)} and " f"resume when free space is at least {sizeof_fmt(maximum)}; " f"pause command will be {pause_args}; " f"resume command will be {resume_args}." ) log.debug("Presuming that the process is RUNNING to begin with.") paused = False while True: if not is_running(process_id): log.info("Process {} is no longer running", process_id) sys.exit(0) space = shutil.disk_usage(path).free log.debug("Disk space on {} is {}", path, sizeof_fmt(space)) if space < minimum and not paused: log.info("Disk space down to {}: pausing process {}", sizeof_fmt(space), process_id) subprocess.check_call(pause_args) paused = True elif space >= maximum and paused: log.info("Disk space up to {}: resuming process {}", sizeof_fmt(space), process_id) subprocess.check_call(resume_args) paused = False log.debug("Sleeping for {} seconds...", period) sleep(period) if __name__ == '__main__': main()
1.960938
2
aula06/Strings_P1.py
viniciusFernandesInacio/Curso_Python
0
12794902
<filename>aula06/Strings_P1.py curso="Curso de Python" #print(curso[9:15]) #print(curso.strip()) #remove os espaços da string #print(curso.lower().strip()) #converte a string para letras minusculas #print(curso.upper()) #converte a string para letras maiusculas #print(curso.replace("Python","SQL")) #troca objetos da array a=curso.split(" ") #remove tudo que estiver entre "" e divide o restante em uma array print(a[0]) print("Tamanho: " + str(len(curso)))
4.0625
4
src/labeling.py
misads/im_scripts
8
12794903
<reponame>misads/im_scripts # encoding=utf-8 import pdb import numpy as np import os import argparse import cv2 import numpy as np from src.base import Base from src.load_config import load_yml from src.misc_utils import attach_file_suffix, binaryzation, args, random_crop class Labeling(Base): def __init__(self, cfg): Base.__init__(self, cfg) self.mode = '1_to_1' if args.mode == 'default' else args.mode def _handle_image(self, input_path, output_path, compare_path=None, abs_out_dir=None, filename=None): img = cv2.imread(input_path) # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img[img >= 122] = 255 img[img < 122] = 1 img[img == 255] = 0 # BGR set all G and R to 0 img[:, :, 1] = 0 img[:, :, 2] = 0 cv2.imwrite(output_path, img) # mask = np.unpackbits(np.array(img), axis=2)[:, :, -1:-2:-1] # mask= mask *255 # cv2.imshow("vis", mask) # cv2.waitKey(0) #pdb.set_trace() def labeling(cfg): label = Labeling(cfg) label.handle() if __name__ == '__main__': cfg = load_yml(args.ymlpath) labeling(cfg)
2.390625
2
maincrawler/apps.py
sharawy/genie_crawler
0
12794904
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class SpidermanagerConfig(AppConfig): name = 'maincrawler'
1.023438
1
ALDS/ALDS1_2_D.py
yu8ikmnbgt6y/MyAOJ
1
12794905
<filename>ALDS/ALDS1_2_D.py import sys import io input_txt = """ 1 1 """ sys.stdin = io.StringIO(input_txt) print(input()) # copy the below part and paste to the submission form. # ---------function------------ def insertion_sort(array, gap): n = len(array) cnt = 0 for i in range(gap, n): moving = array[i] j = i - gap while j >= 0 and array[j] > moving: array[j + gap] = array[j] j -= gap cnt += 1 array[j + gap] = moving return array, cnt def main(): n = int(input()) array = [] for i in range(n): array.append(int(input())) cnt = 0 gaps = [] i = 1 gap = 1 while gap <= n: gaps.append(gap) i += 1 gap = (3 ** i - 1) // 2 gaps = gaps[:100][::-1] # shell_sort for gap in gaps: array, tmp_cnt = insertion_sort(array, gap) cnt += tmp_cnt print(len(gaps)) print(" ".join(map(str, gaps))) print(cnt) for i in array: print(i) return main() # ----------------------------- sys.stdin = sys.__stdin__
3.6875
4
setup.py
btrspg/Animal-Courier
0
12794906
<reponame>btrspg/Animal-Courier import configparser from setuptools import setup, find_packages version = configparser.ConfigParser() version.read('VERSION') install_requires = [ 'numpy>=1.15', 'pandas>=0.23.4', 'certifi>=2018.10.15', 'psutil>=5.4.8', 'python-dateutil>=2.7.5', 'pytz>=2018.7', 'six>=1.12.0', 'plotly', 'apprise' ] tests_require = [ 'unittest' ] scripts = [ 'bin/multi_run.py' ] setup( name='Animal-Courier', version=version.get('latest', 'version'), packages=find_packages(exclude=['tests']), url='https://github.com/dota2-BioTools/Animal-Courier', project_urls={ "issues": "https://github.com/dota2-BioTools/Animal-Courier/issues", "releases": "https://github.com/dota2-BioTools/Animal-Courier/releases", }, license='MIT License', author='chenyuelong', author_email='<EMAIL>', description=''' This is just a test package for learn something about 'How to create a python package' ''', exclude_package_date={ 'Animal-Courier': ['.gitignore', '.circleci/*', '.anaconda/*'], }, install_requires=install_requires, scripts=scripts, )
1.875
2
multi_sokoban/actions.py
FjodBorg/Multi_Agent_AI
1
12794907
<filename>multi_sokoban/actions.py """Define literals and actions schemas for the muli-PDDL framework.""" import copy import operator from typing import Dict import numpy as np from utils import println class Literals: def __init__(self, parent: "Literals" = None): # initializes the literals if parent is None: # if no parent is present! self.dir = {"N": (-1, 0), "E": (0, 1), "S": (1, 0), "W": (0, -1)} self.deltaPos = { (-1, 0): "N", (0, 1): "E", (1, 0): "S", (0, -1): "W", } self.goals = {} # hashtable self.agentColor = {} # hashtable self.agents = {} # hashtable self.boxes = {} # hashtable self.prevState = None self.actionPerformed = None self.g = 0 self.t = 0 self.h = None self.f = None self.explored = set() else: # if a parent is present! self.dir = parent.dir # rigid self.deltaPos = parent.deltaPos # rigid self.goals = parent.goals # rigid self.agentColor = parent.agentColor # rigid # TODO avoid deepcopies self.agents = copy.deepcopy(parent.agents) self.boxes = copy.deepcopy(parent.boxes) self.map = parent.map.copy() self.prevState = parent # reference to previous state self.actionPerformed = None # gets defined when action is chosen self.g = parent.g + 1 self.h = None self.f = None self.t = parent.t + 1 self.explored = parent.explored super().__init__() def addMap(self, map2): # initialized a map with only walls self.map = np.array(map2) def addAgent(self, key, pos, color="c"): # Adds an agent to the map and to a hashtable # key is the agent number and color is the color of the agent self.map[pos] = key self.agents[key] = [[pos, color]] # This is only used to get easy access to agents by color if color not in self.agentColor: self.agentColor[color] = [key] else: self.agentColor[color].append(key) def addGoal(self, key, pos, color=None): # Adds a goal to a hashtable # key is a letter key = key.lower() if key not in self.goals: self.goals[key] = [[pos, color]] else: self.goals[key].append([pos, color]) def addBox(self, key, pos, color="c"): # Adds a box to the map and to a hashtable # key is a letter key = key.upper() self.map[pos] = key if key not in self.boxes: self.boxes[key] = [[pos, color]] else: self.boxes[key].append([pos, color]) def forget_exploration(self): """Remove explored nodes.""" self.explored = set() def deleteAgent(self, external_key): """Delete from `agents`, the `map` and `agent_color`.""" pos = self.getPos(self.agents, external_key) del self.agents[external_key] self.map[pos] = " " for color in self.agentColor: if external_key in self.agentColor[color]: to_del = self.agentColor[color].index(external_key) del self.agentColor[color][to_del] def deleteBox(self, external_key): pos = self.getPos(self.boxes, external_key) del self.boxes[external_key] self.map[pos] = " " def deleteGoal(self, external_key): del self.goals[external_key] def keepJustAgent(self, external_key): ext_agents = list(self.agents.keys()) for external_agent in ext_agents: if external_agent != external_key: self.deleteAgent(external_agent) def keepJustGoal(self, external_key): ext_goals = list(self.goals.keys()) for external_goal in ext_goals: if external_goal != external_key: self.deleteGoal(external_goal) def keepJustBox(self, external_key): boxes = list(self.boxes.keys()) for external_agent in boxes: if external_agent != external_key: self.deleteBox(external_agent) def getPos(self, objtype, obj, i=0): # gets the position of an object getPos(objecttype, the key, the index (if multiple)) # returns None if not in hashtable if obj in objtype: return objtype[obj][i][0] else: return None def setPos(self, objtype, obj, pos, i=0): # sets the position of an object # setPos(objecttype, the key, position, the index (if multiple)) # returns None if not in hashtable if type(objtype[obj][i][0]) == tuple: objtype[obj][i][0] = pos else: return None def Free(self, pos): # checks if position in map is free # returns true if it is free and false otherwise if self.map[pos] == chr(32) or self.map[pos].islower(): return True else: return False def Color(self, obj): pass def Neighbour(self, pos1, pos2): # Returns true if the 2 positions are neighbours, otherwise false if abs(pos1[0] - pos2[0]) + abs(pos1[1] - pos2[1]) == 1: return True else: return False def __str__(self): # Debugging purposes return "\n".join(["".join(line) for line in self.map]) + f" t={self.t}" class StateInit(Literals): def __init__(self, parent: "Literals" = None): # initializes the state # it is (row, column) and not (x, y) super().__init__(parent) def getAgentsByKey(self, key): # same as getPos, just for all agents with the given key # if key not in self.agents: # return None return self.agents[key] def getAgentsByColor(self, color): # same as getPos, just for all agents with the given key return self.agentColor[color] def getBoxesByKey(self, key): key = key.upper() # same as getPos, just for all Boxes with the given key # if key not in self.boxes: # return None return self.boxes[key] def getGoalsByKey(self, key): key = key.lower() # same as getPos, just for all Goal with the given key # if key not in self.goals: # return None return self.goals[key] def getGoalKeys(self): # returns all the keys return list(self.goals.keys()) def getAgentKeys(self): # returns all the keys return list(self.agents.keys()) """def updateParentCost(self, total_cost): state = self.prevState i = 0 while state is not None: i += 1 state.h = total_cost + i state.f = state.g + state.h state = state.prevState""" def __addPos(self, agtfrom, agtdir): # simply adds two positions together return tuple(map(operator.add, agtfrom, self.dir[agtdir])) def __getDir(self, agtfrom, agtto): # returns the direction the agent moved dir = (agtto[0] - agtfrom[0], agtto[1] - agtfrom[1]) return self.deltaPos[dir] def __MovePrec(self, agt, agtdir): # returns the movement parameters if the preconditions are met # otherwise it returns 0 agtfrom = self.getPos(self.agents, agt) if agtfrom is None: # # # print("agent", agt, "does not exist") return None if agtdir not in self.dir: # # # print("Direction", agtdir, "does not exist") return None agtto = self.__addPos(agtfrom, agtdir) if self.Free(agtto): return (agt, agtfrom, agtto) else: # # # print("Pos " + str(agtto) + " (row,col) is not free") return None def __MoveEffect(self, agt, agtfrom, agtto): # Moves the object with the given parameters # Does not check preconditions self.setPos(self.agents, agt, agtto) self.map[agtfrom] = chr(32) self.map[agtto] = agt # print("Agent " + agt + " is now at " + str(agtto) + " (row,col)") return True def Move(self, agt, agtdir): # moves the object in the given direction, it checks the precondition and does the movemnt actionParams = self.__MovePrec(agt, agtdir) if actionParams is not None: return self.__MoveEffect(*actionParams) else: return None def __PushPrec(self, agt, boxkey, boxdir, i=0): # returns the movement parameters if the preconditions are met # otherwise it returns 0 agtfrom = self.getPos(self.agents, agt) boxfrom = self.getPos(self.boxes, boxkey, i) if agtfrom is None: # # # print("agent", agt, "does not exist") return None if boxfrom is None: # # # print("Box", boxkey, "does not exist") return None if boxdir not in self.dir: # # # print("Direction", boxdir, "does not exist") return None if self.Neighbour(agtfrom, boxfrom) != 1: # # # print("agent", agt, "and box", boxkey, "are not neighbors") return None boxto = self.__addPos(boxfrom, boxdir) if self.Free(boxto): return (agt, boxkey, agtfrom, boxfrom, boxto, i) else: # # # print("Pos " + str(boxto) + " (row,col) is not free") return None def __PushEffect(self, agt, boxkey, agtfrom, boxfrom, boxto, i): # Moves the objects with the given parameters # Does not check preconditions self.setPos(self.agents, agt, boxfrom, 0) # agents are unique thus 0 self.setPos(self.boxes, boxkey, boxto, i) self.map[agtfrom] = chr(32) self.map[boxfrom] = agt self.map[boxto] = boxkey # print("Agent " + agt + " is now at " + str(boxto) + " (row,col)") # print("Box " + str(box) + " is now at " + str(boxfrom) + " (row,col)") return True def Push(self, agt, boxkey, boxdir, i): # moves the objects in the given direction, it checks the precondition and does the movemnt actionParams = self.__PushPrec(agt, boxkey, boxdir, i) if actionParams is not None: return self.__PushEffect(*actionParams) else: return None def __PullPrec(self, agt, boxkey, agtdir, i=0): # Moves the object with the given parameters # Does not check preconditions agtfrom = self.getPos(self.agents, agt) boxfrom = self.getPos(self.boxes, boxkey, i) if agtfrom is None: # # # print("agent", agt, "does not exist") return None if boxfrom is None: # # # print("Box", boxkey, "does not exist") return None if agtdir not in self.dir: # # # print("Direction", agtdir, "does not exist") return None if self.Neighbour(agtfrom, boxfrom) != 1: # # # print("agent", agt, "and box", boxkey, "are not neighbors") return None agtto = self.__addPos(agtfrom, agtdir) if self.Free(agtto): return (agt, boxkey, agtfrom, agtto, boxfrom, i) else: # # # print("Pos " + str(agtto) + " (row,col) is not free") return None def __PullEffect(self, agt, boxkey, agtfrom, agtto, boxfrom, i): # Moves the objects with the given parameters # Does not check preconditions self.setPos(self.agents, agt, agtto, 0) # agents are unique thus 0 self.setPos(self.boxes, boxkey, agtfrom, i) self.map[boxfrom] = chr(32) self.map[agtfrom] = boxkey self.map[agtto] = agt # print("Agent " + agt + " is now at " + str(agtto) + " (row,col)") # print("Box " + str(box) + " is now at " + str(agtfrom) + " (row,col)") return True def Pull(self, agt, boxkey, boxdir, i): # moves the objects in the given direction, it checks the precondition and does the movemnt actionParams = self.__PullPrec(agt, boxkey, boxdir, i) if actionParams is not None: return self.__PullEffect(*actionParams) else: return None def minimalRep(self): # returns the minimal representation of the states return str([self.agents, self.boxes]) def isExplored(self): # returns true if the state is explored return self.minimalRep() in self.explored def __addToExplored(self, children): # adds the state to the explored list if not self.isExplored(): self.explored.add(self.minimalRep()) children.append(self) def isGoalState(self): # checks if the state is a goal state keys = self.getGoalKeys() for key in keys: goals = self.getGoalsByKey(key) for pos, color in goals: if self.map[pos] != key.upper(): return False return True def bestPath(self, format=0, index=0): # function returns the list of actions used to reach the state path = [] state = copy.deepcopy(self) if format == 1: # format used by actions while state.actionPerformed is not None: path.append(state.actionPerformed) state = state.prevState elif isinstance(format, str): # trace back an object looking_for = format obj_group = "agents" if format.isnumeric() else "boxes" while state.actionPerformed is not None: path.append( [ state.t, state.getPos(getattr(state, obj_group), looking_for, index), ] ) state = state.prevState else: # format used by server while state.actionPerformed is not None: # print(state.actionPerformed, state.actionPerformed[0]) cmd = state.actionPerformed[0] if cmd == "Push": # (agtfrom, boxfrom, boxto) parm1 = self.__getDir( state.actionPerformed[1][2], state.actionPerformed[1][3] ) parm2 = self.__getDir( state.actionPerformed[1][3], state.actionPerformed[1][4] ) cmd = f"Push({parm1},{parm2})" elif cmd == "Pull": # (agtfrom, agtto, boxfrom) parm1 = self.__getDir( state.actionPerformed[1][2], state.actionPerformed[1][3] ) parm2 = self.__getDir( state.actionPerformed[1][2], state.actionPerformed[1][4] ) cmd = f"Pull({parm1},{parm2})" elif cmd == "Move": parm1 = self.__getDir( state.actionPerformed[1][1], state.actionPerformed[1][2] ) cmd = f"Move({parm1})" elif cmd == "NoOp": cmd = "NoOp" path.append(cmd) state = state.prevState # Reverse the order return path[::-1] def explore(self): # Explores unexplroed states and returns a list of children children = [] # Loop iterales through every possible action for direction in self.dir: for agtkey in self.agents: # TODO reformat these nested loops and if statements! # This can be perhaps be optimized by only looking at boxes at the # neighboring tiles of the agent for boxkey in self.boxes: for i in range(len(self.boxes[boxkey])): boxcolor = self.boxes[boxkey][i][1] # [agent letter][agent number (0 since it is unique)][color] if self.agents[agtkey][0][1] == boxcolor: # Checks a pull action if it is possible it is appended to the the children actionParams = self.__PullPrec(agtkey, boxkey, direction, i) if actionParams is not None: child = StateInit(self) child.actionPerformed = ["Pull", actionParams] child.__PullEffect(*actionParams) child.__addToExplored(children) actionParams = self.__PushPrec(agtkey, boxkey, direction, i) if actionParams is not None: child = StateInit(self) child.actionPerformed = ["Push", actionParams] child.__PushEffect(*actionParams) child.__addToExplored(children) # Checks a Push action if it is possible it is appended to the the children # Checks a Move action if it is possible it is appended to the the children actionParams = self.__MovePrec(agtkey, direction) if actionParams is not None: child = StateInit(self) child.actionPerformed = ["Move", actionParams] child.__MoveEffect(*actionParams) child.__addToExplored(children) for agtkey in self.agents: # TODO make a noop function child = StateInit(self) child.actionPerformed = ["NoOp", None] child.__addToExplored(children) return children class StateConcurrent(StateInit): """Extend StateInit with concurrent literals.""" def __init__(self, parent: StateInit = None, concurrent: Dict = None): """Initialize by adding a time table to the usual `StateInit`. Parameters ---------- parent: StateInit concurrent: Dict Shared table that contains times where an object (box) in the environment has been changed by another agent: {t: {box: [(row, col), index], ...}, ...} """ super().__init__(parent) self.concurrent = concurrent if concurrent else parent.concurrent self.hunt_ghost() def __NoOpPrec(self): """Evaluate precondition for NoOp. Agent can stay at his position without doing anything. """ return self.__WaitPrec_t(self.t) and self.__WaitPrec_t(self.t+1) def __WaitPrec_t(self, t): if t in self.concurrent: joint_concurrent = self.concurrent[t] # a state that it is being solved is guaranteed to have only one agent agent_pos = self.getPos(self.agents, list(self.agents.keys())[0]) for pos, _ in joint_concurrent.values(): if pos is None: continue if agent_pos[0] == pos[0] and agent_pos[1] == pos[1]: return False return True def __ConcurrentPrec(self): """Evaluate precondition for concurrent changes of the world. Something has changed given a concurrent action by another agent. """ return self.t in self.concurrent def __ConcurrentEffect(self, t): """Modify environment according to concurrent actions at time `t`.""" joint_concurrent = self.concurrent[t] for obj_key in joint_concurrent: pos, index = list(joint_concurrent[obj_key]) obj_group = "agents" if obj_key.isnumeric() else "boxes" if obj_group == "boxes": prev_pos = self.getPos(getattr(self, obj_group), obj_key, index) self.setPos(getattr(self, obj_group), obj_key, pos, index) # introduce a ghost box which will be removed on child nodes self.map[prev_pos[0], prev_pos[1]] = "Ñ" if pos is not None: self.map[pos[0], pos[1]] = obj_key else: # agents don't leave ghosts behind and are not in the StateInit self.map[self.map == obj_key] = "Ñ" self.map[pos[0], pos[1]] = obj_key return True def hunt_ghost(self): """Remove ghosted positions put by a Councurent Effect.""" self.map[self.map == "Ñ"] = " " def explore(self): """Explore with 'NoOp's. The Preconditions to a NoOp is that the environment was changed by another agent; i.e., there is an entry in `self.concurrent` for the next time `self.t`. This ensures that agents just wait if the next state is new and applies the concurrent changes to all children. """ children = [] # Loop iterales through every possible action child_def = StateConcurrent(self) if child_def.__ConcurrentPrec(): # apply concurrent effects to all children but also append # a NoOp children which just waits for the env to change # println("Applying NoOp") child_def.__ConcurrentEffect(child_def.t) if child_def.__NoOpPrec(): child = copy.deepcopy(child_def) child.actionPerformed = ["NoOp", None] child._StateInit__addToExplored(children) for direction in self.dir: for agtkey in self.agents: # TODO reformat these nested loops and if statements! # This can be perhaps be optimized by only looking at boxes at # the neighboring tiles of the agent for boxkey in child_def.boxes: for i in range(len(child_def.boxes[boxkey])): boxcolor = child_def.boxes[boxkey][i][1] # [agent letter][agent number (0 since it is unique)][color] if child_def.agents[agtkey][0][1] == boxcolor: # Checks a pull action if it is possible it is appended to the the children actionParams = child_def._StateInit__PullPrec( agtkey, boxkey, direction, i ) if actionParams is not None: child = copy.deepcopy(child_def) child.actionPerformed = ["Pull", actionParams] child._StateInit__PullEffect(*actionParams) child._StateInit__addToExplored(children) # Checks a Push action if it is possible it is appended to the the children actionParams = child_def._StateInit__PushPrec( agtkey, boxkey, direction, i ) if actionParams is not None: child = copy.deepcopy(child_def) child.actionPerformed = ["Push", actionParams] child._StateInit__PushEffect(*actionParams) child._StateInit__addToExplored(children) # Checks a Move action if it is possible it is appended to the the children actionParams = child_def._StateInit__MovePrec(agtkey, direction) if actionParams is not None: child = copy.deepcopy(child_def) child.actionPerformed = ["Move", actionParams] child._StateInit__MoveEffect(*actionParams) child._StateInit__addToExplored(children) return children def AdvancePrec(self): """Is there some concurrent change in the future. It will be called by by strategy. """ future = [t for t in self.concurrent if t > self.t] if future: return min(future) return False def advance(self) -> StateInit: """Advance in time until the environment is changed by other agent.""" next_time = self.AdvancePrec() if not next_time: return self future_self = self while next_time > future_self.t: println(future_self) future_self = StateConcurrent(future_self) future_self.actionPerformed = ["NoOp", None] return future_self
2.40625
2
adv_patch_bench/models/common.py
chawins/adv-patch-bench
1
12794908
from turtle import forward import torch import torch.nn as nn class Normalize(nn.Module): def __init__(self, mean, std, *args, **kwargs): super().__init__() self.register_buffer('mean', torch.tensor(mean)[None, :, None, None]) self.register_buffer('std', torch.tensor(std)[None, :, None, None]) def forward(self, x): return (x - self.mean) / self.std # class ColorDetectorWrapper(nn.Module): # def __init__(self, model): # super().__init__() # self.model = model # self.color_dict = { # 'circle-750.0': ['white', 'blue', 'red'], # (1) white+red, (2) blue+white # 'triangle-900.0': ['white', 'yellow'], # (1) white, (2) yellow # 'triangle_inverted-1220.0': [], # (1) white+red # 'diamond-600.0': [], # (1) white+yellow # 'diamond-915.0': [], # (1) yellow # 'square-600.0': [], # (1) blue # 'rect-458.0-610.0': ['white', 'other'], # (1) chevron (also multi-color), (2) white # 'rect-762.0-915.0': [], # (1) white # 'rect-915.0-1220.0': [], # (1) white # 'pentagon-915.0': [], # (1) yellow # 'octagon-915.0': [], # (1) red # 'other': [], # } # self.class_list = list(self.color_dict.keys()) # self.class_idx = { # 'circle-750.0': 0, # (1) white+red, (2) blue+white # 'triangle-900.0': 3, # (1) white, (2) yellow # 'triangle_inverted-1220.0': 5, # (1) white+red # 'diamond-600.0': 6, # (1) white+yellow # 'diamond-915.0': 7, # (1) yellow # 'square-600.0': 8, # (1) blue # 'rect-458.0-610.0': 9, # (1) chevron (also multi-color), (2) white # 'rect-762.0-915.0': 11, # (1) white # 'rect-915.0-1220.0': 12, # (1) white # 'pentagon-915.0': 13, # (1) yellow # 'octagon-915.0': 14, # (1) red # 'other': 15, # } # # Define HSV range of the desired colors (H, S, L) # WHITE = [[0, 0, 95], [360, 360, 100]] # def forward(self, x): # logits = self.model(x) # y = logits.argmax(-1) # # Change image to HSL color space # # Count pixels that satisfy the color range
2.703125
3
main_headless.py
riteshgn/aryabhatta-2048
0
12794909
<filename>main_headless.py import json import statistics import time # from ai_engine.engine_best_score_v2 import BestScore as AIEngine # from ai_engine.engine_best_score_with_depth import BestScoreWithDepth as AIEngine from ai_engine.engine_expectimax_with_heur_v1 import Expectimax as AIEngine from ai_oracle.oracle_python_impl import OraclePythonImpl as Oracle from ai_oracle.game import Game from ai_oracle.game_cache import Cache from ai_utils import print_grid, random_initial_state game_engine = AIEngine(Oracle()) GAME_SETTINGS = { 'algorithm': 'Expectimax', # 'algorithm': 'BestScoreWithDepth', # 'algorithm': 'BestScore v2', 'max_depth': 3, 'heuristics_enabled': False, 'number_of_simulations': 3 } def create_initial_game_board(): state = random_initial_state() # print_grid(state) return Game(state) async def play_game(game_num): print('\t>>> Setting up the game board for game ', game_num) game = create_initial_game_board() print('\t>>> Starting game') try: while not game.is_game_over(): # game.print_board() direction = await game_engine.next_move(game.state()) # print('selected move ', direction) game.move(direction, add_random_tile=True) except: print('\t\t>>> Simulation Error') print('\n\t>>> Game is over!') print_grid(game.state()) print('\n') return game.metrics() async def simulate_games(number_of_games=1): print('>>> Starting simulations\n') scores = [] max_tiles = [] execution_times = [] for index in range(0, number_of_games): t0 = time.time() metrics = await play_game(game_num=index+1) t1 = time.time() scores.append(metrics['score']) max_tiles.append(metrics['max_tile']) execution_times.append(t1 - t0) print('\n---------------------------') print('--- Summary Report ---') print('---------------------------\n') print('games: ', number_of_games) print('algorithm: ', GAME_SETTINGS['algorithm']) print('max_depth: ', GAME_SETTINGS['max_depth']) print('heuristics_enabled: ', GAME_SETTINGS['heuristics_enabled']) print('\n--- score stats ---') print('min: ', min(scores)) print('max: ', max(scores)) print('mean: ', statistics.mean(scores)) print('median:', statistics.median(scores)) print('sd: ', statistics.stdev(scores)) print('\n--- max tile stats ---') print('min: ', min(max_tiles)) print('max: ', max(max_tiles)) print('mean: ', statistics.mean(max_tiles)) print('median:', statistics.median(max_tiles)) print('sd: ', statistics.stdev(max_tiles)) print('\n--- execution time stats ---') print('min: ', min(execution_times)) print('max: ', max(execution_times)) print('mean: ', statistics.mean(execution_times)) print('median:', statistics.median(execution_times)) print('sd: ', statistics.stdev(execution_times)) print('cache metrics: ', json.dumps(Cache().metrics())) if __name__ == '__main__': import asyncio loop = asyncio.new_event_loop() loop.run_until_complete(simulate_games(GAME_SETTINGS['number_of_simulations'])) loop.close()
2.375
2
safe/safe_dict.py
andreclaudino/python-safe-dict
0
12794910
<gh_stars>0 class SafeDict(dict): def __init__(self, dictionary:dict = {}, default=None, **kwargs): super().__init__(**dictionary, **kwargs) self.default = default def __getitem__(self, key): return self.get(key, self.default)
2.78125
3
extension/level2hbase.py
wanji/dicaf
0
12794911
#!/usr/bin/env python # coding: utf-8 ######################################################################### ######################################################################### """ File Name: level2hbase.py Author: <NAME> E-mail: <EMAIL> Created on: Sat Jun 7 13:36:03 2014 CST """ DESCRIPTION = """ This program can transfer the data from LevelDB to HBase. """ import os import sys import argparse import leveldb from thrift import Thrift from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol def perr(msg): """ Print error message. """ sys.stderr.write("%s" % msg) sys.stderr.flush() def pinfo(msg): """ Print information message. """ sys.stdout.write("%s" % msg) sys.stdout.flush() def runcmd(cmd): """ Run command. """ perr("%s\n" % cmd) os.system(cmd) def getargs(): """ Parse program arguments. """ parser = argparse.ArgumentParser(description=DESCRIPTION, formatter_class= argparse.RawTextHelpFormatter) parser.add_argument('leveldb', type=str, help='path to the LevelDB database') parser.add_argument('table', type=str, help='target table name in hbase') parser.add_argument('host', type=str, nargs='?', default="127.0.0.1", help='IP address / Host name of hbase server') parser.add_argument('port', type=int, nargs='?', default=9090, help='port number of hbase server') parser.add_argument('pyhbase', type=str, nargs='?', default="gen-py", help='python interface of hbase') return parser.parse_args() def main(args): """ Main entry. """ transport = TSocket.TSocket(args.host, args.port) transport = TTransport.TBufferedTransport(transport) protocol = TBinaryProtocol.TBinaryProtocol(transport) client = Hbase.Client(protocol) transport.open() contents = ColumnDescriptor(name='cf:', maxVersions=1) ldb = leveldb.LevelDB(args.leveldb) iter = ldb.RangeIter() try: client.createTable(args.table, [contents]) except AlreadyExists as err: perr("ERROR: %s\n" % err.message) sys.exit(1) cnt = 0 pinfo("Processed image:\n") pinfo("\r\t%d" % cnt) while True: try: item = iter.next() except StopIteration: break cnt += 1 if cnt % 100 == 0: pinfo("\r\t%d" % cnt) client.mutateRow(args.table, item[0], [Mutation(column="cf:data", value=item[1])], None) pinfo("\r\t%d\tDone!\n" % cnt) if __name__ == '__main__': args = getargs() sys.path.append(args.pyhbase) from hbase import Hbase from hbase.ttypes import * main(args)
2.734375
3
bannerpunk/extension.py
jarret/bannerpunk
3
12794912
<reponame>jarret/bannerpunk from bolt.util import h2b from bolt.bigsize import BigSize from bolt.tlv import Tlv from bolt.namespace import Namespace from bolt.hop_payload import HopPayload, TlvHopPayload from bannerpunk.pixel import Pixel PIXEL_TLV_TYPE = 44445 ART_TLV_TYPE = 44443 class Extension: def _encode_pixels(pixels): encoded = b''.join([p.to_bin() for p in pixels]) return Tlv(PIXEL_TLV_TYPE, encoded).encode() def _encode_art_no(art_no): encoded = Namespace.encode_tu16(art_no) return Tlv(ART_TLV_TYPE, encoded).encode() def encode_non_final(amt_to_forward, outgoing_cltv_value, short_channel_id, art_no, pixels): unextended = TlvHopPayload.encode_non_final(amt_to_forward, outgoing_cltv_value, short_channel_id) old_len, content, err = BigSize.pop(unextended) assert err is None art_no_content = Extension._encode_art_no(art_no) pixel_content = Extension._encode_pixels(pixels) new_content = content + art_no_content + pixel_content return BigSize.encode(len(new_content)) + new_content def encode_final(amt_to_forward, outgoing_cltv_value, payment_secret, total_msat, art_no, pixels): unextended = TlvHopPayload.encode_final(amt_to_forward, outgoing_cltv_value, pament_secret=payment_secret, totol_msat= total_msat) old_len, content, err = BigSize.pop(unextended) assert err is None art_no_content = Extension._encode_art_no(art_no) pixel_content = Extension._encode_pixels(pixels) new_content = content + art_no_content + pixel_content return BigSize.encode(len(new_content)) + new_content ########################################################################### def parse_pixels(tlv): pixels = [] if tlv.l % 5 != 0: return None, "unexpected length" remainder = tlv.v while len(remainder) > 0: pixel_hex, remainder, err = Namespace.pop_bytes(5, remainder) if err: return None, err pixels.append(Pixel.from_bin(h2b(pixel_hex))) return {'tlv_type_name': "bannerpunk_pixels", 'pixels': pixels}, None def parse_art_no(tlv): art_no, remainder, err = Namespace.pop_tu16(tlv.l, tlv.v) if err: return None, err if len(remainder) > 0: return None, "unexpected extra bytes" return {'tlv_type_name': "bannerpunk_art_no", 'art_no': art_no}, None def parse(byte_string): extension_parsers = {PIXEL_TLV_TYPE: Extension.parse_pixels, ART_TLV_TYPE: Extension.parse_art_no} parsed, err = HopPayload.parse(byte_string, extension_parsers=extension_parsers) if err: return None, err if parsed['format'] != "tlv": return None, "non-tlv payload byte string" if ART_TLV_TYPE not in parsed['tlvs']: return None, "no art tlv in payload" if PIXEL_TLV_TYPE not in parsed['tlvs']: return None, "no pixel data tlv in payload" return parsed, None
1.914063
2
Rota_System/UI/Vacancies/__init__.py
ergoregion/Rota-Program
0
12794913
<gh_stars>0 __author__ = '<NAME>' from widget_vacancies import VacanciesWidget
1.125
1
Chapter04/reduction.py
DzulJalali/Python-Pararel_SISTER
1
12794914
<reponame>DzulJalali/Python-Pararel_SISTER import numpy from mpi4py import MPI comm = MPI.COMM_WORLD size = comm.size rank = comm.rank array_size = 10 recvdata = numpy.zeros(array_size,dtype=numpy.int) senddata = (rank+1)*numpy.arange(array_size,dtype=numpy.int) print(" process %s sending %s " %(rank , senddata)) comm.Reduce(senddata,recvdata,root=0,op=MPI.SUM) print ('on task',rank,'after Reduce: data = ',recvdata)
2.765625
3
dog_cmd.py
vilsmeier/SummerSession_2021
1
12794915
<reponame>vilsmeier/SummerSession_2021 from DogService import * add_heart_rate(2,89)
1.03125
1
src/modeling/datagens.py
ilrd/Pulmonary-Fibrosis
0
12794916
import numpy as np from tensorflow import keras import pandas as pd import os class DcmDataGenerator(keras.utils.Sequence): """Generates data for Keras Sequence based data generator. Suitable for building data generator for training and prediction. """ def __init__(self, images_path, dim=(15, 512, 512), window=None): """Initialization :param images_path: path to images location :param dim: tuple indicating image dimension in format CHW """ self.list_IDs = os.listdir(images_path) self.images_path = images_path self.dim = dim self.indexes = np.arange(len(self.list_IDs)) self.on_epoch_end() self.window = window def __len__(self): """Denotes the number of batches per epoch :return: number of batches per epoch """ return len(self.list_IDs) def on_epoch_end(self): """Updates indexes after each epoch """ self.indexes = np.arange(len(self.list_IDs)) def flow(self, seed): np.random.seed(seed) i = int(np.random.randint(0, self.__len__(), size=(1,))) while True: yield self.__getitem__(i % self.__len__()) i += 1 def __getitem__(self, index): """Generate one patient's data :param index: index of the patient :return: X_dcm """ # Find list of IDs patient_ID = self.list_IDs[index] # Generate data X_dcm = self._generate_X(patient_ID) return X_dcm, np.array([1, ]) def _generate_X(self, patient_ID): """Generates data containing patient's images :param patient_ID: ID of the patient :return: patient's images """ # Initialization X_dcm = np.empty((1, *self.dim), dtype=np.float32) patient_path = os.path.join(self.images_path, patient_ID) dcm_names = np.array([dcm_name[:-4] for dcm_name in os.listdir(patient_path)], dtype=int) dcm_names = sorted(list(dcm_names)) patient_dcm_paths = [f'{self.images_path}/{patient_ID}/{dcm_num}.npy' for dcm_num in dcm_names] # Generate data for j, dcm_path in enumerate(patient_dcm_paths): X_dcm[0, j] = self._load_dcm(dcm_path) X_dcm = np.moveaxis(X_dcm, 1, -1) return X_dcm def _load_dcm(self, image_path): """Load grayscale image :param image_path: path to image to load :return: loaded image """ img = np.load(image_path, allow_pickle=True) if self.window: lb = self.window[0] ub = self.window[1] img[img < lb] = lb img[img > ub] = ub img = (img - lb) / (ub - lb) return img class CsvDataGenerator(keras.utils.Sequence): """Generates data for Keras Sequence based data generator. Suitable for building data generator for training and prediction. """ def __init__(self, csv_path, to_fit=True, to_normalize=True): """Initialization :param to_normalize: True to normalize, False otherwise :param csv_path: path to csv file location :param to_fit: True to return X and y, False to return X only """ self.to_normalize = to_normalize self.list_IDs = os.listdir(csv_path[:-4]) self.csv_path = csv_path self.to_fit = to_fit self.indexes = np.arange(len(self.list_IDs)) self.on_epoch_end() def __len__(self): """Denotes the number of batches per epoch :return: number of batches per epoch """ return len(self.list_IDs) def on_epoch_end(self): """Updates indexes after each epoch """ self.indexes = np.arange(len(self.list_IDs)) def flow(self, seed): np.random.seed(seed) i = int(np.random.randint(0, self.__len__(), size=(1,))) while True: yield self.__getitem__(i % self.__len__()) i += 1 def __getitem__(self, index): """Generate one patient's data :param index: index of the patient :return: X """ # Find list of IDs patient_ID = self.list_IDs[index] # Generate data X = self._generate_X(patient_ID) if self.to_fit: y = self._generate_y(patient_ID) return X, y else: return X def _generate_X(self, patient_ID): """Generates data containing patient's first csv record :param patient_ID: ID of the patient :return: patient's first csv record """ X = np.empty(shape=(1, 7), dtype=np.float32) # Generate data X[0] = self._load_X(self.csv_path, patient_ID) return X def _load_X(self, csv_path, patient_ID): """Load csv with patient's weeks and corresponding FVC :param csv_path: path to csv file with weeks and FVC file to load :return: loaded csv file with weeks and FVC file to load """ patients_df = pd.read_csv(csv_path) patient = patients_df[patients_df['Patient'] == patient_ID] patient.reset_index(inplace=True) X_columns = ['Weeks', 'FVC', 'Age', 'Ex-smoker', 'Never smoked', 'Currently smokes', 'Sex_n'] X_patient = patient.loc[0, X_columns] if self.to_normalize: X_patient['Age'] = (X_patient['Age'] - 67.18850871530019) / 7.055116199848975 X_patient['FVC'] = (X_patient['FVC'] - 2690.479018721756) / 832.5021066817238 X_patient['Weeks'] = (X_patient['Weeks'] - 31.861846352485475) / 23.265510111399017 X_patient = X_patient.to_numpy() return X_patient def _generate_y(self, patient_ID): """Generates data containing patient's [1:] csv records :param patient_ID: ID of the patient :return: patient's [1:] csv records """ y = np.empty(shape=(1, 146, 2), dtype=np.float32) # Generate data y[0] = self._load_y(self.csv_path, patient_ID) return y def _load_y(self, csv_path, patient_ID): """Load csv with patient's weeks and corresponding FVC :param csv_path: path to csv file with weeks and FVC file to load :return: loaded csv file with weeks and FVC file to load """ patients_df = pd.read_csv(csv_path) patient = patients_df[patients_df['Patient'] == patient_ID] patient.reset_index(inplace=True) weeks_FVC = patient.loc[1:, ['Weeks', 'FVC']] weeks_FVC = weeks_FVC[~weeks_FVC.duplicated(['Weeks'])] weeks_FVC = self.pad_y(weeks_FVC) weeks_FVC = weeks_FVC.to_numpy() return weeks_FVC def pad_y(self, csv_df): csv_df['isRecord'] = 1 for i in range(-12, 134): if not np.any(csv_df['Weeks'] == i): csv_df = csv_df.append({'Weeks': i, 'FVC': 0, 'isRecord': 0}, ignore_index=True) csv_df.sort_values('Weeks', inplace=True) csv_df.drop(columns='Weeks', inplace=True) if self.to_normalize: csv_df.loc[:, 'FVC'] = (csv_df.loc[:, 'FVC'] - 2690.479018721756) / 832.5021066817238 csv_df.reset_index(drop=True, inplace=True) return csv_df # ==================================# # Creating datagen def _merge_datagens(csv_gen, dcm_gen, shuffle=True, is_patient_record=True): seed = 0 while True: csv_flow = csv_gen.flow(seed) dcm_flow = dcm_gen.flow(seed) patient_num = 1 while True: csv_data = next(csv_flow) dcm_data = next(dcm_flow) csv_X = csv_data[0] dcm_X_img = dcm_data[0] csv_y = csv_data[1][:, :, 0] csv_is_patient_record = csv_data[1][:, :, 1] if is_patient_record: yield [csv_X, dcm_X_img], csv_y, csv_is_patient_record else: yield [csv_X, dcm_X_img], csv_y patient_num += 1 if patient_num > 175: break if shuffle: seed += 1 def create_datagen(shuffle=True, window=None, is_patient_record=True): """Returns generator that yields [csv_X, dcm_X_img], csv_y, csv_is_patient_record""" csv_datagen = CsvDataGenerator('../../data/processed/train.csv', to_normalize=True) dcm_datagen = DcmDataGenerator('../../data/processed/train', window=window) merged_gen = _merge_datagens(csv_datagen, dcm_datagen, shuffle=shuffle, is_patient_record=is_patient_record) return merged_gen # def gen_train_test_split(datagen): # datagen. # gen = create_datagen(shuffle=True) # x1, y1, is_p_r1 = next(gen)
3.171875
3
lib/fuzzy_word_search_results.py
dev-mike-del/fuzzy-word-search
0
12794917
<filename>lib/fuzzy_word_search_results.py """This module performs a 'fuzzy search on on JSON file""" #!/usr/bin/env python # -*- coding: utf-8 -*- from lib.fuzzy_word_search_work import FuzzyWordSearchWork # Performs a 'fuzzy search' on given JSON. # See test_input.json for JSON format class FuzzyWordSearch(FuzzyWordSearchWork): """ Performs a 'fuzzy word search' on given JSON. See test_input.json for JSON format. Instantiate FuzzyWordSearch with the path to the JSON file as the argument. Once initiated, the 'run()' method will execute the 'fuzzy search' and print the results. """ def __init__(self, json_filepath): FuzzyWordSearchWork.__init__(self, json_filepath) def print_results(self): """ Prints fuzzy_search_dict data in formated string """ for query in self.fuzzy_search_dict: try: if self.fuzzy_search_dict[query]["phrases"]: print(f"\nQuery: {query}") for phrase in self.fuzzy_search_dict[query]["phrases"]: print( f"""{self.fuzzy_search_dict[query]['phrases'].index(phrase) +1} Phrase: {phrase['original phrase']} Fuzzy Search: {phrase['fuzzy match']}""" ) except KeyError: pass def print_results_dict(self): """ Calls 'add_phrases_to_fuzzy_search_dict()' and 'print_results()'. If FuzzySearch is initiated with a properly formated JSON file, calling 'run()' with run through the class methods and print out the result. """ print(self.fuzzy_search_dict)
3.703125
4
src/abc194_b.py
06keito/study-atcoder
1
12794918
<gh_stars>1-10 N = int(input()) li = [list(map(int,input().split())) for i in range(N)] ans = 10**9 for idx_a in range(N): for idx_b in range(N): A,B = li[idx_a][0],li[idx_b][1] if idx_a==idx_b: ans = min(ans,A+B) else: ans = min(ans,max(A,B)) print(ans)
2.40625
2
src/api/datahub/databus/migration_views.py
Chromico/bk-base
84
12794919
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making BK-BASE 蓝鲸基础平台 available. Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. BK-BASE 蓝鲸基础平台 is licensed under the MIT License. License for BK-BASE 蓝鲸基础平台: -------------------------------------------------------------------- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time from common.decorators import detail_route, list_route from common.log import logger from common.transaction import auto_meta_sync from common.views import APIViewSet from datahub.common.const import DEFAULT from datahub.databus.exceptions import ( MigrationCannotOperatError, MigrationNotFoundError, ) from datahub.databus.task.task_utils import check_task_auth from django.forms import model_to_dict from rest_framework.response import Response from datahub.databus import exceptions, migration, models, rt, serializers, settings class MigrationViewset(APIViewSet): """ 对于资源 REST 操作逻辑统一放置在 APIViewSet 中提供接口 """ serializer_class = serializers.MigrateCreateSerializer # 对于URL中实例ID变量名进行重命名,默认为 pk lookup_field = "id" def create(self, request): """ @apiGroup migration @api {post} /databus/migrations/ 创建迁移任务 @apiDescription 创建迁移任务 @apiParam {string} result_table_id result_table_id @apiParam {string} source 源存储 @apiParam {string} dest 目标存储 @apiParam {string} start 起始时间 @apiParam {string} end 结束时间 @apiParam {int} parallelism 【选填】处理并发数,默认3 @apiParam {boolean} overwrite 是否覆盖已有数据 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": [{}], "message": "ok", "code": "1500200", } """ args = self.params_valid(serializer=serializers.MigrateCreateSerializer) rt_id = args["result_table_id"] check_task_auth(rt_id) rt_info = rt.get_databus_rt_info(rt_id) if not rt_info: raise exceptions.NotFoundRtError() # 源存储配置检查 if args["source"] not in rt_info["storages.list"]: raise exceptions.TaskStorageNotFound( message_kv={ "result_table_id": args["result_table_id"], "storage": args["source"], } ) # 目的存储配置检查 if args["dest"] not in rt_info["storages.list"]: raise exceptions.TaskStorageNotFound( message_kv={ "result_table_id": args["result_table_id"], "storage": args["dest"], } ) task_label = migration.create_task(rt_info, args) objs = models.DatabusMigrateTask.objects.filter(task_label=task_label).values() return Response(objs) def partial_update(self, request, id): """ @apiGroup migration @api {patch} /databus/migrations/:task_id/ 更新迁移任务 @apiDescription 更新迁移任务 @apiParam {string} status 状态 @apiParam {int} parallelism 处理并发数 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": {}, "message": "ok", "code": "1500200", } """ args = self.params_valid(serializer=serializers.MigrateUpdateSerializer) obj = models.DatabusMigrateTask.objects.get(id=id) with auto_meta_sync(using=DEFAULT): if args["status"] != "": obj.status = args["status"] if args["parallelism"] > 0: obj.parallelism = args["parallelism"] obj.save() return Response(model_to_dict(models.DatabusMigrateTask.objects.get(id=id))) def list(self, request): """ @apiGroup migration @api {patch} /databus/migrations/ 查询未完成任务 @apiDescription 查询未完成任务 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": [{}], "message": "ok", "code": "1500200", } """ tasks = models.DatabusMigrateTask.objects.exclude(status__in=["finish"]).values( "id", "task_label", "task_type", "result_table_id", "parallelism", "dest", "dest_config", "overwrite", "start", "end", "status", ) for task_obj in tasks: if task_obj["task_type"] != "overall": task_obj["source_config"] = "" task_obj["dest_config"] = "" return Response(tasks) def retrieve(self, request, id): """ @apiGroup migration @api {patch} /databus/migrations/:task_id/ 查询任务 @apiDescription 查询任务 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": [{}], "message": "ok", "code": "1500200", } """ task_id = 0 try: task_id = int(id) except Exception: pass if task_id == 0: return Response( models.DatabusMigrateTask.objects.filter(result_table_id=id, task_type="overall") .order_by("task_label") .values( "id", "task_type", "result_table_id", "source", "dest", "start", "end", "created_at", "created_by", "updated_at", "status", ) ) else: obj = models.DatabusMigrateTask.objects.get(id=task_id) return Response( models.DatabusMigrateTask.objects.filter(task_label=obj.task_label).values( "id", "task_type", "result_table_id", "source", "dest", "input", "output", "start", "end", "created_at", "created_by", "updated_at", "status", ) ) @detail_route(methods=["get"], url_path="start") def start_task(self, request, id): """ @apiGroup migration @api {post} /databus/migrations/:task_id/start/ 启动任务 @apiDescription 启动任务 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": True, "message": "ok", "code": "1500200", } """ args = self.params_valid(serializer=serializers.MigrateTaskTypeSerializer) task_obj = migration.get_task(id) if task_obj.status in ["finish"]: raise MigrationCannotOperatError(message_kv={"type": task_obj.status}) return Response(migration.start_task(task_obj, args["type"])) @detail_route(methods=["get"], url_path="stop") def stop_task(self, request, id): """ @apiGroup migration @api {post} /databus/migrations/:task_id/stop/ 停止任务 @apiDescription 停止任务 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": True, "message": "ok", "code": "1500200", } """ args = self.params_valid(serializer=serializers.MigrateTaskTypeSerializer) task_obj = migration.get_task(id) migration.stop_task(task_obj, args["type"]) return Response(True) @detail_route(methods=["get"], url_path="status") def get_status(self, request, id): """ @apiGroup migration @api {get} /databus/migrations/:task_id/status/ 查询任务pulsar运行状态 @apiDescription 查询任务pulsar运行状态 @apiParam {string} type 查询的任务类型,选值:all—所有类型任务,默认;source;sink @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": {"source":{}, "sink":{}}, "message": "ok", "code": "1500200", } """ args = self.params_valid(serializer=serializers.MigrateTaskTypeSerializer) task_obj = migration.get_task(id) result = migration.get_task_status(task_obj, args["type"]) return Response(result) @list_route(methods=["get"], url_path="get_clusters") def get_clusters(self, request): """ @apiGroup migration @api {get} /databus/migrations/get_clusters/ 获取result_table_id支持迁移集群列表 @apiDescription 获取result_table_id支持迁移集群列表 @apiParam {string} result_table_id result_table_id @apiParam {string} type 查询的任务类型,选值:all—所有类型任务,默认;source;sink @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": {"source":[], "sink":[]}, "message": "ok", "code": "1500200", } """ args = self.params_valid(serializer=serializers.TasksRtIdSerializer) result = {"source": [], "dest": []} # 查询已配置存储集群列表 rt_info = rt.get_rt_fields_storages(args["result_table_id"]) if not rt_info or not rt_info.get("storages"): return Response(result) storages = rt_info.get("storages") for storage_type in storages.keys(): if storage_type in settings.migration_source_supported: result["source"].append(storage_type) elif storage_type in settings.migration_dest_supported: result["dest"].append(storage_type) return Response(result) @list_route(methods=["get"], url_path="get_tasks") def get_tasks(self, request): """ @apiGroup migration @api {get} /databus/migrations/get_tasks/ 获取dataid下迁移任务列表 @apiDescription 获取dataid下迁移任务列表 @apiParam {string} raw_data_id 数据id @apiParam {string} result_table_id result_table_id, 当存在raw_data_id时无效 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": {{}}, "message": "ok", "code": "1500200", } """ args = self.params_valid(serializer=serializers.MigrationGetTasksVerifySerializer) if "raw_data_id" in args: # query by raw_data_id raw_data_id = args["raw_data_id"] objects = models.DatabusClean.objects.filter(raw_data_id=raw_data_id) rts = [obj.processing_id for obj in objects] elif "result_table_id" in args: rts = [args["result_table_id"]] else: return Response([]) result = models.DatabusMigrateTask.objects.filter(result_table_id__in=rts, task_type="overall").values( "id", "task_type", "result_table_id", "source", "dest", "start", "end", "created_at", "created_by", "updated_at", "status", ) return Response(result) @list_route(methods=["post"], url_path="update_task_status") def update_task_status(self, request): """ @apiGroup migration @api {post} /databus/migrations/update_task_status/ 更新任务状态 @apiDescription 更新任务状态 @apiParam {int} task_id 任务id @apiParam {string} status 状态 @apiParam {int} input [选填]source任务处理数量,默认0 @apiParam {int} output [选填]sink任务处理数量,默认0 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": {{}}, "message": "ok", "code": "1500200", } """ args = self.params_valid(serializer=serializers.MigrateUpdateStateSerializer) try: obj = models.DatabusMigrateTask.objects.get(id=args["task_id"]) except models.DatabusMigrateTask.DoesNotExist: raise MigrationNotFoundError() with auto_meta_sync(using=DEFAULT): obj.status = args["status"] obj.input = args["input"] obj.output = args["output"] obj.updated_at = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) logger.info("update task:{} status:{} input:{} output:{}".format(obj.id, obj.status, obj.input, obj.output)) obj.save() return Response("ok") @list_route(methods=["get"], url_path="get_support_clusters") def get_support_clusters(self, request): """ @apiGroup migration @api {get} /databus/migrations/get_support_clusters/ 获取当前支持的迁移列表 @apiDescription 更新任务状态 @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "result": true, "data": {"source" : ["tspider"], "dest": ["hdfs"]}, "message": "ok", "code": "1500200", } """ return Response( { "source": settings.migration_source_supported, "dest": settings.migration_dest_supported, } )
1.320313
1
tests/test_delete_contact.py
s34rching/python_classes
0
12794920
<filename>tests/test_delete_contact.py # -*- coding: utf-8 -*- from models.contact import Contact import random import pytest def test_delete_contact(app, orm, check_ui): with pytest.allure.step('Given a non-empty contact list'): if app.contact.count() == 0: app.contact.create(Contact(firstname="Test", lastname="Test", address="some address, 1", home_number="+375293003030", mobile_number="+375294004040")) old_contact_list = orm.get_contact_list() with pytest.allure.step('Given a random contact from the list'): contact = random.choice(old_contact_list) with pytest.allure.step('When I delete a new contact from the list'): app.contact.delete_some_contact_by_id(contact.id) with pytest.allure.step('Then the new contct list is equal to the old list without the deleted contact'): new_contact_list = orm.get_contact_list() old_contact_list.remove(contact) assert old_contact_list == new_contact_list if check_ui: assert sorted(new_contact_list, key=Contact.id_or_max) == sorted(app.contact.get_contact_list(), key=Contact.id_or_max)
2.6875
3
BrushUp/import.py
JaviFdezT/brush_up
0
12794921
<filename>BrushUp/import.py<gh_stars>0 import time import sqlite3 from tkinter.filedialog import askopenfilename from tkinter import Tk Tk().withdraw() filename = askopenfilename(initialdir="./BBDD") connection = sqlite3.connect(filename) cursor=connection.cursor() file = open("DOCS/words.txt",'r') words,discardedwords=[],[] now=time.localtime(time.time()) mm=str(now.tm_mon) if len(str(now.tm_mon))==2 else "0"+str(now.tm_mon) dd=str(now.tm_mday) if len(str(now.tm_mday))==2 else "0"+str(now.tm_mday) day="{!s}/{!s}/{!s}".format(str(now.tm_year),mm,dd) for line in file: line=line.split("*") for i in range(len(line)): line[i]=line[i].strip().replace("\t","").replace("\n","") if len(line)==3: words.append([line[0],line[1],line[2]]) else: discardedwords.append(line) for word in words: syn=input("sysntaxis for \'"+str(word[0])+"\' as \'"+str(word[2])+"\':") t=(str(word[0]), str(word[1]), str(word[2]), str(syn),1,day) cursor.execute('INSERT INTO WORDS (word, example, meaning, syntaxis,category,day) VALUES (?,?,?,?,?,?)', t) connection.commit() print("New word "+str(word[0])) if len(word[1])>100: print("although its example is too large") print("Added words:"+str(len(words))+". Discarded lines:"+str(len(discardedwords)))
3.0625
3
graph/gp.py
HerlanAssis/Networkx-From-KML
0
12794922
from fastkml import kml from .utils import haversine class GraphFromKmlDoc: def __init__(self, filename='pracas'): self._filename = filename def _get_document(self): doc = open("pracas.kml", "r").read().encode('utf-8') self._document = kml.KML() self._document.from_string(doc) return self._document def get_pracas(self): self._pracas = dict() for locais in self._get_document().features(): for idx, marcadores in enumerate(locais.features()): lng, lat, *args = marcadores.geometry._coordinates self._pracas[marcadores.name] = { 'id': idx, 'lat': lat, 'lng': lng, } return self._pracas def get_matriz_adjacencias(self): self._distancias=dict() pracas = self.get_pracas() for praca, coordenadas in pracas.items(): self._distancias[praca] = {} for _praca, _coordenadas in pracas.items(): self._distancias[praca][_praca] = haversine( lat1=coordenadas['lat'], lon1=coordenadas['lng'], lat2=_coordenadas['lat'], lon2=_coordenadas['lng'], ) return self._distancias
2.765625
3
diccionario/diccionario/dictionary/models.py
ssvargass/en-senas
1
12794923
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import unicode_literals from django.db import models from django.utils import timezone from django.utils.encoding import python_2_unicode_compatible from pyuploadcare.dj.models import ImageField from taggit_autosuggest.managers import TaggableManager @python_2_unicode_compatible class Word(models.Model): title = models.CharField(max_length=255) image = ImageField(blank=True, manual_crop="") tags = TaggableManager() created_date = models.DateTimeField(default=timezone.now) published_date = models.DateTimeField(blank=True, null=True) def publish(self): self.published_date = timezone.now() self.save() def __str__(self): return self.title
2.078125
2
benchmark/conftest.py
yhtang/GraphDot
9
12794924
#!/usr/bin/env python # -*- coding: utf-8 -*- def pytest_benchmark_scale_unit(config, unit, benchmarks, best, worst, sort): if unit == 'seconds': prefix = 'm' scale = 1e3 elif unit == 'operations': prefix = 'K' scale = 0.001 else: raise RuntimeError("Unexpected measurement unit %r" % unit) return prefix, scale
2.40625
2
ruclip/model.py
AlexWortega/ru-clip
73
12794925
<filename>ruclip/model.py # -*- coding: utf-8 -*- import os import json from collections import OrderedDict import torch import numpy as np from torch import nn class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ('c_fc', nn.Linear(d_model, d_model * 4)), ('gelu', QuickGELU()), ('c_proj', nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class VisionTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([ self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x ], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__( self, embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, eos_id=3, ): super().__init__() self.eos_id = eos_id self.context_length = context_length vision_heads = vision_width // 64 self.visual = VisionTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim, ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): mask = torch.empty(self.context_length, self.context_length) mask.fill_(float('-inf')) mask.triu_(1) return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, pixel_values): """Encode images Parameters ---------- pixel_values: torch.Tensor Processed images from RuCLIPProcessor class Returns ------- image_latents : torch.Tensor Image embeddings """ return self.visual(pixel_values.type(self.dtype)) def encode_text(self, input_ids): """Encode texts Parameters ---------- input_ids: torch.Tensor Tokenized texts from RuCLIPProcessor class Returns ------- text_latents : torch.Tensor Text embeddings """ x = self.token_embedding(input_ids).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] x = x[torch.arange(x.shape[0]), torch.where(input_ids == self.eos_id)[1]] @ self.text_projection return x def forward(self, input_ids, pixel_values): image_features = self.encode_image(pixel_values) text_features = self.encode_text(input_ids) # normalize features image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() return logits_per_image, logits_per_text @classmethod def from_pretrained(cls, folder): """Load model from folder""" config = json.load(open(os.path.join(folder, 'config.json'))) model = cls( embed_dim=config['embed_dim'], image_resolution=config['image_resolution'], vision_layers=config['vision_layers'], vision_width=config['vision_width'], vision_patch_size=config['vision_patch_size'], context_length=config['context_length'], vocab_size=config['vocab_size'], transformer_width=config['transformer_width'], transformer_heads=config['transformer_heads'], transformer_layers=config['transformer_layers'], ) checkpoint = torch.load(os.path.join(folder, 'pytorch_model.bin'), map_location='cpu') model.load_state_dict(checkpoint) return model
2.46875
2
textattack/models/summarization/t5_summarization.py
yuchenlin/TextAttack
1
12794926
<filename>textattack/models/summarization/t5_summarization.py from textattack.models.helpers import T5ForTextToText class T5Summarization(T5ForTextToText): """ A T5 model trained to summarize English text. Trained on the CNN/Daily Mail summarization dataset. For more information, please see the T5 paper, "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". Appendix D contains information about the various tasks supported by T5. """ def __init__(self, **kwargs): super().__init__('summarization', **kwargs)
2.34375
2
pcshell/shell.py
xSlither/pretty-click-shell
2
12794927
from typing import Callable import sys import os from copy import deepcopy from io import StringIO import click from click.core import MultiCommand, _check_multicommand from colorama import Style from . import globals as globs from . import _colors as colors from .chars import IGNORE_LINE from .pretty import PrettyGroup, PrettyCommand from .multicommand import CUSTOM_COMMAND_PROPS, CustomCommandPropsParser from .utils import HasKey from ._cmd_factories import ClickCmdShell class Shell(PrettyGroup): """A :class:`Click Group` implementation with an (optionally) attatched shell. Otherwise functions as a :class:`PrettyGroup` Constructor Kwargs: - :param:`isShell`: Attach a new shell instance? - :param:`prompt`: Prompt Text - :param:`intro`: Shell Intro Text - :param:`hist_file`: Full Path & Filename to History File - :param:`on_finished`: Callback function when shell closes - :param:`add_command_callback`: Callback for extending command kwargs. See :func:`multicommand.CustomCommandPropsParser()` - :param:`before_start`: os.system() command to execute prior to starting the shell - :param:`readline`: If True, use pyreadline instead of any prompt_toolkit features - :param:`complete_while_typing`: If True, prompt_toolkit suggestions will be live (on a separate thread) - :param:`fuzzy_completion`: If True, use fuzzy completion for prompt_toolkit suggestions - :param:`mouse_support`: If True, enables mouse support for prompt_toolkit - :param:`lexer`: If True, enables the prompt_toolkit lexer """ def __init__(self, isShell=False, prompt=None, intro=None, hist_file=None, on_finished=None, add_command_callback: Callable[[ClickCmdShell, object, str], None] = None, before_start=None, readline=None, complete_while_typing=True, fuzzy_completion=True, mouse_support=False, lexer=True, **attrs): # Allows this class to be used as a subclass without a new shell instance attached self.isShell = isShell if isShell: attrs['invoke_without_command'] = True super(Shell, self).__init__(**attrs) if not globs.__MASTER_SHELL__: globs.__MASTER_SHELL__ = self.name def on_shell_closed(ctx): if len(globs.__SHELL_PATH__): try: globs.__SHELL_PATH__.remove(self.name) except: pass if on_finished and callable(on_finished): on_finished(ctx) def on_shell_start(): if before_start and callable(before_start): before_start() if not self.name == globs.__MASTER_SHELL__: globs.__SHELL_PATH__.append(self.name) # Create the shell self.shell = ClickCmdShell(hist_file=hist_file, on_finished=on_shell_closed, add_command_callback=add_command_callback, before_start=on_shell_start, readline=readline, complete_while_typing=complete_while_typing, fuzzy_completion=fuzzy_completion, mouse_support=mouse_support, lexer=lexer ) if prompt: self.shell.prompt = prompt self.shell.intro = intro else: super(Shell, self).__init__(**attrs) def add_command(self, cmd: click.Command, name=None): name = name or cmd.name if name is None: raise TypeError("Command has no name.") _check_multicommand(self, name, cmd, register=True) if type(name) is str: self.commands[name] = cmd else: for _name_ in name: self.commands[_name_] = cmd if self.isShell: self.shell.add_command(cmd, name) def invoke(self, ctx: click.Context): if self.isShell: ret = super(Shell, self).invoke(ctx) if not ctx.protected_args and not ctx.invoked_subcommand: ctx.info_name = None self.shell.ctx = ctx return self.shell.cmdloop() return ret else: return MultiCommand.invoke(self, ctx) def new_shell(self, cls=None, **kwargs): """A shortcut decorator that instantiates a new Shell instance and attaches it to the existing Command """ from .pretty import prettyGroup def decorator(f): cmd = prettyGroup(cls=Shell if not cls else cls, isShell=True, **kwargs)(f) self.add_command(cmd) return cmd return decorator class MultiCommandShell(Shell): """ A :class:`Click Group` implementation with an (optionally) attached shell, that also: - Allows defining commands with multiple aliases - Allows for addtional command options (hidden, exit, etc.) - Implements pre-defined base shell commands - Implements all pretty formatting features If not attached to a shell, functions as a :class:`PrettyGroup` with the non-shell-related features listed above Constructor Kwargs: - :param:`isShell`: Attach a new shell instance? - :param:`prompt`: Prompt Text - :param:`intro`: Shell Intro Text - :param:`hist_file`: Full Path & Filename to History File - :param:`on_finished`: Callback function when shell closes - :param:`add_command_callback`: Callback for extending command kwargs. See :func:`multicommand.CustomCommandPropsParser()` - :param:`before_start`: os.system() command to execute prior to starting the shell - :param:`readline`: If True, use pyreadline instead of any prompt_toolkit features - :param:`complete_while_typing`: If True, prompt_toolkit suggestions will be live (on a separate thread) - :param:`fuzzy_completion`: If True, use fuzzy completion for prompt_toolkit suggestions - :param:`mouse_support`: If True, enables mouse support for prompt_toolkit - :param:`lexer`: If True, enables the prompt_toolkit lexer """ def __init__(self, isShell=None, **attrs): self.isShell = isShell attrs['isShell'] = isShell if self.isShell: if not HasKey('add_command_callback', attrs) or not attrs['add_command_callback']: attrs['add_command_callback'] = CustomCommandPropsParser super(MultiCommandShell, self).__init__(**attrs) if self.isShell: BaseShellCommands.addBasics(self) if globs.__IsShell__ and self.isShell: if globs.__MASTER_SHELL__ == self.name: BaseShellCommands.addMasters(self) BaseShellCommands.addAll(self) @staticmethod def __strip_invalidKeys(kwargs): for _kwarg_ in CUSTOM_COMMAND_PROPS: if HasKey(_kwarg_, kwargs): kwargs.pop(_kwarg_, None) @staticmethod def __assign_invalidKeys(kwargs, cmd): for _kwarg_ in CUSTOM_COMMAND_PROPS: if HasKey(_kwarg_, kwargs): setattr(cmd, _kwarg_, kwargs[_kwarg_]) def group(self, *args, **kwargs): """A shortcut decorator for declaring and attaching a group to the group. This takes the same arguments as :func:`group` but immediately registers the created command with this instance by calling into :meth:`add_command`. """ from .pretty import prettyGroup def decorator(f): cmd = prettyGroup(*args, **kwargs)(f) cmd.alias = False self.add_command(cmd) return cmd return decorator def new_shell(self, cls=None, **kwargs): """A shortcut decorator that instantiates a new Shell instance and attaches it to the existing Command """ from .pretty import prettyGroup def decorator(f): cmd = prettyGroup(cls=MultiCommandShell if not cls else cls, isShell=True, **kwargs)(f) cmd.alias = False self.add_command(cmd) return cmd return decorator def command(self, *args, **kwargs): """Behaves the same as `click.Group.command()` except if passed a list of names, all after the first will be aliases for the first. Also allows for use of custom kwargs defined in multicommand.py. """ def decorator(f): old_kwargs = kwargs.copy() self.__strip_invalidKeys(kwargs) from .pretty import prettyCommand tmpCommand = None origHelpTxt = None aliases = [] try: if isinstance(args[0], list): _args = [args[0][0]] + list(args[1:]) for alias in args[0][1:]: if tmpCommand is None: cmd: PrettyCommand = prettyCommand(alias, None, **kwargs)(f) origHelpTxt = cmd.help cmd.alias = True cmd.aliases = [] cmd.help = "(Alias for '{c}') {h}".format(c = _args[0], h = cmd.help) cmd.short_help = "Alias for '{}'".format(_args[0]) cmd.true_hidden = cmd.hidden cmd.hidden = True self.__assign_invalidKeys(old_kwargs, cmd) super(MultiCommandShell, self).add_command(cmd) tmpCommand = cmd else: cmd = deepcopy(tmpCommand) cmd.alias = True cmd.aliases = [] cmd.name = alias cmd.help = "(Alias for '{c}') {h}".format(c = _args[0], h = origHelpTxt) cmd.short_help = "Alias for '{}'".format(_args[0]) cmd.hidden = True self.__assign_invalidKeys(old_kwargs, cmd) super(MultiCommandShell, self).add_command(cmd) aliases.append(alias) else: _args = args if tmpCommand is None: cmd: PrettyCommand = prettyCommand(*_args, **kwargs)(f) cmd.alias = False cmd.aliases = aliases self.__assign_invalidKeys(old_kwargs, cmd) super(MultiCommandShell, self).add_command(cmd) return cmd else: cmd = deepcopy(tmpCommand) cmd.alias = False cmd.aliases = aliases cmd.name = _args[0] cmd.help = origHelpTxt cmd.short_help = '' cmd.hidden = cmd.true_hidden self.__assign_invalidKeys(old_kwargs, cmd) super(MultiCommandShell, self).add_command(cmd) return cmd except: cmd: PrettyCommand = prettyCommand(*args, **kwargs)(f) cmd.alias = False cmd.aliases = aliases self.__assign_invalidKeys(old_kwargs, cmd) super(MultiCommandShell, self).add_command(cmd) return cmd return decorator class BaseShellCommands: @staticmethod def addMasters(shell: MultiCommandShell): @shell.command(globs.MASTERSHELL_COMMAND_ALIAS_RESTART, hidden=True) def __restart_shell__(): """Restarts the application""" # Spawns a new shell within the current session by launching the python app again os.system('python "%s"' % sys.argv[0].replace('\\', '/')) # Exits the current shell once it's child has closed globs.__IS_REPEAT__ = True globs.__IS_EXITING__ = True if shell.shell.readline: globs.__PREV_STDIN__ = sys.stdin sys.stdin = StringIO(globs.__LAST_COMMAND__) else: shell.shell._pipe_input.send_text('exit\r') click.echo(IGNORE_LINE) @staticmethod def addBasics(shell: MultiCommandShell): @shell.command(globs.BASIC_COMMAND_ALIAS_HELP, hidden=True) def __get_help__(): with click.Context(shell) as ctx: click.echo(shell.get_help(ctx)) @shell.command(globs.BASIC_COMMAND_ALIAS_CLEARHISTORY, hidden=True) def __clear_history__(): """Clears the CLI history for this terminal for the current user""" result = shell.shell.clear_history() print() click.echo('\t{}{} {}{}{}'.format( colors.SHELL_HISTORY_CLEARED_STYLE, 'History cleared' if result else 'Clear History', colors.SHELL_HISTORY_CLEARED_TRUE if result else colors.SHELL_HISTORY_CLEARED_FALSE, 'successfully' if result else 'failed', Style.RESET_ALL )) @staticmethod def addAll(shell: MultiCommandShell): @shell.command(globs.SHELL_COMMAND_ALIAS_CLEAR, hidden=True) def cls(): """Clears the Terminal""" click.clear() @shell.command(globs.SHELL_COMMAND_ALIAS_QUIT, hidden=True, exit=True) def _exit_(): """Exits the Shell""" pass @shell.command(globs.SHELL_COMMAND_ALIAS_EXIT, exit=True) def __exit__(): """Exits the Shell""" pass @shell.command(globs.SHELL_COMMAND_ALIAS_REPEAT, hidden=True) def __repeat_command__(): """Repeats the last valid command with all previous parameters""" if globs.__LAST_COMMAND__: globs.__IS_REPEAT__ = True if shell.shell.readline: globs.__PREV_STDIN__ = sys.stdin sys.stdin = StringIO(globs.__LAST_COMMAND__)
2.125
2
tests/unit/test_cwl_interaction.py
Phil-Ocone/datacoco-cloud
1
12794928
<gh_stars>1-10 """ Test Cloud Watch Log """ import os import unittest from unittest.mock import MagicMock from datacoco_cloud import UNIT_TEST_KEY from datacoco_cloud.cwl_interaction import CWLInteraction class TestCWLInteraction(unittest.TestCase): def setUp(self): os.environ[UNIT_TEST_KEY] = "True" self.testCls = CWLInteraction( region="", aws_secret_key="", aws_access_key="" ) def test_parse_and_print_events(self): self.testCls.client = MagicMock() self.testCls.parse_and_print_events(events="") self.assertTrue(True) # Assert that this line is reached without error def test_get_log_events(self): self.testCls.client = MagicMock() self.testCls.client.get_log_events.return_value = { "ResponseMetadata": {"HTTPStatusCode": 200}, "events": [], } self.testCls.get_log_events(log_group="", log_stream="") self.assertTrue(True) # Assert that this line is reached without error def test_get_log_events_http_error(self): self.testCls.client = MagicMock() self.testCls.client.get_log_events.return_value = { "ResponseMetadata": {"HTTPStatusCode": 500}, "events": [], } try: self.testCls.get_log_events(log_group="", log_stream="") self.fail("There should be an error") except ValueError as v: self.assertTrue( str(v) is not None ) # Assert value error did happen
2.3125
2
sendEmail.pyw
lucas-pixel/SendEmail
0
12794929
<reponame>lucas-pixel/SendEmail import smtplib import PySimpleGUI as sg from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText class Interface: def __init__(self): sg.theme('DarkPurple4') layout = [ [sg.Text('Servidor ', size=(8,1)), sg.Input(key='_using_server_', size=(21, 1))], [sg.Text('De ', size=(8,1)), sg.Input(key='_from_', size=(21,1))], [sg.Text('Para ', size=(8,1)), sg.Input(key='_to_', size=(21,1))], [sg.Text('Assunto ', size=(8,1)), sg.Input(key='_matter_', size=(21,1))], [sg.Text('Mensagem ', size=(8,1)), sg.Input(key='_message_', size=(21,2))], [sg.Text('Logs')], [sg.Output(size=(31, 5))], [sg.Button('Enviar')] ] self.windowMain = sg.Window('SendEmail 1.0', layout, icon='Blackvariant-Shadow135-System-Mail.ico') def Home(self): while True: event, values = self.windowMain.read() if event == sg.WINDOW_CLOSED: break if event == 'Enviar': self.configs(values['_using_server_'], values['_from_'], values['_to_'], values['_matter_'], values['_message_']) def configs(self, _using_server_, _from_, _to_, _matter_, _message_): try: Select = _using_server_ s = 'smtp.{}.com'.format(Select) server = smtplib.SMTP(s, 587) server.starttls() print('Configurando o server...') #email_from = input(str('De: ')) print('Fazendo o login, aguarde...') server.login(_from_, open('senha.txt').read().strip()) #email_to = input(str('Para: ')) #subject = input(str('Assunto: ')) msg = MIMEMultipart() msg['From'] = _from_ msg['To'] = _to_ msg['Subject'] = _matter_ #message = input(str('Mensagem: ')) msg.attach(MIMEText(_message_, 'plain')) text = msg.as_string() print('Enviando a mensagem...') #SET server.sendmail(_from_, _to_, text) server.quit() print('Sucesso ao enviar o email') except: print('Ops, ocorreu um erro :(') debg = Interface() debg.Home()
2.546875
3
src/tasks/lesson03/task301.py
vadimkondratovich/asd
0
12794930
from django.http import HttpRequest, HttpResponse from main.util import render_template TEMPLATE = "tasks/lesson03/task301.html" def handler(request: HttpRequest) -> HttpResponse: name = request.GET.get("name") context = { "input_name": name, "greeting_name": name or "anonymous", } document = render_template(TEMPLATE, context) response = HttpResponse(content=document) return response if __name__ == '__main__': x = render_template(TEMPLATE, {'input_name': 1, 'greeting_name': 2}) print(x)
2.671875
3
configs/fisheye_pig/yolov3_d53_mstrain-608_273e_coco_2passage_pig.py
leemengwei/my_mmdetection
1
12794931
<reponame>leemengwei/my_mmdetection<filename>configs/fisheye_pig/yolov3_d53_mstrain-608_273e_coco_2passage_pig.py<gh_stars>1-10 _base_ = '../yolo/yolov3_d53_mstrain-608_273e_coco.py' # model settings model = dict( bbox_head=dict( num_classes=2), train_cfg=dict( nms_pre=1000, nms=dict(type='nms', iou_threshold=0.6), max_per_img=200), test_cfg=dict( nms_pre=1000, nms=dict(type='nms', iou_threshold=0.5), max_per_img=200), ) #load_from='./checkpoints/yolov3_d53_mstrain-608_273e_coco-139f5633.pth' # dataset settings dataset_type = 'CocoDataset' train_dir_1 = "../dataset/1猪舍-汇研+剪裁ok_cat_and_dogs/train" val_dir_1 = "../dataset/1猪舍-汇研+剪裁ok_cat_and_dogs/val" train_dir_2 = "../dataset/2出猪通道-泉州safe/train" val_dir_2 = "../dataset/2出猪通道-泉州safe/val" train_dir_3 = "../dataset/3出猪台-泉州+剪裁safe/train" val_dir_3 = "../dataset/3出猪台-泉州+剪裁safe/val" train_dir_3 = "../dataset/4称重台-泉州safe/train" val_dir_3 = "../dataset/4称重台-泉州safe/val" img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), #dict(type='PhotoMetricDistortion'), #dict(type='MinIoURandomCrop', min_ious=(0.8, 0.9, 1.0), min_crop_size=0.7), #dict(type='Resize', img_scale=[(1366, 768), (990, 540), (1115, 608)], keep_ratio=True, multiscale_mode='value'), dict(type='Resize', img_scale=[(608,608)], keep_ratio=True, multiscale_mode='value'), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(608,608), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=1, workers_per_gpu=1, train=dict( type=dataset_type, ann_file=[train_dir_1 + '/annotation_coco.json', train_dir_2 + '/annotation_coco.json'], img_prefix=[train_dir_1, train_dir_2], pipeline=train_pipeline, classes=('pig', 'person') ), val=dict( type=dataset_type, ann_file=[val_dir_1 + '/annotation_coco.json', val_dir_2 + '/annotation_coco.json'], img_prefix=[val_dir_1, val_dir_2], pipeline=test_pipeline, classes=('pig', 'person') ), test=dict( type=dataset_type, ann_file=[val_dir_1 + '/annotation_coco.json', val_dir_2 + '/annotation_coco.json'], img_prefix=[val_dir_1, val_dir_2], pipeline=test_pipeline, classes=('pig', 'person') ) ) # optimizer optimizer = dict(type='SGD', lr=0.002, momentum=0.9, weight_decay=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( #_delete_=True, #policy='CosineAnnealing', policy='step', warmup='linear', warmup_iters=2000, # same as burn-in in darknet #warmup_ratio=1e-6, warmup_ratio=0.1, step=[150, 180], #min_lr_ratio=1e-10 ) runner = dict(type='EpochBasedRunner', max_epochs=200) checkpoint_config = dict(interval=10) log_config = dict( interval=10) workflow = [('train', 1), ('val', 1)]
1.453125
1
application/tests/test_camera.py
Sapfir0/web-premier-eye
0
12794932
import unittest from config import Config as cfg import requests class Camera(unittest.TestCase): routeUrl = cfg.serverUrl + "gallery/camera" camerasList = [1,2,3] def test_IsAllCamerasAvailable(self): for camera in self.camerasList: r = requests.get(f"{self.routeUrl}/{camera}") self.assertEqual(200, r.status_code) if __name__ == '__main__': unittest.main()
3.109375
3
app/core/migrations/0004_auto_20201128_2021.py
vivek92-tech/SocialSphere-Insta-clone
1
12794933
<reponame>vivek92-tech/SocialSphere-Insta-clone # Generated by Django 3.1.3 on 2020-11-28 20:21 import core.models from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import uuid class Migration(migrations.Migration): dependencies = [ ('core', '0003_user_profile_pic'), ] operations = [ migrations.AddField( model_name='user', name='date_joined', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='user', name='followers', field=models.ManyToManyField(blank=True, related_name='user_followers', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='user', name='following', field=models.ManyToManyField(blank=True, related_name='user_following', to=settings.AUTH_USER_MODEL), ), migrations.CreateModel( name='Post', fields=[ ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('photo', models.ImageField(editable=False, upload_to=core.models.image_file_path)), ('text', models.TextField(blank=True, max_length=500)), ('location', models.CharField(blank=True, max_length=30)), ('posted_on', models.DateTimeField(auto_now_add=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='user_posts', to=settings.AUTH_USER_MODEL)), ('likes', models.ManyToManyField(blank=True, related_name='likers', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-posted_on'], }, ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.CharField(max_length=100)), ('posted_on', models.DateTimeField(auto_now_add=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='user_comments', to=settings.AUTH_USER_MODEL)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='post_comments', to='core.post')), ], options={ 'ordering': ['-posted_on'], }, ), ]
1.789063
2
models/train_classifier.py
Yasir-Ghunaim/disaster_response_pipeline
0
12794934
<gh_stars>0 import sys import nltk nltk.download(['punkt', 'stopwords', 'wordnet', 'averaged_perceptron_tagger']) import re import pandas as pd import numpy as np import pickle from sqlalchemy import create_engine from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.stem.porter import PorterStemmer from sklearn.pipeline import Pipeline from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.multioutput import MultiOutputClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report def load_data(database_filepath): """Load database and split into features and outputs""" engine = create_engine('sqlite:///' + database_filepath) df = pd.read_sql_table("DisasterResponse", engine) X = df["message"] Y = df.drop(columns=["id", "message", "original", "genre"]) category_names = Y.columns return X, Y, category_names def tokenize(text): """Clean text, apply word tokenization, remove stop words and reduce tokens into their roots""" # Tokenize text text = re.sub(r"[^a-z0-9]", " ", text.lower()) tokens = word_tokenize(text) # Remove stop words tokens = [w for w in tokens if w not in stopwords.words("english")] # Reduce tokens into their roots stemer = PorterStemmer() lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = stemer.stem(tok).strip() clean_tok = lemmatizer.lemmatize(clean_tok) clean_tokens.append(clean_tok) return clean_tokens def build_model(): """ Return a mechine learning pipeline optimized by GridSearch to classify multi-output dataset """ pipeline = Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()), ('clf', MultiOutputClassifier(DecisionTreeClassifier(random_state=42))) ]) parameters = { 'vect__ngram_range': ((1, 1), (1, 2)), 'clf__estimator__max_depth': [3, 6] } cv = GridSearchCV(pipeline, param_grid=parameters, verbose=50) return cv def evaluate_model(model, X_test, Y_test, category_names): """ Print a classification report containing recall, precision and f1-score for each predicted category """ Y_pred = model.predict(X_test) for i in list(range(Y_pred.shape[1])): print("Report for column: \"" + category_names[i] + "\"") print(classification_report(Y_test.values[:,i], Y_pred[:,i])) print("\n\n") def save_model(model, model_filepath): """ Save the model as a pickle file """ pkl_filename = "disaster_response_model.pkl" with open(pkl_filename, 'wb') as file: pickle.dump(model, file) def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) print('Building model...') model = build_model() print('Training model...') model.fit(X_train, Y_train) print('Evaluating model...') evaluate_model(model, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
2.671875
3
controller/server.py
uniaim-event-team/watch-link
2
12794935
<reponame>uniaim-event-team/watch-link from flask import Blueprint, render_template app = Blueprint(__name__, "server") @app.route('/') def route(): return render_template('top.html')
1.78125
2
tests/test_ges.py
stevenengler/witness-encryption
0
12794936
<reponame>stevenengler/witness-encryption from trivial_ges import TrivialGES import sys # Testing l = int(sys.argv[1]) n = int(sys.argv[2]) print("Instantiating with lambda = ", l, " n = ", n) x = TrivialGES(l, n) print("n: ", x.get_n()) print("lambda: ", x.get_lambda()) e = x.sample() print("Sample 1:", e) f = print("Sample 2: ", x.sample()) f = print("Sample 3: ", x.sample()) f = print("Sample 4: ", x.sample()) e = x.encode(1, e) print("Encoding first sample at level 1", e) f = x.copy_encoding(e) print("Copying encoding: ", f) x.rerandomize(2, e) print("Rerandomizing first encoding at level 2: ", e) print("Checking copy has not changed: ", f) print("Multiplying both and returning new: ", x.multiply(e, f)) print("Checking encodings haven't changed: ") print("\t", e) print("\t", f) print("Multiplying both and storing in new: ", x.multiply(e, f, e)) print("Checking only first encoding changes: ") print("\t", e) print("\t", f) print("Length of key from first:", len(x.extract(e))) print("Length of key from second:", len(x.extract(f))) print("First two keys are equal:", str(x.extract(e)) == str(x.extract(f))) print("First encoding key and key of copy are equal:", str(x.extract(e)) == str(x.extract(x.copy_encoding(e))))
3.21875
3
zipline/utils/calendars/calendar_helpers.py
NunoEdgarGFlowHub/zipline
0
12794937
<gh_stars>0 # # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import bisect from zipline.errors import NoFurtherDataError def normalize_date(date): date = pd.Timestamp(date, tz='UTC') return pd.tseries.tools.normalize_date(date) def delta_from_time(t): """ Convert a datetime.time into a timedelta. """ return pd.Timedelta( hours=t.hour, minutes=t.minute, seconds=t.second, ) def _get_index(dt, all_trading_days): """ Return the index of the given @dt, or the index of the preceding trading day if the given dt is not in the trading calendar. """ ndt = normalize_date(dt) if ndt in all_trading_days: return all_trading_days.searchsorted(ndt) else: return all_trading_days.searchsorted(ndt) - 1 # The following methods are intended to be inserted in both the # ExchangeCalendar and TradingSchedule classes. # These methods live in the helpers module to avoid code duplication. def next_scheduled_day(date, last_trading_day, is_scheduled_day_hook): """ Returns the next session date in the calendar after the provided date. Parameters ---------- date : Timestamp The date whose following date is needed. Returns ------- Timestamp The next scheduled date after the provided date. """ dt = normalize_date(date) delta = pd.Timedelta(days=1) while dt <= last_trading_day: dt += delta if is_scheduled_day_hook(dt): return dt raise NoFurtherDataError(msg='Cannot find next day after %s' % date) def previous_scheduled_day(date, first_trading_day, is_scheduled_day_hook): """ Returns the previous session date in the calendar before the provided date. Parameters ---------- date : Timestamp The date whose previous date is needed. Returns ------- Timestamp The previous scheduled date before the provided date. """ dt = normalize_date(date) delta = pd.Timedelta(days=-1) while first_trading_day < dt: dt += delta if is_scheduled_day_hook(dt): return dt raise NoFurtherDataError(msg='Cannot find previous day before %s' % date) def next_open_and_close(date, open_and_close_hook, next_scheduled_day_hook): return open_and_close_hook(next_scheduled_day_hook(date)) def previous_open_and_close(date, open_and_close_hook, previous_scheduled_day_hook): return open_and_close_hook(previous_scheduled_day_hook(date)) def scheduled_day_distance(first_date, second_date, all_days): first_date = normalize_date(first_date) second_date = normalize_date(second_date) i = bisect.bisect_left(all_days, first_date) if i == len(all_days): # nothing found return None j = bisect.bisect_left(all_days, second_date) if j == len(all_days): return None distance = j - 1 assert distance >= 0 return distance def minutes_for_day(day, open_and_close_hook): start, end = open_and_close_hook(day) return pd.date_range(start, end, freq='T') def days_in_range(start, end, all_days): """ Get all execution days between start and end, inclusive. """ start_date = normalize_date(start) end_date = normalize_date(end) return all_days[all_days.slice_indexer(start_date, end_date)] def minutes_for_days_in_range(start, end, days_in_range_hook, minutes_for_day_hook): """ Get all execution minutes for the days between start and end, inclusive. """ start_date = normalize_date(start) end_date = normalize_date(end) all_minutes = [] for day in days_in_range_hook(start_date, end_date): day_minutes = minutes_for_day_hook(day) all_minutes.append(day_minutes) # Concatenate all minutes and truncate minutes before start/after end. return pd.DatetimeIndex(np.concatenate(all_minutes), copy=False, tz='UTC') def add_scheduled_days(n, date, next_scheduled_day_hook, previous_scheduled_day_hook, all_trading_days): """ Adds n trading days to date. If this would fall outside of the trading calendar, a NoFurtherDataError is raised. Parameters ---------- n : int The number of days to add to date, this can be positive or negative. date : datetime The date to add to. Returns ------- datetime n trading days added to date. """ if n == 1: return next_scheduled_day_hook(date) if n == -1: return previous_scheduled_day_hook(date) idx = _get_index(date, all_trading_days) + n if idx < 0 or idx >= len(all_trading_days): raise NoFurtherDataError( msg='Cannot add %d days to %s' % (n, date) ) return all_trading_days[idx] def all_scheduled_minutes(all_days, minutes_for_days_in_range_hook): first_day = all_days[0] last_day = all_days[-1] return minutes_for_days_in_range_hook(first_day, last_day) def next_scheduled_minute(start, is_scheduled_day_hook, open_and_close_hook, next_open_and_close_hook): """ Get the next market minute after @start. This is either the immediate next minute, the open of the same day if @start is before the market open on a trading day, or the open of the next market day after @start. """ if is_scheduled_day_hook(start): market_open, market_close = open_and_close_hook(start) # If start before market open on a trading day, return market open. if start < market_open: return market_open # If start is during trading hours, then get the next minute. elif start < market_close: return start + pd.Timedelta(minutes=1) # If start is not in a trading day, or is after the market close # then return the open of the *next* trading day. return next_open_and_close_hook(start)[0] def previous_scheduled_minute(start, is_scheduled_day_hook, open_and_close_hook, previous_open_and_close_hook): """ Get the next market minute before @start. This is either the immediate previous minute, the close of the same day if @start is after the close on a trading day, or the close of the market day before @start. """ if is_scheduled_day_hook(start): market_open, market_close = open_and_close_hook(start) # If start after the market close, return market close. if start > market_close: return market_close # If start is during trading hours, then get previous minute. if start > market_open: return start - pd.Timedelta(minutes=1) # If start is not a trading day, or is before the market open # then return the close of the *previous* trading day. return previous_open_and_close_hook(start)[1]
2.5
2
Lab1/tt.py
Machinesaac/6.009
0
12794938
a = [(255,0,0)] print(a[0][0])
2.46875
2
objetto/reactions.py
brunonicko/objetto
8
12794939
# -*- coding: utf-8 -*- """Reactions.""" from ._reactions import CustomReaction, Limit, LimitChildren, UniqueAttributes, reaction __all__ = [ "reaction", "CustomReaction", "UniqueAttributes", "LimitChildren", "Limit", ]
1.171875
1
backend/app/crud/crud_debit.py
ralphribeiro/debito_automatico
0
12794940
from typing import Any, Dict, Optional, Union, List from fastapi.encoders import jsonable_encoder from sqlalchemy.orm import Session from app.crud.base import CRUDBase from app.models.debit import Debit from app.schemas.debit import DebitCreate, DebitUpdate class CRUDDebit(CRUDBase[Debit, DebitCreate, DebitUpdate]): def create_with_owner(self, db: Session, *, obj_in: DebitCreate, owner_id: int) -> Debit: obj_in_data = jsonable_encoder(obj_in) db_obj = self.model(**obj_in_data, owner_id=owner_id) db.add(db_obj) db.commit() db.refresh(db_obj) return db_obj def get_by_owner(self, db: Session, *, owner_id: int) -> Optional[Debit]: return db.query(Debit).filter(Debit.owner_id == owner_id).first() def update_status(self, db: Session, *, db_obj: Debit, obj_in: Union[DebitUpdate, Dict[str, Any]]) -> Debit: if isinstance(obj_in, dict): update_data = obj_in else: update_data = obj_in.dict(exclude_unset=True) return super().update(db, db_obj=db_obj, obj_in=obj_in) # def get_multi(self, db: Session, *, # skip: int = 0, limit: int = 100) -> List[Dict]: # return (db.query(self.model).offset(skip).limit(limit).all()) debit = CRUDDebit(Debit)
2.21875
2
Products/mcdutils/ftests/functest.py
zms-publishing/Products.mcdutils
0
12794941
<reponame>zms-publishing/Products.mcdutils # Run this test from 'zopectl run' # Requires that we are running a memcached on localhost, port 11211 import transaction from .proxy import MemCacheProxy proxy = MemCacheProxy(['localhost:11211']) session = proxy.new_or_existing('foobar') print(session) session['abc'] = 123 print(session) transaction.commit() proxy2 = MemCacheProxy(['localhost:11211']) print(proxy2.get('foobar'))
1.726563
2
scripts/deepimpact/brute-force.py
d1shs0ap/pyserini
451
12794942
import argparse import json import os from scipy.sparse import csr_matrix from tqdm import tqdm import numpy as np from multiprocessing import Pool, Manager def token_dict_to_sparse_vector(token_dict, token2id): matrix_row, matrix_col, matrix_data = [], [], [] tokens = token_dict.keys() col = [] data = [] for tok in tokens: if tok in token2id: col.append(token2id[tok]) data.append(token_dict[tok]) matrix_row.extend([0] * len(col)) matrix_col.extend(col) matrix_data.extend(data) vector = csr_matrix((matrix_data, (matrix_row, matrix_col)), shape=(1, len(token2id))) return vector parser = argparse.ArgumentParser() parser.add_argument('--corpus', type=str, help='path to corpus with vectors', required=True) parser.add_argument('--topics', type=str, help='path to topics with vectors', required=True) parser.add_argument('--tokens', type=str, help='path to token list', required=True) parser.add_argument('--run', type=str, help='path to run file', required=True) parser.add_argument('--threads', type=int, help='threads for hnsw', required=False, default=12) args = parser.parse_args() token2id = {} with open(args.tokens) as tok_f: for idx, line in enumerate(tok_f): tok = line.rstrip() token2id[tok] = idx corpus = [] for file in sorted(os.listdir(args.corpus)): file = os.path.join(args.corpus, file) if file.endswith('json') or file.endswith('jsonl'): print(f'Loading {file}') with open(file, 'r') as f: for idx, line in enumerate(tqdm(f.readlines())): info = json.loads(line) corpus.append(info) ids = [] vectors = [] matrix_row, matrix_col, matrix_data = [], [], [] for i, d in enumerate(tqdm(corpus)): weight_dict = d['vector'] tokens = weight_dict.keys() col = [token2id[tok] for tok in tokens] data = weight_dict.values() matrix_row.extend([i] * len(weight_dict)) matrix_col.extend(col) matrix_data.extend(data) ids.append(d['id']) vectors = csr_matrix((matrix_data, (matrix_row, matrix_col)), shape=(len(corpus), len(token2id))) topic_ids = [] topic_vectors = [] with open(args.topics) as topic_f: for line in topic_f: info = json.loads(line) topic_ids.append(info['id']) topic_vectors.append(token_dict_to_sparse_vector(info['vector'], token2id)) vectors_T = vectors.T manager = Manager() results = manager.dict() def run_search(idx): global results qid = topic_ids[idx] t_vec = topic_vectors[idx] scores = np.array(t_vec.dot(vectors_T).todense())[0] top_idx = sorted(range(len(scores)), key=lambda x: scores[x], reverse=True)[:1000] result = [(ids[x], scores[x]) for x in top_idx] results[qid] = result with Pool(args.threads) as p: for _ in tqdm(p.imap_unordered(run_search, list(range(len(topic_ids)))), total=len(topic_ids)): pass with open(args.run, 'w') as f: for qid in results: for idx, item in enumerate(results[qid]): did = item[0] score = item[1] f.write(f'{qid} Q0 {did} {idx+1} {score} bf\n')
2.46875
2
pycc/cli/__init__.py
kevinconway/pycc
17
12794943
<filename>pycc/cli/__init__.py """Modules related to the command line interface of the project."""
1.164063
1
notebooks/snippets/nbody/create_n.py
IsabelAverill/Scipy-2017---Numba
149
12794944
@njit def create_n_random_particles(n, m, domain=1): ''' Creates `n` particles with mass `m` with random coordinates between 0 and `domain` ''' parts = numpy.zeros((n), dtype=particle_dtype) #attribute access only in @jitted function for p in parts: p.x = numpy.random.random() * domain p.y = numpy.random.random() * domain p.z = numpy.random.random() * domain p.m = m p.phi = 0 return parts
2.796875
3
desidiff/src/scores.py
EquinoxOmega0/timedomain
0
12794945
<filename>desidiff/src/scores.py import numpy import copy def clipmean_one(y,ivar,mask,nsig=3): w=numpy.where(mask==0)[0] ansivar = ivar[w].sum() ansmean = numpy.sum(y[w]*ivar[w])/ansivar newy = y-ansmean w=numpy.where(numpy.logical_and.reduce([mask==0, numpy.abs(newy*numpy.sqrt(ivar)) < nsig]))[0] ansivar = ivar[w].sum() ansmean = numpy.sum(y[w]*ivar[w])/ansivar return y-ansmean def clipmean(y,ivar,mask,nsig=3): ans = copy.deepcopy(y) for k in ans.keys(): ans[k]=clipmean_one(y[k],ivar[k],mask[k],nsig=nsig) return ans def perband_SN(y,ivar,mask,nsig=10): ans=dict() for k in y.keys(): w=numpy.where(mask[k]==0)[0] ansivar = ivar[k][w].sum() ansmean = numpy.sum(y[k][w]*ivar[k][w])/ansivar ston=numpy.abs(ansmean)*numpy.sqrt(ansivar) ans[k]=ston return ans def perband_increase(y,ivar,mask,refy, refivar, refmask): ans=dict() for k in y.keys(): w=numpy.where(mask[k]==0)[0] ansivar = ivar[k][w].sum() ansmean = numpy.sum(y[k][w]*ivar[k][w])/ansivar ans[k]=ansmean w=numpy.where(refmask[k]==0)[0] ansivar = refivar[k][w].sum() ansmean = numpy.sum(refy[k][w]*refivar[k][w])/ansivar ans[k]=ans[k]/ansmean return ans def perres_SN(y,ivar,mask,nsig=10): ans=dict() # use observed dispersion rather than statistical for k in y.keys(): w=numpy.where(mask[k]==0)[0] std=y[k][w].std() ston=numpy.abs(y[k][w])/std # ston=numpy.abs(y[k][w])*numpy.sqrt(ivar[k][w]) ans[k]=(ston>10).sum() return ans def perconv_SN(y,ivar,mask,ncon=3,nsig=10): newy=dict(y) newivar=dict(ivar) newmask=dict(mask) ncon = numpy.zeros(ncon)+1. for b in newy.keys(): newivar=numpy.convolve(ivar[b],ncon,mode='valid') newy = numpy.convolve(y[b]*ivar[b],ncon,mode='valid') newy = newy/newivar newmask=numpy.convolve(mask[b],ncon,mode='valid') return perres_SN(y,ivar,mask,nsig=nsig)
2.25
2
Experiment2/URL_rating.py
aditya1271/Learning-Perspectives
0
12794946
from googlesearch import search import requests import re import csv data=[] a=[] student="Mam" def swap(text,j): temp1=text[j] temp2=text[j+1] temp3=text[j+2] temp4=text[j+3] text[j]=text[j+4] text[j+1]=text[j+5] text[j+2]=text[j+6] text[j+3]=text[j+7] text[j+4]=temp1 text[j+5]=temp2 text[j+6]=temp3 text[j+7]=temp4 def sort_urls(data): newdata=[] for word,text in zip(a,data): text=text.split() i=0 while(i<len(text)-4): j=0 while(j<len(text)-5): if( int(text[j+1])<int(text[j+5]) ): swap(text,j) elif(int(text[j+1])==int(text[j+5])): if( min(int(text[j+3]), min(int(text[j+1]),int(text[j+2]))) < min(int(text[j+7]), min(int(text[j+6]),int(text[j+5])) )): swap(text,j) elif( int(text[j+3])==0 or int(text[j+1])==0 or int(text[j+2])==0 and (int(text[j+7])!=0 and int(text[j+6]) !=0 and int(text[j+5])!=0 ) ): swap(text,j) elif( int(text[j+3]) + int(text[j+1]) + int(text[j+2]) < int(text[j+7]) + int(text[j+6]) + int(text[j+5])!=0 ): swap(text,j) j=j+4 i=i+4 strtemp="" k=0 while(k<len(text)-3): strtemp+=text[k]+"\n"+text[k+1]+" "+text[k+2]+" "+text[k+3]+"\n" k=k+4 strtemp=strtemp+"-1\n" newdata.append(strtemp) #for x in newdata: # print (x) return newdata def read_from_file(): try: fin = open("Experiment2/urlw8"+student+"new.txt") except : return 0 query=fin.readline() strtemp="" query=query.replace("\n","") var=query while(query): while(query and query!="-1"): query=fin.readline() strtemp+=query query=query.replace("\n","") query=fin.readline() query=query.replace("\n","") if(query): a.append(var) data.append(strtemp) strtemp="" var=query fin.close() return 1 read_from_file() data=sort_urls(data) open("Experiment2/urlw8"+student+"new.txt","w").close() fout= open("Experiment2/urlw8"+student+"new.txt","w") list_1=[] for x,y in zip(a,data): fout.write(x+"\n") fout.write(y) #---------------------------------- temp12=y temp12=temp12.splitlines() i=0 while( i < len(temp12)-1): templist=[] if ( temp12[i]=="-1" or temp12[i+1]=="-1" ) : i=i+2 else: w8=temp12[i+1].split() templist.append(x) templist.append(temp12[i]) templist.append(w8[0]) templist.append(w8[1]) templist.append(w8[2]) #print(templist) if (int(w8[0])!=0): # print(w8[0]) list_1.append(templist) i=i+2 #print("\n") #------------------------------------------------------------------- header = ['Label', 'URL', ' Label Weight', 'Esemble Weight','ML Weight'] with open('Experiment2/'+student+'new.csv', 'wt') as f: csv_writer = csv.writer(f, quoting=csv.QUOTE_ALL) csv_writer.writerow(header) # write header csv_writer.writerows(list_1) #fin1 = open("Experiment2/Results(Mam).txt","r") fin2 = open("Experiment2/Results("+student+").txt","r") #set1=fin1.readline() set2=fin2.readline() #set1=set1.split(" ,") set2=set2.split(" ,") words=list(set2) #word1=word1.replace("\n","") i=0 #print(a) while(i<len(words) ) : word1=words[i] i=i+1 if word1 not in a: regex1='\W'+word1+'\W' regex2='\Wensemble\W' regex3='\Wmachine learning\W' query='"'+word1+'" + "ensemble" + "machine learning" ' fout.write(word1+"\n") print(word1) for url in search(query, tld='com', stop=10): if(url.find(".pdf",len(url)-5)==-1): test=1 try: page=requests.get(url).text except : test=0 if test!=0 : print(url) fout.write(url) fout.write("\n") fout.write(str(len(re.findall(regex1, page , re.IGNORECASE) ) ) ) fout.write(" ") fout.write(str(len(re.findall(regex2, page , re.IGNORECASE) ) ) ) fout.write(" ") fout.write(str(len(re.findall(regex3, page , re.IGNORECASE) ) ) ) fout.write("\n") fout.write("-1\n") fout.write("-2\n")
3.453125
3
A1014280203/6/6.py
saurabh896/python-1
3,976
12794947
<filename>A1014280203/6/6.py import nltk import string import os # simply extend word like: it's => it is def extend_word(text): if text.find('\'') > 0: old2new = dict() words = text.split() for word in words: if word.find('\'') > 0: parts = word.split('\'') if parts[1] == 'm': parts[1] = 'am' elif parts[1] == 's': parts[1] = 'is' elif parts[1] == 're': parts[1] = 'are' elif parts[1] == 't': parts[1] = 'not' elif parts[1] == 've': parts[1] = 'have' elif parts[1] == 'll': parts[1] = 'will' elif parts[1] == 'd': if words[words.index(word) + 1] == 'better': parts[1] = 'had' else: parts[1] = 'would' if parts[0].endswith('n'): parts[0] = parts[0][:-1] old2new[word] = ' '.join(parts) _text = text for old_word in old2new.keys(): _text = _text.replace(old_word, old2new[old_word]) return _text def return_order_key(record): return record[1] def show_important_word(records): # only this function was changed items = sorted(records.items(), key=return_order_key, reverse=True) # frequency of word freq = 0 for item in items: word, tag = nltk.pos_tag([item[0]])[0] if tag.startswith('NN'): print(word) if item[1] < freq: return freq = item[1] # no appropriate word found if not freq: print(items[0][0]) def process_file(filename): with open(filename, 'r') as file: article = file.read() no_pun_text = article _punctuation = string.punctuation.replace('\'', '') # delete punctuation except ''' for pun in _punctuation: no_pun_text = no_pun_text.replace(pun, '') complete_text = extend_word(no_pun_text) records = dict() for word in complete_text.lower().split(): records[word] = records.get(word, 0) + 1 print('='*30) print('current file:', filename) print('-'*20) show_important_word(records) def process_files(path='.'): files = os.listdir(path) for file in files: if file.endswith('.txt'): process_file(os.path.join(path, file)) process_files()
3.65625
4
sub.py
waki285/rt-bot
26
12794948
<filename>sub.py """りつたん! (C) 2020 RT-Team LICENSE : ./LICENSE README : ./readme.md """ desc = """りつたん - (C) 2021 RT-Team 少女起動中...""" print(desc) from discord.ext import commands import discord # routeは無効にする。 commands.Cog.route = lambda *args, **kwargs: lambda *args, **kwargs: (args, kwargs) from aiohttp import ClientSession from sys import argv import ujson import rtlib from data import data, is_admin, RTCHAN_COLORS with open("token.secret", "r", encoding="utf-8_sig") as f: secret = ujson.load(f) TOKEN = secret["token"]["sub"] prefixes = data["prefixes"]["sub"] def setup(bot): bot.admins = data["admins"] @bot.listen() async def on_close(loop): await bot.session.close() del bot.mysql bot.mysql = bot.data["mysql"] = rtlib.mysql.MySQLManager( loop=bot.loop, user=secret["mysql"]["user"], host="192.168.3.11" if argv[1] == "production" else "localhost", password=secret["mysql"]["password"], db="mysql", pool = True, minsize=1, maxsize=30, autocommit=True) rtlib.setup(bot) bot.load_extension("jishaku") bot._loaded = False @bot.event async def on_ready(): if not bot._loaded: bot.session = ClientSession(loop=bot.loop) for name in ("cogs.tts", "cogs.music", "cogs._sub", "cogs.language"): bot.load_extension(name) bot.dispatch("full_ready") bot._loaded = True print("少女絶賛稼働中!") intents = discord.Intents.default() intents.members = True intents.typing = False intents.guild_typing = False intents.dm_typing = False args = (prefixes,) kwargs = { "help_command": None, "intents": intents } bot = commands.Bot( command_prefix=data["prefixes"]["sub"], **kwargs ) bot.test = argv[1] != "production" bot.data = data bot.colors = RTCHAN_COLORS bot.is_admin = is_admin async def _is_owner(user): return bot.is_admin(user.id) bot.is_owner = _is_owner del is_admin, _is_owner setup(bot) bot.run(TOKEN)
2.453125
2
states/games/game_H2R.py
ianiancilla/kanacode
0
12794949
<gh_stars>0 import random import pygame from helper.textinput import TextInput from helper.pygame_helpers import create_centered_text, create_containers, place_buttons from helper.button import Button import text class H2R(object): """ A mode in which a hiragana word is displayed, and the user needs to enter the correct romaji transliteration""" def __init__(self, app): """ initialises the Hiragana to Romaji exercise - creates container rects for the 3 main screen areas - selects a word - updates and draws screen accordingly """ self.app = app # create and place container rects for different UI elements self.container_english, \ self.container_kana, \ self.container_romaji, \ self.container_buttons = create_containers( self.app.screen, (5 / 20, 6 / 20, 5 / 20, 4 / 20), layout="V") # creates text input field self.text_input = TextInput( initial_string="", font_family=self.app.settings.h2r_font_romaji.name, font_size=int(self.app.settings.h2r_font_romaji.size), antialias=True, text_color=self.app.settings.h2r_font_romaji_color, cursor_color=self.app.settings.h2r_font_romaji_color, repeat_keys_initial_ms=400, repeat_keys_interval_ms=35, max_string_length=self.app.settings.h2r_text_input_max_string_length ) # creates background frame for input field self.input_frame = pygame.Rect(0, 0, self.app.settings.h2r_text_input_width + 20, self.app.settings.h2r_text_input_height) self.input_frame.center = self.container_romaji.center # creates rect for input box self.text_input_rect = pygame.Rect(0, 0, self.app.settings.h2r_text_input_width, self.app.settings.h2r_text_input_height) self.text_input_rect.center = self.input_frame.center # init attributes for text rects and images self.str_english_img, self.str_english_rect = None, None self.str_kana_img, self.str_kana_rect = None, None # create and place input tip self.input_tip_img, self.input_tip_rect = create_centered_text( text.h2r_input_tip, self.app.settings.h2r_font_tip, self.app.settings.h2r_font_tip_color, self.container_romaji) # creates buttons self.butt_help = self._h2r_button(text.h2r_button_help, self._help) self.butt_check = self._h2r_button(text.h2r_button_check, self._confirm_word) self.butt_quit = self._h2r_button(text.h2r_button_quit, self.app.quit_game) self.buttons = [self.butt_help, self.butt_check, self.butt_quit] place_buttons(self.buttons, self.container_buttons) # set initial status self.word = self._pick_word() self.previous_try = None # determines background of text input field as feedback def update_screen(self, events): """ implements changes that are needed by H2R at every tick, based on user events """ # creates english word img self.str_english_img, self.str_english_rect = create_centered_text( self.word.english, self.app.settings.h2r_font_english, self.app.settings.h2r_font_english_color, self.container_english) # creates kana word img self.str_kana_img, self.str_kana_rect = create_centered_text( self.word.hiragana, self.app.settings.h2r_font_kana, self.app.settings.h2r_font_kana_color, self.container_kana) # updates text input box if self.text_input.update(events): self._confirm_word() # updates previous try, to return input field to default color if text # was erased if not self.text_input.get_text(): self.set_previous_try(None) def draw_screen(self): """ draws each element of H2R """ # draw backgrounds of containers self.app.screen.fill(self.app.settings.col_dark) pygame.draw.rect(self.app.screen, self.app.settings.h2r_col_bg_en, self.container_english) pygame.draw.rect(self.app.screen, self.app.settings.h2r_col_bg_kan, self.container_kana) pygame.draw.rect(self.app.screen, self.app.settings.h2r_col_bg_rom, self.container_romaji) pygame.draw.rect(self.app.screen, self.app.settings.h2r_col_bg_but, self.container_buttons) # draw bg of text input box if self.get_previous_try(): if self.get_previous_try() == "right": romaji_frame_color = self.app.settings.col_success else: romaji_frame_color = self.app.settings.col_danger else: romaji_frame_color = self.app.settings.h2r_col_bg_input pygame.draw.rect(self.app.screen, romaji_frame_color, self.input_frame) # draw all texts self.app.screen.blit(self.str_english_img, self.str_english_rect) self.app.screen.blit(self.str_kana_img, self.str_kana_rect) if not self.text_input.get_text(): # only if there is no text in input field self.app.screen.blit(self.input_tip_img, self.input_tip_rect) # draw text input box self.app.screen.blit(self.text_input.get_surface(), self.text_input_rect) # draw all buttons pos_mouse = pygame.mouse.get_pos() for button in self.buttons: if not button.is_inside(pos_mouse): button.draw(self.app.screen) else: button.draw(self.app.screen, alt=True) # EVENT HANDLING def check_events(self): """Checks for and responds to mouse and kb events NOTE: kb events related to input box and RETURN kez are handled in update function""" events = pygame.event.get() for event in events: if event.type == pygame.QUIT or (event.type == pygame.KEYDOWN and event.key == self.app.settings.key_quit): self.app.quit_game() return [] # this is so the text input does not activate while app is quitting if event.type == pygame.KEYUP: # if event.key == self.app.settings.key_confirm: # commented out because this is # handled in update method: # self.text_input.update(events) if event.key == self.app.settings.key_help: self._help() if event.type == pygame.MOUSEBUTTONUP: for button in self.buttons: button.on_mouse() return events # getters/setters def get_previous_try(self): return self.previous_try def set_previous_try(self, previous_try): if self.get_previous_try() not in (None, "right", "wrong"): raise TypeError("Wrong argument for previous try.") self.previous_try = previous_try # HELPERS def _pick_word(self): """ picks a random Word instance from the app's vocab""" return random.choice(list(self.app.vocab.hiragana)) def _help(self): word = self.word.romaji self.text_input.set_text(word) self.text_input.set_cursor_position(len(word)) self.set_previous_try("right") def _confirm_word(self): """ checks whether input text is correct for current word """ current_input = self.text_input.get_text().lower().strip() if current_input == self.word.romaji: if self.get_previous_try() == "right": self.set_previous_try(None) self._next_word() else: self.set_previous_try("right") else: self.set_previous_try("wrong") def _next_word(self): self.word = self._pick_word() self.text_input.clear_text() def _h2r_button(self, txt, function): return Button(((0, 0), self.app.settings.h2r_button_size), text=txt, function=function, color_base=self.app.settings.h2r_button_color, color_alt=self.app.settings.h2r_button_color_alt, font=self.app.settings.h2r_button_font, font_color=self.app.settings.h2r_button_font_color, font_color_alt=self.app.settings.h2r_button_font_color_alt )
3.453125
3
getPeriodicBoundaryCondition.py
mo-hanxuan/MagicPBC
1
12794950
""" generate periodic boundary condition (PBC). Two methods to detect and partition the surface-nodes: 1. graph-method: (recommended, can deal with arbitrary deformed shape): use dictionary-data-structure to map facet-nodes to element-number, where the surface-facet is shared by only one element. Construct the node-linking graph of surface, and the node-linking graph of the outlines. Using outlines as boundaries, partition the graph into different faces (left-, right-, down-, up-, back-, front- surfaces) by union-find algorithm. 2. method of xMin, xMax, yMin, yMax, zMin, zMax: detect the surface simply by coordinates of all nodes. This method can only be applied to the object with cuboid shape. Two methods match nodes on opposites of the surface: 1. BFS method to match the nodes (time complexity of O(V + E), V and E are number of nodes and edges respectively): Matching nodes during traversing of surface-node-graphs of opposite faces. Given a matched node-pair, use similar vectors (pointed from current node to neighbors) to match their neighbors. 2. nearest-coordinates method: Could be very slow when there are many many nodes on a surface (with time complexity of O(V^2)). """ import torch as tch import numpy as np from elementsBody import * def write_PBC_equation(file, obj, instance): """ write the PBC for the 8 outer vertex, and 12 edges, and 6 faces, with three steps: 1. make the 8 outer vertexes to form a parallel hexahedron (平行六面体)) 2. make 12 edges to satisfy PBC 3. make the inside nodes of face-pair to coincide """ if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") if not hasattr(obj, 'v_x0y0z0'): obj.getEdgeVertexForPBC() ## 1.1 make the y0face to be parallogram file.write('************************** make the y0face to be parallogram \n') for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, obj.v_x1y0z0, dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.v_x0y0z0, dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.v_x1y0z1, dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.v_x0y0z1, dm)) ## 1.2 make vertexes of ylines to form parallel hexahedron file.write('************************** make vertexes of 4 ylines to coincide \n') for yline in obj.ylines[1:]: for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, yline['end'], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, yline['beg'], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.ylines[0]['end'], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.ylines[0]['beg'], dm)) # 2. make all outer edges to coincide file.write('************************** make all outer edges to coincide \n') xyzEdges = [obj.xlines, obj.ylines, obj.zlines] for edges in xyzEdges: for edge in edges[1:]: for node in range(len(edge['inside'])): for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, edge['inside'][node], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, edge['beg'], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, edges[0]['inside'][node], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, edges[0]['beg'], dm)) # 3. make all corresponding face-pairs to coincide file.write('************************** make all corresponding face-pairs to coincide \n') edgeNodes = set() for edges in [obj.xlines, obj.ylines, obj.zlines]: for edge in edges: edgeNodes |= ({edge['beg']} | {edge['end']} | set(edge['inside'])) for iface, face in enumerate(obj.faceMatch): for node in face: for dm in [1, 2, 3]: if node not in edgeNodes: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, node, dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.baseNodes[iface][0], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, face[node], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.baseNodes[iface][1], dm)) def write_PBC_equation_byGraph(file, obj, instance): """ use graph-method to get the PBC info, write the PBC for the 8 outer vertex, and 12 edges, and 6 faces, with three steps: 1. make the 8 outer vertexes to form a parallel hexahedron (平行六面体)) 2. make 12 edges to satisfy PBC 3. make the inside nodes of face-pair to coincide the node-number of megaElement (composed of vertex of outer surface) is shown as follows, v3------v7 /| /| v0------v4| | | | | | v2----|-v6 y ^ |/ |/ | v1------v5 ---> / x z """ if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") obj.getFaceForPBC_byGraph() obj.getEdgeForPBC_byGraph() ## 1.1 make the y0face to be parallogram file.write('************************** make the y0face to be parallogram \n') for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, obj.megaElement[6], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.megaElement[2], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.megaElement[5], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.megaElement[1], dm)) ## 1.2 make vertexes of ylines to form parallel hexahedron file.write('************************** make vertexes of 4 ylines to coincide \n') for i, j in [[7, 6], [3, 2], [0, 1]]: for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, obj.megaElement[i], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.megaElement[j], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.megaElement[4], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, obj.megaElement[5], dm)) # 2. make all outer edges to coincide file.write('************************** make all outer edges to coincide \n') edgeId = [ [[0, 4], [3, 7], [2, 6], [1, 5]], # xEdges [[1, 0], [5, 4], [6, 7], [2, 3]], # yEdges [[2, 1], [6, 5], [7, 4], [3, 0]] # zEdges ] for edges in edgeId: # edges = xEdges or yEdges or zEdges edge0 = (obj.megaElement[edges[0][0]], obj.megaElement[edges[0][1]]) if edge0 in obj.outlines: for edge in edges[1:]: edge1 = (obj.megaElement[edge[0]], obj.megaElement[edge[1]]) for node in range(len(obj.outlines[edge0])): for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, obj.outlines[edge1][node], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, edge1[0], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, obj.outlines[edge0][node], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, edge0[0], dm)) # 3. make all corresponding face-pairs to coincide file.write('************************** make all corresponding face-pairs to coincide \n') for twoFacets in obj.faceMatch: faceMatch = obj.faceMatch[twoFacets] for node in faceMatch: for dm in [1, 2, 3]: file.write('*Equation\n4 \n') file.write('{}.N{}, {}, 1 \n'.format(instance, node, dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, twoFacets[0], dm)) file.write('{}.N{}, {}, -1 \n'.format(instance, faceMatch[node], dm)) file.write('{}.N{}, {}, 1 \n'.format(instance, twoFacets[4], dm)) def write_PBC_Nset(file, obj): if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") if not hasattr(obj, 'faceNode'): obj.getFaceNode() for node in obj.getFaceNode(): file.write('*Nset, nset=N{} \n'.format(node)) file.write('{}, \n'.format(node)) def write_nodes(file, obj): nodes = obj.nodes for node in nodes: file.write(' {}, {}, {}, {} \n'.format( node, nodes[node][0], nodes[node][1], nodes[node][2] )) def adjustCoordinatesForPBC_byGraph(obj): """ use graph method to get the node-relation, adjust the nodal coordiantes for periodic boundary condition (PBC) make the nodes at face-pair to be strictly coincide at initial state """ if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") obj.getFaceForPBC_byGraph() obj.getEdgeForPBC_byGraph() makenp = False for node in obj.nodes: if type(obj.nodes[node]) == type([]): makenp = True break if makenp: for node in obj.nodes: obj.nodes[node] = np.array(obj.nodes[node]) ## 1.1 make the y0face to be parallogram obj.nodes[obj.megaElement[6]] = \ obj.nodes[obj.megaElement[2]] + \ (obj.nodes[obj.megaElement[5]] - obj.nodes[obj.megaElement[1]]) ## 1.2 make vertexes of ylines to form parallel hexahedron for i, j in [[7, 6], [3, 2], [0, 1]]: obj.nodes[obj.megaElement[i]] = \ obj.nodes[obj.megaElement[j]] + \ obj.nodes[obj.megaElement[4]] - obj.nodes[obj.megaElement[5]] # 2. make all outer edges to coincide edgeId = [ [[0, 4], [3, 7], [2, 6], [1, 5]], # xEdges [[1, 0], [5, 4], [6, 7], [2, 3]], # yEdges [[2, 1], [6, 5], [7, 4], [3, 0]] # zEdges ] for edges in edgeId: # edges = xEdges or yEdges or zEdges edge0 = (obj.megaElement[edges[0][0]], obj.megaElement[edges[0][1]]) if edge0 in obj.outlines: for edge in edges[1:]: edge1 = (obj.megaElement[edge[0]], obj.megaElement[edge[1]]) for node in range(len(obj.outlines[edge0])): obj.nodes[obj.outlines[edge1][node]] = \ obj.nodes[edge1[0]] + \ obj.nodes[obj.outlines[edge0][node]] - obj.nodes[edge0[0]] # 3. make all corresponding face-pairs to coincide for twoFacets in obj.faceMatch: faceMatch = obj.faceMatch[twoFacets] for node in faceMatch: obj.nodes[faceMatch[node]] = \ obj.nodes[twoFacets[4]] + \ obj.nodes[node] - obj.nodes[twoFacets[0]] obj.nodesAdjusted = True def adjustCoordinatesForPBC(obj): """ adjust the nodal coordiantes for periodic boundary condition (PBC) make the nodes at face-pair to be strictly coincide at initial state """ if not isinstance(obj, ElementsBody): raise ValueError("error, not isinstance(obj, ElementsBody)") if not hasattr(obj, 'v_x0y0z0'): obj.getEdgeVertexForPBC() makenp = False for node in obj.nodes: if type(obj.nodes[node]) == type([]): makenp = True break if makenp: for node in obj.nodes: obj.nodes[node] = np.array(obj.nodes[node]) ## 1.1 make the y0face to be parallogram obj.nodes[obj.v_x1y0z0] = \ obj.nodes[obj.v_x0y0z0] + \ (obj.nodes[obj.v_x1y0z1] - obj.nodes[obj.v_x0y0z1]) ## 1.2 make vertexes of ylines to form parallel hexahedron for yline in obj.ylines[1:]: obj.nodes[yline['end']] = \ obj.nodes[yline['beg']] + \ obj.nodes[obj.ylines[0]['end']] - obj.nodes[obj.ylines[0]['beg']] # 2. make all outer edges to coincide xyzEdges = [obj.xlines, obj.ylines, obj.zlines] for edges in xyzEdges: for edge in edges[1:]: for node in range(len(edge['inside'])): obj.nodes[edge['inside'][node]] = \ obj.nodes[edge['beg']] + \ obj.nodes[edges[0]['inside'][node]] - obj.nodes[edges[0]['beg']] # 3. make all corresponding face-pairs to coincide edgeNodes = set() for edges in [obj.xlines, obj.ylines, obj.zlines]: for edge in edges: edgeNodes |= ({edge['beg']} | {edge['end']} | set(edge['inside'])) for iface, face in enumerate(obj.faceMatch): for node in face: if node not in edgeNodes: obj.nodes[node] = \ obj.nodes[obj.baseNodes[iface][0]] + \ obj.nodes[face[node]] - obj.nodes[obj.baseNodes[iface][1]] obj.nodesAdjusted = True if __name__ == "__main__": testState = False # get the inp file and the object inpFile = input("\033[0;33;40m{}\033[0m".format("please insert the .inp file name (include the path): ")) job = inpFile.split("/")[-1].split(".inp")[0] if "/" in inpFile else inpFile.split("\\")[-1].split(".inp")[0] path = inpFile.split(job + ".inp")[0] obj = ElementsBody(*readInp(inpFile)) key = input("\033[35;1m{}\033[0m".format( "which method do you want to use? \n" "1: graph-method (recomended); \n" "2: xMin, xMax, yMin, yMax, zMin, zMax; \n(insert 1 or 2): " )) if key == "1": getFaceForPBC = obj.getFaceForPBC_byGraph writeEquations = write_PBC_equation_byGraph adjustCoordinate = adjustCoordinatesForPBC_byGraph elif key == "2": getFaceForPBC = obj.getFaceForPBC writeEquations = write_PBC_equation adjustCoordinate = adjustCoordinatesForPBC getFaceForPBC() adjustCoor = input("do you want to adjust the coordinates for PBC? " "(not recommended)\n\033[33m{}\033[0m".format('(y/n): ')) while adjustCoor not in ['y', 'n']: adjustCoor = input('\033[33m{}\033[0m'.format('please insert "y" or "n": ')) if adjustCoor == 'y': adjustCoordinate(obj) if testState: del obj.faceMatch getFaceForPBC() # find the instance name instance = 'Part-1' with open(inpFile, 'r') as file: for line in file: if '*Instance' in line and 'name=' in line: instance = line.split(',') instance = instance[1].split('=') instance = instance[-1] print('instance =', instance) break writeInp = input( 'ok to write the .inp file with PBC inside the file ? \033[36m{}\033[0m'.format('(y/n): ') ) while writeInp not in ['y', 'n']: writeInp = input('\033[31m{}\033[0m'.format( 'please insert "y" or "n": ' )) if writeInp == 'y': newFileName = path + job + "_PBC.inp" with open(newFileName, 'w') as newFile, open(inpFile, 'r') as oldFile: clone = True for line in oldFile: if "Section:" in line and "**" in line: write_PBC_Nset(newFile, obj) elif '*End Assembly' in line: writeEquations(newFile, obj, instance) if clone == False and '*' in line: clone = True if clone: newFile.write(line) # write the line from old file to new file if "*Node\n" in line: if hasattr(obj, 'nodesAdjusted'): clone = False print("\033[35;1m{}\033[0m".format("write new nodes for obj")) write_nodes(newFile, obj) print("\033[40;36;1m {} {} \033[35;1m {} \033[0m".format( "file", newFileName, "has been written. " )) elif input( "\033[32;1m write nset- and equations- files for PBC? (y/n): \033[0m" ) in ["y", ""]: # write the Nset with open(path + '{}_nset.txt'.format(job), 'w') as file: for node in obj.getFaceNode(): file.write('*Nset, nset=N{} \n'.format(node)) file.write('{}, \n'.format(node)) print("\033[40;36;1m {} {} \033[35;1m {} \033[0m".format( "file", path + '{}_nset.txt'.format(job), "has been written. " )) # write the equation for PBC with open(path + '{}_equation.txt'.format(job), 'w') as file: writeEquations(file, obj, instance) print("\033[40;36;1m {} {} \033[35;1m {} \033[0m".format( "file", path + '{}_equation.txt'.format(job), "has been written. " ))
3.078125
3