code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Any def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,): '''simple docstring''' _validation( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,) # Creates data structures and fill initial step lowerCAmelCase : dict = {} lowerCAmelCase : dict = {} for state in states_space: lowerCAmelCase : Union[str, Any] = observations_space[0] lowerCAmelCase : List[Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase : Any = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 ,len(lowerCAmelCase_ ) ): lowerCAmelCase : Optional[Any] = observations_space[o] lowerCAmelCase : Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase : List[str] = "" lowerCAmelCase : Dict = -1 for k_state in states_space: lowerCAmelCase : List[str] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase : List[Any] = probability lowerCAmelCase : List[str] = k_state # Update probabilities and pointers dicts lowerCAmelCase : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase : Optional[Any] = arg_max # The final observation lowerCAmelCase : Dict = observations_space[len(lowerCAmelCase_ ) - 1] # argmax for given final observation lowerCAmelCase : Optional[Any] = "" lowerCAmelCase : Tuple = -1 for k_state in states_space: lowerCAmelCase : Optional[Any] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase : Optional[Any] = probability lowerCAmelCase : Tuple = k_state lowerCAmelCase : List[str] = arg_max # Process pointers backwards lowerCAmelCase : Union[str, Any] = last_state lowerCAmelCase : Optional[Any] = [] for o in range(len(lowerCAmelCase_ ) - 1 ,-1 ,-1 ): result.append(lowerCAmelCase_ ) lowerCAmelCase : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,): '''simple docstring''' _validate_not_empty( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,) _validate_lists(lowerCAmelCase_ ,lowerCAmelCase_ ) _validate_dicts( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,): '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _validate_list(lowerCAmelCase_ ,"""observations_space""" ) _validate_list(lowerCAmelCase_ ,"""states_space""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(_object ,lowerCAmelCase_ ): lowerCAmelCase : Union[str, Any] = F"""{var_name} must be a list""" raise ValueError(lowerCAmelCase_ ) else: for x in _object: if not isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ): lowerCAmelCase : List[Any] = F"""{var_name} must be a list of strings""" raise ValueError(lowerCAmelCase_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,): '''simple docstring''' _validate_dict(lowerCAmelCase_ ,"""initial_probabilities""" ,lowerCAmelCase_ ) _validate_nested_dict(lowerCAmelCase_ ,"""transition_probabilities""" ) _validate_nested_dict(lowerCAmelCase_ ,"""emission_probabilities""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _validate_dict(_object ,lowerCAmelCase_ ,lowerCAmelCase_ ) for x in _object.values(): _validate_dict(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if not isinstance(_object ,lowerCAmelCase_ ): lowerCAmelCase : List[str] = F"""{var_name} must be a dict""" raise ValueError(lowerCAmelCase_ ) if not all(isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) for x in _object ): lowerCAmelCase : List[str] = F"""{var_name} all keys must be strings""" raise ValueError(lowerCAmelCase_ ) if not all(isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) for x in _object.values() ): lowerCAmelCase : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase : str = F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
707
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase : List[str] ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase : List[str] ={ 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } lowerCAmelCase : List[Any] ={ 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } lowerCAmelCase : Union[str, Any] ={ 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( snake_case_ ): _UpperCamelCase: Any = VOCAB_FILES_NAMES _UpperCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: int = ElectraTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Tuple = getattr(lowercase_ , normalizer_state.pop("""type""" ) ) lowerCAmelCase : Optional[int] = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Optional[int] = tokenize_chinese_chars lowerCAmelCase : Tuple = normalizer_class(**lowercase_ ) lowerCAmelCase : Optional[int] = do_lower_case def _snake_case ( self , lowercase_ , lowercase_=None ) -> str: lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , lowercase_ , lowercase_ = None ) -> List[str]: lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , lowercase_ , lowercase_ = None ) -> List[str]: lowerCAmelCase : List[str] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
708
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowerCAmelCase__ ): _UpperCamelCase: List[Any] = "ClapFeatureExtractor" _UpperCamelCase: List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , lowercase_ , lowercase_ ) -> Any: super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> str: lowerCAmelCase : str = kwargs.pop("""sampling_rate""" , _SCREAMING_SNAKE_CASE ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: lowerCAmelCase : str = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if audios is not None: lowerCAmelCase : List[Any] = self.feature_extractor( _SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and audios is not None: lowerCAmelCase : List[str] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> Tuple: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> List[str]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self ) -> Dict: lowerCAmelCase : Any = self.tokenizer.model_input_names lowerCAmelCase : str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
709
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : Dict ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for attribute in key.split(""".""" ): lowerCAmelCase : Tuple = getattr(A_ ,A_ ) if weight_type is not None: lowerCAmelCase : Union[str, Any] = getattr(A_ ,A_ ).shape else: lowerCAmelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_g": lowerCAmelCase : Optional[int] = value elif weight_type == "weight_v": lowerCAmelCase : Tuple = value elif weight_type == "bias": lowerCAmelCase : Optional[Any] = value else: lowerCAmelCase : int = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Union[str, Any] = fairseq_model.state_dict() lowerCAmelCase : List[str] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( A_ ,A_ ,A_ ,A_ ,hf_model.config.feat_extract_norm == """group""" ,) lowerCAmelCase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase : Any = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): lowerCAmelCase : Union[str, Any] = True if "*" in mapped_key: lowerCAmelCase : int = name.split(A_ )[0].split(""".""" )[-2] lowerCAmelCase : Union[str, Any] = mapped_key.replace("""*""" ,A_ ) if "weight_g" in name: lowerCAmelCase : str = """weight_g""" elif "weight_v" in name: lowerCAmelCase : str = """weight_v""" elif "weight" in name: lowerCAmelCase : List[Any] = """weight""" elif "bias" in name: lowerCAmelCase : str = """bias""" else: lowerCAmelCase : Union[str, Any] = None set_recursively(A_ ,A_ ,A_ ,A_ ,A_ ) continue if not is_used: unused_weights.append(A_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase : Optional[int] = name.split(""".""" ) lowerCAmelCase : Optional[Any] = int(items[0] ) lowerCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A_ ) @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' if config_path is not None: lowerCAmelCase : str = HubertConfig.from_pretrained(A_ ) else: lowerCAmelCase : Dict = HubertConfig() if is_finetuned: if dict_path: lowerCAmelCase : List[str] = Dictionary.load(A_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase : Tuple = target_dict.pad_index lowerCAmelCase : Optional[Any] = target_dict.bos_index lowerCAmelCase : List[str] = target_dict.eos_index lowerCAmelCase : Optional[Any] = len(target_dict.symbols ) lowerCAmelCase : Optional[int] = os.path.join(A_ ,"""vocab.json""" ) if not os.path.isdir(A_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(A_ ) ) return os.makedirs(A_ ,exist_ok=A_ ) with open(A_ ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices ,A_ ) lowerCAmelCase : str = WavaVecaCTCTokenizer( A_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=A_ ,) lowerCAmelCase : int = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=A_ ,return_attention_mask=A_ ,) lowerCAmelCase : Tuple = WavaVecaProcessor(feature_extractor=A_ ,tokenizer=A_ ) processor.save_pretrained(A_ ) lowerCAmelCase : List[Any] = HubertForCTC(A_ ) else: lowerCAmelCase : Any = HubertModel(A_ ) if is_finetuned: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase : Any = model[0].eval() recursively_load_weights(A_ ,A_ ,A_ ) hf_wavavec.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase : Dict =parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
710
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
0
# Algorithm for the pigeonhole sorting def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = min(SCREAMING_SNAKE_CASE__ ) # min() finds the minimum value lowerCAmelCase : str = max(SCREAMING_SNAKE_CASE__ ) # max() finds the maximum value lowerCAmelCase : str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowerCAmelCase : List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowerCAmelCase : List[Any] = 0 for count in range(SCREAMING_SNAKE_CASE__ ): while holes[count] > 0: holes[count] -= 1 lowerCAmelCase : Any = count + min_val i += 1 def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Tuple = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(SCREAMING_SNAKE_CASE__ ) print("""Sorted order is:""" ,""" """.join(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
import qiskit def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register lowerCAmelCase : Optional[Any] = qiskit.QuantumCircuit(__snake_case ,__snake_case ) # Map the quantum measurement to the classical bits circuit.measure([0] ,[0] ) # Execute the circuit on the simulator lowerCAmelCase : List[str] = qiskit.execute(__snake_case ,__snake_case ,shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
712
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
0
lowerCAmelCase : List[str] =[ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
713
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
0
from __future__ import annotations import math def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(A__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = str(A__ ) lowerCAmelCase : List[str] = [n] for i in range(1 ,len(A__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if len(str(A__ ) ) > 3: if not is_prime(int(str(A__ )[-3:] ) ) or not is_prime(int(str(A__ )[:3] ) ): return False return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_1 ): '''simple docstring''' lowerCAmelCase : List[Any] = [] lowerCAmelCase : Optional[Any] = 1_3 while len(A__ ) != count: if validate(A__ ): lowerCAmelCase : Optional[int] = list_truncated_nums(A__ ) if all(is_prime(A__ ) for i in list_nums ): list_truncated_primes.append(A__ ) num += 2 return list_truncated_primes def _UpperCAmelCase ( ): '''simple docstring''' return sum(compute_truncated_primes(1_1 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if digit_amount > 0: return round(number - int(lowerCamelCase__ ) ,lowerCamelCase__ ) return number - int(lowerCamelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any =logging.get_logger(__name__) # TODO Update this lowerCAmelCase : Optional[int] ={ 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class _a ( snake_case_ ): _UpperCamelCase: str = "esm" def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1026 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_="absolute" , lowercase_=True , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , mask_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : Any = vocab_size lowerCAmelCase : Dict = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Tuple = position_embedding_type lowerCAmelCase : Tuple = use_cache lowerCAmelCase : Optional[Any] = emb_layer_norm_before lowerCAmelCase : List[str] = token_dropout lowerCAmelCase : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowerCAmelCase : Any = EsmFoldConfig() elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Optional[Any] = EsmFoldConfig(**lowercase_ ) lowerCAmelCase : str = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowerCAmelCase : List[Any] = get_default_vocab_list() else: lowerCAmelCase : int = vocab_list else: lowerCAmelCase : int = None lowerCAmelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowercase_ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : str = super().to_dict() if isinstance(self.esmfold_config , lowercase_ ): lowerCAmelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class _a : _UpperCamelCase: List[str] = None _UpperCamelCase: List[Any] = True _UpperCamelCase: Optional[int] = False _UpperCamelCase: Optional[Any] = False _UpperCamelCase: List[Any] = False _UpperCamelCase: Dict = 0 _UpperCamelCase: int = True _UpperCamelCase: List[str] = False _UpperCamelCase: List[Any] = 128 _UpperCamelCase: Optional[Any] = None def _snake_case ( self ) -> Any: if self.trunk is None: lowerCAmelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk , lowercase_ ): lowerCAmelCase : Optional[Any] = TrunkConfig(**self.trunk ) def _snake_case ( self ) -> int: lowerCAmelCase : int = asdict(self ) lowerCAmelCase : Optional[Any] = self.trunk.to_dict() return output @dataclass class _a : _UpperCamelCase: Union[str, Any] = 48 _UpperCamelCase: Optional[int] = 1024 _UpperCamelCase: Dict = 128 _UpperCamelCase: Tuple = 32 _UpperCamelCase: Union[str, Any] = 32 _UpperCamelCase: Dict = 32 _UpperCamelCase: List[Any] = 0 _UpperCamelCase: List[Any] = 0 _UpperCamelCase: Union[str, Any] = False _UpperCamelCase: Tuple = 4 _UpperCamelCase: Union[str, Any] = 128 _UpperCamelCase: Optional[Any] = None def _snake_case ( self ) -> int: if self.structure_module is None: lowerCAmelCase : Optional[int] = StructureModuleConfig() elif isinstance(self.structure_module , lowercase_ ): lowerCAmelCase : Tuple = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowerCAmelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase : Dict = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _snake_case ( self ) -> List[str]: lowerCAmelCase : Dict = asdict(self ) lowerCAmelCase : Dict = self.structure_module.to_dict() return output @dataclass class _a : _UpperCamelCase: Tuple = 384 _UpperCamelCase: Union[str, Any] = 128 _UpperCamelCase: Any = 16 _UpperCamelCase: Optional[int] = 128 _UpperCamelCase: Any = 12 _UpperCamelCase: Any = 4 _UpperCamelCase: Any = 8 _UpperCamelCase: int = 0.1 _UpperCamelCase: Any = 8 _UpperCamelCase: str = 1 _UpperCamelCase: Union[str, Any] = 2 _UpperCamelCase: Dict = 7 _UpperCamelCase: Optional[int] = 10 _UpperCamelCase: Optional[int] = 1e-8 _UpperCamelCase: List[Any] = 1e5 def _snake_case ( self ) -> List[Any]: return asdict(self ) def _UpperCAmelCase ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
716
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): _UpperCamelCase = StableDiffusionXLImgaImgPipeline _UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} _UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCAmelCase : Optional[int] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) lowerCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) lowerCAmelCase : Union[str, Any] = CLIPTextModel(lowerCAmelCase_ ) lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=lowerCAmelCase_ ) lowerCAmelCase : List[Any] = CLIPTextModelWithProjection(lowerCAmelCase_ ) lowerCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=lowerCAmelCase_ ) lowerCAmelCase : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: lowerCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) lowerCAmelCase : List[Any] = image / 2 + 0.5 if str(lowerCAmelCase_ ).startswith("""mps""" ): lowerCAmelCase : Dict = torch.manual_seed(lowerCAmelCase_ ) else: lowerCAmelCase : List[str] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) lowerCAmelCase : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _snake_case ( self ) -> int: lowerCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase_ ) lowerCAmelCase : List[str] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) lowerCAmelCase : Any = self.get_dummy_inputs(lowerCAmelCase_ ) lowerCAmelCase : Dict = sd_pipe(**lowerCAmelCase_ ).images lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : Optional[int] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ) -> str: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _snake_case ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _snake_case ( self ) -> Optional[Any]: pass def _snake_case ( self ) -> int: lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : str = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase_ ) lowerCAmelCase : Tuple = sd_pipe.to(lowerCAmelCase_ ) lowerCAmelCase : str = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # forward without prompt embeds lowerCAmelCase : Tuple = self.get_dummy_inputs(lowerCAmelCase_ ) lowerCAmelCase : Optional[Any] = 3 * ["""this is a negative prompt"""] lowerCAmelCase : int = negative_prompt lowerCAmelCase : Dict = 3 * [inputs["""prompt"""]] lowerCAmelCase : Optional[Any] = sd_pipe(**lowerCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase : List[str] = self.get_dummy_inputs(lowerCAmelCase_ ) lowerCAmelCase : List[Any] = 3 * ["""this is a negative prompt"""] lowerCAmelCase : Any = 3 * [inputs.pop("""prompt""" )] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = sd_pipe.encode_prompt(lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) lowerCAmelCase : Optional[int] = sd_pipe( **lowerCAmelCase_ , prompt_embeds=lowerCAmelCase_ , negative_prompt_embeds=lowerCAmelCase_ , pooled_prompt_embeds=lowerCAmelCase_ , negative_pooled_prompt_embeds=lowerCAmelCase_ , ) lowerCAmelCase : Any = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , lowercase_ , lowercase_="cpu" , lowercase_=torch.floataa , lowercase_=0 ) -> Tuple: lowerCAmelCase : Dict = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) lowerCAmelCase : Dict = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase : List[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) lowerCAmelCase : Dict = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _snake_case ( self ) -> int: lowerCAmelCase : Dict = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) lowerCAmelCase : Any = self.get_inputs(lowerCAmelCase_ ) lowerCAmelCase : Dict = pipe(**lowerCAmelCase_ ).images lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Optional[Any] = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
717
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase : Union[str, Any] =logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return (preds == labels).mean() @dataclass class _a : _UpperCamelCase: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _a : _UpperCamelCase: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) _UpperCamelCase: str = field(metadata={"help": "Should contain the data files for the task."} ) _UpperCamelCase: int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) try: lowerCAmelCase : int = processors[data_args.task_name]() lowerCAmelCase : List[str] = processor.get_labels() lowerCAmelCase : str = len(SCREAMING_SNAKE_CASE__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=SCREAMING_SNAKE_CASE__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) lowerCAmelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) lowerCAmelCase : Any = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,) # Get datasets lowerCAmelCase : Optional[int] = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=SCREAMING_SNAKE_CASE__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) lowerCAmelCase : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=SCREAMING_SNAKE_CASE__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(SCREAMING_SNAKE_CASE__ ) -> Dict: lowerCAmelCase : str = np.argmax(p.predictions ,axis=1 ) return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ ,p.label_ids )} # Data collator lowerCAmelCase : Dict = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : List[Any] = Trainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,compute_metrics=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : Optional[int] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : Optional[Any] = trainer.evaluate() lowerCAmelCase : Union[str, Any] = os.path.join(training_args.output_dir ,"""eval_results.txt""" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE__ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(SCREAMING_SNAKE_CASE__ ) return results def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
0
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = to_pil_image(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = pil_image.size lowerCAmelCase : Union[str, Any] = pytesseract.image_to_data(SCREAMING_SNAKE_CASE__ ,lang=SCREAMING_SNAKE_CASE__ ,output_type="""dict""" ,config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates lowerCAmelCase : List[Any] = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE__ ) if not word.strip()] lowerCAmelCase : int = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] lowerCAmelCase : Union[str, Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] lowerCAmelCase : Optional[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] lowerCAmelCase : Union[str, Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] lowerCAmelCase : Optional[int] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase : Dict = [] for x, y, w, h in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = [x, y, x + w, y + h] actual_boxes.append(SCREAMING_SNAKE_CASE__ ) # finally, normalize the bounding boxes lowerCAmelCase : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _a ( SCREAMING_SNAKE_CASE__ ): _UpperCamelCase: Tuple = ["pixel_values"] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = True , lowercase_ = None , lowercase_ = "" , **lowercase_ , ) -> List[Any]: super().__init__(**snake_case__ ) lowerCAmelCase : List[Any] = size if size is not None else {"height": 224, "width": 224} lowerCAmelCase : Union[str, Any] = get_size_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : Tuple = resample lowerCAmelCase : Tuple = do_rescale lowerCAmelCase : Any = rescale_value lowerCAmelCase : Optional[Any] = do_normalize lowerCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase : int = apply_ocr lowerCAmelCase : Tuple = ocr_lang lowerCAmelCase : str = tesseract_config def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = None , **lowercase_ , ) -> List[Any]: lowerCAmelCase : Union[str, Any] = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""" ) lowerCAmelCase : Dict = (size["height"], size["width"]) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Optional[Any]: return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> int: return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> List[str]: lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Tuple = size if size is not None else self.size lowerCAmelCase : List[str] = get_size_dict(snake_case__ ) lowerCAmelCase : int = resample if resample is not None else self.resample lowerCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std lowerCAmelCase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase : str = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase : Dict = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase : Tuple = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. lowerCAmelCase : Any = [to_numpy_array(snake_case__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : List[Any] = [] for image in images: lowerCAmelCase : Any = apply_tesseract(snake_case__ , snake_case__ , snake_case__ ) words_batch.append(snake_case__ ) boxes_batch.append(snake_case__ ) if do_resize: lowerCAmelCase : Dict = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: lowerCAmelCase : Union[str, Any] = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: lowerCAmelCase : List[Any] = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] lowerCAmelCase : Optional[Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] lowerCAmelCase : Dict = BatchFeature(data={"""pixel_values""": images} , tensor_type=snake_case__ ) if apply_ocr: lowerCAmelCase : List[str] = words_batch lowerCAmelCase : Optional[int] = boxes_batch return data
719
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
0
import math def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = 0 lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = num % 8 lowerCAmelCase : List[Any] = octal + (remainder * math.floor(math.pow(1_0 ,__a ) )) counter += 1 lowerCAmelCase : List[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__a )}""" def _UpperCAmelCase ( ): '''simple docstring''' print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(6_5 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(2_1_6 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(5_1_2 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
720
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase : List[Any] ={"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : str =OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) lowerCAmelCase : Optional[Any] =OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase : str =OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase : Tuple =OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) lowerCAmelCase : Union[str, Any] =OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) lowerCAmelCase : str =OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) lowerCAmelCase : str =OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) lowerCAmelCase : str =OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) lowerCAmelCase : Any =OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) lowerCAmelCase : Dict =OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) lowerCAmelCase : Tuple =OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) lowerCAmelCase : Dict =OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) lowerCAmelCase : Optional[int] =OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) lowerCAmelCase : List[Any] =OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) lowerCAmelCase : Tuple =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase : Optional[int] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase : str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase : List[str] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase : Union[str, Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase : Union[str, Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase : str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase : List[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase : Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase : Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase : Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase : Tuple =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase : Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase : Optional[int] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass ): _UpperCamelCase: str = FLAX_MODEL_MAPPING lowerCAmelCase : List[Any] =auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass ): _UpperCamelCase: List[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase : int =auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _a ( _BaseAutoModelClass ): _UpperCamelCase: Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase : Union[str, Any] =auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _a ( _BaseAutoModelClass ): _UpperCamelCase: Optional[int] = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase : Union[str, Any] =auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _a ( _BaseAutoModelClass ): _UpperCamelCase: Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Dict =auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _a ( _BaseAutoModelClass ): _UpperCamelCase: Optional[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase : Dict =auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _a ( _BaseAutoModelClass ): _UpperCamelCase: List[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase : str =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _a ( _BaseAutoModelClass ): _UpperCamelCase: Optional[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase : Dict =auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _a ( _BaseAutoModelClass ): _UpperCamelCase: Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase : List[str] =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _a ( _BaseAutoModelClass ): _UpperCamelCase: Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase : Optional[int] =auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _a ( _BaseAutoModelClass ): _UpperCamelCase: Optional[int] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : List[Any] =auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _a ( _BaseAutoModelClass ): _UpperCamelCase: List[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase : Dict =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _a ( _BaseAutoModelClass ): _UpperCamelCase: List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase : Optional[Any] =auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
700
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if n == 1 or not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): return 0 elif n == 2: return 1 else: lowerCAmelCase : Optional[int] = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = 0 lowerCAmelCase : int = 2 while digits < n: index += 1 lowerCAmelCase : str = len(str(fibonacci(_lowerCAmelCase ) ) ) return index def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0_0_0 ): '''simple docstring''' return fibonacci_digits_index(_lowerCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
701
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( lowerCamelCase__ , unittest.TestCase ): _UpperCamelCase: Optional[int] = LongformerTokenizer _UpperCamelCase: List[Any] = True _UpperCamelCase: Optional[Any] = LongformerTokenizerFast _UpperCamelCase: Optional[int] = True def _snake_case ( self ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCAmelCase : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase : Optional[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCAmelCase : Optional[int] = {'''unk_token''': '''<unk>'''} lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCamelCase ) ) def _snake_case ( self , **lowercase_ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self , **lowercase_ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self , lowercase_ ) -> Dict: lowerCAmelCase : List[str] = '''lower newer''' lowerCAmelCase : Tuple = '''lower newer''' return input_text, output_text def _snake_case ( self ) -> List[str]: lowerCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase : Union[str, Any] = '''lower newer''' lowerCAmelCase : Optional[int] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCAmelCase : Optional[int] = tokenizer.tokenize(__lowerCamelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase : str = tokens + [tokenizer.unk_token] lowerCAmelCase : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__lowerCamelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__lowerCamelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _snake_case ( self ) -> int: lowerCAmelCase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) lowerCAmelCase : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowerCamelCase ) lowerCAmelCase : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowerCamelCase ) lowerCAmelCase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) lowerCAmelCase : Optional[Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) lowerCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = self.get_tokenizer() lowerCAmelCase : List[str] = '''Encode this sequence.''' lowerCAmelCase : Dict = tokenizer.byte_encoder[''' '''.encode("""utf-8""" )[0]] # Testing encoder arguments lowerCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) lowerCAmelCase : str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) # Testing spaces after special tokens lowerCAmelCase : Any = '''<mask>''' tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase )} ) # mask token has a left space lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) lowerCAmelCase : Optional[Any] = '''Encode <mask> sequence''' lowerCAmelCase : Dict = '''Encode <mask>sequence''' lowerCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase ) lowerCAmelCase : int = encoded.index(__lowerCamelCase ) lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase : List[str] = tokenizer.encode(__lowerCamelCase ) lowerCAmelCase : List[Any] = encoded.index(__lowerCamelCase ) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self ) -> Optional[Any]: pass def _snake_case ( self ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowerCAmelCase : Any = '''A, <mask> AllenNLP sentence.''' lowerCAmelCase : str = tokenizer_r.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) lowerCAmelCase : str = tokenizer_p.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowerCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __lowerCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __lowerCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _snake_case ( self ) -> int: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) lowerCAmelCase : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __lowerCamelCase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __lowerCamelCase ) self.assertEqual(post_processor_state["""trim_offsets"""] , __lowerCamelCase ) def _snake_case ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : str = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase : List[str] = f"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) lowerCAmelCase : Dict = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) lowerCAmelCase : Any = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) lowerCAmelCase : Union[str, Any] = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) lowerCAmelCase : Optional[Any] = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) lowerCAmelCase : Optional[int] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) lowerCAmelCase : Optional[Any] = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ) + 1, 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) lowerCAmelCase : int = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) lowerCAmelCase : List[str] = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
import math from numpy import inf from scipy.integrate import quad def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) return quad(UpperCamelCase__ ,0 ,UpperCamelCase__ ,args=(UpperCamelCase__) )[0] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return math.pow(UpperCamelCase__ ,z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
703
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCAmelCase : List[str] =list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCAmelCase : List[Any] =[file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('\n'.join(upper_files) + '\n') lowerCAmelCase : Any =[file for file in filepaths if ' ' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('\n'.join(space_files) + '\n') lowerCAmelCase : str =[file for file in filepaths if '-' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('\n'.join(hyphen_files) + '\n') lowerCAmelCase : int =[file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('\n'.join(nodir_files) + '\n') lowerCAmelCase : Union[str, Any] =len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase : Optional[Any] ="http://www.mocksite.com/file1.txt" lowerCAmelCase : Tuple ="\"text\": [\"foo\", \"foo\"]" lowerCAmelCase : Tuple ="6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _a : _UpperCamelCase: Any = 200 _UpperCamelCase: int = {'''Content-Length''': '''100'''} _UpperCamelCase: int = {} def _snake_case ( self , **lowercase_ ) -> Dict: return [bytes(A_ , """utf-8""" )] def _UpperCAmelCase ( *SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("""urls_type""" ,[str, list, dict] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' import requests monkeypatch.setattr(SCREAMING_SNAKE_CASE__ ,"""request""" ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = URL if issubclass(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = url elif issubclass(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = [url] elif issubclass(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = {"""train""": url} lowerCAmelCase : Tuple = """dummy""" lowerCAmelCase : Any = """downloads""" lowerCAmelCase : Tuple = tmp_path lowerCAmelCase : Union[str, Any] = DownloadConfig( cache_dir=os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,use_etag=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : str = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ ,download_config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = dl_manager.download(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = urls for downloaded_paths in [downloaded_paths]: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[Any] = [downloaded_paths] lowerCAmelCase : List[str] = [urls] elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): assert "train" in downloaded_paths.keys() lowerCAmelCase : Dict = downloaded_paths.values() lowerCAmelCase : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCAmelCase : Tuple = Path(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCAmelCase : Optional[Any] = downloaded_path.read_text() assert content == CONTENT lowerCAmelCase : List[Any] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowerCAmelCase : Optional[int] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" ,[str, list, dict] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) if issubclass(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = filename elif issubclass(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Any = [filename] elif issubclass(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[Any] = {"""train""": filename} lowerCAmelCase : List[str] = """dummy""" lowerCAmelCase : Tuple = xz_file.parent lowerCAmelCase : int = """extracted""" lowerCAmelCase : Any = DownloadConfig( cache_dir=SCREAMING_SNAKE_CASE__ ,use_etag=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : List[str] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ ,download_config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = dl_manager.extract(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[Any] = [extracted_paths] lowerCAmelCase : List[str] = [paths] elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): assert "train" in extracted_paths.keys() lowerCAmelCase : Any = extracted_paths.values() lowerCAmelCase : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCAmelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = extracted_path.parts assert parts[-1] == hash_url_to_filename(SCREAMING_SNAKE_CASE__ ,etag=SCREAMING_SNAKE_CASE__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCAmelCase : List[Any] = extracted_path.read_text() lowerCAmelCase : Tuple = text_file.read_text() assert extracted_file_content == expected_file_content def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(SCREAMING_SNAKE_CASE__ ,start=1 ): lowerCAmelCase : int = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" ,["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) ,start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" ,["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) ,start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) ,start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) assert num_tar == 1 assert num_jsonl == 2 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) ,start=1 ): assert os.path.basename(SCREAMING_SNAKE_CASE__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
705
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Tuple ={ 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
0
import numpy as np lowerCAmelCase : Optional[int] =[ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class _a : def __init__( self ) -> None: lowerCAmelCase : List[Any] = np.array(__UpperCamelCase ) def _snake_case ( self , lowercase_ ) -> np.ndarray: lowerCAmelCase , lowerCAmelCase : Optional[Any] = np.where(letter == self.SQUARE ) lowerCAmelCase : Any = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self , lowercase_ , lowercase_ ) -> str: lowerCAmelCase : Any = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self , lowercase_ ) -> str: lowerCAmelCase : Optional[int] = message.lower() lowerCAmelCase : List[Any] = message.replace(""" """ , """""" ) lowerCAmelCase : Tuple = message.replace("""j""" , """i""" ) lowerCAmelCase : Optional[Any] = np.empty((2, len(__UpperCamelCase )) ) for letter_index in range(len(__UpperCamelCase ) ): lowerCAmelCase : Tuple = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase : List[str] = numbers[0] lowerCAmelCase : Tuple = numbers[1] lowerCAmelCase : List[str] = first_step.reshape(2 * len(__UpperCamelCase ) ) lowerCAmelCase : Dict = """""" for numbers_index in range(len(__UpperCamelCase ) ): lowerCAmelCase : Dict = int(second_step[numbers_index * 2] ) lowerCAmelCase : int = int(second_step[(numbers_index * 2) + 1] ) lowerCAmelCase : Union[str, Any] = self.numbers_to_letter(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase : Any = encoded_message + letter return encoded_message def _snake_case ( self , lowercase_ ) -> str: lowerCAmelCase : Union[str, Any] = message.lower() message.replace(""" """ , """""" ) lowerCAmelCase : Tuple = np.empty(2 * len(__UpperCamelCase ) ) for letter_index in range(len(__UpperCamelCase ) ): lowerCAmelCase : Union[str, Any] = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase : Union[str, Any] = numbers[0] lowerCAmelCase : Any = numbers[1] lowerCAmelCase : Union[str, Any] = first_step.reshape((2, len(__UpperCamelCase )) ) lowerCAmelCase : int = """""" for numbers_index in range(len(__UpperCamelCase ) ): lowerCAmelCase : List[str] = int(second_step[0, numbers_index] ) lowerCAmelCase : Union[str, Any] = int(second_step[1, numbers_index] ) lowerCAmelCase : Any = self.numbers_to_letter(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase : Dict = decoded_message + letter return decoded_message
707
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = VideoMAEConfig() set_architecture_configs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if "finetuned" not in model_name: lowerCAmelCase : Optional[Any] = False if "finetuned" in model_name: lowerCAmelCase : Dict = """huggingface/label-files""" if "kinetics" in model_name: lowerCAmelCase : Union[str, Any] = 4_0_0 lowerCAmelCase : int = """kinetics400-id2label.json""" elif "ssv2" in model_name: lowerCAmelCase : List[str] = 1_7_4 lowerCAmelCase : Any = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) lowerCAmelCase : Dict = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,repo_type="""dataset""" ) ,"""r""" ) ) lowerCAmelCase : Dict = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowerCAmelCase : Optional[Any] = idalabel lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "small" in model_name: lowerCAmelCase : Union[str, Any] = 3_8_4 lowerCAmelCase : Optional[int] = 1_5_3_6 lowerCAmelCase : Union[str, Any] = 1_2 lowerCAmelCase : Optional[int] = 1_6 lowerCAmelCase : Optional[Any] = 1_2 lowerCAmelCase : List[Any] = 3 lowerCAmelCase : Tuple = 1_9_2 lowerCAmelCase : List[Any] = 7_6_8 elif "large" in model_name: lowerCAmelCase : List[Any] = 1_0_2_4 lowerCAmelCase : Optional[int] = 4_0_9_6 lowerCAmelCase : Optional[int] = 2_4 lowerCAmelCase : Tuple = 1_6 lowerCAmelCase : List[Any] = 1_2 lowerCAmelCase : int = 8 lowerCAmelCase : Tuple = 5_1_2 lowerCAmelCase : Union[str, Any] = 2_0_4_8 elif "huge" in model_name: lowerCAmelCase : Tuple = 1_2_8_0 lowerCAmelCase : Optional[Any] = 5_1_2_0 lowerCAmelCase : Dict = 3_2 lowerCAmelCase : Dict = 1_6 lowerCAmelCase : Any = 1_2 lowerCAmelCase : Tuple = 8 lowerCAmelCase : Optional[int] = 6_4_0 lowerCAmelCase : Optional[Any] = 2_5_6_0 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "encoder." in name: lowerCAmelCase : List[Any] = name.replace("""encoder.""" ,"""""" ) if "cls_token" in name: lowerCAmelCase : Tuple = name.replace("""cls_token""" ,"""videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: lowerCAmelCase : List[Any] = name.replace("""decoder_pos_embed""" ,"""decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase : Dict = name.replace("""pos_embed""" ,"""videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCAmelCase : str = name.replace("""patch_embed.proj""" ,"""videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase : Any = name.replace("""patch_embed.norm""" ,"""videomae.embeddings.norm""" ) if "decoder.blocks" in name: lowerCAmelCase : Union[str, Any] = name.replace("""decoder.blocks""" ,"""decoder.decoder_layers""" ) if "blocks" in name: lowerCAmelCase : Optional[Any] = name.replace("""blocks""" ,"""videomae.encoder.layer""" ) if "attn.proj" in name: lowerCAmelCase : Any = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name and "bias" not in name: lowerCAmelCase : Tuple = name.replace("""attn""" ,"""attention.self""" ) if "attn" in name: lowerCAmelCase : Dict = name.replace("""attn""" ,"""attention.attention""" ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: lowerCAmelCase : Optional[Any] = name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase : Optional[Any] = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase : Dict = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "decoder_embed" in name: lowerCAmelCase : Optional[Any] = name.replace("""decoder_embed""" ,"""decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCAmelCase : Union[str, Any] = name.replace("""decoder_norm""" ,"""decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCAmelCase : str = name.replace("""decoder_pred""" ,"""decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase : List[str] = name.replace("""norm.weight""" ,"""videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase : int = name.replace("""norm.bias""" ,"""videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: lowerCAmelCase : str = name.replace("""head""" ,"""classifier""" ) return name def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if key.startswith("""encoder.""" ): lowerCAmelCase : Optional[Any] = key.replace("""encoder.""" ,"""""" ) if "qkv" in key: lowerCAmelCase : str = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): lowerCAmelCase : str = config.decoder_hidden_size lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : str = """decoder.decoder_layers.""" if "weight" in key: lowerCAmelCase : List[Any] = val[:dim, :] lowerCAmelCase : int = val[dim : dim * 2, :] lowerCAmelCase : Union[str, Any] = val[-dim:, :] else: lowerCAmelCase : Optional[Any] = config.hidden_size lowerCAmelCase : Dict = int(key_split[1] ) lowerCAmelCase : List[Any] = """videomae.encoder.layer.""" if "weight" in key: lowerCAmelCase : Union[str, Any] = val[:dim, :] lowerCAmelCase : Optional[Any] = val[dim : dim * 2, :] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : Optional[Any] = val return orig_state_dict def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Tuple = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" ) lowerCAmelCase : Dict = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = get_videomae_config(SCREAMING_SNAKE_CASE__ ) if "finetuned" in model_name: lowerCAmelCase : Any = VideoMAEForVideoClassification(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Tuple = VideoMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) # download original checkpoint, hosted on Google Drive lowerCAmelCase : int = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,quiet=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" ) if "model" in files: lowerCAmelCase : Union[str, Any] = files["""model"""] else: lowerCAmelCase : List[Any] = files["""module"""] lowerCAmelCase : Any = convert_state_dict(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify model on basic input lowerCAmelCase : Union[str, Any] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) lowerCAmelCase : str = prepare_video() lowerCAmelCase : Any = image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors="""pt""" ) if "finetuned" not in model_name: lowerCAmelCase : Tuple = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" ,filename="""bool_masked_pos.pt""" ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = outputs.logits lowerCAmelCase : Tuple = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCAmelCase : Tuple = torch.Size([1, 4_0_0] ) lowerCAmelCase : List[Any] = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCAmelCase : Tuple = torch.Size([1, 1_7_4] ) lowerCAmelCase : Optional[int] = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": lowerCAmelCase : Any = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : List[str] = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": lowerCAmelCase : List[str] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : int = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCAmelCase : Optional[int] = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": lowerCAmelCase : List[str] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : Tuple = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCAmelCase : Any = torch.Size([1, 4_0_0] ) lowerCAmelCase : Dict = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCAmelCase : List[str] = torch.Size([1, 4_0_0] ) lowerCAmelCase : List[Any] = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCAmelCase : int = torch.Size([1, 4_0_0] ) lowerCAmelCase : Dict = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCAmelCase : Union[str, Any] = torch.Size([1, 4_0_0] ) lowerCAmelCase : List[str] = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": lowerCAmelCase : Union[str, Any] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : Tuple = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCAmelCase : str = torch.Size([1, 1_7_4] ) lowerCAmelCase : Optional[Any] = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": lowerCAmelCase : List[str] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : str = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCAmelCase : int = torch.Size([1, 1_7_4] ) lowerCAmelCase : Any = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) else: print("""Logits:""" ,logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCAmelCase : List[Any] = outputs.loss assert torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ,organization="""nielsr""" ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase : str =parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
708
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
'''simple docstring''' lowerCAmelCase : List[str] =[ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} lowerCAmelCase : Tuple = 0 lowerCAmelCase : Dict = 0 while place < len(lowerCAmelCase__ ): if (place + 1 < len(lowerCAmelCase__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = [] for arabic, roman in ROMAN: (lowerCAmelCase) : int = divmod(lowerCAmelCase__ ,lowerCAmelCase__ ) result.append(roman * factor ) if number == 0: break return "".join(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
709
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" lowerCAmelCase : Any = nn.Parameter(SCREAMING_SNAKE_CASE__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" lowerCAmelCase : Optional[Any] = nn.Parameter(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = np.asarray(weights[0] ) lowerCAmelCase : Any = np.asarray(weights[1] ) lowerCAmelCase : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 ,2 ).contiguous().view(-1 ,SCREAMING_SNAKE_CASE__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 ,2 ).contiguous().view(-1 ,SCREAMING_SNAKE_CASE__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1 ,SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0 ,1 ) ,) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : int = np.asarray(weights[0] ) lowerCAmelCase : Optional[Any] = np.asarray(weights[1] ) lowerCAmelCase : Any = np.asarray(weights[2] ) lowerCAmelCase : str = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 ,2 ).contiguous().view(-1 ,SCREAMING_SNAKE_CASE__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 ,2 ).contiguous().view(-1 ,SCREAMING_SNAKE_CASE__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 ,2 ).contiguous().view(-1 ,SCREAMING_SNAKE_CASE__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1 ,SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0 ,1 ) ,) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = weights[0][0][0] lowerCAmelCase : List[Any] = np.asarray(layer_norm_a[0] ) lowerCAmelCase : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,) # lsh weights + output lowerCAmelCase : Dict = weights[0][1] if len(SCREAMING_SNAKE_CASE__ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE__ ,torch_block.attention ,SCREAMING_SNAKE_CASE__ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE__ ,torch_block.attention ,SCREAMING_SNAKE_CASE__ ) # intermediate weighs lowerCAmelCase : int = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE__ ) == 4: lowerCAmelCase : Dict = intermediate_weights[2] # layernorm 2 lowerCAmelCase : Tuple = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,) # intermediate dense lowerCAmelCase : Tuple = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase : int = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,) # intermediate out lowerCAmelCase : Any = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase : Optional[int] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = torch_model.reformer # word embeds lowerCAmelCase : Optional[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,) if isinstance(weights[3] ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase : Union[str, Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase : int = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase : List[str] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # output layer norm lowerCAmelCase : List[Any] = np.asarray(weights[7][0] ) lowerCAmelCase : int = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,) # output embeddings lowerCAmelCase : Any = np.asarray(weights[9][0] ) lowerCAmelCase : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(SCREAMING_SNAKE_CASE__ ) ,) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase : int = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ ,"""rb""" ) as f: lowerCAmelCase : List[str] = pickle.load(SCREAMING_SNAKE_CASE__ )["""weights"""] set_model_weights_in_torch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase : Optional[int] =parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
710
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase : Tuple = head.next, head while fast and fast.next: lowerCAmelCase : Optional[int] = fast.next.next lowerCAmelCase : Any = slow.next lowerCAmelCase : Dict = slow.next lowerCAmelCase : Optional[int] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase : List[str] = None while second: lowerCAmelCase : List[str] = second.next lowerCAmelCase : Any = node lowerCAmelCase : Optional[Any] = second lowerCAmelCase : str = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase : int = node.next lowerCAmelCase : Optional[int] = head.next return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase : Optional[int] = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase : List[str] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase : Any = [slow.val] while slow.next: lowerCAmelCase : str = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase : Tuple = cur.next return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not head or not head.next: return True lowerCAmelCase : Optional[int] = {} lowerCAmelCase : Dict = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Dict = [pos] lowerCAmelCase : Union[str, Any] = head.next pos += 1 lowerCAmelCase : Union[str, Any] = pos - 1 lowerCAmelCase : Union[str, Any] = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE__ ) % 2 != 0: middle += 1 else: lowerCAmelCase : Dict = 0 for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase : Any ={ "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCAmelCase : Any ={ "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCAmelCase : Optional[int] ={ "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCAmelCase : List[str] ={ "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCAmelCase : List[Any] ={ "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCAmelCase : Tuple ={ "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCAmelCase : int ={ "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCAmelCase : Union[str, Any] ={ "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCAmelCase : List[str] ={ "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _a ( __UpperCAmelCase ): _UpperCamelCase: Any = VOCAB_FILES_NAMES _UpperCamelCase: List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: Any = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _a ( __UpperCAmelCase ): _UpperCamelCase: int = VOCAB_FILES_NAMES _UpperCamelCase: Optional[int] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: List[str] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : Union[str, Any] =collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) lowerCAmelCase : Optional[int] =collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) lowerCAmelCase : Any =r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__UpperCAmelCase ) class _a : def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> Dict: if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: lowerCAmelCase : str = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowerCAmelCase : Optional[Any] = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [titles] lowerCAmelCase : Any = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [texts] lowerCAmelCase : Dict = len(lowerCAmelCase_ ) lowerCAmelCase : List[str] = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [questions] * n_passages if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( f"""There should be as many titles than texts but got {len(lowerCAmelCase_ )} titles and {len(lowerCAmelCase_ )} texts.""" ) lowerCAmelCase : List[str] = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )["""input_ids"""] lowerCAmelCase : int = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )["""input_ids"""] lowerCAmelCase : List[str] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] } if return_attention_mask is not False: lowerCAmelCase : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase : int = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = 16 , lowercase_ = 64 , lowercase_ = 4 , ) -> Optional[Any]: lowerCAmelCase : int = reader_input["""input_ids"""] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = reader_output[:3] lowerCAmelCase : Tuple = len(lowerCAmelCase_ ) lowerCAmelCase : Dict = sorted(range(lowerCAmelCase_ ) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__ ) lowerCAmelCase : Tuple = [] for doc_id in sorted_docs: lowerCAmelCase : Dict = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase : List[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) lowerCAmelCase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Any: lowerCAmelCase : List[str] = [] for start_index, start_score in enumerate(lowerCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase : Tuple = sorted(lowerCAmelCase_ , key=lambda lowercase_ : x[1] , reverse=lowerCAmelCase_ ) lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) lowerCAmelCase : Union[str, Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__UpperCAmelCase ) class _a ( __UpperCAmelCase , __UpperCAmelCase ): _UpperCamelCase: Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase: List[str] = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION _UpperCamelCase: str = ["input_ids", "attention_mask"]
712
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase : Dict =logging.get_logger(__name__) class _a ( _UpperCamelCase ): _UpperCamelCase: List[str] = ["pixel_values"] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> Any: super().__init__(**_UpperCAmelCase ) lowerCAmelCase : List[Any] = size if size is not None else {'''shortest_edge''': 256} lowerCAmelCase : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase : Any = get_size_dict(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = do_resize lowerCAmelCase : List[Any] = size lowerCAmelCase : Dict = resample lowerCAmelCase : Tuple = do_center_crop lowerCAmelCase : Optional[Any] = crop_size lowerCAmelCase : Any = do_rescale lowerCAmelCase : List[str] = rescale_factor lowerCAmelCase : Optional[Any] = do_normalize lowerCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> List[Any]: lowerCAmelCase : Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase : str = get_resize_output_image_size(_UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> List[Any]: lowerCAmelCase : Dict = get_size_dict(_UpperCAmelCase ) return center_crop(_UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Tuple: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> str: lowerCAmelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Optional[int] = size if size is not None else self.size lowerCAmelCase : int = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) lowerCAmelCase : List[str] = resample if resample is not None else self.resample lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : str = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : List[str] = get_size_dict(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Dict = image_std if image_std is not None else self.image_std lowerCAmelCase : List[str] = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase : Union[str, Any] = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowerCAmelCase : int = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: lowerCAmelCase : Optional[Any] = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: lowerCAmelCase : int = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: lowerCAmelCase : Optional[int] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] lowerCAmelCase : List[Any] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowerCAmelCase : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
713
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCAmelCase : str =logging.getLogger(__name__) @dataclass class _a : _UpperCamelCase: Dict = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase: str = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Dict = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Tuple = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCamelCase: Tuple = field( default=_a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _UpperCamelCase: Dict = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _UpperCamelCase: Dict = field( default=_a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class _a : _UpperCamelCase: int = field(default=_a , metadata={"help": "The input training data file (a text file)."} ) _UpperCamelCase: Tuple = field( default=_a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _UpperCamelCase: Optional[int] = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) _UpperCamelCase: Any = field( default=_a , metadata={"help": "The number of processes to use for the preprocessing."} , ) _UpperCamelCase: List[str] = field( default=_a , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: List[Any] = field( default=_a , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) _UpperCamelCase: Tuple = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _UpperCamelCase: List[str] = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _snake_case ( self ) -> Tuple: if self.train_file is not None: lowerCAmelCase : Tuple = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCAmelCase : Union[str, Any] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _a : _UpperCamelCase: str = 42 _UpperCamelCase: str = True _UpperCamelCase: int = None _UpperCamelCase: Optional[int] = None def __call__( self , lowercase_ ) -> Optional[Any]: lowerCAmelCase : int = """label""" if """label""" in features[0].keys() else """labels""" lowerCAmelCase : Optional[int] = [feature.pop(_A ) for feature in features] lowerCAmelCase : Optional[Any] = len(_A ) lowerCAmelCase : List[str] = len(features[0]["""input_ids"""] ) lowerCAmelCase : Dict = [ [{k: v[i] for k, v in feature.items()} for i in range(_A )] for feature in features ] lowerCAmelCase : Optional[int] = list(chain(*_A ) ) lowerCAmelCase : Union[str, Any] = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten lowerCAmelCase : str = {k: v.view(_A , _A , -1 ) for k, v in batch.items()} # Add back labels lowerCAmelCase : Union[str, Any] = torch.tensor(_A , dtype=torch.intaa ) return batch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" ,UpperCAmelCase__ ,UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : Tuple = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) datasets.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCAmelCase : Optional[int] = {} if data_args.train_file is not None: lowerCAmelCase : Tuple = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase : Any = data_args.validation_file lowerCAmelCase : Any = data_args.train_file.split(""".""" )[-1] lowerCAmelCase : int = load_dataset( UpperCAmelCase__ ,data_files=UpperCAmelCase__ ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: # Downloading and loading the swag dataset from the hub. lowerCAmelCase : Union[str, Any] = load_dataset( """swag""" ,"""regular""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=UpperCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCAmelCase : Optional[int] = [F"""ending{i}""" for i in range(4 )] lowerCAmelCase : List[Any] = """sent1""" lowerCAmelCase : Any = """sent2""" if data_args.max_seq_length is None: lowerCAmelCase : List[Any] = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) lowerCAmelCase : List[Any] = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCAmelCase : str = min(data_args.max_seq_length ,tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[Any] = [[context] * 4 for context in examples[context_name]] lowerCAmelCase : Tuple = examples[question_header_name] lowerCAmelCase : Optional[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(UpperCAmelCase__ ) ] # Flatten out lowerCAmelCase : str = list(chain(*UpperCAmelCase__ ) ) lowerCAmelCase : Optional[int] = list(chain(*UpperCAmelCase__ ) ) # Tokenize lowerCAmelCase : int = tokenizer( UpperCAmelCase__ ,UpperCAmelCase__ ,truncation=UpperCAmelCase__ ,max_length=UpperCAmelCase__ ,padding="""max_length""" if data_args.pad_to_max_length else False ,) # Un-flatten return {k: [v[i : i + 4] for i in range(0 ,len(UpperCAmelCase__ ) ,4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowerCAmelCase : List[str] = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowerCAmelCase : Dict = min(len(UpperCAmelCase__ ) ,data_args.max_train_samples ) lowerCAmelCase : Any = train_dataset.select(range(UpperCAmelCase__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowerCAmelCase : str = train_dataset.map( UpperCAmelCase__ ,batched=UpperCAmelCase__ ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowerCAmelCase : Union[str, Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowerCAmelCase : int = min(len(UpperCAmelCase__ ) ,data_args.max_eval_samples ) lowerCAmelCase : Dict = eval_dataset.select(range(UpperCAmelCase__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowerCAmelCase : List[Any] = eval_dataset.map( UpperCAmelCase__ ,batched=UpperCAmelCase__ ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,) # Data collator lowerCAmelCase : Union[str, Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCAmelCase__ ,pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase , lowerCAmelCase : Dict = eval_predictions lowerCAmelCase : str = np.argmax(UpperCAmelCase__ ,axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCAmelCase : List[Any] = Trainer( model=UpperCAmelCase__ ,args=UpperCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,tokenizer=UpperCAmelCase__ ,data_collator=UpperCAmelCase__ ,compute_metrics=UpperCAmelCase__ ,) # Training if training_args.do_train: lowerCAmelCase : Dict = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : Optional[Any] = last_checkpoint lowerCAmelCase : Dict = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase : List[str] = train_result.metrics lowerCAmelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase__ ) ) lowerCAmelCase : Tuple = min(UpperCAmelCase__ ,len(UpperCAmelCase__ ) ) trainer.log_metrics("""train""" ,UpperCAmelCase__ ) trainer.save_metrics("""train""" ,UpperCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : str = trainer.evaluate() lowerCAmelCase : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase__ ) lowerCAmelCase : Tuple = min(UpperCAmelCase__ ,len(UpperCAmelCase__ ) ) trainer.log_metrics("""eval""" ,UpperCAmelCase__ ) trainer.save_metrics("""eval""" ,UpperCAmelCase__ ) lowerCAmelCase : List[str] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
0
import requests lowerCAmelCase : Optional[Any] ='https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] ,1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase : str =logging.get_logger(__name__) class _a ( snake_case_ ): def __init__( self , *lowercase_ , **lowercase_ ) -> Union[str, Any]: warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
716
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
0
import os import numpy import onnx def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : int = a.name lowerCAmelCase : Optional[Any] = b.name lowerCAmelCase : Tuple = """""" lowerCAmelCase : Dict = """""" lowerCAmelCase : Union[str, Any] = a == b lowerCAmelCase : str = name_a lowerCAmelCase : List[str] = name_b return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) _graph_replace_input_with(node_proto.attribute[1].g ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = list(model.graph.initializer ) lowerCAmelCase : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCAmelCase : List[str] = inits[i].name lowerCAmelCase : Optional[int] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = onnx.load(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Dict = list(model.graph.initializer ) lowerCAmelCase : str = set() lowerCAmelCase : List[str] = {} lowerCAmelCase : List[Any] = [] lowerCAmelCase : Tuple = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if i in dup_set: continue for j in range(i + 1 ,len(SCREAMING_SNAKE_CASE__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] ,inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE__ ) dup_set.add(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = inits[j].data_type lowerCAmelCase : str = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("""unexpected data type: """ ,SCREAMING_SNAKE_CASE__ ) total_reduced_size += mem_size lowerCAmelCase : str = inits[i].name lowerCAmelCase : Tuple = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ ,total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 ,"""GB""" ) lowerCAmelCase : List[str] = sorted(SCREAMING_SNAKE_CASE__ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = """optimized_""" + model_file_name lowerCAmelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) onnx.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return new_model
717
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase : Dict ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase : Union[str, Any] ={ "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } lowerCAmelCase : Optional[int] ={ "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } lowerCAmelCase : List[Any] ={ "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class _a ( __lowerCAmelCase ): _UpperCamelCase: Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: List[str] = ElectraTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase : Dict = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) lowerCAmelCase : Optional[Any] = do_lower_case lowerCAmelCase : int = strip_accents lowerCAmelCase : Any = tokenize_chinese_chars lowerCAmelCase : Optional[int] = normalizer_class(**lowerCamelCase__ ) lowerCAmelCase : Dict = do_lower_case def _snake_case ( self , lowercase_ , lowercase_=None ) -> Union[str, Any]: lowerCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , lowercase_ , lowercase_ = None ) -> List[int]: lowerCAmelCase : Union[str, Any] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: lowerCAmelCase : Any = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
0
import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase : List[str] ='src/transformers' # Matches is_xxx_available() lowerCAmelCase : Optional[int] =re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCAmelCase : Dict =re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase : int =re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCAmelCase : Tuple =re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase : int =re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase : List[Any] =re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase : Optional[int] =re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase : Dict =re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCAmelCase : Union[str, Any] =re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCAmelCase : List[Any] =re.compile(r'^\s*try:') # Catches a line with else: lowerCAmelCase : List[Any] =re.compile(r'^\s*else:') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if _re_test_backend.search(snake_case_ ) is None: return None lowerCAmelCase : Optional[Any] = [b[0] for b in _re_backend.findall(snake_case_ )] backends.sort() return "_and_".join(snake_case_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with open(snake_case_ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: lowerCAmelCase : str = f.readlines() lowerCAmelCase : Union[str, Any] = 0 while line_index < len(snake_case_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : int = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case_ ): lowerCAmelCase : Optional[int] = _re_one_line_import_struct.search(snake_case_ ).groups()[0] lowerCAmelCase : Optional[Any] = re.findall("""\[([^\]]+)\]""" ,snake_case_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowerCAmelCase : Optional[Any] = _re_import_struct_key_value.search(snake_case_ ) if single_line_import_search is not None: lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : Dict = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(snake_case_ ) is not None: objects.append(_re_import_struct_add_one.search(snake_case_ ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case_ ) is not None: lowerCAmelCase : Tuple = _re_import_struct_add_many.search(snake_case_ ).groups()[0].split(""", """ ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_between_brackets.search(snake_case_ ) is not None: lowerCAmelCase : List[Any] = _re_between_brackets.search(snake_case_ ).groups()[0].split(""", """ ) lowerCAmelCase : int = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_quote_object.search(snake_case_ ) is not None: objects.append(_re_quote_object.search(snake_case_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 1_2 + """\"""" ): objects.append(line[1_3:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Dict = [] while ( line_index < len(snake_case_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : Any = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(snake_case_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowerCAmelCase : Dict = lines[line_index] lowerCAmelCase : Optional[int] = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE__ ): return [k for k, v in collections.Counter(snake_case_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Optional[int] = [] for key in import_dict_objects.keys(): lowerCAmelCase : List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Any = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Dict = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(snake_case_ ,"""__init__.py""" ) lowerCAmelCase : List[Any] = parse_init(snake_case_ ) if objects is not None: lowerCAmelCase : int = analyze_results(*snake_case_ ) if len(snake_case_ ) > 0: lowerCAmelCase : Dict = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(snake_case_ ) ) if len(snake_case_ ) > 0: raise ValueError("""\n\n""".join(snake_case_ ) ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : str = [] for path, directories, files in os.walk(snake_case_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(snake_case_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case_ ) / folder).glob("""*.py""" ) ) ) == 0: continue lowerCAmelCase : str = str((Path(snake_case_ ) / folder).relative_to(snake_case_ ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep ,""".""" ) submodules.append(snake_case_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(snake_case_ ) / fname).relative_to(snake_case_ ) ) lowerCAmelCase : Dict = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(snake_case_ ) return submodules lowerCAmelCase : Optional[Any] =[ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = importlib.util.spec_from_file_location( """transformers""" ,os.path.join(snake_case_ ,"""__init__.py""" ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) lowerCAmelCase : str = spec.loader.load_module() lowerCAmelCase : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case_ ) > 0: lowerCAmelCase : Optional[Any] = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
719
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Any ={ """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =[ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase : Any ={ 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Optional[int] = """albert""" def __init__( self , lowercase_=30000 , lowercase_=128 , lowercase_=4096 , lowercase_=12 , lowercase_=1 , lowercase_=64 , lowercase_=16384 , lowercase_=1 , lowercase_="gelu_new" , lowercase_=0 , lowercase_=0 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0.1 , lowercase_="absolute" , lowercase_=0 , lowercase_=2 , lowercase_=3 , **lowercase_ , ) -> int: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Any = embedding_size lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : str = num_hidden_groups lowerCAmelCase : str = num_attention_heads lowerCAmelCase : int = inner_group_num lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : str = classifier_dropout_prob lowerCAmelCase : Optional[int] = position_embedding_type class _a ( snake_case_ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase : Optional[Any] =get_logger(__name__) class _a : def __init__( self , lowercase_ = None ) -> Tuple: lowerCAmelCase : Dict = ( os.path.join(lowercase_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCAmelCase : Dict = Extractor def _snake_case ( self , lowercase_ ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCAmelCase : Any = os.path.abspath(lowercase_ ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase_ ) ) def _snake_case ( self , lowercase_ , lowercase_ ) -> bool: return force_extract or ( not os.path.isfile(lowercase_ ) and not (os.path.isdir(lowercase_ ) and os.listdir(lowercase_ )) ) def _snake_case ( self , lowercase_ , lowercase_ = False ) -> str: lowerCAmelCase : Union[str, Any] = self.extractor.infer_extractor_format(lowercase_ ) if not extractor_format: return input_path lowerCAmelCase : List[str] = self._get_output_path(lowercase_ ) if self._do_extract(lowercase_ , lowercase_ ): self.extractor.extract(lowercase_ , lowercase_ , lowercase_ ) return output_path class _a ( snake_case_ ): @classmethod @abstractmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> bool: ... @staticmethod @abstractmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: ... class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: List[bytes] = [] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> Optional[int]: with open(lowercase_ , """rb""" ) as f: return f.read(lowercase_ ) @classmethod def _snake_case ( cls , lowercase_ , lowercase_ = b"" ) -> bool: if not magic_number: lowerCAmelCase : str = max(len(lowercase_ ) for cls_magic_number in cls.magic_numbers ) try: lowerCAmelCase : List[str] = cls.read_magic_number(lowercase_ , lowercase_ ) except OSError: return False return any(magic_number.startswith(lowercase_ ) for cls_magic_number in cls.magic_numbers ) class _a ( snake_case_ ): @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> bool: return tarfile.is_tarfile(lowercase_ ) @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> Any: def resolved(lowercase_ ) -> str: return os.path.realpath(os.path.abspath(lowercase_ ) ) def badpath(lowercase_ , lowercase_ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase_ , lowercase_ ) ).startswith(lowercase_ ) def badlink(lowercase_ , lowercase_ ) -> bool: # Links are interpreted relative to the directory containing the link lowerCAmelCase : List[Any] = resolved(os.path.join(lowercase_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase_ ) lowerCAmelCase : str = resolved(lowercase_ ) for finfo in members: if badpath(finfo.name , lowercase_ ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(lowercase_ , lowercase_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(lowercase_ , lowercase_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : Optional[int] = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ , members=TarExtractor.safemembers(lowercase_ , lowercase_ ) ) tar_file.close() class _a ( snake_case_ ): _UpperCamelCase: List[Any] = [b"\x1F\x8B"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: with gzip.open(lowercase_ , """rb""" ) as gzip_file: with open(lowercase_ , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: List[str] = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def _snake_case ( cls , lowercase_ , lowercase_ = b"" ) -> bool: if super().is_extractable(lowercase_ , magic_number=lowercase_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase_ , """rb""" ) as fp: lowerCAmelCase : Union[str, Any] = _EndRecData(lowercase_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCAmelCase : Union[str, Any] = fp.read(lowercase_ ) # CD is where we expect it to be if len(lowercase_ ) == sizeCentralDir: lowerCAmelCase : Any = struct.unpack(lowercase_ , lowercase_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: os.makedirs(lowercase_ , exist_ok=lowercase_ ) with zipfile.ZipFile(lowercase_ , """r""" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() class _a ( snake_case_ ): _UpperCamelCase: Dict = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: with lzma.open(lowercase_ ) as compressed_file: with open(lowercase_ , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: List[Any] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : Optional[Any] = rarfile.RarFile(lowercase_ ) rf.extractall(lowercase_ ) rf.close() class _a ( snake_case_ ): _UpperCamelCase: Dict = [b"\x28\xb5\x2F\xFD"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd lowerCAmelCase : List[Any] = zstd.ZstdDecompressor() with open(lowercase_ , """rb""" ) as ifh, open(lowercase_ , """wb""" ) as ofh: dctx.copy_stream(lowercase_ , lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: List[Any] = [b"\x42\x5A\x68"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: with bza.open(lowercase_ , """rb""" ) as compressed_file: with open(lowercase_ , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Optional[int] = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase_ , exist_ok=lowercase_ ) with pyazr.SevenZipFile(lowercase_ , """r""" ) as archive: archive.extractall(lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = [b"\x04\x22\x4D\x18"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase_ , """rb""" ) as compressed_file: with open(lowercase_ , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_ ) class _a : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _UpperCamelCase: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _snake_case ( cls ) -> List[Any]: return max( len(lowercase_ ) for extractor in cls.extractors.values() if issubclass(lowercase_ , lowercase_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> Dict: try: return MagicNumberBaseExtractor.read_magic_number(lowercase_ , magic_number_length=lowercase_ ) except OSError: return b"" @classmethod def _snake_case ( cls , lowercase_ , lowercase_ = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase_ , ) lowerCAmelCase : int = cls.infer_extractor_format(lowercase_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _snake_case ( cls , lowercase_ ) -> str: # <Added version="2.4.0"/> lowerCAmelCase : Optional[Any] = cls._get_magic_number_max_length() lowerCAmelCase : Optional[int] = cls._read_magic_number(lowercase_ , lowercase_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase_ , magic_number=lowercase_ ): return extractor_format @classmethod def _snake_case ( cls , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase_ ) , exist_ok=lowercase_ ) # Prevent parallel extractions lowerCAmelCase : Tuple = str(Path(lowercase_ ).with_suffix(""".lock""" ) ) with FileLock(lowercase_ ): shutil.rmtree(lowercase_ , ignore_errors=lowercase_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase_ , lowercase_ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase_ , ) lowerCAmelCase : Optional[Any] = extractor if extractor != """deprecated""" else extractor_format else: lowerCAmelCase : Union[str, Any] = cls.extractors[extractor_format] return extractor.extract(lowercase_ , lowercase_ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase_ ): return extractor.extract(lowercase_ , lowercase_ )
700
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowerCAmelCase : Tuple = parser.parse_args() lowerCAmelCase : Optional[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
701
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase : List[Any] =logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase : List[str] ='\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=8 ): '''simple docstring''' lowerCAmelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase : Any = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=5_1_2 ,SCREAMING_SNAKE_CASE__=5_1_2 ): '''simple docstring''' lowerCAmelCase : List[Any] = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 127.5 - 1 lowerCAmelCase : Optional[int] = np.transpose(SCREAMING_SNAKE_CASE__ ,[2, 0, 1] ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) return image class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , ) -> int: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) lowerCAmelCase : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> str: # get the original timestep using init_timestep lowerCAmelCase : Dict = min(int(num_inference_steps * strength ) , lowercase_ ) lowerCAmelCase : Optional[int] = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Dict: if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}""" ) lowerCAmelCase : List[Any] = image.to(device=lowercase_ , dtype=lowercase_ ) lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: lowerCAmelCase : int = image else: if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase_ ) ] lowerCAmelCase : List[str] = torch.cat(lowercase_ , dim=0 ) else: lowerCAmelCase : List[str] = self.movq.encode(lowercase_ ).latent_dist.sample(lowercase_ ) lowerCAmelCase : Tuple = self.movq.config.scaling_factor * init_latents lowerCAmelCase : Optional[int] = torch.cat([init_latents] , dim=0 ) lowerCAmelCase : Union[str, Any] = init_latents.shape lowerCAmelCase : Union[str, Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents lowerCAmelCase : Tuple = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Optional[int] = init_latents return latents def _snake_case ( self , lowercase_=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowerCAmelCase : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def _snake_case ( self , lowercase_=0 ) -> Union[str, Any]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase : int = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. lowerCAmelCase : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self ) -> int: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 0.3 , lowercase_ = 1 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Optional[Any]: lowerCAmelCase : Optional[int] = self._execution_device lowerCAmelCase : Dict = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : str = torch.cat(lowercase_ , dim=0 ) lowerCAmelCase : List[str] = image_embeds.shape[0] if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : str = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase : Union[str, Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) lowerCAmelCase : Tuple = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) lowerCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Optional[int] = [image] if not all(isinstance(lowercase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(lowercase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowerCAmelCase : Any = torch.cat([prepare_image(lowercase_ , lowercase_ , lowercase_ ) for i in image] , dim=0 ) lowerCAmelCase : Optional[int] = image.to(dtype=image_embeds.dtype , device=lowercase_ ) lowerCAmelCase : List[Any] = self.movq.encode(lowercase_ )["""latents"""] lowerCAmelCase : int = latents.repeat_interleave(lowercase_ , dim=0 ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) lowerCAmelCase : Optional[Any] = self.get_timesteps(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowerCAmelCase : List[str] = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) lowerCAmelCase : List[Any] = self.prepare_latents( lowercase_ , lowercase_ , lowercase_ , lowercase_ , image_embeds.dtype , lowercase_ , lowercase_ ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : int = {"""image_embeds""": image_embeds} lowerCAmelCase : Tuple = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: lowerCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase : Any = noise_pred.chunk(2 ) lowerCAmelCase : List[Any] = variance_pred.chunk(2 ) lowerCAmelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : Any = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing lowerCAmelCase : Optional[int] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCAmelCase : Optional[Any] = image * 0.5 + 0.5 lowerCAmelCase : Dict = image.clamp(0 , 1 ) lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : str = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
from collections import defaultdict from math import gcd def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_5_0_0_0_0_0 ): '''simple docstring''' lowerCAmelCase : defaultdict = defaultdict(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 ,SCREAMING_SNAKE_CASE__ ,2 ): if gcd(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) > 1: continue lowerCAmelCase : str = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE__ ,limit + 1 ,SCREAMING_SNAKE_CASE__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
703
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCAmelCase : int ={ 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0_0_0_0_0_0 ): '''simple docstring''' lowerCAmelCase : Optional[Any] = limit + 1 lowerCAmelCase : Dict = [0] * limit for first_term in range(1 ,SCREAMING_SNAKE_CASE__ ): for n in range(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Tuple = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCAmelCase : List[str] = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
705
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _a : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.0_2 , lowercase_=3 , lowercase_=None , lowercase_=2 , ) -> Optional[Any]: lowerCAmelCase : Dict = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : List[str] = image_size lowerCAmelCase : Dict = patch_size lowerCAmelCase : str = num_channels lowerCAmelCase : Tuple = is_training lowerCAmelCase : Dict = use_labels lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : str = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Any = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Tuple = scope lowerCAmelCase : Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase : Any = (image_size // patch_size) ** 2 lowerCAmelCase : Tuple = num_patches + 2 def _snake_case ( self ) -> Tuple: lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : int = None if self.use_labels: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def _snake_case ( self ) -> Optional[Any]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Tuple = TFDeiTModel(config=lowercase_ ) lowerCAmelCase : Dict = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: lowerCAmelCase : List[str] = TFDeiTForMaskedImageModeling(config=lowercase_ ) lowerCAmelCase : str = model(lowercase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : int = 1 lowerCAmelCase : Any = TFDeiTForMaskedImageModeling(lowercase_ ) lowerCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = self.type_sequence_label_size lowerCAmelCase : Tuple = TFDeiTForImageClassification(lowercase_ ) lowerCAmelCase : int = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : List[str] = 1 lowerCAmelCase : Union[str, Any] = TFDeiTForImageClassification(lowercase_ ) lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : str = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase : int = config_and_inputs lowerCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: int = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _UpperCamelCase: Dict = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _UpperCamelCase: List[Any] = False _UpperCamelCase: Optional[Any] = False _UpperCamelCase: Tuple = False _UpperCamelCase: Union[str, Any] = False def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = TFDeiTModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def _snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _snake_case ( self ) -> Dict: pass def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , tf.keras.layers.Dense ) ) def _snake_case ( self ) -> int: lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = model_class(lowercase_ ) lowerCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def _snake_case ( self ) -> int: lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=False ) -> List[str]: lowerCAmelCase : int = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _snake_case ( self ) -> int: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = TFDeiTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> Tuple: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> List[Any]: lowerCAmelCase : str = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase : List[Any] = self.default_image_processor lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Tuple = image_processor(images=lowercase_ , return_tensors="""tf""" ) # forward pass lowerCAmelCase : Any = model(**lowercase_ ) # verify the logits lowerCAmelCase : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowerCAmelCase : Optional[int] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
706
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _a ( snake_case_ ): def _snake_case ( self ) -> int: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : int = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(lowercase_ ) def _snake_case ( self ) -> Any: lowerCAmelCase : Union[str, Any] = self._create_example_records() lowerCAmelCase : Optional[int] = Dataset.from_list(lowercase_ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(lowercase_ ): self.assertDictEqual(lowercase_ , example_records[i] ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : List[Any] = self._create_example_records() lowerCAmelCase : Optional[Any] = Dataset.from_list(lowercase_ ) lowerCAmelCase : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _snake_case ( self ) -> List[Any]: # checks what happens with missing columns lowerCAmelCase : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] lowerCAmelCase : List[Any] = Dataset.from_list(lowercase_ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def _snake_case ( self ) -> List[Any]: # checks if the type can be inferred from the second record lowerCAmelCase : Union[str, Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] lowerCAmelCase : Optional[Any] = Dataset.from_list(lowercase_ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = Dataset.from_list([] ) self.assertEqual(len(lowercase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
707
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
708
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : Dict ={ 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "wavlm" def __init__( self , lowercase_=32 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(512, 512, 512, 512, 512, 512, 512) , lowercase_=(5, 2, 2, 2, 2, 2, 2) , lowercase_=(10, 3, 3, 3, 3, 2, 2) , lowercase_=False , lowercase_=128 , lowercase_=16 , lowercase_=320 , lowercase_=800 , lowercase_=False , lowercase_=True , lowercase_=0.0_5 , lowercase_=10 , lowercase_=2 , lowercase_=0.0 , lowercase_=10 , lowercase_=320 , lowercase_=2 , lowercase_=0.1 , lowercase_=100 , lowercase_=256 , lowercase_=256 , lowercase_=0.1 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=256 , lowercase_=(512, 512, 512, 512, 1500) , lowercase_=(5, 3, 3, 1, 1) , lowercase_=(1, 2, 3, 1, 1) , lowercase_=512 , lowercase_=80 , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=False , lowercase_=3 , lowercase_=2 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> str: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Union[str, Any] = feat_extract_norm lowerCAmelCase : Union[str, Any] = feat_extract_activation lowerCAmelCase : Any = list(lowercase_ ) lowerCAmelCase : Optional[Any] = list(lowercase_ ) lowerCAmelCase : Dict = list(lowercase_ ) lowerCAmelCase : List[str] = conv_bias lowerCAmelCase : Union[str, Any] = num_buckets lowerCAmelCase : List[str] = max_bucket_distance lowerCAmelCase : Union[str, Any] = num_conv_pos_embeddings lowerCAmelCase : Any = num_conv_pos_embedding_groups lowerCAmelCase : Union[str, Any] = len(self.conv_dim ) lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : str = hidden_dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : List[Any] = feat_proj_dropout lowerCAmelCase : Any = final_dropout lowerCAmelCase : Optional[Any] = layerdrop lowerCAmelCase : Tuple = layer_norm_eps lowerCAmelCase : int = initializer_range lowerCAmelCase : Optional[Any] = num_ctc_classes lowerCAmelCase : int = vocab_size lowerCAmelCase : List[Any] = do_stable_layer_norm lowerCAmelCase : int = use_weighted_layer_sum lowerCAmelCase : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : Any = apply_spec_augment lowerCAmelCase : List[str] = mask_time_prob lowerCAmelCase : List[str] = mask_time_length lowerCAmelCase : int = mask_time_min_masks lowerCAmelCase : str = mask_feature_prob lowerCAmelCase : int = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase : Dict = num_codevectors_per_group lowerCAmelCase : int = num_codevector_groups lowerCAmelCase : int = contrastive_logits_temperature lowerCAmelCase : Optional[Any] = num_negatives lowerCAmelCase : Optional[Any] = codevector_dim lowerCAmelCase : Dict = proj_codevector_dim lowerCAmelCase : Optional[Any] = diversity_loss_weight # ctc loss lowerCAmelCase : Optional[Any] = ctc_loss_reduction lowerCAmelCase : Optional[int] = ctc_zero_infinity # adapter lowerCAmelCase : Optional[Any] = add_adapter lowerCAmelCase : str = adapter_kernel_size lowerCAmelCase : Optional[Any] = adapter_stride lowerCAmelCase : Optional[Any] = num_adapter_layers lowerCAmelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase : Any = list(lowercase_ ) lowerCAmelCase : Union[str, Any] = list(lowercase_ ) lowerCAmelCase : List[Any] = list(lowercase_ ) lowerCAmelCase : Tuple = xvector_output_dim @property def _snake_case ( self ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
709
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _a ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = SamImageProcessor() lowerCAmelCase : Union[str, Any] = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase_ ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self ) -> str: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : int = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Dict = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase : Dict = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : Any = image_processor(lowercase_ , return_tensors="""np""" ) lowerCAmelCase : Optional[int] = processor(images=lowercase_ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : str = self.get_image_processor() lowerCAmelCase : List[str] = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : str = [torch.ones((1, 3, 5, 5) )] lowerCAmelCase : str = [[1764, 2646]] lowerCAmelCase : Optional[int] = [[683, 1024]] lowerCAmelCase : Optional[Any] = processor.post_process_masks(lowercase_ , lowercase_ , lowercase_ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Optional[int] = processor.post_process_masks( lowercase_ , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowerCAmelCase : Tuple = [np.ones((1, 3, 5, 5) )] lowerCAmelCase : Dict = processor.post_process_masks(lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Optional[Any] = [[1, 0], [0, 1]] with self.assertRaises(lowercase_ ): lowerCAmelCase : Dict = processor.post_process_masks(lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) ) @require_vision @require_tf class _a ( unittest.TestCase ): def _snake_case ( self ) -> Any: lowerCAmelCase : Dict = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = SamImageProcessor() lowerCAmelCase : List[str] = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase_ ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Any: lowerCAmelCase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> int: lowerCAmelCase : List[str] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase : List[str] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Tuple = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : str = self.prepare_image_inputs() lowerCAmelCase : List[Any] = image_processor(lowercase_ , return_tensors="""np""" ) lowerCAmelCase : Optional[Any] = processor(images=lowercase_ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : List[str] = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : Optional[int] = [tf.ones((1, 3, 5, 5) )] lowerCAmelCase : Optional[Any] = [[1764, 2646]] lowerCAmelCase : List[str] = [[683, 1024]] lowerCAmelCase : List[Any] = processor.post_process_masks(lowercase_ , lowercase_ , lowercase_ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Any = processor.post_process_masks( lowercase_ , tf.convert_to_tensor(lowercase_ ) , tf.convert_to_tensor(lowercase_ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowerCAmelCase : List[Any] = [np.ones((1, 3, 5, 5) )] lowerCAmelCase : List[Any] = processor.post_process_masks( lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : str = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): lowerCAmelCase : Union[str, Any] = processor.post_process_masks( lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class _a ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase : Dict = tempfile.mkdtemp() lowerCAmelCase : List[Any] = SamImageProcessor() lowerCAmelCase : int = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase_ ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : str = self.get_image_processor() lowerCAmelCase : Union[str, Any] = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : Tuple = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) lowerCAmelCase : str = [tf.convert_to_tensor(lowercase_ )] lowerCAmelCase : str = [torch.tensor(lowercase_ )] lowerCAmelCase : Union[str, Any] = [[1764, 2646]] lowerCAmelCase : int = [[683, 1024]] lowerCAmelCase : List[str] = processor.post_process_masks( lowercase_ , lowercase_ , lowercase_ , return_tensors="""tf""" ) lowerCAmelCase : Optional[int] = processor.post_process_masks( lowercase_ , lowercase_ , lowercase_ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _snake_case ( self ) -> List[str]: lowerCAmelCase : Dict = self.get_image_processor() lowerCAmelCase : str = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : Any = self.prepare_image_inputs() lowerCAmelCase : Dict = image_processor(lowercase_ , return_tensors="""pt""" )["""pixel_values"""].numpy() lowerCAmelCase : Tuple = processor(images=lowercase_ , return_tensors="""pt""" )["""pixel_values"""].numpy() lowerCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors="""tf""" )["""pixel_values"""].numpy() lowerCAmelCase : Any = processor(images=lowercase_ , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) )
710
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ='Hello, World!' lowerCAmelCase : Tuple ='en_XX' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = Path("""data_bin""" ) lowerCAmelCase : Optional[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE__ ).parent ) ,checkpoint_file=Path(SCREAMING_SNAKE_CASE__ ).name ,_name="""xmod_base""" ,arch="""xmod_base""" ,task="""multilingual_masked_lm""" ,data_name_or_path=str(SCREAMING_SNAKE_CASE__ ) ,bpe="""sentencepiece""" ,sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE__ ).parent / """sentencepiece.bpe.model""" ) ,src_dict=str(data_dir / """dict.txt""" ) ,) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = xmod.model.encoder.sentence_encoder lowerCAmelCase : int = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings ,hidden_size=xmod.cfg.model.encoder_embed_dim ,num_hidden_layers=xmod.cfg.model.encoder_layers ,num_attention_heads=xmod.cfg.model.encoder_attention_heads ,intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=5_1_4 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,pre_norm=xmod.cfg.model.encoder_normalize_before ,adapter_reduction_factor=getattr(xmod.cfg.model ,"""bottleneck""" ,2 ) ,adapter_layer_norm=xmod.cfg.model.adapter_layer_norm ,adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm ,ln_before_adapter=xmod.cfg.model.ln_before_adapter ,languages=xmod.cfg.model.languages ,) if classification_head: lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = XmodForSequenceClassification(SCREAMING_SNAKE_CASE__ ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase : str = xmod_sent_encoder.embed_tokens.weight lowerCAmelCase : Any = xmod_sent_encoder.embed_positions.weight lowerCAmelCase : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCAmelCase : List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCAmelCase : int = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase : List[Any] = model.roberta.encoder.layer[i] lowerCAmelCase : Dict = xmod_sent_encoder.layers[i] # self attention lowerCAmelCase : Tuple = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) lowerCAmelCase : str = xmod_layer.self_attn.q_proj.weight lowerCAmelCase : Any = xmod_layer.self_attn.q_proj.bias lowerCAmelCase : Tuple = xmod_layer.self_attn.k_proj.weight lowerCAmelCase : Dict = xmod_layer.self_attn.k_proj.bias lowerCAmelCase : Dict = xmod_layer.self_attn.v_proj.weight lowerCAmelCase : int = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase : List[str] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) lowerCAmelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.weight lowerCAmelCase : str = xmod_layer.self_attn.out_proj.bias lowerCAmelCase : Optional[int] = xmod_layer.self_attn_layer_norm.weight lowerCAmelCase : int = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCAmelCase : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) lowerCAmelCase : Tuple = xmod_layer.fca.weight lowerCAmelCase : str = xmod_layer.fca.bias # output lowerCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) lowerCAmelCase : Any = xmod_layer.fca.weight lowerCAmelCase : Optional[int] = xmod_layer.fca.bias lowerCAmelCase : Tuple = xmod_layer.final_layer_norm.weight lowerCAmelCase : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCAmelCase : Union[str, Any] = xmod_layer.adapter_layer_norm.weight lowerCAmelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCAmelCase : Any = bert_output.adapter_modules[lang_code] lowerCAmelCase : str = xmod_layer.adapter_modules[lang_code] lowerCAmelCase : Tuple = from_adapter.fca.weight lowerCAmelCase : Optional[int] = from_adapter.fca.bias lowerCAmelCase : List[Any] = from_adapter.fca.weight lowerCAmelCase : Any = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCAmelCase : Union[str, Any] = xmod_sent_encoder.layer_norm.weight lowerCAmelCase : Tuple = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].dense.weight lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""].dense.bias lowerCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""].out_proj.weight lowerCAmelCase : int = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCAmelCase : Any = xmod.model.encoder.lm_head.dense.weight lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.dense.bias lowerCAmelCase : int = xmod.model.encoder.lm_head.layer_norm.weight lowerCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCAmelCase : Optional[int] = xmod.model.encoder.lm_head.weight lowerCAmelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase : Any = xmod.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE__ )[0] if classification_head: lowerCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""](xmod.extract_features(SCREAMING_SNAKE_CASE__ ) ) else: lowerCAmelCase : Optional[Any] = xmod.model(SCREAMING_SNAKE_CASE__ ,lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape ,their_output.shape ) lowerCAmelCase : List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCAmelCase : Tuple = torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) print("""Do both models output the same tensors?""" ,"""🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(parents=SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) lowerCAmelCase : int =parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ): if magnitude == 0: lowerCAmelCase : Any = column continue lowerCAmelCase : Tuple = column / magnitude # Subtract to cancel term lowerCAmelCase : str = current_set[0] lowerCAmelCase : Optional[Any] = [first_row] lowerCAmelCase : Optional[Any] = current_set[1::] for row in current_set: lowerCAmelCase : Any = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE__ ) continue for column_index in range(len(SCREAMING_SNAKE_CASE__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCAmelCase : Any = final_set[0] lowerCAmelCase : List[str] = [] lowerCAmelCase : List[str] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCAmelCase : Any = simplify(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = resultant return final_set def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) + 1 if any(len(SCREAMING_SNAKE_CASE__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE__ ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(SCREAMING_SNAKE_CASE__ ) == 1: return [equations[0][-1] / equations[0][0]] lowerCAmelCase : Dict = equations.copy() if any(0 in row for row in data_set ): lowerCAmelCase : List[str] = data_set.copy() lowerCAmelCase : Optional[int] = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ): if 0 not in row: lowerCAmelCase : int = data_set.pop(SCREAMING_SNAKE_CASE__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = data_set.copy() lowerCAmelCase : Dict = simplify(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = simplified[::-1] lowerCAmelCase : list = [] for row in simplified: lowerCAmelCase : Any = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCAmelCase : Any = row.copy()[: len(SCREAMING_SNAKE_CASE__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE__ ) == 0: solutions.append(0 ) continue lowerCAmelCase : List[str] = temp_row[1::] lowerCAmelCase : List[str] = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE__ ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Dict =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
712
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = emb.weight.shape lowerCAmelCase : Any = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = emb.weight.data return lin_layer def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Tuple = {} for old_key in state_dict.keys(): lowerCAmelCase : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : Any = key.replace("""moe_layer.experts.0""" ,F"""ffn.experts.expert_{expert_idx}""" ) else: lowerCAmelCase : int = key.replace("""moe_layer.experts.""" ,"""ffn.experts.expert_""" ) if "gate" in key: lowerCAmelCase : Tuple = key.replace(""".moe_layer.gate.wg""" ,""".ffn.router.classifier""" ) if "fc2" and "experts" not in key: lowerCAmelCase : List[str] = key.replace(""".fc2.""" ,""".ffn.fc2.""" ) if "fc1" and "experts" not in key: lowerCAmelCase : Tuple = key.replace(""".fc1.""" ,""".ffn.fc1.""" ) if ".encoder_attn." in key: lowerCAmelCase : Union[str, Any] = key.replace(""".encoder_attn.""" ,""".cross_attention.""" ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : Any = key.replace("""encoder_attn_layer_norm""" ,"""cross_attention_layer_norm""" ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace("""final_layer_norm""" ,"""ff_layer_norm""" ) lowerCAmelCase : List[Any] = state_dict[old_key] return new_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = WEIGHTS_NAME ): '''simple docstring''' lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Dict = 0 os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) for expert in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = torch.load(SCREAMING_SNAKE_CASE__ )["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = rename_fairseq_keys(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE__ ,weights_name.replace(""".bin""" ,F"""-{len(SCREAMING_SNAKE_CASE__ )+1:05d}-of-???.bin""" ) ) torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(SCREAMING_SNAKE_CASE__ )[0]].dtype ) # Add the last block lowerCAmelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ ,weights_name.replace(""".bin""" ,F"""-{len(SCREAMING_SNAKE_CASE__ )+1:05d}-of-???.bin""" ) ) lowerCAmelCase : Optional[int] = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = rename_fairseq_keys(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(SCREAMING_SNAKE_CASE__ ) == 1: lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Otherwise, let's build the index lowerCAmelCase : int = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = weights_name.replace(""".bin""" ,F"""-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE__ ):05d}.bin""" ) lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,weights_name.replace(""".bin""" ,F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) for key in shard: lowerCAmelCase : Union[str, Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {"""total_size""": total_size} lowerCAmelCase : Tuple = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,"""w""" ,encoding="""utf-8""" ) as f: lowerCAmelCase : Tuple = json.dumps(SCREAMING_SNAKE_CASE__ ,indent=2 ,sort_keys=SCREAMING_SNAKE_CASE__ ) + """\n""" f.write(SCREAMING_SNAKE_CASE__ ) return metadata, index if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCAmelCase : Dict =parser.parse_args() lowerCAmelCase : List[str] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase : Any =NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase : int =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
713
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _a ( unittest.TestCase ): def _snake_case ( self , lowercase_ , lowercase_ ) -> Optional[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(lowercase_ ) for s in shape] )}.npy""" def _snake_case ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() def _snake_case ( self , lowercase_=0 , lowercase_=(4, 4, 64, 64) , lowercase_=False ) -> Optional[Any]: lowerCAmelCase : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : int = jnp.array(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) , dtype=lowercase_ ) return image def _snake_case ( self , lowercase_=False , lowercase_="CompVis/stable-diffusion-v1-4" ) -> Tuple: lowerCAmelCase : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : Optional[Any] = """bf16""" if fpaa else None lowerCAmelCase : Optional[Any] = FlaxUNetaDConditionModel.from_pretrained( lowercase_ , subfolder="""unet""" , dtype=lowercase_ , revision=lowercase_ ) return model, params def _snake_case ( self , lowercase_=0 , lowercase_=(4, 77, 768) , lowercase_=False ) -> Dict: lowerCAmelCase : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : Any = jnp.array(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) , dtype=lowercase_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: lowerCAmelCase : List[Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowercase_ ) lowerCAmelCase : List[Any] = self.get_latents(lowercase_ , fpaa=lowercase_ ) lowerCAmelCase : Optional[Any] = self.get_encoder_hidden_states(lowercase_ , fpaa=lowercase_ ) lowerCAmelCase : Union[str, Any] = model.apply( {"""params""": params} , lowercase_ , jnp.array(lowercase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowercase_ , ).sample assert sample.shape == latents.shape lowerCAmelCase : List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase : Any = jnp.array(lowercase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: lowerCAmelCase : List[Any] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowercase_ ) lowerCAmelCase : List[str] = self.get_latents(lowercase_ , shape=(4, 4, 96, 96) , fpaa=lowercase_ ) lowerCAmelCase : Optional[int] = self.get_encoder_hidden_states(lowercase_ , shape=(4, 77, 1024) , fpaa=lowercase_ ) lowerCAmelCase : Optional[Any] = model.apply( {"""params""": params} , lowercase_ , jnp.array(lowercase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowercase_ , ).sample assert sample.shape == latents.shape lowerCAmelCase : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase : List[str] = jnp.array(lowercase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase_ , lowercase_ , atol=1e-2 )
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
0
from __future__ import annotations import collections import pprint from pathlib import Path def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return "".join(sorted(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return word_by_signature[signature(SCREAMING_SNAKE_CASE__ )] lowerCAmelCase : str =Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCAmelCase : Union[str, Any] =sorted({word.strip().lower() for word in data.splitlines()}) lowerCAmelCase : int =collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCAmelCase : Any ={word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) lowerCAmelCase : Dict = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE__ ) == len(set(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": lowerCAmelCase : List[str] =input('Enter a string ').strip() lowerCAmelCase : int =is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
716
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : @staticmethod def _snake_case ( *lowercase_ , **lowercase_ ) -> Union[str, Any]: pass @is_pipeline_test @require_vision @require_torch class _a ( unittest.TestCase ): _UpperCamelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> str: lowerCAmelCase : Dict = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) lowerCAmelCase : Any = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def _snake_case ( self , lowercase_ , lowercase_ ) -> Dict: lowerCAmelCase : Dict = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase : Any = len(lowercase_ ) self.assertGreater(lowercase_ , 0 ) self.assertEqual( lowercase_ , [ { """score""": ANY(lowercase_ ), """label""": ANY(lowercase_ ), """box""": {"""xmin""": ANY(lowercase_ ), """ymin""": ANY(lowercase_ ), """xmax""": ANY(lowercase_ ), """ymax""": ANY(lowercase_ )}, } for i in range(lowercase_ ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _snake_case ( self ) -> List[str]: pass @require_torch def _snake_case ( self ) -> Any: lowerCAmelCase : int = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) lowerCAmelCase : Optional[Any] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.7_2_3_5, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_2_1_8, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_1_8_4, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_7_4_8, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_5_6, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_1_4, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_4_5_6, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.6_4_2, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_4_1_9, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) lowerCAmelCase : Tuple = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.7_2_3_5, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_2_1_8, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_1_8_4, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_7_4_8, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_5_6, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_1_4, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_4_5_6, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.6_4_2, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_4_1_9, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) lowerCAmelCase : Union[str, Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) lowerCAmelCase : Union[str, Any] = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _snake_case ( self ) -> Any: pass @require_torch @slow def _snake_case ( self ) -> List[str]: lowerCAmelCase : List[str] = 0.2 lowerCAmelCase : str = pipeline("""zero-shot-object-detection""" ) lowerCAmelCase : Any = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) lowerCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
717
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
0
from __future__ import annotations from collections.abc import MutableSequence class _a : def __init__( self , lowercase_ , lowercase_ ) -> None: if len(lowercase_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) lowerCAmelCase : list[float] = list(lowercase_ ) lowerCAmelCase : Dict = degree def __add__( self , lowercase_ ) -> Polynomial: if self.degree > polynomial_a.degree: lowerCAmelCase : Tuple = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowercase_ ) else: lowerCAmelCase : int = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowercase_ ) def __sub__( self , lowercase_ ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowercase_ ) -> Polynomial: lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowercase_ ) def _snake_case ( self , lowercase_ ) -> int | float: lowerCAmelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: lowerCAmelCase : int = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase_ ) return polynomial def __repr__( self ) -> str: return self.__str__() def _snake_case ( self ) -> Polynomial: lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree ): lowerCAmelCase : Optional[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowercase_ ) def _snake_case ( self , lowercase_ = 0 ) -> Polynomial: lowerCAmelCase : list[float] = [0] * (self.degree + 2) lowerCAmelCase : List[Any] = constant for i in range(self.degree + 1 ): lowerCAmelCase : Tuple = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowercase_ ) def __eq__( self , lowercase_ ) -> bool: if not isinstance(lowercase_ , lowercase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowercase_ ) -> bool: return not self.__eq__(lowercase_ )
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if n == 1 or not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return 0 elif n == 2: return 1 else: lowerCAmelCase : Dict = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = 0 lowerCAmelCase : Dict = 2 while digits < n: index += 1 lowerCAmelCase : Union[str, Any] = len(str(fibonacci(SCREAMING_SNAKE_CASE__ ) ) ) return index def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0_0_0 ): '''simple docstring''' return fibonacci_digits_index(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
719
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = ["image_processor", "tokenizer"] _UpperCamelCase: Dict = "BlipImageProcessor" _UpperCamelCase: Tuple = ("BertTokenizer", "BertTokenizerFast") def __init__( self , lowercase_ , lowercase_ ) -> Tuple: lowerCAmelCase : Tuple = False super().__init__(lowercase_ , lowercase_ ) lowerCAmelCase : Any = self.image_processor def __call__( self , lowercase_ = None , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase : Optional[Any] = self.tokenizer lowerCAmelCase : Dict = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) return text_encoding # add pixel_values lowerCAmelCase : List[Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ ) if text is not None: lowerCAmelCase : Tuple = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) else: lowerCAmelCase : int = None if text_encoding is not None: encoding_image_processor.update(lowercase_ ) return encoding_image_processor def _snake_case ( self , *lowercase_ , **lowercase_ ) -> str: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> List[str]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> List[Any]: lowerCAmelCase : int = self.tokenizer.model_input_names lowerCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
720
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = ["image_processor", "tokenizer"] _UpperCamelCase: str = "ChineseCLIPImageProcessor" _UpperCamelCase: List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase_ , ) lowerCAmelCase : Optional[int] = kwargs.pop("""feature_extractor""" ) lowerCAmelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processor def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> List[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase : Union[str, Any] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: lowerCAmelCase : Any = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: lowerCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> Dict: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> Tuple: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[Any] = self.tokenizer.model_input_names lowerCAmelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self ) -> Dict: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase_ , ) return self.image_processor_class
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
0
'''simple docstring''' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] ,end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase : str = arr[i] combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,index + 1 ,SCREAMING_SNAKE_CASE__ ,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,0 ,SCREAMING_SNAKE_CASE__ ,0 ) if __name__ == "__main__": # Driver code to check the function above lowerCAmelCase : int =[10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
700
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
0
import argparse import json import subprocess def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Optional[int] = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) lowerCAmelCase : int = subprocess.run(SCREAMING_SNAKE_CASE__ ,shell=SCREAMING_SNAKE_CASE__ ,stdout=subprocess.PIPE ) lowerCAmelCase : Optional[int] = output.stdout.decode("""utf-8""" ) lowerCAmelCase : Tuple = json.loads(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase : Union[str, Any] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return values.split(""",""" ) lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) lowerCAmelCase : Union[str, Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
701
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
0
import os from pathlib import Path def _UpperCAmelCase ( ): '''simple docstring''' from torch.utils.cpp_extension import load lowerCAmelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE__ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCAmelCase : Union[str, Any] = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" ,"""ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" ,"""ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" ,SCREAMING_SNAKE_CASE__ ,with_cuda=SCREAMING_SNAKE_CASE__ ,extra_include_paths=[str(SCREAMING_SNAKE_CASE__ )] ,extra_cflags=["""-DWITH_CUDA=1"""] ,extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] ,) import MultiScaleDeformableAttention as MSDA return MSDA
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase : List[str] ={'UserAgent': UserAgent().random} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = script.contents[0] lowerCAmelCase : int = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _a : def __init__( self , lowercase_ ) -> Tuple: lowerCAmelCase : List[str] = f"""https://www.instagram.com/{username}/""" lowerCAmelCase : str = self.get_json() def _snake_case ( self ) -> dict: lowerCAmelCase : Tuple = requests.get(self.url , headers=lowercase_ ).text lowerCAmelCase : int = BeautifulSoup(lowercase_ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self ) -> str: return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _snake_case ( self ) -> str: return self.user_data["username"] @property def _snake_case ( self ) -> str: return self.user_data["full_name"] @property def _snake_case ( self ) -> str: return self.user_data["biography"] @property def _snake_case ( self ) -> str: return self.user_data["business_email"] @property def _snake_case ( self ) -> str: return self.user_data["external_url"] @property def _snake_case ( self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self ) -> int: return self.user_data["edge_follow"]["count"] @property def _snake_case ( self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self ) -> str: return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self ) -> bool: return self.user_data["is_verified"] @property def _snake_case ( self ) -> bool: return self.user_data["is_private"] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = "github" ): '''simple docstring''' import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowerCAmelCase : int = InstagramUser(SCREAMING_SNAKE_CASE__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,SCREAMING_SNAKE_CASE__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : int =InstagramUser('github') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
703
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase : str =[ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Any = True while ask_again: lowerCAmelCase : Any = input(SCREAMING_SNAKE_CASE__ ) try: if default is not None and len(SCREAMING_SNAKE_CASE__ ) == 0: return default return convert_value(SCREAMING_SNAKE_CASE__ ) if convert_value is not None else result except Exception: if error_message is not None: print(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=[] ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' lowerCAmelCase : str = BulletMenu(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = menu.run(default_choice=SCREAMING_SNAKE_CASE__ ) return convert_value(SCREAMING_SNAKE_CASE__ ) if convert_value is not None else result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = int(SCREAMING_SNAKE_CASE__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = int(SCREAMING_SNAKE_CASE__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = int(SCREAMING_SNAKE_CASE__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter ): def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: lowerCAmelCase : str = super()._format_usage(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : int = usage.replace("""<command> [<args>] """ , """""" ) return usage
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = "blenderbot-small" _UpperCamelCase: str = ["past_key_values"] _UpperCamelCase: Optional[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , lowercase_=50265 , lowercase_=512 , lowercase_=8 , lowercase_=2048 , lowercase_=16 , lowercase_=8 , lowercase_=2048 , lowercase_=16 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_=True , lowercase_="gelu" , lowercase_=512 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1 , lowercase_=False , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=2 , **lowercase_ , ) -> str: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : List[Any] = d_model lowerCAmelCase : int = encoder_ffn_dim lowerCAmelCase : Union[str, Any] = encoder_layers lowerCAmelCase : List[Any] = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = decoder_attention_heads lowerCAmelCase : int = dropout lowerCAmelCase : Tuple = attention_dropout lowerCAmelCase : List[Any] = activation_dropout lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : str = init_std lowerCAmelCase : str = encoder_layerdrop lowerCAmelCase : Tuple = decoder_layerdrop lowerCAmelCase : str = use_cache lowerCAmelCase : int = encoder_layers lowerCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) class _a ( snake_case_ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase : Tuple = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCAmelCase : List[str] = {0: """batch"""} lowerCAmelCase : int = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} lowerCAmelCase : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCAmelCase : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCAmelCase : Optional[Any] = self.num_layers for i in range(lowercase_ ): lowerCAmelCase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} lowerCAmelCase : str = {0: """batch""", 2: """past_sequence + sequence"""} else: lowerCAmelCase : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase : Optional[int] = super().outputs else: lowerCAmelCase : int = super(lowercase_ , self ).outputs if self.use_past: lowerCAmelCase : List[Any] = self.num_layers for i in range(lowercase_ ): lowerCAmelCase : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} lowerCAmelCase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _snake_case ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]: lowerCAmelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Generate decoder inputs lowerCAmelCase : str = seq_length if not self.use_past else 1 lowerCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Any = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowerCAmelCase : Optional[Any] = dict(**lowercase_ , **lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase : List[Any] = common_inputs["""input_ids"""].shape lowerCAmelCase : List[str] = common_inputs["""decoder_input_ids"""].shape[1] lowerCAmelCase : List[str] = self.num_attention_heads lowerCAmelCase : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase : int = decoder_seq_length + 3 lowerCAmelCase : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCAmelCase : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowercase_ , lowercase_ )] , dim=1 ) lowerCAmelCase : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCAmelCase : Optional[Any] = self.num_layers lowerCAmelCase : Tuple = min(lowercase_ , lowercase_ ) lowerCAmelCase : Dict = max(lowercase_ , lowercase_ ) - min_num_layers lowerCAmelCase : Any = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. lowerCAmelCase : Optional[int] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowercase_ , lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def _snake_case ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]: lowerCAmelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase : List[Any] = seqlen + 2 lowerCAmelCase : List[str] = self.num_layers lowerCAmelCase : str = self.num_attention_heads lowerCAmelCase : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase : int = common_inputs["""attention_mask"""].dtype lowerCAmelCase : List[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) lowerCAmelCase : str = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def _snake_case ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase : List[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase : Optional[Any] = tokenizer.num_special_tokens_to_add(lowercase_ ) lowerCAmelCase : List[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase : List[str] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCAmelCase : Optional[Any] = dict(tokenizer(lowercase_ , return_tensors=lowercase_ ) ) return common_inputs def _snake_case ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase : Any = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) elif self.task == "causal-lm": lowerCAmelCase : int = self._generate_dummy_inputs_for_causal_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) else: lowerCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) return common_inputs def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase : int = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: lowerCAmelCase : Dict = super(lowercase_ , self )._flatten_past_key_values_( lowercase_ , lowercase_ , lowercase_ , lowercase_ )
706
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase : Union[str, Any] ={ 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "retribert" def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=8 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=True , lowercase_=128 , lowercase_=0 , **lowercase_ , ) -> Tuple: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : int = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = share_encoders lowerCAmelCase : List[str] = projection_dim
707
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
0
'''simple docstring''' # flake8: noqa # Lint as: python3 lowerCAmelCase : List[Any] =[ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
708
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
'''simple docstring''' from __future__ import annotations from typing import Any def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE__ ,[] ,0 ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return create_state_space_tree(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase : list[Any] =[3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
709
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _a ( snake_case_ ): _UpperCamelCase: List[Any] = "unispeech-sat" def __init__( self , lowercase_=32 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(512, 512, 512, 512, 512, 512, 512) , lowercase_=(5, 2, 2, 2, 2, 2, 2) , lowercase_=(10, 3, 3, 3, 3, 2, 2) , lowercase_=False , lowercase_=128 , lowercase_=16 , lowercase_=False , lowercase_=True , lowercase_=0.0_5 , lowercase_=10 , lowercase_=2 , lowercase_=0.0 , lowercase_=10 , lowercase_=0 , lowercase_=320 , lowercase_=2 , lowercase_=0.1 , lowercase_=100 , lowercase_=256 , lowercase_=256 , lowercase_=0.1 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=256 , lowercase_=(512, 512, 512, 512, 1500) , lowercase_=(5, 3, 3, 1, 1) , lowercase_=(1, 2, 3, 1, 1) , lowercase_=512 , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=504 , **lowercase_ , ) -> Optional[int]: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Dict = feat_extract_norm lowerCAmelCase : Tuple = feat_extract_activation lowerCAmelCase : List[Any] = list(lowercase_ ) lowerCAmelCase : Any = list(lowercase_ ) lowerCAmelCase : int = list(lowercase_ ) lowerCAmelCase : Tuple = conv_bias lowerCAmelCase : List[str] = num_conv_pos_embeddings lowerCAmelCase : Optional[int] = num_conv_pos_embedding_groups lowerCAmelCase : Optional[int] = len(self.conv_dim ) lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : int = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Dict = hidden_dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Optional[int] = activation_dropout lowerCAmelCase : Any = feat_proj_dropout lowerCAmelCase : Optional[Any] = final_dropout lowerCAmelCase : Union[str, Any] = layerdrop lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : int = initializer_range lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Union[str, Any] = num_clusters lowerCAmelCase : Optional[int] = do_stable_layer_norm lowerCAmelCase : Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : List[str] = apply_spec_augment lowerCAmelCase : List[Any] = mask_time_prob lowerCAmelCase : Optional[Any] = mask_time_length lowerCAmelCase : Optional[Any] = mask_time_min_masks lowerCAmelCase : str = mask_feature_prob lowerCAmelCase : int = mask_feature_length lowerCAmelCase : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase : List[str] = num_codevectors_per_group lowerCAmelCase : int = num_codevector_groups lowerCAmelCase : Dict = contrastive_logits_temperature lowerCAmelCase : int = feat_quantizer_dropout lowerCAmelCase : Union[str, Any] = num_negatives lowerCAmelCase : List[Any] = codevector_dim lowerCAmelCase : Tuple = proj_codevector_dim lowerCAmelCase : List[str] = diversity_loss_weight # ctc loss lowerCAmelCase : Optional[int] = ctc_loss_reduction lowerCAmelCase : Any = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase : Union[str, Any] = list(lowercase_ ) lowerCAmelCase : Dict = list(lowercase_ ) lowerCAmelCase : Dict = list(lowercase_ ) lowerCAmelCase : Optional[Any] = xvector_output_dim @property def _snake_case ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
710
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
0
from math import sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 0 for i in range(1 ,int(sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE__ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE__ ): total += i return total - n def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0_0_0_0 ): '''simple docstring''' lowerCAmelCase : Any = sum( i for i in range(1 ,SCREAMING_SNAKE_CASE__ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE__ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _a ( nn.Module ): def __init__( self , lowercase_ = 16 , lowercase_ = 88 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = 32 , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = "geglu" , lowercase_ = None , ) -> Optional[Any]: super().__init__() lowerCAmelCase : List[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowercase_ , attention_head_dim=lowercase_ , in_channels=lowercase_ , num_layers=lowercase_ , dropout=lowercase_ , norm_num_groups=lowercase_ , cross_attention_dim=lowercase_ , attention_bias=lowercase_ , sample_size=lowercase_ , num_vector_embeds=lowercase_ , activation_fn=lowercase_ , num_embeds_ada_norm=lowercase_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCAmelCase : Optional[int] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCAmelCase : Optional[int] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCAmelCase : Union[str, Any] = [1, 0] def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = True , ) -> str: lowerCAmelCase : Dict = hidden_states lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCAmelCase : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCAmelCase : Tuple = self.transformer_index_for_condition[i] lowerCAmelCase : List[Any] = self.transformers[transformer_index]( lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ , cross_attention_kwargs=lowercase_ , return_dict=lowercase_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCAmelCase : Dict = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCAmelCase : List[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowercase_ )
712
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCAmelCase : Union[str, Any] =logging.getLogger(__name__) @dataclass class _a : _UpperCamelCase: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) _UpperCamelCase: Optional[int] = field( default=snake_case_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _UpperCamelCase: Optional[int] = field( default=snake_case_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) _UpperCamelCase: Optional[int] = field( default=snake_case_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class _a : _UpperCamelCase: str = field( default=snake_case_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase: str = field( default=snake_case_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Train language if it is different from the evaluation language."} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCamelCase: Optional[bool] = field( default=snake_case_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _UpperCamelCase: str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" ,SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : List[str] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase : Any = load_dataset( """xnli""" ,model_args.language ,split="""train""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: lowerCAmelCase : Tuple = load_dataset( """xnli""" ,model_args.train_language ,split="""train""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Union[str, Any] = train_dataset.features["""label"""].names if training_args.do_eval: lowerCAmelCase : List[Any] = load_dataset( """xnli""" ,model_args.language ,split="""validation""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Optional[Any] = eval_dataset.features["""label"""].names if training_args.do_predict: lowerCAmelCase : List[Any] = load_dataset( """xnli""" ,model_args.language ,split="""test""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Tuple = predict_dataset.features["""label"""].names # Labels lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=SCREAMING_SNAKE_CASE__ ,idalabel={str(SCREAMING_SNAKE_CASE__ ): label for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} ,labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} ,finetuning_task="""xnli""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase : Any = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase : Any = False def preprocess_function(SCREAMING_SNAKE_CASE__ ): # Tokenize the texts return tokenizer( examples["""premise"""] ,examples["""hypothesis"""] ,padding=SCREAMING_SNAKE_CASE__ ,max_length=data_args.max_seq_length ,truncation=SCREAMING_SNAKE_CASE__ ,) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase : List[Any] = min(len(SCREAMING_SNAKE_CASE__ ) ,data_args.max_train_samples ) lowerCAmelCase : List[str] = train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowerCAmelCase : Union[str, Any] = train_dataset.map( SCREAMING_SNAKE_CASE__ ,batched=SCREAMING_SNAKE_CASE__ ,load_from_cache_file=not data_args.overwrite_cache ,desc="""Running tokenizer on train dataset""" ,) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ) ,3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase : Optional[int] = min(len(SCREAMING_SNAKE_CASE__ ) ,data_args.max_eval_samples ) lowerCAmelCase : Union[str, Any] = eval_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowerCAmelCase : Union[str, Any] = eval_dataset.map( SCREAMING_SNAKE_CASE__ ,batched=SCREAMING_SNAKE_CASE__ ,load_from_cache_file=not data_args.overwrite_cache ,desc="""Running tokenizer on validation dataset""" ,) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase : Optional[int] = min(len(SCREAMING_SNAKE_CASE__ ) ,data_args.max_predict_samples ) lowerCAmelCase : Dict = predict_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): lowerCAmelCase : Tuple = predict_dataset.map( SCREAMING_SNAKE_CASE__ ,batched=SCREAMING_SNAKE_CASE__ ,load_from_cache_file=not data_args.overwrite_cache ,desc="""Running tokenizer on prediction dataset""" ,) # Get the metric function lowerCAmelCase : str = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = p.predictions[0] if isinstance(p.predictions ,SCREAMING_SNAKE_CASE__ ) else p.predictions lowerCAmelCase : str = np.argmax(SCREAMING_SNAKE_CASE__ ,axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE__ ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase : Optional[Any] = default_data_collator elif training_args.fpaa: lowerCAmelCase : Tuple = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=8 ) else: lowerCAmelCase : Dict = None # Initialize our Trainer lowerCAmelCase : List[Any] = Trainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,) # Training if training_args.do_train: lowerCAmelCase : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : str = last_checkpoint lowerCAmelCase : Union[str, Any] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = train_result.metrics lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Tuple = min(SCREAMING_SNAKE_CASE__ ,len(SCREAMING_SNAKE_CASE__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""train""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : Union[str, Any] = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE__ ,len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics("""eval""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" ,SCREAMING_SNAKE_CASE__ ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) lowerCAmelCase : List[Any] = trainer.predict(SCREAMING_SNAKE_CASE__ ,metric_key_prefix="""predict""" ) lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ,len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics("""predict""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""predict""" ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE__ ,axis=1 ) lowerCAmelCase : Optional[int] = os.path.join(training_args.output_dir ,"""predictions.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ ,"""w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
713
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) lowerCAmelCase : Tuple = 0 lowerCAmelCase : Dict = str(SCREAMING_SNAKE_CASE__ ) while len(SCREAMING_SNAKE_CASE__ ) != 1: lowerCAmelCase : Any = [int(SCREAMING_SNAKE_CASE__ ) for i in num_string] lowerCAmelCase : Optional[int] = 1 for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): total *= numbers[i] lowerCAmelCase : int = str(SCREAMING_SNAKE_CASE__ ) steps += 1 return steps def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) while len(SCREAMING_SNAKE_CASE__ ) != 1: lowerCAmelCase : List[Any] = [int(SCREAMING_SNAKE_CASE__ ) for i in num_string] lowerCAmelCase : str = 0 for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): total += numbers[i] lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase : str = F"""The input value of [n={number}] has to be > 0""" raise ValueError(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : int = sylvester(number - 1 ) lowerCAmelCase : Optional[int] = num - 1 lowerCAmelCase : int = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
def _UpperCAmelCase ( ): '''simple docstring''' for n in range(1 ,1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 1 lowerCAmelCase : Any = 2 while i * i <= n: lowerCAmelCase : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _UpperCAmelCase ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
716
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase : Dict =logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase : Optional[Any] ='\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=8 ): '''simple docstring''' lowerCAmelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) lowerCAmelCase : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: if latents is None: lowerCAmelCase : str = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCAmelCase : Union[str, Any] = latents.to(lowercase_ ) lowerCAmelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def _snake_case ( self , lowercase_=0 ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase : str = torch.device(f"""cuda:{gpu_id}""" ) lowerCAmelCase : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def _snake_case ( self , lowercase_=0 ) -> List[Any]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase : int = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase : int = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase : Optional[Any] = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self ) -> List[str]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[str, Any]: lowerCAmelCase : Tuple = self._execution_device lowerCAmelCase : Optional[int] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Optional[Any] = torch.cat(lowercase_ , dim=0 ) lowerCAmelCase : Dict = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase : Optional[Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) lowerCAmelCase : Optional[Any] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) lowerCAmelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) lowerCAmelCase : List[Any] = self.scheduler.timesteps lowerCAmelCase : Optional[Any] = self.unet.config.in_channels lowerCAmelCase : int = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent lowerCAmelCase : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Union[str, Any] = {"""image_embeds""": image_embeds} lowerCAmelCase : Any = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: lowerCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase : Any = noise_pred.chunk(2 ) lowerCAmelCase : Optional[Any] = variance_pred.chunk(2 ) lowerCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : List[Any] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing lowerCAmelCase : str = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCAmelCase : str = image * 0.5 + 0.5 lowerCAmelCase : Optional[int] = image.clamp(0 , 1 ) lowerCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Optional[int] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
717
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
0
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase : Union[str, Any] ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _a ( nn.Module ): def __init__( self , lowercase_ ) -> Tuple: super().__init__() lowerCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=lowercase_ ) lowerCAmelCase : List[Any] = list(model.children() )[:-2] lowerCAmelCase : int = nn.Sequential(*lowercase_ ) lowerCAmelCase : Dict = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _snake_case ( self , lowercase_ ) -> List[Any]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCAmelCase : int = self.pool(self.model(lowercase_ ) ) lowerCAmelCase : Optional[Any] = torch.flatten(lowercase_ , start_dim=2 ) lowerCAmelCase : Optional[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = [json.loads(lowercase_ ) for l in open(lowercase_ )] lowerCAmelCase : List[str] = os.path.dirname(lowercase_ ) lowerCAmelCase : Union[str, Any] = tokenizer lowerCAmelCase : Optional[int] = labels lowerCAmelCase : int = len(lowercase_ ) lowerCAmelCase : Optional[int] = max_seq_length lowerCAmelCase : Any = transforms def __len__( self ) -> Union[str, Any]: return len(self.data ) def __getitem__( self , lowercase_ ) -> Tuple: lowerCAmelCase : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=lowercase_ ) ) lowerCAmelCase : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1] lowerCAmelCase : Optional[Any] = sentence[: self.max_seq_length] lowerCAmelCase : List[Any] = torch.zeros(self.n_classes ) lowerCAmelCase : int = 1 lowerCAmelCase : str = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) lowerCAmelCase : str = self.transforms(lowercase_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _snake_case ( self ) -> List[str]: lowerCAmelCase : Optional[Any] = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = [len(row["""sentence"""] ) for row in batch] lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = torch.zeros(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=torch.long ) lowerCAmelCase : Dict = torch.zeros(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ): lowerCAmelCase : List[Any] = input_row["""sentence"""] lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Dict = torch.stack([row["""image"""] for row in batch] ) lowerCAmelCase : Union[str, Any] = torch.stack([row["""label"""] for row in batch] ) lowerCAmelCase : Dict = torch.stack([row["""image_start_token"""] for row in batch] ) lowerCAmelCase : Any = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCAmelCase ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCAmelCase ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] ,std=[0.12221994, 0.12145835, 0.14380469] ,), ] )
719
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
0
from __future__ import annotations from cmath import sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) lowerCAmelCase : Union[str, Any] = b * b - 4 * a * c lowerCAmelCase : Optional[int] = (-b + sqrt(SCREAMING_SNAKE_CASE__ )) / (2 * a) lowerCAmelCase : Tuple = (-b - sqrt(SCREAMING_SNAKE_CASE__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : int = quadratic_roots(a=5 ,b=6 ,c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
720
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Any =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Any = ["pixel_values"] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_ ) lowerCAmelCase : int = size if size is not None else {"""shortest_edge""": 384} lowerCAmelCase : Any = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : Optional[Any] = do_resize lowerCAmelCase : Optional[int] = size # Default value set here for backwards compatibility where the value in config is None lowerCAmelCase : List[Any] = crop_pct if crop_pct is not None else 224 / 256 lowerCAmelCase : Any = resample lowerCAmelCase : Any = do_rescale lowerCAmelCase : Optional[Any] = rescale_factor lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: lowerCAmelCase : Union[str, Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) lowerCAmelCase : Optional[Any] = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCAmelCase : Any = int(shortest_edge / crop_pct ) lowerCAmelCase : Tuple = get_resize_output_image_size(lowercase_ , size=lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : str = resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowercase_ , size=(shortest_edge, shortest_edge) , data_format=lowercase_ , **lowercase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowercase_ , size=(shortest_edge, shortest_edge) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Tuple: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: lowerCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Tuple = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase : Tuple = resample if resample is not None else self.resample lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : int = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Any = image_std if image_std is not None else self.image_std lowerCAmelCase : Dict = size if size is not None else self.size lowerCAmelCase : Union[str, Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : str = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase : Any = [self.resize(image=lowercase_ , size=lowercase_ , crop_pct=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase : Optional[int] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase : Optional[Any] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase : List[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase : List[Any] = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
0
'''simple docstring''' def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[str] = [] lowerCAmelCase : Tuple = 1 while len(SCREAMING_SNAKE_CASE__ ) < 1e6: constant.append(str(SCREAMING_SNAKE_CASE__ ) ) i += 1 lowerCAmelCase : Tuple = """""".join(SCREAMING_SNAKE_CASE__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
700
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
701
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] =250_004 lowerCAmelCase : Optional[Any] =250_020 @require_sentencepiece @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[int] = MBartaaTokenizer _UpperCamelCase: Union[str, Any] = MBartaaTokenizerFast _UpperCamelCase: int = True _UpperCamelCase: Tuple = True def _snake_case ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[str] = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> str: lowerCAmelCase : Dict = """<s>""" lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowercase_ ) , 1054 ) def _snake_case ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _snake_case ( self ) -> Any: lowerCAmelCase : List[str] = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ ) lowerCAmelCase : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _snake_case ( self ) -> Union[str, Any]: # fmt: off lowerCAmelCase : int = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def _snake_case ( self ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase : Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : int = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(lowercase_ ) lowerCAmelCase : Optional[int] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : str = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase : str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : str = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : Tuple = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase : str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : List[str] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowerCAmelCase : int = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase : Tuple = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): _UpperCamelCase: Optional[Any] = "facebook/mbart-large-50-one-to-many-mmt" _UpperCamelCase: Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _UpperCamelCase: Optional[int] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _UpperCamelCase: List[str] = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def _snake_case ( cls ) -> Optional[int]: lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCAmelCase : List[str] = 1 return cls def _snake_case ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def _snake_case ( self ) -> int: self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) lowerCAmelCase : int = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCAmelCase : Optional[int] = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def _snake_case ( self ) -> List[str]: lowerCAmelCase : str = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , lowercase_ ) lowerCAmelCase : List[str] = 10 lowerCAmelCase : Optional[int] = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[0] , lowercase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def _snake_case ( self ) -> Optional[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase : Any = MBartaaTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors="""pt""" ) lowerCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCAmelCase : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCAmelCase : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors="""pt""" ) lowerCAmelCase : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors="""pt""" ) lowerCAmelCase : Optional[Any] = targets["""input_ids"""] lowerCAmelCase : Union[str, Any] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(lowercase_ ) , { # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a ( snake_case_ ): _UpperCamelCase: UNetaDModel _UpperCamelCase: ScoreSdeVeScheduler def __init__( self , lowercase_ , lowercase_ ) -> Dict: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = 2000 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , **lowercase_ , ) -> Union[ImagePipelineOutput, Tuple]: lowerCAmelCase : List[str] = self.unet.config.sample_size lowerCAmelCase : int = (batch_size, 3, img_size, img_size) lowerCAmelCase : Optional[int] = self.unet lowerCAmelCase : Optional[Any] = randn_tensor(lowercase_ , generator=lowercase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowercase_ ) self.scheduler.set_sigmas(lowercase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase : Tuple = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : List[Any] = self.scheduler.step_correct(lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # prediction step lowerCAmelCase : Optional[Any] = model(lowercase_ , lowercase_ ).sample lowerCAmelCase : int = self.scheduler.step_pred(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ) lowerCAmelCase : int = output.prev_sample, output.prev_sample_mean lowerCAmelCase : Optional[int] = sample_mean.clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : int = self.numpy_to_pil(lowercase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase_ )
703
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Any = CycleDiffusionPipeline _UpperCamelCase: List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } _UpperCamelCase: str = PipelineTesterMixin.required_optional_params - {"latents"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) _UpperCamelCase: Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase: Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(lowercase_ ) lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self , lowercase_ , lowercase_=0 ) -> List[Any]: lowerCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : List[str] = image / 2 + 0.5 if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Dict = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Tuple = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _snake_case ( self ) -> List[str]: lowerCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[str] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = CycleDiffusionPipeline(**lowercase_ ) lowerCAmelCase : List[str] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase : Any = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase : str = pipe(**lowercase_ ) lowerCAmelCase : List[str] = output.images lowerCAmelCase : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase : List[str] = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase_ , """half""" ): lowerCAmelCase : int = module.half() lowerCAmelCase : Dict = CycleDiffusionPipeline(**lowercase_ ) lowerCAmelCase : Union[str, Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase : str = pipe(**lowercase_ ) lowerCAmelCase : int = output.images lowerCAmelCase : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase : Optional[int] = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _snake_case ( self ) -> Union[str, Any]: return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def _snake_case ( self ) -> Tuple: return super().test_inference_batch_single_identical() @skip_mps def _snake_case ( self ) -> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def _snake_case ( self ) -> Any: return super().test_save_load_optional_components() @skip_mps def _snake_case ( self ) -> Union[str, Any]: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _a ( unittest.TestCase ): def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowerCAmelCase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) lowerCAmelCase : Any = init_image.resize((512, 512) ) lowerCAmelCase : int = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase : Optional[int] = DDIMScheduler.from_pretrained(lowercase_ , subfolder="""scheduler""" ) lowerCAmelCase : Dict = CycleDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase : str = """A black colored car""" lowerCAmelCase : int = """A blue colored car""" lowerCAmelCase : str = torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type="""np""" , ) lowerCAmelCase : List[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def _snake_case ( self ) -> List[str]: lowerCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowerCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) lowerCAmelCase : Optional[Any] = init_image.resize((512, 512) ) lowerCAmelCase : Any = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase : List[str] = DDIMScheduler.from_pretrained(lowercase_ , subfolder="""scheduler""" ) lowerCAmelCase : Dict = CycleDiffusionPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase : Tuple = """A black colored car""" lowerCAmelCase : Tuple = """A blue colored car""" lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type="""np""" , ) lowerCAmelCase : str = output.images assert np.abs(image - expected_image ).max() < 2e-2
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] ={ 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _a : _UpperCamelCase: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) _UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class _a : _UpperCamelCase: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _UpperCamelCase: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) _UpperCamelCase: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) _UpperCamelCase: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) _UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) _UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) _UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) _UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) _UpperCamelCase: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F"""{split}_results.json""" ) ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase : Any = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : str = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowerCAmelCase : int = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowerCAmelCase : List[str] = SeqaSeqDataset # Get datasets lowerCAmelCase : Optional[Any] = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowerCAmelCase : str = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowerCAmelCase : int = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowerCAmelCase : Any = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate else None ) lowerCAmelCase : int = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , data_args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowerCAmelCase : Tuple = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowerCAmelCase : Dict = train_result.metrics lowerCAmelCase : Union[str, Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : str = trainer.evaluate(metric_key_prefix="""val""" ) lowerCAmelCase : Dict = data_args.n_val lowerCAmelCase : Any = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowerCAmelCase : List[Any] = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE__ , metric_key_prefix="""test""" ) lowerCAmelCase : Any = test_output.metrics lowerCAmelCase : str = data_args.n_test if trainer.is_world_process_zero(): lowerCAmelCase : Tuple = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate: lowerCAmelCase : Dict = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = lmap(str.strip , SCREAMING_SNAKE_CASE__ ) write_txt_file(SCREAMING_SNAKE_CASE__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE__ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
706
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def is_in_circle(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> bool: lowerCAmelCase : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCAmelCase : List[str] = mean( int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) # The ratio of the area for circle to square is pi/4. lowerCAmelCase : List[Any] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ,): '''simple docstring''' return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) * (max_value - min_value) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ): '''simple docstring''' def identity_function(SCREAMING_SNAKE_CASE__ ) -> float: return x lowerCAmelCase : Union[str, Any] = area_under_curve_estimator( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print("""******************""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def function_to_integrate(SCREAMING_SNAKE_CASE__ ) -> float: return sqrt(4.0 - x * x ) lowerCAmelCase : int = area_under_curve_estimator( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,0.0 ,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
707
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase : int ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCAmelCase : List[Any] =None lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Tuple ='▁' lowerCAmelCase : Optional[Any] ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase : str ={ 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } lowerCAmelCase : Tuple ={ 'google/pegasus-xsum': 512, } class _a ( snake_case_ ): _UpperCamelCase: int = VOCAB_FILES_NAMES _UpperCamelCase: Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: Dict = PegasusTokenizer _UpperCamelCase: Any = ["input_ids", "attention_mask"] def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<pad>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<mask_2>" , lowercase_="<mask_1>" , lowercase_=None , lowercase_=103 , **lowercase_ , ) -> Union[str, Any]: lowerCAmelCase : List[str] = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) lowerCAmelCase : int = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowerCAmelCase : str = additional_special_tokens_extended else: lowerCAmelCase : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( lowercase_ , tokenizer_file=lowercase_ , pad_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) lowerCAmelCase : Tuple = vocab_file lowerCAmelCase : Tuple = False if not self.vocab_file else True def _snake_case ( self , lowercase_ ) -> List[str]: lowerCAmelCase : List[str] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase_ , lowercase_=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Dict = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
709
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
0
lowerCAmelCase : Tuple ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase : Optional[int] =[{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase : Dict ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
710
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE__ )] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if (len(SCREAMING_SNAKE_CASE__ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE__ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,1_6 ) for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : @staticmethod def _snake_case ( *lowercase_ , **lowercase_ ) -> Any: pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): @require_torch def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[int] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) lowerCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase : Tuple = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowercase_ ) , [ [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}], [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}], ] , ) lowerCAmelCase : Any = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], ] , ) @require_tf def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[int] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) lowerCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase : Any = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , ) lowerCAmelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], ] , ) @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase : Dict = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) lowerCAmelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self ) -> List[Any]: lowerCAmelCase : int = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase : Tuple = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) lowerCAmelCase : Any = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , )
712
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
713
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
0
import argparse from collections import defaultdict import yaml lowerCAmelCase : Any ='docs/source/en/_toctree.yml' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = defaultdict(SCREAMING_SNAKE_CASE__ ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase : Optional[int] = [key for key, value in counts.items() if value > 1] lowerCAmelCase : str = [] for duplicate_key in duplicates: lowerCAmelCase : str = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(SCREAMING_SNAKE_CASE__ ,key=lambda SCREAMING_SNAKE_CASE__ : s["title"].lower() ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ ,encoding="""utf-8""" ) as f: lowerCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase : List[str] = content[api_idx]["""sections"""] # Then to the model doc lowerCAmelCase : Optional[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase : Union[str, Any] = api_doc[model_idx]["""sections"""] lowerCAmelCase : Optional[Any] = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE__ ) if """sections""" in section] lowerCAmelCase : Optional[Any] = False for idx, modality_doc in modalities_docs: lowerCAmelCase : int = modality_doc["""sections"""] lowerCAmelCase : Tuple = clean_model_doc_toc(SCREAMING_SNAKE_CASE__ ) if old_modality_doc != new_modality_doc: lowerCAmelCase : int = True if overwrite: lowerCAmelCase : int = new_modality_doc if diff: if overwrite: lowerCAmelCase : Optional[Any] = model_doc lowerCAmelCase : Any = api_doc with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE__ ,allow_unicode=SCREAMING_SNAKE_CASE__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase : List[str] =parser.parse_args() check_model_doc(args.fix_and_overwrite)
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Tuple ={ 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : int = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=SCREAMING_SNAKE_CASE__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=SCREAMING_SNAKE_CASE__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=SCREAMING_SNAKE_CASE__ ) return parser.parse_args() def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : str = parse_args() # Import training_script as a module. lowerCAmelCase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase : Any = script_fpath.stem lowerCAmelCase : List[Any] = importlib.import_module(SCREAMING_SNAKE_CASE__ ) # Patch sys.argv lowerCAmelCase : Optional[Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
716
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=18 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , ) -> int: lowerCAmelCase : Any = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase : int = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Tuple = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : Dict = apply_ocr def _snake_case ( self ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = LayoutLMvaImageProcessingTester(self ) @property def _snake_case ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> str: lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """apply_ocr""" ) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> int: # Initialize image_processing lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , lowercase_ ) self.assertIsInstance(encoding.boxes , lowercase_ ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Tuple: # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _snake_case ( self ) -> List[str]: # with apply_OCR = True lowerCAmelCase : List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase : str = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) lowerCAmelCase : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase : Optional[int] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 lowerCAmelCase : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowercase_ ) self.assertListEqual(encoding.boxes , lowercase_ ) # with apply_OCR = False lowerCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=lowercase_ ) lowerCAmelCase : Dict = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
717
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Dict ={'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] =['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] =['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] =[ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =[ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure)
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
0