code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Dict = ["pixel_values"] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = True , **lowercase_ , ) -> None: super().__init__(**lowercase_ ) lowerCAmelCase : int = size if size is not None else {"""height""": 384, """width""": 384} lowerCAmelCase : Dict = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : str = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Any = resample lowerCAmelCase : str = do_rescale lowerCAmelCase : List[Any] = rescale_factor lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase : Union[str, Any] = do_convert_rgb def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: lowerCAmelCase : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowerCAmelCase : int = (size["""height"""], size["""width"""]) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Optional[Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: lowerCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : List[str] = resample if resample is not None else self.resample lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Tuple = image_std if image_std is not None else self.image_std lowerCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : List[Any] = size if size is not None else self.size lowerCAmelCase : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : List[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : Any = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : Tuple = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase : Optional[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase : Tuple = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase : Tuple = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase : List[str] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase : List[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowercase_ ) return encoded_outputs
719
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : List[Any] =get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Tuple = AlbertTokenizer _UpperCamelCase: Any = AlbertTokenizerFast _UpperCamelCase: List[Any] = True _UpperCamelCase: Optional[int] = True _UpperCamelCase: Optional[int] = True def _snake_case ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[str] = AlbertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , lowercase_ ) -> List[Any]: lowerCAmelCase : Union[str, Any] = """this is a test""" lowerCAmelCase : str = """this is a test""" return input_text, output_text def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = """<pad>""" lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(lowercase_ ) , 30000 ) def _snake_case ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _snake_case ( self ) -> str: if not self.test_rust_tokenizer: return lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Any = self.get_rust_tokenizer() lowerCAmelCase : List[Any] = """I was born in 92000, and this is falsé.""" lowerCAmelCase : Tuple = tokenizer.tokenize(lowercase_ ) lowerCAmelCase : List[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase : Dict = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase : List[str] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Any = tokenizer.encode(lowercase_ ) lowerCAmelCase : Dict = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Dict = AlbertTokenizer(lowercase_ , keep_accents=lowercase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase_ , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [48, 25, 21, 1289] ) lowerCAmelCase : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase_ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _snake_case ( self ) -> str: lowerCAmelCase : str = AlbertTokenizer(lowercase_ ) lowerCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) lowerCAmelCase : Tuple = tokenizer.encode("""multi-sequence build""" ) lowerCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _snake_case ( self ) -> Optional[int]: # fmt: off lowerCAmelCase : Optional[int] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
720
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : List[Any] ={ 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Union[str, Any] =16 lowerCAmelCase : Optional[Any] =32 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 1_6 ): '''simple docstring''' lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase : List[Any] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase : Optional[Any] = datasets.map( SCREAMING_SNAKE_CASE__ ,batched=SCREAMING_SNAKE_CASE__ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(SCREAMING_SNAKE_CASE__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase : Any = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase : Union[str, Any] = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase : Union[str, Any] = 8 else: lowerCAmelCase : Dict = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ ,padding="""longest""" ,max_length=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_tensors="""pt""" ,) # Instantiate dataloaders. lowerCAmelCase : List[Any] = DataLoader( tokenized_datasets["""train"""] ,shuffle=SCREAMING_SNAKE_CASE__ ,collate_fn=SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] ,shuffle=SCREAMING_SNAKE_CASE__ ,collate_fn=SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : Optional[int] =mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,SCREAMING_SNAKE_CASE__ ) == "1": lowerCAmelCase : str = 2 # New Code # lowerCAmelCase : List[str] = int(args.gradient_accumulation_steps ) lowerCAmelCase : Union[str, Any] = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase : Optional[Any] = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : Optional[int] = config["""lr"""] lowerCAmelCase : int = int(config["""num_epochs"""] ) lowerCAmelCase : str = int(config["""seed"""] ) lowerCAmelCase : List[Any] = int(config["""batch_size"""] ) lowerCAmelCase : List[str] = evaluate.load("""glue""" ,"""mrpc""" ) set_seed(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = get_dataloaders(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase : Optional[Any] = AdamW(params=model.parameters() ,lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler lowerCAmelCase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase : List[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE__ ,model=SCREAMING_SNAKE_CASE__ ,local_sgd_steps=SCREAMING_SNAKE_CASE__ ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : List[Any] = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ ,references=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=SCREAMING_SNAKE_CASE__ ,default=SCREAMING_SNAKE_CASE__ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) # New Code # parser.add_argument( """--gradient_accumulation_steps""" ,type=SCREAMING_SNAKE_CASE__ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,) parser.add_argument( """--local_sgd_steps""" ,type=SCREAMING_SNAKE_CASE__ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) lowerCAmelCase : Optional[int] = parser.parse_args() lowerCAmelCase : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
700
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCAmelCase : Union[str, Any] = HfArgumentParser(InitializationArguments) lowerCAmelCase : Any = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCAmelCase : Any = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) lowerCAmelCase : str = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCAmelCase : Any = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
701
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase : List[str] =[ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase : Union[str, Any] =[[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowerCAmelCase : Dict = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase : List[Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE__ ) return next_generation def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = [] for _ in range(SCREAMING_SNAKE_CASE__ ): # Create output image lowerCAmelCase : Union[str, Any] = Image.new("""RGB""" ,(len(cells[0] ), len(SCREAMING_SNAKE_CASE__ )) ) lowerCAmelCase : Tuple = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE__ ) ): for y in range(len(cells[0] ) ): lowerCAmelCase : Any = 2_5_5 - cells[y][x] * 2_5_5 lowerCAmelCase : Tuple = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = new_generation(SCREAMING_SNAKE_CASE__ ) return images if __name__ == "__main__": lowerCAmelCase : Any =generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
703
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase : Optional[int] =get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase : Any =get_tests_dir('fixtures/vocab.json') lowerCAmelCase : Union[str, Any] =get_tests_dir('fixtures') class _a ( unittest.TestCase ): _UpperCamelCase: Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Optional[Any] = 0 def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Tuple = WavaVecaConfig() lowerCAmelCase : Dict = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) lowerCAmelCase : List[Any] = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) copyfile(lowercase_ , os.path.join(lowercase_ , """vocab.json""" ) ) lowerCAmelCase : Tuple = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor() lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowerCAmelCase : Tuple = WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_ , lowercase_ ) , """r""" ) as f: lowerCAmelCase : Optional[Any] = json.load(lowercase_ ) config_dict.pop("""processor_class""" ) with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write(json.dumps(lowercase_ ) ) lowerCAmelCase : int = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Tuple = WavaVecaFeatureExtractor() lowerCAmelCase : int = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowerCAmelCase : Dict = WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_ , lowercase_ ) , """r""" ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) config_dict.pop("""processor_class""" ) with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write(json.dumps(lowercase_ ) ) lowerCAmelCase : List[str] = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(lowercase_ ) # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write("""{}""" ) lowerCAmelCase : int = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): lowerCAmelCase : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) lowerCAmelCase : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowerCAmelCase : List[str] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowerCAmelCase : Union[str, Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowerCAmelCase : List[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ , use_fast=lowercase_ ) lowerCAmelCase : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def _snake_case ( self ) -> str: try: AutoConfig.register("""custom""" , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoProcessor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : List[Any] = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase : Any = CustomTokenizer(lowercase_ ) lowerCAmelCase : Tuple = CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_ ) lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Dict: class _a ( snake_case_ ): _UpperCamelCase: Any = False class _a ( snake_case_ ): _UpperCamelCase: Any = False class _a ( snake_case_ ): _UpperCamelCase: Any = "AutoFeatureExtractor" _UpperCamelCase: Optional[Any] = "AutoTokenizer" _UpperCamelCase: List[Any] = False try: AutoConfig.register("""custom""" , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local classes. lowerCAmelCase : List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowerCAmelCase : List[str] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Dict: lowerCAmelCase : int = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _a ( unittest.TestCase ): _UpperCamelCase: Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _snake_case ( cls ) -> Tuple: lowerCAmelCase : Optional[int] = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def _snake_case ( self ) -> List[str]: lowerCAmelCase : Dict = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , """test-processor""" ) , push_to_hub=lowercase_ , use_auth_token=self._token ) lowerCAmelCase : List[Any] = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _snake_case ( self ) -> int: lowerCAmelCase : Optional[int] = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , """test-processor-org""" ) , push_to_hub=lowercase_ , use_auth_token=self._token , organization="""valid_org""" , ) lowerCAmelCase : str = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _snake_case ( self ) -> str: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowerCAmelCase : Union[str, Any] = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase : Dict = CustomTokenizer(lowercase_ ) lowerCAmelCase : List[Any] = CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) lowerCAmelCase : int = Repository(lowercase_ , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(lowercase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) ) as f: lowerCAmelCase : Optional[int] = json.load(lowercase_ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_processing.py""" ) ) ) repo.push_to_hub() lowerCAmelCase : int = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0**9 ): '''simple docstring''' lowerCAmelCase : Tuple = 1 lowerCAmelCase : str = 2 lowerCAmelCase : str = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Optional[int] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
705
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase : str =logging.getLogger(__name__) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Union[str, Any]: lowerCAmelCase : Tuple = self.layer[current_layer](lowercase_ , lowercase_ , head_mask[current_layer] ) lowerCAmelCase : List[str] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , snake_case_ , ) class _a ( snake_case_ ): def __init__( self , lowercase_ ) -> Optional[Any]: super().__init__(lowercase_ ) lowerCAmelCase : Dict = BertEncoderWithPabee(lowercase_ ) self.init_weights() lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Tuple = 0 def _snake_case ( self , lowercase_ ) -> List[str]: lowerCAmelCase : Optional[Any] = threshold def _snake_case ( self , lowercase_ ) -> List[Any]: lowerCAmelCase : List[Any] = patience def _snake_case ( self ) -> List[str]: lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[Any] = 0 def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : List[Any] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : Dict = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(lowercase_ ) @add_start_docstrings_to_model_forward(lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False , ) -> str: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : Optional[Any] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) lowerCAmelCase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : str = torch.ones(lowercase_ , device=lowercase_ ) if token_type_ids is None: lowerCAmelCase : Dict = torch.zeros(lowercase_ , dtype=torch.long , device=lowercase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowercase_ , lowercase_ , lowercase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : str = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : str = torch.ones(lowercase_ , device=lowercase_ ) lowerCAmelCase : Any = self.invert_attention_mask(lowercase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Tuple = self.get_head_mask(lowercase_ , self.config.num_hidden_layers ) lowerCAmelCase : Optional[int] = self.embeddings( input_ids=lowercase_ , position_ids=lowercase_ , token_type_ids=lowercase_ , inputs_embeds=lowercase_ ) lowerCAmelCase : str = embedding_output if self.training: lowerCAmelCase : Any = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( lowercase_ , current_layer=lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ ) lowerCAmelCase : Any = self.pooler(lowercase_ ) lowerCAmelCase : Optional[Any] = output_layers[i](output_dropout(lowercase_ ) ) res.append(lowercase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Optional[Any] = self.encoder( lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) lowerCAmelCase : List[str] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : int = [output_layers[self.config.num_hidden_layers - 1](lowercase_ )] else: lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : List[Any] = self.encoder.adaptive_forward( lowercase_ , current_layer=lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ ) lowerCAmelCase : List[Any] = self.pooler(lowercase_ ) lowerCAmelCase : Optional[int] = output_layers[i](lowercase_ ) if regression: lowerCAmelCase : str = logits.detach() if patient_result is not None: lowerCAmelCase : List[str] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Optional[int] = 0 else: lowerCAmelCase : List[Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowercase_ ) ): patient_counter += 1 else: lowerCAmelCase : int = 0 lowerCAmelCase : List[str] = logits if patient_counter == self.patience: break lowerCAmelCase : Tuple = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , snake_case_ , ) class _a ( snake_case_ ): def __init__( self , lowercase_ ) -> int: super().__init__(lowercase_ ) lowerCAmelCase : Optional[int] = config.num_labels lowerCAmelCase : Optional[Any] = BertModelWithPabee(lowercase_ ) lowerCAmelCase : List[str] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> int: lowerCAmelCase : int = self.bert( input_ids=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : List[Any] = None lowerCAmelCase : Union[str, Any] = 0 for ix, logits_item in enumerate(lowercase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : str = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Union[str, Any] = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
706
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' lowerCAmelCase : Optional[Any] = OmegaConf.load(SCREAMING_SNAKE_CASE__ ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE__ ) ) ) return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' if conf_path is None: lowerCAmelCase : List[str] = """./model_checkpoints/vqgan_only.yaml""" lowerCAmelCase : Optional[int] = load_config(SCREAMING_SNAKE_CASE__ ,display=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = VQModel(**config.model.params ) if ckpt_path is None: lowerCAmelCase : Optional[Any] = """./model_checkpoints/vqgan_only.pt""" lowerCAmelCase : int = torch.load(SCREAMING_SNAKE_CASE__ ,map_location=SCREAMING_SNAKE_CASE__ ) if ".ckpt" in ckpt_path: lowerCAmelCase : List[str] = sd["""state_dict"""] model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) del sd return model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = model.encode(SCREAMING_SNAKE_CASE__ ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowerCAmelCase : Optional[int] = model.decode(SCREAMING_SNAKE_CASE__ ) return xrec def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' lowerCAmelCase : Tuple = string.rsplit(""".""" ,1 ) if reload: lowerCAmelCase : List[Any] = importlib.import_module(SCREAMING_SNAKE_CASE__ ) importlib.reload(SCREAMING_SNAKE_CASE__ ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE__ ,package=SCREAMING_SNAKE_CASE__ ) ,cls ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" ,{} ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' lowerCAmelCase : Tuple = instantiate_from_config(SCREAMING_SNAKE_CASE__ ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if ckpt: lowerCAmelCase : str = torch.load(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" ) lowerCAmelCase : Dict = pl_sd["""global_step"""] print(F"""loaded model from global step {global_step}.""" ) else: lowerCAmelCase : int = {"""state_dict""": None} lowerCAmelCase : Dict = None lowerCAmelCase : Optional[int] = load_model_from_config(config.model ,pl_sd["""state_dict"""] ,gpu=SCREAMING_SNAKE_CASE__ ,eval_mode=SCREAMING_SNAKE_CASE__ )["""model"""] return model, global_step
707
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
0
'''simple docstring''' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if curr_ind == len(SCREAMING_SNAKE_CASE__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): if valid_connection(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): # Insert current vertex into path as next transition lowerCAmelCase : Any = next_ver # Validate created path if util_hamilton_cycle(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,curr_ind + 1 ): return True # Backtrack lowerCAmelCase : Optional[Any] = -1 return False def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0 ): '''simple docstring''' lowerCAmelCase : List[str] = [-1] * (len(SCREAMING_SNAKE_CASE__ ) + 1) # initialize start and end of path with starting index lowerCAmelCase : Any = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1 ) else []
708
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
'''simple docstring''' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def _UpperCAmelCase ( ): '''simple docstring''' assert nand_gate(0 ,0 ) == 1 assert nand_gate(0 ,1 ) == 1 assert nand_gate(1 ,0 ) == 1 assert nand_gate(1 ,1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
709
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase : List[Any] ={'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _a ( unittest.TestCase ): _UpperCamelCase: Any = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCamelCase: List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCamelCase: List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCamelCase: Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: lowerCAmelCase : Dict = ZeroShotClassificationPipeline( model=lowercase_ , tokenizer=lowercase_ , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _snake_case ( self , lowercase_ , lowercase_ ) -> List[str]: lowerCAmelCase : Union[str, Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} ) # No kwarg lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} ) lowerCAmelCase : List[Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} ) lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) lowerCAmelCase : Union[str, Any] = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} ) # https://github.com/huggingface/transformers/issues/13846 lowerCAmelCase : List[Any] = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( lowercase_ , [ {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} for i in range(1 ) ] , ) lowerCAmelCase : Union[str, Any] = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( lowercase_ , [ {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} for i in range(2 ) ] , ) with self.assertRaises(lowercase_ ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(lowercase_ ): classifier(lowercase_ , candidate_labels="""politics""" ) with self.assertRaises(lowercase_ ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(lowercase_ ): classifier("""Who are you voting for in 2020?""" , candidate_labels=lowercase_ ) with self.assertRaises(lowercase_ ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(lowercase_ ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=lowercase_ , ) self.run_entailment_id(lowercase_ ) def _snake_case ( self , lowercase_ ) -> Optional[int]: lowerCAmelCase : str = zero_shot_classifier.model.config lowerCAmelCase : Tuple = config.labelaid lowerCAmelCase : str = zero_shot_classifier.entailment_id lowerCAmelCase : int = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowerCAmelCase : List[str] = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCAmelCase : List[str] = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCAmelCase : str = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowerCAmelCase : List[str] = original_labelaid self.assertEqual(lowercase_ , zero_shot_classifier.entailment_id ) @require_torch def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : str = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def _snake_case ( self ) -> str: lowerCAmelCase : List[str] = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) lowerCAmelCase : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _snake_case ( self ) -> str: lowerCAmelCase : Union[str, Any] = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) lowerCAmelCase : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Any = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) lowerCAmelCase : Any = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCAmelCase : Union[str, Any] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : str = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) lowerCAmelCase : int = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCAmelCase : str = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
710
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=13 , lowercase_=3 , lowercase_=224 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , ) -> int: lowerCAmelCase : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Dict = min_resolution lowerCAmelCase : List[Any] = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Optional[Any] = size lowerCAmelCase : Optional[int] = do_normalize lowerCAmelCase : int = image_mean lowerCAmelCase : List[str] = image_std def _snake_case ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: str = ViTImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = EfficientFormerImageProcessorTester(self ) @property def _snake_case ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def _snake_case ( self ) -> int: lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Optional[Any]: # Initialize image_processor lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Dict: # Initialize image_processor lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Dict = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Optional[Any]: # Initialize image_processor lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Tuple = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Tuple = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
class _a : def __init__( self , lowercase_ ) -> int: # we need a list not a string, so do something to change the type lowerCAmelCase : Tuple = arr.split(""",""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : int = [int(self.array[0] )] * len(self.array ) lowerCAmelCase : Optional[int] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowerCAmelCase : Any = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowerCAmelCase : Optional[int] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =input('please input some numbers:') lowerCAmelCase : Optional[int] =SubArray(whole_array) lowerCAmelCase : Any =array.solve_sub_array() print(('the results is:', re))
712
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : int ={'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] =['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCAmelCase : int =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = {} with open(SCREAMING_SNAKE_CASE__ ,"""r""" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[Any] = line.strip() if line: lowerCAmelCase : Dict = line.split() lowerCAmelCase : Dict = line_number lowerCAmelCase : List[str] = words[0] lowerCAmelCase : List[Any] = value return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for attribute in key.split(""".""" ): lowerCAmelCase : List[str] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowerCAmelCase : List[str] = """param""" if weight_type is not None and weight_type != "param": lowerCAmelCase : Any = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).shape elif weight_type is not None and weight_type == "param": lowerCAmelCase : Tuple = hf_pointer for attribute in hf_param_name.split(""".""" ): lowerCAmelCase : int = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = shape_pointer.shape # let's reduce dimension lowerCAmelCase : int = value[0] else: lowerCAmelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase : List[str] = value elif weight_type == "weight_g": lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": lowerCAmelCase : str = value elif weight_type == "bias": lowerCAmelCase : List[str] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): lowerCAmelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = value else: lowerCAmelCase : Optional[int] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowerCAmelCase : str = """param""" if weight_type is not None and weight_type != "param": lowerCAmelCase : int = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCAmelCase : Optional[Any] = """.""".join([key, hf_param_name] ) else: lowerCAmelCase : List[str] = key lowerCAmelCase : Dict = value if """lm_head""" in full_key else value[0] lowerCAmelCase : List[str] ={ 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Dict = False for key, mapped_key in MAPPING.items(): lowerCAmelCase : Optional[Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase : Dict = True if "*" in mapped_key: lowerCAmelCase : Union[str, Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] lowerCAmelCase : str = mapped_key.replace("""*""" ,SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: lowerCAmelCase : List[str] = """weight_g""" elif "weight_v" in name: lowerCAmelCase : Union[str, Any] = """weight_v""" elif "bias" in name: lowerCAmelCase : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase : List[Any] = """weight""" else: lowerCAmelCase : Tuple = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: set_recursively(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return is_used return is_used def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = fairseq_model.state_dict() lowerCAmelCase : int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,hf_model.config.feat_extract_norm == """group""" ,) lowerCAmelCase : List[Any] = True else: lowerCAmelCase : str = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase : List[Any] = name.split(""".""" ) lowerCAmelCase : Any = int(items[0] ) lowerCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if config_path is not None: lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Any = WavaVecaConfig() if is_seq_class: lowerCAmelCase : str = read_txt_into_dict(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = idalabel lowerCAmelCase : List[Any] = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) elif is_finetuned: if dict_path: lowerCAmelCase : int = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase : Dict = target_dict.pad_index lowerCAmelCase : Optional[int] = target_dict.bos_index lowerCAmelCase : Optional[int] = target_dict.eos_index lowerCAmelCase : Optional[Any] = len(target_dict.symbols ) lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE__ ,"""vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase : Dict = 0 lowerCAmelCase : Any = 1 with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : Tuple = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : Dict = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned or is_seq_class: lowerCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCAmelCase : Optional[Any] = argparse.Namespace(task="""audio_pretraining""" ) lowerCAmelCase : Dict = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCAmelCase : List[Any] =parser.parse_args() lowerCAmelCase : List[str] =not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _a ( snake_case_ ): _UpperCamelCase: "DiagonalGaussianDistribution" class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = True @register_to_config def __init__( self , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = ("DownEncoderBlock2D",) , lowercase_ = ("UpDecoderBlock2D",) , lowercase_ = (64,) , lowercase_ = 1 , lowercase_ = "silu" , lowercase_ = 4 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = 0.1_8_2_1_5 , ) -> Dict: super().__init__() # pass init params to Encoder lowerCAmelCase : Dict = Encoder( in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , ) # pass init params to Decoder lowerCAmelCase : Union[str, Any] = Decoder( in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , norm_num_groups=lowercase_ , act_fn=lowercase_ , ) lowerCAmelCase : Dict = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) lowerCAmelCase : Optional[Any] = nn.Convad(lowercase_ , lowercase_ , 1 ) lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : str = False # only relevant if vae tiling is enabled lowerCAmelCase : Optional[int] = self.config.sample_size lowerCAmelCase : str = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) lowerCAmelCase : List[str] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) lowerCAmelCase : Union[str, Any] = 0.2_5 def _snake_case ( self , lowercase_ , lowercase_=False ) -> Union[str, Any]: if isinstance(lowercase_ , (Encoder, Decoder) ): lowerCAmelCase : Tuple = value def _snake_case ( self , lowercase_ = True ) -> Dict: lowerCAmelCase : Optional[int] = use_tiling def _snake_case ( self ) -> List[str]: self.enable_tiling(lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[Any] = True def _snake_case ( self ) -> Tuple: lowerCAmelCase : Tuple = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case ( self ) -> Dict[str, AttentionProcessor]: lowerCAmelCase : Dict = {} def fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_ ): if hasattr(lowercase_ , """set_processor""" ): lowerCAmelCase : Optional[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowercase_ , lowercase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_ ) return processors def _snake_case ( self , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowercase_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_ ): if hasattr(lowercase_ , """set_processor""" ): if not isinstance(lowercase_ , lowercase_ ): module.set_processor(lowercase_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowercase_ , lowercase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_ ) def _snake_case ( self ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _snake_case ( self , lowercase_ , lowercase_ = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowercase_ , return_dict=lowercase_ ) if self.use_slicing and x.shape[0] > 1: lowerCAmelCase : Union[str, Any] = [self.encoder(lowercase_ ) for x_slice in x.split(1 )] lowerCAmelCase : Union[str, Any] = torch.cat(lowercase_ ) else: lowerCAmelCase : Dict = self.encoder(lowercase_ ) lowerCAmelCase : Tuple = self.quant_conv(lowercase_ ) lowerCAmelCase : List[Any] = DiagonalGaussianDistribution(lowercase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowercase_ , return_dict=lowercase_ ) lowerCAmelCase : Tuple = self.post_quant_conv(lowercase_ ) lowerCAmelCase : Tuple = self.decoder(lowercase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) @apply_forward_hook def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: lowerCAmelCase : Optional[Any] = [self._decode(lowercase_ ).sample for z_slice in z.split(1 )] lowerCAmelCase : str = torch.cat(lowercase_ ) else: lowerCAmelCase : List[str] = self._decode(lowercase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : int = min(a.shape[2] , b.shape[2] , lowercase_ ) for y in range(lowercase_ ): lowerCAmelCase : Dict = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Any: lowerCAmelCase : Optional[Any] = min(a.shape[3] , b.shape[3] , lowercase_ ) for x in range(lowercase_ ): lowerCAmelCase : List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _snake_case ( self , lowercase_ , lowercase_ = True ) -> AutoencoderKLOutput: lowerCAmelCase : int = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) lowerCAmelCase : str = int(self.tile_latent_min_size * self.tile_overlap_factor ) lowerCAmelCase : Optional[Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowerCAmelCase : Optional[int] = [] for i in range(0 , x.shape[2] , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for j in range(0 , x.shape[3] , lowercase_ ): lowerCAmelCase : List[Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowerCAmelCase : List[str] = self.encoder(lowercase_ ) lowerCAmelCase : Optional[int] = self.quant_conv(lowercase_ ) row.append(lowercase_ ) rows.append(lowercase_ ) lowerCAmelCase : int = [] for i, row in enumerate(lowercase_ ): lowerCAmelCase : List[Any] = [] for j, tile in enumerate(lowercase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCAmelCase : Any = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ ) if j > 0: lowerCAmelCase : int = self.blend_h(row[j - 1] , lowercase_ , lowercase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowercase_ , dim=3 ) ) lowerCAmelCase : Tuple = torch.cat(lowercase_ , dim=2 ) lowerCAmelCase : Dict = DiagonalGaussianDistribution(lowercase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) lowerCAmelCase : Any = int(self.tile_sample_min_size * self.tile_overlap_factor ) lowerCAmelCase : Optional[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowerCAmelCase : List[str] = [] for i in range(0 , z.shape[2] , lowercase_ ): lowerCAmelCase : int = [] for j in range(0 , z.shape[3] , lowercase_ ): lowerCAmelCase : Any = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowerCAmelCase : int = self.post_quant_conv(lowercase_ ) lowerCAmelCase : Optional[Any] = self.decoder(lowercase_ ) row.append(lowercase_ ) rows.append(lowercase_ ) lowerCAmelCase : Union[str, Any] = [] for i, row in enumerate(lowercase_ ): lowerCAmelCase : List[Any] = [] for j, tile in enumerate(lowercase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCAmelCase : List[Any] = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ ) if j > 0: lowerCAmelCase : Optional[Any] = self.blend_h(row[j - 1] , lowercase_ , lowercase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowercase_ , dim=3 ) ) lowerCAmelCase : List[Any] = torch.cat(lowercase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = False , lowercase_ = True , lowercase_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase : List[Any] = sample lowerCAmelCase : List[str] = self.encode(lowercase_ ).latent_dist if sample_posterior: lowerCAmelCase : Optional[Any] = posterior.sample(generator=lowercase_ ) else: lowerCAmelCase : Optional[Any] = posterior.mode() lowerCAmelCase : Dict = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 30.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
716
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = BlipImageProcessor() lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowerCAmelCase : List[str] = BlipaProcessor(lowercase_ , lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase_ ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer def _snake_case ( self , **lowercase_ ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> str: lowerCAmelCase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[str] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase : Optional[int] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def _snake_case ( self ) -> Dict: lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : int = self.get_tokenizer() lowerCAmelCase : Any = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""np""" ) lowerCAmelCase : Tuple = processor(images=lowercase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : int = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Optional[int] = """lower newer""" lowerCAmelCase : Tuple = processor(text=lowercase_ ) lowerCAmelCase : Dict = tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> Dict: lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Tuple = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Any = """lower newer""" lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase : List[Any] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _snake_case ( self ) -> str: lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : Optional[int] = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Union[str, Any] = processor.batch_decode(lowercase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Any: lowerCAmelCase : str = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Optional[Any] = """lower newer""" lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Tuple = processor(text=lowercase_ , images=lowercase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
717
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _a ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1.0 , lowercase_ = None , ) -> Union[str, Any]: super().__init__() lowerCAmelCase : List[Any] = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Any = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : List[Any] = name def __call__( self , lowercase_ ) -> List[Any]: with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : int = tf.cast(lowercase_ , tf.floataa ) lowerCAmelCase : List[str] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : int = global_step_float / warmup_steps_float lowerCAmelCase : Tuple = self.initial_learning_rate * tf.math.pow(lowercase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowercase_ , ) def _snake_case ( self ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 0.9 ,SCREAMING_SNAKE_CASE__ = 0.999 ,SCREAMING_SNAKE_CASE__ = 1e-8 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ,SCREAMING_SNAKE_CASE__ = None ,): '''simple docstring''' lowerCAmelCase : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE__ ,decay_steps=num_train_steps - num_warmup_steps ,end_learning_rate=init_lr * min_lr_ratio ,power=SCREAMING_SNAKE_CASE__ ,) if num_warmup_steps: lowerCAmelCase : Dict = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE__ ,decay_schedule_fn=SCREAMING_SNAKE_CASE__ ,warmup_steps=SCREAMING_SNAKE_CASE__ ,) if weight_decay_rate > 0.0: lowerCAmelCase : Optional[int] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE__ ,weight_decay_rate=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,epsilon=SCREAMING_SNAKE_CASE__ ,clipnorm=SCREAMING_SNAKE_CASE__ ,global_clipnorm=SCREAMING_SNAKE_CASE__ ,exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] ,include_in_weight_decay=SCREAMING_SNAKE_CASE__ ,) else: lowerCAmelCase : int = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,epsilon=SCREAMING_SNAKE_CASE__ ,clipnorm=SCREAMING_SNAKE_CASE__ ,global_clipnorm=SCREAMING_SNAKE_CASE__ ,) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _a ( snake_case_ ): def __init__( self , lowercase_ = 0.0_0_1 , lowercase_ = 0.9 , lowercase_ = 0.9_9_9 , lowercase_ = 1e-7 , lowercase_ = False , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "AdamWeightDecay" , **lowercase_ , ) -> Any: super().__init__(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) lowerCAmelCase : List[str] = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : int = exclude_from_weight_decay @classmethod def _snake_case ( cls , lowercase_ ) -> Tuple: lowerCAmelCase : int = {"""WarmUp""": WarmUp} return super(lowercase_ , cls ).from_config(lowercase_ , custom_objects=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: super(lowercase_ , self )._prepare_local(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Optional[int] = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : List[str] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _snake_case ( self , lowercase_ , lowercase_=None , **lowercase_ ) -> Dict: lowerCAmelCase : Union[str, Any] = list(zip(*lowercase_ ) ) return super(lowercase_ , self ).apply_gradients(zip(lowercase_ , lowercase_ ) , name=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Optional[Any] = apply_state or {} lowerCAmelCase : int = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : int = self._fallback_apply_state(lowercase_ , lowercase_ ) lowerCAmelCase : int = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None ) -> Optional[int]: lowerCAmelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , lowercase_ ) lowerCAmelCase : int = self._decay_weights_op(lowercase_ , lowercase_ , lowercase_ ) with tf.control_dependencies([decay] ): return super(lowercase_ , self )._resource_apply_dense(lowercase_ , lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> int: lowerCAmelCase : List[str] = self._get_lr(var.device , var.dtype.base_dtype , lowercase_ ) lowerCAmelCase : List[Any] = self._decay_weights_op(lowercase_ , lowercase_ , lowercase_ ) with tf.control_dependencies([decay] ): return super(lowercase_ , self )._resource_apply_sparse(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Any: lowerCAmelCase : int = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _snake_case ( self , lowercase_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowercase_ , lowercase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowercase_ , lowercase_ ) is not None: return False return True class _a ( snake_case_ ): def __init__( self ) -> Optional[Any]: lowerCAmelCase : int = [] lowerCAmelCase : Dict = None @property def _snake_case ( self ) -> Any: if self._accum_steps is None: lowerCAmelCase : Any = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowercase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _snake_case ( self ) -> int: if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , lowercase_ ) -> Union[str, Any]: if not self._gradients: lowerCAmelCase : str = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowercase_ ) , trainable=lowercase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowercase_ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(lowercase_ )}""" ) for accum_gradient, gradient in zip(self._gradients , lowercase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowercase_ ) self._accum_steps.assign_add(1 ) def _snake_case ( self ) -> Union[str, Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowercase_ ) )
719
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
720
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
0
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 0.00 lowerCAmelCase : Optional[int] = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase : List[Any] = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(SCREAMING_SNAKE_CASE__ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE__ ) index += 1 return 1 / first_sum def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0.00 lowerCAmelCase : Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase : Dict = F"""Resistor at index {index} has a negative value!""" raise ValueError(SCREAMING_SNAKE_CASE__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : int ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = "align_text_model" def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=True , **lowercase_ , ) -> Any: super().__init__(**lowercase_ ) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : str = hidden_act lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Optional[int] = position_embedding_type lowerCAmelCase : int = use_cache lowerCAmelCase : Tuple = pad_token_id @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCAmelCase : Dict = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Dict = "align_vision_model" def __init__( self , lowercase_ = 3 , lowercase_ = 600 , lowercase_ = 2.0 , lowercase_ = 3.1 , lowercase_ = 8 , lowercase_ = [3, 3, 5, 3, 5, 5, 3] , lowercase_ = [32, 16, 24, 40, 80, 112, 192] , lowercase_ = [16, 24, 40, 80, 112, 192, 320] , lowercase_ = [] , lowercase_ = [1, 2, 2, 2, 1, 2, 1] , lowercase_ = [1, 2, 2, 3, 3, 4, 1] , lowercase_ = [1, 6, 6, 6, 6, 6, 6] , lowercase_ = 0.2_5 , lowercase_ = "swish" , lowercase_ = 2560 , lowercase_ = "mean" , lowercase_ = 0.0_2 , lowercase_ = 0.0_0_1 , lowercase_ = 0.9_9 , lowercase_ = 0.2 , **lowercase_ , ) -> List[Any]: super().__init__(**lowercase_ ) lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = width_coefficient lowerCAmelCase : List[str] = depth_coefficient lowerCAmelCase : Optional[Any] = depth_divisor lowerCAmelCase : Dict = kernel_sizes lowerCAmelCase : Union[str, Any] = in_channels lowerCAmelCase : Optional[Any] = out_channels lowerCAmelCase : Optional[Any] = depthwise_padding lowerCAmelCase : Union[str, Any] = strides lowerCAmelCase : Union[str, Any] = num_block_repeats lowerCAmelCase : Optional[Any] = expand_ratios lowerCAmelCase : List[str] = squeeze_expansion_ratio lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dim lowerCAmelCase : Any = pooling_type lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : List[str] = batch_norm_eps lowerCAmelCase : Optional[int] = batch_norm_momentum lowerCAmelCase : Tuple = drop_connect_rate lowerCAmelCase : Optional[Any] = sum(lowercase_ ) * 4 @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase : List[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCAmelCase : Union[str, Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Any = "align" _UpperCamelCase: Any = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=640 , lowercase_=1.0 , lowercase_=0.0_2 , **lowercase_ , ) -> List[str]: super().__init__(**lowercase_ ) if text_config is None: lowerCAmelCase : Optional[Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: lowerCAmelCase : List[Any] = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) lowerCAmelCase : Any = AlignTextConfig(**lowercase_ ) lowerCAmelCase : Dict = AlignVisionConfig(**lowercase_ ) lowerCAmelCase : Any = projection_dim lowerCAmelCase : int = temperature_init_value lowerCAmelCase : Optional[Any] = initializer_range @classmethod def _snake_case ( cls , lowercase_ , lowercase_ , **lowercase_ ) -> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Dict = copy.deepcopy(self.__dict__ ) lowerCAmelCase : List[str] = self.text_config.to_dict() lowerCAmelCase : List[Any] = self.vision_config.to_dict() lowerCAmelCase : Any = self.__class__.model_type return output
700
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCAmelCase : Optional[Any] ='%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') lowerCAmelCase : Optional[int] =F'''https://www.google.com/search?q={query}&num=100''' lowerCAmelCase : Dict =requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: lowerCAmelCase : Optional[int] =( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: lowerCAmelCase : str =parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
from math import factorial def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowerCAmelCase : List[Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCAmelCase : int = float(factorial(SCREAMING_SNAKE_CASE__ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.7_5))
703
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 ,input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = emb.weight.shape lowerCAmelCase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = emb.weight.data return lin_layer def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = torch.load(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" ) lowerCAmelCase : Optional[Any] = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowerCAmelCase : List[str] = checkpoint["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCAmelCase : List[str] = {key.replace("""decoder""" ,"""model""" ): val for key, val in state_dict.items()} lowerCAmelCase : Optional[int] = XGLMConfig( vocab_size=SCREAMING_SNAKE_CASE__ ,max_position_embeddings=args.max_target_positions ,num_layers=args.decoder_layers ,attention_heads=args.decoder_attention_heads ,ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.decoder_embed_dim ,layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="""gelu""" ,scale_embedding=not args.no_scale_embedding ,tie_word_embeddings=args.share_decoder_input_output_embed ,) lowerCAmelCase : str = XGLMForCausalLM(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : Optional[int] =parser.parse_args() lowerCAmelCase : Union[str, Any] =convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
705
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase : List[Any] ='\\n Text data.\n Second line of data.' lowerCAmelCase : Union[str, Any] ='file' @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") lowerCAmelCase : str = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) with zstd.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return path @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE__ ) , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} lowerCAmelCase : Optional[int] = input_paths[compression_format] lowerCAmelCase : Optional[Any] = tmp_path / """cache""" lowerCAmelCase : List[str] = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE__ , extract_compressed_file=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = cached_path(SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ ) as f: lowerCAmelCase : Union[str, Any] = f.read() with open(SCREAMING_SNAKE_CASE__ ) as f: lowerCAmelCase : Optional[int] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = """custom_cache""" lowerCAmelCase : Optional[int] = """custom_extracted_dir""" lowerCAmelCase : str = tmp_path / """custom_extracted_path""" if default_extracted: lowerCAmelCase : int = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , SCREAMING_SNAKE_CASE__ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Optional[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowerCAmelCase : Tuple = xz_file lowerCAmelCase : Optional[int] = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Dict = cached_path(SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) assert Path(SCREAMING_SNAKE_CASE__ ).parent.parts[-2:] == expected def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = str(Path(SCREAMING_SNAKE_CASE__ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE__ ) == text_file # relative path lowerCAmelCase : str = str(Path(SCREAMING_SNAKE_CASE__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE__ ) == text_file def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): cached_path(SCREAMING_SNAKE_CASE__ ) # relative path lowerCAmelCase : List[Any] = """./__missing_file__.txt""" with pytest.raises(SCREAMING_SNAKE_CASE__ ): cached_path(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(SCREAMING_SNAKE_CASE__ ) as f: lowerCAmelCase : int = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE__ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_get("""https://huggingface.co""" , temp_file=SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(SCREAMING_SNAKE_CASE__ ): ftp_get("""ftp://huggingface.co""" , temp_file=SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(SCREAMING_SNAKE_CASE__ ): fsspec_get("""s3://huggingface.co""" , temp_file=SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): fsspec_head("""s3://huggingface.co""" )
706
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : str ={ 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "conditional_detr" _UpperCamelCase: Union[str, Any] = ["past_key_values"] _UpperCamelCase: Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=300 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=0.2_5 , **lowercase_ , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : List[str] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : str = backbone_config.get("""model_type""" ) lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : List[str] = config_class.from_dict(lowercase_ ) lowerCAmelCase : Optional[Any] = use_timm_backbone lowerCAmelCase : Any = backbone_config lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : str = d_model lowerCAmelCase : Dict = encoder_ffn_dim lowerCAmelCase : Union[str, Any] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : int = decoder_ffn_dim lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Optional[int] = decoder_attention_heads lowerCAmelCase : Union[str, Any] = dropout lowerCAmelCase : Tuple = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : Optional[Any] = activation_function lowerCAmelCase : str = init_std lowerCAmelCase : List[str] = init_xavier_std lowerCAmelCase : Optional[int] = encoder_layerdrop lowerCAmelCase : Tuple = decoder_layerdrop lowerCAmelCase : str = encoder_layers lowerCAmelCase : Dict = auxiliary_loss lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = dilation # Hungarian matcher lowerCAmelCase : int = class_cost lowerCAmelCase : str = bbox_cost lowerCAmelCase : str = giou_cost # Loss coefficients lowerCAmelCase : List[str] = mask_loss_coefficient lowerCAmelCase : Optional[Any] = dice_loss_coefficient lowerCAmelCase : int = cls_loss_coefficient lowerCAmelCase : List[str] = bbox_loss_coefficient lowerCAmelCase : Union[str, Any] = giou_loss_coefficient lowerCAmelCase : Tuple = focal_alpha super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model def _snake_case ( self ) -> Any: lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : Any = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Dict = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
707
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Tuple ='▁' lowerCAmelCase : str ={'vocab_file': 'spiece.model'} lowerCAmelCase : Tuple ={ 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } lowerCAmelCase : Union[str, Any] ={ 'google/pegasus-xsum': 512, } lowerCAmelCase : Any =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , lowercase_ , lowercase_="<pad>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<mask_2>" , lowercase_="<mask_1>" , lowercase_=None , lowercase_=103 , lowercase_ = None , **lowercase_ , ) -> None: lowerCAmelCase : Any = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) lowerCAmelCase : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowerCAmelCase : int = additional_special_tokens_extended else: lowerCAmelCase : int = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] lowerCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , pad_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowerCAmelCase : int = mask_token_sent lowerCAmelCase : Tuple = vocab_file lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # add special tokens to encoder dict lowerCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.offset def _snake_case ( self ) -> Dict[str, int]: lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: lowerCAmelCase : List[str] = self.__dict__.copy() lowerCAmelCase : Tuple = None return state def __setstate__( self , lowercase_ ) -> Dict: lowerCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase : str = {} lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , lowercase_ ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def _snake_case ( self , lowercase_ ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase : Dict = self.sp_model.piece_to_id(lowercase_ ) return sp_id + self.offset def _snake_case ( self , lowercase_ ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase : Union[str, Any] = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case ( self , lowercase_ ) -> Optional[int]: lowerCAmelCase : List[Any] = [] lowerCAmelCase : List[str] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token lowerCAmelCase : Union[str, Any] = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def _snake_case ( self , lowercase_=False ) -> Optional[int]: return 1 def _snake_case ( self , lowercase_ ) -> Optional[Any]: lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase_ , lowercase_=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : int = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , """wb""" ) as fi: lowerCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
708
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
0
'''simple docstring''' import torch from torch import nn class _a ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=1 , lowercase_=False ) -> Dict: super().__init__() lowerCAmelCase : Optional[int] = n_token lowerCAmelCase : Optional[int] = d_embed lowerCAmelCase : str = d_proj lowerCAmelCase : str = cutoffs + [n_token] lowerCAmelCase : Any = [0] + self.cutoffs lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : Any = self.cutoffs[0] lowerCAmelCase : Optional[int] = len(self.cutoffs ) - 1 lowerCAmelCase : Optional[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase : str = nn.ModuleList() lowerCAmelCase : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase_ , lowercase_ ) ) ) else: self.out_projs.append(lowercase_ ) self.out_layers.append(nn.Linear(lowercase_ , lowercase_ ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase_ , lowercase_ ) ) ) self.out_layers.append(nn.Linear(lowercase_ , r_idx - l_idx ) ) lowerCAmelCase : Any = keep_order def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: if proj is None: lowerCAmelCase : List[str] = nn.functional.linear(lowercase_ , lowercase_ , bias=lowercase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase : Optional[int] = nn.functional.linear(lowercase_ , proj.t().contiguous() ) lowerCAmelCase : Tuple = nn.functional.linear(lowercase_ , lowercase_ , bias=lowercase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _snake_case ( self , lowercase_ , lowercase_=None , lowercase_=False ) -> Any: if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase : List[Any] = hidden[..., :-1, :].contiguous() lowerCAmelCase : int = labels[..., 1:].contiguous() lowerCAmelCase : str = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase : List[Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: lowerCAmelCase : str = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase : List[str] = self._compute_logit(lowercase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase : Dict = labels != -100 lowerCAmelCase : Tuple = torch.zeros_like(lowercase_ , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase : Dict = ( -nn.functional.log_softmax(lowercase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase : Dict = nn.functional.log_softmax(lowercase_ , dim=-1 ) else: # construct weights and biases lowerCAmelCase : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase : int = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase : Tuple = self.out_layers[i].weight lowerCAmelCase : int = self.out_layers[i].bias if i == 0: lowerCAmelCase : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowercase_ ) biases.append(lowercase_ ) lowerCAmelCase : Any = weights[0], biases[0], self.out_projs[0] lowerCAmelCase : Optional[Any] = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Tuple = nn.functional.log_softmax(lowercase_ , dim=1 ) if labels is None: lowerCAmelCase : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase : List[str] = torch.zeros_like(lowercase_ , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase : int = 0 lowerCAmelCase : List[Any] = [0] + self.cutoffs for i in range(len(lowercase_ ) - 1 ): lowerCAmelCase : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase : List[str] = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase : List[str] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase : Dict = labels.index_select(0 , lowercase_ ) - l_idx lowerCAmelCase : Union[str, Any] = head_logprob.index_select(0 , lowercase_ ) lowerCAmelCase : str = hidden.index_select(0 , lowercase_ ) else: lowerCAmelCase : Optional[int] = hidden if i == 0: if labels is not None: lowerCAmelCase : List[str] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase : List[str] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase : Tuple = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Any = nn.functional.log_softmax(lowercase_ , dim=1 ) lowerCAmelCase : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase : str = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase : Dict = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , lowercase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _snake_case ( self , lowercase_ ) -> List[str]: if self.n_clusters == 0: lowerCAmelCase : Union[str, Any] = self._compute_logit(lowercase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowercase_ , dim=-1 ) else: # construct weights and biases lowerCAmelCase : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase : str = self.out_layers[i].weight lowerCAmelCase : List[Any] = self.out_layers[i].bias if i == 0: lowerCAmelCase : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowercase_ ) biases.append(lowercase_ ) lowerCAmelCase : Optional[int] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase : List[str] = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase : List[Any] = nn.functional.log_softmax(lowercase_ , dim=1 ) lowerCAmelCase : Optional[int] = [0] + self.cutoffs for i in range(len(lowercase_ ) - 1 ): lowerCAmelCase : Optional[int] = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase : Dict = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase : Dict = weights[i], biases[i], self.out_projs[i] lowerCAmelCase : Any = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : List[Any] = nn.functional.log_softmax(lowercase_ , dim=1 ) lowerCAmelCase : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase : int = logprob_i return out
709
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
0
from maths.prime_check import is_prime def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE__ ) if is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
710
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase : List[str] ='src/transformers' # Matches is_xxx_available() lowerCAmelCase : Dict =re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCAmelCase : str =re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase : int =re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCAmelCase : int =re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase : Optional[Any] =re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase : Any =re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase : Optional[Any] =re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase : Optional[int] =re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCAmelCase : Any =re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCAmelCase : List[str] =re.compile(r'^\s*try:') # Catches a line with else: lowerCAmelCase : int =re.compile(r'^\s*else:') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if _re_test_backend.search(SCREAMING_SNAKE_CASE__ ) is None: return None lowerCAmelCase : List[str] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE__ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: lowerCAmelCase : Optional[Any] = f.readlines() lowerCAmelCase : Optional[Any] = 0 while line_index < len(SCREAMING_SNAKE_CASE__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE__ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : Dict = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[Any] = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ).groups()[0] lowerCAmelCase : Optional[int] = re.findall("""\[([^\]]+)\]""" ,SCREAMING_SNAKE_CASE__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowerCAmelCase : str = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : Any = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowerCAmelCase : Dict = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ) is not None: lowerCAmelCase : Union[str, Any] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(""", """ ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ) is not None: lowerCAmelCase : str = _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(""", """ ) lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 1_2 + """\"""" ): objects.append(line[1_3:-3] ) line_index += 1 lowerCAmelCase : Dict = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : List[str] = [] while ( line_index < len(SCREAMING_SNAKE_CASE__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowerCAmelCase : List[str] = lines[line_index] lowerCAmelCase : Dict = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE__ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowerCAmelCase : Union[str, Any] = lines[line_index] lowerCAmelCase : Any = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCAmelCase : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE__ ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Optional[Any] = [] for key in import_dict_objects.keys(): lowerCAmelCase : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase : Dict = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Optional[int] = """base imports""" if key == """none""" else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE__ ): if "__init__.py" in files: lowerCAmelCase : str = os.path.join(SCREAMING_SNAKE_CASE__ ,"""__init__.py""" ) lowerCAmelCase : Optional[int] = parse_init(SCREAMING_SNAKE_CASE__ ) if objects is not None: lowerCAmelCase : Union[str, Any] = analyze_results(*SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase : Optional[Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError("""\n\n""".join(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(SCREAMING_SNAKE_CASE__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE__ ) / folder).glob("""*.py""" ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(SCREAMING_SNAKE_CASE__ ) / folder).relative_to(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep ,""".""" ) submodules.append(SCREAMING_SNAKE_CASE__ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[int] = str((Path(SCREAMING_SNAKE_CASE__ ) / fname).relative_to(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Tuple = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE__ ) return submodules lowerCAmelCase : List[Any] =[ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[Any] = importlib.util.spec_from_file_location( """transformers""" ,os.path.join(SCREAMING_SNAKE_CASE__ ,"""__init__.py""" ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) lowerCAmelCase : Union[str, Any] = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase : int = """\n""".join(F"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
712
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCAmelCase : List[Any] =logging.get_logger(__name__) class _a ( snake_case_ ): def __init__( self , **lowercase_ ) -> Any: requires_backends(self , ["""bs4"""] ) super().__init__(**lowercase_ ) def _snake_case ( self , lowercase_ ) -> Optional[int]: lowerCAmelCase : str = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : Dict = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCAmelCase : Union[str, Any] = parent.find_all(child.name , recursive=lowercase_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(lowercase_ ) else next(i for i, s in enumerate(lowercase_ , 1 ) if s is child ) ) lowerCAmelCase : List[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _snake_case ( self , lowercase_ ) -> Optional[Any]: lowerCAmelCase : str = BeautifulSoup(lowercase_ , """html.parser""" ) lowerCAmelCase : str = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : int = [] for element in html_code.descendants: if type(lowercase_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCAmelCase : Any = html.unescape(lowercase_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(lowercase_ ) lowerCAmelCase : List[Any] = self.xpath_soup(lowercase_ ) stringaxtag_seq.append(lowercase_ ) stringaxsubs_seq.append(lowercase_ ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _snake_case ( self , lowercase_ , lowercase_ ) -> Any: lowerCAmelCase : Tuple = """""" for tagname, subs in zip(lowercase_ , lowercase_ ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self , lowercase_ ) -> BatchFeature: lowerCAmelCase : Dict = False # Check that strings has a valid type if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = True elif isinstance(lowercase_ , (list, tuple) ): if len(lowercase_ ) == 0 or isinstance(html_strings[0] , lowercase_ ): lowerCAmelCase : Union[str, Any] = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ f"""but is of type {type(lowercase_ )}.""" ) lowerCAmelCase : Dict = bool(isinstance(lowercase_ , (list, tuple) ) and (isinstance(html_strings[0] , lowercase_ )) ) if not is_batched: lowerCAmelCase : List[str] = [html_strings] # Get nodes + xpaths lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Dict = [] for html_string in html_strings: lowerCAmelCase : Optional[Any] = self.get_three_from_single(lowercase_ ) nodes.append(lowercase_ ) lowerCAmelCase : List[Any] = [] for node, tag_list, sub_list in zip(lowercase_ , lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = self.construct_xpath(lowercase_ , lowercase_ ) xpath_strings.append(lowercase_ ) xpaths.append(lowercase_ ) # return as Dict lowerCAmelCase : Union[str, Any] = {"""nodes""": nodes, """xpaths""": xpaths} lowerCAmelCase : Optional[Any] = BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) return encoded_inputs
713
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase : int =[ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase : Dict =[ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase : str =( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase : Dict =( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase : Optional[int] =[ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for tf_name, hf_name in patterns: lowerCAmelCase : List[Any] = k.replace(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return k def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = torch_model.state_dict() lowerCAmelCase : Tuple = {} # separating decoder weights lowerCAmelCase : Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} lowerCAmelCase : Tuple = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() ,"""tf -> hf conversion""" ): lowerCAmelCase : Optional[int] = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue lowerCAmelCase : Union[str, Any] = DECODER_PATTERNS lowerCAmelCase : List[str] = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowerCAmelCase : str = v.T lowerCAmelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,"""tf -> hf conversion""" ): lowerCAmelCase : List[str] = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue lowerCAmelCase : Union[str, Any] = REMAINING_PATTERNS lowerCAmelCase : int = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowerCAmelCase : Tuple = v.T lowerCAmelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" lowerCAmelCase : Dict = mapping["""model.embed_positions.weight"""] lowerCAmelCase : List[Any] = mapping.pop("""model.embed_positions.weight""" ) lowerCAmelCase : Dict = torch_model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = {} lowerCAmelCase : Optional[int] = ["""global_step"""] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ ,desc="""converting tf checkpoint to dict""" ): lowerCAmelCase : int = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase : List[str] = tf.train.load_variable(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = array return tf_weights def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = convert_bigbird_pegasus(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : List[Any] =parser.parse_args() lowerCAmelCase : Optional[int] ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
714
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase : Any =logging.getLogger(__name__) lowerCAmelCase : str =list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase : Optional[int] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(snake_case_ )} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _a : _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "The input training data file (a text file)."} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) _UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether ot not to use whole word mask."} ) _UpperCamelCase: float = field( default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) _UpperCamelCase: float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) _UpperCamelCase: int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) _UpperCamelCase: int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,): '''simple docstring''' def _dataset(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ,ref_path=SCREAMING_SNAKE_CASE__ ,) return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ) else: return TextDataset( tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ,overwrite_cache=args.overwrite_cache ,cache_dir=SCREAMING_SNAKE_CASE__ ,) if evaluate: return _dataset(args.eval_data_file ,args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file ,args.train_ref_file ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: lowerCAmelCase : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowerCAmelCase : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,) else: logger.info("""Training new model from scratch""" ) lowerCAmelCase : Any = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE__ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowerCAmelCase : Union[str, Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase : str = min(data_args.block_size ,tokenizer.max_len ) # Get datasets lowerCAmelCase : List[str] = ( get_dataset(SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase : Dict = ( get_dataset(SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,evaluate=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase : Any = DataCollatorForPermutationLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE__ ,plm_probability=data_args.plm_probability ,max_span_length=data_args.max_span_length ,) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase : Tuple = DataCollatorForWholeWordMask( tokenizer=SCREAMING_SNAKE_CASE__ ,mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase : Tuple = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE__ ,mlm=data_args.mlm ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase : Any = Trainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,prediction_loss_only=SCREAMING_SNAKE_CASE__ ,) # Training if training_args.do_train: lowerCAmelCase : List[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : str = trainer.evaluate() lowerCAmelCase : str = math.exp(eval_output["""eval_loss"""] ) lowerCAmelCase : List[str] = {"""perplexity""": perplexity} lowerCAmelCase : List[str] = os.path.join(training_args.output_dir ,"""eval_results_lm.txt""" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE__ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" ,SCREAMING_SNAKE_CASE__ ,str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(SCREAMING_SNAKE_CASE__ ) return results def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
715
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
0
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
716
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
717
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : Any ={ 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = "dpt" def __init__( self , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=384 , lowercase_=16 , lowercase_=3 , lowercase_=False , lowercase_=True , lowercase_=[2, 5, 8, 11] , lowercase_="project" , lowercase_=[4, 2, 1, 0.5] , lowercase_=[96, 192, 384, 768] , lowercase_=256 , lowercase_=-1 , lowercase_=False , lowercase_=True , lowercase_=0.4 , lowercase_=255 , lowercase_=0.1 , lowercase_=[1, 1024, 24, 24] , lowercase_=[0, 1] , lowercase_=None , **lowercase_ , ) -> List[Any]: super().__init__(**lowercase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase : Tuple = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } lowerCAmelCase : Union[str, Any] = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase : List[str] = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) lowerCAmelCase : Dict = backbone_featmap_shape lowerCAmelCase : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: lowerCAmelCase : Tuple = None lowerCAmelCase : Any = None lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Any = num_channels lowerCAmelCase : int = qkv_bias lowerCAmelCase : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) lowerCAmelCase : Any = readout_type lowerCAmelCase : Optional[int] = reassemble_factors lowerCAmelCase : List[Any] = neck_hidden_sizes lowerCAmelCase : Optional[int] = fusion_hidden_size lowerCAmelCase : int = head_in_index lowerCAmelCase : List[str] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase : Tuple = use_auxiliary_head lowerCAmelCase : str = auxiliary_loss_weight lowerCAmelCase : Tuple = semantic_loss_ignore_index lowerCAmelCase : Tuple = semantic_classifier_dropout def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : int = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : Optional[Any] = self.backbone_config.to_dict() lowerCAmelCase : Tuple = self.__class__.model_type return output
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase : Optional[Any] =2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCAmelCase : List[Any] ={ # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.1_5}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names lowerCAmelCase : List[Any] ={} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase : Any ='facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCAmelCase : Dict ='allenai' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = dict((re.sub(r"""@@$""" ,"""""" ,SCREAMING_SNAKE_CASE__ ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" ,"""</w>""" ,SCREAMING_SNAKE_CASE__ ), v) for k, v in d.items() ) lowerCAmelCase : List[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] lowerCAmelCase : Union[str, Any] = d[k] # restore return da def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert os.path.exists(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowerCAmelCase : Optional[int] = basename(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = dirname(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCAmelCase : List[Any] = cls.hub_models() lowerCAmelCase : Union[str, Any] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} lowerCAmelCase : Tuple = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"""using checkpoint {checkpoint_file}""" ) lowerCAmelCase : Dict = hub_utils.from_pretrained( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,archive_map=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = vars(chkpt["""args"""]["""model"""] ) lowerCAmelCase : Dict = args["""source_lang"""] lowerCAmelCase : List[Any] = args["""target_lang"""] lowerCAmelCase : Tuple = dirname(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = basename(SCREAMING_SNAKE_CASE__ ) # dicts lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""dict.{src_lang}.txt""" ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""dict.{tgt_lang}.txt""" ) lowerCAmelCase : Dict = Dictionary.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = rewrite_dict_keys(src_dict.indices ) lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,"""vocab-src.json""" ) print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ,ensure_ascii=SCREAMING_SNAKE_CASE__ ,indent=SCREAMING_SNAKE_CASE__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCAmelCase : Union[str, Any] = True for k in src_vocab.keys(): if not k.islower(): lowerCAmelCase : List[str] = False break lowerCAmelCase : Union[str, Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = rewrite_dict_keys(tgt_dict.indices ) lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,"""vocab-tgt.json""" ) print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ,ensure_ascii=SCREAMING_SNAKE_CASE__ ,indent=SCREAMING_SNAKE_CASE__ ) ) # merges_file (bpecodes) lowerCAmelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ ,VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCAmelCase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): break with open(SCREAMING_SNAKE_CASE__ ,encoding="""utf-8""" ) as fin: lowerCAmelCase : Optional[Any] = fin.read() lowerCAmelCase : Any = re.sub(r""" \d+$""" ,"""""" ,SCREAMING_SNAKE_CASE__ ,0 ,re.M ) # remove frequency number print(F"""Generating {merges_file}""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as fout: fout.write(SCREAMING_SNAKE_CASE__ ) # model config lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE__ ,"""config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args['tokenizer']}""" lowerCAmelCase : Optional[int] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with lowerCAmelCase : Optional[Any] = 5 lowerCAmelCase : Union[str, Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCAmelCase : Dict = best_score_hparams[model_dir]["""length_penalty"""] else: lowerCAmelCase : Tuple = 1.0 print(F"""Generating {fsmt_model_config_file}""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ,ensure_ascii=SCREAMING_SNAKE_CASE__ ,indent=SCREAMING_SNAKE_CASE__ ) ) # tokenizer config lowerCAmelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_0_2_4, """do_lower_case""": do_lower_case, } print(F"""Generating {fsmt_tokenizer_config_file}""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ,ensure_ascii=SCREAMING_SNAKE_CASE__ ,indent=SCREAMING_SNAKE_CASE__ ) ) # model lowerCAmelCase : List[Any] = chkpt["""models"""][0] lowerCAmelCase : Union[str, Any] = model.state_dict() # rename keys to start with 'model.' lowerCAmelCase : Optional[int] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCAmelCase : Dict = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = FSMTConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = FSMTForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) # save lowerCAmelCase : str = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F"""cd {data_root}""" ) print(F"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase : Dict =parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
719
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
720
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _a ( unittest.TestCase ): @property def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _snake_case ( self ) -> str: lowerCAmelCase : Any = self.dummy_uncond_unet lowerCAmelCase : Union[str, Any] = ScoreSdeVeScheduler() lowerCAmelCase : Tuple = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=lowercase_ ).images lowerCAmelCase : Any = torch.manual_seed(0 ) lowerCAmelCase : Tuple = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=lowercase_ , return_dict=lowercase_ )[ 0 ] lowerCAmelCase : str = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _a ( unittest.TestCase ): def _snake_case ( self ) -> Dict: lowerCAmelCase : int = """google/ncsnpp-church-256""" lowerCAmelCase : int = UNetaDModel.from_pretrained(lowercase_ ) lowerCAmelCase : str = ScoreSdeVeScheduler.from_pretrained(lowercase_ ) lowerCAmelCase : Optional[Any] = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase : List[str] = torch.manual_seed(0 ) lowerCAmelCase : Any = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=lowercase_ ).images lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase : Union[str, Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
694
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case__ : str = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case__ : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case__ : Any = os.path.join(get_home_dir() , '''models''' ) snake_case__ : List[Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) snake_case__ : Optional[int] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) snake_case__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case__ : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(snake_case__ ), } snake_case__ : Dict = BertConfig.from_dict(snake_case__ ) snake_case__ : Dict = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ : List[Any] , snake_case__ : Any ): snake_case__ : Union[str, Any] = hf_param.shape snake_case__ : Any = to_torch(params[gluon_param] ) snake_case__ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case__ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case__ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case__ : int = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case__ : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case__ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : int = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case__ : Optional[int] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case__ : BertOutput = layer.output snake_case__ : Any = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case__ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case__ : str = tokenizer.encode_plus(snake_case__ )['''input_ids'''] # Get gluon output snake_case__ : List[str] = mx.nd.array([input_ids] ) snake_case__ : Optional[int] = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) snake_case__ : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() snake_case__ : Optional[Any] = tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' ) snake_case__ : str = hf_bort_model(**snake_case__ )[0] snake_case__ : str = output_gluon[0].asnumpy() snake_case__ : str = output_hf[0].detach().numpy() snake_case__ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case__ : Optional[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
694
1
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): snake_case__ : List[Any] = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
694
'''simple docstring''' def _A ( snake_case__ : int = 4_00_00_00 ): snake_case__ : int = [] snake_case__ ,snake_case__ : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case__ ) snake_case__ ,snake_case__ : Any = b, a + b return sum(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
694
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 class snake_case : """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : list[list[Edge]] = [[] for _ in range(lowerCamelCase )] snake_case__ : Any = size def __getitem__( self , lowerCamelCase ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return self._size def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCamelCase , lowerCamelCase ) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> int | None: """simple docstring""" snake_case__ : Union[str, Any] = deque([start_vertex] ) snake_case__ : list[int | None] = [None] * self.size snake_case__ : List[str] = 0 while queue: snake_case__ : List[str] = queue.popleft() snake_case__ : List[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case__ : str = current_distance + edge.weight snake_case__ : Optional[Any] = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase , lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue snake_case__ : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
694
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCAmelCase : Any = None _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _lowerCAmelCase : Optional[int] = { "google/pegasus-xsum": 5_1_2, } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<pad>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<mask_2>" , lowerCamelCase="<mask_1>" , lowerCamelCase=None , lowerCamelCase=103 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase )}, but is''' f''' {type(lowerCamelCase )}''' ) snake_case__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : List[Any] = additional_special_tokens_extended else: snake_case__ : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Union[str, Any] = vocab_file snake_case__ : List[Any] = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
694
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _A ( snake_case__ : int ): snake_case__ : int = int(number**0.5 ) return number == sq * sq def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ): snake_case__ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den snake_case__ : int = x_den * y_den * z_den snake_case__ : int = gcd(snake_case__ , snake_case__ ) top //= hcf bottom //= hcf return top, bottom def _A ( snake_case__ : int = 35 ): snake_case__ : set = set() snake_case__ : int snake_case__ : Fraction = Fraction(0 ) snake_case__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 snake_case__ : List[str] = x_num * y_den + x_den * y_num snake_case__ : Tuple = x_den * y_den snake_case__ : Optional[Any] = gcd(snake_case__ , snake_case__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ : Optional[Any] = add_three( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) unique_s.add(snake_case__ ) # n=2 snake_case__ : List[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) snake_case__ : List[Any] = x_den * x_den * y_den * y_den if is_sq(snake_case__ ) and is_sq(snake_case__ ): snake_case__ : Optional[int] = int(sqrt(snake_case__ ) ) snake_case__ : int = int(sqrt(snake_case__ ) ) snake_case__ : Optional[Any] = gcd(snake_case__ , snake_case__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ : Union[str, Any] = add_three( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) unique_s.add(snake_case__ ) # n=-1 snake_case__ : List[str] = x_num * y_num snake_case__ : Optional[int] = x_den * y_num + x_num * y_den snake_case__ : str = gcd(snake_case__ , snake_case__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ : Dict = add_three( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) unique_s.add(snake_case__ ) # n=2 snake_case__ : List[Any] = x_num * x_num * y_num * y_num snake_case__ : str = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(snake_case__ ) and is_sq(snake_case__ ): snake_case__ : List[str] = int(sqrt(snake_case__ ) ) snake_case__ : List[Any] = int(sqrt(snake_case__ ) ) snake_case__ : Optional[int] = gcd(snake_case__ , snake_case__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ : Union[str, Any] = add_three( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) unique_s.add(snake_case__ ) for num, den in unique_s: total += Fraction(snake_case__ , snake_case__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
694
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = 1.0 if scale is None else scale snake_case__ : Dict = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.variance.sqrt() class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = args_dim snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) snake_case__ : Optional[int] = domain_map def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Tuple = function def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" snake_case__ : Optional[Any] = dim snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" snake_case__ : List[Any] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 0.0 def lowercase__ ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self , *lowerCamelCase ) -> Any: """simple docstring""" raise NotImplementedError() @staticmethod def lowercase__ ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self , lowerCamelCase ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Any = logging.getLogger(__name__) @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) _lowerCAmelCase = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) _lowerCAmelCase = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def lowercase__ ( self ) -> Dict: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: snake_case__ : List[Any] = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case__ : Tuple = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) _lowerCAmelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ ,snake_case__ ,snake_case__ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ ,snake_case__ ,snake_case__ : List[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case__ : int = training_args.get_process_log_level() logger.setLevel(snake_case__ ) datasets.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case__ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case__ : List[Any] = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case__ : int = data_args.train_file.split('''.''' )[-1] snake_case__ : int = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case__ : Union[str, Any] = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files snake_case__ : int = load_dataset('''csv''' , data_files=snake_case__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case__ : int = load_dataset('''json''' , data_files=snake_case__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case__ : Tuple = raw_datasets['''train'''].features['''label'''].names snake_case__ : Dict = len(snake_case__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case__ : Union[str, Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=snake_case__ , ) snake_case__ : Any = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case__ : Tuple = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case__ : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case__ : str = {'''Refused''': 0, '''Entailed''': 1} snake_case__ : List[Any] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) snake_case__ : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(snake_case__ : Any ): # Tokenize the texts def _convert_table_text_to_pandas(snake_case__ : int ): snake_case__ : Optional[Any] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] snake_case__ : int = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case__ : Union[str, Any] = examples['''statement'''] snake_case__ : Union[str, Any] = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) snake_case__ : str = tokenizer(snake_case__ , snake_case__ , padding=snake_case__ , max_length=snake_case__ , truncation=snake_case__ ) snake_case__ : str = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): snake_case__ : Dict = raw_datasets.map( snake_case__ , batched=snake_case__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) snake_case__ : str = raw_datasets['''train'''] if data_args.max_train_samples is not None: snake_case__ : Optional[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) snake_case__ : Any = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: snake_case__ : Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) snake_case__ : Dict = raw_datasets['''test'''] if data_args.max_predict_samples is not None: snake_case__ : int = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(snake_case__ ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case__ : EvalPrediction ): snake_case__ : Tuple = p.predictions[0] if isinstance(p.predictions , snake_case__ ) else p.predictions snake_case__ : Any = np.argmax(snake_case__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case__ : Tuple = default_data_collator elif training_args.fpaa: snake_case__ : Optional[Any] = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8 ) else: snake_case__ : Optional[Any] = None # Initialize our Trainer snake_case__ : Tuple = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=snake_case__ , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: snake_case__ : Dict = None if training_args.resume_from_checkpoint is not None: snake_case__ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case__ : Tuple = last_checkpoint snake_case__ : List[Any] = trainer.train(resume_from_checkpoint=snake_case__ ) snake_case__ : Any = train_result.metrics snake_case__ : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ ) ) snake_case__ : Optional[int] = min(snake_case__ , len(snake_case__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , snake_case__ ) trainer.save_metrics('''train''' , snake_case__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case__ : List[str] = trainer.evaluate(eval_dataset=snake_case__ ) snake_case__ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case__ ) snake_case__ : List[str] = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('''eval''' , snake_case__ ) trainer.save_metrics('''eval''' , snake_case__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case__ : Any = predict_dataset.remove_columns('''label''' ) snake_case__ : Dict = trainer.predict(snake_case__ , metric_key_prefix='''predict''' ).predictions snake_case__ : List[str] = np.argmax(snake_case__ , axis=1 ) snake_case__ : Any = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(snake_case__ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(snake_case__ ): snake_case__ : Dict = label_list[item] writer.write(f'''{index}\t{item}\n''' ) snake_case__ : Optional[Any] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) def _A ( snake_case__ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
694
'''simple docstring''' from math import factorial def _A ( snake_case__ : int = 20 ): snake_case__ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : Union[str, Any] = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: _lowerCAmelCase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
694
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _lowerCAmelCase : Tuple = None _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : str = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : str = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase : Union[str, Any] = { "google/bigbird-roberta-base": 4_0_9_6, "google/bigbird-roberta-large": 4_0_9_6, "google/bigbird-base-trivia-itc": 4_0_9_6, } _lowerCAmelCase : int = "▁" class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = BigBirdTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] _lowerCAmelCase = [] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<unk>" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="[SEP]" , lowerCamelCase="[MASK]" , lowerCamelCase="[CLS]" , **lowerCamelCase , ) -> List[str]: """simple docstring""" snake_case__ : List[str] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token snake_case__ : List[str] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token snake_case__ : Dict = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token snake_case__ : Optional[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token snake_case__ : int = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Dict = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , **lowerCamelCase , ) snake_case__ : str = vocab_file snake_case__ : int = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : str = [self.sep_token_id] snake_case__ : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
694
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = (EulerDiscreteScheduler,) _lowerCAmelCase = 1_0 def lowercase__ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Any = self.dummy_model() snake_case__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : int = model(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : Optional[int] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Union[str, Any] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Tuple = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model(lowerCamelCase , lowerCamelCase ) snake_case__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : int = output.prev_sample snake_case__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Optional[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
694
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def _A ( snake_case__ : dict , snake_case__ : str , snake_case__ : set , snake_case__ : set , snake_case__ : dict , snake_case__ : dict , snake_case__ : PriorityQueue , snake_case__ : dict , snake_case__ : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case__ : int = cst_fwd.get(snake_case__ , np.inf ) snake_case__ : Any = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case__ : Union[str, Any] = new_cost_f snake_case__ : Dict = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case__ : Dict = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def _A ( snake_case__ : str , snake_case__ : str , snake_case__ : dict , snake_case__ : dict ): snake_case__ : List[str] = -1 snake_case__ : Optional[Any] = set() snake_case__ : Tuple = set() snake_case__ : List[str] = {source: 0} snake_case__ : Optional[int] = {destination: 0} snake_case__ : Optional[Any] = {source: None} snake_case__ : Optional[Any] = {destination: None} snake_case__ : PriorityQueue[Any] = PriorityQueue() snake_case__ : PriorityQueue[Any] = PriorityQueue() snake_case__ : Union[str, Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case__ ,snake_case__ : List[str] = queue_forward.get() visited_forward.add(snake_case__ ) snake_case__ ,snake_case__ : Tuple = queue_backward.get() visited_backward.add(snake_case__ ) snake_case__ : List[str] = pass_and_relaxation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) snake_case__ : Union[str, Any] = pass_and_relaxation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case__ : Union[str, Any] = shortest_distance return shortest_path_distance _lowerCAmelCase : int = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } _lowerCAmelCase : List[str] = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
694
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
694
1
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): snake_case__ : List[Any] = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
694
1
'''simple docstring''' _lowerCAmelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _lowerCAmelCase : Any = [{"type": "code", "content": INSTALL_CONTENT}] _lowerCAmelCase : int = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
694
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
694
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCAmelCase : Any = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class snake_case ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) snake_case__ : int = '''The dog is cute and lives in the garden house''' snake_case__ : Any = jnp.array([tokenizer.encode(lowerCamelCase )] ) snake_case__ : Union[str, Any] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim snake_case__ : int = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) snake_case__ : str = model(lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape , lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowerCamelCase , atol=1E-3 ) )
694
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'markuplm' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=256 , lowerCamelCase=1024 , lowerCamelCase=216 , lowerCamelCase=1001 , lowerCamelCase=32 , lowerCamelCase=50 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Optional[int] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : List[Any] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Dict = use_cache snake_case__ : int = classifier_dropout # additional properties snake_case__ : Union[str, Any] = max_depth snake_case__ : Dict = max_xpath_tag_unit_embeddings snake_case__ : Any = max_xpath_subs_unit_embeddings snake_case__ : int = tag_pad_id snake_case__ : Tuple = subs_pad_id snake_case__ : Dict = xpath_unit_hidden_size
694
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Any = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowerCAmelCase : int = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" _lowerCAmelCase : Optional[int] = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = CHRF.CHAR_ORDER , lowerCamelCase = CHRF.WORD_ORDER , lowerCamelCase = CHRF.BETA , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = len(references[0] ) if any(len(lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) snake_case__ : List[Any] = [[refs[i] for refs in references] for i in range(lowerCamelCase )] snake_case__ : Tuple = CHRF(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = sb_chrf.corpus_score(lowerCamelCase , lowerCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
694
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'gpt_bigcode' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowerCamelCase=50257 , lowerCamelCase=1024 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=None , lowerCamelCase="gelu_pytorch_tanh" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=1E-5 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=50256 , lowerCamelCase=50256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , **lowerCamelCase , ) -> int: """simple docstring""" snake_case__ : List[str] = vocab_size snake_case__ : int = n_positions snake_case__ : Union[str, Any] = n_embd snake_case__ : Union[str, Any] = n_layer snake_case__ : Dict = n_head snake_case__ : List[str] = n_inner snake_case__ : List[Any] = activation_function snake_case__ : Union[str, Any] = resid_pdrop snake_case__ : str = embd_pdrop snake_case__ : Optional[Any] = attn_pdrop snake_case__ : int = layer_norm_epsilon snake_case__ : List[str] = initializer_range snake_case__ : int = scale_attn_weights snake_case__ : int = use_cache snake_case__ : str = attention_softmax_in_fpaa snake_case__ : Any = scale_attention_softmax_in_fpaa snake_case__ : Tuple = multi_query snake_case__ : Union[str, Any] = bos_token_id snake_case__ : Optional[Any] = eos_token_id super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase )
694
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ ,snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
694
1
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ) -> int: """simple docstring""" snake_case__ : Union[str, Any] = self.layer[current_layer](lowerCamelCase , lowerCamelCase , head_mask[current_layer] ) snake_case__ : Any = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __lowerCamelCase , ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase ) -> int: """simple docstring""" super().__init__(lowerCamelCase ) snake_case__ : List[Any] = BertEncoderWithPabee(lowerCamelCase ) self.init_weights() snake_case__ : List[Any] = 0 snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = 0 snake_case__ : Tuple = 0 def lowercase__ ( self , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : List[str] = threshold def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = patience def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = 0 snake_case__ : Optional[int] = 0 def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : str = self.inference_layers_num / self.inference_instances_num snake_case__ : List[str] = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCamelCase ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , ) -> List[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: snake_case__ : Any = input_ids.size() elif inputs_embeds is not None: snake_case__ : Tuple = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) snake_case__ : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case__ : Union[str, Any] = torch.ones(lowerCamelCase , device=lowerCamelCase ) if token_type_ids is None: snake_case__ : List[Any] = torch.zeros(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case__ : torch.Tensor = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: snake_case__ ,snake_case__ ,snake_case__ : int = encoder_hidden_states.size() snake_case__ : str = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: snake_case__ : Optional[int] = torch.ones(lowerCamelCase , device=lowerCamelCase ) snake_case__ : Dict = self.invert_attention_mask(lowerCamelCase ) else: snake_case__ : int = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case__ : Union[str, Any] = self.get_head_mask(lowerCamelCase , self.config.num_hidden_layers ) snake_case__ : List[str] = self.embeddings( input_ids=lowerCamelCase , position_ids=lowerCamelCase , token_type_ids=lowerCamelCase , inputs_embeds=lowerCamelCase ) snake_case__ : List[Any] = embedding_output if self.training: snake_case__ : Dict = [] for i in range(self.config.num_hidden_layers ): snake_case__ : str = self.encoder.adaptive_forward( lowerCamelCase , current_layer=lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase ) snake_case__ : Any = self.pooler(lowerCamelCase ) snake_case__ : str = output_layers[i](output_dropout(lowerCamelCase ) ) res.append(lowerCamelCase ) elif self.patience == 0: # Use all layers for inference snake_case__ : List[str] = self.encoder( lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) snake_case__ : Any = self.pooler(encoder_outputs[0] ) snake_case__ : Optional[int] = [output_layers[self.config.num_hidden_layers - 1](lowerCamelCase )] else: snake_case__ : List[Any] = 0 snake_case__ : Any = None snake_case__ : List[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 snake_case__ : Dict = self.encoder.adaptive_forward( lowerCamelCase , current_layer=lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase ) snake_case__ : List[str] = self.pooler(lowerCamelCase ) snake_case__ : Optional[int] = output_layers[i](lowerCamelCase ) if regression: snake_case__ : List[str] = logits.detach() if patient_result is not None: snake_case__ : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: snake_case__ : List[str] = 0 else: snake_case__ : List[Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: snake_case__ : Tuple = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCamelCase ) ): patient_counter += 1 else: snake_case__ : Any = 0 snake_case__ : Any = logits if patient_counter == self.patience: break snake_case__ : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __lowerCamelCase , ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Tuple: """simple docstring""" super().__init__(lowerCamelCase ) snake_case__ : Dict = config.num_labels snake_case__ : Optional[int] = BertModelWithPabee(lowerCamelCase ) snake_case__ : List[Any] = nn.Dropout(config.hidden_dropout_prob ) snake_case__ : List[str] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) -> Dict: """simple docstring""" snake_case__ : Union[str, Any] = self.bert( input_ids=lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) snake_case__ : Optional[Any] = (logits[-1],) if labels is not None: snake_case__ : Optional[Any] = None snake_case__ : Optional[int] = 0 for ix, logits_item in enumerate(lowerCamelCase ): if self.num_labels == 1: # We are doing regression snake_case__ : List[Any] = MSELoss() snake_case__ : Dict = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: snake_case__ : List[Any] = CrossEntropyLoss() snake_case__ : List[str] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: snake_case__ : int = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 snake_case__ : int = (total_loss / total_weights,) + outputs return outputs
694
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # General docstring _lowerCAmelCase : Optional[Any] = "RegNetConfig" # Base docstring _lowerCAmelCase : Union[str, Any] = "facebook/regnet-y-040" _lowerCAmelCase : Optional[Any] = [1, 1_0_8_8, 7, 7] # Image classification docstring _lowerCAmelCase : str = "facebook/regnet-y-040" _lowerCAmelCase : List[Any] = "tabby, tabby cat" _lowerCAmelCase : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase = 3 , lowerCamelCase = 1 , lowerCamelCase = 1 , lowerCamelCase = "relu" , **lowerCamelCase , ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb snake_case__ : Dict = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) snake_case__ : List[str] = tf.keras.layers.ConvaD( filters=lowerCamelCase , kernel_size=lowerCamelCase , strides=lowerCamelCase , padding='''VALID''' , groups=lowerCamelCase , use_bias=lowerCamelCase , name='''convolution''' , ) snake_case__ : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) snake_case__ : int = ACTaFN[activation] if activation is not None else tf.identity def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = self.convolution(self.padding(lowerCamelCase ) ) snake_case__ : List[str] = self.normalization(lowerCamelCase ) snake_case__ : Optional[int] = self.activation(lowerCamelCase ) return hidden_state class snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = config.num_channels snake_case__ : Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : Any = shape_list(lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) snake_case__ : List[Any] = tf.transpose(lowerCamelCase , perm=(0, 2, 3, 1) ) snake_case__ : Optional[int] = self.embedder(lowerCamelCase ) return hidden_state class snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase = 2 , **lowerCamelCase ) -> Dict: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : List[Any] = tf.keras.layers.ConvaD( filters=lowerCamelCase , kernel_size=1 , strides=lowerCamelCase , use_bias=lowerCamelCase , name='''convolution''' ) snake_case__ : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = False ) -> tf.Tensor: """simple docstring""" return self.normalization(self.convolution(lowerCamelCase ) , training=lowerCamelCase ) class snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase , name='''pooler''' ) snake_case__ : Union[str, Any] = [ tf.keras.layers.ConvaD(filters=lowerCamelCase , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=lowerCamelCase , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = self.pooler(lowerCamelCase ) for layer_module in self.attention: snake_case__ : Optional[int] = layer_module(lowerCamelCase ) snake_case__ : Optional[Any] = hidden_state * pooled return hidden_state class snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = in_channels != out_channels or stride != 1 snake_case__ : Dict = max(1 , out_channels // config.groups_width ) snake_case__ : int = ( TFRegNetShortCut(lowerCamelCase , stride=lowerCamelCase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. snake_case__ : List[Any] = [ TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( lowerCamelCase , stride=lowerCamelCase , groups=lowerCamelCase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=lowerCamelCase , name='''layer.2''' ), ] snake_case__ : Any = ACTaFN[config.hidden_act] def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = hidden_state for layer_module in self.layers: snake_case__ : List[Any] = layer_module(lowerCamelCase ) snake_case__ : int = self.shortcut(lowerCamelCase ) hidden_state += residual snake_case__ : List[Any] = self.activation(lowerCamelCase ) return hidden_state class snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , **lowerCamelCase ) -> int: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : int = in_channels != out_channels or stride != 1 snake_case__ : Optional[Any] = max(1 , out_channels // config.groups_width ) snake_case__ : Tuple = ( TFRegNetShortCut(lowerCamelCase , stride=lowerCamelCase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) snake_case__ : List[str] = [ TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( lowerCamelCase , stride=lowerCamelCase , groups=lowerCamelCase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(lowerCamelCase , kernel_size=1 , activation=lowerCamelCase , name='''layer.3''' ), ] snake_case__ : Optional[Any] = ACTaFN[config.hidden_act] def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Dict = hidden_state for layer_module in self.layers: snake_case__ : List[str] = layer_module(lowerCamelCase ) snake_case__ : int = self.shortcut(lowerCamelCase ) hidden_state += residual snake_case__ : Union[str, Any] = self.activation(lowerCamelCase ) return hidden_state class snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 2 , lowerCamelCase = 2 , **lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : str = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer snake_case__ : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase , lowerCamelCase , lowerCamelCase , stride=lowerCamelCase , name='''layers.0''' ), *[layer(lowerCamelCase , lowerCamelCase , lowerCamelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" for layer_module in self.layers: snake_case__ : int = layer_module(lowerCamelCase ) return hidden_state class snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) snake_case__ : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase , lowerCamelCase , lowerCamelCase , depth=lowerCamelCase , name=f'''stages.{i+1}''' ) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = True ) -> TFBaseModelOutputWithNoAttention: """simple docstring""" snake_case__ : int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case__ : Union[str, Any] = hidden_states + (hidden_state,) snake_case__ : int = stage_module(lowerCamelCase ) if output_hidden_states: snake_case__ : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase , hidden_states=lowerCamelCase ) @keras_serializable class snake_case ( tf.keras.layers.Layer ): """simple docstring""" _lowerCAmelCase = RegNetConfig def __init__( self , lowerCamelCase , **lowerCamelCase ) -> Any: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : str = config snake_case__ : Optional[Any] = TFRegNetEmbeddings(lowerCamelCase , name='''embedder''' ) snake_case__ : int = TFRegNetEncoder(lowerCamelCase , name='''encoder''' ) snake_case__ : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase , name='''pooler''' ) @unpack_inputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: """simple docstring""" snake_case__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Any = self.embedder(lowerCamelCase , training=lowerCamelCase ) snake_case__ : int = self.encoder( lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase ) snake_case__ : int = encoder_outputs[0] snake_case__ : int = self.pooler(lowerCamelCase ) # Change to NCHW output format have uniformity in the modules snake_case__ : str = tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) snake_case__ : Any = tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: snake_case__ : Optional[Any] = tuple([tf.transpose(lowerCamelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase , pooler_output=lowerCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = RegNetConfig _lowerCAmelCase = 'regnet' _lowerCAmelCase = 'pixel_values' @property def lowercase__ ( self ) -> int: """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _lowerCAmelCase : Dict = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowerCAmelCase : Any = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __lowerCamelCase , ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) -> Any: """simple docstring""" super().__init__(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) snake_case__ : Tuple = TFRegNetMainLayer(lowerCamelCase , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: """simple docstring""" snake_case__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : str = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : int = self.regnet( pixel_values=lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowerCamelCase , ) class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) -> List[str]: """simple docstring""" super().__init__(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) snake_case__ : Dict = config.num_labels snake_case__ : int = TFRegNetMainLayer(lowerCamelCase , name='''regnet''' ) # classification head snake_case__ : List[str] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase__ ( self , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: """simple docstring""" snake_case__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : int = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Dict = self.regnet( lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase , training=lowerCamelCase ) snake_case__ : Any = outputs.pooler_output if return_dict else outputs[1] snake_case__ : str = self.classifier[0](lowerCamelCase ) snake_case__ : Any = self.classifier[1](lowerCamelCase ) snake_case__ : Any = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase , logits=lowerCamelCase ) if not return_dict: snake_case__ : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states )
694
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
1
'''simple docstring''' def _A ( snake_case__ : int , snake_case__ : int ): while b: snake_case__ ,snake_case__ : Any = b, a % b return a def _A ( snake_case__ : int , snake_case__ : int ): return a if b == 0 else euclidean_gcd_recursive(snake_case__ , a % b ) def _A ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
694
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCAmelCase : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _A ( ): snake_case__ : Optional[int] = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: snake_case__ : Dict = get_sagemaker_input() else: snake_case__ : List[Any] = get_cluster_input() return config def _A ( snake_case__ : Tuple=None ): if subparsers is not None: snake_case__ : Tuple = subparsers.add_parser('''config''' , description=snake_case__ ) else: snake_case__ : Dict = argparse.ArgumentParser('''Accelerate config command''' , description=snake_case__ ) parser.add_argument( '''--config_file''' , default=snake_case__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def _A ( snake_case__ : List[str] ): snake_case__ : Optional[Any] = get_user_input() if args.config_file is not None: snake_case__ : List[Any] = args.config_file else: if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) snake_case__ : Any = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(snake_case__ ) else: config.to_yaml_file(snake_case__ ) print(f'''accelerate configuration saved at {config_file}''' ) def _A ( ): snake_case__ : Tuple = config_command_parser() snake_case__ : int = parser.parse_args() config_command(snake_case__ ) if __name__ == "__main__": main()
694
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCAmelCase : List[str] = (7_2_0, 1_2_8_0) # Height, Width _lowerCAmelCase : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCAmelCase : List[Any] = 1 / 1_0_0 _lowerCAmelCase : List[Any] = "" _lowerCAmelCase : List[str] = "" _lowerCAmelCase : int = "" _lowerCAmelCase : List[str] = 2_5_0 def _A ( ): snake_case__ ,snake_case__ : List[str] = get_dataset(snake_case__ , snake_case__ ) for index in range(snake_case__ ): snake_case__ : List[Any] = random.sample(range(len(snake_case__ ) ) , 4 ) snake_case__ ,snake_case__ ,snake_case__ : Optional[int] = update_image_and_anno( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , filter_scale=snake_case__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case__ : Tuple = random_chars(32 ) snake_case__ : str = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] snake_case__ : Dict = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , snake_case__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) snake_case__ : Union[str, Any] = [] for anno in new_annos: snake_case__ : Dict = anno[3] - anno[1] snake_case__ : Union[str, Any] = anno[4] - anno[2] snake_case__ : Dict = anno[1] + width / 2 snake_case__ : Optional[int] = anno[2] + height / 2 snake_case__ : Dict = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(snake_case__ ) with open(f'''{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : List[Any] = [] snake_case__ : Union[str, Any] = [] for label_file in glob.glob(os.path.join(snake_case__ , '''*.txt''' ) ): snake_case__ : str = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(snake_case__ ) as in_file: snake_case__ : int = in_file.readlines() snake_case__ : List[str] = os.path.join(snake_case__ , f'''{label_name}.jpg''' ) snake_case__ : int = [] for obj_list in obj_lists: snake_case__ : int = obj_list.rstrip('''\n''' ).split(''' ''' ) snake_case__ : Any = float(obj[1] ) - float(obj[3] ) / 2 snake_case__ : List[Any] = float(obj[2] ) - float(obj[4] ) / 2 snake_case__ : Union[str, Any] = float(obj[1] ) + float(obj[3] ) / 2 snake_case__ : Any = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case__ ) labels.append(snake_case__ ) return img_paths, labels def _A ( snake_case__ : list , snake_case__ : list , snake_case__ : list[int] , snake_case__ : tuple[int, int] , snake_case__ : tuple[float, float] , snake_case__ : float = 0.0 , ): snake_case__ : Any = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) snake_case__ : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case__ : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case__ : Any = int(scale_x * output_size[1] ) snake_case__ : Tuple = int(scale_y * output_size[0] ) snake_case__ : List[str] = [] snake_case__ : List[str] = [] for i, index in enumerate(snake_case__ ): snake_case__ : Any = all_img_list[index] path_list.append(snake_case__ ) snake_case__ : Tuple = all_annos[index] snake_case__ : Optional[int] = cva.imread(snake_case__ ) if i == 0: # top-left snake_case__ : Dict = cva.resize(snake_case__ , (divid_point_x, divid_point_y) ) snake_case__ : Any = img for bbox in img_annos: snake_case__ : Tuple = bbox[1] * scale_x snake_case__ : Union[str, Any] = bbox[2] * scale_y snake_case__ : int = bbox[3] * scale_x snake_case__ : List[str] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case__ : Tuple = cva.resize(snake_case__ , (output_size[1] - divid_point_x, divid_point_y) ) snake_case__ : Optional[int] = img for bbox in img_annos: snake_case__ : List[Any] = scale_x + bbox[1] * (1 - scale_x) snake_case__ : Dict = bbox[2] * scale_y snake_case__ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) snake_case__ : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case__ : Tuple = cva.resize(snake_case__ , (divid_point_x, output_size[0] - divid_point_y) ) snake_case__ : Union[str, Any] = img for bbox in img_annos: snake_case__ : List[Any] = bbox[1] * scale_x snake_case__ : Dict = scale_y + bbox[2] * (1 - scale_y) snake_case__ : int = bbox[3] * scale_x snake_case__ : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case__ : Any = cva.resize( snake_case__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case__ : Tuple = img for bbox in img_annos: snake_case__ : Optional[Any] = scale_x + bbox[1] * (1 - scale_x) snake_case__ : str = scale_y + bbox[2] * (1 - scale_y) snake_case__ : List[str] = scale_x + bbox[3] * (1 - scale_x) snake_case__ : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case__ : List[str] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _A ( snake_case__ : int ): assert number_char > 1, "The number of character should greater than 1" snake_case__ : Dict = ascii_lowercase + digits return "".join(random.choice(snake_case__ ) for _ in range(snake_case__ ) ) if __name__ == "__main__": main() print("DONE ✅")
694
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
694
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class snake_case : """simple docstring""" def __init__( self , lowerCamelCase = None ) -> Optional[Any]: """simple docstring""" snake_case__ : Dict = value snake_case__ : Node | None = None # Added in order to delete a node easier snake_case__ : Node | None = None snake_case__ : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class snake_case : """simple docstring""" def __init__( self , lowerCamelCase = None ) -> Any: """simple docstring""" snake_case__ : int = root def __str__( self ) -> str: """simple docstring""" return str(self.root ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" if new_children is not None: # reset its kids snake_case__ : Tuple = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCamelCase ): # If it is the right children snake_case__ : Optional[int] = new_children else: snake_case__ : Union[str, Any] = new_children else: snake_case__ : Any = new_children def lowercase__ ( self , lowerCamelCase ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def lowercase__ ( self ) -> bool: """simple docstring""" return self.root is None def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" snake_case__ : List[str] = Node(lowerCamelCase ) # create a new Node if self.empty(): # if Tree is empty snake_case__ : Union[str, Any] = new_node # set its root else: # Tree is not empty snake_case__ : Tuple = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: snake_case__ : int = new_node # We insert the new node in a leaf break else: snake_case__ : Union[str, Any] = parent_node.left else: if parent_node.right is None: snake_case__ : int = new_node break else: snake_case__ : str = parent_node.right snake_case__ : Dict = parent_node def lowercase__ ( self , *lowerCamelCase ) -> None: """simple docstring""" for value in values: self.__insert(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: snake_case__ : Optional[int] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: snake_case__ : List[Any] = node.left if value < node.value else node.right return node def lowercase__ ( self , lowerCamelCase = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None snake_case__ : Optional[int] = self.root if not self.empty(): while node.right is not None: snake_case__ : Union[str, Any] = node.right return node def lowercase__ ( self , lowerCamelCase = None ) -> Node | None: """simple docstring""" if node is None: snake_case__ : Tuple = self.root if self.root is None: return None if not self.empty(): snake_case__ : List[Any] = self.root while node.left is not None: snake_case__ : Optional[Any] = node.left return node def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" snake_case__ : Any = self.search(lowerCamelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCamelCase , lowerCamelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCamelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCamelCase , node.left ) else: snake_case__ : Optional[int] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore snake_case__ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase__ ( self , lowerCamelCase ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase__ ( self , lowerCamelCase=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" if node: self.inorder(lowerCamelCase , node.left ) arr.append(node.value ) self.inorder(lowerCamelCase , node.right ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : list[int] = [] self.inorder(lowerCamelCase , lowerCamelCase ) # append all values to list using inorder traversal return arr[k - 1] def _A ( snake_case__ : Node | None ): snake_case__ : str = [] if curr_node is not None: snake_case__ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _A ( ): snake_case__ : Union[str, Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) snake_case__ : List[str] = BinarySearchTree() for i in testlist: t.insert(snake_case__ ) # Prints all the elements of the list in order traversal print(snake_case__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(snake_case__ ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
694
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
694
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : List[str] = dataset snake_case__ : Dict = process snake_case__ : str = params def __len__( self ) -> Dict: """simple docstring""" return len(self.dataset ) def __getitem__( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : Dict = self.dataset[i] snake_case__ : str = self.process(lowerCamelCase , **self.params ) return processed class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) -> Any: """simple docstring""" snake_case__ : List[str] = loader snake_case__ : Dict = infer snake_case__ : List[str] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether snake_case__ : Tuple = None snake_case__ : Optional[Any] = loader_batch_size # Internal bookkeeping snake_case__ : Tuple = None snake_case__ : int = None def __len__( self ) -> List[str]: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : int = iter(self.loader ) return self def lowercase__ ( self ) -> Dict: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice snake_case__ : Dict = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) snake_case__ : List[Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase , lowerCamelCase ): # Convert ModelOutput to tuple first snake_case__ : Optional[int] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): snake_case__ : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case__ : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase , lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): snake_case__ : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case__ : Any = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around snake_case__ : List[str] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case__ : int = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case__ : List[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. snake_case__ : List[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 snake_case__ : Dict = self._loader_batch_data.__class__(lowerCamelCase ) self._loader_batch_index += 1 return result def lowercase__ ( self ) -> Any: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch snake_case__ : List[str] = next(self.iterator ) snake_case__ : Union[str, Any] = self.infer(lowerCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase , torch.Tensor ): snake_case__ : Any = processed else: snake_case__ : Optional[Any] = list(processed.keys() )[0] snake_case__ : Optional[int] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : Optional[int] = len(lowerCamelCase ) else: snake_case__ : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case__ : Union[str, Any] = observed_batch_size # Setting internal index to unwrap the batch snake_case__ : List[Any] = processed snake_case__ : Any = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ) -> List[Any]: """simple docstring""" super().__init__(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __iter__( self ) -> List[str]: """simple docstring""" snake_case__ : Optional[Any] = iter(self.loader ) snake_case__ : Union[str, Any] = None return self def lowercase__ ( self ) -> Dict: """simple docstring""" if self.subiterator is None: snake_case__ : str = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item snake_case__ : Union[str, Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators snake_case__ : Dict = self.infer(next(self.iterator ) , **self.params ) snake_case__ : Dict = next(self.subiterator ) return processed class snake_case ( __lowerCamelCase ): """simple docstring""" def __iter__( self ) -> Any: """simple docstring""" snake_case__ : int = iter(self.loader ) return self def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = False snake_case__ : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: snake_case__ : Optional[Any] = self.loader_batch_item() snake_case__ : Optional[int] = item.pop('''is_last''' ) accumulator.append(lowerCamelCase ) if is_last: return accumulator while not is_last: snake_case__ : str = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase , torch.Tensor ): snake_case__ : Tuple = processed else: snake_case__ : Union[str, Any] = list(processed.keys() )[0] snake_case__ : str = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : str = len(lowerCamelCase ) else: snake_case__ : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case__ : Union[str, Any] = observed_batch_size snake_case__ : List[Any] = processed snake_case__ : Dict = 0 while self._loader_batch_index < self.loader_batch_size: snake_case__ : Optional[Any] = self.loader_batch_item() snake_case__ : List[Any] = item.pop('''is_last''' ) accumulator.append(lowerCamelCase ) if is_last: return accumulator else: snake_case__ : Any = processed snake_case__ : Union[str, Any] = item.pop('''is_last''' ) accumulator.append(lowerCamelCase ) return accumulator class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : int = dataset snake_case__ : Optional[Any] = key def __len__( self ) -> Tuple: """simple docstring""" return len(self.dataset ) def __getitem__( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: """simple docstring""" snake_case__ : Tuple = dataset snake_case__ : Union[str, Any] = keya snake_case__ : Any = keya def __len__( self ) -> Tuple: """simple docstring""" return len(self.dataset ) def __getitem__( self , lowerCamelCase ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
694
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _A ( snake_case__ : NDArray[floataa] , snake_case__ : NDArray[floataa] , snake_case__ : list[int] , snake_case__ : int , ): snake_case__ ,snake_case__ : Dict = coefficient_matrix.shape snake_case__ ,snake_case__ : Optional[Any] = constant_matrix.shape if rowsa != colsa: snake_case__ : List[str] = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(snake_case__ ) if colsa != 1: snake_case__ : Any = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(snake_case__ ) if rowsa != rowsa: snake_case__ : Dict = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(snake_case__ ) if len(snake_case__ ) != rowsa: snake_case__ : str = ( '''Number of initial values must be equal to number of rows in coefficient ''' f'''matrix but received {len(snake_case__ )} and {rowsa}''' ) raise ValueError(snake_case__ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) snake_case__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) snake_case__ ,snake_case__ : List[str] = table.shape strictly_diagonally_dominant(snake_case__ ) # Iterates the whole matrix for given number of times for _ in range(snake_case__ ): snake_case__ : str = [] for row in range(snake_case__ ): snake_case__ : Any = 0 for col in range(snake_case__ ): if col == row: snake_case__ : Union[str, Any] = table[row][col] elif col == cols - 1: snake_case__ : Dict = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] snake_case__ : Dict = (temp + val) / denom new_val.append(snake_case__ ) snake_case__ : Dict = new_val return [float(snake_case__ ) for i in new_val] def _A ( snake_case__ : NDArray[floataa] ): snake_case__ ,snake_case__ : Union[str, Any] = table.shape snake_case__ : Dict = True for i in range(0 , snake_case__ ): snake_case__ : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
694
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 65536 , lowerCamelCase = None , lowerCamelCase = 2 , lowerCamelCase = 2 , lowerCamelCase = 0 , lowerCamelCase = "fourier" , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = 0.0 , lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase = "UNetMidBlock1D" , lowerCamelCase = None , lowerCamelCase = (32, 32, 64) , lowerCamelCase = None , lowerCamelCase = 8 , lowerCamelCase = 1 , lowerCamelCase = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) snake_case__ : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) snake_case__ : Dict = block_out_channels[0] if use_timestep_embedding: snake_case__ : Any = block_out_channels[0] * 4 snake_case__ : Optional[Any] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = nn.ModuleList([] ) snake_case__ : List[str] = None # down snake_case__ : Tuple = in_channels for i, down_block_type in enumerate(lowerCamelCase ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : List[Any] = i == len(lowerCamelCase ) - 1 snake_case__ : Dict = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid snake_case__ : Optional[int] = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up snake_case__ : Union[str, Any] = list(reversed(lowerCamelCase ) ) snake_case__ : Any = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : List[Any] = out_channels else: snake_case__ : Dict = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): snake_case__ : List[str] = output_channel snake_case__ : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) snake_case__ : List[str] = i == len(lowerCamelCase ) - 1 snake_case__ : str = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = output_channel # out snake_case__ : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case__ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" snake_case__ : str = timestep if not torch.is_tensor(lowerCamelCase ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: snake_case__ : Optional[Any] = timesteps[None].to(sample.device ) snake_case__ : Any = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: snake_case__ : Tuple = self.time_mlp(lowerCamelCase ) else: snake_case__ : Union[str, Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case__ : List[Any] = () for downsample_block in self.down_blocks: snake_case__ ,snake_case__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Any = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case__ : str = down_block_res_samples[-1:] snake_case__ : int = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: snake_case__ : Dict = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
694
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase : List[Any] = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case__ : str = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case__ : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case__ : Any = os.path.join(get_home_dir() , '''models''' ) snake_case__ : List[Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) snake_case__ : Optional[int] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) snake_case__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case__ : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(snake_case__ ), } snake_case__ : Dict = BertConfig.from_dict(snake_case__ ) snake_case__ : Dict = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ : List[Any] , snake_case__ : Any ): snake_case__ : Union[str, Any] = hf_param.shape snake_case__ : Any = to_torch(params[gluon_param] ) snake_case__ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case__ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case__ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case__ : int = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case__ : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case__ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : int = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case__ : Optional[int] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case__ : BertOutput = layer.output snake_case__ : Any = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case__ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case__ : str = tokenizer.encode_plus(snake_case__ )['''input_ids'''] # Get gluon output snake_case__ : List[str] = mx.nd.array([input_ids] ) snake_case__ : Optional[int] = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) snake_case__ : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() snake_case__ : Optional[Any] = tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' ) snake_case__ : str = hf_bort_model(**snake_case__ )[0] snake_case__ : str = output_gluon[0].asnumpy() snake_case__ : str = output_hf[0].detach().numpy() snake_case__ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case__ : Optional[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
694
1
'''simple docstring''' from random import randint, random def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : int = 5 , ): snake_case__ : Optional[Any] = [[-1] * number_of_cells] # Create a highway without any car snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = max(snake_case__ , 0 ) while i < number_of_cells: snake_case__ : Optional[int] = ( randint(0 , snake_case__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _A ( snake_case__ : list , snake_case__ : int ): snake_case__ : List[str] = 0 snake_case__ : str = highway_now[car_index + 1 :] for cell in range(len(snake_case__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(snake_case__ , -1 ) def _A ( snake_case__ : list , snake_case__ : float , snake_case__ : int ): snake_case__ : int = len(snake_case__ ) # Beforce calculations, the highway is empty snake_case__ : Any = [-1] * number_of_cells for car_index in range(snake_case__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed snake_case__ : Optional[Any] = min(highway_now[car_index] + 1 , snake_case__ ) # Number of empty cell before the next car snake_case__ : int = get_distance(snake_case__ , snake_case__ ) - 1 # We can't have the car causing an accident snake_case__ : Tuple = min(next_highway[car_index] , snake_case__ ) if random() < probability: # Randomly, a driver will slow down snake_case__ : Optional[Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def _A ( snake_case__ : list , snake_case__ : int , snake_case__ : float , snake_case__ : int ): snake_case__ : Union[str, Any] = len(highway[0] ) for i in range(snake_case__ ): snake_case__ : Any = update(highway[i] , snake_case__ , snake_case__ ) snake_case__ : str = [-1] * number_of_cells for car_index in range(snake_case__ ): snake_case__ : Optional[Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) snake_case__ : Optional[Any] = (car_index + speed) % number_of_cells # Commit the change of position snake_case__ : Dict = speed highway.append(snake_case__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
694
'''simple docstring''' def _A ( snake_case__ : int = 4_00_00_00 ): snake_case__ : int = [] snake_case__ ,snake_case__ : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case__ ) snake_case__ ,snake_case__ : Any = b, a + b return sum(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
694
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = tempfile.mkdtemp() # fmt: off snake_case__ : Dict = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case__ : Optional[Any] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) snake_case__ : Optional[Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] snake_case__ : List[str] = {'''unk_token''': '''<unk>'''} snake_case__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase ) ) snake_case__ : List[str] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } snake_case__ : Optional[int] = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def lowercase__ ( self , **lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowercase__ ( self , **lowerCamelCase ) -> List[str]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowercase__ ( self , **lowerCamelCase ) -> Optional[int]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case__ : Union[str, Any] = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : str = self.get_tokenizer() snake_case__ : List[str] = self.get_rust_tokenizer() snake_case__ : Any = self.get_image_processor() snake_case__ : Optional[Any] = CLIPSegProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) snake_case__ : Optional[int] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) snake_case__ : str = CLIPSegProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) snake_case__ : int = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case__ : Dict = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) snake_case__ : int = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = self.get_image_processor() snake_case__ : Any = self.get_tokenizer() snake_case__ : Any = CLIPSegProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case__ : Union[str, Any] = self.prepare_image_inputs() snake_case__ : Optional[int] = image_processor(lowerCamelCase , return_tensors='''np''' ) snake_case__ : int = processor(images=lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = self.get_image_processor() snake_case__ : str = self.get_tokenizer() snake_case__ : List[Any] = CLIPSegProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case__ : Tuple = '''lower newer''' snake_case__ : Optional[Any] = processor(text=lowerCamelCase ) snake_case__ : int = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : int = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : str = CLIPSegProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case__ : Union[str, Any] = '''lower newer''' snake_case__ : Tuple = self.prepare_image_inputs() snake_case__ : Tuple = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Union[str, Any] = CLIPSegProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case__ : Dict = self.prepare_image_inputs() snake_case__ : Optional[Any] = self.prepare_image_inputs() snake_case__ : str = processor(images=lowerCamelCase , visual_prompt=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : str = self.get_image_processor() snake_case__ : List[str] = self.get_tokenizer() snake_case__ : Tuple = CLIPSegProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) snake_case__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : List[Any] = processor.batch_decode(lowerCamelCase ) snake_case__ : List[str] = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase )
694
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCAmelCase : Any = None _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _lowerCAmelCase : Optional[int] = { "google/pegasus-xsum": 5_1_2, } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<pad>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<mask_2>" , lowerCamelCase="<mask_1>" , lowerCamelCase=None , lowerCamelCase=103 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase )}, but is''' f''' {type(lowerCamelCase )}''' ) snake_case__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : List[Any] = additional_special_tokens_extended else: snake_case__ : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Union[str, Any] = vocab_file snake_case__ : List[Any] = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
694
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=False , ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] = size if size is not None else {'''height''': 20, '''width''': 20} snake_case__ : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} snake_case__ : str = parent snake_case__ : Optional[Any] = batch_size snake_case__ : str = num_channels snake_case__ : Union[str, Any] = image_size snake_case__ : Tuple = min_resolution snake_case__ : str = max_resolution snake_case__ : Optional[Any] = do_resize snake_case__ : List[str] = size snake_case__ : Optional[Any] = do_center_crop snake_case__ : Tuple = crop_size snake_case__ : Any = do_normalize snake_case__ : int = image_mean snake_case__ : Union[str, Any] = image_std snake_case__ : List[Any] = do_reduce_labels def lowercase__ ( self ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _A ( ): snake_case__ : Any = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) snake_case__ : List[Any] = Image.open(dataset[0]['''file'''] ) snake_case__ : Optional[int] = Image.open(dataset[1]['''file'''] ) return image, map def _A ( ): snake_case__ : List[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) snake_case__ : Union[str, Any] = Image.open(ds[0]['''file'''] ) snake_case__ : Union[str, Any] = Image.open(ds[1]['''file'''] ) snake_case__ : Dict = Image.open(ds[2]['''file'''] ) snake_case__ : Optional[int] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = BeitImageProcessor if is_vision_available() else None def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] = BeitImageProcessingTester(self ) @property def lowercase__ ( self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''image_std''' ) ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase ) def lowercase__ ( self ) -> List[str]: """simple docstring""" pass def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case__ : List[str] = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case__ : Dict = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input snake_case__ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case__ : Optional[int] = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) snake_case__ : List[str] = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched snake_case__ : Tuple = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) snake_case__ ,snake_case__ : List[Any] = prepare_semantic_single_inputs() snake_case__ : Any = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) snake_case__ ,snake_case__ : Union[str, Any] = prepare_semantic_batch_inputs() snake_case__ : Dict = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 snake_case__ ,snake_case__ : Optional[int] = prepare_semantic_single_inputs() snake_case__ : Optional[int] = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) snake_case__ : List[str] = True snake_case__ : Tuple = image_processing(lowerCamelCase , lowerCamelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
694
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = 1.0 if scale is None else scale snake_case__ : Dict = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.variance.sqrt() class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = args_dim snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) snake_case__ : Optional[int] = domain_map def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Tuple = function def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" snake_case__ : Optional[Any] = dim snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" snake_case__ : List[Any] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 0.0 def lowercase__ ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self , *lowerCamelCase ) -> Any: """simple docstring""" raise NotImplementedError() @staticmethod def lowercase__ ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self , lowerCamelCase ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _lowerCAmelCase : Any = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
'''simple docstring''' from math import factorial def _A ( snake_case__ : int = 20 ): snake_case__ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : Union[str, Any] = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: _lowerCAmelCase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
694
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _A ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def _A ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ): if dataset.ndim != value_array.ndim: snake_case__ : Any = ( '''Wrong input data\'s dimensions... ''' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: snake_case__ : Optional[int] = ( '''Wrong input data\'s shape... ''' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: snake_case__ : int = ( '''Input data have different datatype... ''' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(snake_case__ ) snake_case__ : Dict = [] for value in value_array: snake_case__ : str = euclidean(snake_case__ , dataset[0] ) snake_case__ : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: snake_case__ : Dict = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: snake_case__ : Union[str, Any] = temp_dist snake_case__ : Dict = dataset_value.tolist() answer.append([vector, dist] ) return answer def _A ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ): return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
694
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = (EulerDiscreteScheduler,) _lowerCAmelCase = 1_0 def lowercase__ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Any = self.dummy_model() snake_case__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : int = model(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : Optional[int] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Union[str, Any] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Tuple = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model(lowerCamelCase , lowerCamelCase ) snake_case__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : int = output.prev_sample snake_case__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Optional[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
694
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase : Dict = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
694
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _lowerCAmelCase : Optional[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def _A ( snake_case__ : Optional[int] , snake_case__ : Tuple ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , '''sklearn''' ) return (preds == labels).mean() def _A ( snake_case__ : int , snake_case__ : Optional[int] ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , '''sklearn''' ) snake_case__ : int = simple_accuracy(snake_case__ , snake_case__ ) snake_case__ : Tuple = fa_score(y_true=snake_case__ , y_pred=snake_case__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _A ( snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , '''sklearn''' ) snake_case__ : List[str] = pearsonr(snake_case__ , snake_case__ )[0] snake_case__ : Optional[Any] = spearmanr(snake_case__ , snake_case__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _A ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , '''sklearn''' ) assert len(snake_case__ ) == len(snake_case__ ), f'''Predictions and labels have mismatched lengths {len(snake_case__ )} and {len(snake_case__ )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(snake_case__ , snake_case__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "mrpc": return acc_and_fa(snake_case__ , snake_case__ ) elif task_name == "sts-b": return pearson_and_spearman(snake_case__ , snake_case__ ) elif task_name == "qqp": return acc_and_fa(snake_case__ , snake_case__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "qnli": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "rte": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "wnli": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "hans": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError(snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Tuple ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , '''sklearn''' ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError(f'''Predictions and labels have mismatched lengths {len(snake_case__ )} and {len(snake_case__ )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError(snake_case__ )
694
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): snake_case__ : List[Any] = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
694
1
'''simple docstring''' import os import string import sys _lowerCAmelCase : Optional[int] = 1 << 8 _lowerCAmelCase : Tuple = { "tab": ord("\t"), "newline": ord("\r"), "esc": 2_7, "up": 6_5 + ARROW_KEY_FLAG, "down": 6_6 + ARROW_KEY_FLAG, "right": 6_7 + ARROW_KEY_FLAG, "left": 6_8 + ARROW_KEY_FLAG, "mod_int": 9_1, "undefined": sys.maxsize, "interrupt": 3, "insert": 5_0, "delete": 5_1, "pg_up": 5_3, "pg_down": 5_4, } _lowerCAmelCase : List[Any] = KEYMAP["up"] _lowerCAmelCase : Tuple = KEYMAP["left"] if sys.platform == "win32": _lowerCAmelCase : str = [] _lowerCAmelCase : int = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(1_0): _lowerCAmelCase : List[str] = ord(str(i)) def _A ( ): if os.name == "nt": import msvcrt snake_case__ : Tuple = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(snake_case__ ) == 0: # Read the keystroke snake_case__ : Dict = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ : List[str] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(snake_case__ ) if ord(snake_case__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) snake_case__ : Union[str, Any] = chr(KEYMAP['''esc'''] ) except KeyError: snake_case__ : Optional[Any] = cha[1] else: snake_case__ : Any = ch.decode(snake_case__ ) else: snake_case__ : List[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ : Optional[Any] = sys.stdin.fileno() snake_case__ : Optional[int] = termios.tcgetattr(snake_case__ ) try: tty.setraw(snake_case__ ) snake_case__ : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(snake_case__ , termios.TCSADRAIN , snake_case__ ) return ch def _A ( ): snake_case__ : str = get_raw_chars() if ord(snake_case__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(snake_case__ ) == KEYMAP["esc"]: snake_case__ : List[str] = get_raw_chars() if ord(snake_case__ ) == KEYMAP["mod_int"]: snake_case__ : List[str] = get_raw_chars() if ord(snake_case__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(snake_case__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(snake_case__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
694
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
694
1
'''simple docstring''' def _A ( snake_case__ : int , snake_case__ : int ): return number | (1 << position) def _A ( snake_case__ : int , snake_case__ : int ): return number & ~(1 << position) def _A ( snake_case__ : int , snake_case__ : int ): return number ^ (1 << position) def _A ( snake_case__ : int , snake_case__ : int ): return ((number >> position) & 1) == 1 def _A ( snake_case__ : int , snake_case__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
694
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( snake_case__ : List[Any] ): if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(snake_case__ , '''_dynamo''' ): return False return isinstance(snake_case__ , torch._dynamo.eval_frame.OptimizedModule ) def _A ( snake_case__ : Dict , snake_case__ : bool = True ): snake_case__ : Dict = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) snake_case__ : Tuple = is_compiled_module(snake_case__ ) if is_compiled: snake_case__ : Optional[Any] = model snake_case__ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case__ , snake_case__ ): snake_case__ : Optional[Any] = model.module if not keep_fpaa_wrapper: snake_case__ : str = getattr(snake_case__ , '''forward''' ) snake_case__ : int = model.__dict__.pop('''_original_forward''' , snake_case__ ) if original_forward is not None: while hasattr(snake_case__ , '''__wrapped__''' ): snake_case__ : Dict = forward.__wrapped__ if forward == original_forward: break snake_case__ : List[str] = forward if getattr(snake_case__ , '''_converted_to_transformer_engine''' , snake_case__ ): convert_model(snake_case__ , to_transformer_engine=snake_case__ ) if is_compiled: snake_case__ : int = model snake_case__ : Any = compiled_model return model def _A ( ): PartialState().wait_for_everyone() def _A ( snake_case__ : Optional[int] , snake_case__ : Tuple ): if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case__ , snake_case__ ) elif PartialState().local_process_index == 0: torch.save(snake_case__ , snake_case__ ) @contextmanager def _A ( **snake_case__ : Tuple ): for key, value in kwargs.items(): snake_case__ : Union[str, Any] = str(snake_case__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( snake_case__ : List[Any] ): if not hasattr(snake_case__ , '''__qualname__''' ) and not hasattr(snake_case__ , '''__name__''' ): snake_case__ : List[str] = getattr(snake_case__ , '''__class__''' , snake_case__ ) if hasattr(snake_case__ , '''__qualname__''' ): return obj.__qualname__ if hasattr(snake_case__ , '''__name__''' ): return obj.__name__ return str(snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Optional[int] ): for key, value in source.items(): if isinstance(snake_case__ , snake_case__ ): snake_case__ : List[str] = destination.setdefault(snake_case__ , {} ) merge_dicts(snake_case__ , snake_case__ ) else: snake_case__ : str = value return destination def _A ( snake_case__ : int = None ): if port is None: snake_case__ : Dict = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
694
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'markuplm' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=256 , lowerCamelCase=1024 , lowerCamelCase=216 , lowerCamelCase=1001 , lowerCamelCase=32 , lowerCamelCase=50 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Optional[int] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : List[Any] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Dict = use_cache snake_case__ : int = classifier_dropout # additional properties snake_case__ : Union[str, Any] = max_depth snake_case__ : Dict = max_xpath_tag_unit_embeddings snake_case__ : Any = max_xpath_subs_unit_embeddings snake_case__ : int = tag_pad_id snake_case__ : Tuple = subs_pad_id snake_case__ : Dict = xpath_unit_hidden_size
694
1
'''simple docstring''' from math import sqrt def _A ( snake_case__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _A ( snake_case__ : int = 1_00_01 ): snake_case__ : Dict = 0 snake_case__ : List[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(snake_case__ ): count += 1 while count != nth: number += 2 if is_prime(snake_case__ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
694
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'instructblip_vision_model' def __init__( self , lowerCamelCase=1408 , lowerCamelCase=6144 , lowerCamelCase=39 , lowerCamelCase=16 , lowerCamelCase=224 , lowerCamelCase=14 , lowerCamelCase="gelu" , lowerCamelCase=1E-6 , lowerCamelCase=0.0 , lowerCamelCase=1E-1_0 , lowerCamelCase=True , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Optional[Any] = hidden_size snake_case__ : str = intermediate_size snake_case__ : Any = num_hidden_layers snake_case__ : Tuple = num_attention_heads snake_case__ : Optional[Any] = patch_size snake_case__ : Tuple = image_size snake_case__ : List[Any] = initializer_range snake_case__ : Union[str, Any] = attention_dropout snake_case__ : List[str] = layer_norm_eps snake_case__ : List[Any] = hidden_act snake_case__ : Optional[Any] = qkv_bias @classmethod def lowercase__ ( cls , lowerCamelCase , **lowerCamelCase ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase ) snake_case__ ,snake_case__ : Any = cls.get_config_dict(lowerCamelCase , **lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": snake_case__ : List[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase , **lowerCamelCase ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'instructblip_qformer' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase="absolute" , lowerCamelCase=2 , lowerCamelCase=1408 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) snake_case__ : int = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : Optional[Any] = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : Optional[int] = position_embedding_type snake_case__ : List[Any] = cross_attention_frequency snake_case__ : Optional[Any] = encoder_hidden_size @classmethod def lowercase__ ( cls , lowerCamelCase , **lowerCamelCase ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase ) snake_case__ ,snake_case__ : List[str] = cls.get_config_dict(lowerCamelCase , **lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": snake_case__ : Optional[int] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase , **lowerCamelCase ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'instructblip' _lowerCAmelCase = True def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=32 , **lowerCamelCase ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) if vision_config is None: snake_case__ : Tuple = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: snake_case__ : List[Any] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) snake_case__ : Optional[Any] = InstructBlipVisionConfig(**lowerCamelCase ) snake_case__ : Any = InstructBlipQFormerConfig(**lowerCamelCase ) snake_case__ : Union[str, Any] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' snake_case__ : Union[str, Any] = CONFIG_MAPPING[text_model_type](**lowerCamelCase ) snake_case__ : Any = self.text_config.tie_word_embeddings snake_case__ : Dict = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Tuple = self.vision_config.hidden_size snake_case__ : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : Dict = 1.0 snake_case__ : Union[str, Any] = 0.02 @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ) -> Any: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCamelCase , ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : List[str] = copy.deepcopy(self.__dict__ ) snake_case__ : Any = self.vision_config.to_dict() snake_case__ : Union[str, Any] = self.qformer_config.to_dict() snake_case__ : Dict = self.text_config.to_dict() snake_case__ : Dict = self.__class__.model_type return output
694
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ ,snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
694
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _lowerCAmelCase : Dict = random.Random() def _A ( snake_case__ : Union[str, Any] , snake_case__ : List[Any]=1.0 , snake_case__ : Union[str, Any]=None , snake_case__ : Union[str, Any]=None ): if rng is None: snake_case__ : str = global_rng snake_case__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=24 , lowerCamelCase=24 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=True , ) -> Tuple: """simple docstring""" snake_case__ : List[str] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : str = min_seq_length snake_case__ : List[str] = max_seq_length snake_case__ : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ : Any = feature_size snake_case__ : Union[str, Any] = num_mel_bins snake_case__ : List[str] = padding_value snake_case__ : List[Any] = sampling_rate snake_case__ : Optional[int] = return_attention_mask snake_case__ : Tuple = do_normalize def lowercase__ ( self ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self , lowerCamelCase=False , lowerCamelCase=False ) -> List[Any]: """simple docstring""" def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: snake_case__ : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ : str = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ : Optional[int] = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Optional[int] = SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" self.assertTrue(np.all(np.mean(lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : int = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size snake_case__ : Optional[int] = feature_extractor(lowerCamelCase , padding=lowerCamelCase , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input snake_case__ : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features snake_case__ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched snake_case__ : str = feature_extractor(lowerCamelCase , return_tensors='''np''' ).input_features snake_case__ : str = feature_extractor(lowerCamelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case__ : Tuple = np.asarray(lowerCamelCase ) snake_case__ : Union[str, Any] = feature_extractor(lowerCamelCase , return_tensors='''np''' ).input_features snake_case__ : List[str] = feature_extractor(lowerCamelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case__ : Dict = [None, 16, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): snake_case__ : Tuple = feature_extractor( lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_attention_mask=lowerCamelCase ) snake_case__ : Any = inputs.input_features snake_case__ : int = inputs.attention_mask snake_case__ : Optional[int] = [np.sum(lowerCamelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : str = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case__ : int = [None, 16, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): snake_case__ : List[str] = feature_extractor( lowerCamelCase , max_length=lowerCamelCase , padding=lowerCamelCase , return_tensors='''np''' , return_attention_mask=lowerCamelCase ) snake_case__ : List[Any] = inputs.input_features snake_case__ : List[str] = inputs.attention_mask snake_case__ : Dict = [np.sum(lowerCamelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : Optional[int] = feature_extractor( lowerCamelCase , padding='''max_length''' , max_length=4 , truncation=lowerCamelCase , return_tensors='''np''' , return_attention_mask=lowerCamelCase , ) snake_case__ : Union[str, Any] = inputs.input_features snake_case__ : Optional[int] = inputs.attention_mask snake_case__ : Any = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : Optional[Any] = feature_extractor( lowerCamelCase , padding='''longest''' , max_length=4 , truncation=lowerCamelCase , return_tensors='''np''' , return_attention_mask=lowerCamelCase , ) snake_case__ : int = inputs.input_features snake_case__ : Dict = inputs.attention_mask snake_case__ : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) snake_case__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : Tuple = feature_extractor( lowerCamelCase , padding='''longest''' , max_length=16 , truncation=lowerCamelCase , return_tensors='''np''' , return_attention_mask=lowerCamelCase , ) snake_case__ : Optional[int] = inputs.input_features snake_case__ : List[Any] = inputs.attention_mask snake_case__ : int = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" import torch snake_case__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa ) snake_case__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ : Tuple = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case__ : Dict = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self , lowerCamelCase ) -> Dict: """simple docstring""" from datasets import load_dataset snake_case__ : Union[str, Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case__ : Optional[int] = ds.sort('''id''' ).select(range(lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on snake_case__ : Dict = self._load_datasamples(1 ) snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : str = feature_extractor(lowerCamelCase , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
694
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Any = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Tuple: """simple docstring""" super().__init__() snake_case__ : str = nn.ModuleList(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = True , ) -> Union[ControlNetOutput, Tuple]: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase , lowerCamelCase , self.nets ) ): snake_case__ ,snake_case__ : Optional[int] = controlnet( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) # merge samples if i == 0: snake_case__ ,snake_case__ : Tuple = down_samples, mid_sample else: snake_case__ : Optional[Any] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase , lowerCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowercase__ ( self , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = None , ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase , is_main_process=lowerCamelCase , save_function=lowerCamelCase , safe_serialization=lowerCamelCase , variant=lowerCamelCase , ) idx += 1 snake_case__ : Optional[Any] = model_path_to_save + f'''_{idx}''' @classmethod def lowercase__ ( cls , lowerCamelCase , **lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Optional[Any] = 0 snake_case__ : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case__ : Optional[Any] = pretrained_model_path while os.path.isdir(lowerCamelCase ): snake_case__ : List[Any] = ControlNetModel.from_pretrained(lowerCamelCase , **lowerCamelCase ) controlnets.append(lowerCamelCase ) idx += 1 snake_case__ : Dict = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(lowerCamelCase )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowerCamelCase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(lowerCamelCase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowerCamelCase )
694
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
1
'''simple docstring''' def _A ( snake_case__ : str , snake_case__ : str ): assert x is not None assert y is not None snake_case__ : Union[str, Any] = len(snake_case__ ) snake_case__ : List[str] = len(snake_case__ ) # declaring the array for storing the dp values snake_case__ : Union[str, Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): snake_case__ : Any = 1 if x[i - 1] == y[j - 1] else 0 snake_case__ : Optional[int] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) snake_case__ : str = '''''' snake_case__ ,snake_case__ : List[Any] = m, n while i > 0 and j > 0: snake_case__ : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: snake_case__ : str = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowerCAmelCase : Optional[int] = "AGGTAB" _lowerCAmelCase : Optional[Any] = "GXTXAYB" _lowerCAmelCase : Any = 4 _lowerCAmelCase : str = "GTAB" _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
694
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
1
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
1
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowerCAmelCase : Any = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" def lowercase__ ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : Union[str, Any] = [label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" if len(lowerCamelCase ) == 0 or len(lowerCamelCase ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(lowerCamelCase ) ) if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : Union[str, Any] = [sequences] snake_case__ : Union[str, Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__lowerCamelCase ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase=ZeroShotClassificationArgumentHandler() , *lowerCamelCase , **lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = args_parser super().__init__(*lowerCamelCase , **lowerCamelCase ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def lowercase__ ( self , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=TruncationStrategy.ONLY_FIRST , **lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) snake_case__ : List[Any] = self.tokenizer.eos_token try: snake_case__ : List[Any] = self.tokenizer( lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , ) except Exception as e: if "too short" in str(lowerCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. snake_case__ : Optional[Any] = self.tokenizer( lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=lowerCamelCase , padding=lowerCamelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowercase__ ( self , **lowerCamelCase ) -> List[Any]: """simple docstring""" if kwargs.get('''multi_class''' , lowerCamelCase ) is not None: snake_case__ : Tuple = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) snake_case__ : Union[str, Any] = {} if "candidate_labels" in kwargs: snake_case__ : List[Any] = self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: snake_case__ : Dict = kwargs['''hypothesis_template'''] snake_case__ : Tuple = {} if "multi_label" in kwargs: snake_case__ : str = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase , ) -> Optional[Any]: """simple docstring""" if len(lowerCamelCase ) == 0: pass elif len(lowerCamelCase ) == 1 and "candidate_labels" not in kwargs: snake_case__ : str = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase="This example is {}." ) -> Any: """simple docstring""" snake_case__ ,snake_case__ : Dict = self._args_parser(lowerCamelCase , lowerCamelCase , lowerCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase , lowerCamelCase ) ): snake_case__ : List[str] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase ) - 1, **model_input, } def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : int = inputs['''candidate_label'''] snake_case__ : List[Any] = inputs['''sequence'''] snake_case__ : Optional[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} snake_case__ : int = self.model(**lowerCamelCase ) snake_case__ : Union[str, Any] = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase=False ) -> Union[str, Any]: """simple docstring""" snake_case__ : Any = [outputs['''candidate_label'''] for outputs in model_outputs] snake_case__ : List[str] = [outputs['''sequence'''] for outputs in model_outputs] snake_case__ : Any = np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) snake_case__ : List[Any] = logits.shape[0] snake_case__ : str = len(lowerCamelCase ) snake_case__ : Tuple = N // n snake_case__ : List[Any] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently snake_case__ : List[str] = self.entailment_id snake_case__ : Tuple = -1 if entailment_id == 0 else 0 snake_case__ : str = reshaped_outputs[..., [contradiction_id, entailment_id]] snake_case__ : List[str] = np.exp(lowerCamelCase ) / np.exp(lowerCamelCase ).sum(-1 , keepdims=lowerCamelCase ) snake_case__ : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels snake_case__ : Dict = reshaped_outputs[..., self.entailment_id] snake_case__ : List[str] = np.exp(lowerCamelCase ) / np.exp(lowerCamelCase ).sum(-1 , keepdims=lowerCamelCase ) snake_case__ : str = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
694
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def _A ( snake_case__ : List[Any] ): # initialize config if "resnet-50" in model_name: snake_case__ : Optional[int] = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: snake_case__ : Tuple = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) snake_case__ : int = DetrConfig(use_timm_backbone=snake_case__ , backbone_config=snake_case__ ) # set label attributes snake_case__ : List[Any] = '''panoptic''' in model_name if is_panoptic: snake_case__ : Tuple = 2_50 else: snake_case__ : Tuple = 91 snake_case__ : List[str] = '''huggingface/label-files''' snake_case__ : List[Any] = '''coco-detection-id2label.json''' snake_case__ : Union[str, Any] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Tuple = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case__ : Dict = idalabel snake_case__ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def _A ( snake_case__ : int ): # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ : Any = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def _A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] ): snake_case__ : int = state_dict.pop(snake_case__ ) snake_case__ : Optional[int] = val def _A ( snake_case__ : Dict , snake_case__ : str=False ): snake_case__ : str = '''''' if is_panoptic: snake_case__ : int = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : str = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ : List[str] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[:2_56, :] snake_case__ : List[str] = in_proj_bias[:2_56] snake_case__ : Union[str, Any] = in_proj_weight[2_56:5_12, :] snake_case__ : Union[str, Any] = in_proj_bias[2_56:5_12] snake_case__ : Optional[int] = in_proj_weight[-2_56:, :] snake_case__ : Optional[Any] = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case__ : Dict = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ : str = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[:2_56, :] snake_case__ : str = in_proj_bias[:2_56] snake_case__ : Union[str, Any] = in_proj_weight[2_56:5_12, :] snake_case__ : Union[str, Any] = in_proj_bias[2_56:5_12] snake_case__ : List[str] = in_proj_weight[-2_56:, :] snake_case__ : int = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention snake_case__ : Dict = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) snake_case__ : Optional[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case__ : Tuple = in_proj_weight_cross_attn[:2_56, :] snake_case__ : Any = in_proj_bias_cross_attn[:2_56] snake_case__ : List[str] = in_proj_weight_cross_attn[2_56:5_12, :] snake_case__ : List[str] = in_proj_bias_cross_attn[2_56:5_12] snake_case__ : Optional[Any] = in_proj_weight_cross_attn[-2_56:, :] snake_case__ : Tuple = in_proj_bias_cross_attn[-2_56:] def _A ( ): snake_case__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : Optional[int] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def _A ( snake_case__ : str , snake_case__ : str=None , snake_case__ : int=False ): snake_case__ ,snake_case__ : List[Any] = get_detr_config(snake_case__ ) # load original model from torch hub snake_case__ : List[Any] = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'''Converting model {model_name}...''' ) snake_case__ : Tuple = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=snake_case__ ).eval() snake_case__ : Optional[int] = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case__ ): if is_panoptic: snake_case__ : Dict = '''detr.''' + src rename_key(snake_case__ , snake_case__ , snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : str = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): snake_case__ : str = state_dict.pop(snake_case__ ) snake_case__ : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : List[Any] = state_dict.pop(snake_case__ ) snake_case__ : str = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: snake_case__ : Any = state_dict.pop(snake_case__ ) snake_case__ : List[Any] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): snake_case__ : Union[str, Any] = state_dict.pop(snake_case__ ) snake_case__ : Dict = val # finally, create HuggingFace model and load state dict snake_case__ : Optional[Any] = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion on an image snake_case__ : str = '''coco_panoptic''' if is_panoptic else '''coco_detection''' snake_case__ : str = DetrImageProcessor(format=snake_case__ ) snake_case__ : Union[str, Any] = processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ : Optional[int] = encoding['''pixel_values'''] snake_case__ : Tuple = detr(snake_case__ ) snake_case__ : List[str] = model(snake_case__ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") _lowerCAmelCase : Any = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
694
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
694
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") _lowerCAmelCase : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _lowerCAmelCase : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _A ( snake_case__ : str ): with open(snake_case__ , '''rb''' ) as f: snake_case__ : List[Any] = Image.open(snake_case__ ) return im.convert('''RGB''' ) @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the training data.'} ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the validation data.'} ) _lowerCAmelCase = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase__ ( self ) -> int: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__lowerCamelCase )} , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) _lowerCAmelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _A ( snake_case__ : str ): snake_case__ : Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) snake_case__ : Optional[Any] = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ ,snake_case__ ,snake_case__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ ,snake_case__ ,snake_case__ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , snake_case__ , snake_case__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case__ : Any = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case__ : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case__ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case__ : List[str] = {} if data_args.train_dir is not None: snake_case__ : List[str] = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: snake_case__ : Dict = os.path.join(data_args.validation_dir , '''**''' ) snake_case__ : Tuple = load_dataset( '''imagefolder''' , data_files=snake_case__ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case__ : List[str] = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case__ ) and data_args.train_val_split > 0.0: snake_case__ : Optional[Any] = dataset['''train'''].train_test_split(data_args.train_val_split ) snake_case__ : Dict = split['''train'''] snake_case__ : Optional[Any] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case__ : int = dataset['''train'''].features['''labels'''].names snake_case__ ,snake_case__ : Tuple = {}, {} for i, label in enumerate(snake_case__ ): snake_case__ : Union[str, Any] = str(snake_case__ ) snake_case__ : str = label # Load the accuracy metric from the datasets package snake_case__ : Optional[int] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case__ : List[str] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) snake_case__ : List[str] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(snake_case__ ) , labelaid=snake_case__ , idalabel=snake_case__ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case__ : Any = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) snake_case__ : str = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case__ : Optional[Any] = image_processor.size['''shortest_edge'''] else: snake_case__ : Optional[int] = (image_processor.size['''height'''], image_processor.size['''width''']) snake_case__ : Optional[int] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) snake_case__ : Any = Compose( [ RandomResizedCrop(snake_case__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case__ : Optional[Any] = Compose( [ Resize(snake_case__ ), CenterCrop(snake_case__ ), ToTensor(), normalize, ] ) def train_transforms(snake_case__ : Tuple ): snake_case__ : Optional[Any] = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(snake_case__ : Any ): snake_case__ : Any = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: snake_case__ : Optional[int] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(snake_case__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: snake_case__ : Optional[Any] = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(snake_case__ ) # Initalize our trainer snake_case__ : Optional[Any] = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=snake_case__ , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: snake_case__ : List[str] = None if training_args.resume_from_checkpoint is not None: snake_case__ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case__ : int = last_checkpoint snake_case__ : Optional[Any] = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case__ : Optional[int] = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case__ ) trainer.save_metrics('''eval''' , snake_case__ ) # Write model card and (optionally) push to hub snake_case__ : Any = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
694
'''simple docstring''' from math import isqrt def _A ( snake_case__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def _A ( snake_case__ : int = 10**6 ): snake_case__ : str = 0 snake_case__ : List[str] = 1 snake_case__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
694
1
'''simple docstring''' def _A ( snake_case__ : list[int] , snake_case__ : int ): snake_case__ : Tuple = len(snake_case__ ) snake_case__ : Optional[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): snake_case__ : List[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): snake_case__ : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: snake_case__ : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: snake_case__ : Tuple = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
694
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=64 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_input_mask snake_case__ : List[str] = use_token_type_ids snake_case__ : List[str] = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : Dict = type_sequence_label_size snake_case__ : Tuple = initializer_range snake_case__ : Any = num_labels snake_case__ : Union[str, Any] = num_choices snake_case__ : Optional[int] = scope snake_case__ : List[str] = vocab_size - 1 def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Tuple = None if self.use_input_mask: snake_case__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : int = None if self.use_labels: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowercase__ ( self ) -> Any: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : Any = True return config, input_ids, input_mask, token_labels def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : Tuple = GPTNeoXModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase ) snake_case__ : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : List[str] = True snake_case__ : Optional[Any] = GPTNeoXModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : List[str] = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : List[Any] = GPTNeoXForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : str = self.num_labels snake_case__ : Optional[Any] = GPTNeoXForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Any = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Dict = self.num_labels snake_case__ : int = GPTNeoXForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Optional[int] = self.num_labels snake_case__ : Dict = GPTNeoXForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : int = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] = True snake_case__ : Dict = GPTNeoXForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass snake_case__ : Optional[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) snake_case__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : str = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Tuple = model(lowerCamelCase , attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase ) snake_case__ : int = output_from_no_past['''hidden_states'''][0] snake_case__ : str = model( lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )['''hidden_states'''][0] # select random slice snake_case__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[Any] = self.prepare_config_and_inputs() snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : Any = config_and_inputs snake_case__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _lowerCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () _lowerCAmelCase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ : Any = GPTNeoXModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=lowerCamelCase , hidden_size=64 , num_attention_heads=8 ) def lowercase__ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ) -> Any: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Any = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowercase__ ( self , lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = ids_tensor([1, 10] , config.vocab_size ) snake_case__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Dict = GPTNeoXModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() snake_case__ : Tuple = original_model(lowerCamelCase ).last_hidden_state snake_case__ : Optional[Any] = original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Dict = {'''type''': scaling_type, '''factor''': 10.0} snake_case__ : Dict = GPTNeoXModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() snake_case__ : List[str] = scaled_model(lowerCamelCase ).last_hidden_state snake_case__ : Optional[int] = scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Any = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: snake_case__ : Any = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase ) snake_case__ : Optional[int] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case__ : List[str] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' snake_case__ : List[str] = model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=20 ) snake_case__ : List[str] = tokenizer.batch_decode(lowerCamelCase )[0] self.assertEqual(lowerCamelCase , lowerCamelCase )
694
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 65536 , lowerCamelCase = None , lowerCamelCase = 2 , lowerCamelCase = 2 , lowerCamelCase = 0 , lowerCamelCase = "fourier" , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = 0.0 , lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase = "UNetMidBlock1D" , lowerCamelCase = None , lowerCamelCase = (32, 32, 64) , lowerCamelCase = None , lowerCamelCase = 8 , lowerCamelCase = 1 , lowerCamelCase = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) snake_case__ : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) snake_case__ : Dict = block_out_channels[0] if use_timestep_embedding: snake_case__ : Any = block_out_channels[0] * 4 snake_case__ : Optional[Any] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = nn.ModuleList([] ) snake_case__ : List[str] = None # down snake_case__ : Tuple = in_channels for i, down_block_type in enumerate(lowerCamelCase ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : List[Any] = i == len(lowerCamelCase ) - 1 snake_case__ : Dict = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid snake_case__ : Optional[int] = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up snake_case__ : Union[str, Any] = list(reversed(lowerCamelCase ) ) snake_case__ : Any = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : List[Any] = out_channels else: snake_case__ : Dict = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): snake_case__ : List[str] = output_channel snake_case__ : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) snake_case__ : List[str] = i == len(lowerCamelCase ) - 1 snake_case__ : str = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = output_channel # out snake_case__ : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case__ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" snake_case__ : str = timestep if not torch.is_tensor(lowerCamelCase ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: snake_case__ : Optional[Any] = timesteps[None].to(sample.device ) snake_case__ : Any = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: snake_case__ : Tuple = self.time_mlp(lowerCamelCase ) else: snake_case__ : Union[str, Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case__ : List[Any] = () for downsample_block in self.down_blocks: snake_case__ ,snake_case__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Any = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case__ : str = down_block_res_samples[-1:] snake_case__ : int = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: snake_case__ : Dict = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
694
1
'''simple docstring''' def _A ( snake_case__ : List[str] ): snake_case__ : List[Any] = [] snake_case__ : List[Any] = set({'''(''', '''[''', '''{'''} ) snake_case__ : Any = set({''')''', ''']''', '''}'''} ) snake_case__ : Union[str, Any] = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(snake_case__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(snake_case__ ) == 0 or (len(snake_case__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(snake_case__ ) == 0 def _A ( ): snake_case__ : List[Any] = input('''Enter sequence of brackets: ''' ) if is_balanced(snake_case__ ): print(snake_case__ , '''is balanced''' ) else: print(snake_case__ , '''is not balanced''' ) if __name__ == "__main__": main()
694
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case__ : str = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case__ , output_all_encodings=snake_case__ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case__ : Any = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case__ : Any = os.path.join(get_home_dir() , '''models''' ) snake_case__ : List[Any] = _load_vocab(snake_case__ , snake_case__ , snake_case__ , cls=snake_case__ ) snake_case__ : Optional[int] = nlp.model.BERTModel( snake_case__ , len(snake_case__ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case__ , use_token_type_embed=snake_case__ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case__ , use_decoder=snake_case__ , ) original_bort.load_parameters(snake_case__ , cast_dtype=snake_case__ , ignore_extra=snake_case__ ) snake_case__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case__ : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(snake_case__ ), } snake_case__ : Dict = BertConfig.from_dict(snake_case__ ) snake_case__ : Dict = BertForMaskedLM(snake_case__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(snake_case__ : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(snake_case__ : List[Any] , snake_case__ : Any ): snake_case__ : Union[str, Any] = hf_param.shape snake_case__ : Any = to_torch(params[gluon_param] ) snake_case__ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case__ : int = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case__ : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case__ : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case__ : Dict = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case__ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case__ : int = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case__ : List[Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Optional[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case__ : List[str] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case__ : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case__ : Any = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : int = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case__ : Optional[int] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case__ : BertOutput = layer.output snake_case__ : Any = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case__ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case__ : Union[str, Any] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case__ : str = tokenizer.encode_plus(snake_case__ )['''input_ids'''] # Get gluon output snake_case__ : List[str] = mx.nd.array([input_ids] ) snake_case__ : Optional[int] = original_bort(inputs=snake_case__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case__ ) snake_case__ : Optional[Any] = BertModel.from_pretrained(snake_case__ ) hf_bort_model.eval() snake_case__ : Optional[Any] = tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' ) snake_case__ : str = hf_bort_model(**snake_case__ )[0] snake_case__ : str = output_gluon[0].asnumpy() snake_case__ : str = output_hf[0].detach().numpy() snake_case__ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case__ : Optional[Any] = np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
694
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _lowerCAmelCase : Tuple = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
694
'''simple docstring''' def _A ( snake_case__ : int = 4_00_00_00 ): snake_case__ : int = [] snake_case__ ,snake_case__ : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case__ ) snake_case__ ,snake_case__ : Any = b, a + b return sum(snake_case__ ) if __name__ == "__main__": print(F'''{solution() = }''')
694
1
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCAmelCase : Any = None _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _lowerCAmelCase : Optional[int] = { "google/pegasus-xsum": 5_1_2, } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<pad>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<mask_2>" , lowerCamelCase="<mask_1>" , lowerCamelCase=None , lowerCamelCase=103 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCamelCase )}, but is''' f''' {type(lowerCamelCase )}''' ) snake_case__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : List[Any] = additional_special_tokens_extended else: snake_case__ : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) snake_case__ : Union[str, Any] = vocab_file snake_case__ : List[Any] = False if not self.vocab_file else True def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
694
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = 1.0 if scale is None else scale snake_case__ : Dict = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.variance.sqrt() class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = args_dim snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) snake_case__ : Optional[int] = domain_map def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Tuple = function def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" snake_case__ : Optional[Any] = dim snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" snake_case__ : List[Any] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 0.0 def lowercase__ ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self , *lowerCamelCase ) -> Any: """simple docstring""" raise NotImplementedError() @staticmethod def lowercase__ ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self , lowerCamelCase ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
1
'''simple docstring''' import argparse from collections import defaultdict import yaml _lowerCAmelCase : Optional[Any] = "docs/source/en/_toctree.yml" def _A ( snake_case__ : Union[str, Any] ): snake_case__ : int = defaultdict(snake_case__ ) snake_case__ : Dict = [] snake_case__ : Optional[Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(snake_case__ ) snake_case__ : Any = new_doc_list snake_case__ : Tuple = [key for key, value in counts.items() if value > 1] snake_case__ : List[str] = [] for duplicate_key in duplicates: snake_case__ : Union[str, Any] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(snake_case__ ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) snake_case__ : List[str] = sorted(snake_case__ , key=lambda snake_case__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case__ ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(snake_case__ ) # Sort return overview_doc def _A ( snake_case__ : str=False ): with open(snake_case__ , encoding='''utf-8''' ) as f: snake_case__ : Tuple = yaml.safe_load(f.read() ) # Get to the API doc snake_case__ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case__ : str = content[api_idx]['''sections'''] # Then to the model doc snake_case__ : Any = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 snake_case__ : str = api_doc[scheduler_idx]['''sections'''] snake_case__ : Optional[Any] = clean_doc_toc(snake_case__ ) snake_case__ : Optional[int] = False if new_scheduler_doc != scheduler_doc: snake_case__ : str = True if overwrite: snake_case__ : Dict = new_scheduler_doc if diff: if overwrite: snake_case__ : str = api_doc with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def _A ( snake_case__ : List[Any]=False ): with open(snake_case__ , encoding='''utf-8''' ) as f: snake_case__ : List[str] = yaml.safe_load(f.read() ) # Get to the API doc snake_case__ : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case__ : Any = content[api_idx]['''sections'''] # Then to the model doc snake_case__ : Union[str, Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 snake_case__ : int = False snake_case__ : Dict = api_doc[pipeline_idx]['''sections'''] snake_case__ : str = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: snake_case__ : Optional[int] = pipeline_doc['''section'''] snake_case__ : Union[str, Any] = clean_doc_toc(snake_case__ ) if overwrite: snake_case__ : Dict = new_sub_pipeline_doc new_pipeline_docs.append(snake_case__ ) # sort overall pipeline doc snake_case__ : Dict = clean_doc_toc(snake_case__ ) if new_pipeline_docs != pipeline_docs: snake_case__ : Optional[Any] = True if overwrite: snake_case__ : Dict = new_pipeline_docs if diff: if overwrite: snake_case__ : List[str] = api_doc with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowerCAmelCase : str = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
694
'''simple docstring''' from math import factorial def _A ( snake_case__ : int = 20 ): snake_case__ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : Union[str, Any] = n // 2 return int(factorial(snake_case__ ) / (factorial(snake_case__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: _lowerCAmelCase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
694
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'The column name of the images in the files.'} ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the training data.'} ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'A folder containing the validation data.'} ) _lowerCAmelCase = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[int] = {} if self.train_dir is not None: snake_case__ : int = self.train_dir if self.validation_dir is not None: snake_case__ : Optional[Any] = self.validation_dir snake_case__ : Optional[Any] = data_files if data_files else None @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) _lowerCAmelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCAmelCase = field(default=__lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCAmelCase = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) _lowerCAmelCase = field( default=__lowerCamelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def _A ( snake_case__ : List[Any] ): snake_case__ : Dict = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ ,snake_case__ ,snake_case__ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ ,snake_case__ ,snake_case__ : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , snake_case__ , snake_case__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case__ : List[str] = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case__ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. snake_case__ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case__ : Optional[Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case__ ) and data_args.train_val_split > 0.0: snake_case__ : Optional[Any] = ds['''train'''].train_test_split(data_args.train_val_split ) snake_case__ : Optional[Any] = split['''train'''] snake_case__ : int = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Union[str, Any] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case__ : Optional[int] = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case__ ) elif model_args.model_name_or_path: snake_case__ : List[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: snake_case__ : Any = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: snake_case__ : Optional[int] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case__ ) elif model_args.model_name_or_path: snake_case__ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: snake_case__ : Union[str, Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: snake_case__ : List[str] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) snake_case__ : str = ViTMAEForPreTraining(snake_case__ ) if training_args.do_train: snake_case__ : Optional[int] = ds['''train'''].column_names else: snake_case__ : int = ds['''validation'''].column_names if data_args.image_column_name is not None: snake_case__ : Tuple = data_args.image_column_name elif "image" in column_names: snake_case__ : Tuple = '''image''' elif "img" in column_names: snake_case__ : Dict = '''img''' else: snake_case__ : List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: snake_case__ : List[Any] = image_processor.size['''shortest_edge'''] else: snake_case__ : Optional[int] = (image_processor.size['''height'''], image_processor.size['''width''']) snake_case__ : List[str] = Compose( [ Lambda(lambda snake_case__ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(snake_case__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(snake_case__ : Optional[int] ): snake_case__ : Optional[Any] = [transforms(snake_case__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: snake_case__ : Optional[int] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: snake_case__ : str = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case__ ) # Compute absolute learning rate snake_case__ : Dict = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: snake_case__ : Dict = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer snake_case__ : List[str] = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: snake_case__ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: snake_case__ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case__ : int = last_checkpoint snake_case__ : str = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case__ : Dict = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case__ ) trainer.save_metrics('''eval''' , snake_case__ ) # Write model card and (optionally) push to hub snake_case__ : Dict = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) def _A ( snake_case__ : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
694
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = (EulerDiscreteScheduler,) _lowerCAmelCase = 1_0 def lowercase__ ( self , **lowerCamelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase ) return config def lowercase__ ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def lowercase__ ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config() snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Any = self.dummy_model() snake_case__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : List[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : int = model(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ : Optional[int] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Union[str, Any] = output.prev_sample snake_case__ : List[str] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowercase__ ( self ) -> Optional[int]: """simple docstring""" snake_case__ : List[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Optional[int] = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Tuple = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model(lowerCamelCase , lowerCamelCase ) snake_case__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : int = output.prev_sample snake_case__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = self.dummy_model() snake_case__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ : Optional[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: snake_case__ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) snake_case__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) snake_case__ : Optional[int] = output.prev_sample snake_case__ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
694
1
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _lowerCAmelCase : Dict = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize _lowerCAmelCase : str = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" _lowerCAmelCase : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" _lowerCAmelCase : List[Any] = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def lowercase__ ( self , lowerCamelCase ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=0.9 , lowerCamelCase=3 , lowerCamelCase=0.5 ) -> Tuple: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): snake_case__ : int = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase ) , word_tokenize(lowerCamelCase ) , alpha=lowerCamelCase , beta=lowerCamelCase , gamma=lowerCamelCase ) for ref, pred in zip(lowerCamelCase , lowerCamelCase ) ] else: snake_case__ : str = [ meteor_score.single_meteor_score(lowerCamelCase , lowerCamelCase , alpha=lowerCamelCase , beta=lowerCamelCase , gamma=lowerCamelCase ) for ref, pred in zip(lowerCamelCase , lowerCamelCase ) ] return {"meteor": np.mean(lowerCamelCase )}
694
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
694
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'poolformer' def __init__( self , lowerCamelCase=3 , lowerCamelCase=16 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=4.0 , lowerCamelCase=[2, 2, 6, 2] , lowerCamelCase=[64, 128, 320, 512] , lowerCamelCase=[7, 3, 3, 3] , lowerCamelCase=[4, 2, 2, 2] , lowerCamelCase=[2, 1, 1, 1] , lowerCamelCase=4 , lowerCamelCase=0.0 , lowerCamelCase="gelu" , lowerCamelCase=True , lowerCamelCase=1E-5 , lowerCamelCase=0.02 , **lowerCamelCase , ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] = num_channels snake_case__ : Any = patch_size snake_case__ : Dict = stride snake_case__ : int = padding snake_case__ : Any = pool_size snake_case__ : List[str] = hidden_sizes snake_case__ : str = mlp_ratio snake_case__ : Optional[Any] = depths snake_case__ : Union[str, Any] = patch_sizes snake_case__ : int = strides snake_case__ : Dict = num_encoder_blocks snake_case__ : Any = drop_path_rate snake_case__ : Dict = hidden_act snake_case__ : Tuple = use_layer_scale snake_case__ : Dict = layer_scale_init_value snake_case__ : Tuple = initializer_range super().__init__(**lowerCamelCase ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def lowercase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 2E-3
694
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def _A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ): snake_case__ : List[Any] = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
694
1
'''simple docstring''' import argparse import os import re import packaging.version _lowerCAmelCase : List[str] = "examples/" _lowerCAmelCase : str = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } _lowerCAmelCase : Union[str, Any] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } _lowerCAmelCase : Dict = "README.md" def _A ( snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str ): with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : Any = f.read() snake_case__ ,snake_case__ : int = REPLACE_PATTERNS[pattern] snake_case__ : str = replace.replace('''VERSION''' , snake_case__ ) snake_case__ : Any = re_pattern.sub(snake_case__ , snake_case__ ) with open(snake_case__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(snake_case__ ) def _A ( snake_case__ : Any ): for folder, directories, fnames in os.walk(snake_case__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(snake_case__ , snake_case__ ) , snake_case__ , pattern='''examples''' ) def _A ( snake_case__ : List[Any] , snake_case__ : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case__ , snake_case__ , snake_case__ ) if not patch: update_version_in_examples(snake_case__ ) def _A ( ): snake_case__ : List[Any] = '''🤗 Transformers currently provides the following architectures''' snake_case__ : Optional[Any] = '''1. Want to contribute a new model?''' with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : Optional[Any] = f.readlines() # Find the start of the list. snake_case__ : Union[str, Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 snake_case__ : List[str] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): snake_case__ : List[str] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(snake_case__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(snake_case__ ) def _A ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: snake_case__ : Dict = f.read() snake_case__ : Any = REPLACE_PATTERNS['''init'''][0].search(snake_case__ ).groups()[0] return packaging.version.parse(snake_case__ ) def _A ( snake_case__ : List[str]=False ): snake_case__ : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: snake_case__ : Dict = default_version.base_version elif patch: snake_case__ : Optional[Any] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: snake_case__ : Union[str, Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. snake_case__ : Union[str, Any] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(snake_case__ ) == 0: snake_case__ : Tuple = default_version print(f'''Updating version to {version}.''' ) global_version_update(snake_case__ , patch=snake_case__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def _A ( ): snake_case__ : Optional[Any] = get_version() snake_case__ : int = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' snake_case__ : Any = current_version.base_version # Check with the user we got that right. snake_case__ : int = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(snake_case__ ) == 0: snake_case__ : List[Any] = dev_version print(f'''Updating version to {version}.''' ) global_version_update(snake_case__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") _lowerCAmelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
694
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
694
1