code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import math def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,) return min( minimax(depth + 1 ,node_index * 2 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[Any] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] lowerCAmelCase : Tuple = math.log(len(SCREAMING_SNAKE_CASE__ ) ,2 ) print("""Optimal value : """ ,end="""""" ) print(minimax(0 ,0 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : str ={ 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "conditional_detr" _UpperCamelCase: Union[str, Any] = ["past_key_values"] _UpperCamelCase: Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=300 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=0.2_5 , **lowercase_ , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : List[str] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : str = backbone_config.get("""model_type""" ) lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : List[str] = config_class.from_dict(lowercase_ ) lowerCAmelCase : Optional[Any] = use_timm_backbone lowerCAmelCase : Any = backbone_config lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : str = d_model lowerCAmelCase : Dict = encoder_ffn_dim lowerCAmelCase : Union[str, Any] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : int = decoder_ffn_dim lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Optional[int] = decoder_attention_heads lowerCAmelCase : Union[str, Any] = dropout lowerCAmelCase : Tuple = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : Optional[Any] = activation_function lowerCAmelCase : str = init_std lowerCAmelCase : List[str] = init_xavier_std lowerCAmelCase : Optional[int] = encoder_layerdrop lowerCAmelCase : Tuple = decoder_layerdrop lowerCAmelCase : str = encoder_layers lowerCAmelCase : Dict = auxiliary_loss lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = dilation # Hungarian matcher lowerCAmelCase : int = class_cost lowerCAmelCase : str = bbox_cost lowerCAmelCase : str = giou_cost # Loss coefficients lowerCAmelCase : List[str] = mask_loss_coefficient lowerCAmelCase : Optional[Any] = dice_loss_coefficient lowerCAmelCase : int = cls_loss_coefficient lowerCAmelCase : List[str] = bbox_loss_coefficient lowerCAmelCase : Union[str, Any] = giou_loss_coefficient lowerCAmelCase : Tuple = focal_alpha super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model def _snake_case ( self ) -> Any: lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : Any = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Dict = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
class _a : def __init__( self , lowercase_ ) -> None: lowerCAmelCase : Optional[int] = set_counts lowerCAmelCase : Optional[int] = max(lowercase_ ) lowerCAmelCase : Any = len(lowercase_ ) lowerCAmelCase : Optional[Any] = [1] * num_sets lowerCAmelCase : Tuple = list(range(lowercase_ ) ) def _snake_case ( self , lowercase_ , lowercase_ ) -> bool: lowerCAmelCase : Optional[int] = self.get_parent(lowercase_ ) lowerCAmelCase : List[str] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase : Tuple = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[Any] = src_parent lowerCAmelCase : Optional[Any] = self.set_counts[src_parent] lowerCAmelCase : int = max(self.max_set , lowercase_ ) return True def _snake_case ( self , lowercase_ ) -> int: if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : int ={ 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: int = "blip_2_vision_model" def __init__( self , lowercase_=1408 , lowercase_=6144 , lowercase_=39 , lowercase_=16 , lowercase_=224 , lowercase_=14 , lowercase_="gelu" , lowercase_=0.0_0_0_0_1 , lowercase_=0.0 , lowercase_=1e-10 , lowercase_=True , **lowercase_ , ) -> Union[str, Any]: super().__init__(**lowercase_ ) lowerCAmelCase : str = hidden_size lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : str = qkv_bias @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase , lowerCAmelCase : List[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCAmelCase : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = "blip_2_qformer" def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=2 , lowercase_=1408 , **lowercase_ , ) -> Optional[int]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : str = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : Any = position_embedding_type lowerCAmelCase : Union[str, Any] = cross_attention_frequency lowerCAmelCase : Optional[int] = encoder_hidden_size @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase , lowerCAmelCase : Dict = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCAmelCase : Optional[Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Any = "blip-2" _UpperCamelCase: List[str] = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=32 , **lowercase_ ) -> Optional[Any]: super().__init__(**lowercase_ ) if vision_config is None: lowerCAmelCase : int = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowerCAmelCase : str = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowerCAmelCase : str = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowerCAmelCase : List[str] = BlipaVisionConfig(**lowercase_ ) lowerCAmelCase : Dict = BlipaQFormerConfig(**lowercase_ ) lowerCAmelCase : int = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCAmelCase : List[Any] = CONFIG_MAPPING[text_model_type](**lowercase_ ) lowerCAmelCase : List[Any] = self.text_config.tie_word_embeddings lowerCAmelCase : Union[str, Any] = self.text_config.is_encoder_decoder lowerCAmelCase : Optional[Any] = num_query_tokens lowerCAmelCase : List[Any] = self.vision_config.hidden_size lowerCAmelCase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCAmelCase : Dict = 1.0 lowerCAmelCase : str = 0.0_2 @classmethod def _snake_case ( cls , lowercase_ , lowercase_ , lowercase_ , **lowercase_ , ) -> List[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def _snake_case ( self ) -> str: lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase : List[str] = self.vision_config.to_dict() lowerCAmelCase : Dict = self.qformer_config.to_dict() lowerCAmelCase : Tuple = self.text_config.to_dict() lowerCAmelCase : Dict = self.__class__.model_type return output
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: List[str] = OpenAIGPTTokenizer _UpperCamelCase: Dict = OpenAIGPTTokenizerFast _UpperCamelCase: Optional[Any] = True _UpperCamelCase: str = False def _snake_case ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : int = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase : str = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowerCAmelCase : List[Any] = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(lowercase_ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(lowercase_ ) ) def _snake_case ( self , lowercase_ ) -> int: return "lower newer", "lower newer" def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Dict = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase : Optional[int] = """lower""" lowerCAmelCase : str = ["""low""", """er</w>"""] lowerCAmelCase : Optional[Any] = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[int] = tokens + ["""<unk>"""] lowerCAmelCase : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def _snake_case ( self , lowercase_=15 ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # Simple input lowerCAmelCase : Any = """This is a simple input""" lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] lowerCAmelCase : int = ("""This is a simple input""", """This is a pair""") lowerCAmelCase : List[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , ) def _snake_case ( self ) -> Tuple: pass @require_ftfy @require_spacy @require_tokenizers class _a ( snake_case_ ): pass
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
lowerCAmelCase : Tuple ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase : Optional[int] =[{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase : Dict ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' lowerCAmelCase : Optional[Any] = OmegaConf.load(SCREAMING_SNAKE_CASE__ ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE__ ) ) ) return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' if conf_path is None: lowerCAmelCase : List[str] = """./model_checkpoints/vqgan_only.yaml""" lowerCAmelCase : Optional[int] = load_config(SCREAMING_SNAKE_CASE__ ,display=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = VQModel(**config.model.params ) if ckpt_path is None: lowerCAmelCase : Optional[Any] = """./model_checkpoints/vqgan_only.pt""" lowerCAmelCase : int = torch.load(SCREAMING_SNAKE_CASE__ ,map_location=SCREAMING_SNAKE_CASE__ ) if ".ckpt" in ckpt_path: lowerCAmelCase : List[str] = sd["""state_dict"""] model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) del sd return model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = model.encode(SCREAMING_SNAKE_CASE__ ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowerCAmelCase : Optional[int] = model.decode(SCREAMING_SNAKE_CASE__ ) return xrec def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Tuple = string.rsplit(""".""" ,1 ) if reload: lowerCAmelCase : List[Any] = importlib.import_module(SCREAMING_SNAKE_CASE__ ) importlib.reload(SCREAMING_SNAKE_CASE__ ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE__ ,package=SCREAMING_SNAKE_CASE__ ) ,cls ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" ,{} ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' lowerCAmelCase : Tuple = instantiate_from_config(SCREAMING_SNAKE_CASE__ ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if ckpt: lowerCAmelCase : str = torch.load(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" ) lowerCAmelCase : Dict = pl_sd["""global_step"""] print(F"""loaded model from global step {global_step}.""" ) else: lowerCAmelCase : int = {"""state_dict""": None} lowerCAmelCase : Dict = None lowerCAmelCase : Optional[int] = load_model_from_config(config.model ,pl_sd["""state_dict"""] ,gpu=SCREAMING_SNAKE_CASE__ ,eval_mode=SCREAMING_SNAKE_CASE__ )["""model"""] return model, global_step
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCAmelCase : List[Any] =None lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Tuple ='▁' lowerCAmelCase : Optional[Any] ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase : str ={ 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } lowerCAmelCase : Tuple ={ 'google/pegasus-xsum': 512, } class _a ( snake_case_ ): _UpperCamelCase: int = VOCAB_FILES_NAMES _UpperCamelCase: Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: Dict = PegasusTokenizer _UpperCamelCase: Any = ["input_ids", "attention_mask"] def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<pad>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<mask_2>" , lowercase_="<mask_1>" , lowercase_=None , lowercase_=103 , **lowercase_ , ) -> Union[str, Any]: lowerCAmelCase : List[str] = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) lowerCAmelCase : int = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowerCAmelCase : str = additional_special_tokens_extended else: lowerCAmelCase : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( lowercase_ , tokenizer_file=lowercase_ , pad_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) lowerCAmelCase : Tuple = vocab_file lowerCAmelCase : Tuple = False if not self.vocab_file else True def _snake_case ( self , lowercase_ ) -> List[str]: lowerCAmelCase : List[str] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase_ , lowercase_=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Dict = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _a ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1.0 , lowercase_ = None , ) -> Union[str, Any]: super().__init__() lowerCAmelCase : List[Any] = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Any = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : List[Any] = name def __call__( self , lowercase_ ) -> List[Any]: with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : int = tf.cast(lowercase_ , tf.floataa ) lowerCAmelCase : List[str] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : int = global_step_float / warmup_steps_float lowerCAmelCase : Tuple = self.initial_learning_rate * tf.math.pow(lowercase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowercase_ , ) def _snake_case ( self ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 0.9 ,SCREAMING_SNAKE_CASE__ = 0.999 ,SCREAMING_SNAKE_CASE__ = 1e-8 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ,SCREAMING_SNAKE_CASE__ = None ,): '''simple docstring''' lowerCAmelCase : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE__ ,decay_steps=num_train_steps - num_warmup_steps ,end_learning_rate=init_lr * min_lr_ratio ,power=SCREAMING_SNAKE_CASE__ ,) if num_warmup_steps: lowerCAmelCase : Dict = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE__ ,decay_schedule_fn=SCREAMING_SNAKE_CASE__ ,warmup_steps=SCREAMING_SNAKE_CASE__ ,) if weight_decay_rate > 0.0: lowerCAmelCase : Optional[int] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE__ ,weight_decay_rate=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,epsilon=SCREAMING_SNAKE_CASE__ ,clipnorm=SCREAMING_SNAKE_CASE__ ,global_clipnorm=SCREAMING_SNAKE_CASE__ ,exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] ,include_in_weight_decay=SCREAMING_SNAKE_CASE__ ,) else: lowerCAmelCase : int = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,epsilon=SCREAMING_SNAKE_CASE__ ,clipnorm=SCREAMING_SNAKE_CASE__ ,global_clipnorm=SCREAMING_SNAKE_CASE__ ,) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _a ( snake_case_ ): def __init__( self , lowercase_ = 0.0_0_1 , lowercase_ = 0.9 , lowercase_ = 0.9_9_9 , lowercase_ = 1e-7 , lowercase_ = False , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "AdamWeightDecay" , **lowercase_ , ) -> Any: super().__init__(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) lowerCAmelCase : List[str] = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : int = exclude_from_weight_decay @classmethod def _snake_case ( cls , lowercase_ ) -> Tuple: lowerCAmelCase : int = {"""WarmUp""": WarmUp} return super(lowercase_ , cls ).from_config(lowercase_ , custom_objects=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: super(lowercase_ , self )._prepare_local(lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Optional[int] = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : List[str] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _snake_case ( self , lowercase_ , lowercase_=None , **lowercase_ ) -> Dict: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = list(zip(*lowercase_ ) ) return super(lowercase_ , self ).apply_gradients(zip(lowercase_ , lowercase_ ) , name=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Optional[Any] = apply_state or {} lowerCAmelCase : int = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : int = self._fallback_apply_state(lowercase_ , lowercase_ ) lowerCAmelCase : int = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None ) -> Optional[int]: lowerCAmelCase , lowerCAmelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , lowercase_ ) lowerCAmelCase : int = self._decay_weights_op(lowercase_ , lowercase_ , lowercase_ ) with tf.control_dependencies([decay] ): return super(lowercase_ , self )._resource_apply_dense(lowercase_ , lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> int: lowerCAmelCase , lowerCAmelCase : List[str] = self._get_lr(var.device , var.dtype.base_dtype , lowercase_ ) lowerCAmelCase : List[Any] = self._decay_weights_op(lowercase_ , lowercase_ , lowercase_ ) with tf.control_dependencies([decay] ): return super(lowercase_ , self )._resource_apply_sparse(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Any: lowerCAmelCase : int = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _snake_case ( self , lowercase_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowercase_ , lowercase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowercase_ , lowercase_ ) is not None: return False return True class _a ( snake_case_ ): def __init__( self ) -> Optional[Any]: lowerCAmelCase : int = [] lowerCAmelCase : Dict = None @property def _snake_case ( self ) -> Any: if self._accum_steps is None: lowerCAmelCase : Any = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowercase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _snake_case ( self ) -> int: if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , lowercase_ ) -> Union[str, Any]: if not self._gradients: lowerCAmelCase : str = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowercase_ ) , trainable=lowercase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowercase_ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(lowercase_ )}""" ) for accum_gradient, gradient in zip(self._gradients , lowercase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowercase_ ) self._accum_steps.assign_add(1 ) def _snake_case ( self ) -> Union[str, Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowercase_ ) )
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") lowerCAmelCase : Optional[int] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE__ ): for patt, repl in iter(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = name.replace(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return F"""bert/{name}""" def create_tf_var(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[int] = tf.dtypes.as_dtype(tensor.dtype ) lowerCAmelCase : Dict = tf.get_variable(dtype=SCREAMING_SNAKE_CASE__ ,shape=tensor.shape ,name=SCREAMING_SNAKE_CASE__ ,initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowerCAmelCase : Dict = to_tf_var_name(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowerCAmelCase : Tuple = torch_tensor.T lowerCAmelCase : List[Any] = create_tf_var(tensor=SCREAMING_SNAKE_CASE__ ,name=SCREAMING_SNAKE_CASE__ ,session=SCREAMING_SNAKE_CASE__ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = session.run(SCREAMING_SNAKE_CASE__ ) print(F"""Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )}""" ) lowerCAmelCase : Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,model_name.replace("""-""" ,"""_""" ) + """.ckpt""" ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--model_name""" ,type=SCREAMING_SNAKE_CASE__ ,required=SCREAMING_SNAKE_CASE__ ,help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" ,type=SCREAMING_SNAKE_CASE__ ,default=SCREAMING_SNAKE_CASE__ ,required=SCREAMING_SNAKE_CASE__ ,help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" ,type=SCREAMING_SNAKE_CASE__ ,required=SCREAMING_SNAKE_CASE__ ,help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" ,type=SCREAMING_SNAKE_CASE__ ,required=SCREAMING_SNAKE_CASE__ ,help="""Directory in which to save tensorflow model""" ) lowerCAmelCase : int = parser.parse_args(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name ,state_dict=torch.load(args.pytorch_model_path ) ,cache_dir=args.cache_dir ,) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE__ ,ckpt_dir=args.tf_cache_dir ,model_name=args.model_name ) if __name__ == "__main__": main()
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _a : _UpperCamelCase: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) _UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class _a : _UpperCamelCase: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _UpperCamelCase: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) _UpperCamelCase: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) _UpperCamelCase: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) _UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) _UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) _UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) _UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) _UpperCamelCase: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{split}_results.json""" ) ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) ,training_args.fpaa ,) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" ,SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) lowerCAmelCase : str = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): assert hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path ,from_tf=""".ckpt""" in model_args.model_name_or_path ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__ ,data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowerCAmelCase : int = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE__ ,(MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowerCAmelCase : List[str] = SeqaSeqDataset # Get datasets lowerCAmelCase : Optional[Any] = ( dataset_class( SCREAMING_SNAKE_CASE__ ,type_path="""train""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_train ,max_target_length=data_args.max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_train else None ) lowerCAmelCase : str = ( dataset_class( SCREAMING_SNAKE_CASE__ ,type_path="""val""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_val ,max_target_length=data_args.val_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowerCAmelCase : int = ( dataset_class( SCREAMING_SNAKE_CASE__ ,type_path="""test""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_test ,max_target_length=data_args.test_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,) if training_args.do_predict else None ) # Initialize our Trainer lowerCAmelCase : Any = ( build_compute_metrics_fn(data_args.task ,SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate else None ) lowerCAmelCase : int = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,data_args=SCREAMING_SNAKE_CASE__ ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,model.config.decoder_start_token_id ,training_args.tpu_num_cores ) ,compute_metrics=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowerCAmelCase : Tuple = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowerCAmelCase : Dict = train_result.metrics lowerCAmelCase : Union[str, Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,"""trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : str = trainer.evaluate(metric_key_prefix="""val""" ) lowerCAmelCase : Dict = data_args.n_val lowerCAmelCase : Any = round(metrics["""val_loss"""] ,4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowerCAmelCase : List[Any] = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE__ ,metric_key_prefix="""test""" ) lowerCAmelCase : Any = test_output.metrics lowerCAmelCase : str = data_args.n_test if trainer.is_world_process_zero(): lowerCAmelCase : Tuple = round(metrics["""test_loss"""] ,4 ) handle_metrics("""test""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate: lowerCAmelCase : Dict = tokenizer.batch_decode( test_output.predictions ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = lmap(str.strip ,SCREAMING_SNAKE_CASE__ ) write_txt_file(SCREAMING_SNAKE_CASE__ ,os.path.join(training_args.output_dir ,"""test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE__ ,os.path.join(training_args.output_dir ,"""all_results.json""" ) ) return all_metrics def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Any = CycleDiffusionPipeline _UpperCamelCase: List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } _UpperCamelCase: str = PipelineTesterMixin.required_optional_params - {"latents"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) _UpperCamelCase: Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase: Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase : str = CLIPTextModel(lowercase_ ) lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self , lowercase_ , lowercase_=0 ) -> List[Any]: lowerCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : List[str] = image / 2 + 0.5 if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Dict = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Tuple = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _snake_case ( self ) -> List[str]: lowerCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[str] = self.get_dummy_components() lowerCAmelCase : Optional[Any] = CycleDiffusionPipeline(**lowercase_ ) lowerCAmelCase : List[str] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase : Any = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase : str = pipe(**lowercase_ ) lowerCAmelCase : List[str] = output.images lowerCAmelCase : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase : List[str] = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase_ , """half""" ): lowerCAmelCase : int = module.half() lowerCAmelCase : Dict = CycleDiffusionPipeline(**lowercase_ ) lowerCAmelCase : Union[str, Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase : str = pipe(**lowercase_ ) lowerCAmelCase : int = output.images lowerCAmelCase : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase : Optional[int] = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _snake_case ( self ) -> Union[str, Any]: return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def _snake_case ( self ) -> Tuple: return super().test_inference_batch_single_identical() @skip_mps def _snake_case ( self ) -> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def _snake_case ( self ) -> Any: return super().test_save_load_optional_components() @skip_mps def _snake_case ( self ) -> Union[str, Any]: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _a ( unittest.TestCase ): def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowerCAmelCase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) lowerCAmelCase : Any = init_image.resize((512, 512) ) lowerCAmelCase : int = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase : Optional[int] = DDIMScheduler.from_pretrained(lowercase_ , subfolder="""scheduler""" ) lowerCAmelCase : Dict = CycleDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase : str = """A black colored car""" lowerCAmelCase : int = """A blue colored car""" lowerCAmelCase : str = torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type="""np""" , ) lowerCAmelCase : List[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def _snake_case ( self ) -> List[str]: lowerCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowerCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) lowerCAmelCase : Optional[Any] = init_image.resize((512, 512) ) lowerCAmelCase : Any = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase : List[str] = DDIMScheduler.from_pretrained(lowercase_ , subfolder="""scheduler""" ) lowerCAmelCase : Dict = CycleDiffusionPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowerCAmelCase : Tuple = """A black colored car""" lowerCAmelCase : Tuple = """A blue colored car""" lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type="""np""" , ) lowerCAmelCase : str = output.images assert np.abs(image - expected_image ).max() < 2e-2
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
import argparse import json from tqdm import tqdm def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" ,type=SCREAMING_SNAKE_CASE__ ,default="""biencoder-nq-dev.json""" ,help="""Path to raw DPR training data""" ,) parser.add_argument( """--evaluation_set""" ,type=SCREAMING_SNAKE_CASE__ ,help="""where to store parsed evaluation_set file""" ,) parser.add_argument( """--gold_data_path""" ,type=SCREAMING_SNAKE_CASE__ ,help="""where to store parsed gold_data_path file""" ,) lowerCAmelCase : Optional[int] = parser.parse_args() with open(args.src_path ,"""r""" ) as src_file, open(args.evaluation_set ,"""w""" ) as eval_file, open( args.gold_data_path ,"""w""" ) as gold_file: lowerCAmelCase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) for dpr_record in tqdm(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Any = dpr_record["""question"""] lowerCAmelCase : Optional[Any] = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(SCREAMING_SNAKE_CASE__ ) + """\n""" ) if __name__ == "__main__": main()
693
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase : Union[str, Any] =200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase : str =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase : Tuple =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : int = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE__ ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE__ )) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = random.randint(0 ,len(SCREAMING_SNAKE_CASE__ ) - 1 ) lowerCAmelCase : Any = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase : List[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = list(SCREAMING_SNAKE_CASE__ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: lowerCAmelCase : Optional[Any] = random.choice(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,): '''simple docstring''' lowerCAmelCase : List[str] = [] # Generate more children proportionally to the fitness score. lowerCAmelCase : Optional[int] = int(parent_a[1] * 1_0_0 ) + 1 lowerCAmelCase : Tuple = 1_0 if child_n >= 1_0 else child_n for _ in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = population_score[random.randint(0 ,SCREAMING_SNAKE_CASE__ )][0] lowerCAmelCase , lowerCAmelCase : int = crossover(parent_a[0] ,SCREAMING_SNAKE_CASE__ ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) pop.append(mutate(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) return pop def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: lowerCAmelCase : List[str] = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(SCREAMING_SNAKE_CASE__ ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase : int = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(SCREAMING_SNAKE_CASE__ ) # Generate random starting population. lowerCAmelCase : Union[str, Any] = [] for _ in range(SCREAMING_SNAKE_CASE__ ): population.append("""""".join([random.choice(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase , lowerCAmelCase : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase : Dict = [evaluate(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for item in population] # Check if there is a matching evolution. lowerCAmelCase : Tuple = sorted(SCREAMING_SNAKE_CASE__ ,key=lambda SCREAMING_SNAKE_CASE__ : x[1] ,reverse=SCREAMING_SNAKE_CASE__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE__ ) # Normalize population score to be between 0 and 1. lowerCAmelCase : List[str] = [ (item, score / len(SCREAMING_SNAKE_CASE__ )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE__ ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE__ )] ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE__ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase : List[Any] =( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) lowerCAmelCase : List[Any] =list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any =basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
693
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[Any] = emb.weight.shape lowerCAmelCase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = emb.weight.data return lin_layer def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = torch.load(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" ) lowerCAmelCase : Optional[Any] = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowerCAmelCase : List[str] = checkpoint["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCAmelCase : List[str] = {key.replace("""decoder""" ,"""model""" ): val for key, val in state_dict.items()} lowerCAmelCase : Optional[int] = XGLMConfig( vocab_size=SCREAMING_SNAKE_CASE__ ,max_position_embeddings=args.max_target_positions ,num_layers=args.decoder_layers ,attention_heads=args.decoder_attention_heads ,ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.decoder_embed_dim ,layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="""gelu""" ,scale_embedding=not args.no_scale_embedding ,tie_word_embeddings=args.share_decoder_input_output_embed ,) lowerCAmelCase : str = XGLMForCausalLM(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : Optional[int] =parser.parse_args() lowerCAmelCase : Union[str, Any] =convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = ["image_processor", "tokenizer"] _UpperCamelCase: str = "ChineseCLIPImageProcessor" _UpperCamelCase: List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase_ , ) lowerCAmelCase : Optional[int] = kwargs.pop("""feature_extractor""" ) lowerCAmelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processor def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> List[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase : Union[str, Any] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: lowerCAmelCase : Any = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: lowerCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> Dict: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> Tuple: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[Any] = self.tokenizer.model_input_names lowerCAmelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self ) -> Dict: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase_ , ) return self.image_processor_class
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : @staticmethod def _snake_case ( *lowercase_ , **lowercase_ ) -> Any: pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): @require_torch def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[int] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) lowerCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase : Tuple = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowercase_ ) , [ [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}], [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}], ] , ) lowerCAmelCase : Any = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], ] , ) @require_tf def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[int] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) lowerCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase : Any = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , ) lowerCAmelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, {"""score""": 0.3_3_3, """label""": ANY(lowercase_ )}, ], ] , ) @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase : Dict = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) lowerCAmelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self ) -> List[Any]: lowerCAmelCase : int = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase : Tuple = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ] , ) lowerCAmelCase : Any = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.5_1_1, """label""": """remote"""}, {"""score""": 0.4_8_5, """label""": """cat"""}, {"""score""": 0.0_0_4, """label""": """plane"""}, ], ] * 5 , )
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCAmelCase : Optional[Any] ='%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') lowerCAmelCase : Optional[int] =F'''https://www.google.com/search?q={query}&num=100''' lowerCAmelCase : Dict =requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: lowerCAmelCase : Optional[int] =( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: lowerCAmelCase : str =parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = ["image_processor", "tokenizer"] _UpperCamelCase: Dict = "BlipImageProcessor" _UpperCamelCase: Tuple = ("BertTokenizer", "BertTokenizerFast") def __init__( self , lowercase_ , lowercase_ ) -> Tuple: lowerCAmelCase : Tuple = False super().__init__(lowercase_ , lowercase_ ) lowerCAmelCase : Any = self.image_processor def __call__( self , lowercase_ = None , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase : Optional[Any] = self.tokenizer lowerCAmelCase : Dict = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) return text_encoding # add pixel_values lowerCAmelCase : List[Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ ) if text is not None: lowerCAmelCase : Tuple = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) else: lowerCAmelCase : int = None if text_encoding is not None: encoding_image_processor.update(lowercase_ ) return encoding_image_processor def _snake_case ( self , *lowercase_ , **lowercase_ ) -> str: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> List[str]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> List[Any]: lowerCAmelCase : int = self.tokenizer.model_input_names lowerCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _a : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=[1, 1, 2] , lowercase_=1 , lowercase_=32 , lowercase_=4 , lowercase_=8 , lowercase_=37 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=512 , lowercase_=3 , lowercase_=0.0_2 , lowercase_=3 , lowercase_=4 , lowercase_=None , lowercase_=False , ) -> List[Any]: lowerCAmelCase : Tuple = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : str = seq_length lowerCAmelCase : int = is_training lowerCAmelCase : Tuple = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : Tuple = block_sizes lowerCAmelCase : Optional[int] = num_decoder_layers lowerCAmelCase : str = d_model lowerCAmelCase : Optional[int] = n_head lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : int = d_inner lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Any = hidden_dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Dict = activation_dropout lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : Any = 2 lowerCAmelCase : int = num_labels lowerCAmelCase : Dict = num_choices lowerCAmelCase : List[str] = scope lowerCAmelCase : Optional[int] = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase : Optional[int] = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase : Tuple = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase : List[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase : Optional[Any] = self.num_hidden_layers + 2 def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Dict = None lowerCAmelCase : Tuple = None lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Dict: lowerCAmelCase : Union[str, Any] = TFFunnelModel(config=lowercase_ ) lowerCAmelCase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase : int = model(lowercase_ ) lowerCAmelCase : Dict = [input_ids, input_mask] lowerCAmelCase : List[Any] = model(lowercase_ ) lowerCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Any = TFFunnelModel(config=lowercase_ ) lowerCAmelCase : str = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : Optional[Any] = TFFunnelModel(config=lowercase_ ) lowerCAmelCase : List[str] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: lowerCAmelCase : int = TFFunnelBaseModel(config=lowercase_ ) lowerCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase : Optional[int] = model(lowercase_ ) lowerCAmelCase : Union[str, Any] = [input_ids, input_mask] lowerCAmelCase : List[str] = model(lowercase_ ) lowerCAmelCase : Dict = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : str = TFFunnelBaseModel(config=lowercase_ ) lowerCAmelCase : str = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase : List[str] = False lowerCAmelCase : Any = TFFunnelBaseModel(config=lowercase_ ) lowerCAmelCase : str = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = TFFunnelForPreTraining(config=lowercase_ ) lowerCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]: lowerCAmelCase : List[Any] = TFFunnelForMaskedLM(config=lowercase_ ) lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: lowerCAmelCase : Any = self.num_labels lowerCAmelCase : Optional[int] = TFFunnelForSequenceClassification(config=lowercase_ ) lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> int: lowerCAmelCase : Union[str, Any] = self.num_choices lowerCAmelCase : Tuple = TFFunnelForMultipleChoice(config=lowercase_ ) lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Any = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : str = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCAmelCase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Any: lowerCAmelCase : Tuple = self.num_labels lowerCAmelCase : List[str] = TFFunnelForTokenClassification(config=lowercase_ ) lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase : Dict = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: lowerCAmelCase : Union[str, Any] = TFFunnelForQuestionAnswering(config=lowercase_ ) lowerCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase : Any = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Any = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _UpperCamelCase: List[Any] = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase: Dict = False _UpperCamelCase: Dict = False def _snake_case ( self ) -> int: lowerCAmelCase : Union[str, Any] = TFFunnelModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=lowercase_ ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> int: lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @require_tf class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase: List[str] = False _UpperCamelCase: Union[str, Any] = False def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : str = TFFunnelModelTester(self , base=lowercase_ ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=lowercase_ ) def _snake_case ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _snake_case ( self ) -> str: lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase_ ) def _snake_case ( self ) -> Dict: lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _snake_case ( self ) -> int: lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ )
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = ["input_values", "padding_mask"] def __init__( self , lowercase_ = 1 , lowercase_ = 24000 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> int: super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ ) lowerCAmelCase : Optional[Any] = chunk_length_s lowerCAmelCase : Union[str, Any] = overlap @property def _snake_case ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _snake_case ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Any = bool( isinstance(lowercase_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase : Dict = [np.asarray(lowercase_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowercase_ , np.ndarray ): lowerCAmelCase : List[Any] = np.asarray(lowercase_ , dtype=np.floataa ) elif isinstance(lowercase_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowerCAmelCase : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase : Optional[int] = [np.asarray(lowercase_ ).T] # verify inputs are valid for idx, example in enumerate(lowercase_ ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) lowerCAmelCase : Optional[Any] = None lowerCAmelCase : List[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowerCAmelCase : Any = min(array.shape[0] for array in raw_audio ) lowerCAmelCase : List[str] = int(np.floor(max_length / self.chunk_stride ) ) lowerCAmelCase : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowerCAmelCase : List[Any] = max(array.shape[0] for array in raw_audio ) lowerCAmelCase : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowerCAmelCase : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowerCAmelCase : Tuple = """max_length""" else: lowerCAmelCase : int = input_values # normal padding on batch if padded_inputs is None: lowerCAmelCase : int = self.pad( lowercase_ , max_length=lowercase_ , truncation=lowercase_ , padding=lowercase_ , return_attention_mask=lowercase_ , ) if padding: lowerCAmelCase : Optional[int] = padded_inputs.pop("""attention_mask""" ) lowerCAmelCase : Dict = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: lowerCAmelCase : Optional[Any] = example[..., None] input_values.append(example.T ) lowerCAmelCase : Dict = input_values if return_tensors is not None: lowerCAmelCase : Tuple = padded_inputs.convert_to_tensors(lowercase_ ) return padded_inputs
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Dict = ["pixel_values"] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = True , **lowercase_ , ) -> None: super().__init__(**lowercase_ ) lowerCAmelCase : int = size if size is not None else {"""height""": 384, """width""": 384} lowerCAmelCase : Dict = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : str = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Any = resample lowerCAmelCase : str = do_rescale lowerCAmelCase : List[Any] = rescale_factor lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase : Union[str, Any] = do_convert_rgb def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: lowerCAmelCase : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowerCAmelCase : int = (size["""height"""], size["""width"""]) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Optional[Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: lowerCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : List[str] = resample if resample is not None else self.resample lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Tuple = image_std if image_std is not None else self.image_std lowerCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : List[Any] = size if size is not None else self.size lowerCAmelCase : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : List[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : Any = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : Tuple = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase : Optional[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase : Tuple = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase : Tuple = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase : List[str] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase : List[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowercase_ ) return encoded_outputs
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase : Union[str, Any] ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _a ( nn.Module ): def __init__( self , lowercase_ ) -> Tuple: super().__init__() lowerCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=lowercase_ ) lowerCAmelCase : List[Any] = list(model.children() )[:-2] lowerCAmelCase : int = nn.Sequential(*lowercase_ ) lowerCAmelCase : Dict = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _snake_case ( self , lowercase_ ) -> List[Any]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCAmelCase : int = self.pool(self.model(lowercase_ ) ) lowerCAmelCase : Optional[Any] = torch.flatten(lowercase_ , start_dim=2 ) lowerCAmelCase : Optional[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = [json.loads(lowercase_ ) for l in open(lowercase_ )] lowerCAmelCase : List[str] = os.path.dirname(lowercase_ ) lowerCAmelCase : Union[str, Any] = tokenizer lowerCAmelCase : Optional[int] = labels lowerCAmelCase : int = len(lowercase_ ) lowerCAmelCase : Optional[int] = max_seq_length lowerCAmelCase : Any = transforms def __len__( self ) -> Union[str, Any]: return len(self.data ) def __getitem__( self , lowercase_ ) -> Tuple: lowerCAmelCase : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=lowercase_ ) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1] lowerCAmelCase : Optional[Any] = sentence[: self.max_seq_length] lowerCAmelCase : List[Any] = torch.zeros(self.n_classes ) lowerCAmelCase : int = 1 lowerCAmelCase : str = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) lowerCAmelCase : str = self.transforms(lowercase_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _snake_case ( self ) -> List[str]: lowerCAmelCase : Optional[Any] = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = [len(row["""sentence"""] ) for row in batch] lowerCAmelCase , lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = torch.zeros(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=torch.long ) lowerCAmelCase : Dict = torch.zeros(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ): lowerCAmelCase : List[Any] = input_row["""sentence"""] lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Dict = torch.stack([row["""image"""] for row in batch] ) lowerCAmelCase : Union[str, Any] = torch.stack([row["""label"""] for row in batch] ) lowerCAmelCase : Dict = torch.stack([row["""image_start_token"""] for row in batch] ) lowerCAmelCase : Any = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCAmelCase ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCAmelCase ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] ,std=[0.12221994, 0.12145835, 0.14380469] ,), ] )
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """\n""".join(SCREAMING_SNAKE_CASE__ ) Path(SCREAMING_SNAKE_CASE__ ).open("""w""" ).writelines(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple ='patrickvonplaten/t5-tiny-random' lowerCAmelCase : str ='sshleifer/bart-tiny-random' lowerCAmelCase : List[Any] ='sshleifer/tiny-mbart' lowerCAmelCase : List[str] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> Dict: lowerCAmelCase : Dict = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCAmelCase : List[Any] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCAmelCase : Dict = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(lowercase_ , lowercase_ ) lowerCAmelCase : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) lowerCAmelCase : int = """translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCAmelCase : Union[str, Any] = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_generate() assert Path(lowercase_ ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self ) -> Union[str, Any]: self.run_eval_tester(lowercase_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self , lowercase_ ) -> Optional[int]: self.run_eval_tester(lowercase_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self , lowercase_ ) -> Optional[int]: lowerCAmelCase : List[str] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCAmelCase : str = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCAmelCase : Any = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } lowerCAmelCase : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) lowerCAmelCase : str = str(tmp_dir / """scores.json""" ) lowerCAmelCase : List[str] = str(tmp_dir / """val.target""" ) _dump_articles(lowercase_ , text["""en"""] ) _dump_articles(lowercase_ , text["""de"""] ) lowerCAmelCase : Any = """translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCAmelCase : Any = f""" run_eval_search.py {model} {str(lowercase_ )} {str(lowercase_ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(lowercase_ , """argv""" , lowercase_ ): with CaptureStdout() as cs: run_search() lowerCAmelCase : Union[str, Any] = [""" num_beams | length_penalty""", model, """Best score args"""] lowerCAmelCase : Any = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(lowercase_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowercase_ ).exists() os.remove(Path(lowercase_ ) )
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (volume) ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _a ( unittest.TestCase ): def _snake_case ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCAmelCase : Dict = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowercase_ , cache_dir=lowercase_ ) lowerCAmelCase : Optional[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , """snapshots""" ) )] lowerCAmelCase : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class _a ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowercase_ ) lowerCAmelCase : Any = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) lowerCAmelCase : Union[str, Any] = 4 lowerCAmelCase : Optional[int] = jax.device_count() lowerCAmelCase : int = num_samples * [prompt] lowerCAmelCase : Optional[int] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng lowerCAmelCase : Union[str, Any] = replicate(lowercase_ ) lowerCAmelCase : Optional[int] = jax.random.split(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[int] = shard(lowercase_ ) lowerCAmelCase : List[str] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 lowerCAmelCase : Optional[int] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def _snake_case ( self ) -> List[Any]: lowerCAmelCase , lowerCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=lowercase_ ) lowerCAmelCase : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase : List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase : str = 50 lowerCAmelCase : str = jax.device_count() lowerCAmelCase : Tuple = num_samples * [prompt] lowerCAmelCase : Union[str, Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng lowerCAmelCase : int = replicate(lowercase_ ) lowerCAmelCase : Tuple = jax.random.split(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[Any] = shard(lowercase_ ) lowerCAmelCase : List[str] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def _snake_case ( self ) -> Tuple: lowerCAmelCase , lowerCAmelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) lowerCAmelCase : Any = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase : int = jax.random.PRNGKey(0 ) lowerCAmelCase : Optional[Any] = 50 lowerCAmelCase : Dict = jax.device_count() lowerCAmelCase : int = num_samples * [prompt] lowerCAmelCase : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng lowerCAmelCase : Optional[Any] = replicate(lowercase_ ) lowerCAmelCase : int = jax.random.split(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[int] = shard(lowercase_ ) lowerCAmelCase : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def _snake_case ( self ) -> Optional[int]: lowerCAmelCase , lowerCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) lowerCAmelCase : Union[str, Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase : Optional[int] = 50 lowerCAmelCase : Optional[Any] = jax.device_count() lowerCAmelCase : Optional[Any] = num_samples * [prompt] lowerCAmelCase : str = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng lowerCAmelCase : Optional[Any] = replicate(lowercase_ ) lowerCAmelCase : str = jax.random.split(lowercase_ , lowercase_ ) lowerCAmelCase : Any = shard(lowercase_ ) lowerCAmelCase : Tuple = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) lowerCAmelCase , lowerCAmelCase : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) lowerCAmelCase : List[Any] = scheduler.create_state() lowerCAmelCase : Optional[int] = scheduler_state lowerCAmelCase : List[str] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase : int = jax.random.PRNGKey(0 ) lowerCAmelCase : Dict = 50 lowerCAmelCase : Optional[int] = jax.device_count() lowerCAmelCase : Union[str, Any] = num_samples * [prompt] lowerCAmelCase : List[Any] = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng lowerCAmelCase : Optional[int] = replicate(lowercase_ ) lowerCAmelCase : str = jax.random.split(lowercase_ , lowercase_ ) lowerCAmelCase : int = shard(lowercase_ ) lowerCAmelCase : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) lowerCAmelCase : List[str] = jax.device_count() lowerCAmelCase : List[str] = num_samples * [prompt] lowerCAmelCase : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) lowerCAmelCase , lowerCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) lowerCAmelCase : Dict = replicate(lowercase_ ) lowerCAmelCase : Optional[Any] = pipeline.prepare_inputs(lowercase_ ) lowerCAmelCase : Any = shard(lowercase_ ) lowerCAmelCase : Union[str, Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowerCAmelCase : List[Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowerCAmelCase , lowerCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) lowerCAmelCase : List[str] = replicate(lowercase_ ) lowerCAmelCase : int = pipeline.prepare_inputs(lowercase_ ) lowerCAmelCase : Any = shard(lowercase_ ) lowerCAmelCase : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowerCAmelCase : List[Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Union[str, Any] ={ 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] =[ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase : Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : int ={ 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] =[ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowerCAmelCase : Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
import argparse from collections import defaultdict import yaml lowerCAmelCase : Any ='docs/source/en/_toctree.yml' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = defaultdict(SCREAMING_SNAKE_CASE__ ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase : Optional[int] = [key for key, value in counts.items() if value > 1] lowerCAmelCase : str = [] for duplicate_key in duplicates: lowerCAmelCase : str = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(SCREAMING_SNAKE_CASE__ ,key=lambda SCREAMING_SNAKE_CASE__ : s["title"].lower() ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ ,encoding="""utf-8""" ) as f: lowerCAmelCase : Any = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase : List[str] = content[api_idx]["""sections"""] # Then to the model doc lowerCAmelCase : Optional[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase : Union[str, Any] = api_doc[model_idx]["""sections"""] lowerCAmelCase : Optional[Any] = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE__ ) if """sections""" in section] lowerCAmelCase : Optional[Any] = False for idx, modality_doc in modalities_docs: lowerCAmelCase : int = modality_doc["""sections"""] lowerCAmelCase : Tuple = clean_model_doc_toc(SCREAMING_SNAKE_CASE__ ) if old_modality_doc != new_modality_doc: lowerCAmelCase : int = True if overwrite: lowerCAmelCase : int = new_modality_doc if diff: if overwrite: lowerCAmelCase : Optional[Any] = model_doc lowerCAmelCase : Any = api_doc with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE__ ,allow_unicode=SCREAMING_SNAKE_CASE__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase : List[str] =parser.parse_args() check_model_doc(args.fix_and_overwrite)
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
import os from pathlib import Path def _UpperCAmelCase ( ): '''simple docstring''' from torch.utils.cpp_extension import load lowerCAmelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE__ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCAmelCase : Union[str, Any] = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" ,"""ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" ,"""ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" ,SCREAMING_SNAKE_CASE__ ,with_cuda=SCREAMING_SNAKE_CASE__ ,extra_include_paths=[str(SCREAMING_SNAKE_CASE__ )] ,extra_cflags=["""-DWITH_CUDA=1"""] ,extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] ,) import MultiScaleDeformableAttention as MSDA return MSDA
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase : Optional[Any] =get_logger(__name__) class _a : def __init__( self , lowercase_ = None ) -> Tuple: lowerCAmelCase : Dict = ( os.path.join(lowercase_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCAmelCase : Dict = Extractor def _snake_case ( self , lowercase_ ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCAmelCase : Any = os.path.abspath(lowercase_ ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase_ ) ) def _snake_case ( self , lowercase_ , lowercase_ ) -> bool: return force_extract or ( not os.path.isfile(lowercase_ ) and not (os.path.isdir(lowercase_ ) and os.listdir(lowercase_ )) ) def _snake_case ( self , lowercase_ , lowercase_ = False ) -> str: lowerCAmelCase : Union[str, Any] = self.extractor.infer_extractor_format(lowercase_ ) if not extractor_format: return input_path lowerCAmelCase : List[str] = self._get_output_path(lowercase_ ) if self._do_extract(lowercase_ , lowercase_ ): self.extractor.extract(lowercase_ , lowercase_ , lowercase_ ) return output_path class _a ( snake_case_ ): @classmethod @abstractmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> bool: ... @staticmethod @abstractmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: ... class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: List[bytes] = [] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> Optional[int]: with open(lowercase_ , """rb""" ) as f: return f.read(lowercase_ ) @classmethod def _snake_case ( cls , lowercase_ , lowercase_ = b"" ) -> bool: if not magic_number: lowerCAmelCase : str = max(len(lowercase_ ) for cls_magic_number in cls.magic_numbers ) try: lowerCAmelCase : List[str] = cls.read_magic_number(lowercase_ , lowercase_ ) except OSError: return False return any(magic_number.startswith(lowercase_ ) for cls_magic_number in cls.magic_numbers ) class _a ( snake_case_ ): @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> bool: return tarfile.is_tarfile(lowercase_ ) @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> Any: def resolved(lowercase_ ) -> str: return os.path.realpath(os.path.abspath(lowercase_ ) ) def badpath(lowercase_ , lowercase_ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase_ , lowercase_ ) ).startswith(lowercase_ ) def badlink(lowercase_ , lowercase_ ) -> bool: # Links are interpreted relative to the directory containing the link lowerCAmelCase : List[Any] = resolved(os.path.join(lowercase_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase_ ) lowerCAmelCase : str = resolved(lowercase_ ) for finfo in members: if badpath(finfo.name , lowercase_ ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(lowercase_ , lowercase_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(lowercase_ , lowercase_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : Optional[int] = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ , members=TarExtractor.safemembers(lowercase_ , lowercase_ ) ) tar_file.close() class _a ( snake_case_ ): _UpperCamelCase: List[Any] = [b"\x1F\x8B"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: with gzip.open(lowercase_ , """rb""" ) as gzip_file: with open(lowercase_ , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: List[str] = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def _snake_case ( cls , lowercase_ , lowercase_ = b"" ) -> bool: if super().is_extractable(lowercase_ , magic_number=lowercase_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase_ , """rb""" ) as fp: lowerCAmelCase : Union[str, Any] = _EndRecData(lowercase_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCAmelCase : Union[str, Any] = fp.read(lowercase_ ) # CD is where we expect it to be if len(lowercase_ ) == sizeCentralDir: lowerCAmelCase : Any = struct.unpack(lowercase_ , lowercase_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: os.makedirs(lowercase_ , exist_ok=lowercase_ ) with zipfile.ZipFile(lowercase_ , """r""" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() class _a ( snake_case_ ): _UpperCamelCase: Dict = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: with lzma.open(lowercase_ ) as compressed_file: with open(lowercase_ , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: List[Any] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : Optional[Any] = rarfile.RarFile(lowercase_ ) rf.extractall(lowercase_ ) rf.close() class _a ( snake_case_ ): _UpperCamelCase: Dict = [b"\x28\xb5\x2F\xFD"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd lowerCAmelCase : List[Any] = zstd.ZstdDecompressor() with open(lowercase_ , """rb""" ) as ifh, open(lowercase_ , """wb""" ) as ofh: dctx.copy_stream(lowercase_ , lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: List[Any] = [b"\x42\x5A\x68"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: with bza.open(lowercase_ , """rb""" ) as compressed_file: with open(lowercase_ , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Optional[int] = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase_ , exist_ok=lowercase_ ) with pyazr.SevenZipFile(lowercase_ , """r""" ) as archive: archive.extractall(lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = [b"\x04\x22\x4D\x18"] @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase_ , """rb""" ) as compressed_file: with open(lowercase_ , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_ ) class _a : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _UpperCamelCase: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _snake_case ( cls ) -> List[Any]: return max( len(lowercase_ ) for extractor in cls.extractors.values() if issubclass(lowercase_ , lowercase_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> Dict: try: return MagicNumberBaseExtractor.read_magic_number(lowercase_ , magic_number_length=lowercase_ ) except OSError: return b"" @classmethod def _snake_case ( cls , lowercase_ , lowercase_ = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase_ , ) lowerCAmelCase : int = cls.infer_extractor_format(lowercase_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _snake_case ( cls , lowercase_ ) -> str: # <Added version="2.4.0"/> lowerCAmelCase : Optional[Any] = cls._get_magic_number_max_length() lowerCAmelCase : Optional[int] = cls._read_magic_number(lowercase_ , lowercase_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase_ , magic_number=lowercase_ ): return extractor_format @classmethod def _snake_case ( cls , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase_ ) , exist_ok=lowercase_ ) # Prevent parallel extractions lowerCAmelCase : Tuple = str(Path(lowercase_ ).with_suffix(""".lock""" ) ) with FileLock(lowercase_ ): shutil.rmtree(lowercase_ , ignore_errors=lowercase_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase_ , lowercase_ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase_ , ) lowerCAmelCase : Optional[Any] = extractor if extractor != """deprecated""" else extractor_format else: lowerCAmelCase : Union[str, Any] = cls.extractors[extractor_format] return extractor.extract(lowercase_ , lowercase_ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase_ ): return extractor.extract(lowercase_ , lowercase_ )
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
import argparse import json import subprocess def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Optional[int] = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) lowerCAmelCase : int = subprocess.run(SCREAMING_SNAKE_CASE__ ,shell=SCREAMING_SNAKE_CASE__ ,stdout=subprocess.PIPE ) lowerCAmelCase : Optional[int] = output.stdout.decode("""utf-8""" ) lowerCAmelCase : Tuple = json.loads(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase : Union[str, Any] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return values.split(""",""" ) lowerCAmelCase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) lowerCAmelCase : Union[str, Any] =parser.parse_args() get_runner_status(args.target_runners, args.token)
693
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : Dict ={ 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "wavlm" def __init__( self , lowercase_=32 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(512, 512, 512, 512, 512, 512, 512) , lowercase_=(5, 2, 2, 2, 2, 2, 2) , lowercase_=(10, 3, 3, 3, 3, 2, 2) , lowercase_=False , lowercase_=128 , lowercase_=16 , lowercase_=320 , lowercase_=800 , lowercase_=False , lowercase_=True , lowercase_=0.0_5 , lowercase_=10 , lowercase_=2 , lowercase_=0.0 , lowercase_=10 , lowercase_=320 , lowercase_=2 , lowercase_=0.1 , lowercase_=100 , lowercase_=256 , lowercase_=256 , lowercase_=0.1 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=256 , lowercase_=(512, 512, 512, 512, 1500) , lowercase_=(5, 3, 3, 1, 1) , lowercase_=(1, 2, 3, 1, 1) , lowercase_=512 , lowercase_=80 , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=False , lowercase_=3 , lowercase_=2 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> str: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Union[str, Any] = feat_extract_norm lowerCAmelCase : Union[str, Any] = feat_extract_activation lowerCAmelCase : Any = list(lowercase_ ) lowerCAmelCase : Optional[Any] = list(lowercase_ ) lowerCAmelCase : Dict = list(lowercase_ ) lowerCAmelCase : List[str] = conv_bias lowerCAmelCase : Union[str, Any] = num_buckets lowerCAmelCase : List[str] = max_bucket_distance lowerCAmelCase : Union[str, Any] = num_conv_pos_embeddings lowerCAmelCase : Any = num_conv_pos_embedding_groups lowerCAmelCase : Union[str, Any] = len(self.conv_dim ) lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : str = hidden_dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : List[Any] = feat_proj_dropout lowerCAmelCase : Any = final_dropout lowerCAmelCase : Optional[Any] = layerdrop lowerCAmelCase : Tuple = layer_norm_eps lowerCAmelCase : int = initializer_range lowerCAmelCase : Optional[Any] = num_ctc_classes lowerCAmelCase : int = vocab_size lowerCAmelCase : List[Any] = do_stable_layer_norm lowerCAmelCase : int = use_weighted_layer_sum lowerCAmelCase : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : Any = apply_spec_augment lowerCAmelCase : List[str] = mask_time_prob lowerCAmelCase : List[str] = mask_time_length lowerCAmelCase : int = mask_time_min_masks lowerCAmelCase : str = mask_feature_prob lowerCAmelCase : int = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase : Dict = num_codevectors_per_group lowerCAmelCase : int = num_codevector_groups lowerCAmelCase : int = contrastive_logits_temperature lowerCAmelCase : Optional[Any] = num_negatives lowerCAmelCase : Optional[Any] = codevector_dim lowerCAmelCase : Dict = proj_codevector_dim lowerCAmelCase : Optional[Any] = diversity_loss_weight # ctc loss lowerCAmelCase : Optional[Any] = ctc_loss_reduction lowerCAmelCase : Optional[int] = ctc_zero_infinity # adapter lowerCAmelCase : Optional[Any] = add_adapter lowerCAmelCase : str = adapter_kernel_size lowerCAmelCase : Optional[Any] = adapter_stride lowerCAmelCase : Optional[Any] = num_adapter_layers lowerCAmelCase : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase : Any = list(lowercase_ ) lowerCAmelCase : Union[str, Any] = list(lowercase_ ) lowerCAmelCase : List[Any] = list(lowercase_ ) lowerCAmelCase : Tuple = xvector_output_dim @property def _snake_case ( self ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE__ )] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if (len(SCREAMING_SNAKE_CASE__ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE__ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,1_6 ) for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
693
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ): if magnitude == 0: lowerCAmelCase : Any = column continue lowerCAmelCase : Tuple = column / magnitude # Subtract to cancel term lowerCAmelCase : str = current_set[0] lowerCAmelCase : Optional[Any] = [first_row] lowerCAmelCase : Optional[Any] = current_set[1::] for row in current_set: lowerCAmelCase : Any = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE__ ) continue for column_index in range(len(SCREAMING_SNAKE_CASE__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCAmelCase : Any = final_set[0] lowerCAmelCase : List[str] = [] lowerCAmelCase : List[str] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCAmelCase : Any = simplify(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = resultant return final_set def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) + 1 if any(len(SCREAMING_SNAKE_CASE__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE__ ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(SCREAMING_SNAKE_CASE__ ) == 1: return [equations[0][-1] / equations[0][0]] lowerCAmelCase : Dict = equations.copy() if any(0 in row for row in data_set ): lowerCAmelCase : List[str] = data_set.copy() lowerCAmelCase : Optional[int] = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ): if 0 not in row: lowerCAmelCase : int = data_set.pop(SCREAMING_SNAKE_CASE__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = data_set.copy() lowerCAmelCase : Dict = simplify(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = simplified[::-1] lowerCAmelCase : list = [] for row in simplified: lowerCAmelCase : Any = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCAmelCase : Any = row.copy()[: len(SCREAMING_SNAKE_CASE__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE__ ) == 0: solutions.append(0 ) continue lowerCAmelCase : List[str] = temp_row[1::] lowerCAmelCase : List[str] = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE__ ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Dict =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase : Any =logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = set() lowerCAmelCase : Tuple = [] def parse_line(SCREAMING_SNAKE_CASE__ ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase : Optional[Any] = """\n""".join(SCREAMING_SNAKE_CASE__ ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE__ ) buffer.clear() continue else: lowerCAmelCase : str = line.strip() buffer.append(SCREAMING_SNAKE_CASE__ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE__ ) as fp: parse_line(SCREAMING_SNAKE_CASE__ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE__ ) as fp: parse_line(SCREAMING_SNAKE_CASE__ ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = set() lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) return selected_warnings if __name__ == "__main__": def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return values.split(""",""" ) lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) lowerCAmelCase : Optional[Any] =parser.parse_args() lowerCAmelCase : List[str] =args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase : List[str] =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase : Union[str, Any] =extract_warnings(args.output_dir, args.targets) lowerCAmelCase : Optional[int] =sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( snake_case_ ): _UpperCamelCase: torch.FloatTensor _UpperCamelCase: torch.FloatTensor class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = 1 @register_to_config def __init__( self , lowercase_ = 2000 , lowercase_ = 0.1_5 , lowercase_ = 0.0_1 , lowercase_ = 1_3_4_8.0 , lowercase_ = 1e-5 , lowercase_ = 1 , ) -> List[str]: # standard deviation of the initial noise distribution lowerCAmelCase : Any = sigma_max # setable values lowerCAmelCase : Dict = None self.set_sigmas(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = None ) -> torch.FloatTensor: return sample def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None ) -> Any: lowerCAmelCase : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowerCAmelCase : Union[str, Any] = torch.linspace(1 , lowercase_ , lowercase_ , device=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None ) -> Dict: lowerCAmelCase : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min lowerCAmelCase : List[str] = sigma_max if sigma_max is not None else self.config.sigma_max lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[int] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowerCAmelCase : Optional[Any] = torch.exp(torch.linspace(math.log(lowercase_ ) , math.log(lowercase_ ) , lowercase_ ) ) lowerCAmelCase : Dict = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _snake_case ( self , lowercase_ , lowercase_ ) -> Tuple: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) lowerCAmelCase : str = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowerCAmelCase : List[str] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowerCAmelCase : str = timesteps.to(self.discrete_sigmas.device ) lowerCAmelCase : int = self.discrete_sigmas[timesteps].to(sample.device ) lowerCAmelCase : List[Any] = self.get_adjacent_sigma(lowercase_ , lowercase_ ).to(sample.device ) lowerCAmelCase : Union[str, Any] = torch.zeros_like(lowercase_ ) lowerCAmelCase : Optional[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowerCAmelCase : int = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowerCAmelCase : Union[str, Any] = diffusion.unsqueeze(-1 ) lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowerCAmelCase : int = randn_tensor( sample.shape , layout=sample.layout , generator=lowercase_ , device=sample.device , dtype=sample.dtype ) lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowerCAmelCase : Union[str, Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowercase_ , prev_sample_mean=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowerCAmelCase : List[str] = randn_tensor(sample.shape , layout=sample.layout , generator=lowercase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowerCAmelCase : Optional[Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase : Optional[int] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowerCAmelCase : List[str] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowerCAmelCase : Optional[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowerCAmelCase : List[str] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowerCAmelCase : str = step_size.unsqueeze(-1 ) lowerCAmelCase : Any = sample + step_size * model_output lowerCAmelCase : Dict = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase : Tuple = timesteps.to(original_samples.device ) lowerCAmelCase : int = self.discrete_sigmas.to(original_samples.device )[timesteps] lowerCAmelCase : Tuple = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowercase_ ) * sigmas[:, None, None, None] ) lowerCAmelCase : Tuple = noise + original_samples return noisy_samples def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
def _UpperCAmelCase ( ): '''simple docstring''' for n in range(1 ,1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 1 lowerCAmelCase : Any = 2 while i * i <= n: lowerCAmelCase : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _UpperCAmelCase ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
from numpy import exp, pi, sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
from __future__ import annotations from collections.abc import MutableSequence class _a : def __init__( self , lowercase_ , lowercase_ ) -> None: if len(lowercase_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) lowerCAmelCase : list[float] = list(lowercase_ ) lowerCAmelCase : Dict = degree def __add__( self , lowercase_ ) -> Polynomial: if self.degree > polynomial_a.degree: lowerCAmelCase : Tuple = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowercase_ ) else: lowerCAmelCase : int = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowercase_ ) def __sub__( self , lowercase_ ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowercase_ ) -> Polynomial: lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowercase_ ) def _snake_case ( self , lowercase_ ) -> int | float: lowerCAmelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: lowerCAmelCase : int = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase_ ) return polynomial def __repr__( self ) -> str: return self.__str__() def _snake_case ( self ) -> Polynomial: lowerCAmelCase : list[float] = [0] * self.degree for i in range(self.degree ): lowerCAmelCase : Optional[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowercase_ ) def _snake_case ( self , lowercase_ = 0 ) -> Polynomial: lowerCAmelCase : list[float] = [0] * (self.degree + 2) lowerCAmelCase : List[Any] = constant for i in range(self.degree + 1 ): lowerCAmelCase : Tuple = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowercase_ ) def __eq__( self , lowercase_ ) -> bool: if not isinstance(lowercase_ , lowercase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowercase_ ) -> bool: return not self.__eq__(lowercase_ )
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = [0] * len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = [] lowerCAmelCase : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) while queue: lowerCAmelCase : Any = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) if cnt != len(SCREAMING_SNAKE_CASE__ ): print("""Cycle exists""" ) else: print(SCREAMING_SNAKE_CASE__ ) # Adjacency List of Graph lowerCAmelCase : Dict ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _a ( unittest.TestCase ): def _snake_case ( self ) -> Any: lowerCAmelCase : Any = """laion/clap-htsat-unfused""" lowerCAmelCase : Tuple = tempfile.mkdtemp() def _snake_case ( self , **lowercase_ ) -> Union[str, Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def _snake_case ( self , **lowercase_ ) -> List[str]: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase_ ) def _snake_case ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Dict = self.get_feature_extractor() lowerCAmelCase : List[str] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase : Union[str, Any] = self.get_feature_extractor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase : str = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : str = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) lowerCAmelCase : List[Any] = floats_list((3, 1000) ) lowerCAmelCase : List[Any] = feature_extractor(lowercase_ , return_tensors="""np""" ) lowerCAmelCase : List[Any] = processor(audios=lowercase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> List[str]: lowerCAmelCase : int = self.get_feature_extractor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) lowerCAmelCase : Union[str, Any] = """This is a test string""" lowerCAmelCase : Optional[int] = processor(text=lowercase_ ) lowerCAmelCase : Dict = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Tuple = self.get_feature_extractor() lowerCAmelCase : int = self.get_tokenizer() lowerCAmelCase : Tuple = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) lowerCAmelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(lowercase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : int = self.get_feature_extractor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : int = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) lowerCAmelCase : Tuple = 0 lowerCAmelCase : Dict = str(SCREAMING_SNAKE_CASE__ ) while len(SCREAMING_SNAKE_CASE__ ) != 1: lowerCAmelCase : Any = [int(SCREAMING_SNAKE_CASE__ ) for i in num_string] lowerCAmelCase : Optional[int] = 1 for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): total *= numbers[i] lowerCAmelCase : int = str(SCREAMING_SNAKE_CASE__ ) steps += 1 return steps def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) while len(SCREAMING_SNAKE_CASE__ ) != 1: lowerCAmelCase : List[Any] = [int(SCREAMING_SNAKE_CASE__ ) for i in num_string] lowerCAmelCase : str = 0 for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): total += numbers[i] lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : list[list[int]] = [] create_all_state(1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,[] ,SCREAMING_SNAKE_CASE__ ) return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE__ ,total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE__ ) create_all_state(i + 1 ,SCREAMING_SNAKE_CASE__ ,level - 1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) current_list.pop() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for i in total_list: print(*SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] =4 lowerCAmelCase : Tuple =2 lowerCAmelCase : List[str] =generate_all_combinations(n, k) print_all_state(total_list)
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import os def _UpperCAmelCase ( ): '''simple docstring''' with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + """/grid.txt""" ) as f: lowerCAmelCase : int = [] # noqa: E741 for _ in range(2_0 ): l.append([int(SCREAMING_SNAKE_CASE__ ) for x in f.readline().split()] ) lowerCAmelCase : Any = 0 # right for i in range(2_0 ): for j in range(1_7 ): lowerCAmelCase : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase : Any = temp # down for i in range(1_7 ): for j in range(2_0 ): lowerCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase : Any = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): lowerCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase : Union[str, Any] = temp # diagonal 2 for i in range(1_7 ): for j in range(3 ,2_0 ): lowerCAmelCase : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase : Tuple = temp return maximum if __name__ == "__main__": print(solution())
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase : Any ={ 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase : int =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = ["audio_values", "audio_mask"] def __init__( self , lowercase_=2048 , lowercase_=1 , lowercase_=[16, 16] , lowercase_=128 , lowercase_=44100 , lowercase_=86 , lowercase_=2048 , lowercase_=0.0 , **lowercase_ , ) -> Any: super().__init__( feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ , ) lowerCAmelCase : int = spectrogram_length lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = patch_size lowerCAmelCase : Optional[int] = feature_size // self.patch_size[1] lowerCAmelCase : List[Any] = n_fft lowerCAmelCase : List[str] = sampling_rate // hop_length_to_sampling_rate lowerCAmelCase : str = sampling_rate lowerCAmelCase : Any = padding_value lowerCAmelCase : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase_ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=lowercase_ , norm="""slaney""" , mel_scale="""slaney""" , ).T def _snake_case ( self , lowercase_ ) -> np.ndarray: lowerCAmelCase : Dict = spectrogram( lowercase_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , ) lowerCAmelCase : Union[str, Any] = log_spec[:, :-1] lowerCAmelCase : Any = log_spec - 2_0.0 lowerCAmelCase : Union[str, Any] = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = False , **lowercase_ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCAmelCase : Dict = isinstance(lowercase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowerCAmelCase : int = is_batched_numpy or ( isinstance(lowercase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray ): lowerCAmelCase : Union[str, Any] = np.asarray(lowercase_ , dtype=np.floataa ) elif isinstance(lowercase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase : str = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCAmelCase : Optional[int] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowercase_ ): lowerCAmelCase : Tuple = [np.asarray(lowercase_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCAmelCase : int = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCAmelCase : Any = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCAmelCase : Dict = np.array(lowercase_ ).astype(np.floataa ) # convert into correct format for padding lowerCAmelCase : Union[str, Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCAmelCase : Tuple = np.ones([len(lowercase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCAmelCase : Optional[int] = padded_audio_features * self.padding_value for i in range(len(lowercase_ ) ): lowerCAmelCase : List[Any] = audio_features[i] lowerCAmelCase : List[Any] = feature # return as BatchFeature if return_attention_mask: lowerCAmelCase : Optional[int] = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCAmelCase : Dict = {"""audio_values""": padded_audio_features} lowerCAmelCase : Union[str, Any] = BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) return encoded_inputs
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _UpperCamelCase: str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCamelCase: ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) _UpperCamelCase: ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) _UpperCamelCase: str = "question" _UpperCamelCase: str = "context" _UpperCamelCase: str = "answers" @property def _snake_case ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
from __future__ import annotations lowerCAmelCase : Union[str, Any] =[-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase : Tuple =[-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : int = len(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : float = -1 for j in range(i + 1 ,SCREAMING_SNAKE_CASE__ ): if arr[i] < arr[j]: lowerCAmelCase : List[str] = arr[j] break result.append(SCREAMING_SNAKE_CASE__ ) return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : int = [] for i, outer in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCAmelCase : List[Any] = inner break result.append(SCREAMING_SNAKE_CASE__ ) return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : list[float] = [] lowerCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(SCREAMING_SNAKE_CASE__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCAmelCase : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase : Dict =( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = BlipImageProcessor() lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowerCAmelCase : List[str] = BlipaProcessor(lowercase_ , lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase_ ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer def _snake_case ( self , **lowercase_ ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> str: lowerCAmelCase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[str] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase : Optional[int] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def _snake_case ( self ) -> Dict: lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : int = self.get_tokenizer() lowerCAmelCase : Any = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""np""" ) lowerCAmelCase : Tuple = processor(images=lowercase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : int = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Optional[int] = """lower newer""" lowerCAmelCase : Tuple = processor(text=lowercase_ ) lowerCAmelCase : Dict = tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> Dict: lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Tuple = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Any = """lower newer""" lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase : List[Any] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _snake_case ( self ) -> str: lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : Optional[int] = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Union[str, Any] = processor.batch_decode(lowercase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Any: lowerCAmelCase : str = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase : Optional[Any] = """lower newer""" lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Tuple = processor(text=lowercase_ , images=lowercase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( snake_case_ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_ ) -> List[str]: super().__init__(*lowercase_ , **lowercase_ ) lowerCAmelCase : Dict = eval_examples lowerCAmelCase : Dict = post_process_function def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = "eval" ) -> Optional[int]: lowerCAmelCase : int = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase : Union[str, Any] = self.get_eval_dataloader(lowercase_ ) lowerCAmelCase : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : Dict = self.compute_metrics lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase : str = time.time() try: lowerCAmelCase : List[Any] = eval_loop( lowercase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowerCAmelCase : Dict = compute_metrics lowerCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCAmelCase : Optional[Any] = self.post_process_function(lowercase_ , lowercase_ , output.predictions ) lowerCAmelCase : Dict = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowerCAmelCase : Dict = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: lowerCAmelCase : str = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" ) -> Optional[int]: lowerCAmelCase : Any = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : int = self.compute_metrics lowerCAmelCase : str = None lowerCAmelCase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase : Dict = time.time() try: lowerCAmelCase : Optional[Any] = eval_loop( lowercase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowerCAmelCase : List[Any] = compute_metrics lowerCAmelCase : List[str] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase : List[str] = self.post_process_function(lowercase_ , lowercase_ , output.predictions , """predict""" ) lowerCAmelCase : int = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowerCAmelCase : Optional[Any] = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCAmelCase : int =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = {} with open(SCREAMING_SNAKE_CASE__ ,"""r""" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[Any] = line.strip() if line: lowerCAmelCase : Dict = line.split() lowerCAmelCase : Dict = line_number lowerCAmelCase : List[str] = words[0] lowerCAmelCase : List[Any] = value return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for attribute in key.split(""".""" ): lowerCAmelCase : List[str] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowerCAmelCase : List[str] = """param""" if weight_type is not None and weight_type != "param": lowerCAmelCase : Any = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).shape elif weight_type is not None and weight_type == "param": lowerCAmelCase : Tuple = hf_pointer for attribute in hf_param_name.split(""".""" ): lowerCAmelCase : int = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = shape_pointer.shape # let's reduce dimension lowerCAmelCase : int = value[0] else: lowerCAmelCase : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase : List[str] = value elif weight_type == "weight_g": lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": lowerCAmelCase : str = value elif weight_type == "bias": lowerCAmelCase : List[str] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): lowerCAmelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = value else: lowerCAmelCase : Optional[int] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowerCAmelCase : str = """param""" if weight_type is not None and weight_type != "param": lowerCAmelCase : int = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCAmelCase : Optional[Any] = """.""".join([key, hf_param_name] ) else: lowerCAmelCase : List[str] = key lowerCAmelCase : Dict = value if """lm_head""" in full_key else value[0] lowerCAmelCase : List[str] ={ 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Dict = False for key, mapped_key in MAPPING.items(): lowerCAmelCase : Optional[Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase : Dict = True if "*" in mapped_key: lowerCAmelCase : Union[str, Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] lowerCAmelCase : str = mapped_key.replace("""*""" ,SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: lowerCAmelCase : List[str] = """weight_g""" elif "weight_v" in name: lowerCAmelCase : Union[str, Any] = """weight_v""" elif "bias" in name: lowerCAmelCase : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase : List[Any] = """weight""" else: lowerCAmelCase : Tuple = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: set_recursively(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return is_used return is_used def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = fairseq_model.state_dict() lowerCAmelCase : int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,hf_model.config.feat_extract_norm == """group""" ,) lowerCAmelCase : List[Any] = True else: lowerCAmelCase : str = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase : List[Any] = name.split(""".""" ) lowerCAmelCase : Any = int(items[0] ) lowerCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if config_path is not None: lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Any = WavaVecaConfig() if is_seq_class: lowerCAmelCase : str = read_txt_into_dict(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = idalabel lowerCAmelCase : List[Any] = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) elif is_finetuned: if dict_path: lowerCAmelCase : int = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase : Dict = target_dict.pad_index lowerCAmelCase : Optional[int] = target_dict.bos_index lowerCAmelCase : Optional[int] = target_dict.eos_index lowerCAmelCase : Optional[Any] = len(target_dict.symbols ) lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE__ ,"""vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase : Dict = 0 lowerCAmelCase : Any = 1 with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : Tuple = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : Dict = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned or is_seq_class: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCAmelCase : Optional[Any] = argparse.Namespace(task="""audio_pretraining""" ) lowerCAmelCase : Dict = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCAmelCase : List[Any] =parser.parse_args() lowerCAmelCase : List[str] =not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1
from __future__ import annotations import collections import pprint from pathlib import Path def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return "".join(sorted(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return word_by_signature[signature(SCREAMING_SNAKE_CASE__ )] lowerCAmelCase : str =Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCAmelCase : Union[str, Any] =sorted({word.strip().lower() for word in data.splitlines()}) lowerCAmelCase : int =collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCAmelCase : Any ={word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a ( snake_case_ ): _UpperCamelCase: UNetaDModel _UpperCamelCase: KarrasVeScheduler def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = 50 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , **lowercase_ , ) -> Union[Tuple, ImagePipelineOutput]: lowerCAmelCase : int = self.unet.config.sample_size lowerCAmelCase : str = (batch_size, 3, img_size, img_size) lowerCAmelCase : int = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCAmelCase : List[Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCAmelCase : str = self.scheduler.schedule[t] lowerCAmelCase : str = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCAmelCase , lowerCAmelCase : List[Any] = self.scheduler.add_noise_to_input(lowercase_ , lowercase_ , generator=lowercase_ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase : Union[str, Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCAmelCase : Optional[Any] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase : Optional[int] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowerCAmelCase : List[Any] = self.scheduler.step_correct( lowercase_ , lowercase_ , lowercase_ , lowercase_ , step_output.prev_sample , step_output["""derivative"""] , ) lowerCAmelCase : str = step_output.prev_sample lowerCAmelCase : List[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
693
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase : List[Any] ={'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _a ( unittest.TestCase ): _UpperCamelCase: Any = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCamelCase: List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCamelCase: List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCamelCase: Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: lowerCAmelCase : Dict = ZeroShotClassificationPipeline( model=lowercase_ , tokenizer=lowercase_ , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _snake_case ( self , lowercase_ , lowercase_ ) -> List[str]: lowerCAmelCase : Union[str, Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} ) # No kwarg lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} ) lowerCAmelCase : List[Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} ) lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) lowerCAmelCase : Union[str, Any] = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} ) # https://github.com/huggingface/transformers/issues/13846 lowerCAmelCase : List[Any] = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( lowercase_ , [ {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} for i in range(1 ) ] , ) lowerCAmelCase : Union[str, Any] = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( lowercase_ , [ {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} for i in range(2 ) ] , ) with self.assertRaises(lowercase_ ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(lowercase_ ): classifier(lowercase_ , candidate_labels="""politics""" ) with self.assertRaises(lowercase_ ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(lowercase_ ): classifier("""Who are you voting for in 2020?""" , candidate_labels=lowercase_ ) with self.assertRaises(lowercase_ ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(lowercase_ ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=lowercase_ , ) self.run_entailment_id(lowercase_ ) def _snake_case ( self , lowercase_ ) -> Optional[int]: lowerCAmelCase : str = zero_shot_classifier.model.config lowerCAmelCase : Tuple = config.labelaid lowerCAmelCase : str = zero_shot_classifier.entailment_id lowerCAmelCase : int = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowerCAmelCase : List[str] = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCAmelCase : List[str] = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCAmelCase : str = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowerCAmelCase : List[str] = original_labelaid self.assertEqual(lowercase_ , zero_shot_classifier.entailment_id ) @require_torch def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : str = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def _snake_case ( self ) -> str: lowerCAmelCase : List[str] = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) lowerCAmelCase : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _snake_case ( self ) -> str: lowerCAmelCase : Union[str, Any] = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) lowerCAmelCase : Union[str, Any] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Any = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) lowerCAmelCase : Any = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCAmelCase : Union[str, Any] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : str = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) lowerCAmelCase : int = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCAmelCase : str = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _a : _UpperCamelCase: Any = XGLMConfig _UpperCamelCase: Union[str, Any] = {} _UpperCamelCase: Any = "gelu" def __init__( self , lowercase_ , lowercase_=14 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.0_2 , ) -> List[Any]: lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : List[str] = is_training lowerCAmelCase : Union[str, Any] = use_input_mask lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : Any = d_model lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[Any] = ffn_dim lowerCAmelCase : Union[str, Any] = activation_function lowerCAmelCase : List[Any] = activation_dropout lowerCAmelCase : int = attention_dropout lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = None lowerCAmelCase : List[str] = 0 lowerCAmelCase : List[str] = 2 lowerCAmelCase : List[Any] = 1 def _snake_case ( self ) -> Tuple: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Dict = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Any = self.get_config() lowerCAmelCase : Tuple = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _snake_case ( self ) -> Dict: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : Tuple = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[int] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _UpperCamelCase: Any = (TFXGLMForCausalLM,) if is_tf_available() else () _UpperCamelCase: Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) _UpperCamelCase: Optional[int] = False _UpperCamelCase: Any = False _UpperCamelCase: int = False def _snake_case ( self ) -> List[str]: lowerCAmelCase : str = TFXGLMModelTester(self ) lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() @slow def _snake_case ( self ) -> Dict: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _snake_case ( self ) -> Optional[int]: super().test_resize_token_embeddings() @require_tf class _a ( unittest.TestCase ): @slow def _snake_case ( self , lowercase_=True ) -> Union[str, Any]: lowerCAmelCase : Dict = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase : Dict = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCAmelCase : Optional[int] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on lowerCAmelCase : str = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def _snake_case ( self ) -> List[Any]: lowerCAmelCase : str = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) lowerCAmelCase : Dict = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) lowerCAmelCase : List[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): lowerCAmelCase : Dict = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) lowerCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase : str = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(lowercase_ , lowercase_ ) @slow def _snake_case ( self ) -> List[Any]: lowerCAmelCase : List[Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase : Tuple = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase : str = """left""" # use different length sentences to test batching lowerCAmelCase : List[Any] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] lowerCAmelCase : List[Any] = tokenizer(lowercase_ , return_tensors="""tf""" , padding=lowercase_ ) lowerCAmelCase : Optional[Any] = inputs["""input_ids"""] lowerCAmelCase : Union[str, Any] = model.generate(input_ids=lowercase_ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) lowerCAmelCase : Optional[Any] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCAmelCase : Optional[int] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) lowerCAmelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCAmelCase : Optional[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) lowerCAmelCase : Dict = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase : List[str] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
693
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _a ( unittest.TestCase ): def _snake_case ( self ) -> Optional[int]: # A mock response for an HTTP head request to emulate server down lowerCAmelCase : str = mock.Mock() lowerCAmelCase : Tuple = 500 lowerCAmelCase : List[str] = {} lowerCAmelCase : Any = HTTPError lowerCAmelCase : Optional[int] = {} # Download this model to make sure it's in the cache. lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=lowercase_ ) as mock_head: lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _snake_case ( self ) -> Optional[int]: # A mock response for an HTTP head request to emulate server down lowerCAmelCase : Dict = mock.Mock() lowerCAmelCase : Dict = 500 lowerCAmelCase : Tuple = {} lowerCAmelCase : Tuple = HTTPError lowerCAmelCase : Dict = {} # Download this model to make sure it's in the cache. lowerCAmelCase : List[str] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=lowercase_ ) as mock_head: lowerCAmelCase : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 try: lowerCAmelCase : Any = tempfile.mktemp() with open(lowercase_ , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , lowercase_ ) lowerCAmelCase : Tuple = AlbertTokenizer.from_pretrained(lowercase_ ) finally: os.remove(lowercase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , lowercase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def _snake_case ( self ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase : Optional[Any] = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _a ( unittest.TestCase ): _UpperCamelCase: Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _snake_case ( cls ) -> int: lowerCAmelCase : str = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls ) -> int: try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def _snake_case ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Tuple = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase : Optional[int] = BertTokenizer(lowercase_ ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ , repo_id="""test-tokenizer""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _snake_case ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Any = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase : Tuple = BertTokenizer(lowercase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) lowerCAmelCase : Tuple = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowercase_ , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _snake_case ( self ) -> Tuple: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Any = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase : Union[str, Any] = CustomTokenizer(lowercase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Optional[Any] = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase : Optional[int] = BertTokenizerFast.from_pretrained(lowercase_ ) bert_tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase : Tuple = CustomTokenizerFast.from_pretrained(lowercase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( f"""{USER}/test-dynamic-tokenizer""" , use_fast=lowercase_ , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class _a ( unittest.TestCase ): def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[Any] = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : int = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : List[Any] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def _snake_case ( self ) -> Dict: lowerCAmelCase : List[Any] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def _snake_case ( self ) -> Optional[Any]: # Even if the offsets are wrong, we necessarily output correct string # parts. lowerCAmelCase : int = Trie() lowerCAmelCase : Any = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowercase_ , ["""AB""", """C"""] )
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _a ( datasets.BuilderConfig ): _UpperCamelCase: Optional[datasets.Features] = None class _a ( datasets.ArrowBasedBuilder ): _UpperCamelCase: str = PandasConfig def _snake_case ( self ) -> List[Any]: return datasets.DatasetInfo(features=self.config.features ) def _snake_case ( self , lowercase_ ) -> List[Any]: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowerCAmelCase : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase_ , (str, list, tuple) ): lowerCAmelCase : str = data_files if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : Tuple = [dl_manager.iter_files(lowercase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowerCAmelCase : List[str] = [] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : str = [dl_manager.iter_files(lowercase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={"""files""": files} ) ) return splits def _snake_case ( self , lowercase_ ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase : int = table_cast(lowercase_ , self.config.features.arrow_schema ) return pa_table def _snake_case ( self , lowercase_ ) -> Optional[int]: for i, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ): with open(lowercase_ , """rb""" ) as f: lowerCAmelCase : Any = pa.Table.from_pandas(pd.read_pickle(lowercase_ ) ) yield i, self._cast_table(lowercase_ )
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: int = MobileBertTokenizer _UpperCamelCase: Optional[int] = MobileBertTokenizerFast _UpperCamelCase: Tuple = True _UpperCamelCase: Tuple = True _UpperCamelCase: Optional[Any] = filter_non_english _UpperCamelCase: Tuple = "google/mobilebert-uncased" def _snake_case ( self ) -> Union[str, Any]: super().setUp() lowerCAmelCase : str = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase : Optional[int] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _snake_case ( self , lowercase_ ) -> str: lowerCAmelCase : Optional[Any] = """UNwant\u00E9d,running""" lowerCAmelCase : int = """unwanted, running""" return input_text, output_text def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase : str = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowercase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [9, 6, 7, 12, 10, 11] ) def _snake_case ( self ) -> str: if not self.test_rust_tokenizer: return lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : Tuple = self.get_rust_tokenizer() lowerCAmelCase : Dict = """UNwant\u00E9d,running""" lowerCAmelCase : List[str] = tokenizer.tokenize(lowercase_ ) lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase : int = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase : Tuple = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase : int = self.get_rust_tokenizer() lowerCAmelCase : Dict = tokenizer.encode(lowercase_ ) lowerCAmelCase : Any = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # With lower casing lowerCAmelCase : Any = self.get_tokenizer(do_lower_case=lowercase_ ) lowerCAmelCase : List[str] = self.get_rust_tokenizer(do_lower_case=lowercase_ ) lowerCAmelCase : Optional[Any] = """UNwant\u00E9d,running""" lowerCAmelCase : List[Any] = tokenizer.tokenize(lowercase_ ) lowerCAmelCase : Dict = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase : List[str] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = tokenizer.encode(lowercase_ ) lowerCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def _snake_case ( self ) -> Any: lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _snake_case ( self ) -> List[str]: lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=lowercase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> Dict: lowerCAmelCase : List[Any] = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Any = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _snake_case ( self ) -> str: lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=lowercase_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def _snake_case ( self ) -> int: lowerCAmelCase : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowerCAmelCase : Any = {} for i, token in enumerate(lowercase_ ): lowerCAmelCase : Union[str, Any] = i lowerCAmelCase : Optional[Any] = WordpieceTokenizer(vocab=lowercase_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def _snake_case ( self ) -> Dict: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def _snake_case ( self ) -> Optional[Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def _snake_case ( self ) -> List[str]: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def _snake_case ( self ) -> Dict: lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Dict = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) lowerCAmelCase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowerCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _snake_case ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : Optional[int] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCAmelCase : Optional[int] = tokenizer_r.encode_plus( lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ , ) lowerCAmelCase : int = tokenizer_r.do_lower_case if hasattr(lowercase_ , """do_lower_case""" ) else False lowerCAmelCase : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def _snake_case ( self ) -> Any: lowerCAmelCase : Optional[int] = ["""的""", """人""", """有"""] lowerCAmelCase : Tuple = """""".join(lowercase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : str = True lowerCAmelCase : int = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : Optional[Any] = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase : Optional[Any] = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(lowercase_ ) lowerCAmelCase : Optional[Any] = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase : Dict = False lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : Tuple = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase : Tuple = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase : Optional[int] = tokenizer_r.convert_ids_to_tokens(lowercase_ ) lowerCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(lowercase_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase : List[Any] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase_ ) ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _a ( nn.Module ): def __init__( self , lowercase_ = 16 , lowercase_ = 88 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = 32 , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = "geglu" , lowercase_ = None , ) -> Optional[Any]: super().__init__() lowerCAmelCase : List[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowercase_ , attention_head_dim=lowercase_ , in_channels=lowercase_ , num_layers=lowercase_ , dropout=lowercase_ , norm_num_groups=lowercase_ , cross_attention_dim=lowercase_ , attention_bias=lowercase_ , sample_size=lowercase_ , num_vector_embeds=lowercase_ , activation_fn=lowercase_ , num_embeds_ada_norm=lowercase_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCAmelCase : Optional[int] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCAmelCase : Optional[int] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCAmelCase : Union[str, Any] = [1, 0] def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = True , ) -> str: lowerCAmelCase : Dict = hidden_states lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCAmelCase : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCAmelCase : Tuple = self.transformer_index_for_condition[i] lowerCAmelCase : List[Any] = self.transformers[transformer_index]( lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ , cross_attention_kwargs=lowercase_ , return_dict=lowercase_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCAmelCase : Dict = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCAmelCase : List[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowercase_ )
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase : Union[str, Any] ={ 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "retribert" def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=8 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=True , lowercase_=128 , lowercase_=0 , **lowercase_ , ) -> Tuple: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : int = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = share_encoders lowerCAmelCase : List[str] = projection_dim
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
from collections import defaultdict from math import gcd def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_5_0_0_0_0_0 ): '''simple docstring''' lowerCAmelCase : defaultdict = defaultdict(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 ,SCREAMING_SNAKE_CASE__ ,2 ): if gcd(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) > 1: continue lowerCAmelCase : str = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE__ ,limit + 1 ,SCREAMING_SNAKE_CASE__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] =250_004 lowerCAmelCase : Optional[Any] =250_020 @require_sentencepiece @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[int] = MBartaaTokenizer _UpperCamelCase: Union[str, Any] = MBartaaTokenizerFast _UpperCamelCase: int = True _UpperCamelCase: Tuple = True def _snake_case ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : List[str] = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> str: lowerCAmelCase : Dict = """<s>""" lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowercase_ ) , 1054 ) def _snake_case ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _snake_case ( self ) -> Any: lowerCAmelCase : List[str] = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ ) lowerCAmelCase : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _snake_case ( self ) -> Union[str, Any]: # fmt: off lowerCAmelCase : int = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def _snake_case ( self ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase : Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase : int = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(lowercase_ ) lowerCAmelCase : Optional[int] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : str = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase : str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : str = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : Tuple = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase : str = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : List[str] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowerCAmelCase : int = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase : Tuple = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): _UpperCamelCase: Optional[Any] = "facebook/mbart-large-50-one-to-many-mmt" _UpperCamelCase: Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _UpperCamelCase: Optional[int] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _UpperCamelCase: List[str] = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def _snake_case ( cls ) -> Optional[int]: lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCAmelCase : List[str] = 1 return cls def _snake_case ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def _snake_case ( self ) -> int: self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) lowerCAmelCase : int = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCAmelCase : Optional[int] = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def _snake_case ( self ) -> List[str]: lowerCAmelCase : str = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , lowercase_ ) lowerCAmelCase : List[str] = 10 lowerCAmelCase : Optional[int] = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[0] , lowercase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def _snake_case ( self ) -> Optional[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase : Any = MBartaaTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors="""pt""" ) lowerCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCAmelCase : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCAmelCase : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors="""pt""" ) lowerCAmelCase : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors="""pt""" ) lowerCAmelCase : Optional[Any] = targets["""input_ids"""] lowerCAmelCase : Union[str, Any] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(lowercase_ ) , { # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase : List[str] =[ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase : Union[str, Any] =[[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowerCAmelCase : Dict = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase : List[Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE__ ) return next_generation def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = [] for _ in range(SCREAMING_SNAKE_CASE__ ): # Create output image lowerCAmelCase : Union[str, Any] = Image.new("""RGB""" ,(len(cells[0] ), len(SCREAMING_SNAKE_CASE__ )) ) lowerCAmelCase : Tuple = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE__ ) ): for y in range(len(cells[0] ) ): lowerCAmelCase : Any = 2_5_5 - cells[y][x] * 2_5_5 lowerCAmelCase : Tuple = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = new_generation(SCREAMING_SNAKE_CASE__ ) return images if __name__ == "__main__": lowerCAmelCase : Any =generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[int] = WavaVecaPhonemeCTCTokenizer _UpperCamelCase: str = False def _snake_case ( self ) -> int: super().setUp() lowerCAmelCase : int = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) lowerCAmelCase : List[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowerCAmelCase : Dict = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) def _snake_case ( self , lowercase_ , lowercase_=False , lowercase_=20 , lowercase_=5 ) -> Tuple[str, list]: lowerCAmelCase : Optional[int] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_ )) for i in range(len(lowercase_ ) )] lowerCAmelCase : List[str] = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowercase_ ) , lowercase_ ) ) if max_length is not None and len(lowercase_ ) > max_length: lowerCAmelCase : Union[str, Any] = toks[:max_length] if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0: while len(lowercase_ ) < min_length: lowerCAmelCase : Any = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase : List[Any] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase : List[Any] = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) if " " not in output_txt and len(lowercase_ ) > 1: lowerCAmelCase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_ ) ) if with_prefix_space: lowerCAmelCase : str = """ """ + output_txt lowerCAmelCase : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) return output_txt, output_ids def _snake_case ( self , **lowercase_ ) -> int: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) lowerCAmelCase : Dict = tokenizer("""m xxx ɪ""" , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) lowerCAmelCase : List[Any] = tokenizer("""m aaa ɪ ccc""" , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase : Tuple = tokenizer("""maɪ c""" , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [3, 200] ) # mai should be <unk> (=3) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase : List[str] = """Hello how are you""" lowerCAmelCase : int = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowercase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase : int = """Hello how are you""" lowerCAmelCase : Any = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def _snake_case ( self ) -> Any: lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase : Dict = """Hello how are you""" lowerCAmelCase : Optional[Any] = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" ) lowerCAmelCase : List[str] = tokenizer.decode(tokenizer(lowercase_ ).input_ids ) self.assertEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase : str = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase : Any = tokenizer.decode(sample_ids[0] ) lowerCAmelCase : int = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCAmelCase : Union[str, Any] = """Hello how are you""" lowerCAmelCase : str = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" ) self.assertEqual(lowercase_ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def _snake_case ( self ) -> Any: lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCAmelCase : int = """Hello how are you""" lowerCAmelCase : Optional[int] = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : str = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off lowerCAmelCase : str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase : str = tokenizer.decode(sample_ids[0] ) lowerCAmelCase : Tuple = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter lowerCAmelCase : List[str] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowercase_ ) lowerCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase_ , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCAmelCase : str = """Hello how are you""" lowerCAmelCase : List[Any] = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" ) lowerCAmelCase : Tuple = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCAmelCase : List[Any] = """Hello how are you""" lowerCAmelCase : Union[str, Any] = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" ) lowerCAmelCase : Any = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=lowercase_ ) lowerCAmelCase : Any = """Hello how are you""" lowerCAmelCase : Tuple = tokenizer(lowercase_ , phonemizer_lang="""en-us""" ).input_ids lowerCAmelCase : List[str] = tokenizer(lowercase_ , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[Any] = tokenizer.decode(lowercase_ ) lowerCAmelCase : Tuple = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(lowercase_ , """ɛ l o h aʊ a ʁ j u""" ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase : Optional[int] = """Hello how Are you""" lowerCAmelCase : List[str] = """hello how are you""" lowerCAmelCase : Optional[Any] = tokenizer(lowercase_ ).input_ids lowerCAmelCase : Optional[int] = tokenizer(lowercase_ ).input_ids self.assertEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off lowerCAmelCase : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def _snake_case ( lowercase_ , lowercase_ ) -> int: lowerCAmelCase : Tuple = [d[key] for d in offsets] return retrieved_list def _snake_case ( self ) -> Any: lowerCAmelCase : Any = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase : List[Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase : Optional[Any] = tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ , filter_word_delimiter_token=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[int] = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(lowercase_ , lowercase_ ): self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowercase_ ) ) # transform list to ModelOutput lowerCAmelCase : str = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(lowercase_ , lowercase_ ): if isinstance(lowercase_ , lowercase_ ): [recursive_check(lowercase_ , lowercase_ ) for la, la in zip(lowercase_ , lowercase_ )] self.assertEqual(lowercase_ , lowercase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off lowerCAmelCase : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase : List[Any] = tokenizer.batch_decode(lowercase_ , output_char_offsets=lowercase_ ) lowerCAmelCase : List[str] = [tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ ) for ids in sample_ids] check_list_tuples_equal(lowercase_ , lowercase_ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def _snake_case ( self ) -> Dict: pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def _snake_case ( self ) -> Union[str, Any]: pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def _snake_case ( self ) -> int: pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase : Any = tokenizer.vocab_size lowerCAmelCase : List[str] = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase : Dict = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] lowerCAmelCase : str = tokenizer.add_tokens(lowercase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.vocab_size lowerCAmelCase : Optional[int] = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size + len(lowercase_ ) ) lowerCAmelCase : Tuple = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase : int = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} lowerCAmelCase : Optional[Any] = tokenizer.add_special_tokens(lowercase_ ) lowerCAmelCase : Optional[int] = tokenizer.vocab_size lowerCAmelCase : Any = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) ) lowerCAmelCase : Any = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def _snake_case ( self ) -> List[str]: pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def _snake_case ( self ) -> Tuple: pass def _snake_case ( self ) -> int: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. lowerCAmelCase : Optional[Any] = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase : Optional[Any] = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] lowerCAmelCase : Any = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertIsInstance(output["""text"""] , lowercase_ )
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class _a : _UpperCamelCase: Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "The column name of the images in the files."} ) _UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "A folder containing the training data."} ) _UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "A folder containing the validation data."} ) _UpperCamelCase: Optional[float] = field( default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} ) _UpperCamelCase: Optional[int] = field( default=snake_case_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _UpperCamelCase: Optional[int] = field( default=snake_case_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : int = {} if self.train_dir is not None: lowerCAmelCase : Union[str, Any] = self.train_dir if self.validation_dir is not None: lowerCAmelCase : List[Any] = self.validation_dir lowerCAmelCase : Any = data_files if data_files else None @dataclass class _a : _UpperCamelCase: str = field( default=snake_case_ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) _UpperCamelCase: str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _UpperCamelCase: str = field(default=snake_case_ , metadata={"help": "Name or path of preprocessor config."} ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) _UpperCamelCase: float = field( default=0.7_5 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class _a ( snake_case_ ): _UpperCamelCase: float = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : Dict = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowerCAmelCase : Any = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,data_files=data_args.data_files ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase : List[Any] = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0: lowerCAmelCase : int = ds["""train"""].train_test_split(data_args.train_val_split ) lowerCAmelCase : Dict = split["""train"""] lowerCAmelCase : Optional[int] = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : Union[str, Any] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCAmelCase : List[Any] = ViTMAEConfig.from_pretrained(model_args.config_name ,**SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: lowerCAmelCase : str = ViTMAEConfig.from_pretrained(model_args.model_name_or_path ,**SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCAmelCase : List[str] = ViTImageProcessor.from_pretrained(model_args.image_processor_name ,**SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: lowerCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path ,**SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCAmelCase : Union[str, Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) else: logger.info("""Training new model from scratch""" ) lowerCAmelCase : Any = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) if training_args.do_train: lowerCAmelCase : Union[str, Any] = ds["""train"""].column_names else: lowerCAmelCase : Optional[int] = ds["""validation"""].column_names if data_args.image_column_name is not None: lowerCAmelCase : List[Any] = data_args.image_column_name elif "image" in column_names: lowerCAmelCase : Dict = """image""" elif "img" in column_names: lowerCAmelCase : int = """img""" else: lowerCAmelCase : Optional[int] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCAmelCase : Optional[Any] = image_processor.size["""shortest_edge"""] else: lowerCAmelCase : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""]) lowerCAmelCase : Any = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(SCREAMING_SNAKE_CASE__ ,scale=(0.2, 1.0) ,interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ), ] ) def preprocess_images(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = [transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowerCAmelCase : str = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowerCAmelCase : int = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ ) # Compute absolute learning rate lowerCAmelCase : Optional[int] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCAmelCase : List[Any] = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer lowerCAmelCase : int = Trainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,train_dataset=ds["""train"""] if training_args.do_train else None ,eval_dataset=ds["""validation"""] if training_args.do_eval else None ,tokenizer=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,) # Training if training_args.do_train: lowerCAmelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : List[Any] = last_checkpoint lowerCAmelCase : List[str] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase : Tuple = trainer.evaluate() trainer.log_metrics("""eval""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" ,SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub lowerCAmelCase : List[Any] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase : List[str] ='src/transformers' # Matches is_xxx_available() lowerCAmelCase : Dict =re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCAmelCase : str =re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase : int =re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCAmelCase : int =re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase : Optional[Any] =re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase : Any =re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase : Optional[Any] =re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase : Optional[int] =re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCAmelCase : Any =re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCAmelCase : List[str] =re.compile(r'^\s*try:') # Catches a line with else: lowerCAmelCase : int =re.compile(r'^\s*else:') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if _re_test_backend.search(SCREAMING_SNAKE_CASE__ ) is None: return None lowerCAmelCase : List[str] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE__ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: lowerCAmelCase : Optional[Any] = f.readlines() lowerCAmelCase : Optional[Any] = 0 while line_index < len(SCREAMING_SNAKE_CASE__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE__ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : Dict = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[Any] = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ).groups()[0] lowerCAmelCase : Optional[int] = re.findall("""\[([^\]]+)\]""" ,SCREAMING_SNAKE_CASE__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowerCAmelCase : str = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : Any = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowerCAmelCase : Dict = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ) is not None: lowerCAmelCase : Union[str, Any] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(""", """ ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ) is not None: lowerCAmelCase : str = _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(""", """ ) lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 1_2 + """\"""" ): objects.append(line[1_3:-3] ) line_index += 1 lowerCAmelCase : Dict = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : List[str] = [] while ( line_index < len(SCREAMING_SNAKE_CASE__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowerCAmelCase : List[str] = lines[line_index] lowerCAmelCase : Dict = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE__ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowerCAmelCase : Union[str, Any] = lines[line_index] lowerCAmelCase : Any = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCAmelCase : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE__ ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Optional[Any] = [] for key in import_dict_objects.keys(): lowerCAmelCase : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase : Dict = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Optional[int] = """base imports""" if key == """none""" else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE__ ): if "__init__.py" in files: lowerCAmelCase : str = os.path.join(SCREAMING_SNAKE_CASE__ ,"""__init__.py""" ) lowerCAmelCase : Optional[int] = parse_init(SCREAMING_SNAKE_CASE__ ) if objects is not None: lowerCAmelCase : Union[str, Any] = analyze_results(*SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase : Optional[Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError("""\n\n""".join(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(SCREAMING_SNAKE_CASE__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE__ ) / folder).glob("""*.py""" ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(SCREAMING_SNAKE_CASE__ ) / folder).relative_to(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep ,""".""" ) submodules.append(SCREAMING_SNAKE_CASE__ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[int] = str((Path(SCREAMING_SNAKE_CASE__ ) / fname).relative_to(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Tuple = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE__ ) return submodules lowerCAmelCase : List[Any] =[ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[Any] = importlib.util.spec_from_file_location( """transformers""" ,os.path.join(SCREAMING_SNAKE_CASE__ ,"""__init__.py""" ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) lowerCAmelCase : Union[str, Any] = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase : int = """\n""".join(F"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : Any ={ 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = "speech_to_text_2" _UpperCamelCase: Optional[int] = ["past_key_values"] _UpperCamelCase: Dict = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , lowercase_=10000 , lowercase_=6 , lowercase_=2048 , lowercase_=4 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=2 , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=1024 , **lowercase_ , ) -> List[Any]: lowerCAmelCase : str = vocab_size lowerCAmelCase : List[Any] = d_model lowerCAmelCase : Union[str, Any] = decoder_ffn_dim lowerCAmelCase : List[str] = decoder_layers lowerCAmelCase : List[Any] = decoder_attention_heads lowerCAmelCase : Dict = dropout lowerCAmelCase : int = attention_dropout lowerCAmelCase : str = activation_dropout lowerCAmelCase : int = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Any = decoder_layerdrop lowerCAmelCase : str = use_cache lowerCAmelCase : Any = decoder_layers lowerCAmelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase : Optional[Any] = max_target_positions super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0**9 ): '''simple docstring''' lowerCAmelCase : Tuple = 1 lowerCAmelCase : str = 2 lowerCAmelCase : str = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Optional[int] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : str ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "dpr" def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_ = 0 , **lowercase_ , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : int = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Tuple = layer_norm_eps lowerCAmelCase : str = projection_dim lowerCAmelCase : Optional[Any] = position_embedding_type
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if curr_ind == len(SCREAMING_SNAKE_CASE__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): if valid_connection(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): # Insert current vertex into path as next transition lowerCAmelCase : Any = next_ver # Validate created path if util_hamilton_cycle(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,curr_ind + 1 ): return True # Backtrack lowerCAmelCase : Optional[Any] = -1 return False def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0 ): '''simple docstring''' lowerCAmelCase : List[str] = [-1] * (len(SCREAMING_SNAKE_CASE__ ) + 1) # initialize start and end of path with starting index lowerCAmelCase : Any = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1 ) else []
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] ={ 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Tuple ={ 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "cls_token" in name: lowerCAmelCase : Union[str, Any] = name.replace("""cls_token""" ,"""vit.embeddings.cls_token""" ) if "mask_token" in name: lowerCAmelCase : Tuple = name.replace("""mask_token""" ,"""decoder.mask_token""" ) if "decoder_pos_embed" in name: lowerCAmelCase : Optional[int] = name.replace("""decoder_pos_embed""" ,"""decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase : Optional[Any] = name.replace("""pos_embed""" ,"""vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCAmelCase : int = name.replace("""patch_embed.proj""" ,"""vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase : List[Any] = name.replace("""patch_embed.norm""" ,"""vit.embeddings.norm""" ) if "decoder_blocks" in name: lowerCAmelCase : Optional[Any] = name.replace("""decoder_blocks""" ,"""decoder.decoder_layers""" ) if "blocks" in name: lowerCAmelCase : Any = name.replace("""blocks""" ,"""vit.encoder.layer""" ) if "attn.proj" in name: lowerCAmelCase : List[str] = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name: lowerCAmelCase : Optional[Any] = name.replace("""attn""" ,"""attention.self""" ) if "norm1" in name: lowerCAmelCase : Dict = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: lowerCAmelCase : List[Any] = name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase : Union[str, Any] = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase : int = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "decoder_embed" in name: lowerCAmelCase : Dict = name.replace("""decoder_embed""" ,"""decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCAmelCase : Any = name.replace("""decoder_norm""" ,"""decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCAmelCase : Dict = name.replace("""decoder_pred""" ,"""decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowerCAmelCase : Optional[Any] = name.replace("""norm.weight""" ,"""vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowerCAmelCase : Dict = name.replace("""norm.bias""" ,"""vit.layernorm.bias""" ) return name def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : Union[str, Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowerCAmelCase : List[Any] = key.split(""".""" ) lowerCAmelCase : Dict = int(key_split[1] ) if "decoder_blocks" in key: lowerCAmelCase : Tuple = config.decoder_hidden_size lowerCAmelCase : Optional[int] = """decoder.decoder_layers.""" if "weight" in key: lowerCAmelCase : Optional[Any] = val[:dim, :] lowerCAmelCase : int = val[dim : dim * 2, :] lowerCAmelCase : List[Any] = val[-dim:, :] elif "bias" in key: lowerCAmelCase : int = val[:dim] lowerCAmelCase : Dict = val[dim : dim * 2] lowerCAmelCase : Tuple = val[-dim:] else: lowerCAmelCase : List[str] = config.hidden_size lowerCAmelCase : Optional[Any] = """vit.encoder.layer.""" if "weight" in key: lowerCAmelCase : int = val[:dim, :] lowerCAmelCase : Optional[Any] = val[dim : dim * 2, :] lowerCAmelCase : str = val[-dim:, :] elif "bias" in key: lowerCAmelCase : Tuple = val[:dim] lowerCAmelCase : int = val[dim : dim * 2] lowerCAmelCase : Union[str, Any] = val[-dim:] else: lowerCAmelCase : Union[str, Any] = val return orig_state_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = ViTMAEConfig() if "large" in checkpoint_url: lowerCAmelCase : str = 1_0_2_4 lowerCAmelCase : Union[str, Any] = 4_0_9_6 lowerCAmelCase : List[Any] = 2_4 lowerCAmelCase : int = 1_6 elif "huge" in checkpoint_url: lowerCAmelCase : Optional[int] = 1_4 lowerCAmelCase : Dict = 1_2_8_0 lowerCAmelCase : Optional[Any] = 5_1_2_0 lowerCAmelCase : str = 3_2 lowerCAmelCase : Optional[int] = 1_6 lowerCAmelCase : Dict = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" )["""model"""] lowerCAmelCase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase : List[str] = convert_state_dict(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase : str = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCAmelCase : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ ,stream=SCREAMING_SNAKE_CASE__ ).raw ) lowerCAmelCase : List[Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase : Dict = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : int = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = outputs.logits if "large" in checkpoint_url: lowerCAmelCase : Any = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowerCAmelCase : Any = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowerCAmelCase : List[Any] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase : Any =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
693
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _a ( snake_case_ ): _UpperCamelCase: "DiagonalGaussianDistribution" class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = True @register_to_config def __init__( self , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = ("DownEncoderBlock2D",) , lowercase_ = ("UpDecoderBlock2D",) , lowercase_ = (64,) , lowercase_ = 1 , lowercase_ = "silu" , lowercase_ = 4 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = 0.1_8_2_1_5 , ) -> Dict: super().__init__() # pass init params to Encoder lowerCAmelCase : Dict = Encoder( in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , ) # pass init params to Decoder lowerCAmelCase : Union[str, Any] = Decoder( in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , norm_num_groups=lowercase_ , act_fn=lowercase_ , ) lowerCAmelCase : Dict = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) lowerCAmelCase : Optional[Any] = nn.Convad(lowercase_ , lowercase_ , 1 ) lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : str = False # only relevant if vae tiling is enabled lowerCAmelCase : Optional[int] = self.config.sample_size lowerCAmelCase : str = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) lowerCAmelCase : List[str] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) lowerCAmelCase : Union[str, Any] = 0.2_5 def _snake_case ( self , lowercase_ , lowercase_=False ) -> Union[str, Any]: if isinstance(lowercase_ , (Encoder, Decoder) ): lowerCAmelCase : Tuple = value def _snake_case ( self , lowercase_ = True ) -> Dict: lowerCAmelCase : Optional[int] = use_tiling def _snake_case ( self ) -> List[str]: self.enable_tiling(lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[Any] = True def _snake_case ( self ) -> Tuple: lowerCAmelCase : Tuple = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case ( self ) -> Dict[str, AttentionProcessor]: lowerCAmelCase : Dict = {} def fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_ ): if hasattr(lowercase_ , """set_processor""" ): lowerCAmelCase : Optional[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowercase_ , lowercase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_ ) return processors def _snake_case ( self , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowercase_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_ ): if hasattr(lowercase_ , """set_processor""" ): if not isinstance(lowercase_ , lowercase_ ): module.set_processor(lowercase_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowercase_ , lowercase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_ ) def _snake_case ( self ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _snake_case ( self , lowercase_ , lowercase_ = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowercase_ , return_dict=lowercase_ ) if self.use_slicing and x.shape[0] > 1: lowerCAmelCase : Union[str, Any] = [self.encoder(lowercase_ ) for x_slice in x.split(1 )] lowerCAmelCase : Union[str, Any] = torch.cat(lowercase_ ) else: lowerCAmelCase : Dict = self.encoder(lowercase_ ) lowerCAmelCase : Tuple = self.quant_conv(lowercase_ ) lowerCAmelCase : List[Any] = DiagonalGaussianDistribution(lowercase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowercase_ , return_dict=lowercase_ ) lowerCAmelCase : Tuple = self.post_quant_conv(lowercase_ ) lowerCAmelCase : Tuple = self.decoder(lowercase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) @apply_forward_hook def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: lowerCAmelCase : Optional[Any] = [self._decode(lowercase_ ).sample for z_slice in z.split(1 )] lowerCAmelCase : str = torch.cat(lowercase_ ) else: lowerCAmelCase : List[str] = self._decode(lowercase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : int = min(a.shape[2] , b.shape[2] , lowercase_ ) for y in range(lowercase_ ): lowerCAmelCase : Dict = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Any: lowerCAmelCase : Optional[Any] = min(a.shape[3] , b.shape[3] , lowercase_ ) for x in range(lowercase_ ): lowerCAmelCase : List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _snake_case ( self , lowercase_ , lowercase_ = True ) -> AutoencoderKLOutput: lowerCAmelCase : int = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) lowerCAmelCase : str = int(self.tile_latent_min_size * self.tile_overlap_factor ) lowerCAmelCase : Optional[Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowerCAmelCase : Optional[int] = [] for i in range(0 , x.shape[2] , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for j in range(0 , x.shape[3] , lowercase_ ): lowerCAmelCase : List[Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowerCAmelCase : List[str] = self.encoder(lowercase_ ) lowerCAmelCase : Optional[int] = self.quant_conv(lowercase_ ) row.append(lowercase_ ) rows.append(lowercase_ ) lowerCAmelCase : int = [] for i, row in enumerate(lowercase_ ): lowerCAmelCase : List[Any] = [] for j, tile in enumerate(lowercase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCAmelCase : Any = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ ) if j > 0: lowerCAmelCase : int = self.blend_h(row[j - 1] , lowercase_ , lowercase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowercase_ , dim=3 ) ) lowerCAmelCase : Tuple = torch.cat(lowercase_ , dim=2 ) lowerCAmelCase : Dict = DiagonalGaussianDistribution(lowercase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) lowerCAmelCase : Any = int(self.tile_sample_min_size * self.tile_overlap_factor ) lowerCAmelCase : Optional[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowerCAmelCase : List[str] = [] for i in range(0 , z.shape[2] , lowercase_ ): lowerCAmelCase : int = [] for j in range(0 , z.shape[3] , lowercase_ ): lowerCAmelCase : Any = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowerCAmelCase : int = self.post_quant_conv(lowercase_ ) lowerCAmelCase : Optional[Any] = self.decoder(lowercase_ ) row.append(lowercase_ ) rows.append(lowercase_ ) lowerCAmelCase : Union[str, Any] = [] for i, row in enumerate(lowercase_ ): lowerCAmelCase : List[Any] = [] for j, tile in enumerate(lowercase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowerCAmelCase : List[Any] = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ ) if j > 0: lowerCAmelCase : Optional[Any] = self.blend_h(row[j - 1] , lowercase_ , lowercase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowercase_ , dim=3 ) ) lowerCAmelCase : List[Any] = torch.cat(lowercase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = False , lowercase_ = True , lowercase_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase : List[Any] = sample lowerCAmelCase : List[str] = self.encode(lowercase_ ).latent_dist if sample_posterior: lowerCAmelCase : Optional[Any] = posterior.sample(generator=lowercase_ ) else: lowerCAmelCase : Optional[Any] = posterior.mode() lowerCAmelCase : Dict = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Tuple ='▁' lowerCAmelCase : str ={'vocab_file': 'spiece.model'} lowerCAmelCase : Tuple ={ 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } lowerCAmelCase : Union[str, Any] ={ 'google/pegasus-xsum': 512, } lowerCAmelCase : Any =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , lowercase_ , lowercase_="<pad>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<mask_2>" , lowercase_="<mask_1>" , lowercase_=None , lowercase_=103 , lowercase_ = None , **lowercase_ , ) -> None: lowerCAmelCase : Any = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) lowerCAmelCase : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowerCAmelCase : int = additional_special_tokens_extended else: lowerCAmelCase : int = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] lowerCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , pad_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowerCAmelCase : int = mask_token_sent lowerCAmelCase : Tuple = vocab_file lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # add special tokens to encoder dict lowerCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.offset def _snake_case ( self ) -> Dict[str, int]: lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: lowerCAmelCase : List[str] = self.__dict__.copy() lowerCAmelCase : Tuple = None return state def __setstate__( self , lowercase_ ) -> Dict: lowerCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase : str = {} lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , lowercase_ ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def _snake_case ( self , lowercase_ ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase : Dict = self.sp_model.piece_to_id(lowercase_ ) return sp_id + self.offset def _snake_case ( self , lowercase_ ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase : Union[str, Any] = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case ( self , lowercase_ ) -> Optional[int]: lowerCAmelCase : List[Any] = [] lowerCAmelCase : List[str] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token lowerCAmelCase : Union[str, Any] = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def _snake_case ( self , lowercase_=False ) -> Optional[int]: return 1 def _snake_case ( self , lowercase_ ) -> Optional[Any]: lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase_ , lowercase_=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : int = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , """wb""" ) as fi: lowerCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
693
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCAmelCase : Any =TypeVar('KT') lowerCAmelCase : Optional[int] =TypeVar('VT') class _a ( Generic[KT, VT] ): def __init__( self , lowercase_ = "root" , lowercase_ = None ) -> List[str]: lowerCAmelCase : str = key lowerCAmelCase : Tuple = value lowerCAmelCase : list[Node[KT, VT]] = [] def __repr__( self ) -> str: return f"""Node({self.key}: {self.value})""" @property def _snake_case ( self ) -> int: return len(self.forward ) class _a ( Generic[KT, VT] ): def __init__( self , lowercase_ = 0.5 , lowercase_ = 16 ) -> Optional[Any]: lowerCAmelCase : Node[KT, VT] = Node[KT, VT]() lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Any = p lowerCAmelCase : Optional[int] = max_level def __str__( self ) -> str: lowerCAmelCase : Any = list(self ) if len(lowercase_ ) == 0: return f"""SkipList(level={self.level})""" lowerCAmelCase : List[Any] = max((len(str(lowercase_ ) ) for item in items) , default=4 ) lowerCAmelCase : Tuple = max(lowercase_ , 4 ) + 4 lowerCAmelCase : Dict = self.head lowerCAmelCase : Tuple = [] lowerCAmelCase : str = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(lowercase_ , """-""" ) + """* """ * len(lowercase_ ) ) lines.append(""" """ * label_size + """| """ * len(lowercase_ ) ) while len(node.forward ) != 0: lowerCAmelCase : Union[str, Any] = node.forward[0] lines.append( f"""[{node.key}]""".ljust(lowercase_ , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(lowercase_ ) ) lowerCAmelCase : Dict = node.forward lines.append("""None""".ljust(lowercase_ ) + """* """ * len(lowercase_ ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(lowercase_ ) def __iter__( self ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase : Dict = node.forward[0] def _snake_case ( self ) -> int: lowerCAmelCase : Union[str, Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def _snake_case ( self , lowercase_ ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase : Union[str, Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowercase_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _snake_case ( self , lowercase_ ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase : Dict = self._locate_node(lowercase_ ) if node is not None: for i, update_node in enumerate(lowercase_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase : Union[str, Any] = node.forward[i] else: lowerCAmelCase : List[Any] = update_node.forward[:i] def _snake_case ( self , lowercase_ , lowercase_ ) -> List[Any]: lowerCAmelCase , lowerCAmelCase : Tuple = self._locate_node(lowercase_ ) if node is not None: lowerCAmelCase : Union[str, Any] = value else: lowerCAmelCase : str = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , lowercase_ ): update_vector.append(self.head ) lowerCAmelCase : List[Any] = level lowerCAmelCase : List[str] = Node(lowercase_ , lowercase_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowercase_ ) else: lowerCAmelCase : Optional[Any] = new_node def _snake_case ( self , lowercase_ ) -> VT | None: lowerCAmelCase , lowerCAmelCase : Any = self._locate_node(lowercase_ ) if node is not None: return node.value return None def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Tuple = SkipList() skip_list.insert("""Key1""" ,3 ) skip_list.insert("""Key2""" ,1_2 ) skip_list.insert("""Key3""" ,4_1 ) skip_list.insert("""Key4""" ,-1_9 ) lowerCAmelCase : Any = skip_list.head lowerCAmelCase : Dict = {} while node.level != 0: lowerCAmelCase : int = node.forward[0] lowerCAmelCase : List[Any] = node.value assert len(SCREAMING_SNAKE_CASE__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[str] = SkipList() skip_list.insert("""Key1""" ,1_0 ) skip_list.insert("""Key1""" ,1_2 ) skip_list.insert("""Key5""" ,7 ) skip_list.insert("""Key7""" ,1_0 ) skip_list.insert("""Key10""" ,5 ) skip_list.insert("""Key7""" ,7 ) skip_list.insert("""Key5""" ,5 ) skip_list.insert("""Key10""" ,1_0 ) lowerCAmelCase : Optional[int] = skip_list.head lowerCAmelCase : str = {} while node.level != 0: lowerCAmelCase : Optional[Any] = node.forward[0] lowerCAmelCase : Optional[Any] = node.value if len(SCREAMING_SNAKE_CASE__ ) != 4: print() assert len(SCREAMING_SNAKE_CASE__ ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : int = SkipList() assert skip_list.find("""Some key""" ) is None def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = SkipList() skip_list.insert("""Key2""" ,2_0 ) assert skip_list.find("""Key2""" ) == 2_0 skip_list.insert("""Some Key""" ,1_0 ) skip_list.insert("""Key2""" ,8 ) skip_list.insert("""V""" ,1_3 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 1_0 assert skip_list.find("""V""" ) == 1_3 def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : int = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : int = SkipList() skip_list.insert("""Key1""" ,1_2 ) skip_list.insert("""V""" ,1_3 ) skip_list.insert("""X""" ,1_4 ) skip_list.insert("""Key2""" ,1_5 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = SkipList() skip_list.insert("""Key1""" ,1_2 ) skip_list.insert("""V""" ,1_3 ) skip_list.insert("""X""" ,1_4 ) skip_list.insert("""Key2""" ,1_5 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 1_4 assert skip_list.find("""Key1""" ) == 1_2 assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 1_2 assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = SkipList() skip_list.insert("""Key1""" ,1_2 ) skip_list.insert("""V""" ,1_3 ) skip_list.insert("""X""" ,1_4_2 ) skip_list.insert("""Key2""" ,1_5 ) skip_list.delete("""X""" ) def traverse_keys(SCREAMING_SNAKE_CASE__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(SCREAMING_SNAKE_CASE__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _UpperCAmelCase ( ): '''simple docstring''' def is_sorted(SCREAMING_SNAKE_CASE__ ): return all(next_item >= item for item, next_item in zip(SCREAMING_SNAKE_CASE__ ,lst[1:] ) ) lowerCAmelCase : Dict = SkipList() for i in range(1_0 ): skip_list.insert(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) skip_list.insert(-1_2 ,-1_2 ) skip_list.insert(7_7 ,7_7 ) assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( ): '''simple docstring''' for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : int = SkipList() skip_list.insert(2 ,"""2""" ) skip_list.insert(4 ,"""4""" ) skip_list.insert(6 ,"""4""" ) skip_list.insert(4 ,"""5""" ) skip_list.insert(8 ,"""4""" ) skip_list.insert(9 ,"""4""" ) skip_list.delete(4 ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: List[str] = "linear" _UpperCamelCase: int = "cosine" _UpperCamelCase: Dict = "cosine_with_restarts" _UpperCamelCase: Any = "polynomial" _UpperCamelCase: List[str] = "constant" _UpperCamelCase: Optional[int] = "constant_with_warmup" _UpperCamelCase: str = "piecewise_constant" def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE__ ,lambda SCREAMING_SNAKE_CASE__ : 1 ,last_epoch=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1.0 ,SCREAMING_SNAKE_CASE__ ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : List[Any] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: lowerCAmelCase , lowerCAmelCase : List[Any] = rule_str.split(""":""" ) lowerCAmelCase : List[str] = int(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = float(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = value lowerCAmelCase : Optional[Any] = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): def rule_func(SCREAMING_SNAKE_CASE__ ) -> float: lowerCAmelCase : List[str] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCAmelCase : Optional[Any] = create_rules_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=-1 ): '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) ) return max( 0.0 ,float(num_training_steps - current_step ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.5 ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE__ ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE__ ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=1e-7 ,SCREAMING_SNAKE_CASE__=1.0 ,SCREAMING_SNAKE_CASE__=-1 ): '''simple docstring''' lowerCAmelCase : List[str] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCAmelCase : Optional[int] = lr_init - lr_end lowerCAmelCase : Union[str, Any] = num_training_steps - num_warmup_steps lowerCAmelCase : Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowerCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] ={ SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = 1.0 ,SCREAMING_SNAKE_CASE__ = -1 ,): '''simple docstring''' lowerCAmelCase : Tuple = SchedulerType(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE__ ,step_rules=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,num_cycles=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ,) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,power=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ,) return schedule_func( SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ )
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
import math def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = [] lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[Any] = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) # Size of every segment lowerCAmelCase : List[str] = [True] * (end + 1) lowerCAmelCase : Optional[Any] = [] while start <= end: if temp[start] is True: in_prime.append(SCREAMING_SNAKE_CASE__ ) for i in range(start * start ,end + 1 ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[Any] = False start += 1 prime += in_prime lowerCAmelCase : Any = end + 1 lowerCAmelCase : int = min(2 * end ,SCREAMING_SNAKE_CASE__ ) while low <= n: lowerCAmelCase : List[str] = [True] * (high - low + 1) for each in in_prime: lowerCAmelCase : str = math.floor(low / each ) * each if t < low: t += each for j in range(SCREAMING_SNAKE_CASE__ ,high + 1 ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = False for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if temp[j] is True: prime.append(j + low ) lowerCAmelCase : Union[str, Any] = high + 1 lowerCAmelCase : List[Any] = min(high + end ,SCREAMING_SNAKE_CASE__ ) return prime print(sieve(10**6))
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase : Dict =logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase : Optional[Any] ='\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=8 ): '''simple docstring''' lowerCAmelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) lowerCAmelCase : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: if latents is None: lowerCAmelCase : str = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCAmelCase : Union[str, Any] = latents.to(lowercase_ ) lowerCAmelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def _snake_case ( self , lowercase_=0 ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase : str = torch.device(f"""cuda:{gpu_id}""" ) lowerCAmelCase : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def _snake_case ( self , lowercase_=0 ) -> List[Any]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase : int = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase : int = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self ) -> List[str]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[str, Any]: lowerCAmelCase : Tuple = self._execution_device lowerCAmelCase : Optional[int] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Optional[Any] = torch.cat(lowercase_ , dim=0 ) lowerCAmelCase : Dict = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase : Optional[Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) lowerCAmelCase : Optional[Any] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) lowerCAmelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) lowerCAmelCase : List[Any] = self.scheduler.timesteps lowerCAmelCase : Optional[Any] = self.unet.config.in_channels lowerCAmelCase , lowerCAmelCase : int = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent lowerCAmelCase : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : Union[str, Any] = {"""image_embeds""": image_embeds} lowerCAmelCase : Any = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase , lowerCAmelCase : Any = noise_pred.chunk(2 ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = variance_pred.chunk(2 ) lowerCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase , lowerCAmelCase : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : List[Any] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing lowerCAmelCase : str = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCAmelCase : str = image * 0.5 + 0.5 lowerCAmelCase : Optional[int] = image.clamp(0 , 1 ) lowerCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase : Optional[int] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase : Any =logging.getLogger(__name__) lowerCAmelCase : str =list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase : Optional[int] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(snake_case_ )} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _a : _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "The input training data file (a text file)."} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) _UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether ot not to use whole word mask."} ) _UpperCamelCase: float = field( default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) _UpperCamelCase: float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) _UpperCamelCase: int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) _UpperCamelCase: int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,): '''simple docstring''' def _dataset(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ,ref_path=SCREAMING_SNAKE_CASE__ ,) return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ) else: return TextDataset( tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ,overwrite_cache=args.overwrite_cache ,cache_dir=SCREAMING_SNAKE_CASE__ ,) if evaluate: return _dataset(args.eval_data_file ,args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file ,args.train_ref_file ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" ,SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: lowerCAmelCase : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowerCAmelCase : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,) else: logger.info("""Training new model from scratch""" ) lowerCAmelCase : Any = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE__ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowerCAmelCase : Union[str, Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase : str = min(data_args.block_size ,tokenizer.max_len ) # Get datasets lowerCAmelCase : List[str] = ( get_dataset(SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase : Dict = ( get_dataset(SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,evaluate=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase : Any = DataCollatorForPermutationLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE__ ,plm_probability=data_args.plm_probability ,max_span_length=data_args.max_span_length ,) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase : Tuple = DataCollatorForWholeWordMask( tokenizer=SCREAMING_SNAKE_CASE__ ,mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase : Tuple = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE__ ,mlm=data_args.mlm ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase : Any = Trainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,prediction_loss_only=SCREAMING_SNAKE_CASE__ ,) # Training if training_args.do_train: lowerCAmelCase : List[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : str = trainer.evaluate() lowerCAmelCase : str = math.exp(eval_output["""eval_loss"""] ) lowerCAmelCase : List[str] = {"""perplexity""": perplexity} lowerCAmelCase : List[str] = os.path.join(training_args.output_dir ,"""eval_results_lm.txt""" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE__ ,"""w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" ,SCREAMING_SNAKE_CASE__ ,str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(SCREAMING_SNAKE_CASE__ ) return results def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Dict ={'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] =['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] =['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] =[ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =[ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase : int ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : List[Any] ={ 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def _UpperCAmelCase ( ): '''simple docstring''' assert nand_gate(0 ,0 ) == 1 assert nand_gate(0 ,1 ) == 1 assert nand_gate(1 ,0 ) == 1 assert nand_gate(1 ,1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): _UpperCamelCase: str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCamelCase: ClassVar[Features] = Features({"audio": Audio()} ) _UpperCamelCase: ClassVar[Features] = Features({"labels": ClassLabel} ) _UpperCamelCase: str = "audio" _UpperCamelCase: str = "labels" def _snake_case ( self , lowercase_ ) -> Dict: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase : Dict = copy.deepcopy(self ) lowerCAmelCase : Union[str, Any] = self.label_schema.copy() lowerCAmelCase : str = features[self.label_column] lowerCAmelCase : Union[str, Any] = label_schema return task_template @property def _snake_case ( self ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path lowerCAmelCase : List[Any] = quote(SCREAMING_SNAKE_CASE__ ) return hfh.hf_hub_url(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,repo_type="""dataset""" ,revision=SCREAMING_SNAKE_CASE__ )
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] ,end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase : str = arr[i] combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,index + 1 ,SCREAMING_SNAKE_CASE__ ,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,0 ,SCREAMING_SNAKE_CASE__ ,0 ) if __name__ == "__main__": # Driver code to check the function above lowerCAmelCase : int =[10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=13 , lowercase_=3 , lowercase_=224 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , ) -> int: lowerCAmelCase : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Dict = min_resolution lowerCAmelCase : List[Any] = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Optional[Any] = size lowerCAmelCase : Optional[int] = do_normalize lowerCAmelCase : int = image_mean lowerCAmelCase : List[str] = image_std def _snake_case ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: str = ViTImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = EfficientFormerImageProcessorTester(self ) @property def _snake_case ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def _snake_case ( self ) -> int: lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Optional[Any]: # Initialize image_processor lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Dict: # Initialize image_processor lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Dict = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Optional[Any]: # Initialize image_processor lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Tuple = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Tuple = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _a ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase : str = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCAmelCase : Union[str, Any] = test_metrics @require_cpu def _snake_case ( self ) -> List[str]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _snake_case ( self ) -> int: debug_launcher(self.test_metrics.main ) @require_single_gpu def _snake_case ( self ) -> Optional[Any]: self.test_metrics.main() @require_multi_gpu def _snake_case ( self ) -> Dict: print(f"""Found {torch.cuda.device_count()} devices.""" ) lowerCAmelCase : str = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) lowerCAmelCase : Dict = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE__ ) == len(set(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": lowerCAmelCase : List[str] =input('Enter a string ').strip() lowerCAmelCase : int =is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1