code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from __future__ import annotations
import math
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 ,node_index * 2 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,)
return min(
minimax(depth + 1 ,node_index * 2 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,)
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : List[Any] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
lowerCAmelCase : Tuple = math.log(len(SCREAMING_SNAKE_CASE__ ) ,2 )
print("""Optimal value : """ ,end="""""" )
print(minimax(0 ,0 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 693 |
import os
import string
import sys
lowerCAmelCase : Optional[int] =1 << 8
lowerCAmelCase : List[Any] ={
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
lowerCAmelCase : Optional[Any] =KEYMAP['up']
lowerCAmelCase : Tuple =KEYMAP['left']
if sys.platform == "win32":
lowerCAmelCase : Dict =[]
lowerCAmelCase : int ={
b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
lowerCAmelCase : Optional[Any] =ord(str(i))
def _UpperCAmelCase ( ):
'''simple docstring'''
if os.name == "nt":
import msvcrt
lowerCAmelCase : Any = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(SCREAMING_SNAKE_CASE__ ) == 0:
# Read the keystroke
lowerCAmelCase : int = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowerCAmelCase : Tuple = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowerCAmelCase : str = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ )
if ord(SCREAMING_SNAKE_CASE__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_2_6 ) )
lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] )
except KeyError:
lowerCAmelCase : Optional[int] = cha[1]
else:
lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowerCAmelCase : List[Any] = sys.stdin.fileno()
lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ )
try:
tty.setraw(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ )
return ch
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Any = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]:
lowerCAmelCase : int = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]:
lowerCAmelCase : Tuple = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 693 | 1 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : str ={
'microsoft/conditional-detr-resnet-50': (
'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'
),
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "conditional_detr"
_UpperCamelCase: Union[str, Any] = ["past_key_values"]
_UpperCamelCase: Union[str, Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=300 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=0.2_5 , **lowercase_ , ) -> Union[str, Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase : List[str] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : str = backbone_config.get("""model_type""" )
lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase : List[str] = config_class.from_dict(lowercase_ )
lowerCAmelCase : Optional[Any] = use_timm_backbone
lowerCAmelCase : Any = backbone_config
lowerCAmelCase : List[Any] = num_channels
lowerCAmelCase : Tuple = num_queries
lowerCAmelCase : str = d_model
lowerCAmelCase : Dict = encoder_ffn_dim
lowerCAmelCase : Union[str, Any] = encoder_layers
lowerCAmelCase : int = encoder_attention_heads
lowerCAmelCase : int = decoder_ffn_dim
lowerCAmelCase : Union[str, Any] = decoder_layers
lowerCAmelCase : Optional[int] = decoder_attention_heads
lowerCAmelCase : Union[str, Any] = dropout
lowerCAmelCase : Tuple = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : Optional[Any] = activation_function
lowerCAmelCase : str = init_std
lowerCAmelCase : List[str] = init_xavier_std
lowerCAmelCase : Optional[int] = encoder_layerdrop
lowerCAmelCase : Tuple = decoder_layerdrop
lowerCAmelCase : str = encoder_layers
lowerCAmelCase : Dict = auxiliary_loss
lowerCAmelCase : Dict = position_embedding_type
lowerCAmelCase : List[str] = backbone
lowerCAmelCase : int = use_pretrained_backbone
lowerCAmelCase : Tuple = dilation
# Hungarian matcher
lowerCAmelCase : int = class_cost
lowerCAmelCase : str = bbox_cost
lowerCAmelCase : str = giou_cost
# Loss coefficients
lowerCAmelCase : List[str] = mask_loss_coefficient
lowerCAmelCase : Optional[Any] = dice_loss_coefficient
lowerCAmelCase : int = cls_loss_coefficient
lowerCAmelCase : List[str] = bbox_loss_coefficient
lowerCAmelCase : Union[str, Any] = giou_loss_coefficient
lowerCAmelCase : Tuple = focal_alpha
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> int:
return self.encoder_attention_heads
@property
def _snake_case ( self ) -> int:
return self.d_model
def _snake_case ( self ) -> Any:
lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
lowerCAmelCase : List[Any] = self.backbone_config.to_dict()
lowerCAmelCase : Any = self.__class__.model_type
return output
class _a ( snake_case_ ):
_UpperCamelCase: Dict = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-5
@property
def _snake_case ( self ) -> int:
return 12
| 693 |
# Imports
import numpy as np
class _a :
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]:
if red is not None:
lowerCAmelCase : str = red
if green is not None:
lowerCAmelCase : Optional[int] = green
if blue is not None:
lowerCAmelCase : Optional[int] = blue
if red_edge is not None:
lowerCAmelCase : Tuple = red_edge
if nir is not None:
lowerCAmelCase : Union[str, Any] = nir
return True
def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
lowerCAmelCase : int = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def _snake_case ( self ) -> Dict:
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case ( self ) -> Optional[Any]:
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case ( self ) -> List[str]:
return self.nir * (self.red / (self.green**2))
def _snake_case ( self ) -> Tuple:
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case ( self ) -> Optional[int]:
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case ( self ) -> List[str]:
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case ( self ) -> int:
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case ( self ) -> Optional[Any]:
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case ( self ) -> int:
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case ( self ) -> List[str]:
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int:
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case ( self ) -> Optional[Any]:
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case ( self ) -> Any:
return (self.nir / self.green) - 1
def _snake_case ( self ) -> List[Any]:
return (self.nir / self.redEdge) - 1
def _snake_case ( self ) -> str:
return (self.red - self.blue) / self.red
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case ( self ) -> Optional[Any]:
return self.nir - self.green
def _snake_case ( self ) -> int:
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]:
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case ( self , lowercase_=0.5 ) -> List[str]:
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case ( self ) -> Any:
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]:
return (self.nir - b) / (a * self.red)
def _snake_case ( self ) -> Any:
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case ( self ) -> str:
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case ( self ) -> Union[str, Any]:
return self.nir / self.red
def _snake_case ( self ) -> Tuple:
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case ( self ) -> Dict:
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case ( self ) -> List[Any]:
return self.green / (self.nir + self.red + self.green)
def _snake_case ( self ) -> int:
return self.nir / (self.nir + self.red + self.green)
def _snake_case ( self ) -> Dict:
return self.red / (self.nir + self.red + self.green)
def _snake_case ( self ) -> List[Any]:
return (self.green - self.red) / (self.green + self.red)
def _snake_case ( self ) -> Optional[int]:
return (self.red - self.green) / (self.red + self.green)
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case ( self ) -> int:
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case ( self ) -> List[str]:
return self.nir / self.red
def _snake_case ( self ) -> int:
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case ( self ) -> str:
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 693 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase : int ={
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor']
lowerCAmelCase : List[str] =['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
| 693 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[str] = None
if token is not None:
lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = None
if token is not None:
lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = None
if token is not None:
lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = result.headers["""Location"""]
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" )
with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp:
fp.write(response.content )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : Optional[int] = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE__ ) as f:
for line in f:
lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCAmelCase : str = line[: line.index(""": """ )]
lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :]
failed_tests.append(SCREAMING_SNAKE_CASE__ )
elif filename == "job_name.txt":
lowerCAmelCase : Union[str, Any] = line
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """
F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
lowerCAmelCase : Optional[int] = None
if job_name and job_links:
lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
# A list with elements of the form (line of error, error, failed test)
lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )]
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : str = []
lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) )
return errors
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = Counter()
counter.update([x[1] for x in logs] )
lowerCAmelCase : List[str] = counter.most_common()
lowerCAmelCase : Union[str, Any] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
lowerCAmelCase : str = test.split("""/""" )[2]
else:
lowerCAmelCase : List[Any] = None
return test
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCAmelCase : int = [x for x in logs if x[2] is not None]
lowerCAmelCase : Optional[Any] = {x[2] for x in logs}
lowerCAmelCase : Dict = {}
for test in tests:
lowerCAmelCase : Optional[int] = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCAmelCase : Tuple = counter.most_common()
lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCAmelCase : List[Any] = sum(error_counts.values() )
if n_errors > 0:
lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = """| no. | error | status |"""
lowerCAmelCase : List[Any] = """|-:|:-|:-|"""
lowerCAmelCase : Union[str, Any] = [header, sep]
for error in reduced_by_error:
lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""]
lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = """| model | no. of errors | major error | count |"""
lowerCAmelCase : Any = """|-:|-:|-:|-:|"""
lowerCAmelCase : str = [header, sep]
for model in reduced_by_model:
lowerCAmelCase : Any = reduced_by_model[model]["""count"""]
lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0]
lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase : int =argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
lowerCAmelCase : Dict =parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token)
lowerCAmelCase : List[Any] ={}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
lowerCAmelCase : str =k.find(' / ')
lowerCAmelCase : Any =k[index + len(' / ') :]
lowerCAmelCase : str =v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
lowerCAmelCase : str =Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
lowerCAmelCase : int =counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Optional[int] =reduce_by_error(errors)
lowerCAmelCase : Tuple =reduce_by_model(errors)
lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error)
lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 693 | 1 |
class _a :
def __init__( self , lowercase_ ) -> None:
lowerCAmelCase : Optional[int] = set_counts
lowerCAmelCase : Optional[int] = max(lowercase_ )
lowerCAmelCase : Any = len(lowercase_ )
lowerCAmelCase : Optional[Any] = [1] * num_sets
lowerCAmelCase : Tuple = list(range(lowercase_ ) )
def _snake_case ( self , lowercase_ , lowercase_ ) -> bool:
lowerCAmelCase : Optional[int] = self.get_parent(lowercase_ )
lowerCAmelCase : List[str] = self.get_parent(lowercase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowerCAmelCase : Tuple = 0
lowerCAmelCase : List[str] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowerCAmelCase : Tuple = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Optional[Any] = src_parent
lowerCAmelCase : Optional[Any] = self.set_counts[src_parent]
lowerCAmelCase : int = max(self.max_set , lowercase_ )
return True
def _snake_case ( self , lowercase_ ) -> int:
if self.parents[disj_set] == disj_set:
return disj_set
lowerCAmelCase : Tuple = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 693 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Optional[int] ={
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =[
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : Dict =logging.get_logger(__name__)
lowerCAmelCase : int ={
'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json',
}
class _a ( snake_case_ ):
_UpperCamelCase: int = "blip_2_vision_model"
def __init__( self , lowercase_=1408 , lowercase_=6144 , lowercase_=39 , lowercase_=16 , lowercase_=224 , lowercase_=14 , lowercase_="gelu" , lowercase_=0.0_0_0_0_1 , lowercase_=0.0 , lowercase_=1e-10 , lowercase_=True , **lowercase_ , ) -> Union[str, Any]:
super().__init__(**lowercase_ )
lowerCAmelCase : str = hidden_size
lowerCAmelCase : Tuple = intermediate_size
lowerCAmelCase : Optional[Any] = num_hidden_layers
lowerCAmelCase : Union[str, Any] = num_attention_heads
lowerCAmelCase : Union[str, Any] = patch_size
lowerCAmelCase : Optional[Any] = image_size
lowerCAmelCase : List[Any] = initializer_range
lowerCAmelCase : List[Any] = attention_dropout
lowerCAmelCase : Dict = layer_norm_eps
lowerCAmelCase : Optional[Any] = hidden_act
lowerCAmelCase : str = qkv_bias
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig":
cls._set_token_in_kwargs(lowercase_ )
lowerCAmelCase , lowerCAmelCase : List[Any] = cls.get_config_dict(lowercase_ , **lowercase_ )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get("""model_type""" ) == "blip-2":
lowerCAmelCase : List[str] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(lowercase_ , **lowercase_ )
class _a ( snake_case_ ):
_UpperCamelCase: Union[str, Any] = "blip_2_qformer"
def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=2 , lowercase_=1408 , **lowercase_ , ) -> Optional[int]:
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
lowerCAmelCase : str = vocab_size
lowerCAmelCase : Any = hidden_size
lowerCAmelCase : Any = num_hidden_layers
lowerCAmelCase : Any = num_attention_heads
lowerCAmelCase : Dict = hidden_act
lowerCAmelCase : Optional[Any] = intermediate_size
lowerCAmelCase : Union[str, Any] = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Union[str, Any] = max_position_embeddings
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : Optional[int] = layer_norm_eps
lowerCAmelCase : Any = position_embedding_type
lowerCAmelCase : Union[str, Any] = cross_attention_frequency
lowerCAmelCase : Optional[int] = encoder_hidden_size
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig":
cls._set_token_in_kwargs(lowercase_ )
lowerCAmelCase , lowerCAmelCase : Dict = cls.get_config_dict(lowercase_ , **lowercase_ )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get("""model_type""" ) == "blip-2":
lowerCAmelCase : Optional[Any] = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(lowercase_ , **lowercase_ )
class _a ( snake_case_ ):
_UpperCamelCase: Any = "blip-2"
_UpperCamelCase: List[str] = True
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=32 , **lowercase_ ) -> Optional[Any]:
super().__init__(**lowercase_ )
if vision_config is None:
lowerCAmelCase : int = {}
logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" )
if qformer_config is None:
lowerCAmelCase : str = {}
logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" )
if text_config is None:
lowerCAmelCase : str = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
lowerCAmelCase : List[str] = BlipaVisionConfig(**lowercase_ )
lowerCAmelCase : Dict = BlipaQFormerConfig(**lowercase_ )
lowerCAmelCase : int = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
lowerCAmelCase : List[Any] = CONFIG_MAPPING[text_model_type](**lowercase_ )
lowerCAmelCase : List[Any] = self.text_config.tie_word_embeddings
lowerCAmelCase : Union[str, Any] = self.text_config.is_encoder_decoder
lowerCAmelCase : Optional[Any] = num_query_tokens
lowerCAmelCase : List[Any] = self.vision_config.hidden_size
lowerCAmelCase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
lowerCAmelCase : Dict = 1.0
lowerCAmelCase : str = 0.0_2
@classmethod
def _snake_case ( cls , lowercase_ , lowercase_ , lowercase_ , **lowercase_ , ) -> List[Any]:
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , )
def _snake_case ( self ) -> str:
lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__ )
lowerCAmelCase : List[str] = self.vision_config.to_dict()
lowerCAmelCase : Dict = self.qformer_config.to_dict()
lowerCAmelCase : Tuple = self.text_config.to_dict()
lowerCAmelCase : Dict = self.__class__.model_type
return output
| 693 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] ={
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "detr"
_UpperCamelCase: Dict = ["past_key_values"]
_UpperCamelCase: Optional[int] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" )
lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ )
# set timm attributes to None
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None
lowerCAmelCase : Any = use_timm_backbone
lowerCAmelCase : int = backbone_config
lowerCAmelCase : Optional[int] = num_channels
lowerCAmelCase : Optional[Any] = num_queries
lowerCAmelCase : List[str] = d_model
lowerCAmelCase : Optional[int] = encoder_ffn_dim
lowerCAmelCase : Dict = encoder_layers
lowerCAmelCase : str = encoder_attention_heads
lowerCAmelCase : List[Any] = decoder_ffn_dim
lowerCAmelCase : List[Any] = decoder_layers
lowerCAmelCase : Union[str, Any] = decoder_attention_heads
lowerCAmelCase : str = dropout
lowerCAmelCase : Dict = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : str = activation_function
lowerCAmelCase : Optional[int] = init_std
lowerCAmelCase : Any = init_xavier_std
lowerCAmelCase : Dict = encoder_layerdrop
lowerCAmelCase : int = decoder_layerdrop
lowerCAmelCase : Tuple = encoder_layers
lowerCAmelCase : Optional[int] = auxiliary_loss
lowerCAmelCase : List[str] = position_embedding_type
lowerCAmelCase : Any = backbone
lowerCAmelCase : Union[str, Any] = use_pretrained_backbone
lowerCAmelCase : List[Any] = dilation
# Hungarian matcher
lowerCAmelCase : Tuple = class_cost
lowerCAmelCase : Union[str, Any] = bbox_cost
lowerCAmelCase : Optional[Any] = giou_cost
# Loss coefficients
lowerCAmelCase : List[Any] = mask_loss_coefficient
lowerCAmelCase : Optional[int] = dice_loss_coefficient
lowerCAmelCase : Tuple = bbox_loss_coefficient
lowerCAmelCase : Dict = giou_loss_coefficient
lowerCAmelCase : str = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> int:
return self.encoder_attention_heads
@property
def _snake_case ( self ) -> int:
return self.d_model
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any:
return cls(backbone_config=lowercase_ , **lowercase_ )
def _snake_case ( self ) -> Dict[str, any]:
lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase : List[str] = self.backbone_config.to_dict()
lowerCAmelCase : List[Any] = self.__class__.model_type
return output
class _a ( snake_case_ ):
_UpperCamelCase: Any = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-5
@property
def _snake_case ( self ) -> int:
return 12
| 693 | 1 |
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: List[str] = OpenAIGPTTokenizer
_UpperCamelCase: Dict = OpenAIGPTTokenizerFast
_UpperCamelCase: Optional[Any] = True
_UpperCamelCase: str = False
def _snake_case ( self ) -> int:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCAmelCase : int = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
lowerCAmelCase : str = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
lowerCAmelCase : List[Any] = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""]
lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" ) as fp:
fp.write(json.dumps(lowercase_ ) )
with open(self.merges_file , """w""" ) as fp:
fp.write("""\n""".join(lowercase_ ) )
def _snake_case ( self , lowercase_ ) -> int:
return "lower newer", "lower newer"
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase : Dict = OpenAIGPTTokenizer(self.vocab_file , self.merges_file )
lowerCAmelCase : Optional[int] = """lower"""
lowerCAmelCase : str = ["""low""", """er</w>"""]
lowerCAmelCase : Optional[Any] = tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase : Optional[int] = tokens + ["""<unk>"""]
lowerCAmelCase : List[str] = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ )
def _snake_case ( self , lowercase_=15 ) -> List[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
# Simple input
lowerCAmelCase : Any = """This is a simple input"""
lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""]
lowerCAmelCase : int = ("""This is a simple input""", """This is a pair""")
lowerCAmelCase : List[Any] = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Simple input
self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Simple input
self.assertRaises(
lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , )
# Pair input
self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Pair input
self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Pair input
self.assertRaises(
lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , )
def _snake_case ( self ) -> Tuple:
pass
@require_ftfy
@require_spacy
@require_tokenizers
class _a ( snake_case_ ):
pass
| 693 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase : int =logging.getLogger()
lowerCAmelCase : str =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( snake_case_ ):
def _snake_case ( self , lowercase_ ) -> List[Any]:
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""}
lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] )
with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f:
f.write(lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str:
lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir()
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" )
lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" )
self._create_dummy_data(data_dir=lowercase_ )
lowerCAmelCase : str = f"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(f"""--gpus={gpus}""" )
if is_apex_available():
testargs.append("""--fp16""" )
else:
testargs.append("""--gpus=0""" )
testargs.append("""--distributed_backend=ddp_cpu""" )
testargs.append("""--num_processes=2""" )
lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(lowercase_ , env=self.get_env() )
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" )
with open(lowercase_ ) as f:
lowerCAmelCase : List[str] = json.load(lowercase_ )
return result
@require_torch_gpu
def _snake_case ( self ) -> Any:
lowerCAmelCase : Tuple = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_gpu
@require_ray
def _snake_case ( self ) -> int:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
@require_ray
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
| 693 | 1 |
lowerCAmelCase : Tuple ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
lowerCAmelCase : Optional[int] =[{'type': 'code', 'content': INSTALL_CONTENT}]
lowerCAmelCase : Dict ={
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Optional[int] ={
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "transfo-xl"
_UpperCamelCase: str = ["mems"]
_UpperCamelCase: Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : Union[str, Any] = []
self.cutoffs.extend(lowercase_ )
if proj_share_all_but_first:
lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs )
else:
lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs )
lowerCAmelCase : Optional[int] = d_model
lowerCAmelCase : List[Any] = d_embed
lowerCAmelCase : Union[str, Any] = d_head
lowerCAmelCase : List[Any] = d_inner
lowerCAmelCase : Optional[int] = div_val
lowerCAmelCase : List[Any] = pre_lnorm
lowerCAmelCase : Dict = n_layer
lowerCAmelCase : Tuple = n_head
lowerCAmelCase : Any = mem_len
lowerCAmelCase : Union[str, Any] = same_length
lowerCAmelCase : List[Any] = attn_type
lowerCAmelCase : int = clamp_len
lowerCAmelCase : List[str] = sample_softmax
lowerCAmelCase : Optional[int] = adaptive
lowerCAmelCase : Dict = dropout
lowerCAmelCase : Optional[Any] = dropatt
lowerCAmelCase : List[str] = untie_r
lowerCAmelCase : List[str] = init
lowerCAmelCase : Tuple = init_range
lowerCAmelCase : str = proj_init_std
lowerCAmelCase : str = init_std
lowerCAmelCase : Optional[int] = layer_norm_epsilon
super().__init__(eos_token_id=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> Optional[Any]:
# Message copied from Transformer-XL documentation
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def _snake_case ( self , lowercase_ ) -> Dict:
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 693 | 1 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = OmegaConf.load(SCREAMING_SNAKE_CASE__ )
if display:
print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE__ ) ) )
return config
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
if conf_path is None:
lowerCAmelCase : List[str] = """./model_checkpoints/vqgan_only.yaml"""
lowerCAmelCase : Optional[int] = load_config(SCREAMING_SNAKE_CASE__ ,display=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[Any] = VQModel(**config.model.params )
if ckpt_path is None:
lowerCAmelCase : Optional[Any] = """./model_checkpoints/vqgan_only.pt"""
lowerCAmelCase : int = torch.load(SCREAMING_SNAKE_CASE__ ,map_location=SCREAMING_SNAKE_CASE__ )
if ".ckpt" in ckpt_path:
lowerCAmelCase : List[str] = sd["""state_dict"""]
model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
del sd
return model
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = model.encode(SCREAMING_SNAKE_CASE__ )
print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" )
lowerCAmelCase : Optional[int] = model.decode(SCREAMING_SNAKE_CASE__ )
return xrec
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ):
'''simple docstring'''
lowerCAmelCase , lowerCAmelCase : Tuple = string.rsplit(""".""" ,1 )
if reload:
lowerCAmelCase : List[Any] = importlib.import_module(SCREAMING_SNAKE_CASE__ )
importlib.reload(SCREAMING_SNAKE_CASE__ )
return getattr(importlib.import_module(SCREAMING_SNAKE_CASE__ ,package=SCREAMING_SNAKE_CASE__ ) ,cls )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if "target" not in config:
raise KeyError("""Expected key `target` to instantiate.""" )
return get_obj_from_str(config["""target"""] )(**config.get("""params""" ,{} ) )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ):
'''simple docstring'''
lowerCAmelCase : Tuple = instantiate_from_config(SCREAMING_SNAKE_CASE__ )
if sd is not None:
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if ckpt:
lowerCAmelCase : str = torch.load(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" )
lowerCAmelCase : Dict = pl_sd["""global_step"""]
print(F"""loaded model from global step {global_step}.""" )
else:
lowerCAmelCase : int = {"""state_dict""": None}
lowerCAmelCase : Dict = None
lowerCAmelCase : Optional[int] = load_model_from_config(config.model ,pl_sd["""state_dict"""] ,gpu=SCREAMING_SNAKE_CASE__ ,eval_mode=SCREAMING_SNAKE_CASE__ )["""model"""]
return model, global_step
| 693 |
import torch
from diffusers import DiffusionPipeline
class _a ( snake_case_ ):
def __init__( self , lowercase_ , lowercase_ ) -> int:
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def __call__( self ) -> List[Any]:
lowerCAmelCase : Union[str, Any] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowerCAmelCase : Union[str, Any] = 1
lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample
lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ )
return result
| 693 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
lowerCAmelCase : List[Any] =None
lowerCAmelCase : Dict =logging.get_logger(__name__)
lowerCAmelCase : Tuple ='▁'
lowerCAmelCase : Optional[Any] ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCAmelCase : str ={
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
lowerCAmelCase : Tuple ={
'google/pegasus-xsum': 512,
}
class _a ( snake_case_ ):
_UpperCamelCase: int = VOCAB_FILES_NAMES
_UpperCamelCase: Dict = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase: Dict = PegasusTokenizer
_UpperCamelCase: Any = ["input_ids", "attention_mask"]
def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<pad>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<mask_2>" , lowercase_="<mask_1>" , lowercase_=None , lowercase_=103 , **lowercase_ , ) -> Union[str, Any]:
lowerCAmelCase : List[str] = offset
if additional_special_tokens is not None:
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError(
f"""additional_special_tokens should be of type {type(lowercase_ )}, but is"""
f""" {type(lowercase_ )}""" )
lowerCAmelCase : int = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 )
]
if len(set(lowercase_ ) ) != len(lowercase_ ):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
lowerCAmelCase : str = additional_special_tokens_extended
else:
lowerCAmelCase : str = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )]
super().__init__(
lowercase_ , tokenizer_file=lowercase_ , pad_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , )
lowerCAmelCase : Tuple = vocab_file
lowerCAmelCase : Tuple = False if not self.vocab_file else True
def _snake_case ( self , lowercase_ ) -> List[str]:
lowerCAmelCase : List[str] = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"""There should be 3 special tokens: mask_token, pad_token, and eos_token +"""
f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" )
return [1 if x in all_special_ids else 0 for x in seq]
def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]:
if already_has_special_tokens:
return self._special_token_mask(lowercase_ )
elif token_ids_a is None:
return self._special_token_mask(lowercase_ ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def _snake_case ( self , lowercase_ , lowercase_=None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(lowercase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase : Dict = os.path.join(
lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ):
copyfile(self.vocab_file , lowercase_ )
return (out_vocab_file,)
| 693 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
requests.request("""GET""" ,"""https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 )
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" ,"""https://huggingface.co""" )
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
http_head("""https://huggingface.co""" )
| 693 | 1 |
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class _a ( tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1.0 , lowercase_ = None , ) -> Union[str, Any]:
super().__init__()
lowerCAmelCase : List[Any] = initial_learning_rate
lowerCAmelCase : List[str] = warmup_steps
lowerCAmelCase : Any = power
lowerCAmelCase : Dict = decay_schedule_fn
lowerCAmelCase : List[Any] = name
def __call__( self , lowercase_ ) -> List[Any]:
with tf.name_scope(self.name or """WarmUp""" ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
lowerCAmelCase : int = tf.cast(lowercase_ , tf.floataa )
lowerCAmelCase : List[str] = tf.cast(self.warmup_steps , tf.floataa )
lowerCAmelCase : int = global_step_float / warmup_steps_float
lowerCAmelCase : Tuple = self.initial_learning_rate * tf.math.pow(lowercase_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowercase_ , )
def _snake_case ( self ) -> int:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 0.9 ,SCREAMING_SNAKE_CASE__ = 0.999 ,SCREAMING_SNAKE_CASE__ = 1e-8 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ,SCREAMING_SNAKE_CASE__ = None ,):
'''simple docstring'''
lowerCAmelCase : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=SCREAMING_SNAKE_CASE__ ,decay_steps=num_train_steps - num_warmup_steps ,end_learning_rate=init_lr * min_lr_ratio ,power=SCREAMING_SNAKE_CASE__ ,)
if num_warmup_steps:
lowerCAmelCase : Dict = WarmUp(
initial_learning_rate=SCREAMING_SNAKE_CASE__ ,decay_schedule_fn=SCREAMING_SNAKE_CASE__ ,warmup_steps=SCREAMING_SNAKE_CASE__ ,)
if weight_decay_rate > 0.0:
lowerCAmelCase : Optional[int] = AdamWeightDecay(
learning_rate=SCREAMING_SNAKE_CASE__ ,weight_decay_rate=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,epsilon=SCREAMING_SNAKE_CASE__ ,clipnorm=SCREAMING_SNAKE_CASE__ ,global_clipnorm=SCREAMING_SNAKE_CASE__ ,exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] ,include_in_weight_decay=SCREAMING_SNAKE_CASE__ ,)
else:
lowerCAmelCase : int = tf.keras.optimizers.Adam(
learning_rate=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,beta_a=SCREAMING_SNAKE_CASE__ ,epsilon=SCREAMING_SNAKE_CASE__ ,clipnorm=SCREAMING_SNAKE_CASE__ ,global_clipnorm=SCREAMING_SNAKE_CASE__ ,)
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class _a ( snake_case_ ):
def __init__( self , lowercase_ = 0.0_0_1 , lowercase_ = 0.9 , lowercase_ = 0.9_9_9 , lowercase_ = 1e-7 , lowercase_ = False , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "AdamWeightDecay" , **lowercase_ , ) -> Any:
super().__init__(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
lowerCAmelCase : List[str] = weight_decay_rate
lowerCAmelCase : List[str] = include_in_weight_decay
lowerCAmelCase : int = exclude_from_weight_decay
@classmethod
def _snake_case ( cls , lowercase_ ) -> Tuple:
lowerCAmelCase : int = {"""WarmUp""": WarmUp}
return super(lowercase_ , cls ).from_config(lowercase_ , custom_objects=lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
super(lowercase_ , self )._prepare_local(lowercase_ , lowercase_ , lowercase_ )
lowerCAmelCase : Optional[int] = tf.constant(
self.weight_decay_rate , name="""adam_weight_decay_rate""" )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
lowerCAmelCase : List[str] = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , )
return tf.no_op()
def _snake_case ( self , lowercase_ , lowercase_=None , **lowercase_ ) -> Dict:
lowerCAmelCase , lowerCAmelCase : Union[str, Any] = list(zip(*lowercase_ ) )
return super(lowercase_ , self ).apply_gradients(zip(lowercase_ , lowercase_ ) , name=lowercase_ , **lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
lowerCAmelCase : Optional[Any] = apply_state or {}
lowerCAmelCase : int = apply_state.get((var_device, var_dtype) )
if coefficients is None:
lowerCAmelCase : int = self._fallback_apply_state(lowercase_ , lowercase_ )
lowerCAmelCase : int = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None ) -> Optional[int]:
lowerCAmelCase , lowerCAmelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , lowercase_ )
lowerCAmelCase : int = self._decay_weights_op(lowercase_ , lowercase_ , lowercase_ )
with tf.control_dependencies([decay] ):
return super(lowercase_ , self )._resource_apply_dense(lowercase_ , lowercase_ , **lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> int:
lowerCAmelCase , lowerCAmelCase : List[str] = self._get_lr(var.device , var.dtype.base_dtype , lowercase_ )
lowerCAmelCase : List[Any] = self._decay_weights_op(lowercase_ , lowercase_ , lowercase_ )
with tf.control_dependencies([decay] ):
return super(lowercase_ , self )._resource_apply_sparse(lowercase_ , lowercase_ , lowercase_ , **lowercase_ )
def _snake_case ( self ) -> Any:
lowerCAmelCase : int = super().get_config()
config.update({"""weight_decay_rate""": self.weight_decay_rate} )
return config
def _snake_case ( self , lowercase_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(lowercase_ , lowercase_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(lowercase_ , lowercase_ ) is not None:
return False
return True
class _a ( snake_case_ ):
def __init__( self ) -> Optional[Any]:
lowerCAmelCase : int = []
lowerCAmelCase : Dict = None
@property
def _snake_case ( self ) -> Any:
if self._accum_steps is None:
lowerCAmelCase : Any = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=lowercase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def _snake_case ( self ) -> int:
if not self._gradients:
raise ValueError("""The accumulator should be called first to initialize the gradients""" )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , lowercase_ ) -> Union[str, Any]:
if not self._gradients:
lowerCAmelCase : str = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(lowercase_ ) , trainable=lowercase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(lowercase_ ) != len(self._gradients ):
raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(lowercase_ )}""" )
for accum_gradient, gradient in zip(self._gradients , lowercase_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(lowercase_ )
self._accum_steps.assign_add(1 )
def _snake_case ( self ) -> Union[str, Any]:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(lowercase_ ) )
| 693 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class _a ( unittest.TestCase ):
def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
lowerCAmelCase : Optional[int] = parent
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : Dict = num_channels
lowerCAmelCase : str = min_resolution
lowerCAmelCase : Optional[Any] = max_resolution
lowerCAmelCase : Optional[int] = do_resize
lowerCAmelCase : List[str] = size
lowerCAmelCase : Dict = do_rescale
lowerCAmelCase : Union[str, Any] = rescale_factor
lowerCAmelCase : int = do_normalize
lowerCAmelCase : Union[str, Any] = image_mean
lowerCAmelCase : Dict = image_std
lowerCAmelCase : Optional[int] = do_pad
def _snake_case ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]:
if not batched:
lowerCAmelCase : Tuple = image_inputs[0]
if isinstance(lowercase_ , Image.Image ):
lowerCAmelCase , lowerCAmelCase : Dict = image.size
else:
lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w )
lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""]
elif w > h:
lowerCAmelCase : List[Any] = self.size["""shortest_edge"""]
lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h )
else:
lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""]
lowerCAmelCase : List[str] = self.size["""shortest_edge"""]
else:
lowerCAmelCase : Optional[int] = []
for image in image_inputs:
lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0]
lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : List[str] = DetrImageProcessingTester(self )
@property
def _snake_case ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowercase_ , """image_std""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) )
self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_pad""" ) )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , lowercase_ )
lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , lowercase_ )
def _snake_case ( self ) -> List[Any]:
pass
def _snake_case ( self ) -> List[Any]:
# Initialize image_processing
lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image )
# Test not batched input
lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[int]:
# Initialize image_processing
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> List[str]:
# Initialize image_processing
lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _snake_case ( self ) -> int:
# prepare image and target
lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : str = json.loads(f.read() )
lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target}
# encode them
lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" )
lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : List[Any] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify orig_size
lowerCAmelCase : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
@slow
def _snake_case ( self ) -> int:
# prepare image, target and masks_path
lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : Any = json.loads(f.read() )
lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" )
lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : Tuple = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify masks
lowerCAmelCase : Union[str, Any] = 822873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ )
# verify orig_size
lowerCAmelCase : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : List[str] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
| 693 | 1 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""")
lowerCAmelCase : Optional[int] = (
("""layer.""", """layer_"""),
("""word_embeddings.weight""", """word_embeddings"""),
("""position_embeddings.weight""", """position_embeddings"""),
("""token_type_embeddings.weight""", """token_type_embeddings"""),
(""".""", """/"""),
("""LayerNorm/weight""", """LayerNorm/gamma"""),
("""LayerNorm/bias""", """LayerNorm/beta"""),
("""weight""", """kernel"""),
)
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : str = model.state_dict()
def to_tf_var_name(SCREAMING_SNAKE_CASE__ ):
for patt, repl in iter(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[str] = name.replace(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
return F"""bert/{name}"""
def create_tf_var(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Optional[int] = tf.dtypes.as_dtype(tensor.dtype )
lowerCAmelCase : Dict = tf.get_variable(dtype=SCREAMING_SNAKE_CASE__ ,shape=tensor.shape ,name=SCREAMING_SNAKE_CASE__ ,initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(SCREAMING_SNAKE_CASE__ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
lowerCAmelCase : Dict = to_tf_var_name(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Dict = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
lowerCAmelCase : Tuple = torch_tensor.T
lowerCAmelCase : List[Any] = create_tf_var(tensor=SCREAMING_SNAKE_CASE__ ,name=SCREAMING_SNAKE_CASE__ ,session=SCREAMING_SNAKE_CASE__ )
tf.keras.backend.set_value(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[int] = session.run(SCREAMING_SNAKE_CASE__ )
print(F"""Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )}""" )
lowerCAmelCase : Tuple = tf.train.Saver(tf.trainable_variables() )
saver.save(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,model_name.replace("""-""" ,"""_""" ) + """.ckpt""" ) )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("""--model_name""" ,type=SCREAMING_SNAKE_CASE__ ,required=SCREAMING_SNAKE_CASE__ ,help="""model name e.g. bert-base-uncased""" )
parser.add_argument(
"""--cache_dir""" ,type=SCREAMING_SNAKE_CASE__ ,default=SCREAMING_SNAKE_CASE__ ,required=SCREAMING_SNAKE_CASE__ ,help="""Directory containing pytorch model""" )
parser.add_argument("""--pytorch_model_path""" ,type=SCREAMING_SNAKE_CASE__ ,required=SCREAMING_SNAKE_CASE__ ,help="""/path/to/<pytorch-model-name>.bin""" )
parser.add_argument("""--tf_cache_dir""" ,type=SCREAMING_SNAKE_CASE__ ,required=SCREAMING_SNAKE_CASE__ ,help="""Directory in which to save tensorflow model""" )
lowerCAmelCase : int = parser.parse_args(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Any = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name ,state_dict=torch.load(args.pytorch_model_path ) ,cache_dir=args.cache_dir ,)
convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE__ ,ckpt_dir=args.tf_cache_dir ,model_name=args.model_name )
if __name__ == "__main__":
main()
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Tuple = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = 0
while b > 0:
if b & 1:
lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 693 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
@dataclass
class _a :
_UpperCamelCase: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
_UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} )
_UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class _a :
_UpperCamelCase: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
_UpperCamelCase: Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
_UpperCamelCase: Optional[int] = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
_UpperCamelCase: Optional[int] = field(
default=128 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
_UpperCamelCase: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
_UpperCamelCase: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
_UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
_UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
_UpperCamelCase: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
_UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} )
_UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} )
_UpperCamelCase: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} )
_UpperCamelCase: bool = field(
default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
logger.info(F"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(F""" {key} = {metrics[key]}""" )
save_json(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{split}_results.json""" ) )
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = parser.parse_args_into_dataclasses()
check_output_dir(SCREAMING_SNAKE_CASE__ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,)
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) ,training_args.fpaa ,)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""" ,SCREAMING_SNAKE_CASE__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCAmelCase : int = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,)
lowerCAmelCase : str = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
assert hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) )
lowerCAmelCase : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,)
lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path ,from_tf=""".ckpt""" in model_args.model_name_or_path ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,)
# use task specific params
use_task_specific_params(SCREAMING_SNAKE_CASE__ ,data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
lowerCAmelCase : int = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE__ ,(MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : str = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(SCREAMING_SNAKE_CASE__ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
lowerCAmelCase : List[str] = SeqaSeqDataset
# Get datasets
lowerCAmelCase : Optional[Any] = (
dataset_class(
SCREAMING_SNAKE_CASE__ ,type_path="""train""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_train ,max_target_length=data_args.max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,)
if training_args.do_train
else None
)
lowerCAmelCase : str = (
dataset_class(
SCREAMING_SNAKE_CASE__ ,type_path="""val""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_val ,max_target_length=data_args.val_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,)
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
lowerCAmelCase : int = (
dataset_class(
SCREAMING_SNAKE_CASE__ ,type_path="""test""" ,data_dir=data_args.data_dir ,n_obs=data_args.n_test ,max_target_length=data_args.test_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or """""" ,)
if training_args.do_predict
else None
)
# Initialize our Trainer
lowerCAmelCase : Any = (
build_compute_metrics_fn(data_args.task ,SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate else None
)
lowerCAmelCase : int = SeqaSeqTrainer(
model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,data_args=SCREAMING_SNAKE_CASE__ ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,data_collator=SeqaSeqDataCollator(
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,model.config.decoder_start_token_id ,training_args.tpu_num_cores ) ,compute_metrics=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,)
lowerCAmelCase : Optional[Any] = {}
# Training
if training_args.do_train:
logger.info("""*** Train ***""" )
lowerCAmelCase : Tuple = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
lowerCAmelCase : Dict = train_result.metrics
lowerCAmelCase : Union[str, Any] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("""train""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE__ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir ,"""trainer_state.json""" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowerCAmelCase : str = trainer.evaluate(metric_key_prefix="""val""" )
lowerCAmelCase : Dict = data_args.n_val
lowerCAmelCase : Any = round(metrics["""val_loss"""] ,4 )
if trainer.is_world_process_zero():
handle_metrics("""val""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE__ )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
lowerCAmelCase : List[Any] = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE__ ,metric_key_prefix="""test""" )
lowerCAmelCase : Any = test_output.metrics
lowerCAmelCase : str = data_args.n_test
if trainer.is_world_process_zero():
lowerCAmelCase : Tuple = round(metrics["""test_loss"""] ,4 )
handle_metrics("""test""" ,SCREAMING_SNAKE_CASE__ ,training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE__ )
if training_args.predict_with_generate:
lowerCAmelCase : Dict = tokenizer.batch_decode(
test_output.predictions ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = lmap(str.strip ,SCREAMING_SNAKE_CASE__ )
write_txt_file(SCREAMING_SNAKE_CASE__ ,os.path.join(training_args.output_dir ,"""test_generations.txt""" ) )
if trainer.is_world_process_zero():
save_json(SCREAMING_SNAKE_CASE__ ,os.path.join(training_args.output_dir ,"""all_results.json""" ) )
return all_metrics
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 693 |
from math import factorial
class _a :
def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]:
lowerCAmelCase : Union[str, Any] = real
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Tuple = [1] * rank
else:
lowerCAmelCase : Any = rank
def __repr__( self ) -> int:
return (
f"""{self.real}+"""
f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}"""
)
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[Any] = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , lowercase_ )
def __add__( self , lowercase_ ) -> Tuple:
if not isinstance(lowercase_ , lowercase_ ):
return Dual(self.real + other , self.duals )
lowerCAmelCase : int = self.duals.copy()
lowerCAmelCase : Tuple = other.duals.copy()
if len(lowercase_ ) > len(lowercase_ ):
o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
elif len(lowercase_ ) < len(lowercase_ ):
s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
lowerCAmelCase : List[Any] = []
for i in range(len(lowercase_ ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , lowercase_ )
_UpperCamelCase: List[Any] = __add__
def __sub__( self , lowercase_ ) -> Union[str, Any]:
return self + other * -1
def __mul__( self , lowercase_ ) -> Optional[int]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Union[str, Any] = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , lowercase_ )
lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , lowercase_ )
_UpperCamelCase: str = __mul__
def __truediv__( self , lowercase_ ) -> Optional[Any]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[str] = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , lowercase_ )
raise ValueError
def __floordiv__( self , lowercase_ ) -> int:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , lowercase_ )
raise ValueError
def __pow__( self , lowercase_ ) -> str:
if n < 0 or isinstance(lowercase_ , lowercase_ ):
raise ValueError("""power must be a positive integer""" )
if n == 0:
return 1
if n == 1:
return self
lowerCAmelCase : int = self
for _ in range(n - 1 ):
x *= self
return x
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if not callable(SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires a function as input for func""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ):
raise ValueError("""differentiate() requires a float as input for position""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires an int as input for order""" )
lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 )
lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return y**2 * y**4
print(differentiate(f, 9, 2))
| 693 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
_UpperCamelCase: Any = CycleDiffusionPipeline
_UpperCamelCase: List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
_UpperCamelCase: str = PipelineTesterMixin.required_optional_params - {"latents"}
_UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} )
_UpperCamelCase: Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS
_UpperCamelCase: Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _snake_case ( self ) -> Optional[Any]:
torch.manual_seed(0 )
lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
lowerCAmelCase : Union[str, Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , )
torch.manual_seed(0 )
lowerCAmelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
lowerCAmelCase : str = CLIPTextModel(lowercase_ )
lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCAmelCase : Optional[int] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _snake_case ( self , lowercase_ , lowercase_=0 ) -> List[Any]:
lowerCAmelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : List[str] = image / 2 + 0.5
if str(lowercase_ ).startswith("""mps""" ):
lowerCAmelCase : Dict = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase : Tuple = {
"""prompt""": """An astronaut riding an elephant""",
"""source_prompt""": """An astronaut riding a horse""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""eta""": 0.1,
"""strength""": 0.8,
"""guidance_scale""": 3,
"""source_guidance_scale""": 1,
"""output_type""": """numpy""",
}
return inputs
def _snake_case ( self ) -> List[str]:
lowerCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase : List[str] = self.get_dummy_components()
lowerCAmelCase : Optional[Any] = CycleDiffusionPipeline(**lowercase_ )
lowerCAmelCase : List[str] = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase : Any = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase : str = pipe(**lowercase_ )
lowerCAmelCase : List[str] = output.images
lowerCAmelCase : Optional[int] = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
lowerCAmelCase : List[str] = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self.get_dummy_components()
for name, module in components.items():
if hasattr(lowercase_ , """half""" ):
lowerCAmelCase : int = module.half()
lowerCAmelCase : Dict = CycleDiffusionPipeline(**lowercase_ )
lowerCAmelCase : Union[str, Any] = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(lowercase_ )
lowerCAmelCase : str = pipe(**lowercase_ )
lowerCAmelCase : int = output.images
lowerCAmelCase : Dict = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
lowerCAmelCase : Optional[int] = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def _snake_case ( self ) -> Union[str, Any]:
return super().test_save_load_local()
@unittest.skip("""non-deterministic pipeline""" )
def _snake_case ( self ) -> Tuple:
return super().test_inference_batch_single_identical()
@skip_mps
def _snake_case ( self ) -> int:
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def _snake_case ( self ) -> Any:
return super().test_save_load_optional_components()
@skip_mps
def _snake_case ( self ) -> Union[str, Any]:
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
def _snake_case ( self ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/cycle-diffusion/black_colored_car.png""" )
lowerCAmelCase : Union[str, Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" )
lowerCAmelCase : Any = init_image.resize((512, 512) )
lowerCAmelCase : int = """CompVis/stable-diffusion-v1-4"""
lowerCAmelCase : Optional[int] = DDIMScheduler.from_pretrained(lowercase_ , subfolder="""scheduler""" )
lowerCAmelCase : Dict = CycleDiffusionPipeline.from_pretrained(
lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , torch_dtype=torch.floataa , revision="""fp16""" )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase : str = """A black colored car"""
lowerCAmelCase : int = """A blue colored car"""
lowerCAmelCase : str = torch.manual_seed(0 )
lowerCAmelCase : Optional[int] = pipe(
prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type="""np""" , )
lowerCAmelCase : List[Any] = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5e-1
def _snake_case ( self ) -> List[str]:
lowerCAmelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/cycle-diffusion/black_colored_car.png""" )
lowerCAmelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" )
lowerCAmelCase : Optional[Any] = init_image.resize((512, 512) )
lowerCAmelCase : Any = """CompVis/stable-diffusion-v1-4"""
lowerCAmelCase : List[str] = DDIMScheduler.from_pretrained(lowercase_ , subfolder="""scheduler""" )
lowerCAmelCase : Dict = CycleDiffusionPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowerCAmelCase : Tuple = """A black colored car"""
lowerCAmelCase : Tuple = """A blue colored car"""
lowerCAmelCase : Optional[int] = torch.manual_seed(0 )
lowerCAmelCase : Optional[Any] = pipe(
prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type="""np""" , )
lowerCAmelCase : str = output.images
assert np.abs(image - expected_image ).max() < 2e-2
| 693 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
_UpperCamelCase: List[Any] = ["keras_nlp"]
def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple:
requires_backends(self , ["""keras_nlp"""] )
| 693 | 1 |
import argparse
import json
from tqdm import tqdm
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--src_path""" ,type=SCREAMING_SNAKE_CASE__ ,default="""biencoder-nq-dev.json""" ,help="""Path to raw DPR training data""" ,)
parser.add_argument(
"""--evaluation_set""" ,type=SCREAMING_SNAKE_CASE__ ,help="""where to store parsed evaluation_set file""" ,)
parser.add_argument(
"""--gold_data_path""" ,type=SCREAMING_SNAKE_CASE__ ,help="""where to store parsed gold_data_path file""" ,)
lowerCAmelCase : Optional[int] = parser.parse_args()
with open(args.src_path ,"""r""" ) as src_file, open(args.evaluation_set ,"""w""" ) as eval_file, open(
args.gold_data_path ,"""w""" ) as gold_file:
lowerCAmelCase : Tuple = json.load(SCREAMING_SNAKE_CASE__ )
for dpr_record in tqdm(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Any = dpr_record["""question"""]
lowerCAmelCase : Optional[Any] = [context["""title"""] for context in dpr_record["""positive_ctxs"""]]
eval_file.write(question + """\n""" )
gold_file.write("""\t""".join(SCREAMING_SNAKE_CASE__ ) + """\n""" )
if __name__ == "__main__":
main()
| 693 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 693 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
'microsoft/swin-tiny-patch4-window7-224': (
'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _a ( snake_case_ , snake_case_ ):
_UpperCamelCase: int = "swin"
_UpperCamelCase: str = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple:
super().__init__(**lowercase_ )
lowerCAmelCase : Optional[int] = image_size
lowerCAmelCase : Optional[Any] = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : List[Any] = embed_dim
lowerCAmelCase : str = depths
lowerCAmelCase : List[str] = len(lowercase_ )
lowerCAmelCase : Any = num_heads
lowerCAmelCase : str = window_size
lowerCAmelCase : List[str] = mlp_ratio
lowerCAmelCase : List[Any] = qkv_bias
lowerCAmelCase : List[str] = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = drop_path_rate
lowerCAmelCase : int = hidden_act
lowerCAmelCase : int = use_absolute_embeddings
lowerCAmelCase : Dict = layer_norm_eps
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
class _a ( snake_case_ ):
_UpperCamelCase: int = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-4
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if p < 2:
raise ValueError("""p should not be less than 2!""" )
elif p == 2:
return True
lowerCAmelCase : List[Any] = 4
lowerCAmelCase : Tuple = (1 << p) - 1
for _ in range(p - 2 ):
lowerCAmelCase : Dict = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 693 | 1 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
lowerCAmelCase : Union[str, Any] =200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
lowerCAmelCase : str =50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
lowerCAmelCase : Tuple =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_000))
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : int = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE__ ) if g == main_target[position]] )
return (item, float(SCREAMING_SNAKE_CASE__ ))
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Any = random.randint(0 ,len(SCREAMING_SNAKE_CASE__ ) - 1 )
lowerCAmelCase : Any = parent_a[:random_slice] + parent_a[random_slice:]
lowerCAmelCase : List[Any] = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = list(SCREAMING_SNAKE_CASE__ )
if random.uniform(0 ,1 ) < MUTATION_PROBABILITY:
lowerCAmelCase : Optional[Any] = random.choice(SCREAMING_SNAKE_CASE__ )
return "".join(SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,):
'''simple docstring'''
lowerCAmelCase : List[str] = []
# Generate more children proportionally to the fitness score.
lowerCAmelCase : Optional[int] = int(parent_a[1] * 1_0_0 ) + 1
lowerCAmelCase : Tuple = 1_0 if child_n >= 1_0 else child_n
for _ in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : int = population_score[random.randint(0 ,SCREAMING_SNAKE_CASE__ )][0]
lowerCAmelCase , lowerCAmelCase : int = crossover(parent_a[0] ,SCREAMING_SNAKE_CASE__ )
# Append new string to the population list.
pop.append(mutate(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) )
pop.append(mutate(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) )
return pop
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ):
'''simple docstring'''
if N_POPULATION < N_SELECTED:
lowerCAmelCase : List[str] = F"""{N_POPULATION} must be bigger than {N_SELECTED}"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
# Verify that the target contains no genes besides the ones inside genes variable.
lowerCAmelCase : Tuple = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
lowerCAmelCase : int = F"""{not_in_genes_list} is not in genes list, evolution cannot converge"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
# Generate random starting population.
lowerCAmelCase : Union[str, Any] = []
for _ in range(SCREAMING_SNAKE_CASE__ ):
population.append("""""".join([random.choice(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) )
# Just some logs to know what the algorithms is doing.
lowerCAmelCase , lowerCAmelCase : List[Any] = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(SCREAMING_SNAKE_CASE__ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
lowerCAmelCase : Dict = [evaluate(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for item in population]
# Check if there is a matching evolution.
lowerCAmelCase : Tuple = sorted(SCREAMING_SNAKE_CASE__ ,key=lambda SCREAMING_SNAKE_CASE__ : x[1] ,reverse=SCREAMING_SNAKE_CASE__ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 1_0 == 0:
print(
F"""\nGeneration: {generation}"""
F"""\nTotal Population:{total_population}"""
F"""\nBest score: {population_score[0][1]}"""
F"""\nBest string: {population_score[0][0]}""" )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
lowerCAmelCase : str = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(SCREAMING_SNAKE_CASE__ )
# Normalize population score to be between 0 and 1.
lowerCAmelCase : List[str] = [
(item, score / len(SCREAMING_SNAKE_CASE__ )) for item, score in population_score
]
# This is selection
for i in range(SCREAMING_SNAKE_CASE__ ):
population.extend(select(population_score[int(SCREAMING_SNAKE_CASE__ )] ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(SCREAMING_SNAKE_CASE__ ) > N_POPULATION:
break
if __name__ == "__main__":
lowerCAmelCase : List[Any] =(
'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'
)
lowerCAmelCase : List[Any] =list(
' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'
'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'
)
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any =basic(target_str, genes_list)
print(
F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 693 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline
_UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
_UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} )
_UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"}
def _snake_case ( self ) -> int:
return self._get_superresolution_dummy_components()
def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]:
if str(lowercase_ ).startswith("""mps""" ):
lowerCAmelCase : Any = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : Optional[int] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _snake_case ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def _snake_case ( self ) -> int:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def _snake_case ( self ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def _snake_case ( self ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def _snake_case ( self ) -> Any:
self._test_save_load_local()
def _snake_case ( self ) -> str:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 693 | 1 |
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase , lowerCAmelCase : List[Any] = emb.weight.shape
lowerCAmelCase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = emb.weight.data
return lin_layer
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Any = torch.load(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" )
lowerCAmelCase : Optional[Any] = Namespace(**checkpoint["""cfg"""]["""model"""] )
lowerCAmelCase : List[str] = checkpoint["""model"""]
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : int = state_dict["""decoder.embed_tokens.weight"""].shape[0]
lowerCAmelCase : List[str] = {key.replace("""decoder""" ,"""model""" ): val for key, val in state_dict.items()}
lowerCAmelCase : Optional[int] = XGLMConfig(
vocab_size=SCREAMING_SNAKE_CASE__ ,max_position_embeddings=args.max_target_positions ,num_layers=args.decoder_layers ,attention_heads=args.decoder_attention_heads ,ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.decoder_embed_dim ,layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="""gelu""" ,scale_embedding=not args.no_scale_embedding ,tie_word_embeddings=args.share_decoder_input_output_embed ,)
lowerCAmelCase : str = XGLMForCausalLM(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[int] = model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : str = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase : Optional[int] =parser.parse_args()
lowerCAmelCase : Union[str, Any] =convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "llama"
_UpperCamelCase: List[str] = ["past_key_values"]
def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : str = max_position_embeddings
lowerCAmelCase : int = hidden_size
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : int = num_hidden_layers
lowerCAmelCase : Any = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
lowerCAmelCase : Any = num_attention_heads
lowerCAmelCase : Any = num_key_value_heads
lowerCAmelCase : Any = hidden_act
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : str = rms_norm_eps
lowerCAmelCase : int = pretraining_tp
lowerCAmelCase : int = use_cache
lowerCAmelCase : Optional[Any] = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , )
def _snake_case ( self ) -> Dict:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f"""got {self.rope_scaling}""" )
lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ )
lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 693 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( snake_case_ ):
_UpperCamelCase: Union[str, Any] = ["image_processor", "tokenizer"]
_UpperCamelCase: str = "ChineseCLIPImageProcessor"
_UpperCamelCase: List[str] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , lowercase_ , )
lowerCAmelCase : Optional[int] = kwargs.pop("""feature_extractor""" )
lowerCAmelCase : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(lowercase_ , lowercase_ )
lowerCAmelCase : Optional[Any] = self.image_processor
def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> List[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
lowerCAmelCase : Union[str, Any] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ )
if images is not None:
lowerCAmelCase : Any = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ )
if text is not None and images is not None:
lowerCAmelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ )
def _snake_case ( self , *lowercase_ , **lowercase_ ) -> Dict:
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ )
def _snake_case ( self , *lowercase_ , **lowercase_ ) -> Tuple:
return self.tokenizer.decode(*lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Optional[Any] = self.tokenizer.model_input_names
lowerCAmelCase : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _snake_case ( self ) -> Dict:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase_ , )
return self.image_processor_class
| 693 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
'microsoft/swin-tiny-patch4-window7-224': (
'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _a ( snake_case_ , snake_case_ ):
_UpperCamelCase: int = "swin"
_UpperCamelCase: str = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple:
super().__init__(**lowercase_ )
lowerCAmelCase : Optional[int] = image_size
lowerCAmelCase : Optional[Any] = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : List[Any] = embed_dim
lowerCAmelCase : str = depths
lowerCAmelCase : List[str] = len(lowercase_ )
lowerCAmelCase : Any = num_heads
lowerCAmelCase : str = window_size
lowerCAmelCase : List[str] = mlp_ratio
lowerCAmelCase : List[Any] = qkv_bias
lowerCAmelCase : List[str] = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = drop_path_rate
lowerCAmelCase : int = hidden_act
lowerCAmelCase : int = use_absolute_embeddings
lowerCAmelCase : Dict = layer_norm_eps
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
class _a ( snake_case_ ):
_UpperCamelCase: int = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-4
| 693 | 1 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
@staticmethod
def _snake_case ( *lowercase_ , **lowercase_ ) -> Any:
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
@require_torch
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Optional[int] = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
lowerCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase : Tuple = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(lowercase_ ) , [
[{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}],
[{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}],
] , )
lowerCAmelCase : Any = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(lowercase_ ) , [
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
] , )
@require_tf
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Optional[int] = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" )
lowerCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase : Any = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(lowercase_ ) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , )
lowerCAmelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(lowercase_ ) , [
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
{"""score""": 0.3_3_3, """label""": ANY(lowercase_ )},
],
] , )
@slow
@require_torch
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[Any] = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase : Dict = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(lowercase_ ) , [
{"""score""": 0.5_1_1, """label""": """remote"""},
{"""score""": 0.4_8_5, """label""": """cat"""},
{"""score""": 0.0_0_4, """label""": """plane"""},
] , )
lowerCAmelCase : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(lowercase_ ) , [
[
{"""score""": 0.5_1_1, """label""": """remote"""},
{"""score""": 0.4_8_5, """label""": """cat"""},
{"""score""": 0.0_0_4, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase : int = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase : Tuple = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(lowercase_ ) , [
{"""score""": 0.5_1_1, """label""": """remote"""},
{"""score""": 0.4_8_5, """label""": """cat"""},
{"""score""": 0.0_0_4, """label""": """plane"""},
] , )
lowerCAmelCase : Any = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(lowercase_ ) , [
[
{"""score""": 0.5_1_1, """label""": """remote"""},
{"""score""": 0.4_8_5, """label""": """cat"""},
{"""score""": 0.0_0_4, """label""": """plane"""},
],
]
* 5 , )
| 693 |
lowerCAmelCase : str ={
'Pillow': 'Pillow<10.0.0',
'accelerate': 'accelerate>=0.20.3',
'av': 'av==9.2.0',
'beautifulsoup4': 'beautifulsoup4',
'black': 'black~=23.1',
'codecarbon': 'codecarbon==1.2.0',
'cookiecutter': 'cookiecutter==1.7.3',
'dataclasses': 'dataclasses',
'datasets': 'datasets!=2.5.0',
'decord': 'decord==0.6.0',
'deepspeed': 'deepspeed>=0.9.3',
'diffusers': 'diffusers',
'dill': 'dill<0.3.5',
'evaluate': 'evaluate>=0.2.0',
'fairscale': 'fairscale>0.3',
'faiss-cpu': 'faiss-cpu',
'fastapi': 'fastapi',
'filelock': 'filelock',
'flax': 'flax>=0.4.1,<=0.7.0',
'ftfy': 'ftfy',
'fugashi': 'fugashi>=1.0',
'GitPython': 'GitPython<3.1.19',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0',
'importlib_metadata': 'importlib_metadata',
'ipadic': 'ipadic>=1.0.0,<2.0',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13',
'jaxlib': 'jaxlib>=0.1.65,<=0.4.13',
'jieba': 'jieba',
'kenlm': 'kenlm',
'keras-nlp': 'keras-nlp>=0.3.1',
'librosa': 'librosa',
'nltk': 'nltk',
'natten': 'natten>=0.14.6',
'numpy': 'numpy>=1.17',
'onnxconverter-common': 'onnxconverter-common',
'onnxruntime-tools': 'onnxruntime-tools>=1.4.2',
'onnxruntime': 'onnxruntime>=1.4.0',
'opencv-python': 'opencv-python',
'optuna': 'optuna',
'optax': 'optax>=0.0.8,<=0.1.4',
'packaging': 'packaging>=20.0',
'parameterized': 'parameterized',
'phonemizer': 'phonemizer',
'protobuf': 'protobuf',
'psutil': 'psutil',
'pyyaml': 'pyyaml>=5.1',
'pydantic': 'pydantic<2',
'pytest': 'pytest>=7.2.0',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'python': 'python>=3.8.0',
'ray[tune]': 'ray[tune]',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'rhoknp': 'rhoknp>=1.1.0,<1.3.1',
'rjieba': 'rjieba',
'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1',
'ruff': 'ruff>=0.0.241,<=0.0.259',
'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0',
'sacremoses': 'sacremoses',
'safetensors': 'safetensors>=0.3.1',
'sagemaker': 'sagemaker>=2.31.0',
'scikit-learn': 'scikit-learn',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'sigopt': 'sigopt',
'starlette': 'starlette',
'sudachipy': 'sudachipy>=0.6.6',
'sudachidict_core': 'sudachidict_core>=20220729',
'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14',
'tensorflow': 'tensorflow>=2.6,<2.14',
'tensorflow-text': 'tensorflow-text<2.14',
'tf2onnx': 'tf2onnx',
'timeout-decorator': 'timeout-decorator',
'timm': 'timm',
'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14',
'torch': 'torch>=1.9,!=1.12.0',
'torchaudio': 'torchaudio',
'torchvision': 'torchvision',
'pyctcdecode': 'pyctcdecode>=0.4.0',
'tqdm': 'tqdm>=4.27',
'unidic': 'unidic>=1.0.2',
'unidic_lite': 'unidic_lite>=1.0.7',
'urllib3': 'urllib3<2.0.0',
'uvicorn': 'uvicorn',
}
| 693 | 1 |
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] ='%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: ')))
print('Googling.....')
lowerCAmelCase : Optional[int] =F'''https://www.google.com/search?q={query}&num=100'''
lowerCAmelCase : Dict =requests.get(
url,
headers={'User-Agent': str(UserAgent().random)},
)
try:
lowerCAmelCase : Optional[int] =(
BeautifulSoup(res.text, 'html.parser')
.find('div', attrs={'class': 'yuRUbf'})
.find('a')
.get('href')
)
except AttributeError:
lowerCAmelCase : str =parse_qs(
BeautifulSoup(res.text, 'html.parser')
.find('div', attrs={'class': 'kCrYT'})
.find('a')
.get('href')
)['url'][0]
webbrowser.open(link)
| 693 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] ={
'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'],
'tokenization_roformer': ['RoFormerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =['RoFormerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] =[
'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoFormerForCausalLM',
'RoFormerForMaskedLM',
'RoFormerForMultipleChoice',
'RoFormerForQuestionAnswering',
'RoFormerForSequenceClassification',
'RoFormerForTokenClassification',
'RoFormerLayer',
'RoFormerModel',
'RoFormerPreTrainedModel',
'load_tf_weights_in_roformer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRoFormerForCausalLM',
'TFRoFormerForMaskedLM',
'TFRoFormerForMultipleChoice',
'TFRoFormerForQuestionAnswering',
'TFRoFormerForSequenceClassification',
'TFRoFormerForTokenClassification',
'TFRoFormerLayer',
'TFRoFormerModel',
'TFRoFormerPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int =[
'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'FlaxRoFormerForMaskedLM',
'FlaxRoFormerForMultipleChoice',
'FlaxRoFormerForQuestionAnswering',
'FlaxRoFormerForSequenceClassification',
'FlaxRoFormerForTokenClassification',
'FlaxRoFormerModel',
'FlaxRoFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _a ( snake_case_ ):
_UpperCamelCase: Optional[Any] = ["image_processor", "tokenizer"]
_UpperCamelCase: Dict = "BlipImageProcessor"
_UpperCamelCase: Tuple = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , lowercase_ , lowercase_ ) -> Tuple:
lowerCAmelCase : Tuple = False
super().__init__(lowercase_ , lowercase_ )
lowerCAmelCase : Any = self.image_processor
def __call__( self , lowercase_ = None , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase : Optional[Any] = self.tokenizer
lowerCAmelCase : Dict = self.tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
return text_encoding
# add pixel_values
lowerCAmelCase : List[Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ )
if text is not None:
lowerCAmelCase : Tuple = self.tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
else:
lowerCAmelCase : int = None
if text_encoding is not None:
encoding_image_processor.update(lowercase_ )
return encoding_image_processor
def _snake_case ( self , *lowercase_ , **lowercase_ ) -> str:
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ )
def _snake_case ( self , *lowercase_ , **lowercase_ ) -> List[str]:
return self.tokenizer.decode(*lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase : int = self.tokenizer.model_input_names
lowerCAmelCase : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return int(input_a == input_a == 0 )
def _UpperCAmelCase ( ):
'''simple docstring'''
print("""Truth Table of NOR Gate:""" )
print("""| Input 1 | Input 2 | Output |""" )
print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" )
print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" )
print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" )
print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 693 | 1 |
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class _a :
def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=[1, 1, 2] , lowercase_=1 , lowercase_=32 , lowercase_=4 , lowercase_=8 , lowercase_=37 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=512 , lowercase_=3 , lowercase_=0.0_2 , lowercase_=3 , lowercase_=4 , lowercase_=None , lowercase_=False , ) -> List[Any]:
lowerCAmelCase : Tuple = parent
lowerCAmelCase : Any = batch_size
lowerCAmelCase : str = seq_length
lowerCAmelCase : int = is_training
lowerCAmelCase : Tuple = use_input_mask
lowerCAmelCase : Tuple = use_token_type_ids
lowerCAmelCase : List[Any] = use_labels
lowerCAmelCase : str = vocab_size
lowerCAmelCase : Tuple = block_sizes
lowerCAmelCase : Optional[int] = num_decoder_layers
lowerCAmelCase : str = d_model
lowerCAmelCase : Optional[int] = n_head
lowerCAmelCase : Union[str, Any] = d_head
lowerCAmelCase : int = d_inner
lowerCAmelCase : Tuple = hidden_act
lowerCAmelCase : Any = hidden_dropout
lowerCAmelCase : Any = attention_dropout
lowerCAmelCase : Dict = activation_dropout
lowerCAmelCase : Dict = max_position_embeddings
lowerCAmelCase : Union[str, Any] = type_vocab_size
lowerCAmelCase : Any = 2
lowerCAmelCase : int = num_labels
lowerCAmelCase : Dict = num_choices
lowerCAmelCase : List[str] = scope
lowerCAmelCase : Optional[int] = initializer_std
# Used in the tests to check the size of the first attention layer
lowerCAmelCase : Optional[int] = n_head
# Used in the tests to check the size of the first hidden state
lowerCAmelCase : Tuple = self.d_model
# Used in the tests to check the number of output hidden states/attentions
lowerCAmelCase : List[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
lowerCAmelCase : Optional[Any] = self.num_hidden_layers + 2
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase : Any = None
if self.use_input_mask:
lowerCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase : List[str] = None
if self.use_token_type_ids:
lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase : Dict = None
lowerCAmelCase : Tuple = None
lowerCAmelCase : List[str] = None
if self.use_labels:
lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase : List[Any] = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Dict:
lowerCAmelCase : Union[str, Any] = TFFunnelModel(config=lowercase_ )
lowerCAmelCase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowerCAmelCase : int = model(lowercase_ )
lowerCAmelCase : Dict = [input_ids, input_mask]
lowerCAmelCase : List[Any] = model(lowercase_ )
lowerCAmelCase : Tuple = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase : Union[str, Any] = False
lowerCAmelCase : Any = TFFunnelModel(config=lowercase_ )
lowerCAmelCase : str = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
lowerCAmelCase : Optional[int] = False
lowerCAmelCase : Optional[Any] = TFFunnelModel(config=lowercase_ )
lowerCAmelCase : List[str] = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
lowerCAmelCase : int = TFFunnelBaseModel(config=lowercase_ )
lowerCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowerCAmelCase : Optional[int] = model(lowercase_ )
lowerCAmelCase : Union[str, Any] = [input_ids, input_mask]
lowerCAmelCase : List[str] = model(lowercase_ )
lowerCAmelCase : Dict = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
lowerCAmelCase : Optional[int] = False
lowerCAmelCase : str = TFFunnelBaseModel(config=lowercase_ )
lowerCAmelCase : str = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
lowerCAmelCase : List[str] = False
lowerCAmelCase : Any = TFFunnelBaseModel(config=lowercase_ )
lowerCAmelCase : str = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = TFFunnelForPreTraining(config=lowercase_ )
lowerCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowerCAmelCase : List[str] = model(lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]:
lowerCAmelCase : List[Any] = TFFunnelForMaskedLM(config=lowercase_ )
lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowerCAmelCase : Optional[int] = model(lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
lowerCAmelCase : Any = self.num_labels
lowerCAmelCase : Optional[int] = TFFunnelForSequenceClassification(config=lowercase_ )
lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowerCAmelCase : Optional[int] = model(lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> int:
lowerCAmelCase : Union[str, Any] = self.num_choices
lowerCAmelCase : Tuple = TFFunnelForMultipleChoice(config=lowercase_ )
lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Any = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : str = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) )
lowerCAmelCase : Tuple = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
lowerCAmelCase : Tuple = model(lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Any:
lowerCAmelCase : Tuple = self.num_labels
lowerCAmelCase : List[str] = TFFunnelForTokenClassification(config=lowercase_ )
lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowerCAmelCase : Dict = model(lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str:
lowerCAmelCase : Union[str, Any] = TFFunnelForQuestionAnswering(config=lowercase_ )
lowerCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowerCAmelCase : Any = model(lowercase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
lowerCAmelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
_UpperCamelCase: Any = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
_UpperCamelCase: List[Any] = (
{
"feature-extraction": (TFFunnelBaseModel, TFFunnelModel),
"fill-mask": TFFunnelForMaskedLM,
"question-answering": TFFunnelForQuestionAnswering,
"text-classification": TFFunnelForSequenceClassification,
"token-classification": TFFunnelForTokenClassification,
"zero-shot": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase: Dict = False
_UpperCamelCase: Dict = False
def _snake_case ( self ) -> int:
lowerCAmelCase : Union[str, Any] = TFFunnelModelTester(self )
lowerCAmelCase : str = ConfigTester(self , config_class=lowercase_ )
def _snake_case ( self ) -> Tuple:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> int:
lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase_ )
def _snake_case ( self ) -> str:
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase_ )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_ )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase_ )
@require_tf
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
_UpperCamelCase: List[str] = False
_UpperCamelCase: Union[str, Any] = False
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : str = TFFunnelModelTester(self , base=lowercase_ )
lowerCAmelCase : List[Any] = ConfigTester(self , config_class=lowercase_ )
def _snake_case ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> str:
lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*lowercase_ )
def _snake_case ( self ) -> Dict:
lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase_ )
def _snake_case ( self ) -> int:
lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase_ )
| 693 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase : int ={
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor']
lowerCAmelCase : List[str] =['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
| 693 | 1 |
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
class _a ( snake_case_ ):
_UpperCamelCase: Union[str, Any] = ["input_values", "padding_mask"]
def __init__( self , lowercase_ = 1 , lowercase_ = 24000 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> int:
super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ )
lowerCAmelCase : Optional[Any] = chunk_length_s
lowerCAmelCase : Union[str, Any] = overlap
@property
def _snake_case ( self ) -> Optional[int]:
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _snake_case ( self ) -> Optional[int]:
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"""
f""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
lowerCAmelCase : Optional[Any] = True
lowerCAmelCase : Any = bool(
isinstance(lowercase_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
lowerCAmelCase : Dict = [np.asarray(lowercase_ , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(lowercase_ , np.ndarray ):
lowerCAmelCase : List[Any] = np.asarray(lowercase_ , dtype=np.floataa )
elif isinstance(lowercase_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowerCAmelCase : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase : Optional[int] = [np.asarray(lowercase_ ).T]
# verify inputs are valid
for idx, example in enumerate(lowercase_ ):
if example.ndim > 2:
raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" )
lowerCAmelCase : Optional[Any] = None
lowerCAmelCase : List[Any] = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowerCAmelCase : Any = min(array.shape[0] for array in raw_audio )
lowerCAmelCase : List[str] = int(np.floor(max_length / self.chunk_stride ) )
lowerCAmelCase : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowerCAmelCase : List[Any] = max(array.shape[0] for array in raw_audio )
lowerCAmelCase : Tuple = int(np.ceil(max_length / self.chunk_stride ) )
lowerCAmelCase : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowerCAmelCase : Tuple = """max_length"""
else:
lowerCAmelCase : int = input_values
# normal padding on batch
if padded_inputs is None:
lowerCAmelCase : int = self.pad(
lowercase_ , max_length=lowercase_ , truncation=lowercase_ , padding=lowercase_ , return_attention_mask=lowercase_ , )
if padding:
lowerCAmelCase : Optional[int] = padded_inputs.pop("""attention_mask""" )
lowerCAmelCase : Dict = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
lowerCAmelCase : Optional[Any] = example[..., None]
input_values.append(example.T )
lowerCAmelCase : Dict = input_values
if return_tensors is not None:
lowerCAmelCase : Tuple = padded_inputs.convert_to_tensors(lowercase_ )
return padded_inputs
| 693 |
import os
import string
import sys
lowerCAmelCase : Optional[int] =1 << 8
lowerCAmelCase : List[Any] ={
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
lowerCAmelCase : Optional[Any] =KEYMAP['up']
lowerCAmelCase : Tuple =KEYMAP['left']
if sys.platform == "win32":
lowerCAmelCase : Dict =[]
lowerCAmelCase : int ={
b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
lowerCAmelCase : Optional[Any] =ord(str(i))
def _UpperCAmelCase ( ):
'''simple docstring'''
if os.name == "nt":
import msvcrt
lowerCAmelCase : Any = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(SCREAMING_SNAKE_CASE__ ) == 0:
# Read the keystroke
lowerCAmelCase : int = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowerCAmelCase : Tuple = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowerCAmelCase : str = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ )
if ord(SCREAMING_SNAKE_CASE__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_2_6 ) )
lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] )
except KeyError:
lowerCAmelCase : Optional[int] = cha[1]
else:
lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowerCAmelCase : List[Any] = sys.stdin.fileno()
lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ )
try:
tty.setraw(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ )
return ch
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Any = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]:
lowerCAmelCase : int = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]:
lowerCAmelCase : Tuple = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 693 | 1 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase : int =logging.getLogger()
lowerCAmelCase : str =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( snake_case_ ):
def _snake_case ( self , lowercase_ ) -> List[Any]:
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""}
lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] )
with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f:
f.write(lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str:
lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir()
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" )
lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" )
self._create_dummy_data(data_dir=lowercase_ )
lowerCAmelCase : str = f"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(f"""--gpus={gpus}""" )
if is_apex_available():
testargs.append("""--fp16""" )
else:
testargs.append("""--gpus=0""" )
testargs.append("""--distributed_backend=ddp_cpu""" )
testargs.append("""--num_processes=2""" )
lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(lowercase_ , env=self.get_env() )
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" )
with open(lowercase_ ) as f:
lowerCAmelCase : List[str] = json.load(lowercase_ )
return result
@require_torch_gpu
def _snake_case ( self ) -> Any:
lowerCAmelCase : Tuple = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_gpu
@require_ray
def _snake_case ( self ) -> int:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
@require_ray
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
| 693 |
# Imports
import numpy as np
class _a :
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]:
if red is not None:
lowerCAmelCase : str = red
if green is not None:
lowerCAmelCase : Optional[int] = green
if blue is not None:
lowerCAmelCase : Optional[int] = blue
if red_edge is not None:
lowerCAmelCase : Tuple = red_edge
if nir is not None:
lowerCAmelCase : Union[str, Any] = nir
return True
def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
lowerCAmelCase : int = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def _snake_case ( self ) -> Dict:
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case ( self ) -> Optional[Any]:
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case ( self ) -> List[str]:
return self.nir * (self.red / (self.green**2))
def _snake_case ( self ) -> Tuple:
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case ( self ) -> Optional[int]:
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case ( self ) -> List[str]:
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case ( self ) -> int:
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case ( self ) -> Optional[Any]:
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case ( self ) -> int:
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case ( self ) -> List[str]:
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int:
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case ( self ) -> Optional[Any]:
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case ( self ) -> Any:
return (self.nir / self.green) - 1
def _snake_case ( self ) -> List[Any]:
return (self.nir / self.redEdge) - 1
def _snake_case ( self ) -> str:
return (self.red - self.blue) / self.red
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case ( self ) -> Optional[Any]:
return self.nir - self.green
def _snake_case ( self ) -> int:
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]:
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case ( self , lowercase_=0.5 ) -> List[str]:
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case ( self ) -> Any:
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]:
return (self.nir - b) / (a * self.red)
def _snake_case ( self ) -> Any:
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case ( self ) -> str:
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case ( self ) -> Union[str, Any]:
return self.nir / self.red
def _snake_case ( self ) -> Tuple:
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case ( self ) -> Dict:
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case ( self ) -> List[Any]:
return self.green / (self.nir + self.red + self.green)
def _snake_case ( self ) -> int:
return self.nir / (self.nir + self.red + self.green)
def _snake_case ( self ) -> Dict:
return self.red / (self.nir + self.red + self.green)
def _snake_case ( self ) -> List[Any]:
return (self.green - self.red) / (self.green + self.red)
def _snake_case ( self ) -> Optional[int]:
return (self.red - self.green) / (self.red + self.green)
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case ( self ) -> int:
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case ( self ) -> List[str]:
return self.nir / self.red
def _snake_case ( self ) -> int:
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case ( self ) -> str:
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 693 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
class _a ( snake_case_ ):
_UpperCamelCase: Dict = ["pixel_values"]
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = True , **lowercase_ , ) -> None:
super().__init__(**lowercase_ )
lowerCAmelCase : int = size if size is not None else {"""height""": 384, """width""": 384}
lowerCAmelCase : Dict = get_size_dict(lowercase_ , default_to_square=lowercase_ )
lowerCAmelCase : str = do_resize
lowerCAmelCase : List[str] = size
lowerCAmelCase : Any = resample
lowerCAmelCase : str = do_rescale
lowerCAmelCase : List[Any] = rescale_factor
lowerCAmelCase : Tuple = do_normalize
lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowerCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
lowerCAmelCase : Union[str, Any] = do_convert_rgb
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
lowerCAmelCase : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
lowerCAmelCase : int = (size["""height"""], size["""width"""])
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Optional[Any]:
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
lowerCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase : List[str] = resample if resample is not None else self.resample
lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase : Tuple = image_std if image_std is not None else self.image_std
lowerCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowerCAmelCase : List[Any] = size if size is not None else self.size
lowerCAmelCase : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ )
lowerCAmelCase : List[Any] = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowerCAmelCase : Any = [convert_to_rgb(lowercase_ ) for image in images]
# All transformations expect numpy arrays.
lowerCAmelCase : Tuple = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
lowerCAmelCase : Optional[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_rescale:
lowerCAmelCase : Tuple = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
lowerCAmelCase : Tuple = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
lowerCAmelCase : List[str] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowerCAmelCase : List[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowercase_ )
return encoded_outputs
| 693 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[str] = None
if token is not None:
lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = None
if token is not None:
lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = None
if token is not None:
lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = result.headers["""Location"""]
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" )
with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp:
fp.write(response.content )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : Optional[int] = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE__ ) as f:
for line in f:
lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCAmelCase : str = line[: line.index(""": """ )]
lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :]
failed_tests.append(SCREAMING_SNAKE_CASE__ )
elif filename == "job_name.txt":
lowerCAmelCase : Union[str, Any] = line
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """
F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
lowerCAmelCase : Optional[int] = None
if job_name and job_links:
lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
# A list with elements of the form (line of error, error, failed test)
lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )]
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : str = []
lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) )
return errors
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = Counter()
counter.update([x[1] for x in logs] )
lowerCAmelCase : List[str] = counter.most_common()
lowerCAmelCase : Union[str, Any] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
lowerCAmelCase : str = test.split("""/""" )[2]
else:
lowerCAmelCase : List[Any] = None
return test
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCAmelCase : int = [x for x in logs if x[2] is not None]
lowerCAmelCase : Optional[Any] = {x[2] for x in logs}
lowerCAmelCase : Dict = {}
for test in tests:
lowerCAmelCase : Optional[int] = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCAmelCase : Tuple = counter.most_common()
lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCAmelCase : List[Any] = sum(error_counts.values() )
if n_errors > 0:
lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = """| no. | error | status |"""
lowerCAmelCase : List[Any] = """|-:|:-|:-|"""
lowerCAmelCase : Union[str, Any] = [header, sep]
for error in reduced_by_error:
lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""]
lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = """| model | no. of errors | major error | count |"""
lowerCAmelCase : Any = """|-:|-:|-:|-:|"""
lowerCAmelCase : str = [header, sep]
for model in reduced_by_model:
lowerCAmelCase : Any = reduced_by_model[model]["""count"""]
lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0]
lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase : int =argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
lowerCAmelCase : Dict =parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token)
lowerCAmelCase : List[Any] ={}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
lowerCAmelCase : str =k.find(' / ')
lowerCAmelCase : Any =k[index + len(' / ') :]
lowerCAmelCase : str =v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
lowerCAmelCase : str =Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
lowerCAmelCase : int =counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Optional[int] =reduce_by_error(errors)
lowerCAmelCase : Tuple =reduce_by_model(errors)
lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error)
lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 693 | 1 |
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
lowerCAmelCase : Union[str, Any] ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class _a ( nn.Module ):
def __init__( self , lowercase_ ) -> Tuple:
super().__init__()
lowerCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=lowercase_ )
lowerCAmelCase : List[Any] = list(model.children() )[:-2]
lowerCAmelCase : int = nn.Sequential(*lowercase_ )
lowerCAmelCase : Dict = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def _snake_case ( self , lowercase_ ) -> List[Any]:
# Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048
lowerCAmelCase : int = self.pool(self.model(lowercase_ ) )
lowerCAmelCase : Optional[Any] = torch.flatten(lowercase_ , start_dim=2 )
lowerCAmelCase : Optional[Any] = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class _a ( snake_case_ ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
lowerCAmelCase : Optional[Any] = [json.loads(lowercase_ ) for l in open(lowercase_ )]
lowerCAmelCase : List[str] = os.path.dirname(lowercase_ )
lowerCAmelCase : Union[str, Any] = tokenizer
lowerCAmelCase : Optional[int] = labels
lowerCAmelCase : int = len(lowercase_ )
lowerCAmelCase : Optional[int] = max_seq_length
lowerCAmelCase : Any = transforms
def __len__( self ) -> Union[str, Any]:
return len(self.data )
def __getitem__( self , lowercase_ ) -> Tuple:
lowerCAmelCase : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=lowercase_ ) )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1]
lowerCAmelCase : Optional[Any] = sentence[: self.max_seq_length]
lowerCAmelCase : List[Any] = torch.zeros(self.n_classes )
lowerCAmelCase : int = 1
lowerCAmelCase : str = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" )
lowerCAmelCase : str = self.transforms(lowercase_ )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def _snake_case ( self ) -> List[str]:
lowerCAmelCase : Optional[Any] = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = [len(row["""sentence"""] ) for row in batch]
lowerCAmelCase , lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : List[Any] = torch.zeros(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=torch.long )
lowerCAmelCase : Dict = torch.zeros(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ):
lowerCAmelCase : List[Any] = input_row["""sentence"""]
lowerCAmelCase : Optional[int] = 1
lowerCAmelCase : Dict = torch.stack([row["""image"""] for row in batch] )
lowerCAmelCase : Union[str, Any] = torch.stack([row["""label"""] for row in batch] )
lowerCAmelCase : Dict = torch.stack([row["""image_start_token"""] for row in batch] )
lowerCAmelCase : Any = torch.stack([row["""image_end_token"""] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def _UpperCAmelCase ( ):
'''simple docstring'''
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def _UpperCAmelCase ( ):
'''simple docstring'''
return transforms.Compose(
[
transforms.Resize(2_5_6 ),
transforms.CenterCrop(2_2_4 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46777044, 0.44531429, 0.40661017] ,std=[0.12221994, 0.12145835, 0.14380469] ,),
] )
| 693 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Optional[int] ={
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =[
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] ={
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "detr"
_UpperCamelCase: Dict = ["past_key_values"]
_UpperCamelCase: Optional[int] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" )
lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ )
# set timm attributes to None
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None
lowerCAmelCase : Any = use_timm_backbone
lowerCAmelCase : int = backbone_config
lowerCAmelCase : Optional[int] = num_channels
lowerCAmelCase : Optional[Any] = num_queries
lowerCAmelCase : List[str] = d_model
lowerCAmelCase : Optional[int] = encoder_ffn_dim
lowerCAmelCase : Dict = encoder_layers
lowerCAmelCase : str = encoder_attention_heads
lowerCAmelCase : List[Any] = decoder_ffn_dim
lowerCAmelCase : List[Any] = decoder_layers
lowerCAmelCase : Union[str, Any] = decoder_attention_heads
lowerCAmelCase : str = dropout
lowerCAmelCase : Dict = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : str = activation_function
lowerCAmelCase : Optional[int] = init_std
lowerCAmelCase : Any = init_xavier_std
lowerCAmelCase : Dict = encoder_layerdrop
lowerCAmelCase : int = decoder_layerdrop
lowerCAmelCase : Tuple = encoder_layers
lowerCAmelCase : Optional[int] = auxiliary_loss
lowerCAmelCase : List[str] = position_embedding_type
lowerCAmelCase : Any = backbone
lowerCAmelCase : Union[str, Any] = use_pretrained_backbone
lowerCAmelCase : List[Any] = dilation
# Hungarian matcher
lowerCAmelCase : Tuple = class_cost
lowerCAmelCase : Union[str, Any] = bbox_cost
lowerCAmelCase : Optional[Any] = giou_cost
# Loss coefficients
lowerCAmelCase : List[Any] = mask_loss_coefficient
lowerCAmelCase : Optional[int] = dice_loss_coefficient
lowerCAmelCase : Tuple = bbox_loss_coefficient
lowerCAmelCase : Dict = giou_loss_coefficient
lowerCAmelCase : str = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> int:
return self.encoder_attention_heads
@property
def _snake_case ( self ) -> int:
return self.d_model
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any:
return cls(backbone_config=lowercase_ , **lowercase_ )
def _snake_case ( self ) -> Dict[str, any]:
lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase : List[str] = self.backbone_config.to_dict()
lowerCAmelCase : List[Any] = self.__class__.model_type
return output
class _a ( snake_case_ ):
_UpperCamelCase: Any = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-5
@property
def _snake_case ( self ) -> int:
return 12
| 693 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] ={
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "detr"
_UpperCamelCase: Dict = ["past_key_values"]
_UpperCamelCase: Optional[int] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" )
lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ )
# set timm attributes to None
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None
lowerCAmelCase : Any = use_timm_backbone
lowerCAmelCase : int = backbone_config
lowerCAmelCase : Optional[int] = num_channels
lowerCAmelCase : Optional[Any] = num_queries
lowerCAmelCase : List[str] = d_model
lowerCAmelCase : Optional[int] = encoder_ffn_dim
lowerCAmelCase : Dict = encoder_layers
lowerCAmelCase : str = encoder_attention_heads
lowerCAmelCase : List[Any] = decoder_ffn_dim
lowerCAmelCase : List[Any] = decoder_layers
lowerCAmelCase : Union[str, Any] = decoder_attention_heads
lowerCAmelCase : str = dropout
lowerCAmelCase : Dict = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : str = activation_function
lowerCAmelCase : Optional[int] = init_std
lowerCAmelCase : Any = init_xavier_std
lowerCAmelCase : Dict = encoder_layerdrop
lowerCAmelCase : int = decoder_layerdrop
lowerCAmelCase : Tuple = encoder_layers
lowerCAmelCase : Optional[int] = auxiliary_loss
lowerCAmelCase : List[str] = position_embedding_type
lowerCAmelCase : Any = backbone
lowerCAmelCase : Union[str, Any] = use_pretrained_backbone
lowerCAmelCase : List[Any] = dilation
# Hungarian matcher
lowerCAmelCase : Tuple = class_cost
lowerCAmelCase : Union[str, Any] = bbox_cost
lowerCAmelCase : Optional[Any] = giou_cost
# Loss coefficients
lowerCAmelCase : List[Any] = mask_loss_coefficient
lowerCAmelCase : Optional[int] = dice_loss_coefficient
lowerCAmelCase : Tuple = bbox_loss_coefficient
lowerCAmelCase : Dict = giou_loss_coefficient
lowerCAmelCase : str = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> int:
return self.encoder_attention_heads
@property
def _snake_case ( self ) -> int:
return self.d_model
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any:
return cls(backbone_config=lowercase_ , **lowercase_ )
def _snake_case ( self ) -> Dict[str, any]:
lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase : List[str] = self.backbone_config.to_dict()
lowerCAmelCase : List[Any] = self.__class__.model_type
return output
class _a ( snake_case_ ):
_UpperCamelCase: Any = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-5
@property
def _snake_case ( self ) -> int:
return 12
| 693 | 1 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase : int =logging.getLogger()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = """\n""".join(SCREAMING_SNAKE_CASE__ )
Path(SCREAMING_SNAKE_CASE__ ).open("""w""" ).writelines(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Tuple ='patrickvonplaten/t5-tiny-random'
lowerCAmelCase : str ='sshleifer/bart-tiny-random'
lowerCAmelCase : List[Any] ='sshleifer/tiny-mbart'
lowerCAmelCase : List[str] =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _a ( snake_case_ ):
def _snake_case ( self , lowercase_ ) -> Dict:
lowerCAmelCase : Dict = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
lowerCAmelCase : List[Any] = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
lowerCAmelCase : Dict = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""]
_dump_articles(lowercase_ , lowercase_ )
lowerCAmelCase : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" )
lowerCAmelCase : int = """translation_en_to_de""" if model == T5_TINY else """summarization"""
lowerCAmelCase : Union[str, Any] = f"""
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
""".split()
with patch.object(lowercase_ , """argv""" , lowercase_ ):
run_generate()
assert Path(lowercase_ ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self ) -> Union[str, Any]:
self.run_eval_tester(lowercase_ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self , lowercase_ ) -> Optional[int]:
self.run_eval_tester(lowercase_ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self , lowercase_ ) -> Optional[int]:
lowerCAmelCase : List[str] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
lowerCAmelCase : str = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
lowerCAmelCase : Any = {
"""en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""],
"""de""": [
"""Maschinelles Lernen ist großartig, oder?""",
"""Ich esse gerne Bananen""",
"""Morgen ist wieder ein toller Tag!""",
],
}
lowerCAmelCase : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() )
lowerCAmelCase : str = str(tmp_dir / """scores.json""" )
lowerCAmelCase : List[str] = str(tmp_dir / """val.target""" )
_dump_articles(lowercase_ , text["""en"""] )
_dump_articles(lowercase_ , text["""de"""] )
lowerCAmelCase : Any = """translation_en_to_de""" if model == T5_TINY else """summarization"""
lowerCAmelCase : Any = f"""
run_eval_search.py
{model}
{str(lowercase_ )}
{str(lowercase_ )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
""".split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] )
with patch.object(lowercase_ , """argv""" , lowercase_ ):
with CaptureStdout() as cs:
run_search()
lowerCAmelCase : Union[str, Any] = [""" num_beams | length_penalty""", model, """Best score args"""]
lowerCAmelCase : Any = ["""Info"""]
if "translation" in task:
expected_strings.append("""bleu""" )
else:
expected_strings.extend(lowercase_ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowercase_ ).exists()
os.remove(Path(lowercase_ ) )
| 693 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase : int =logging.getLogger()
lowerCAmelCase : str =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( snake_case_ ):
def _snake_case ( self , lowercase_ ) -> List[Any]:
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""}
lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] )
with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f:
f.write(lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str:
lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir()
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" )
lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" )
self._create_dummy_data(data_dir=lowercase_ )
lowerCAmelCase : str = f"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(f"""--gpus={gpus}""" )
if is_apex_available():
testargs.append("""--fp16""" )
else:
testargs.append("""--gpus=0""" )
testargs.append("""--distributed_backend=ddp_cpu""" )
testargs.append("""--num_processes=2""" )
lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(lowercase_ , env=self.get_env() )
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" )
with open(lowercase_ ) as f:
lowerCAmelCase : List[str] = json.load(lowercase_ )
return result
@require_torch_gpu
def _snake_case ( self ) -> Any:
lowerCAmelCase : Tuple = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_gpu
@require_ray
def _snake_case ( self ) -> int:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
@require_ray
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return round(float(moles / volume ) * nfactor )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return round(float((moles * 0.0821 * temperature) / (volume) ) )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return round(float((moles * 0.0821 * temperature) / (pressure) ) )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return round(float((pressure * volume) / (0.0821 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Optional[int] ={
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "transfo-xl"
_UpperCamelCase: str = ["mems"]
_UpperCamelCase: Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : Union[str, Any] = []
self.cutoffs.extend(lowercase_ )
if proj_share_all_but_first:
lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs )
else:
lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs )
lowerCAmelCase : Optional[int] = d_model
lowerCAmelCase : List[Any] = d_embed
lowerCAmelCase : Union[str, Any] = d_head
lowerCAmelCase : List[Any] = d_inner
lowerCAmelCase : Optional[int] = div_val
lowerCAmelCase : List[Any] = pre_lnorm
lowerCAmelCase : Dict = n_layer
lowerCAmelCase : Tuple = n_head
lowerCAmelCase : Any = mem_len
lowerCAmelCase : Union[str, Any] = same_length
lowerCAmelCase : List[Any] = attn_type
lowerCAmelCase : int = clamp_len
lowerCAmelCase : List[str] = sample_softmax
lowerCAmelCase : Optional[int] = adaptive
lowerCAmelCase : Dict = dropout
lowerCAmelCase : Optional[Any] = dropatt
lowerCAmelCase : List[str] = untie_r
lowerCAmelCase : List[str] = init
lowerCAmelCase : Tuple = init_range
lowerCAmelCase : str = proj_init_std
lowerCAmelCase : str = init_std
lowerCAmelCase : Optional[int] = layer_norm_epsilon
super().__init__(eos_token_id=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> Optional[Any]:
# Message copied from Transformer-XL documentation
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def _snake_case ( self , lowercase_ ) -> Dict:
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 693 | 1 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class _a ( unittest.TestCase ):
def _snake_case ( self ) -> int:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
lowerCAmelCase : Dict = FlaxDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowercase_ , cache_dir=lowercase_ )
lowerCAmelCase : Optional[Any] = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , """snapshots""" ) )]
lowerCAmelCase : Dict = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(""".bin""" ) for f in files )
@slow
@require_flax
class _a ( unittest.TestCase ):
def _snake_case ( self ) -> List[str]:
lowerCAmelCase , lowerCAmelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowercase_ )
lowerCAmelCase : Any = (
"""A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"""
""" field, close up, split lighting, cinematic"""
)
lowerCAmelCase : Tuple = jax.random.PRNGKey(0 )
lowerCAmelCase : Union[str, Any] = 4
lowerCAmelCase : Optional[int] = jax.device_count()
lowerCAmelCase : int = num_samples * [prompt]
lowerCAmelCase : Optional[int] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
lowerCAmelCase : Union[str, Any] = replicate(lowercase_ )
lowerCAmelCase : Optional[int] = jax.random.split(lowercase_ , lowercase_ )
lowerCAmelCase : Optional[int] = shard(lowercase_ )
lowerCAmelCase : List[str] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3
assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1
lowerCAmelCase : Optional[int] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(lowercase_ ) == num_samples
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase , lowerCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=lowercase_ )
lowerCAmelCase : Optional[int] = (
"""A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"""
""" field, close up, split lighting, cinematic"""
)
lowerCAmelCase : List[str] = jax.random.PRNGKey(0 )
lowerCAmelCase : str = 50
lowerCAmelCase : str = jax.device_count()
lowerCAmelCase : Tuple = num_samples * [prompt]
lowerCAmelCase : Union[str, Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
lowerCAmelCase : int = replicate(lowercase_ )
lowerCAmelCase : Tuple = jax.random.split(lowercase_ , lowercase_ )
lowerCAmelCase : Optional[Any] = shard(lowercase_ )
lowerCAmelCase : List[str] = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1
def _snake_case ( self ) -> Tuple:
lowerCAmelCase , lowerCAmelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowercase_ )
lowerCAmelCase : Any = (
"""A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"""
""" field, close up, split lighting, cinematic"""
)
lowerCAmelCase : int = jax.random.PRNGKey(0 )
lowerCAmelCase : Optional[Any] = 50
lowerCAmelCase : Dict = jax.device_count()
lowerCAmelCase : int = num_samples * [prompt]
lowerCAmelCase : List[Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
lowerCAmelCase : Optional[Any] = replicate(lowercase_ )
lowerCAmelCase : int = jax.random.split(lowercase_ , lowercase_ )
lowerCAmelCase : Optional[int] = shard(lowercase_ )
lowerCAmelCase : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase , lowerCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa )
lowerCAmelCase : Union[str, Any] = (
"""A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"""
""" field, close up, split lighting, cinematic"""
)
lowerCAmelCase : Optional[Any] = jax.random.PRNGKey(0 )
lowerCAmelCase : Optional[int] = 50
lowerCAmelCase : Optional[Any] = jax.device_count()
lowerCAmelCase : Optional[Any] = num_samples * [prompt]
lowerCAmelCase : str = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
lowerCAmelCase : Optional[Any] = replicate(lowercase_ )
lowerCAmelCase : str = jax.random.split(lowercase_ , lowercase_ )
lowerCAmelCase : Any = shard(lowercase_ )
lowerCAmelCase : Tuple = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = FlaxDDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
lowerCAmelCase , lowerCAmelCase : List[Any] = FlaxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , )
lowerCAmelCase : List[Any] = scheduler.create_state()
lowerCAmelCase : Optional[int] = scheduler_state
lowerCAmelCase : List[str] = (
"""A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"""
""" field, close up, split lighting, cinematic"""
)
lowerCAmelCase : int = jax.random.PRNGKey(0 )
lowerCAmelCase : Dict = 50
lowerCAmelCase : Optional[int] = jax.device_count()
lowerCAmelCase : Union[str, Any] = num_samples * [prompt]
lowerCAmelCase : List[Any] = pipeline.prepare_inputs(lowercase_ )
# shard inputs and rng
lowerCAmelCase : Optional[int] = replicate(lowercase_ )
lowerCAmelCase : str = jax.random.split(lowercase_ , lowercase_ )
lowerCAmelCase : int = shard(lowercase_ )
lowerCAmelCase : Any = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3
assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Union[str, Any] = (
"""A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"""
""" field, close up, split lighting, cinematic"""
)
lowerCAmelCase : List[str] = jax.device_count()
lowerCAmelCase : List[str] = num_samples * [prompt]
lowerCAmelCase : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ )
lowerCAmelCase , lowerCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowercase_ , )
lowerCAmelCase : Dict = replicate(lowercase_ )
lowerCAmelCase : Optional[Any] = pipeline.prepare_inputs(lowercase_ )
lowerCAmelCase : Any = shard(lowercase_ )
lowerCAmelCase : Union[str, Any] = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
lowerCAmelCase : List[Any] = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
lowerCAmelCase , lowerCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , )
lowerCAmelCase : List[str] = replicate(lowercase_ )
lowerCAmelCase : int = pipeline.prepare_inputs(lowercase_ )
lowerCAmelCase : Any = shard(lowercase_ )
lowerCAmelCase : Dict = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
lowerCAmelCase : List[Any] = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2
| 693 |
import torch
from diffusers import DiffusionPipeline
class _a ( snake_case_ ):
def __init__( self , lowercase_ , lowercase_ ) -> int:
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def __call__( self ) -> List[Any]:
lowerCAmelCase : Union[str, Any] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowerCAmelCase : Union[str, Any] = 1
lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample
lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ )
return result
| 693 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase : Union[str, Any] ={
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[str] =[
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
requests.request("""GET""" ,"""https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 )
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" ,"""https://huggingface.co""" )
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
http_head("""https://huggingface.co""" )
| 693 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : int ={
'configuration_table_transformer': [
'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TableTransformerConfig',
'TableTransformerOnnxConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[str] =[
'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TableTransformerForObjectDetection',
'TableTransformerModel',
'TableTransformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class _a ( unittest.TestCase ):
def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
lowerCAmelCase : Optional[int] = parent
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : Dict = num_channels
lowerCAmelCase : str = min_resolution
lowerCAmelCase : Optional[Any] = max_resolution
lowerCAmelCase : Optional[int] = do_resize
lowerCAmelCase : List[str] = size
lowerCAmelCase : Dict = do_rescale
lowerCAmelCase : Union[str, Any] = rescale_factor
lowerCAmelCase : int = do_normalize
lowerCAmelCase : Union[str, Any] = image_mean
lowerCAmelCase : Dict = image_std
lowerCAmelCase : Optional[int] = do_pad
def _snake_case ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]:
if not batched:
lowerCAmelCase : Tuple = image_inputs[0]
if isinstance(lowercase_ , Image.Image ):
lowerCAmelCase , lowerCAmelCase : Dict = image.size
else:
lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w )
lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""]
elif w > h:
lowerCAmelCase : List[Any] = self.size["""shortest_edge"""]
lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h )
else:
lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""]
lowerCAmelCase : List[str] = self.size["""shortest_edge"""]
else:
lowerCAmelCase : Optional[int] = []
for image in image_inputs:
lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0]
lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : List[str] = DetrImageProcessingTester(self )
@property
def _snake_case ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowercase_ , """image_std""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) )
self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_pad""" ) )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , lowercase_ )
lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , lowercase_ )
def _snake_case ( self ) -> List[Any]:
pass
def _snake_case ( self ) -> List[Any]:
# Initialize image_processing
lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image )
# Test not batched input
lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[int]:
# Initialize image_processing
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> List[str]:
# Initialize image_processing
lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _snake_case ( self ) -> int:
# prepare image and target
lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : str = json.loads(f.read() )
lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target}
# encode them
lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" )
lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : List[Any] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify orig_size
lowerCAmelCase : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
@slow
def _snake_case ( self ) -> int:
# prepare image, target and masks_path
lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : Any = json.loads(f.read() )
lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" )
lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : Tuple = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify masks
lowerCAmelCase : Union[str, Any] = 822873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ )
# verify orig_size
lowerCAmelCase : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : List[str] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
| 693 | 1 |
import argparse
from collections import defaultdict
import yaml
lowerCAmelCase : Any ='docs/source/en/_toctree.yml'
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Any = defaultdict(SCREAMING_SNAKE_CASE__ )
for doc in model_doc:
counts[doc["local"]] += 1
lowerCAmelCase : Optional[int] = [key for key, value in counts.items() if value > 1]
lowerCAmelCase : str = []
for duplicate_key in duplicates:
lowerCAmelCase : str = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} )
if len(SCREAMING_SNAKE_CASE__ ) > 1:
raise ValueError(
F"""{duplicate_key} is present several times in the documentation table of content at """
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] )
# Sort
return sorted(SCREAMING_SNAKE_CASE__ ,key=lambda SCREAMING_SNAKE_CASE__ : s["title"].lower() )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__=False ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__ ,encoding="""utf-8""" ) as f:
lowerCAmelCase : Any = yaml.safe_load(f.read() )
# Get to the API doc
lowerCAmelCase : Dict = 0
while content[api_idx]["title"] != "API":
api_idx += 1
lowerCAmelCase : List[str] = content[api_idx]["""sections"""]
# Then to the model doc
lowerCAmelCase : Optional[Any] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
lowerCAmelCase : Union[str, Any] = api_doc[model_idx]["""sections"""]
lowerCAmelCase : Optional[Any] = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE__ ) if """sections""" in section]
lowerCAmelCase : Optional[Any] = False
for idx, modality_doc in modalities_docs:
lowerCAmelCase : int = modality_doc["""sections"""]
lowerCAmelCase : Tuple = clean_model_doc_toc(SCREAMING_SNAKE_CASE__ )
if old_modality_doc != new_modality_doc:
lowerCAmelCase : int = True
if overwrite:
lowerCAmelCase : int = new_modality_doc
if diff:
if overwrite:
lowerCAmelCase : Optional[Any] = model_doc
lowerCAmelCase : Any = api_doc
with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(yaml.dump(SCREAMING_SNAKE_CASE__ ,allow_unicode=SCREAMING_SNAKE_CASE__ ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
lowerCAmelCase : List[str] =parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Tuple = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = 0
while b > 0:
if b & 1:
lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 693 | 1 |
import os
from pathlib import Path
def _UpperCAmelCase ( ):
'''simple docstring'''
from torch.utils.cpp_extension import load
lowerCAmelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE__ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowerCAmelCase : Union[str, Any] = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" ,"""ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" ,"""ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" ,SCREAMING_SNAKE_CASE__ ,with_cuda=SCREAMING_SNAKE_CASE__ ,extra_include_paths=[str(SCREAMING_SNAKE_CASE__ )] ,extra_cflags=["""-DWITH_CUDA=1"""] ,extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] ,)
import MultiScaleDeformableAttention as MSDA
return MSDA
| 693 |
from math import factorial
class _a :
def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]:
lowerCAmelCase : Union[str, Any] = real
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Tuple = [1] * rank
else:
lowerCAmelCase : Any = rank
def __repr__( self ) -> int:
return (
f"""{self.real}+"""
f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}"""
)
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[Any] = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , lowercase_ )
def __add__( self , lowercase_ ) -> Tuple:
if not isinstance(lowercase_ , lowercase_ ):
return Dual(self.real + other , self.duals )
lowerCAmelCase : int = self.duals.copy()
lowerCAmelCase : Tuple = other.duals.copy()
if len(lowercase_ ) > len(lowercase_ ):
o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
elif len(lowercase_ ) < len(lowercase_ ):
s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
lowerCAmelCase : List[Any] = []
for i in range(len(lowercase_ ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , lowercase_ )
_UpperCamelCase: List[Any] = __add__
def __sub__( self , lowercase_ ) -> Union[str, Any]:
return self + other * -1
def __mul__( self , lowercase_ ) -> Optional[int]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Union[str, Any] = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , lowercase_ )
lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , lowercase_ )
_UpperCamelCase: str = __mul__
def __truediv__( self , lowercase_ ) -> Optional[Any]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[str] = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , lowercase_ )
raise ValueError
def __floordiv__( self , lowercase_ ) -> int:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , lowercase_ )
raise ValueError
def __pow__( self , lowercase_ ) -> str:
if n < 0 or isinstance(lowercase_ , lowercase_ ):
raise ValueError("""power must be a positive integer""" )
if n == 0:
return 1
if n == 1:
return self
lowerCAmelCase : int = self
for _ in range(n - 1 ):
x *= self
return x
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if not callable(SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires a function as input for func""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ):
raise ValueError("""differentiate() requires a float as input for position""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires an int as input for order""" )
lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 )
lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return y**2 * y**4
print(differentiate(f, 9, 2))
| 693 | 1 |
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
lowerCAmelCase : Optional[Any] =get_logger(__name__)
class _a :
def __init__( self , lowercase_ = None ) -> Tuple:
lowerCAmelCase : Dict = (
os.path.join(lowercase_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
lowerCAmelCase : Dict = Extractor
def _snake_case ( self , lowercase_ ) -> str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
lowerCAmelCase : Any = os.path.abspath(lowercase_ )
return os.path.join(self.extract_dir , hash_url_to_filename(lowercase_ ) )
def _snake_case ( self , lowercase_ , lowercase_ ) -> bool:
return force_extract or (
not os.path.isfile(lowercase_ ) and not (os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ))
)
def _snake_case ( self , lowercase_ , lowercase_ = False ) -> str:
lowerCAmelCase : Union[str, Any] = self.extractor.infer_extractor_format(lowercase_ )
if not extractor_format:
return input_path
lowerCAmelCase : List[str] = self._get_output_path(lowercase_ )
if self._do_extract(lowercase_ , lowercase_ ):
self.extractor.extract(lowercase_ , lowercase_ , lowercase_ )
return output_path
class _a ( snake_case_ ):
@classmethod
@abstractmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> bool:
...
@staticmethod
@abstractmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
...
class _a ( snake_case_ , snake_case_ ):
_UpperCamelCase: List[bytes] = []
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> Optional[int]:
with open(lowercase_ , """rb""" ) as f:
return f.read(lowercase_ )
@classmethod
def _snake_case ( cls , lowercase_ , lowercase_ = b"" ) -> bool:
if not magic_number:
lowerCAmelCase : str = max(len(lowercase_ ) for cls_magic_number in cls.magic_numbers )
try:
lowerCAmelCase : List[str] = cls.read_magic_number(lowercase_ , lowercase_ )
except OSError:
return False
return any(magic_number.startswith(lowercase_ ) for cls_magic_number in cls.magic_numbers )
class _a ( snake_case_ ):
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> bool:
return tarfile.is_tarfile(lowercase_ )
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> Any:
def resolved(lowercase_ ) -> str:
return os.path.realpath(os.path.abspath(lowercase_ ) )
def badpath(lowercase_ , lowercase_ ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowercase_ , lowercase_ ) ).startswith(lowercase_ )
def badlink(lowercase_ , lowercase_ ) -> bool:
# Links are interpreted relative to the directory containing the link
lowerCAmelCase : List[Any] = resolved(os.path.join(lowercase_ , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowercase_ )
lowerCAmelCase : str = resolved(lowercase_ )
for finfo in members:
if badpath(finfo.name , lowercase_ ):
logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" )
elif finfo.issym() and badlink(lowercase_ , lowercase_ ):
logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" )
elif finfo.islnk() and badlink(lowercase_ , lowercase_ ):
logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" )
else:
yield finfo
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowerCAmelCase : Optional[int] = tarfile.open(lowercase_ )
tar_file.extractall(lowercase_ , members=TarExtractor.safemembers(lowercase_ , lowercase_ ) )
tar_file.close()
class _a ( snake_case_ ):
_UpperCamelCase: List[Any] = [b"\x1F\x8B"]
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
with gzip.open(lowercase_ , """rb""" ) as gzip_file:
with open(lowercase_ , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase_ , lowercase_ )
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = [
b"PK\x03\x04",
b"PK\x05\x06", # empty archive
b"PK\x07\x08", # spanned archive
]
@classmethod
def _snake_case ( cls , lowercase_ , lowercase_ = b"" ) -> bool:
if super().is_extractable(lowercase_ , magic_number=lowercase_ ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowercase_ , """rb""" ) as fp:
lowerCAmelCase : Union[str, Any] = _EndRecData(lowercase_ )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
lowerCAmelCase : Union[str, Any] = fp.read(lowercase_ ) # CD is where we expect it to be
if len(lowercase_ ) == sizeCentralDir:
lowerCAmelCase : Any = struct.unpack(lowercase_ , lowercase_ ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
os.makedirs(lowercase_ , exist_ok=lowercase_ )
with zipfile.ZipFile(lowercase_ , """r""" ) as zip_file:
zip_file.extractall(lowercase_ )
zip_file.close()
class _a ( snake_case_ ):
_UpperCamelCase: Dict = [b"\xFD\x37\x7A\x58\x5A\x00"]
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
with lzma.open(lowercase_ ) as compressed_file:
with open(lowercase_ , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase_ , lowercase_ )
class _a ( snake_case_ ):
_UpperCamelCase: List[Any] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
if not config.RARFILE_AVAILABLE:
raise ImportError("""Please pip install rarfile""" )
import rarfile
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowerCAmelCase : Optional[Any] = rarfile.RarFile(lowercase_ )
rf.extractall(lowercase_ )
rf.close()
class _a ( snake_case_ ):
_UpperCamelCase: Dict = [b"\x28\xb5\x2F\xFD"]
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("""Please pip install zstandard""" )
import zstandard as zstd
lowerCAmelCase : List[Any] = zstd.ZstdDecompressor()
with open(lowercase_ , """rb""" ) as ifh, open(lowercase_ , """wb""" ) as ofh:
dctx.copy_stream(lowercase_ , lowercase_ )
class _a ( snake_case_ ):
_UpperCamelCase: List[Any] = [b"\x42\x5A\x68"]
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
with bza.open(lowercase_ , """rb""" ) as compressed_file:
with open(lowercase_ , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase_ , lowercase_ )
class _a ( snake_case_ ):
_UpperCamelCase: Optional[int] = [b"\x37\x7A\xBC\xAF\x27\x1C"]
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
if not config.PY7ZR_AVAILABLE:
raise ImportError("""Please pip install py7zr""" )
import pyazr
os.makedirs(lowercase_ , exist_ok=lowercase_ )
with pyazr.SevenZipFile(lowercase_ , """r""" ) as archive:
archive.extractall(lowercase_ )
class _a ( snake_case_ ):
_UpperCamelCase: Optional[Any] = [b"\x04\x22\x4D\x18"]
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> None:
if not config.LZ4_AVAILABLE:
raise ImportError("""Please pip install lz4""" )
import lza.frame
with lza.frame.open(lowercase_ , """rb""" ) as compressed_file:
with open(lowercase_ , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase_ , lowercase_ )
class _a :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
_UpperCamelCase: Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def _snake_case ( cls ) -> List[Any]:
return max(
len(lowercase_ )
for extractor in cls.extractors.values()
if issubclass(lowercase_ , lowercase_ )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> Dict:
try:
return MagicNumberBaseExtractor.read_magic_number(lowercase_ , magic_number_length=lowercase_ )
except OSError:
return b""
@classmethod
def _snake_case ( cls , lowercase_ , lowercase_ = False ) -> bool:
warnings.warn(
"""Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'infer_extractor_format' instead.""" , category=lowercase_ , )
lowerCAmelCase : int = cls.infer_extractor_format(lowercase_ )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def _snake_case ( cls , lowercase_ ) -> str: # <Added version="2.4.0"/>
lowerCAmelCase : Optional[Any] = cls._get_magic_number_max_length()
lowerCAmelCase : Optional[int] = cls._read_magic_number(lowercase_ , lowercase_ )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowercase_ , magic_number=lowercase_ ):
return extractor_format
@classmethod
def _snake_case ( cls , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = "deprecated" , ) -> None:
os.makedirs(os.path.dirname(lowercase_ ) , exist_ok=lowercase_ )
# Prevent parallel extractions
lowerCAmelCase : Tuple = str(Path(lowercase_ ).with_suffix(""".lock""" ) )
with FileLock(lowercase_ ):
shutil.rmtree(lowercase_ , ignore_errors=lowercase_ )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowercase_ , lowercase_ ): # passed as positional arg
warnings.warn(
"""Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'extractor_format' instead.""" , category=lowercase_ , )
lowerCAmelCase : Optional[Any] = extractor if extractor != """deprecated""" else extractor_format
else:
lowerCAmelCase : Union[str, Any] = cls.extractors[extractor_format]
return extractor.extract(lowercase_ , lowercase_ )
else:
warnings.warn(
"""Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """
"""exception in 3.0.0.""" , category=lowercase_ , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowercase_ ):
return extractor.extract(lowercase_ , lowercase_ )
| 693 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
_UpperCamelCase: List[Any] = ["keras_nlp"]
def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple:
requires_backends(self , ["""keras_nlp"""] )
| 693 | 1 |
import argparse
import json
import subprocess
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = []
lowerCAmelCase : Optional[int] = (
F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\""""
""" https://api.github.com/repos/huggingface/transformers/actions/runners"""
)
lowerCAmelCase : int = subprocess.run(SCREAMING_SNAKE_CASE__ ,shell=SCREAMING_SNAKE_CASE__ ,stdout=subprocess.PIPE )
lowerCAmelCase : Optional[int] = output.stdout.decode("""utf-8""" )
lowerCAmelCase : Tuple = json.loads(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[Any] = status["""runners"""]
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(SCREAMING_SNAKE_CASE__ )
# save the result so we can report them on Slack
with open("""offline_runners.txt""" ,"""w""" ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
lowerCAmelCase : Union[str, Any] = """\n""".join([x["""name"""] for x in offline_runners] )
raise ValueError(F"""The following runners are offline:\n{failed}""" )
if __name__ == "__main__":
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return values.split(""",""" )
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--target_runners',
default=None,
type=list_str,
required=True,
help='Comma-separated list of runners to check status.',
)
parser.add_argument(
'--token', default=None, type=str, required=True, help='A token that has actions:read permission.'
)
lowerCAmelCase : Union[str, Any] =parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 693 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 693 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
lowerCAmelCase : Dict ={
'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json',
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "wavlm"
def __init__( self , lowercase_=32 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(512, 512, 512, 512, 512, 512, 512) , lowercase_=(5, 2, 2, 2, 2, 2, 2) , lowercase_=(10, 3, 3, 3, 3, 2, 2) , lowercase_=False , lowercase_=128 , lowercase_=16 , lowercase_=320 , lowercase_=800 , lowercase_=False , lowercase_=True , lowercase_=0.0_5 , lowercase_=10 , lowercase_=2 , lowercase_=0.0 , lowercase_=10 , lowercase_=320 , lowercase_=2 , lowercase_=0.1 , lowercase_=100 , lowercase_=256 , lowercase_=256 , lowercase_=0.1 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=256 , lowercase_=(512, 512, 512, 512, 1500) , lowercase_=(5, 3, 3, 1, 1) , lowercase_=(1, 2, 3, 1, 1) , lowercase_=512 , lowercase_=80 , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=False , lowercase_=3 , lowercase_=2 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> str:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowerCAmelCase : List[str] = hidden_size
lowerCAmelCase : Union[str, Any] = feat_extract_norm
lowerCAmelCase : Union[str, Any] = feat_extract_activation
lowerCAmelCase : Any = list(lowercase_ )
lowerCAmelCase : Optional[Any] = list(lowercase_ )
lowerCAmelCase : Dict = list(lowercase_ )
lowerCAmelCase : List[str] = conv_bias
lowerCAmelCase : Union[str, Any] = num_buckets
lowerCAmelCase : List[str] = max_bucket_distance
lowerCAmelCase : Union[str, Any] = num_conv_pos_embeddings
lowerCAmelCase : Any = num_conv_pos_embedding_groups
lowerCAmelCase : Union[str, Any] = len(self.conv_dim )
lowerCAmelCase : Tuple = num_hidden_layers
lowerCAmelCase : Tuple = intermediate_size
lowerCAmelCase : Tuple = hidden_act
lowerCAmelCase : Tuple = num_attention_heads
lowerCAmelCase : str = hidden_dropout
lowerCAmelCase : List[Any] = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : List[Any] = feat_proj_dropout
lowerCAmelCase : Any = final_dropout
lowerCAmelCase : Optional[Any] = layerdrop
lowerCAmelCase : Tuple = layer_norm_eps
lowerCAmelCase : int = initializer_range
lowerCAmelCase : Optional[Any] = num_ctc_classes
lowerCAmelCase : int = vocab_size
lowerCAmelCase : List[Any] = do_stable_layer_norm
lowerCAmelCase : int = use_weighted_layer_sum
lowerCAmelCase : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase : Any = apply_spec_augment
lowerCAmelCase : List[str] = mask_time_prob
lowerCAmelCase : List[str] = mask_time_length
lowerCAmelCase : int = mask_time_min_masks
lowerCAmelCase : str = mask_feature_prob
lowerCAmelCase : int = mask_feature_length
# parameters for pretraining with codevector quantized representations
lowerCAmelCase : Dict = num_codevectors_per_group
lowerCAmelCase : int = num_codevector_groups
lowerCAmelCase : int = contrastive_logits_temperature
lowerCAmelCase : Optional[Any] = num_negatives
lowerCAmelCase : Optional[Any] = codevector_dim
lowerCAmelCase : Dict = proj_codevector_dim
lowerCAmelCase : Optional[Any] = diversity_loss_weight
# ctc loss
lowerCAmelCase : Optional[Any] = ctc_loss_reduction
lowerCAmelCase : Optional[int] = ctc_zero_infinity
# adapter
lowerCAmelCase : Optional[Any] = add_adapter
lowerCAmelCase : str = adapter_kernel_size
lowerCAmelCase : Optional[Any] = adapter_stride
lowerCAmelCase : Optional[Any] = num_adapter_layers
lowerCAmelCase : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCAmelCase : Tuple = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCAmelCase : Any = list(lowercase_ )
lowerCAmelCase : Union[str, Any] = list(lowercase_ )
lowerCAmelCase : List[Any] = list(lowercase_ )
lowerCAmelCase : Tuple = xvector_output_dim
@property
def _snake_case ( self ) -> List[Any]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if p < 2:
raise ValueError("""p should not be less than 2!""" )
elif p == 2:
return True
lowerCAmelCase : List[Any] = 4
lowerCAmelCase : Tuple = (1 << p) - 1
for _ in range(p - 2 ):
lowerCAmelCase : Dict = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE__ )] )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if (len(SCREAMING_SNAKE_CASE__ ) % 2) != 0:
raise ValueError(
"""Base16 encoded data is invalid:
Data does not have an even number of hex digits.""" )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(SCREAMING_SNAKE_CASE__ ) <= set("""0123456789ABCDEF""" ):
raise ValueError(
"""Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.""" )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] ,1_6 ) for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ,2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 693 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline
_UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
_UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} )
_UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"}
def _snake_case ( self ) -> int:
return self._get_superresolution_dummy_components()
def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]:
if str(lowercase_ ).startswith("""mps""" ):
lowerCAmelCase : Any = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : Optional[int] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _snake_case ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def _snake_case ( self ) -> int:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def _snake_case ( self ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def _snake_case ( self ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def _snake_case ( self ) -> Any:
self._test_save_load_local()
def _snake_case ( self ) -> str:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = current_set.copy()
for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Union[str, Any] = row[0]
for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ):
if magnitude == 0:
lowerCAmelCase : Any = column
continue
lowerCAmelCase : Tuple = column / magnitude
# Subtract to cancel term
lowerCAmelCase : str = current_set[0]
lowerCAmelCase : Optional[Any] = [first_row]
lowerCAmelCase : Optional[Any] = current_set[1::]
for row in current_set:
lowerCAmelCase : Any = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(SCREAMING_SNAKE_CASE__ )
continue
for column_index in range(len(SCREAMING_SNAKE_CASE__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(SCREAMING_SNAKE_CASE__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
lowerCAmelCase : Any = final_set[0]
lowerCAmelCase : List[str] = []
lowerCAmelCase : List[str] = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
lowerCAmelCase : Any = simplify(SCREAMING_SNAKE_CASE__ )
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
resultant[i].insert(0 ,current_first_column[i] )
resultant.insert(0 ,SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : List[Any] = resultant
return final_set
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) + 1
if any(len(SCREAMING_SNAKE_CASE__ ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(SCREAMING_SNAKE_CASE__ ,(int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [equations[0][-1] / equations[0][0]]
lowerCAmelCase : Dict = equations.copy()
if any(0 in row for row in data_set ):
lowerCAmelCase : List[str] = data_set.copy()
lowerCAmelCase : Optional[int] = []
for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ):
if 0 not in row:
lowerCAmelCase : int = data_set.pop(SCREAMING_SNAKE_CASE__ )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 ,SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Dict = data_set.copy()
lowerCAmelCase : Dict = simplify(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : int = simplified[::-1]
lowerCAmelCase : list = []
for row in simplified:
lowerCAmelCase : Any = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
lowerCAmelCase : Any = row.copy()[: len(SCREAMING_SNAKE_CASE__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
solutions.append(0 )
continue
lowerCAmelCase : List[str] = temp_row[1::]
lowerCAmelCase : List[str] = temp_row[::-1]
for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ):
current_solution -= column * solutions[column_index]
solutions.append(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Dict = []
for item in solutions:
final.append(float(round(SCREAMING_SNAKE_CASE__ ,5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : Dict =[
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "llama"
_UpperCamelCase: List[str] = ["past_key_values"]
def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : str = max_position_embeddings
lowerCAmelCase : int = hidden_size
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : int = num_hidden_layers
lowerCAmelCase : Any = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
lowerCAmelCase : Any = num_attention_heads
lowerCAmelCase : Any = num_key_value_heads
lowerCAmelCase : Any = hidden_act
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : str = rms_norm_eps
lowerCAmelCase : int = pretraining_tp
lowerCAmelCase : int = use_cache
lowerCAmelCase : Optional[Any] = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , )
def _snake_case ( self ) -> Dict:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f"""got {self.rope_scaling}""" )
lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ )
lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 693 | 1 |
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
lowerCAmelCase : Any =logging.get_logger(__name__)
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = set()
lowerCAmelCase : Tuple = []
def parse_line(SCREAMING_SNAKE_CASE__ ):
for line in fp:
if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Union[str, Any] = line.decode("""UTF-8""" )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(""" """ ):
# process a single warning and move it to `selected_warnings`.
if len(SCREAMING_SNAKE_CASE__ ) > 0:
lowerCAmelCase : Optional[Any] = """\n""".join(SCREAMING_SNAKE_CASE__ )
# Only keep the warnings specified in `targets`
if any(F""": {x}: """ in warning for x in targets ):
selected_warnings.add(SCREAMING_SNAKE_CASE__ )
buffer.clear()
continue
else:
lowerCAmelCase : str = line.strip()
buffer.append(SCREAMING_SNAKE_CASE__ )
if from_gh:
for filename in os.listdir(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename != "warnings.txt":
continue
with open(SCREAMING_SNAKE_CASE__ ) as fp:
parse_line(SCREAMING_SNAKE_CASE__ )
else:
try:
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename != "warnings.txt":
continue
with z.open(SCREAMING_SNAKE_CASE__ ) as fp:
parse_line(SCREAMING_SNAKE_CASE__ )
except Exception:
logger.warning(
F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" )
return selected_warnings
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = set()
lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if (p.endswith(""".zip""" ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) )
return selected_warnings
if __name__ == "__main__":
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return values.split(""",""" )
lowerCAmelCase : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
# optional parameters
parser.add_argument(
'--targets',
default='DeprecationWarning,UserWarning,FutureWarning',
type=list_str,
help='Comma-separated list of target warning(s) which we want to extract.',
)
parser.add_argument(
'--from_gh',
action='store_true',
help='If running from a GitHub action workflow and collecting warnings from its artifacts.',
)
lowerCAmelCase : Optional[Any] =parser.parse_args()
lowerCAmelCase : List[str] =args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
lowerCAmelCase : List[str] =get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print('=' * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
lowerCAmelCase : Union[str, Any] =extract_warnings(args.output_dir, args.targets)
lowerCAmelCase : Optional[int] =sorted(selected_warnings)
with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 693 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
'microsoft/swin-tiny-patch4-window7-224': (
'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _a ( snake_case_ , snake_case_ ):
_UpperCamelCase: int = "swin"
_UpperCamelCase: str = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple:
super().__init__(**lowercase_ )
lowerCAmelCase : Optional[int] = image_size
lowerCAmelCase : Optional[Any] = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : List[Any] = embed_dim
lowerCAmelCase : str = depths
lowerCAmelCase : List[str] = len(lowercase_ )
lowerCAmelCase : Any = num_heads
lowerCAmelCase : str = window_size
lowerCAmelCase : List[str] = mlp_ratio
lowerCAmelCase : List[Any] = qkv_bias
lowerCAmelCase : List[str] = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = drop_path_rate
lowerCAmelCase : int = hidden_act
lowerCAmelCase : int = use_absolute_embeddings
lowerCAmelCase : Dict = layer_norm_eps
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
class _a ( snake_case_ ):
_UpperCamelCase: int = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-4
| 693 | 1 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class _a ( snake_case_ ):
_UpperCamelCase: torch.FloatTensor
_UpperCamelCase: torch.FloatTensor
class _a ( snake_case_ , snake_case_ ):
_UpperCamelCase: int = 1
@register_to_config
def __init__( self , lowercase_ = 2000 , lowercase_ = 0.1_5 , lowercase_ = 0.0_1 , lowercase_ = 1_3_4_8.0 , lowercase_ = 1e-5 , lowercase_ = 1 , ) -> List[str]:
# standard deviation of the initial noise distribution
lowerCAmelCase : Any = sigma_max
# setable values
lowerCAmelCase : Dict = None
self.set_sigmas(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = None ) -> torch.FloatTensor:
return sample
def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None ) -> Any:
lowerCAmelCase : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps
lowerCAmelCase : Union[str, Any] = torch.linspace(1 , lowercase_ , lowercase_ , device=lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None ) -> Dict:
lowerCAmelCase : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min
lowerCAmelCase : List[str] = sigma_max if sigma_max is not None else self.config.sigma_max
lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(lowercase_ , lowercase_ )
lowerCAmelCase : Optional[int] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
lowerCAmelCase : Optional[Any] = torch.exp(torch.linspace(math.log(lowercase_ ) , math.log(lowercase_ ) , lowercase_ ) )
lowerCAmelCase : Dict = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def _snake_case ( self , lowercase_ , lowercase_ ) -> Tuple:
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = True , ) -> Union[SdeVeOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
lowerCAmelCase : str = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
lowerCAmelCase : List[str] = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
lowerCAmelCase : str = timesteps.to(self.discrete_sigmas.device )
lowerCAmelCase : int = self.discrete_sigmas[timesteps].to(sample.device )
lowerCAmelCase : List[Any] = self.get_adjacent_sigma(lowercase_ , lowercase_ ).to(sample.device )
lowerCAmelCase : Union[str, Any] = torch.zeros_like(lowercase_ )
lowerCAmelCase : Optional[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
lowerCAmelCase : int = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
lowerCAmelCase : Union[str, Any] = diffusion.unsqueeze(-1 )
lowerCAmelCase : Dict = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
lowerCAmelCase : int = randn_tensor(
sample.shape , layout=sample.layout , generator=lowercase_ , device=sample.device , dtype=sample.dtype )
lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
lowerCAmelCase : Union[str, Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=lowercase_ , prev_sample_mean=lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = True , ) -> Union[SchedulerOutput, Tuple]:
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
lowerCAmelCase : List[str] = randn_tensor(sample.shape , layout=sample.layout , generator=lowercase_ ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
lowerCAmelCase : Optional[Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
lowerCAmelCase : Optional[int] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
lowerCAmelCase : List[str] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
lowerCAmelCase : Optional[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
lowerCAmelCase : List[str] = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
lowerCAmelCase : str = step_size.unsqueeze(-1 )
lowerCAmelCase : Any = sample + step_size * model_output
lowerCAmelCase : Dict = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
lowerCAmelCase : Tuple = timesteps.to(original_samples.device )
lowerCAmelCase : int = self.discrete_sigmas.to(original_samples.device )[timesteps]
lowerCAmelCase : Tuple = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(lowercase_ ) * sigmas[:, None, None, None]
)
lowerCAmelCase : Tuple = noise + original_samples
return noisy_samples
def __len__( self ) -> Optional[Any]:
return self.config.num_train_timesteps
| 693 |
lowerCAmelCase : str ={
'Pillow': 'Pillow<10.0.0',
'accelerate': 'accelerate>=0.20.3',
'av': 'av==9.2.0',
'beautifulsoup4': 'beautifulsoup4',
'black': 'black~=23.1',
'codecarbon': 'codecarbon==1.2.0',
'cookiecutter': 'cookiecutter==1.7.3',
'dataclasses': 'dataclasses',
'datasets': 'datasets!=2.5.0',
'decord': 'decord==0.6.0',
'deepspeed': 'deepspeed>=0.9.3',
'diffusers': 'diffusers',
'dill': 'dill<0.3.5',
'evaluate': 'evaluate>=0.2.0',
'fairscale': 'fairscale>0.3',
'faiss-cpu': 'faiss-cpu',
'fastapi': 'fastapi',
'filelock': 'filelock',
'flax': 'flax>=0.4.1,<=0.7.0',
'ftfy': 'ftfy',
'fugashi': 'fugashi>=1.0',
'GitPython': 'GitPython<3.1.19',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0',
'importlib_metadata': 'importlib_metadata',
'ipadic': 'ipadic>=1.0.0,<2.0',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13',
'jaxlib': 'jaxlib>=0.1.65,<=0.4.13',
'jieba': 'jieba',
'kenlm': 'kenlm',
'keras-nlp': 'keras-nlp>=0.3.1',
'librosa': 'librosa',
'nltk': 'nltk',
'natten': 'natten>=0.14.6',
'numpy': 'numpy>=1.17',
'onnxconverter-common': 'onnxconverter-common',
'onnxruntime-tools': 'onnxruntime-tools>=1.4.2',
'onnxruntime': 'onnxruntime>=1.4.0',
'opencv-python': 'opencv-python',
'optuna': 'optuna',
'optax': 'optax>=0.0.8,<=0.1.4',
'packaging': 'packaging>=20.0',
'parameterized': 'parameterized',
'phonemizer': 'phonemizer',
'protobuf': 'protobuf',
'psutil': 'psutil',
'pyyaml': 'pyyaml>=5.1',
'pydantic': 'pydantic<2',
'pytest': 'pytest>=7.2.0',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'python': 'python>=3.8.0',
'ray[tune]': 'ray[tune]',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'rhoknp': 'rhoknp>=1.1.0,<1.3.1',
'rjieba': 'rjieba',
'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1',
'ruff': 'ruff>=0.0.241,<=0.0.259',
'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0',
'sacremoses': 'sacremoses',
'safetensors': 'safetensors>=0.3.1',
'sagemaker': 'sagemaker>=2.31.0',
'scikit-learn': 'scikit-learn',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'sigopt': 'sigopt',
'starlette': 'starlette',
'sudachipy': 'sudachipy>=0.6.6',
'sudachidict_core': 'sudachidict_core>=20220729',
'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14',
'tensorflow': 'tensorflow>=2.6,<2.14',
'tensorflow-text': 'tensorflow-text<2.14',
'tf2onnx': 'tf2onnx',
'timeout-decorator': 'timeout-decorator',
'timm': 'timm',
'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14',
'torch': 'torch>=1.9,!=1.12.0',
'torchaudio': 'torchaudio',
'torchvision': 'torchvision',
'pyctcdecode': 'pyctcdecode>=0.4.0',
'tqdm': 'tqdm>=4.27',
'unidic': 'unidic>=1.0.2',
'unidic_lite': 'unidic_lite>=1.0.7',
'urllib3': 'urllib3<2.0.0',
'uvicorn': 'uvicorn',
}
| 693 | 1 |
def _UpperCAmelCase ( ):
'''simple docstring'''
for n in range(1 ,1_0_0_0_0_0_0 ):
yield n * (n + 1) // 2
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Tuple = 1
lowerCAmelCase : Any = 2
while i * i <= n:
lowerCAmelCase : Optional[Any] = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def _UpperCAmelCase ( ):
'''simple docstring'''
return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_0_0 )
if __name__ == "__main__":
print(solution())
| 693 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] ={
'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'],
'tokenization_roformer': ['RoFormerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =['RoFormerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] =[
'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoFormerForCausalLM',
'RoFormerForMaskedLM',
'RoFormerForMultipleChoice',
'RoFormerForQuestionAnswering',
'RoFormerForSequenceClassification',
'RoFormerForTokenClassification',
'RoFormerLayer',
'RoFormerModel',
'RoFormerPreTrainedModel',
'load_tf_weights_in_roformer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRoFormerForCausalLM',
'TFRoFormerForMaskedLM',
'TFRoFormerForMultipleChoice',
'TFRoFormerForQuestionAnswering',
'TFRoFormerForSequenceClassification',
'TFRoFormerForTokenClassification',
'TFRoFormerLayer',
'TFRoFormerModel',
'TFRoFormerPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int =[
'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'FlaxRoFormerForMaskedLM',
'FlaxRoFormerForMultipleChoice',
'FlaxRoFormerForQuestionAnswering',
'FlaxRoFormerForSequenceClassification',
'FlaxRoFormerForTokenClassification',
'FlaxRoFormerModel',
'FlaxRoFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
from numpy import exp, pi, sqrt
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ):
'''simple docstring'''
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return int(input_a == input_a == 0 )
def _UpperCAmelCase ( ):
'''simple docstring'''
print("""Truth Table of NOR Gate:""" )
print("""| Input 1 | Input 2 | Output |""" )
print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" )
print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" )
print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" )
print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 693 | 1 |
from __future__ import annotations
from collections.abc import MutableSequence
class _a :
def __init__( self , lowercase_ , lowercase_ ) -> None:
if len(lowercase_ ) != degree + 1:
raise ValueError(
"""The number of coefficients should be equal to the degree + 1.""" )
lowerCAmelCase : list[float] = list(lowercase_ )
lowerCAmelCase : Dict = degree
def __add__( self , lowercase_ ) -> Polynomial:
if self.degree > polynomial_a.degree:
lowerCAmelCase : Tuple = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , lowercase_ )
else:
lowerCAmelCase : int = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , lowercase_ )
def __sub__( self , lowercase_ ) -> Polynomial:
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self ) -> Polynomial:
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self , lowercase_ ) -> Polynomial:
lowerCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , lowercase_ )
def _snake_case ( self , lowercase_ ) -> int | float:
lowerCAmelCase : int | float = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self ) -> str:
lowerCAmelCase : int = """"""
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase_ )
return polynomial
def __repr__( self ) -> str:
return self.__str__()
def _snake_case ( self ) -> Polynomial:
lowerCAmelCase : list[float] = [0] * self.degree
for i in range(self.degree ):
lowerCAmelCase : Optional[Any] = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , lowercase_ )
def _snake_case ( self , lowercase_ = 0 ) -> Polynomial:
lowerCAmelCase : list[float] = [0] * (self.degree + 2)
lowerCAmelCase : List[Any] = constant
for i in range(self.degree + 1 ):
lowerCAmelCase : Tuple = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , lowercase_ )
def __eq__( self , lowercase_ ) -> bool:
if not isinstance(lowercase_ , lowercase_ ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self , lowercase_ ) -> bool:
return not self.__eq__(lowercase_ )
| 693 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase : int ={
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor']
lowerCAmelCase : List[str] =['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = [0] * len(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Tuple = []
lowerCAmelCase : Any = []
lowerCAmelCase : Dict = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if indegree[i] == 0:
queue.append(SCREAMING_SNAKE_CASE__ )
while queue:
lowerCAmelCase : Any = queue.pop(0 )
cnt += 1
topo.append(SCREAMING_SNAKE_CASE__ )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(SCREAMING_SNAKE_CASE__ )
if cnt != len(SCREAMING_SNAKE_CASE__ ):
print("""Cycle exists""" )
else:
print(SCREAMING_SNAKE_CASE__ )
# Adjacency List of Graph
lowerCAmelCase : Dict ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 693 |
import os
import string
import sys
lowerCAmelCase : Optional[int] =1 << 8
lowerCAmelCase : List[Any] ={
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
lowerCAmelCase : Optional[Any] =KEYMAP['up']
lowerCAmelCase : Tuple =KEYMAP['left']
if sys.platform == "win32":
lowerCAmelCase : Dict =[]
lowerCAmelCase : int ={
b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
lowerCAmelCase : Optional[Any] =ord(str(i))
def _UpperCAmelCase ( ):
'''simple docstring'''
if os.name == "nt":
import msvcrt
lowerCAmelCase : Any = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(SCREAMING_SNAKE_CASE__ ) == 0:
# Read the keystroke
lowerCAmelCase : int = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowerCAmelCase : Tuple = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowerCAmelCase : str = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ )
if ord(SCREAMING_SNAKE_CASE__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_2_6 ) )
lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] )
except KeyError:
lowerCAmelCase : Optional[int] = cha[1]
else:
lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowerCAmelCase : List[Any] = sys.stdin.fileno()
lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ )
try:
tty.setraw(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ )
return ch
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Any = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]:
lowerCAmelCase : int = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]:
lowerCAmelCase : Tuple = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 693 | 1 |
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _a ( unittest.TestCase ):
def _snake_case ( self ) -> Any:
lowerCAmelCase : Any = """laion/clap-htsat-unfused"""
lowerCAmelCase : Tuple = tempfile.mkdtemp()
def _snake_case ( self , **lowercase_ ) -> Union[str, Any]:
return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase_ )
def _snake_case ( self , **lowercase_ ) -> List[str]:
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase_ )
def _snake_case ( self ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : str = self.get_tokenizer()
lowerCAmelCase : Dict = self.get_feature_extractor()
lowerCAmelCase : List[str] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowercase_ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowerCAmelCase : Union[str, Any] = self.get_feature_extractor(do_normalize=lowercase_ , padding_value=1.0 )
lowerCAmelCase : str = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowercase_ )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Union[str, Any] = self.get_feature_extractor()
lowerCAmelCase : Any = self.get_tokenizer()
lowerCAmelCase : str = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ )
lowerCAmelCase : List[Any] = floats_list((3, 1000) )
lowerCAmelCase : List[Any] = feature_extractor(lowercase_ , return_tensors="""np""" )
lowerCAmelCase : List[Any] = processor(audios=lowercase_ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self ) -> List[str]:
lowerCAmelCase : int = self.get_feature_extractor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ )
lowerCAmelCase : Union[str, Any] = """This is a test string"""
lowerCAmelCase : Optional[int] = processor(text=lowercase_ )
lowerCAmelCase : Dict = tokenizer(lowercase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Tuple = self.get_feature_extractor()
lowerCAmelCase : int = self.get_tokenizer()
lowerCAmelCase : Tuple = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ )
lowerCAmelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase : Any = processor.batch_decode(lowercase_ )
lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : int = self.get_feature_extractor()
lowerCAmelCase : str = self.get_tokenizer()
lowerCAmelCase : int = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
| 693 |
# Imports
import numpy as np
class _a :
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]:
if red is not None:
lowerCAmelCase : str = red
if green is not None:
lowerCAmelCase : Optional[int] = green
if blue is not None:
lowerCAmelCase : Optional[int] = blue
if red_edge is not None:
lowerCAmelCase : Tuple = red_edge
if nir is not None:
lowerCAmelCase : Union[str, Any] = nir
return True
def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
lowerCAmelCase : int = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def _snake_case ( self ) -> Dict:
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case ( self ) -> Optional[Any]:
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case ( self ) -> List[str]:
return self.nir * (self.red / (self.green**2))
def _snake_case ( self ) -> Tuple:
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case ( self ) -> Optional[int]:
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case ( self ) -> List[str]:
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case ( self ) -> int:
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case ( self ) -> Optional[Any]:
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case ( self ) -> int:
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case ( self ) -> List[str]:
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int:
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case ( self ) -> Optional[Any]:
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case ( self ) -> Any:
return (self.nir / self.green) - 1
def _snake_case ( self ) -> List[Any]:
return (self.nir / self.redEdge) - 1
def _snake_case ( self ) -> str:
return (self.red - self.blue) / self.red
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case ( self ) -> Optional[Any]:
return self.nir - self.green
def _snake_case ( self ) -> int:
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]:
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case ( self , lowercase_=0.5 ) -> List[str]:
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case ( self ) -> Any:
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]:
return (self.nir - b) / (a * self.red)
def _snake_case ( self ) -> Any:
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case ( self ) -> str:
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case ( self ) -> Union[str, Any]:
return self.nir / self.red
def _snake_case ( self ) -> Tuple:
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case ( self ) -> Dict:
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case ( self ) -> List[Any]:
return self.green / (self.nir + self.red + self.green)
def _snake_case ( self ) -> int:
return self.nir / (self.nir + self.red + self.green)
def _snake_case ( self ) -> Dict:
return self.red / (self.nir + self.red + self.green)
def _snake_case ( self ) -> List[Any]:
return (self.green - self.red) / (self.green + self.red)
def _snake_case ( self ) -> Optional[int]:
return (self.red - self.green) / (self.red + self.green)
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case ( self ) -> int:
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case ( self ) -> List[str]:
return self.nir / self.red
def _snake_case ( self ) -> int:
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case ( self ) -> str:
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
raise ValueError("""multiplicative_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""multiplicative_persistence() does not accept negative values""" )
lowerCAmelCase : Tuple = 0
lowerCAmelCase : Dict = str(SCREAMING_SNAKE_CASE__ )
while len(SCREAMING_SNAKE_CASE__ ) != 1:
lowerCAmelCase : Any = [int(SCREAMING_SNAKE_CASE__ ) for i in num_string]
lowerCAmelCase : Optional[int] = 1
for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ):
total *= numbers[i]
lowerCAmelCase : int = str(SCREAMING_SNAKE_CASE__ )
steps += 1
return steps
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
raise ValueError("""additive_persistence() only accepts integral values""" )
if num < 0:
raise ValueError("""additive_persistence() does not accept negative values""" )
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ )
while len(SCREAMING_SNAKE_CASE__ ) != 1:
lowerCAmelCase : List[Any] = [int(SCREAMING_SNAKE_CASE__ ) for i in num_string]
lowerCAmelCase : str = 0
for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ):
total += numbers[i]
lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ )
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 693 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[str] = None
if token is not None:
lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = None
if token is not None:
lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = None
if token is not None:
lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = result.headers["""Location"""]
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" )
with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp:
fp.write(response.content )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : Optional[int] = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE__ ) as f:
for line in f:
lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCAmelCase : str = line[: line.index(""": """ )]
lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :]
failed_tests.append(SCREAMING_SNAKE_CASE__ )
elif filename == "job_name.txt":
lowerCAmelCase : Union[str, Any] = line
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """
F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
lowerCAmelCase : Optional[int] = None
if job_name and job_links:
lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
# A list with elements of the form (line of error, error, failed test)
lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )]
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : str = []
lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) )
return errors
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = Counter()
counter.update([x[1] for x in logs] )
lowerCAmelCase : List[str] = counter.most_common()
lowerCAmelCase : Union[str, Any] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
lowerCAmelCase : str = test.split("""/""" )[2]
else:
lowerCAmelCase : List[Any] = None
return test
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCAmelCase : int = [x for x in logs if x[2] is not None]
lowerCAmelCase : Optional[Any] = {x[2] for x in logs}
lowerCAmelCase : Dict = {}
for test in tests:
lowerCAmelCase : Optional[int] = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCAmelCase : Tuple = counter.most_common()
lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCAmelCase : List[Any] = sum(error_counts.values() )
if n_errors > 0:
lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = """| no. | error | status |"""
lowerCAmelCase : List[Any] = """|-:|:-|:-|"""
lowerCAmelCase : Union[str, Any] = [header, sep]
for error in reduced_by_error:
lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""]
lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = """| model | no. of errors | major error | count |"""
lowerCAmelCase : Any = """|-:|-:|-:|-:|"""
lowerCAmelCase : str = [header, sep]
for model in reduced_by_model:
lowerCAmelCase : Any = reduced_by_model[model]["""count"""]
lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0]
lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase : int =argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
lowerCAmelCase : Dict =parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token)
lowerCAmelCase : List[Any] ={}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
lowerCAmelCase : str =k.find(' / ')
lowerCAmelCase : Any =k[index + len(' / ') :]
lowerCAmelCase : str =v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
lowerCAmelCase : str =Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
lowerCAmelCase : int =counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Optional[int] =reduce_by_error(errors)
lowerCAmelCase : Tuple =reduce_by_model(errors)
lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error)
lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 693 | 1 |
from __future__ import annotations
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : list[list[int]] = []
create_all_state(1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,[] ,SCREAMING_SNAKE_CASE__ )
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,):
'''simple docstring'''
if level == 0:
total_list.append(current_list[:] )
return
for i in range(SCREAMING_SNAKE_CASE__ ,total_number - level + 2 ):
current_list.append(SCREAMING_SNAKE_CASE__ )
create_all_state(i + 1 ,SCREAMING_SNAKE_CASE__ ,level - 1 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
current_list.pop()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
for i in total_list:
print(*SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] =4
lowerCAmelCase : Tuple =2
lowerCAmelCase : List[str] =generate_all_combinations(n, k)
print_all_state(total_list)
| 693 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Optional[int] ={
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =[
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
import os
def _UpperCAmelCase ( ):
'''simple docstring'''
with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + """/grid.txt""" ) as f:
lowerCAmelCase : int = [] # noqa: E741
for _ in range(2_0 ):
l.append([int(SCREAMING_SNAKE_CASE__ ) for x in f.readline().split()] )
lowerCAmelCase : Any = 0
# right
for i in range(2_0 ):
for j in range(1_7 ):
lowerCAmelCase : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
lowerCAmelCase : Any = temp
# down
for i in range(1_7 ):
for j in range(2_0 ):
lowerCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
lowerCAmelCase : Any = temp
# diagonal 1
for i in range(1_7 ):
for j in range(1_7 ):
lowerCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
lowerCAmelCase : Union[str, Any] = temp
# diagonal 2
for i in range(1_7 ):
for j in range(3 ,2_0 ):
lowerCAmelCase : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
lowerCAmelCase : Tuple = temp
return maximum
if __name__ == "__main__":
print(solution())
| 693 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] ={
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "detr"
_UpperCamelCase: Dict = ["past_key_values"]
_UpperCamelCase: Optional[int] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" )
lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ )
# set timm attributes to None
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None
lowerCAmelCase : Any = use_timm_backbone
lowerCAmelCase : int = backbone_config
lowerCAmelCase : Optional[int] = num_channels
lowerCAmelCase : Optional[Any] = num_queries
lowerCAmelCase : List[str] = d_model
lowerCAmelCase : Optional[int] = encoder_ffn_dim
lowerCAmelCase : Dict = encoder_layers
lowerCAmelCase : str = encoder_attention_heads
lowerCAmelCase : List[Any] = decoder_ffn_dim
lowerCAmelCase : List[Any] = decoder_layers
lowerCAmelCase : Union[str, Any] = decoder_attention_heads
lowerCAmelCase : str = dropout
lowerCAmelCase : Dict = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : str = activation_function
lowerCAmelCase : Optional[int] = init_std
lowerCAmelCase : Any = init_xavier_std
lowerCAmelCase : Dict = encoder_layerdrop
lowerCAmelCase : int = decoder_layerdrop
lowerCAmelCase : Tuple = encoder_layers
lowerCAmelCase : Optional[int] = auxiliary_loss
lowerCAmelCase : List[str] = position_embedding_type
lowerCAmelCase : Any = backbone
lowerCAmelCase : Union[str, Any] = use_pretrained_backbone
lowerCAmelCase : List[Any] = dilation
# Hungarian matcher
lowerCAmelCase : Tuple = class_cost
lowerCAmelCase : Union[str, Any] = bbox_cost
lowerCAmelCase : Optional[Any] = giou_cost
# Loss coefficients
lowerCAmelCase : List[Any] = mask_loss_coefficient
lowerCAmelCase : Optional[int] = dice_loss_coefficient
lowerCAmelCase : Tuple = bbox_loss_coefficient
lowerCAmelCase : Dict = giou_loss_coefficient
lowerCAmelCase : str = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> int:
return self.encoder_attention_heads
@property
def _snake_case ( self ) -> int:
return self.d_model
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any:
return cls(backbone_config=lowercase_ , **lowercase_ )
def _snake_case ( self ) -> Dict[str, any]:
lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase : List[str] = self.backbone_config.to_dict()
lowerCAmelCase : List[Any] = self.__class__.model_type
return output
class _a ( snake_case_ ):
_UpperCamelCase: Any = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-5
@property
def _snake_case ( self ) -> int:
return 12
| 693 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase : Any ={
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] =['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase : int =logging.getLogger()
lowerCAmelCase : str =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( snake_case_ ):
def _snake_case ( self , lowercase_ ) -> List[Any]:
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""}
lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] )
with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f:
f.write(lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str:
lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir()
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" )
lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" )
self._create_dummy_data(data_dir=lowercase_ )
lowerCAmelCase : str = f"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(f"""--gpus={gpus}""" )
if is_apex_available():
testargs.append("""--fp16""" )
else:
testargs.append("""--gpus=0""" )
testargs.append("""--distributed_backend=ddp_cpu""" )
testargs.append("""--num_processes=2""" )
lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(lowercase_ , env=self.get_env() )
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" )
with open(lowercase_ ) as f:
lowerCAmelCase : List[str] = json.load(lowercase_ )
return result
@require_torch_gpu
def _snake_case ( self ) -> Any:
lowerCAmelCase : Tuple = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_gpu
@require_ray
def _snake_case ( self ) -> int:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
@require_ray
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
| 693 | 1 |
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase : int =logging.get_logger(__name__)
class _a ( snake_case_ ):
_UpperCamelCase: Union[str, Any] = ["audio_values", "audio_mask"]
def __init__( self , lowercase_=2048 , lowercase_=1 , lowercase_=[16, 16] , lowercase_=128 , lowercase_=44100 , lowercase_=86 , lowercase_=2048 , lowercase_=0.0 , **lowercase_ , ) -> Any:
super().__init__(
feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ , )
lowerCAmelCase : int = spectrogram_length
lowerCAmelCase : Any = num_channels
lowerCAmelCase : Tuple = patch_size
lowerCAmelCase : Optional[int] = feature_size // self.patch_size[1]
lowerCAmelCase : List[Any] = n_fft
lowerCAmelCase : List[str] = sampling_rate // hop_length_to_sampling_rate
lowerCAmelCase : str = sampling_rate
lowerCAmelCase : Any = padding_value
lowerCAmelCase : Optional[int] = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase_ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=lowercase_ , norm="""slaney""" , mel_scale="""slaney""" , ).T
def _snake_case ( self , lowercase_ ) -> np.ndarray:
lowerCAmelCase : Dict = spectrogram(
lowercase_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , )
lowerCAmelCase : Union[str, Any] = log_spec[:, :-1]
lowerCAmelCase : Any = log_spec - 2_0.0
lowerCAmelCase : Union[str, Any] = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = False , **lowercase_ , ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"""This feature extractor is set to support sampling rate"""
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
lowerCAmelCase : Dict = isinstance(lowercase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
lowerCAmelCase : int = is_batched_numpy or (
isinstance(lowercase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(lowercase_ , np.ndarray ):
lowerCAmelCase : Union[str, Any] = np.asarray(lowercase_ , dtype=np.floataa )
elif isinstance(lowercase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase : int = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase : str = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowerCAmelCase : Optional[int] = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , lowercase_ ):
lowerCAmelCase : Tuple = [np.asarray(lowercase_ , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowerCAmelCase : int = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowerCAmelCase : Any = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowerCAmelCase : Dict = np.array(lowercase_ ).astype(np.floataa )
# convert into correct format for padding
lowerCAmelCase : Union[str, Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowerCAmelCase : Tuple = np.ones([len(lowercase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowerCAmelCase : Optional[int] = padded_audio_features * self.padding_value
for i in range(len(lowercase_ ) ):
lowerCAmelCase : List[Any] = audio_features[i]
lowerCAmelCase : List[Any] = feature
# return as BatchFeature
if return_attention_mask:
lowerCAmelCase : Optional[int] = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask}
else:
lowerCAmelCase : Dict = {"""audio_values""": padded_audio_features}
lowerCAmelCase : Union[str, Any] = BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
return encoded_inputs
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Optional[int] ={
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "transfo-xl"
_UpperCamelCase: str = ["mems"]
_UpperCamelCase: Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : Union[str, Any] = []
self.cutoffs.extend(lowercase_ )
if proj_share_all_but_first:
lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs )
else:
lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs )
lowerCAmelCase : Optional[int] = d_model
lowerCAmelCase : List[Any] = d_embed
lowerCAmelCase : Union[str, Any] = d_head
lowerCAmelCase : List[Any] = d_inner
lowerCAmelCase : Optional[int] = div_val
lowerCAmelCase : List[Any] = pre_lnorm
lowerCAmelCase : Dict = n_layer
lowerCAmelCase : Tuple = n_head
lowerCAmelCase : Any = mem_len
lowerCAmelCase : Union[str, Any] = same_length
lowerCAmelCase : List[Any] = attn_type
lowerCAmelCase : int = clamp_len
lowerCAmelCase : List[str] = sample_softmax
lowerCAmelCase : Optional[int] = adaptive
lowerCAmelCase : Dict = dropout
lowerCAmelCase : Optional[Any] = dropatt
lowerCAmelCase : List[str] = untie_r
lowerCAmelCase : List[str] = init
lowerCAmelCase : Tuple = init_range
lowerCAmelCase : str = proj_init_std
lowerCAmelCase : str = init_std
lowerCAmelCase : Optional[int] = layer_norm_epsilon
super().__init__(eos_token_id=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> Optional[Any]:
# Message copied from Transformer-XL documentation
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def _snake_case ( self , lowercase_ ) -> Dict:
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 693 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case_ )
class _a ( snake_case_ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
_UpperCamelCase: str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} )
_UpperCamelCase: ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} )
_UpperCamelCase: ClassVar[Features] = Features(
{
"answers": Sequence(
{
"text": Value("string" ),
"answer_start": Value("int32" ),
} )
} )
_UpperCamelCase: str = "question"
_UpperCamelCase: str = "context"
_UpperCamelCase: str = "answers"
@property
def _snake_case ( self ) -> Dict[str, str]:
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 693 |
import torch
from diffusers import DiffusionPipeline
class _a ( snake_case_ ):
def __init__( self , lowercase_ , lowercase_ ) -> int:
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def __call__( self ) -> List[Any]:
lowerCAmelCase : Union[str, Any] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowerCAmelCase : Union[str, Any] = 1
lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample
lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ )
return result
| 693 | 1 |
from __future__ import annotations
lowerCAmelCase : Union[str, Any] =[-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
lowerCAmelCase : Tuple =[-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = []
lowerCAmelCase : int = len(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : float = -1
for j in range(i + 1 ,SCREAMING_SNAKE_CASE__ ):
if arr[i] < arr[j]:
lowerCAmelCase : List[str] = arr[j]
break
result.append(SCREAMING_SNAKE_CASE__ )
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : int = []
for i, outer in enumerate(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : float = -1
for inner in arr[i + 1 :]:
if outer < inner:
lowerCAmelCase : List[Any] = inner
break
result.append(SCREAMING_SNAKE_CASE__ )
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : list[float] = []
lowerCAmelCase : list[float] = [-1] * arr_size
for index in reversed(range(SCREAMING_SNAKE_CASE__ ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
lowerCAmelCase : int = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCAmelCase : Dict =(
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
)
| 693 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
requests.request("""GET""" ,"""https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 )
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" ,"""https://huggingface.co""" )
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
http_head("""https://huggingface.co""" )
| 693 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[Any] = tempfile.mkdtemp()
lowerCAmelCase : Optional[Any] = BlipImageProcessor()
lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
lowerCAmelCase : List[str] = BlipaProcessor(lowercase_ , lowercase_ )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self , **lowercase_ ) -> List[Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer
def _snake_case ( self , **lowercase_ ) -> int:
return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor
def _snake_case ( self ) -> Dict:
shutil.rmtree(self.tmpdirname )
def _snake_case ( self ) -> str:
lowerCAmelCase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase : List[str] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 )
lowerCAmelCase : Optional[int] = BlipaProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowercase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
def _snake_case ( self ) -> Dict:
lowerCAmelCase : Union[str, Any] = self.get_image_processor()
lowerCAmelCase : int = self.get_tokenizer()
lowerCAmelCase : Any = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowerCAmelCase : Optional[int] = self.prepare_image_inputs()
lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""np""" )
lowerCAmelCase : Tuple = processor(images=lowercase_ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = self.get_image_processor()
lowerCAmelCase : Optional[Any] = self.get_tokenizer()
lowerCAmelCase : int = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowerCAmelCase : Optional[int] = """lower newer"""
lowerCAmelCase : Tuple = processor(text=lowercase_ )
lowerCAmelCase : Dict = tokenizer(lowercase_ , return_token_type_ids=lowercase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self ) -> Dict:
lowerCAmelCase : Union[str, Any] = self.get_image_processor()
lowerCAmelCase : List[Any] = self.get_tokenizer()
lowerCAmelCase : Tuple = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowerCAmelCase : Any = """lower newer"""
lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs()
lowerCAmelCase : List[Any] = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(lowercase_ ):
processor()
def _snake_case ( self ) -> str:
lowerCAmelCase : Optional[int] = self.get_image_processor()
lowerCAmelCase : Optional[Any] = self.get_tokenizer()
lowerCAmelCase : Optional[int] = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowerCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase : Union[str, Any] = processor.batch_decode(lowercase_ )
lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def _snake_case ( self ) -> Any:
lowerCAmelCase : str = self.get_image_processor()
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : List[Any] = BlipaProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowerCAmelCase : Optional[Any] = """lower newer"""
lowerCAmelCase : Optional[int] = self.prepare_image_inputs()
lowerCAmelCase : Tuple = processor(text=lowercase_ , images=lowercase_ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 693 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class _a ( unittest.TestCase ):
def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
lowerCAmelCase : Optional[int] = parent
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : Dict = num_channels
lowerCAmelCase : str = min_resolution
lowerCAmelCase : Optional[Any] = max_resolution
lowerCAmelCase : Optional[int] = do_resize
lowerCAmelCase : List[str] = size
lowerCAmelCase : Dict = do_rescale
lowerCAmelCase : Union[str, Any] = rescale_factor
lowerCAmelCase : int = do_normalize
lowerCAmelCase : Union[str, Any] = image_mean
lowerCAmelCase : Dict = image_std
lowerCAmelCase : Optional[int] = do_pad
def _snake_case ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]:
if not batched:
lowerCAmelCase : Tuple = image_inputs[0]
if isinstance(lowercase_ , Image.Image ):
lowerCAmelCase , lowerCAmelCase : Dict = image.size
else:
lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w )
lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""]
elif w > h:
lowerCAmelCase : List[Any] = self.size["""shortest_edge"""]
lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h )
else:
lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""]
lowerCAmelCase : List[str] = self.size["""shortest_edge"""]
else:
lowerCAmelCase : Optional[int] = []
for image in image_inputs:
lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0]
lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : List[str] = DetrImageProcessingTester(self )
@property
def _snake_case ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowercase_ , """image_std""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) )
self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_pad""" ) )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , lowercase_ )
lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , lowercase_ )
def _snake_case ( self ) -> List[Any]:
pass
def _snake_case ( self ) -> List[Any]:
# Initialize image_processing
lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image )
# Test not batched input
lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[int]:
# Initialize image_processing
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> List[str]:
# Initialize image_processing
lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _snake_case ( self ) -> int:
# prepare image and target
lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : str = json.loads(f.read() )
lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target}
# encode them
lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" )
lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : List[Any] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify orig_size
lowerCAmelCase : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
@slow
def _snake_case ( self ) -> int:
# prepare image, target and masks_path
lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : Any = json.loads(f.read() )
lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" )
lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : Tuple = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify masks
lowerCAmelCase : Union[str, Any] = 822873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ )
# verify orig_size
lowerCAmelCase : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : List[str] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
| 693 | 1 |
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _a ( snake_case_ ):
def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_ ) -> List[str]:
super().__init__(*lowercase_ , **lowercase_ )
lowerCAmelCase : Dict = eval_examples
lowerCAmelCase : Dict = post_process_function
def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = "eval" ) -> Optional[int]:
lowerCAmelCase : int = self.eval_dataset if eval_dataset is None else eval_dataset
lowerCAmelCase : Union[str, Any] = self.get_eval_dataloader(lowercase_ )
lowerCAmelCase : str = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase : Dict = self.compute_metrics
lowerCAmelCase : Union[str, Any] = None
lowerCAmelCase : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
lowerCAmelCase : str = time.time()
try:
lowerCAmelCase : List[Any] = eval_loop(
lowercase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
lowerCAmelCase : Dict = compute_metrics
lowerCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size
if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
lowerCAmelCase : Optional[Any] = self.post_process_function(lowercase_ , lowercase_ , output.predictions )
lowerCAmelCase : Dict = self.compute_metrics(lowercase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
lowerCAmelCase : Dict = metrics.pop(lowercase_ )
metrics.update(output.metrics )
else:
lowerCAmelCase : str = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase_ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowerCAmelCase : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ )
return metrics
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" ) -> Optional[int]:
lowerCAmelCase : Any = self.get_test_dataloader(lowercase_ )
# Temporarily disable metric computation, we will do it in the loop here.
lowerCAmelCase : int = self.compute_metrics
lowerCAmelCase : str = None
lowerCAmelCase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
lowerCAmelCase : Dict = time.time()
try:
lowerCAmelCase : Optional[Any] = eval_loop(
lowercase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
lowerCAmelCase : List[Any] = compute_metrics
lowerCAmelCase : List[str] = self.args.eval_batch_size * self.args.world_size
if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
lowerCAmelCase : List[str] = self.post_process_function(lowercase_ , lowercase_ , output.predictions , """predict""" )
lowerCAmelCase : int = self.compute_metrics(lowercase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
lowerCAmelCase : Optional[Any] = metrics.pop(lowercase_ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Tuple = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = 0
while b > 0:
if b & 1:
lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 693 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
lowerCAmelCase : Tuple =logging.get_logger(__name__)
lowerCAmelCase : Tuple ={
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
lowerCAmelCase : int =[
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = {}
with open(SCREAMING_SNAKE_CASE__ ,"""r""" ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Optional[Any] = line.strip()
if line:
lowerCAmelCase : Dict = line.split()
lowerCAmelCase : Dict = line_number
lowerCAmelCase : List[str] = words[0]
lowerCAmelCase : List[Any] = value
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
for attribute in key.split(""".""" ):
lowerCAmelCase : List[str] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : List[Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]]
lowerCAmelCase : List[str] = """param"""
if weight_type is not None and weight_type != "param":
lowerCAmelCase : Any = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
lowerCAmelCase : Tuple = hf_pointer
for attribute in hf_param_name.split(""".""" ):
lowerCAmelCase : int = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Any = shape_pointer.shape
# let's reduce dimension
lowerCAmelCase : int = value[0]
else:
lowerCAmelCase : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
lowerCAmelCase : List[str] = value
elif weight_type == "weight_g":
lowerCAmelCase : List[Any] = value
elif weight_type == "weight_v":
lowerCAmelCase : str = value
elif weight_type == "bias":
lowerCAmelCase : List[str] = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
lowerCAmelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : str = value
else:
lowerCAmelCase : Optional[int] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : int = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]]
lowerCAmelCase : str = """param"""
if weight_type is not None and weight_type != "param":
lowerCAmelCase : int = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
lowerCAmelCase : Optional[Any] = """.""".join([key, hf_param_name] )
else:
lowerCAmelCase : List[str] = key
lowerCAmelCase : Dict = value if """lm_head""" in full_key else value[0]
lowerCAmelCase : List[str] ={
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : Dict = False
for key, mapped_key in MAPPING.items():
lowerCAmelCase : Optional[Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
lowerCAmelCase : Dict = True
if "*" in mapped_key:
lowerCAmelCase : Union[str, Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
lowerCAmelCase : str = mapped_key.replace("""*""" ,SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
lowerCAmelCase : List[str] = """weight_g"""
elif "weight_v" in name:
lowerCAmelCase : Union[str, Any] = """weight_v"""
elif "bias" in name:
lowerCAmelCase : Optional[int] = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCAmelCase : List[Any] = """weight"""
else:
lowerCAmelCase : Tuple = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Any = []
lowerCAmelCase : List[str] = fairseq_model.state_dict()
lowerCAmelCase : int = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
lowerCAmelCase : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,hf_model.config.feat_extract_norm == """group""" ,)
lowerCAmelCase : List[Any] = True
else:
lowerCAmelCase : str = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = full_name.split("""conv_layers.""" )[-1]
lowerCAmelCase : List[Any] = name.split(""".""" )
lowerCAmelCase : Any = int(items[0] )
lowerCAmelCase : Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
lowerCAmelCase : List[str] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
lowerCAmelCase : Any = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
lowerCAmelCase : str = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
lowerCAmelCase : Union[str, Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=False ):
'''simple docstring'''
if config_path is not None:
lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Any = WavaVecaConfig()
if is_seq_class:
lowerCAmelCase : str = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : str = idalabel
lowerCAmelCase : List[Any] = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Any = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,)
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
lowerCAmelCase : int = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCAmelCase : Dict = target_dict.pad_index
lowerCAmelCase : Optional[int] = target_dict.bos_index
lowerCAmelCase : Optional[int] = target_dict.eos_index
lowerCAmelCase : Optional[Any] = len(target_dict.symbols )
lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE__ ,"""vocab.json""" )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[int] = target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCAmelCase : Dict = 0
lowerCAmelCase : Any = 1
with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=SCREAMING_SNAKE_CASE__ ,)
lowerCAmelCase : Tuple = True if config.feat_extract_norm == """layer""" else False
lowerCAmelCase : Any = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,)
lowerCAmelCase : Dict = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[Any] = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Optional[int] = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
lowerCAmelCase : Optional[Any] = argparse.Namespace(task="""audio_pretraining""" )
lowerCAmelCase : Dict = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : str = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase : int =argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
lowerCAmelCase : List[Any] =parser.parse_args()
lowerCAmelCase : List[str] =not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 693 |
from math import factorial
class _a :
def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]:
lowerCAmelCase : Union[str, Any] = real
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Tuple = [1] * rank
else:
lowerCAmelCase : Any = rank
def __repr__( self ) -> int:
return (
f"""{self.real}+"""
f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}"""
)
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[Any] = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , lowercase_ )
def __add__( self , lowercase_ ) -> Tuple:
if not isinstance(lowercase_ , lowercase_ ):
return Dual(self.real + other , self.duals )
lowerCAmelCase : int = self.duals.copy()
lowerCAmelCase : Tuple = other.duals.copy()
if len(lowercase_ ) > len(lowercase_ ):
o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
elif len(lowercase_ ) < len(lowercase_ ):
s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
lowerCAmelCase : List[Any] = []
for i in range(len(lowercase_ ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , lowercase_ )
_UpperCamelCase: List[Any] = __add__
def __sub__( self , lowercase_ ) -> Union[str, Any]:
return self + other * -1
def __mul__( self , lowercase_ ) -> Optional[int]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Union[str, Any] = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , lowercase_ )
lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , lowercase_ )
_UpperCamelCase: str = __mul__
def __truediv__( self , lowercase_ ) -> Optional[Any]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[str] = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , lowercase_ )
raise ValueError
def __floordiv__( self , lowercase_ ) -> int:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , lowercase_ )
raise ValueError
def __pow__( self , lowercase_ ) -> str:
if n < 0 or isinstance(lowercase_ , lowercase_ ):
raise ValueError("""power must be a positive integer""" )
if n == 0:
return 1
if n == 1:
return self
lowerCAmelCase : int = self
for _ in range(n - 1 ):
x *= self
return x
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if not callable(SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires a function as input for func""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ):
raise ValueError("""differentiate() requires a float as input for position""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires an int as input for order""" )
lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 )
lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return y**2 * y**4
print(differentiate(f, 9, 2))
| 693 | 1 |
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return "".join(sorted(SCREAMING_SNAKE_CASE__ ) )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return word_by_signature[signature(SCREAMING_SNAKE_CASE__ )]
lowerCAmelCase : str =Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8')
lowerCAmelCase : Union[str, Any] =sorted({word.strip().lower() for word in data.splitlines()})
lowerCAmelCase : int =collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
lowerCAmelCase : Any ={word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('anagrams.txt', 'w') as file:
file.write('all_anagrams = \n ')
file.write(pprint.pformat(all_anagrams))
| 693 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
_UpperCamelCase: List[Any] = ["keras_nlp"]
def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple:
requires_backends(self , ["""keras_nlp"""] )
| 693 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _a ( snake_case_ ):
_UpperCamelCase: UNetaDModel
_UpperCamelCase: KarrasVeScheduler
def __init__( self , lowercase_ , lowercase_ ) -> int:
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
@torch.no_grad()
def __call__( self , lowercase_ = 1 , lowercase_ = 50 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , **lowercase_ , ) -> Union[Tuple, ImagePipelineOutput]:
lowerCAmelCase : int = self.unet.config.sample_size
lowerCAmelCase : str = (batch_size, 3, img_size, img_size)
lowerCAmelCase : int = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
lowerCAmelCase : List[Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
lowerCAmelCase : str = self.scheduler.schedule[t]
lowerCAmelCase : str = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
lowerCAmelCase , lowerCAmelCase : List[Any] = self.scheduler.add_noise_to_input(lowercase_ , lowercase_ , generator=lowercase_ )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
lowerCAmelCase : Union[str, Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
lowerCAmelCase : Optional[Any] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
lowerCAmelCase : Optional[int] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
lowerCAmelCase : List[Any] = self.scheduler.step_correct(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , step_output.prev_sample , step_output["""derivative"""] , )
lowerCAmelCase : str = step_output.prev_sample
lowerCAmelCase : List[Any] = (sample / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Dict = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 693 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 693 | 1 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
lowerCAmelCase : List[Any] ={'LayoutLMv2Config', 'LayoutLMv3Config'}
@is_pipeline_test
class _a ( unittest.TestCase ):
_UpperCamelCase: Any = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_UpperCamelCase: List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_UpperCamelCase: List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_UpperCamelCase: Tuple = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
lowerCAmelCase : Dict = ZeroShotClassificationPipeline(
model=lowercase_ , tokenizer=lowercase_ , candidate_labels=["""polics""", """health"""] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def _snake_case ( self , lowercase_ , lowercase_ ) -> List[str]:
lowerCAmelCase : Union[str, Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" )
self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} )
# No kwarg
lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , ["""politics"""] )
self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} )
lowerCAmelCase : List[Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] )
self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} )
lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" )
self.assertEqual(
lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 )
lowerCAmelCase : Dict = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] )
self.assertEqual(
lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 )
lowerCAmelCase : Union[str, Any] = classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" )
self.assertEqual(lowercase_ , {"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ )], """scores""": [ANY(lowercase_ )]} )
# https://github.com/huggingface/transformers/issues/13846
lowerCAmelCase : List[Any] = classifier(["""I am happy"""] , ["""positive""", """negative"""] )
self.assertEqual(
lowercase_ , [
{"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]}
for i in range(1 )
] , )
lowerCAmelCase : Union[str, Any] = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] )
self.assertEqual(
lowercase_ , [
{"""sequence""": ANY(lowercase_ ), """labels""": [ANY(lowercase_ ), ANY(lowercase_ )], """scores""": [ANY(lowercase_ ), ANY(lowercase_ )]}
for i in range(2 )
] , )
with self.assertRaises(lowercase_ ):
classifier("""""" , candidate_labels="""politics""" )
with self.assertRaises(lowercase_ ):
classifier(lowercase_ , candidate_labels="""politics""" )
with self.assertRaises(lowercase_ ):
classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" )
with self.assertRaises(lowercase_ ):
classifier("""Who are you voting for in 2020?""" , candidate_labels=lowercase_ )
with self.assertRaises(lowercase_ ):
classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , )
with self.assertRaises(lowercase_ ):
classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=lowercase_ , )
self.run_entailment_id(lowercase_ )
def _snake_case ( self , lowercase_ ) -> Optional[int]:
lowerCAmelCase : str = zero_shot_classifier.model.config
lowerCAmelCase : Tuple = config.labelaid
lowerCAmelCase : str = zero_shot_classifier.entailment_id
lowerCAmelCase : int = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
lowerCAmelCase : List[str] = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
lowerCAmelCase : List[str] = {"""ENTAIL""": 0, """NON-ENTAIL""": 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
lowerCAmelCase : str = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
lowerCAmelCase : List[str] = original_labelaid
self.assertEqual(lowercase_ , zero_shot_classifier.entailment_id )
@require_torch
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : str = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"""Who are you voting for in 2020?""" * 100 , candidate_labels=["""politics""", """public health""", """science"""] )
@require_torch
def _snake_case ( self ) -> str:
lowerCAmelCase : List[str] = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , )
lowerCAmelCase : Union[str, Any] = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(lowercase_ ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""science""", """public health""", """politics"""],
"""scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@require_tf
def _snake_case ( self ) -> str:
lowerCAmelCase : Union[str, Any] = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , )
lowerCAmelCase : Union[str, Any] = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(lowercase_ ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""science""", """public health""", """politics"""],
"""scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@slow
@require_torch
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Any = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" )
lowerCAmelCase : Any = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(lowercase_ ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""politics""", """public health""", """science"""],
"""scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
lowerCAmelCase : Union[str, Any] = zero_shot_classifier(
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"""
""" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"""
""" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"""
""" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"""
""" machine translation tasks show these models to be superior in quality while being more parallelizable"""
""" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"""
""" English-to-German translation task, improving over the existing best results, including ensembles by"""
""" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"""
""" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"""
""" fraction of the training costs of the best models from the literature. We show that the Transformer"""
""" generalizes well to other tasks by applying it successfully to English constituency parsing both with"""
""" large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=lowercase_ , )
self.assertEqual(
nested_simplify(lowercase_ ) , {
"""sequence""": (
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural"""
""" networks in an encoder-decoder configuration. The best performing models also connect the"""
""" encoder and decoder through an attention mechanism. We propose a new simple network"""
""" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"""
""" and convolutions entirely. Experiments on two machine translation tasks show these models to be"""
""" superior in quality while being more parallelizable and requiring significantly less time to"""
""" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"""
""" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"""
""" English-to-French translation task, our model establishes a new single-model state-of-the-art"""
""" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"""
""" costs of the best models from the literature. We show that the Transformer generalizes well to"""
""" other tasks by applying it successfully to English constituency parsing both with large and"""
""" limited training data."""
),
"""labels""": ["""translation""", """machine learning""", """vision""", """statistics"""],
"""scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
@slow
@require_tf
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : str = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" )
lowerCAmelCase : int = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(lowercase_ ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""politics""", """public health""", """science"""],
"""scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
lowerCAmelCase : str = zero_shot_classifier(
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"""
""" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"""
""" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"""
""" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"""
""" machine translation tasks show these models to be superior in quality while being more parallelizable"""
""" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"""
""" English-to-German translation task, improving over the existing best results, including ensembles by"""
""" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"""
""" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"""
""" fraction of the training costs of the best models from the literature. We show that the Transformer"""
""" generalizes well to other tasks by applying it successfully to English constituency parsing both with"""
""" large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=lowercase_ , )
self.assertEqual(
nested_simplify(lowercase_ ) , {
"""sequence""": (
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural"""
""" networks in an encoder-decoder configuration. The best performing models also connect the"""
""" encoder and decoder through an attention mechanism. We propose a new simple network"""
""" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"""
""" and convolutions entirely. Experiments on two machine translation tasks show these models to be"""
""" superior in quality while being more parallelizable and requiring significantly less time to"""
""" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"""
""" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"""
""" English-to-French translation task, our model establishes a new single-model state-of-the-art"""
""" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"""
""" costs of the best models from the literature. We show that the Transformer generalizes well to"""
""" other tasks by applying it successfully to English constituency parsing both with large and"""
""" limited training data."""
),
"""labels""": ["""translation""", """machine learning""", """vision""", """statistics"""],
"""scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if p < 2:
raise ValueError("""p should not be less than 2!""" )
elif p == 2:
return True
lowerCAmelCase : List[Any] = 4
lowerCAmelCase : Tuple = (1 << p) - 1
for _ in range(p - 2 ):
lowerCAmelCase : Dict = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 693 | 1 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _a :
_UpperCamelCase: Any = XGLMConfig
_UpperCamelCase: Union[str, Any] = {}
_UpperCamelCase: Any = "gelu"
def __init__( self , lowercase_ , lowercase_=14 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.0_2 , ) -> List[Any]:
lowerCAmelCase : Optional[int] = parent
lowerCAmelCase : Optional[Any] = batch_size
lowerCAmelCase : List[Any] = seq_length
lowerCAmelCase : List[str] = is_training
lowerCAmelCase : Union[str, Any] = use_input_mask
lowerCAmelCase : List[Any] = use_labels
lowerCAmelCase : List[Any] = vocab_size
lowerCAmelCase : Any = d_model
lowerCAmelCase : Optional[int] = num_hidden_layers
lowerCAmelCase : str = num_attention_heads
lowerCAmelCase : List[Any] = ffn_dim
lowerCAmelCase : Union[str, Any] = activation_function
lowerCAmelCase : List[Any] = activation_dropout
lowerCAmelCase : int = attention_dropout
lowerCAmelCase : Optional[int] = max_position_embeddings
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : str = None
lowerCAmelCase : List[str] = 0
lowerCAmelCase : List[str] = 2
lowerCAmelCase : List[Any] = 1
def _snake_case ( self ) -> Tuple:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Dict = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
lowerCAmelCase : Union[str, Any] = None
if self.use_input_mask:
lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase : Any = self.get_config()
lowerCAmelCase : Tuple = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _snake_case ( self ) -> Dict:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : List[str] = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) : Optional[Any] = config_and_inputs
lowerCAmelCase : Tuple = {
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[int] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
_UpperCamelCase: Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
_UpperCamelCase: Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
_UpperCamelCase: Optional[int] = False
_UpperCamelCase: Any = False
_UpperCamelCase: int = False
def _snake_case ( self ) -> List[str]:
lowerCAmelCase : str = TFXGLMModelTester(self )
lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , n_embd=37 )
def _snake_case ( self ) -> Tuple:
self.config_tester.run_common_tests()
@slow
def _snake_case ( self ) -> Dict:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase : str = TFXGLMModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _snake_case ( self ) -> Optional[int]:
super().test_resize_token_embeddings()
@require_tf
class _a ( unittest.TestCase ):
@slow
def _snake_case ( self , lowercase_=True ) -> Union[str, Any]:
lowerCAmelCase : Dict = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
lowerCAmelCase : Dict = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
lowerCAmelCase : Optional[int] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
# fmt: on
lowerCAmelCase : str = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ )
@slow
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase : str = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
lowerCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
lowerCAmelCase : Dict = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
lowerCAmelCase : List[Any] = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
lowerCAmelCase : Dict = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] )
lowerCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase : str = (
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(lowercase_ , lowercase_ )
@slow
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase : List[Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
lowerCAmelCase : Tuple = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
lowerCAmelCase : str = """left"""
# use different length sentences to test batching
lowerCAmelCase : List[Any] = [
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
lowerCAmelCase : List[Any] = tokenizer(lowercase_ , return_tensors="""tf""" , padding=lowercase_ )
lowerCAmelCase : Optional[Any] = inputs["""input_ids"""]
lowerCAmelCase : Union[str, Any] = model.generate(input_ids=lowercase_ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
lowerCAmelCase : Optional[Any] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
lowerCAmelCase : Optional[int] = model.generate(input_ids=lowercase_ , max_new_tokens=12 )
lowerCAmelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
lowerCAmelCase : Optional[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 )
lowerCAmelCase : Dict = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowerCAmelCase : List[str] = [
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
| 693 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline
_UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
_UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} )
_UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"}
def _snake_case ( self ) -> int:
return self._get_superresolution_dummy_components()
def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]:
if str(lowercase_ ).startswith("""mps""" ):
lowerCAmelCase : Any = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : Optional[int] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _snake_case ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def _snake_case ( self ) -> int:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def _snake_case ( self ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def _snake_case ( self ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def _snake_case ( self ) -> Any:
self._test_save_load_local()
def _snake_case ( self ) -> str:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 693 | 1 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class _a ( unittest.TestCase ):
def _snake_case ( self ) -> Optional[int]:
# A mock response for an HTTP head request to emulate server down
lowerCAmelCase : str = mock.Mock()
lowerCAmelCase : Tuple = 500
lowerCAmelCase : List[str] = {}
lowerCAmelCase : Any = HTTPError
lowerCAmelCase : Optional[int] = {}
# Download this model to make sure it's in the cache.
lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=lowercase_ ) as mock_head:
lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _snake_case ( self ) -> Optional[int]:
# A mock response for an HTTP head request to emulate server down
lowerCAmelCase : Dict = mock.Mock()
lowerCAmelCase : Dict = 500
lowerCAmelCase : Tuple = {}
lowerCAmelCase : Tuple = HTTPError
lowerCAmelCase : Dict = {}
# Download this model to make sure it's in the cache.
lowerCAmelCase : List[str] = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=lowercase_ ) as mock_head:
lowerCAmelCase : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# This check we did call the fake head request
mock_head.assert_called()
def _snake_case ( self ) -> Tuple:
# This test is for deprecated behavior and can be removed in v5
try:
lowerCAmelCase : Any = tempfile.mktemp()
with open(lowercase_ , """wb""" ) as f:
http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , lowercase_ )
lowerCAmelCase : Tuple = AlbertTokenizer.from_pretrained(lowercase_ )
finally:
os.remove(lowercase_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("""tokenizer.json""" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("""tokenizer.json""" , """wb""" ) as f:
http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , lowercase_ )
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("""tokenizer.json""" )
def _snake_case ( self ) -> Optional[Any]:
# This test is for deprecated behavior and can be removed in v5
lowerCAmelCase : Optional[Any] = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" )
@is_staging_test
class _a ( unittest.TestCase ):
_UpperCamelCase: Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def _snake_case ( cls ) -> int:
lowerCAmelCase : str = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def _snake_case ( cls ) -> int:
try:
delete_repo(token=cls._token , repo_id="""test-tokenizer""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" )
except HTTPError:
pass
def _snake_case ( self ) -> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Tuple = os.path.join(lowercase_ , """vocab.txt""" )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
lowerCAmelCase : Optional[int] = BertTokenizer(lowercase_ )
tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token )
lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="""test-tokenizer""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowercase_ , repo_id="""test-tokenizer""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained(f"""{USER}/test-tokenizer""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def _snake_case ( self ) -> List[str]:
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Any = os.path.join(lowercase_ , """vocab.txt""" )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
lowerCAmelCase : Tuple = BertTokenizer(lowercase_ )
tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token )
lowerCAmelCase : Tuple = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
lowercase_ , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def _snake_case ( self ) -> Tuple:
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Any = os.path.join(lowercase_ , """vocab.txt""" )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
lowerCAmelCase : Union[str, Any] = CustomTokenizer(lowercase_ )
# No fast custom tokenizer
tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token )
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowercase_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Optional[Any] = os.path.join(lowercase_ , """vocab.txt""" )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
lowerCAmelCase : Optional[int] = BertTokenizerFast.from_pretrained(lowercase_ )
bert_tokenizer.save_pretrained(lowercase_ )
lowerCAmelCase : Tuple = CustomTokenizerFast.from_pretrained(lowercase_ )
tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token )
lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(f"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowercase_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" )
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(
f"""{USER}/test-dynamic-tokenizer""" , use_fast=lowercase_ , trust_remote_code=lowercase_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" )
class _a ( unittest.TestCase ):
def _snake_case ( self ) -> Any:
lowerCAmelCase : Tuple = Trie()
trie.add("""Hello 友達""" )
self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
trie.add("""Hello""" )
trie.data
self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
def _snake_case ( self ) -> Dict:
lowerCAmelCase : Optional[Any] = Trie()
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] )
trie.add("""[CLS]""" )
trie.add("""extra_id_1""" )
trie.add("""extra_id_100""" )
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : int = Trie()
trie.add("""A""" )
self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] )
self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : List[Any] = Trie()
trie.add("""TOKEN]""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] )
def _snake_case ( self ) -> Dict:
lowerCAmelCase : List[Any] = Trie()
trie.add("""A""" )
trie.add("""P""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] )
def _snake_case ( self ) -> Any:
lowerCAmelCase : Tuple = Trie()
trie.add("""AB""" )
trie.add("""B""" )
trie.add("""C""" )
self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Union[str, Any] = Trie()
trie.add("""ABC""" )
trie.add("""B""" )
trie.add("""CD""" )
self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] )
def _snake_case ( self ) -> Optional[Any]:
# Even if the offsets are wrong, we necessarily output correct string
# parts.
lowerCAmelCase : int = Trie()
lowerCAmelCase : Any = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] )
self.assertEqual(lowercase_ , ["""AB""", """C"""] )
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "llama"
_UpperCamelCase: List[str] = ["past_key_values"]
def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : str = max_position_embeddings
lowerCAmelCase : int = hidden_size
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : int = num_hidden_layers
lowerCAmelCase : Any = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
lowerCAmelCase : Any = num_attention_heads
lowerCAmelCase : Any = num_key_value_heads
lowerCAmelCase : Any = hidden_act
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : str = rms_norm_eps
lowerCAmelCase : int = pretraining_tp
lowerCAmelCase : int = use_cache
lowerCAmelCase : Optional[Any] = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , )
def _snake_case ( self ) -> Dict:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f"""got {self.rope_scaling}""" )
lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ )
lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 693 | 1 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class _a ( datasets.BuilderConfig ):
_UpperCamelCase: Optional[datasets.Features] = None
class _a ( datasets.ArrowBasedBuilder ):
_UpperCamelCase: str = PandasConfig
def _snake_case ( self ) -> List[Any]:
return datasets.DatasetInfo(features=self.config.features )
def _snake_case ( self , lowercase_ ) -> List[Any]:
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
lowerCAmelCase : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowercase_ , (str, list, tuple) ):
lowerCAmelCase : str = data_files
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : int = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCAmelCase : Tuple = [dl_manager.iter_files(lowercase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
lowerCAmelCase : List[str] = []
for split_name, files in data_files.items():
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCAmelCase : str = [dl_manager.iter_files(lowercase_ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={"""files""": files} ) )
return splits
def _snake_case ( self , lowercase_ ) -> pa.Table:
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCAmelCase : int = table_cast(lowercase_ , self.config.features.arrow_schema )
return pa_table
def _snake_case ( self , lowercase_ ) -> Optional[int]:
for i, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ):
with open(lowercase_ , """rb""" ) as f:
lowerCAmelCase : Any = pa.Table.from_pandas(pd.read_pickle(lowercase_ ) )
yield i, self._cast_table(lowercase_ )
| 693 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
'microsoft/swin-tiny-patch4-window7-224': (
'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _a ( snake_case_ , snake_case_ ):
_UpperCamelCase: int = "swin"
_UpperCamelCase: str = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple:
super().__init__(**lowercase_ )
lowerCAmelCase : Optional[int] = image_size
lowerCAmelCase : Optional[Any] = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : List[Any] = embed_dim
lowerCAmelCase : str = depths
lowerCAmelCase : List[str] = len(lowercase_ )
lowerCAmelCase : Any = num_heads
lowerCAmelCase : str = window_size
lowerCAmelCase : List[str] = mlp_ratio
lowerCAmelCase : List[Any] = qkv_bias
lowerCAmelCase : List[str] = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = drop_path_rate
lowerCAmelCase : int = hidden_act
lowerCAmelCase : int = use_absolute_embeddings
lowerCAmelCase : Dict = layer_norm_eps
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
class _a ( snake_case_ ):
_UpperCamelCase: int = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-4
| 693 | 1 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: int = MobileBertTokenizer
_UpperCamelCase: Optional[int] = MobileBertTokenizerFast
_UpperCamelCase: Tuple = True
_UpperCamelCase: Tuple = True
_UpperCamelCase: Optional[Any] = filter_non_english
_UpperCamelCase: Tuple = "google/mobilebert-uncased"
def _snake_case ( self ) -> Union[str, Any]:
super().setUp()
lowerCAmelCase : str = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
lowerCAmelCase : Optional[int] = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def _snake_case ( self , lowercase_ ) -> str:
lowerCAmelCase : Optional[Any] = """UNwant\u00E9d,running"""
lowerCAmelCase : int = """unwanted, running"""
return input_text, output_text
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file )
lowerCAmelCase : str = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(lowercase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [9, 6, 7, 12, 10, 11] )
def _snake_case ( self ) -> str:
if not self.test_rust_tokenizer:
return
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : Tuple = self.get_rust_tokenizer()
lowerCAmelCase : Dict = """UNwant\u00E9d,running"""
lowerCAmelCase : List[str] = tokenizer.tokenize(lowercase_ )
lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase : int = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase : Tuple = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase : int = self.get_rust_tokenizer()
lowerCAmelCase : Dict = tokenizer.encode(lowercase_ )
lowerCAmelCase : Any = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
# With lower casing
lowerCAmelCase : Any = self.get_tokenizer(do_lower_case=lowercase_ )
lowerCAmelCase : List[str] = self.get_rust_tokenizer(do_lower_case=lowercase_ )
lowerCAmelCase : Optional[Any] = """UNwant\u00E9d,running"""
lowerCAmelCase : List[Any] = tokenizer.tokenize(lowercase_ )
lowerCAmelCase : Dict = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase : List[str] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer()
lowerCAmelCase : Optional[int] = tokenizer.encode(lowercase_ )
lowerCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Union[str, Any] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def _snake_case ( self ) -> Any:
lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self ) -> List[str]:
lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self ) -> Dict:
lowerCAmelCase : List[Any] = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Any = BasicTokenizer(do_lower_case=lowercase_ , strip_accents=lowercase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self ) -> str:
lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=lowercase_ , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def _snake_case ( self ) -> int:
lowerCAmelCase : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowerCAmelCase : Any = {}
for i, token in enumerate(lowercase_ ):
lowerCAmelCase : Union[str, Any] = i
lowerCAmelCase : Optional[Any] = WordpieceTokenizer(vocab=lowercase_ , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
def _snake_case ( self ) -> Dict:
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def _snake_case ( self ) -> Optional[Any]:
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def _snake_case ( self ) -> List[str]:
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
def _snake_case ( self ) -> Dict:
lowerCAmelCase : List[Any] = self.get_tokenizer()
lowerCAmelCase : Dict = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(lowercase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
self.assertListEqual(
[rust_tokenizer.tokenize(lowercase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
@slow
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" )
lowerCAmelCase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ )
lowerCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ )
lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ )
lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def _snake_case ( self ) -> str:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowerCAmelCase : Optional[int] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
lowerCAmelCase : Optional[int] = tokenizer_r.encode_plus(
lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ , )
lowerCAmelCase : int = tokenizer_r.do_lower_case if hasattr(lowercase_ , """do_lower_case""" ) else False
lowerCAmelCase : List[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] )
def _snake_case ( self ) -> Any:
lowerCAmelCase : Optional[int] = ["""的""", """人""", """有"""]
lowerCAmelCase : Tuple = """""".join(lowercase_ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCAmelCase : str = True
lowerCAmelCase : int = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowerCAmelCase : Optional[Any] = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase : Optional[Any] = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(lowercase_ )
lowerCAmelCase : Optional[Any] = tokenizer_p.convert_ids_to_tokens(lowercase_ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
lowerCAmelCase : Dict = False
lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowerCAmelCase : Tuple = tokenizer_r.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase : Tuple = tokenizer_p.encode(lowercase_ , add_special_tokens=lowercase_ )
lowerCAmelCase : Optional[int] = tokenizer_r.convert_ids_to_tokens(lowercase_ )
lowerCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(lowercase_ )
# it is expected that only the first Chinese character is not preceded by "##".
lowerCAmelCase : List[Any] = [
f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase_ )
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
| 693 |
lowerCAmelCase : str ={
'Pillow': 'Pillow<10.0.0',
'accelerate': 'accelerate>=0.20.3',
'av': 'av==9.2.0',
'beautifulsoup4': 'beautifulsoup4',
'black': 'black~=23.1',
'codecarbon': 'codecarbon==1.2.0',
'cookiecutter': 'cookiecutter==1.7.3',
'dataclasses': 'dataclasses',
'datasets': 'datasets!=2.5.0',
'decord': 'decord==0.6.0',
'deepspeed': 'deepspeed>=0.9.3',
'diffusers': 'diffusers',
'dill': 'dill<0.3.5',
'evaluate': 'evaluate>=0.2.0',
'fairscale': 'fairscale>0.3',
'faiss-cpu': 'faiss-cpu',
'fastapi': 'fastapi',
'filelock': 'filelock',
'flax': 'flax>=0.4.1,<=0.7.0',
'ftfy': 'ftfy',
'fugashi': 'fugashi>=1.0',
'GitPython': 'GitPython<3.1.19',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0',
'importlib_metadata': 'importlib_metadata',
'ipadic': 'ipadic>=1.0.0,<2.0',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13',
'jaxlib': 'jaxlib>=0.1.65,<=0.4.13',
'jieba': 'jieba',
'kenlm': 'kenlm',
'keras-nlp': 'keras-nlp>=0.3.1',
'librosa': 'librosa',
'nltk': 'nltk',
'natten': 'natten>=0.14.6',
'numpy': 'numpy>=1.17',
'onnxconverter-common': 'onnxconverter-common',
'onnxruntime-tools': 'onnxruntime-tools>=1.4.2',
'onnxruntime': 'onnxruntime>=1.4.0',
'opencv-python': 'opencv-python',
'optuna': 'optuna',
'optax': 'optax>=0.0.8,<=0.1.4',
'packaging': 'packaging>=20.0',
'parameterized': 'parameterized',
'phonemizer': 'phonemizer',
'protobuf': 'protobuf',
'psutil': 'psutil',
'pyyaml': 'pyyaml>=5.1',
'pydantic': 'pydantic<2',
'pytest': 'pytest>=7.2.0',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'python': 'python>=3.8.0',
'ray[tune]': 'ray[tune]',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'rhoknp': 'rhoknp>=1.1.0,<1.3.1',
'rjieba': 'rjieba',
'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1',
'ruff': 'ruff>=0.0.241,<=0.0.259',
'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0',
'sacremoses': 'sacremoses',
'safetensors': 'safetensors>=0.3.1',
'sagemaker': 'sagemaker>=2.31.0',
'scikit-learn': 'scikit-learn',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'sigopt': 'sigopt',
'starlette': 'starlette',
'sudachipy': 'sudachipy>=0.6.6',
'sudachidict_core': 'sudachidict_core>=20220729',
'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14',
'tensorflow': 'tensorflow>=2.6,<2.14',
'tensorflow-text': 'tensorflow-text<2.14',
'tf2onnx': 'tf2onnx',
'timeout-decorator': 'timeout-decorator',
'timm': 'timm',
'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14',
'torch': 'torch>=1.9,!=1.12.0',
'torchaudio': 'torchaudio',
'torchvision': 'torchvision',
'pyctcdecode': 'pyctcdecode>=0.4.0',
'tqdm': 'tqdm>=4.27',
'unidic': 'unidic>=1.0.2',
'unidic_lite': 'unidic_lite>=1.0.7',
'urllib3': 'urllib3<2.0.0',
'uvicorn': 'uvicorn',
}
| 693 | 1 |
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class _a ( nn.Module ):
def __init__( self , lowercase_ = 16 , lowercase_ = 88 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = 32 , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = "geglu" , lowercase_ = None , ) -> Optional[Any]:
super().__init__()
lowerCAmelCase : List[Any] = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=lowercase_ , attention_head_dim=lowercase_ , in_channels=lowercase_ , num_layers=lowercase_ , dropout=lowercase_ , norm_num_groups=lowercase_ , cross_attention_dim=lowercase_ , attention_bias=lowercase_ , sample_size=lowercase_ , num_vector_embeds=lowercase_ , activation_fn=lowercase_ , num_embeds_ada_norm=lowercase_ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
lowerCAmelCase : Optional[int] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
lowerCAmelCase : Optional[int] = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
lowerCAmelCase : Union[str, Any] = [1, 0]
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = True , ) -> str:
lowerCAmelCase : Dict = hidden_states
lowerCAmelCase : Union[str, Any] = []
lowerCAmelCase : Optional[int] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
lowerCAmelCase : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
lowerCAmelCase : Tuple = self.transformer_index_for_condition[i]
lowerCAmelCase : List[Any] = self.transformers[transformer_index](
lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ , cross_attention_kwargs=lowercase_ , return_dict=lowercase_ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
lowerCAmelCase : Dict = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
lowerCAmelCase : List[Any] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=lowercase_ )
| 693 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] ={
'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'],
'tokenization_roformer': ['RoFormerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =['RoFormerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] =[
'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoFormerForCausalLM',
'RoFormerForMaskedLM',
'RoFormerForMultipleChoice',
'RoFormerForQuestionAnswering',
'RoFormerForSequenceClassification',
'RoFormerForTokenClassification',
'RoFormerLayer',
'RoFormerModel',
'RoFormerPreTrainedModel',
'load_tf_weights_in_roformer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRoFormerForCausalLM',
'TFRoFormerForMaskedLM',
'TFRoFormerForMultipleChoice',
'TFRoFormerForQuestionAnswering',
'TFRoFormerForSequenceClassification',
'TFRoFormerForTokenClassification',
'TFRoFormerLayer',
'TFRoFormerModel',
'TFRoFormerPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int =[
'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'FlaxRoFormerForMaskedLM',
'FlaxRoFormerForMultipleChoice',
'FlaxRoFormerForQuestionAnswering',
'FlaxRoFormerForSequenceClassification',
'FlaxRoFormerForTokenClassification',
'FlaxRoFormerModel',
'FlaxRoFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
# TODO: upload to AWS
lowerCAmelCase : Union[str, Any] ={
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json'
),
}
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "retribert"
def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=8 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=True , lowercase_=128 , lowercase_=0 , **lowercase_ , ) -> Tuple:
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
lowerCAmelCase : int = vocab_size
lowerCAmelCase : List[Any] = hidden_size
lowerCAmelCase : List[Any] = num_hidden_layers
lowerCAmelCase : List[Any] = num_attention_heads
lowerCAmelCase : List[Any] = hidden_act
lowerCAmelCase : Union[str, Any] = intermediate_size
lowerCAmelCase : str = hidden_dropout_prob
lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob
lowerCAmelCase : Any = max_position_embeddings
lowerCAmelCase : List[str] = type_vocab_size
lowerCAmelCase : Tuple = initializer_range
lowerCAmelCase : Dict = layer_norm_eps
lowerCAmelCase : Any = share_encoders
lowerCAmelCase : List[str] = projection_dim
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return int(input_a == input_a == 0 )
def _UpperCAmelCase ( ):
'''simple docstring'''
print("""Truth Table of NOR Gate:""" )
print("""| Input 1 | Input 2 | Output |""" )
print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" )
print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" )
print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" )
print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 693 | 1 |
from collections import defaultdict
from math import gcd
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_5_0_0_0_0_0 ):
'''simple docstring'''
lowerCAmelCase : defaultdict = defaultdict(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : str = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 ,SCREAMING_SNAKE_CASE__ ,2 ):
if gcd(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) > 1:
continue
lowerCAmelCase : str = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(SCREAMING_SNAKE_CASE__ ,limit + 1 ,SCREAMING_SNAKE_CASE__ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 693 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase : int ={
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor']
lowerCAmelCase : List[str] =['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
| 693 | 1 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Tuple =get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase : Union[str, Any] =250_004
lowerCAmelCase : Optional[Any] =250_020
@require_sentencepiece
@require_tokenizers
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[int] = MBartaaTokenizer
_UpperCamelCase: Union[str, Any] = MBartaaTokenizerFast
_UpperCamelCase: int = True
_UpperCamelCase: Tuple = True
def _snake_case ( self ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase : List[str] = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self ) -> str:
lowerCAmelCase : Dict = """<s>"""
lowerCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(lowercase_ ) , 1054 )
def _snake_case ( self ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def _snake_case ( self ) -> Any:
lowerCAmelCase : List[str] = MBartaaTokenizer(lowercase_ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=lowercase_ )
lowerCAmelCase : Dict = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowercase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowerCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , )
lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , )
@slow
def _snake_case ( self ) -> Union[str, Any]:
# fmt: off
lowerCAmelCase : int = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , )
def _snake_case ( self ) -> List[str]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
lowerCAmelCase : Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
lowerCAmelCase : int = tempfile.mkdtemp()
lowerCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(lowercase_ )
lowerCAmelCase : Optional[int] = tokenizer_p.save_pretrained(lowercase_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
lowerCAmelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(lowercase_ , lowercase_ )
# Checks everything loads correctly in the same way
lowerCAmelCase : str = tokenizer_r.from_pretrained(lowercase_ )
lowerCAmelCase : str = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowercase_ )
# Save tokenizer rust, legacy_format=True
lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
lowerCAmelCase : str = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ )
lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(lowercase_ )
# Checks it save with the same files
self.assertSequenceEqual(lowercase_ , lowercase_ )
# Checks everything loads correctly in the same way
lowerCAmelCase : Tuple = tokenizer_r.from_pretrained(lowercase_ )
lowerCAmelCase : str = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
shutil.rmtree(lowercase_ )
# Save tokenizer rust, legacy_format=False
lowerCAmelCase : List[Any] = tempfile.mkdtemp()
lowerCAmelCase : List[str] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ )
lowerCAmelCase : int = tokenizer_p.save_pretrained(lowercase_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(lowercase_ )
lowerCAmelCase : Tuple = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
shutil.rmtree(lowercase_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class _a ( unittest.TestCase ):
_UpperCamelCase: Optional[Any] = "facebook/mbart-large-50-one-to-many-mmt"
_UpperCamelCase: Optional[int] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
_UpperCamelCase: Optional[int] = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
_UpperCamelCase: List[str] = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2]
@classmethod
def _snake_case ( cls ) -> Optional[int]:
lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
lowerCAmelCase : List[str] = 1
return cls
def _snake_case ( self ) -> List[Any]:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 )
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowercase_ )
def _snake_case ( self ) -> int:
self.assertIn(lowercase_ , self.tokenizer.all_special_ids )
lowerCAmelCase : int = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
lowerCAmelCase : Optional[int] = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ )
lowerCAmelCase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
self.assertNotIn(self.tokenizer.eos_token , lowercase_ )
def _snake_case ( self ) -> List[str]:
lowerCAmelCase : str = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , lowercase_ )
lowerCAmelCase : List[str] = 10
lowerCAmelCase : Optional[int] = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0]
self.assertEqual(ids[0] , lowercase_ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(lowercase_ ) , lowercase_ )
def _snake_case ( self ) -> Optional[Any]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
lowerCAmelCase : Any = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowercase_ )
lowerCAmelCase : Any = MBartaaTokenizer.from_pretrained(lowercase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ )
@require_torch
def _snake_case ( self ) -> Dict:
lowerCAmelCase : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors="""pt""" )
lowerCAmelCase : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
lowerCAmelCase : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowercase_ , lowercase_ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
lowerCAmelCase : Dict = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowercase_ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Tuple = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors="""pt""" )
lowerCAmelCase : Optional[int] = self.tokenizer(
text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors="""pt""" )
lowerCAmelCase : Optional[Any] = targets["""input_ids"""]
lowerCAmelCase : Union[str, Any] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(lowercase_ ) , {
# en_XX, A, test, EOS
"""input_ids""": [[250004, 62, 3034, 2]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 250001,
} , )
| 693 |
import os
import string
import sys
lowerCAmelCase : Optional[int] =1 << 8
lowerCAmelCase : List[Any] ={
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
lowerCAmelCase : Optional[Any] =KEYMAP['up']
lowerCAmelCase : Tuple =KEYMAP['left']
if sys.platform == "win32":
lowerCAmelCase : Dict =[]
lowerCAmelCase : int ={
b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
lowerCAmelCase : Optional[Any] =ord(str(i))
def _UpperCAmelCase ( ):
'''simple docstring'''
if os.name == "nt":
import msvcrt
lowerCAmelCase : Any = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(SCREAMING_SNAKE_CASE__ ) == 0:
# Read the keystroke
lowerCAmelCase : int = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowerCAmelCase : Tuple = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowerCAmelCase : str = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ )
if ord(SCREAMING_SNAKE_CASE__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_2_6 ) )
lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] )
except KeyError:
lowerCAmelCase : Optional[int] = cha[1]
else:
lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowerCAmelCase : List[Any] = sys.stdin.fileno()
lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ )
try:
tty.setraw(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ )
return ch
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Any = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]:
lowerCAmelCase : int = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]:
lowerCAmelCase : Tuple = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 693 | 1 |
from __future__ import annotations
from PIL import Image
# Define glider example
lowerCAmelCase : List[str] =[
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
lowerCAmelCase : Union[str, Any] =[[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
lowerCAmelCase : Dict = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
lowerCAmelCase : List[Any] = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(SCREAMING_SNAKE_CASE__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
lowerCAmelCase : str = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(SCREAMING_SNAKE_CASE__ )
return next_generation
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Tuple = []
for _ in range(SCREAMING_SNAKE_CASE__ ):
# Create output image
lowerCAmelCase : Union[str, Any] = Image.new("""RGB""" ,(len(cells[0] ), len(SCREAMING_SNAKE_CASE__ )) )
lowerCAmelCase : Tuple = img.load()
# Save cells to image
for x in range(len(SCREAMING_SNAKE_CASE__ ) ):
for y in range(len(cells[0] ) ):
lowerCAmelCase : Any = 2_5_5 - cells[y][x] * 2_5_5
lowerCAmelCase : Tuple = (colour, colour, colour)
# Save image
images.append(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : List[str] = new_generation(SCREAMING_SNAKE_CASE__ )
return images
if __name__ == "__main__":
lowerCAmelCase : Any =generate_images(GLIDER, 16)
images[0].save('out.gif', save_all=True, append_images=images[1:])
| 693 |
# Imports
import numpy as np
class _a :
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]:
if red is not None:
lowerCAmelCase : str = red
if green is not None:
lowerCAmelCase : Optional[int] = green
if blue is not None:
lowerCAmelCase : Optional[int] = blue
if red_edge is not None:
lowerCAmelCase : Tuple = red_edge
if nir is not None:
lowerCAmelCase : Union[str, Any] = nir
return True
def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
lowerCAmelCase : int = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def _snake_case ( self ) -> Dict:
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case ( self ) -> Optional[Any]:
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case ( self ) -> List[str]:
return self.nir * (self.red / (self.green**2))
def _snake_case ( self ) -> Tuple:
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case ( self ) -> Optional[int]:
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case ( self ) -> List[str]:
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case ( self ) -> int:
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case ( self ) -> Optional[Any]:
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case ( self ) -> int:
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case ( self ) -> List[str]:
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int:
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case ( self ) -> Optional[Any]:
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case ( self ) -> Any:
return (self.nir / self.green) - 1
def _snake_case ( self ) -> List[Any]:
return (self.nir / self.redEdge) - 1
def _snake_case ( self ) -> str:
return (self.red - self.blue) / self.red
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case ( self ) -> Optional[Any]:
return self.nir - self.green
def _snake_case ( self ) -> int:
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]:
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case ( self , lowercase_=0.5 ) -> List[str]:
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case ( self ) -> Any:
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]:
return (self.nir - b) / (a * self.red)
def _snake_case ( self ) -> Any:
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case ( self ) -> str:
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case ( self ) -> Union[str, Any]:
return self.nir / self.red
def _snake_case ( self ) -> Tuple:
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case ( self ) -> Dict:
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case ( self ) -> List[Any]:
return self.green / (self.nir + self.red + self.green)
def _snake_case ( self ) -> int:
return self.nir / (self.nir + self.red + self.green)
def _snake_case ( self ) -> Dict:
return self.red / (self.nir + self.red + self.green)
def _snake_case ( self ) -> List[Any]:
return (self.green - self.red) / (self.green + self.red)
def _snake_case ( self ) -> Optional[int]:
return (self.red - self.green) / (self.red + self.green)
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case ( self ) -> int:
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case ( self ) -> List[str]:
return self.nir / self.red
def _snake_case ( self ) -> int:
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case ( self ) -> str:
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 693 | 1 |
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[int] = WavaVecaPhonemeCTCTokenizer
_UpperCamelCase: str = False
def _snake_case ( self ) -> int:
super().setUp()
lowerCAmelCase : int = (
"""<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """
"""ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """
"""ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """
"""oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """
"""pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """
"""yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """
"""əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """
"""ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """
"""ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """
"""uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """
"""ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """
"""ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """
"""ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4"""
).split(""" """ )
lowerCAmelCase : List[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
lowerCAmelCase : Dict = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""}
lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowercase_ ) + """\n""" )
def _snake_case ( self , lowercase_ , lowercase_=False , lowercase_=20 , lowercase_=5 ) -> Tuple[str, list]:
lowerCAmelCase : Optional[int] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_ )) for i in range(len(lowercase_ ) )]
lowerCAmelCase : List[str] = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowercase_ ) , lowercase_ ) )
if max_length is not None and len(lowercase_ ) > max_length:
lowerCAmelCase : Union[str, Any] = toks[:max_length]
if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0:
while len(lowercase_ ) < min_length:
lowerCAmelCase : Any = toks + toks
# toks_str = [t[1] for t in toks]
lowerCAmelCase : List[Any] = [t[0] for t in toks]
# Ensure consistency
lowerCAmelCase : List[Any] = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ )
if " " not in output_txt and len(lowercase_ ) > 1:
lowerCAmelCase : Any = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_ )
+ """ """
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_ )
)
if with_prefix_space:
lowerCAmelCase : str = """ """ + output_txt
lowerCAmelCase : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
return output_txt, output_ids
def _snake_case ( self , **lowercase_ ) -> int:
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" )
# check adding a single token
tokenizer.add_tokens("""xxx""" )
lowerCAmelCase : Dict = tokenizer("""m xxx ɪ""" , do_phonemize=lowercase_ ).input_ids
self.assertEqual(lowercase_ , [13, 392, 17] ) # xxx should be last token
tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] )
lowerCAmelCase : List[Any] = tokenizer("""m aaa ɪ ccc""" , do_phonemize=lowercase_ ).input_ids
self.assertEqual(lowercase_ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa
lowerCAmelCase : Tuple = tokenizer("""maɪ c""" , do_phonemize=lowercase_ ).input_ids
self.assertEqual(lowercase_ , [3, 200] ) # mai should be <unk> (=3)
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" )
lowerCAmelCase : List[str] = """Hello how are you"""
lowerCAmelCase : int = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" )
self.assertEqual(lowercase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" )
def _snake_case ( self ) -> Dict:
lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" )
lowerCAmelCase : int = """Hello how are you"""
lowerCAmelCase : Any = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" )
self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids )
def _snake_case ( self ) -> Any:
lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" )
lowerCAmelCase : Dict = """Hello how are you"""
lowerCAmelCase : Optional[Any] = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" )
lowerCAmelCase : List[str] = tokenizer.decode(tokenizer(lowercase_ ).input_ids )
self.assertEqual(lowercase_ , lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" )
lowerCAmelCase : str = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
lowerCAmelCase : Any = tokenizer.decode(sample_ids[0] )
lowerCAmelCase : int = tokenizer.batch_decode(lowercase_ )
self.assertEqual(lowercase_ , batch_tokens[0] )
self.assertEqual(lowercase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] )
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(
"""facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" )
tokenizer.add_tokens("""|""" )
lowerCAmelCase : Union[str, Any] = """Hello how are you"""
lowerCAmelCase : str = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" )
self.assertEqual(lowercase_ , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" )
def _snake_case ( self ) -> Any:
lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(
"""facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" )
tokenizer.add_tokens("""|""" )
lowerCAmelCase : int = """Hello how are you"""
lowerCAmelCase : Optional[int] = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" )
self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : str = self.tokenizer_class.from_pretrained(
"""facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" )
tokenizer.add_tokens("""|""" )
# fmt: off
lowerCAmelCase : str = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
lowerCAmelCase : str = tokenizer.decode(sample_ids[0] )
lowerCAmelCase : Tuple = tokenizer.batch_decode(lowercase_ )
self.assertEqual(lowercase_ , batch_tokens[0] )
self.assertEqual(lowercase_ , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] )
# decode with no word_del_token filter
lowerCAmelCase : List[str] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowercase_ )
lowerCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase_ , filter_word_delimiter_token=lowercase_ )
self.assertEqual(lowercase_ , batch_tokens[0] )
self.assertEqual(lowercase_ , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(
"""facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" )
tokenizer.add_tokens("""|""" )
lowerCAmelCase : str = """Hello how are you"""
lowerCAmelCase : List[Any] = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" )
lowerCAmelCase : Tuple = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(
"""facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" )
tokenizer.add_tokens("""|""" )
lowerCAmelCase : List[Any] = """Hello how are you"""
lowerCAmelCase : Union[str, Any] = tokenizer.phonemize(lowercase_ , phonemizer_lang="""en-us""" )
lowerCAmelCase : Any = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ )
self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(
"""facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=lowercase_ )
lowerCAmelCase : Any = """Hello how are you"""
lowerCAmelCase : Tuple = tokenizer(lowercase_ , phonemizer_lang="""en-us""" ).input_ids
lowerCAmelCase : List[str] = tokenizer(lowercase_ , phonemizer_lang="""fr-fr""" ).input_ids
self.assertNotEqual(lowercase_ , lowercase_ )
lowerCAmelCase : Optional[Any] = tokenizer.decode(lowercase_ )
lowerCAmelCase : Tuple = tokenizer.decode(lowercase_ )
self.assertEqual(lowercase_ , """h ə l oʊ h aʊ ɑːɹ j uː""" )
self.assertEqual(lowercase_ , """ɛ l o h aʊ a ʁ j u""" )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" )
lowerCAmelCase : Optional[int] = """Hello how Are you"""
lowerCAmelCase : List[str] = """hello how are you"""
lowerCAmelCase : Optional[Any] = tokenizer(lowercase_ ).input_ids
lowerCAmelCase : Optional[int] = tokenizer(lowercase_ ).input_ids
self.assertEqual(lowercase_ , lowercase_ )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" )
tokenizer.add_tokens(["""!""", """?"""] )
tokenizer.add_special_tokens({"""cls_token""": """$$$"""} )
# fmt: off
lowerCAmelCase : Optional[int] = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394],
]
# fmt: on
lowerCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase_ )
self.assertEqual(lowercase_ , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] )
@staticmethod
def _snake_case ( lowercase_ , lowercase_ ) -> int:
lowerCAmelCase : Tuple = [d[key] for d in offsets]
return retrieved_list
def _snake_case ( self ) -> Any:
lowerCAmelCase : Any = self.get_tokenizer(word_delimiter_token="""|""" )
tokenizer.add_tokens("""|""" )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
lowerCAmelCase : List[Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
lowerCAmelCase : Optional[Any] = tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ , filter_word_delimiter_token=lowercase_ )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue("""text""" in outputs )
self.assertTrue("""char_offsets""" in outputs )
self.assertTrue(isinstance(lowercase_ , lowercase_ ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Optional[int] = self.get_tokenizer(word_delimiter_token="""|""" )
def check_list_tuples_equal(lowercase_ , lowercase_ ):
self.assertTrue(isinstance(lowercase_ , lowercase_ ) )
self.assertTrue(isinstance(outputs_list[0] , lowercase_ ) )
# transform list to ModelOutput
lowerCAmelCase : str = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] )
def recursive_check(lowercase_ , lowercase_ ):
if isinstance(lowercase_ , lowercase_ ):
[recursive_check(lowercase_ , lowercase_ ) for la, la in zip(lowercase_ , lowercase_ )]
self.assertEqual(lowercase_ , lowercase_ )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] )
# fmt: off
lowerCAmelCase : List[str] = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
lowerCAmelCase : List[Any] = tokenizer.batch_decode(lowercase_ , output_char_offsets=lowercase_ )
lowerCAmelCase : List[str] = [tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ ) for ids in sample_ids]
check_list_tuples_equal(lowercase_ , lowercase_ )
@unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" )
def _snake_case ( self ) -> Dict:
pass
@unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" )
def _snake_case ( self ) -> Union[str, Any]:
pass
@unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" )
def _snake_case ( self ) -> int:
pass
@unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" )
def _snake_case ( self ) -> str:
pass
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=lowercase_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
lowerCAmelCase : Any = tokenizer.vocab_size
lowerCAmelCase : List[str] = len(lowercase_ )
self.assertNotEqual(lowercase_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
lowerCAmelCase : Dict = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""]
lowerCAmelCase : str = tokenizer.add_tokens(lowercase_ )
lowerCAmelCase : Union[str, Any] = tokenizer.vocab_size
lowerCAmelCase : Optional[int] = len(lowercase_ )
self.assertNotEqual(lowercase_ , 0 )
self.assertEqual(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , len(lowercase_ ) )
self.assertEqual(lowercase_ , all_size + len(lowercase_ ) )
lowerCAmelCase : Tuple = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=lowercase_ )
self.assertGreaterEqual(len(lowercase_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
lowerCAmelCase : int = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""}
lowerCAmelCase : Optional[Any] = tokenizer.add_special_tokens(lowercase_ )
lowerCAmelCase : Optional[int] = tokenizer.vocab_size
lowerCAmelCase : Any = len(lowercase_ )
self.assertNotEqual(lowercase_ , 0 )
self.assertEqual(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , len(lowercase_ ) )
self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) )
lowerCAmelCase : Any = tokenizer.encode(
""">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=lowercase_ )
self.assertGreaterEqual(len(lowercase_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" )
def _snake_case ( self ) -> List[str]:
pass
@unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" )
def _snake_case ( self ) -> Tuple:
pass
def _snake_case ( self ) -> int:
# The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which
# is not the case for Wav2Vec2PhonemeCTCTokenizer.
lowerCAmelCase : Optional[Any] = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
lowerCAmelCase : Optional[Any] = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""]
lowerCAmelCase : Any = tokenizer.convert_tokens_to_string(lowercase_ )
self.assertIsInstance(output["""text"""] , lowercase_ )
| 693 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[str] = None
if token is not None:
lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = None
if token is not None:
lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = None
if token is not None:
lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = result.headers["""Location"""]
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" )
with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp:
fp.write(response.content )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : Optional[int] = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE__ ) as f:
for line in f:
lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCAmelCase : str = line[: line.index(""": """ )]
lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :]
failed_tests.append(SCREAMING_SNAKE_CASE__ )
elif filename == "job_name.txt":
lowerCAmelCase : Union[str, Any] = line
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """
F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
lowerCAmelCase : Optional[int] = None
if job_name and job_links:
lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
# A list with elements of the form (line of error, error, failed test)
lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )]
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : str = []
lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) )
return errors
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = Counter()
counter.update([x[1] for x in logs] )
lowerCAmelCase : List[str] = counter.most_common()
lowerCAmelCase : Union[str, Any] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
lowerCAmelCase : str = test.split("""/""" )[2]
else:
lowerCAmelCase : List[Any] = None
return test
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCAmelCase : int = [x for x in logs if x[2] is not None]
lowerCAmelCase : Optional[Any] = {x[2] for x in logs}
lowerCAmelCase : Dict = {}
for test in tests:
lowerCAmelCase : Optional[int] = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCAmelCase : Tuple = counter.most_common()
lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCAmelCase : List[Any] = sum(error_counts.values() )
if n_errors > 0:
lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = """| no. | error | status |"""
lowerCAmelCase : List[Any] = """|-:|:-|:-|"""
lowerCAmelCase : Union[str, Any] = [header, sep]
for error in reduced_by_error:
lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""]
lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = """| model | no. of errors | major error | count |"""
lowerCAmelCase : Any = """|-:|-:|-:|-:|"""
lowerCAmelCase : str = [header, sep]
for model in reduced_by_model:
lowerCAmelCase : Any = reduced_by_model[model]["""count"""]
lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0]
lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase : int =argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
lowerCAmelCase : Dict =parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token)
lowerCAmelCase : List[Any] ={}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
lowerCAmelCase : str =k.find(' / ')
lowerCAmelCase : Any =k[index + len(' / ') :]
lowerCAmelCase : str =v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
lowerCAmelCase : str =Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
lowerCAmelCase : int =counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Optional[int] =reduce_by_error(errors)
lowerCAmelCase : Tuple =reduce_by_model(errors)
lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error)
lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 693 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt')
@dataclass
class _a :
_UpperCamelCase: Optional[str] = field(
default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "The column name of the images in the files."} )
_UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "A folder containing the training data."} )
_UpperCamelCase: Optional[str] = field(default=snake_case_ , metadata={"help": "A folder containing the validation data."} )
_UpperCamelCase: Optional[float] = field(
default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} )
_UpperCamelCase: Optional[int] = field(
default=snake_case_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
_UpperCamelCase: Optional[int] = field(
default=snake_case_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : int = {}
if self.train_dir is not None:
lowerCAmelCase : Union[str, Any] = self.train_dir
if self.validation_dir is not None:
lowerCAmelCase : List[Any] = self.validation_dir
lowerCAmelCase : Any = data_files if data_files else None
@dataclass
class _a :
_UpperCamelCase: str = field(
default=snake_case_ , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
_UpperCamelCase: str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
_UpperCamelCase: str = field(default=snake_case_ , metadata={"help": "Name or path of preprocessor config."} )
_UpperCamelCase: bool = field(
default=snake_case_ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
_UpperCamelCase: float = field(
default=0.7_5 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} )
_UpperCamelCase: bool = field(
default=snake_case_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} )
@dataclass
class _a ( snake_case_ ):
_UpperCamelCase: float = field(
default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] )
return {"pixel_values": pixel_values}
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_mae""" ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCAmelCase : Dict = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCAmelCase : Optional[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCAmelCase : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset.
lowerCAmelCase : Any = load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,data_files=data_args.data_files ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,)
# If we don't have a validation split, split off a percentage of train as validation.
lowerCAmelCase : List[Any] = None if """validation""" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split ,SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0:
lowerCAmelCase : int = ds["""train"""].train_test_split(data_args.train_val_split )
lowerCAmelCase : Dict = split["""train"""]
lowerCAmelCase : Optional[int] = split["""test"""]
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCAmelCase : Union[str, Any] = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
lowerCAmelCase : List[Any] = ViTMAEConfig.from_pretrained(model_args.config_name ,**SCREAMING_SNAKE_CASE__ )
elif model_args.model_name_or_path:
lowerCAmelCase : str = ViTMAEConfig.from_pretrained(model_args.model_name_or_path ,**SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Optional[int] = ViTMAEConfig()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
# adapt config
config.update(
{
"""mask_ratio""": model_args.mask_ratio,
"""norm_pix_loss""": model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
lowerCAmelCase : List[str] = ViTImageProcessor.from_pretrained(model_args.image_processor_name ,**SCREAMING_SNAKE_CASE__ )
elif model_args.model_name_or_path:
lowerCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path ,**SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Optional[Any] = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
lowerCAmelCase : Union[str, Any] = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
else:
logger.info("""Training new model from scratch""" )
lowerCAmelCase : Any = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ )
if training_args.do_train:
lowerCAmelCase : Union[str, Any] = ds["""train"""].column_names
else:
lowerCAmelCase : Optional[int] = ds["""validation"""].column_names
if data_args.image_column_name is not None:
lowerCAmelCase : List[Any] = data_args.image_column_name
elif "image" in column_names:
lowerCAmelCase : Dict = """image"""
elif "img" in column_names:
lowerCAmelCase : int = """img"""
else:
lowerCAmelCase : Optional[int] = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
lowerCAmelCase : Optional[Any] = image_processor.size["""shortest_edge"""]
else:
lowerCAmelCase : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""])
lowerCAmelCase : Any = Compose(
[
Lambda(lambda SCREAMING_SNAKE_CASE__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ),
RandomResizedCrop(SCREAMING_SNAKE_CASE__ ,scale=(0.2, 1.0) ,interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ),
] )
def preprocess_images(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Dict = [transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
lowerCAmelCase : str = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(SCREAMING_SNAKE_CASE__ )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
lowerCAmelCase : int = (
ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ )
# Compute absolute learning rate
lowerCAmelCase : Optional[int] = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
lowerCAmelCase : List[Any] = training_args.base_learning_rate * total_train_batch_size / 2_5_6
# Initialize our trainer
lowerCAmelCase : int = Trainer(
model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,train_dataset=ds["""train"""] if training_args.do_train else None ,eval_dataset=ds["""validation"""] if training_args.do_eval else None ,tokenizer=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,)
# Training
if training_args.do_train:
lowerCAmelCase : Optional[int] = None
if training_args.resume_from_checkpoint is not None:
lowerCAmelCase : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCAmelCase : List[Any] = last_checkpoint
lowerCAmelCase : List[str] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ )
trainer.save_model()
trainer.log_metrics("""train""" ,train_result.metrics )
trainer.save_metrics("""train""" ,train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
lowerCAmelCase : Tuple = trainer.evaluate()
trainer.log_metrics("""eval""" ,SCREAMING_SNAKE_CASE__ )
trainer.save_metrics("""eval""" ,SCREAMING_SNAKE_CASE__ )
# Write model card and (optionally) push to hub
lowerCAmelCase : List[Any] = {
"""tasks""": """masked-auto-encoding""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""masked-auto-encoding"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ )
else:
trainer.create_model_card(**SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 693 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Optional[int] ={
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =[
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Optional[int] ={
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "transfo-xl"
_UpperCamelCase: str = ["mems"]
_UpperCamelCase: Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : Union[str, Any] = []
self.cutoffs.extend(lowercase_ )
if proj_share_all_but_first:
lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs )
else:
lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs )
lowerCAmelCase : Optional[int] = d_model
lowerCAmelCase : List[Any] = d_embed
lowerCAmelCase : Union[str, Any] = d_head
lowerCAmelCase : List[Any] = d_inner
lowerCAmelCase : Optional[int] = div_val
lowerCAmelCase : List[Any] = pre_lnorm
lowerCAmelCase : Dict = n_layer
lowerCAmelCase : Tuple = n_head
lowerCAmelCase : Any = mem_len
lowerCAmelCase : Union[str, Any] = same_length
lowerCAmelCase : List[Any] = attn_type
lowerCAmelCase : int = clamp_len
lowerCAmelCase : List[str] = sample_softmax
lowerCAmelCase : Optional[int] = adaptive
lowerCAmelCase : Dict = dropout
lowerCAmelCase : Optional[Any] = dropatt
lowerCAmelCase : List[str] = untie_r
lowerCAmelCase : List[str] = init
lowerCAmelCase : Tuple = init_range
lowerCAmelCase : str = proj_init_std
lowerCAmelCase : str = init_std
lowerCAmelCase : Optional[int] = layer_norm_epsilon
super().__init__(eos_token_id=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> Optional[Any]:
# Message copied from Transformer-XL documentation
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def _snake_case ( self , lowercase_ ) -> Dict:
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 693 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] ={
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "detr"
_UpperCamelCase: Dict = ["past_key_values"]
_UpperCamelCase: Optional[int] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" )
lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ )
# set timm attributes to None
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None
lowerCAmelCase : Any = use_timm_backbone
lowerCAmelCase : int = backbone_config
lowerCAmelCase : Optional[int] = num_channels
lowerCAmelCase : Optional[Any] = num_queries
lowerCAmelCase : List[str] = d_model
lowerCAmelCase : Optional[int] = encoder_ffn_dim
lowerCAmelCase : Dict = encoder_layers
lowerCAmelCase : str = encoder_attention_heads
lowerCAmelCase : List[Any] = decoder_ffn_dim
lowerCAmelCase : List[Any] = decoder_layers
lowerCAmelCase : Union[str, Any] = decoder_attention_heads
lowerCAmelCase : str = dropout
lowerCAmelCase : Dict = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : str = activation_function
lowerCAmelCase : Optional[int] = init_std
lowerCAmelCase : Any = init_xavier_std
lowerCAmelCase : Dict = encoder_layerdrop
lowerCAmelCase : int = decoder_layerdrop
lowerCAmelCase : Tuple = encoder_layers
lowerCAmelCase : Optional[int] = auxiliary_loss
lowerCAmelCase : List[str] = position_embedding_type
lowerCAmelCase : Any = backbone
lowerCAmelCase : Union[str, Any] = use_pretrained_backbone
lowerCAmelCase : List[Any] = dilation
# Hungarian matcher
lowerCAmelCase : Tuple = class_cost
lowerCAmelCase : Union[str, Any] = bbox_cost
lowerCAmelCase : Optional[Any] = giou_cost
# Loss coefficients
lowerCAmelCase : List[Any] = mask_loss_coefficient
lowerCAmelCase : Optional[int] = dice_loss_coefficient
lowerCAmelCase : Tuple = bbox_loss_coefficient
lowerCAmelCase : Dict = giou_loss_coefficient
lowerCAmelCase : str = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> int:
return self.encoder_attention_heads
@property
def _snake_case ( self ) -> int:
return self.d_model
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any:
return cls(backbone_config=lowercase_ , **lowercase_ )
def _snake_case ( self ) -> Dict[str, any]:
lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase : List[str] = self.backbone_config.to_dict()
lowerCAmelCase : List[Any] = self.__class__.model_type
return output
class _a ( snake_case_ ):
_UpperCamelCase: Any = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-5
@property
def _snake_case ( self ) -> int:
return 12
| 693 | 1 |
import collections
import importlib.util
import os
import re
from pathlib import Path
lowerCAmelCase : List[str] ='src/transformers'
# Matches is_xxx_available()
lowerCAmelCase : Dict =re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
lowerCAmelCase : str =re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
lowerCAmelCase : int =re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
lowerCAmelCase : int =re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
lowerCAmelCase : Optional[Any] =re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
lowerCAmelCase : Any =re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
lowerCAmelCase : Optional[Any] =re.compile('^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
lowerCAmelCase : Optional[int] =re.compile('^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
lowerCAmelCase : Any =re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
lowerCAmelCase : List[str] =re.compile(r'^\s*try:')
# Catches a line with else:
lowerCAmelCase : int =re.compile(r'^\s*else:')
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if _re_test_backend.search(SCREAMING_SNAKE_CASE__ ) is None:
return None
lowerCAmelCase : List[str] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE__ )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f:
lowerCAmelCase : Optional[Any] = f.readlines()
lowerCAmelCase : Optional[Any] = 0
while line_index < len(SCREAMING_SNAKE_CASE__ ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE__ ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase : Dict = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase : Tuple = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Optional[Any] = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ).groups()[0]
lowerCAmelCase : Optional[int] = re.findall("""\[([^\]]+)\]""" ,SCREAMING_SNAKE_CASE__ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
lowerCAmelCase : str = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE__ )
if single_line_import_search is not None:
lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(SCREAMING_SNAKE_CASE__ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE__ )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase : Any = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase : str = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : Union[str, Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : Optional[Any] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
lowerCAmelCase : Dict = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ) is not None:
lowerCAmelCase : Union[str, Any] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(""", """ )
lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE__ )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ) is not None:
lowerCAmelCase : str = _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(""", """ )
lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE__ )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE__ ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE__ ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 1_2 + """\"""" ):
objects.append(line[1_3:-3] )
line_index += 1
lowerCAmelCase : Dict = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase : List[str] = []
while (
line_index < len(SCREAMING_SNAKE_CASE__ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
lowerCAmelCase : List[str] = lines[line_index]
lowerCAmelCase : Dict = _re_import.search(SCREAMING_SNAKE_CASE__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase : List[Any] = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE__ ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase : Tuple = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : Any = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : int = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
lowerCAmelCase : Union[str, Any] = lines[line_index]
lowerCAmelCase : Any = _re_import.search(SCREAMING_SNAKE_CASE__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 1_2 ):
objects.append(line[1_2:-2] )
line_index += 1
lowerCAmelCase : Tuple = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
def find_duplicates(SCREAMING_SNAKE_CASE__ ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE__ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase : Optional[Any] = []
for key in import_dict_objects.keys():
lowerCAmelCase : Optional[Any] = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
lowerCAmelCase : Dict = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase : Optional[int] = """base imports""" if key == """none""" else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Any = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE__ ):
if "__init__.py" in files:
lowerCAmelCase : str = os.path.join(SCREAMING_SNAKE_CASE__ ,"""__init__.py""" )
lowerCAmelCase : Optional[int] = parse_init(SCREAMING_SNAKE_CASE__ )
if objects is not None:
lowerCAmelCase : Union[str, Any] = analyze_results(*SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
lowerCAmelCase : Optional[Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append("""\n""".join(SCREAMING_SNAKE_CASE__ ) )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
raise ValueError("""\n\n""".join(SCREAMING_SNAKE_CASE__ ) )
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Optional[int] = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE__ ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(SCREAMING_SNAKE_CASE__ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE__ ) / folder).glob("""*.py""" ) ) ) == 0:
continue
lowerCAmelCase : Dict = str((Path(SCREAMING_SNAKE_CASE__ ) / folder).relative_to(SCREAMING_SNAKE_CASE__ ) )
lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep ,""".""" )
submodules.append(SCREAMING_SNAKE_CASE__ )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase : Optional[int] = str((Path(SCREAMING_SNAKE_CASE__ ) / fname).relative_to(SCREAMING_SNAKE_CASE__ ) )
lowerCAmelCase : Tuple = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE__ )
return submodules
lowerCAmelCase : List[Any] =[
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
]
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : List[Any] = importlib.util.spec_from_file_location(
"""transformers""" ,os.path.join(SCREAMING_SNAKE_CASE__ ,"""__init__.py""" ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,)
lowerCAmelCase : Union[str, Any] = spec.loader.load_module()
lowerCAmelCase : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE__ ) > 0:
lowerCAmelCase : int = """\n""".join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registered in the main init of Transformers:\n"""
F"""{list_of_modules}\n"""
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 693 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase : int =logging.getLogger()
lowerCAmelCase : str =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( snake_case_ ):
def _snake_case ( self , lowercase_ ) -> List[Any]:
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""}
lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] )
with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f:
f.write(lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str:
lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir()
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" )
lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" )
self._create_dummy_data(data_dir=lowercase_ )
lowerCAmelCase : str = f"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(f"""--gpus={gpus}""" )
if is_apex_available():
testargs.append("""--fp16""" )
else:
testargs.append("""--gpus=0""" )
testargs.append("""--distributed_backend=ddp_cpu""" )
testargs.append("""--num_processes=2""" )
lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(lowercase_ , env=self.get_env() )
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" )
with open(lowercase_ ) as f:
lowerCAmelCase : List[str] = json.load(lowercase_ )
return result
@require_torch_gpu
def _snake_case ( self ) -> Any:
lowerCAmelCase : Tuple = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_gpu
@require_ray
def _snake_case ( self ) -> int:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
@require_ray
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
| 693 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
lowerCAmelCase : Any ={
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json'
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class _a ( snake_case_ ):
_UpperCamelCase: Union[str, Any] = "speech_to_text_2"
_UpperCamelCase: Optional[int] = ["past_key_values"]
_UpperCamelCase: Dict = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , lowercase_=10000 , lowercase_=6 , lowercase_=2048 , lowercase_=4 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=2 , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=1024 , **lowercase_ , ) -> List[Any]:
lowerCAmelCase : str = vocab_size
lowerCAmelCase : List[Any] = d_model
lowerCAmelCase : Union[str, Any] = decoder_ffn_dim
lowerCAmelCase : List[str] = decoder_layers
lowerCAmelCase : List[Any] = decoder_attention_heads
lowerCAmelCase : Dict = dropout
lowerCAmelCase : int = attention_dropout
lowerCAmelCase : str = activation_dropout
lowerCAmelCase : int = activation_function
lowerCAmelCase : int = init_std
lowerCAmelCase : Any = decoder_layerdrop
lowerCAmelCase : str = use_cache
lowerCAmelCase : Any = decoder_layers
lowerCAmelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCAmelCase : Optional[Any] = max_target_positions
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Optional[int] ={
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "transfo-xl"
_UpperCamelCase: str = ["mems"]
_UpperCamelCase: Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : Union[str, Any] = []
self.cutoffs.extend(lowercase_ )
if proj_share_all_but_first:
lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs )
else:
lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs )
lowerCAmelCase : Optional[int] = d_model
lowerCAmelCase : List[Any] = d_embed
lowerCAmelCase : Union[str, Any] = d_head
lowerCAmelCase : List[Any] = d_inner
lowerCAmelCase : Optional[int] = div_val
lowerCAmelCase : List[Any] = pre_lnorm
lowerCAmelCase : Dict = n_layer
lowerCAmelCase : Tuple = n_head
lowerCAmelCase : Any = mem_len
lowerCAmelCase : Union[str, Any] = same_length
lowerCAmelCase : List[Any] = attn_type
lowerCAmelCase : int = clamp_len
lowerCAmelCase : List[str] = sample_softmax
lowerCAmelCase : Optional[int] = adaptive
lowerCAmelCase : Dict = dropout
lowerCAmelCase : Optional[Any] = dropatt
lowerCAmelCase : List[str] = untie_r
lowerCAmelCase : List[str] = init
lowerCAmelCase : Tuple = init_range
lowerCAmelCase : str = proj_init_std
lowerCAmelCase : str = init_std
lowerCAmelCase : Optional[int] = layer_norm_epsilon
super().__init__(eos_token_id=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> Optional[Any]:
# Message copied from Transformer-XL documentation
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def _snake_case ( self , lowercase_ ) -> Dict:
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0**9 ):
'''simple docstring'''
lowerCAmelCase : Tuple = 1
lowerCAmelCase : str = 2
lowerCAmelCase : str = 0
lowerCAmelCase : int = 0
lowerCAmelCase : Optional[int] = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
lowerCAmelCase : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 693 |
import torch
from diffusers import DiffusionPipeline
class _a ( snake_case_ ):
def __init__( self , lowercase_ , lowercase_ ) -> int:
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def __call__( self ) -> List[Any]:
lowerCAmelCase : Union[str, Any] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowerCAmelCase : Union[str, Any] = 1
lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample
lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ )
return result
| 693 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : str ={
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "dpr"
def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_ = 0 , **lowercase_ , ) -> Optional[Any]:
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
lowerCAmelCase : Optional[Any] = vocab_size
lowerCAmelCase : Optional[int] = hidden_size
lowerCAmelCase : str = num_hidden_layers
lowerCAmelCase : List[Any] = num_attention_heads
lowerCAmelCase : int = hidden_act
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : List[str] = hidden_dropout_prob
lowerCAmelCase : Any = attention_probs_dropout_prob
lowerCAmelCase : Tuple = max_position_embeddings
lowerCAmelCase : Any = type_vocab_size
lowerCAmelCase : int = initializer_range
lowerCAmelCase : Tuple = layer_norm_eps
lowerCAmelCase : str = projection_dim
lowerCAmelCase : Optional[Any] = position_embedding_type
| 693 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
requests.request("""GET""" ,"""https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 )
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" ,"""https://huggingface.co""" )
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
http_head("""https://huggingface.co""" )
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if curr_ind == len(SCREAMING_SNAKE_CASE__ ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ):
if valid_connection(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
# Insert current vertex into path as next transition
lowerCAmelCase : Any = next_ver
# Validate created path
if util_hamilton_cycle(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,curr_ind + 1 ):
return True
# Backtrack
lowerCAmelCase : Optional[Any] = -1
return False
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0 ):
'''simple docstring'''
lowerCAmelCase : List[str] = [-1] * (len(SCREAMING_SNAKE_CASE__ ) + 1)
# initialize start and end of path with starting index
lowerCAmelCase : Any = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1 ) else []
| 693 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class _a ( unittest.TestCase ):
def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
lowerCAmelCase : Optional[int] = parent
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : Dict = num_channels
lowerCAmelCase : str = min_resolution
lowerCAmelCase : Optional[Any] = max_resolution
lowerCAmelCase : Optional[int] = do_resize
lowerCAmelCase : List[str] = size
lowerCAmelCase : Dict = do_rescale
lowerCAmelCase : Union[str, Any] = rescale_factor
lowerCAmelCase : int = do_normalize
lowerCAmelCase : Union[str, Any] = image_mean
lowerCAmelCase : Dict = image_std
lowerCAmelCase : Optional[int] = do_pad
def _snake_case ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]:
if not batched:
lowerCAmelCase : Tuple = image_inputs[0]
if isinstance(lowercase_ , Image.Image ):
lowerCAmelCase , lowerCAmelCase : Dict = image.size
else:
lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w )
lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""]
elif w > h:
lowerCAmelCase : List[Any] = self.size["""shortest_edge"""]
lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h )
else:
lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""]
lowerCAmelCase : List[str] = self.size["""shortest_edge"""]
else:
lowerCAmelCase : Optional[int] = []
for image in image_inputs:
lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0]
lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : List[str] = DetrImageProcessingTester(self )
@property
def _snake_case ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowercase_ , """image_std""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) )
self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_pad""" ) )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , lowercase_ )
lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , lowercase_ )
def _snake_case ( self ) -> List[Any]:
pass
def _snake_case ( self ) -> List[Any]:
# Initialize image_processing
lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image )
# Test not batched input
lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[int]:
# Initialize image_processing
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> List[str]:
# Initialize image_processing
lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _snake_case ( self ) -> int:
# prepare image and target
lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : str = json.loads(f.read() )
lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target}
# encode them
lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" )
lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : List[Any] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify orig_size
lowerCAmelCase : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
@slow
def _snake_case ( self ) -> int:
# prepare image, target and masks_path
lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : Any = json.loads(f.read() )
lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" )
lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : Tuple = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify masks
lowerCAmelCase : Union[str, Any] = 822873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ )
# verify orig_size
lowerCAmelCase : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : List[str] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
| 693 | 1 |
lowerCAmelCase : str ={
'Pillow': 'Pillow<10.0.0',
'accelerate': 'accelerate>=0.20.3',
'av': 'av==9.2.0',
'beautifulsoup4': 'beautifulsoup4',
'black': 'black~=23.1',
'codecarbon': 'codecarbon==1.2.0',
'cookiecutter': 'cookiecutter==1.7.3',
'dataclasses': 'dataclasses',
'datasets': 'datasets!=2.5.0',
'decord': 'decord==0.6.0',
'deepspeed': 'deepspeed>=0.9.3',
'diffusers': 'diffusers',
'dill': 'dill<0.3.5',
'evaluate': 'evaluate>=0.2.0',
'fairscale': 'fairscale>0.3',
'faiss-cpu': 'faiss-cpu',
'fastapi': 'fastapi',
'filelock': 'filelock',
'flax': 'flax>=0.4.1,<=0.7.0',
'ftfy': 'ftfy',
'fugashi': 'fugashi>=1.0',
'GitPython': 'GitPython<3.1.19',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0',
'importlib_metadata': 'importlib_metadata',
'ipadic': 'ipadic>=1.0.0,<2.0',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13',
'jaxlib': 'jaxlib>=0.1.65,<=0.4.13',
'jieba': 'jieba',
'kenlm': 'kenlm',
'keras-nlp': 'keras-nlp>=0.3.1',
'librosa': 'librosa',
'nltk': 'nltk',
'natten': 'natten>=0.14.6',
'numpy': 'numpy>=1.17',
'onnxconverter-common': 'onnxconverter-common',
'onnxruntime-tools': 'onnxruntime-tools>=1.4.2',
'onnxruntime': 'onnxruntime>=1.4.0',
'opencv-python': 'opencv-python',
'optuna': 'optuna',
'optax': 'optax>=0.0.8,<=0.1.4',
'packaging': 'packaging>=20.0',
'parameterized': 'parameterized',
'phonemizer': 'phonemizer',
'protobuf': 'protobuf',
'psutil': 'psutil',
'pyyaml': 'pyyaml>=5.1',
'pydantic': 'pydantic<2',
'pytest': 'pytest>=7.2.0',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'python': 'python>=3.8.0',
'ray[tune]': 'ray[tune]',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'rhoknp': 'rhoknp>=1.1.0,<1.3.1',
'rjieba': 'rjieba',
'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1',
'ruff': 'ruff>=0.0.241,<=0.0.259',
'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0',
'sacremoses': 'sacremoses',
'safetensors': 'safetensors>=0.3.1',
'sagemaker': 'sagemaker>=2.31.0',
'scikit-learn': 'scikit-learn',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'sigopt': 'sigopt',
'starlette': 'starlette',
'sudachipy': 'sudachipy>=0.6.6',
'sudachidict_core': 'sudachidict_core>=20220729',
'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14',
'tensorflow': 'tensorflow>=2.6,<2.14',
'tensorflow-text': 'tensorflow-text<2.14',
'tf2onnx': 'tf2onnx',
'timeout-decorator': 'timeout-decorator',
'timm': 'timm',
'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14',
'torch': 'torch>=1.9,!=1.12.0',
'torchaudio': 'torchaudio',
'torchvision': 'torchvision',
'pyctcdecode': 'pyctcdecode>=0.4.0',
'tqdm': 'tqdm>=4.27',
'unidic': 'unidic>=1.0.2',
'unidic_lite': 'unidic_lite>=1.0.7',
'urllib3': 'urllib3<2.0.0',
'uvicorn': 'uvicorn',
}
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Tuple = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = 0
while b > 0:
if b & 1:
lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 693 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Union[str, Any] ={
'configuration_x_clip': [
'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XCLIPConfig',
'XCLIPTextConfig',
'XCLIPVisionConfig',
],
'processing_x_clip': ['XCLIPProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'XCLIPModel',
'XCLIPPreTrainedModel',
'XCLIPTextModel',
'XCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 |
from math import factorial
class _a :
def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]:
lowerCAmelCase : Union[str, Any] = real
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Tuple = [1] * rank
else:
lowerCAmelCase : Any = rank
def __repr__( self ) -> int:
return (
f"""{self.real}+"""
f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}"""
)
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[Any] = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , lowercase_ )
def __add__( self , lowercase_ ) -> Tuple:
if not isinstance(lowercase_ , lowercase_ ):
return Dual(self.real + other , self.duals )
lowerCAmelCase : int = self.duals.copy()
lowerCAmelCase : Tuple = other.duals.copy()
if len(lowercase_ ) > len(lowercase_ ):
o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
elif len(lowercase_ ) < len(lowercase_ ):
s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
lowerCAmelCase : List[Any] = []
for i in range(len(lowercase_ ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , lowercase_ )
_UpperCamelCase: List[Any] = __add__
def __sub__( self , lowercase_ ) -> Union[str, Any]:
return self + other * -1
def __mul__( self , lowercase_ ) -> Optional[int]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Union[str, Any] = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , lowercase_ )
lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , lowercase_ )
_UpperCamelCase: str = __mul__
def __truediv__( self , lowercase_ ) -> Optional[Any]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[str] = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , lowercase_ )
raise ValueError
def __floordiv__( self , lowercase_ ) -> int:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , lowercase_ )
raise ValueError
def __pow__( self , lowercase_ ) -> str:
if n < 0 or isinstance(lowercase_ , lowercase_ ):
raise ValueError("""power must be a positive integer""" )
if n == 0:
return 1
if n == 1:
return self
lowerCAmelCase : int = self
for _ in range(n - 1 ):
x *= self
return x
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if not callable(SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires a function as input for func""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ):
raise ValueError("""differentiate() requires a float as input for position""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires an int as input for order""" )
lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 )
lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return y**2 * y**4
print(differentiate(f, 9, 2))
| 693 | 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Tuple ={
'configuration_informer': [
'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'InformerForPrediction',
'InformerModel',
'InformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
_UpperCamelCase: List[Any] = ["keras_nlp"]
def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple:
requires_backends(self , ["""keras_nlp"""] )
| 693 | 1 |
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if "cls_token" in name:
lowerCAmelCase : Union[str, Any] = name.replace("""cls_token""" ,"""vit.embeddings.cls_token""" )
if "mask_token" in name:
lowerCAmelCase : Tuple = name.replace("""mask_token""" ,"""decoder.mask_token""" )
if "decoder_pos_embed" in name:
lowerCAmelCase : Optional[int] = name.replace("""decoder_pos_embed""" ,"""decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
lowerCAmelCase : Optional[Any] = name.replace("""pos_embed""" ,"""vit.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
lowerCAmelCase : int = name.replace("""patch_embed.proj""" ,"""vit.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowerCAmelCase : List[Any] = name.replace("""patch_embed.norm""" ,"""vit.embeddings.norm""" )
if "decoder_blocks" in name:
lowerCAmelCase : Optional[Any] = name.replace("""decoder_blocks""" ,"""decoder.decoder_layers""" )
if "blocks" in name:
lowerCAmelCase : Any = name.replace("""blocks""" ,"""vit.encoder.layer""" )
if "attn.proj" in name:
lowerCAmelCase : List[str] = name.replace("""attn.proj""" ,"""attention.output.dense""" )
if "attn" in name:
lowerCAmelCase : Optional[Any] = name.replace("""attn""" ,"""attention.self""" )
if "norm1" in name:
lowerCAmelCase : Dict = name.replace("""norm1""" ,"""layernorm_before""" )
if "norm2" in name:
lowerCAmelCase : List[Any] = name.replace("""norm2""" ,"""layernorm_after""" )
if "mlp.fc1" in name:
lowerCAmelCase : Union[str, Any] = name.replace("""mlp.fc1""" ,"""intermediate.dense""" )
if "mlp.fc2" in name:
lowerCAmelCase : int = name.replace("""mlp.fc2""" ,"""output.dense""" )
if "decoder_embed" in name:
lowerCAmelCase : Dict = name.replace("""decoder_embed""" ,"""decoder.decoder_embed""" )
if "decoder_norm" in name:
lowerCAmelCase : Any = name.replace("""decoder_norm""" ,"""decoder.decoder_norm""" )
if "decoder_pred" in name:
lowerCAmelCase : Dict = name.replace("""decoder_pred""" ,"""decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name:
lowerCAmelCase : Optional[Any] = name.replace("""norm.weight""" ,"""vit.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name:
lowerCAmelCase : Dict = name.replace("""norm.bias""" ,"""vit.layernorm.bias""" )
return name
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Union[str, Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ )
if "qkv" in key:
lowerCAmelCase : List[Any] = key.split(""".""" )
lowerCAmelCase : Dict = int(key_split[1] )
if "decoder_blocks" in key:
lowerCAmelCase : Tuple = config.decoder_hidden_size
lowerCAmelCase : Optional[int] = """decoder.decoder_layers."""
if "weight" in key:
lowerCAmelCase : Optional[Any] = val[:dim, :]
lowerCAmelCase : int = val[dim : dim * 2, :]
lowerCAmelCase : List[Any] = val[-dim:, :]
elif "bias" in key:
lowerCAmelCase : int = val[:dim]
lowerCAmelCase : Dict = val[dim : dim * 2]
lowerCAmelCase : Tuple = val[-dim:]
else:
lowerCAmelCase : List[str] = config.hidden_size
lowerCAmelCase : Optional[Any] = """vit.encoder.layer."""
if "weight" in key:
lowerCAmelCase : int = val[:dim, :]
lowerCAmelCase : Optional[Any] = val[dim : dim * 2, :]
lowerCAmelCase : str = val[-dim:, :]
elif "bias" in key:
lowerCAmelCase : Tuple = val[:dim]
lowerCAmelCase : int = val[dim : dim * 2]
lowerCAmelCase : Union[str, Any] = val[-dim:]
else:
lowerCAmelCase : Union[str, Any] = val
return orig_state_dict
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Any = ViTMAEConfig()
if "large" in checkpoint_url:
lowerCAmelCase : str = 1_0_2_4
lowerCAmelCase : Union[str, Any] = 4_0_9_6
lowerCAmelCase : List[Any] = 2_4
lowerCAmelCase : int = 1_6
elif "huge" in checkpoint_url:
lowerCAmelCase : Optional[int] = 1_4
lowerCAmelCase : Dict = 1_2_8_0
lowerCAmelCase : Optional[Any] = 5_1_2_0
lowerCAmelCase : str = 3_2
lowerCAmelCase : Optional[int] = 1_6
lowerCAmelCase : Dict = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" )["""model"""]
lowerCAmelCase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size )
lowerCAmelCase : List[str] = convert_state_dict(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
model.eval()
lowerCAmelCase : str = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg"""
lowerCAmelCase : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ ,stream=SCREAMING_SNAKE_CASE__ ).raw )
lowerCAmelCase : List[Any] = ViTMAEImageProcessor(size=config.image_size )
lowerCAmelCase : Dict = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase : int = model(**SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = outputs.logits
if "large" in checkpoint_url:
lowerCAmelCase : Any = torch.tensor(
[[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] )
elif "huge" in checkpoint_url:
lowerCAmelCase : Any = torch.tensor(
[[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] )
else:
lowerCAmelCase : List[Any] = torch.tensor(
[[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase : Tuple =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowerCAmelCase : Any =parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 693 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 693 | 1 |
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class _a ( snake_case_ ):
_UpperCamelCase: "DiagonalGaussianDistribution"
class _a ( snake_case_ , snake_case_ ):
_UpperCamelCase: int = True
@register_to_config
def __init__( self , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = ("DownEncoderBlock2D",) , lowercase_ = ("UpDecoderBlock2D",) , lowercase_ = (64,) , lowercase_ = 1 , lowercase_ = "silu" , lowercase_ = 4 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = 0.1_8_2_1_5 , ) -> Dict:
super().__init__()
# pass init params to Encoder
lowerCAmelCase : Dict = Encoder(
in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , )
# pass init params to Decoder
lowerCAmelCase : Union[str, Any] = Decoder(
in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , norm_num_groups=lowercase_ , act_fn=lowercase_ , )
lowerCAmelCase : Dict = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
lowerCAmelCase : Optional[Any] = nn.Convad(lowercase_ , lowercase_ , 1 )
lowerCAmelCase : Union[str, Any] = False
lowerCAmelCase : str = False
# only relevant if vae tiling is enabled
lowerCAmelCase : Optional[int] = self.config.sample_size
lowerCAmelCase : str = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
lowerCAmelCase : List[str] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
lowerCAmelCase : Union[str, Any] = 0.2_5
def _snake_case ( self , lowercase_ , lowercase_=False ) -> Union[str, Any]:
if isinstance(lowercase_ , (Encoder, Decoder) ):
lowerCAmelCase : Tuple = value
def _snake_case ( self , lowercase_ = True ) -> Dict:
lowerCAmelCase : Optional[int] = use_tiling
def _snake_case ( self ) -> List[str]:
self.enable_tiling(lowercase_ )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Optional[Any] = True
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Tuple = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def _snake_case ( self ) -> Dict[str, AttentionProcessor]:
lowerCAmelCase : Dict = {}
def fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_ ):
if hasattr(lowercase_ , """set_processor""" ):
lowerCAmelCase : Optional[Any] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowercase_ , lowercase_ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_ )
return processors
def _snake_case ( self , lowercase_ ) -> Union[str, Any]:
lowerCAmelCase : Union[str, Any] = len(self.attn_processors.keys() )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(lowercase_ )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_ ):
if hasattr(lowercase_ , """set_processor""" ):
if not isinstance(lowercase_ , lowercase_ ):
module.set_processor(lowercase_ )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowercase_ , lowercase_ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_ )
def _snake_case ( self ) -> Optional[Any]:
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def _snake_case ( self , lowercase_ , lowercase_ = True ) -> AutoencoderKLOutput:
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(lowercase_ , return_dict=lowercase_ )
if self.use_slicing and x.shape[0] > 1:
lowerCAmelCase : Union[str, Any] = [self.encoder(lowercase_ ) for x_slice in x.split(1 )]
lowerCAmelCase : Union[str, Any] = torch.cat(lowercase_ )
else:
lowerCAmelCase : Dict = self.encoder(lowercase_ )
lowerCAmelCase : Tuple = self.quant_conv(lowercase_ )
lowerCAmelCase : List[Any] = DiagonalGaussianDistribution(lowercase_ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(lowercase_ , return_dict=lowercase_ )
lowerCAmelCase : Tuple = self.post_quant_conv(lowercase_ )
lowerCAmelCase : Tuple = self.decoder(lowercase_ )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
@apply_forward_hook
def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_slicing and z.shape[0] > 1:
lowerCAmelCase : Optional[Any] = [self._decode(lowercase_ ).sample for z_slice in z.split(1 )]
lowerCAmelCase : str = torch.cat(lowercase_ )
else:
lowerCAmelCase : List[str] = self._decode(lowercase_ ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
lowerCAmelCase : int = min(a.shape[2] , b.shape[2] , lowercase_ )
for y in range(lowercase_ ):
lowerCAmelCase : Dict = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Any:
lowerCAmelCase : Optional[Any] = min(a.shape[3] , b.shape[3] , lowercase_ )
for x in range(lowercase_ ):
lowerCAmelCase : List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def _snake_case ( self , lowercase_ , lowercase_ = True ) -> AutoencoderKLOutput:
lowerCAmelCase : int = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
lowerCAmelCase : str = int(self.tile_latent_min_size * self.tile_overlap_factor )
lowerCAmelCase : Optional[Any] = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
lowerCAmelCase : Optional[int] = []
for i in range(0 , x.shape[2] , lowercase_ ):
lowerCAmelCase : Union[str, Any] = []
for j in range(0 , x.shape[3] , lowercase_ ):
lowerCAmelCase : List[Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
lowerCAmelCase : List[str] = self.encoder(lowercase_ )
lowerCAmelCase : Optional[int] = self.quant_conv(lowercase_ )
row.append(lowercase_ )
rows.append(lowercase_ )
lowerCAmelCase : int = []
for i, row in enumerate(lowercase_ ):
lowerCAmelCase : List[Any] = []
for j, tile in enumerate(lowercase_ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
lowerCAmelCase : Any = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ )
if j > 0:
lowerCAmelCase : int = self.blend_h(row[j - 1] , lowercase_ , lowercase_ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(lowercase_ , dim=3 ) )
lowerCAmelCase : Tuple = torch.cat(lowercase_ , dim=2 )
lowerCAmelCase : Dict = DiagonalGaussianDistribution(lowercase_ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
lowerCAmelCase : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
lowerCAmelCase : Any = int(self.tile_sample_min_size * self.tile_overlap_factor )
lowerCAmelCase : Optional[Any] = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
lowerCAmelCase : List[str] = []
for i in range(0 , z.shape[2] , lowercase_ ):
lowerCAmelCase : int = []
for j in range(0 , z.shape[3] , lowercase_ ):
lowerCAmelCase : Any = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
lowerCAmelCase : int = self.post_quant_conv(lowercase_ )
lowerCAmelCase : Optional[Any] = self.decoder(lowercase_ )
row.append(lowercase_ )
rows.append(lowercase_ )
lowerCAmelCase : Union[str, Any] = []
for i, row in enumerate(lowercase_ ):
lowerCAmelCase : List[Any] = []
for j, tile in enumerate(lowercase_ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
lowerCAmelCase : List[Any] = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ )
if j > 0:
lowerCAmelCase : Optional[Any] = self.blend_h(row[j - 1] , lowercase_ , lowercase_ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(lowercase_ , dim=3 ) )
lowerCAmelCase : List[Any] = torch.cat(lowercase_ , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = False , lowercase_ = True , lowercase_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]:
lowerCAmelCase : List[Any] = sample
lowerCAmelCase : List[str] = self.encode(lowercase_ ).latent_dist
if sample_posterior:
lowerCAmelCase : Optional[Any] = posterior.sample(generator=lowercase_ )
else:
lowerCAmelCase : Optional[Any] = posterior.mode()
lowerCAmelCase : Dict = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if p < 2:
raise ValueError("""p should not be less than 2!""" )
elif p == 2:
return True
lowerCAmelCase : List[Any] = 4
lowerCAmelCase : Tuple = (1 << p) - 1
for _ in range(p - 2 ):
lowerCAmelCase : Dict = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 693 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : Tuple ='▁'
lowerCAmelCase : str ={'vocab_file': 'spiece.model'}
lowerCAmelCase : Tuple ={
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}
}
lowerCAmelCase : Union[str, Any] ={
'google/pegasus-xsum': 512,
}
lowerCAmelCase : Any =logging.get_logger(__name__)
class _a ( snake_case_ ):
_UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES
_UpperCamelCase: Union[str, Any] = VOCAB_FILES_NAMES
_UpperCamelCase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase: Optional[Any] = ["input_ids", "attention_mask"]
def __init__( self , lowercase_ , lowercase_="<pad>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<mask_2>" , lowercase_="<mask_1>" , lowercase_=None , lowercase_=103 , lowercase_ = None , **lowercase_ , ) -> None:
lowerCAmelCase : Any = offset
if additional_special_tokens is not None:
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError(
f"""additional_special_tokens should be of type {type(lowercase_ )}, but is"""
f""" {type(lowercase_ )}""" )
lowerCAmelCase : List[Any] = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 )
]
if len(set(lowercase_ ) ) != len(lowercase_ ):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
lowerCAmelCase : int = additional_special_tokens_extended
else:
lowerCAmelCase : int = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )]
lowerCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , pad_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
lowerCAmelCase : int = mask_token_sent
lowerCAmelCase : Tuple = vocab_file
lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase_ )
# add special tokens to encoder dict
lowerCAmelCase : Dict[int, str] = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()}
@property
def _snake_case ( self ) -> int:
return len(self.sp_model ) + self.offset
def _snake_case ( self ) -> Dict[str, int]:
lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> str:
lowerCAmelCase : List[str] = self.__dict__.copy()
lowerCAmelCase : Tuple = None
return state
def __setstate__( self , lowercase_ ) -> Dict:
lowerCAmelCase : List[Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowerCAmelCase : str = {}
lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , lowercase_ ) -> List[str]:
return self.sp_model.encode(lowercase_ , out_type=lowercase_ )
def _snake_case ( self , lowercase_ ) -> int:
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
lowerCAmelCase : Dict = self.sp_model.piece_to_id(lowercase_ )
return sp_id + self.offset
def _snake_case ( self , lowercase_ ) -> str:
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
lowerCAmelCase : Union[str, Any] = self.sp_model.IdToPiece(index - self.offset )
return token
def _snake_case ( self , lowercase_ ) -> Optional[int]:
lowerCAmelCase : List[Any] = []
lowerCAmelCase : List[str] = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowercase_ ) + token
lowerCAmelCase : Union[str, Any] = []
else:
current_sub_tokens.append(lowercase_ )
out_string += self.sp_model.decode(lowercase_ )
return out_string.strip()
def _snake_case ( self , lowercase_=False ) -> Optional[int]:
return 1
def _snake_case ( self , lowercase_ ) -> Optional[Any]:
lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> List[int]:
if already_has_special_tokens:
return self._special_token_mask(lowercase_ )
elif token_ids_a is None:
return self._special_token_mask(lowercase_ ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def _snake_case ( self , lowercase_ , lowercase_=None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]:
if not os.path.isdir(lowercase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase : int = os.path.join(
lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ , """wb""" ) as fi:
lowerCAmelCase : int = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
| 693 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline
_UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
_UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} )
_UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"}
def _snake_case ( self ) -> int:
return self._get_superresolution_dummy_components()
def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]:
if str(lowercase_ ).startswith("""mps""" ):
lowerCAmelCase : Any = torch.manual_seed(lowercase_ )
else:
lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowerCAmelCase : Optional[int] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _snake_case ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def _snake_case ( self ) -> int:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def _snake_case ( self ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def _snake_case ( self ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def _snake_case ( self ) -> Any:
self._test_save_load_local()
def _snake_case ( self ) -> str:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 693 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "llama"
_UpperCamelCase: List[str] = ["past_key_values"]
def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : str = max_position_embeddings
lowerCAmelCase : int = hidden_size
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : int = num_hidden_layers
lowerCAmelCase : Any = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
lowerCAmelCase : Any = num_attention_heads
lowerCAmelCase : Any = num_key_value_heads
lowerCAmelCase : Any = hidden_act
lowerCAmelCase : Union[str, Any] = initializer_range
lowerCAmelCase : str = rms_norm_eps
lowerCAmelCase : int = pretraining_tp
lowerCAmelCase : int = use_cache
lowerCAmelCase : Optional[Any] = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , )
def _snake_case ( self ) -> Dict:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f"""got {self.rope_scaling}""" )
lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ )
lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 693 | 1 |
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
lowerCAmelCase : Any =TypeVar('KT')
lowerCAmelCase : Optional[int] =TypeVar('VT')
class _a ( Generic[KT, VT] ):
def __init__( self , lowercase_ = "root" , lowercase_ = None ) -> List[str]:
lowerCAmelCase : str = key
lowerCAmelCase : Tuple = value
lowerCAmelCase : list[Node[KT, VT]] = []
def __repr__( self ) -> str:
return f"""Node({self.key}: {self.value})"""
@property
def _snake_case ( self ) -> int:
return len(self.forward )
class _a ( Generic[KT, VT] ):
def __init__( self , lowercase_ = 0.5 , lowercase_ = 16 ) -> Optional[Any]:
lowerCAmelCase : Node[KT, VT] = Node[KT, VT]()
lowerCAmelCase : Union[str, Any] = 0
lowerCAmelCase : Any = p
lowerCAmelCase : Optional[int] = max_level
def __str__( self ) -> str:
lowerCAmelCase : Any = list(self )
if len(lowercase_ ) == 0:
return f"""SkipList(level={self.level})"""
lowerCAmelCase : List[Any] = max((len(str(lowercase_ ) ) for item in items) , default=4 )
lowerCAmelCase : Tuple = max(lowercase_ , 4 ) + 4
lowerCAmelCase : Dict = self.head
lowerCAmelCase : Tuple = []
lowerCAmelCase : str = node.forward.copy()
lines.append(f"""[{node.key}]""".ljust(lowercase_ , """-""" ) + """* """ * len(lowercase_ ) )
lines.append(""" """ * label_size + """| """ * len(lowercase_ ) )
while len(node.forward ) != 0:
lowerCAmelCase : Union[str, Any] = node.forward[0]
lines.append(
f"""[{node.key}]""".ljust(lowercase_ , """-""" )
+ """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) )
lines.append(""" """ * label_size + """| """ * len(lowercase_ ) )
lowerCAmelCase : Dict = node.forward
lines.append("""None""".ljust(lowercase_ ) + """* """ * len(lowercase_ ) )
return f"""SkipList(level={self.level})\n""" + "\n".join(lowercase_ )
def __iter__( self ) -> Optional[Any]:
lowerCAmelCase : Union[str, Any] = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
lowerCAmelCase : Dict = node.forward[0]
def _snake_case ( self ) -> int:
lowerCAmelCase : Union[str, Any] = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def _snake_case ( self , lowercase_ ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]:
lowerCAmelCase : Tuple = []
lowerCAmelCase : Optional[Any] = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
lowerCAmelCase : Union[str, Any] = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(lowercase_ )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def _snake_case ( self , lowercase_ ) -> Union[str, Any]:
lowerCAmelCase , lowerCAmelCase : Dict = self._locate_node(lowercase_ )
if node is not None:
for i, update_node in enumerate(lowercase_ ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
lowerCAmelCase : Union[str, Any] = node.forward[i]
else:
lowerCAmelCase : List[Any] = update_node.forward[:i]
def _snake_case ( self , lowercase_ , lowercase_ ) -> List[Any]:
lowerCAmelCase , lowerCAmelCase : Tuple = self._locate_node(lowercase_ )
if node is not None:
lowerCAmelCase : Union[str, Any] = value
else:
lowerCAmelCase : str = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , lowercase_ ):
update_vector.append(self.head )
lowerCAmelCase : List[Any] = level
lowerCAmelCase : List[str] = Node(lowercase_ , lowercase_ )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(lowercase_ )
else:
lowerCAmelCase : Optional[Any] = new_node
def _snake_case ( self , lowercase_ ) -> VT | None:
lowerCAmelCase , lowerCAmelCase : Any = self._locate_node(lowercase_ )
if node is not None:
return node.value
return None
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Tuple = SkipList()
skip_list.insert("""Key1""" ,3 )
skip_list.insert("""Key2""" ,1_2 )
skip_list.insert("""Key3""" ,4_1 )
skip_list.insert("""Key4""" ,-1_9 )
lowerCAmelCase : Any = skip_list.head
lowerCAmelCase : Dict = {}
while node.level != 0:
lowerCAmelCase : int = node.forward[0]
lowerCAmelCase : List[Any] = node.value
assert len(SCREAMING_SNAKE_CASE__ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 1_2
assert all_values["Key3"] == 4_1
assert all_values["Key4"] == -1_9
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : List[str] = SkipList()
skip_list.insert("""Key1""" ,1_0 )
skip_list.insert("""Key1""" ,1_2 )
skip_list.insert("""Key5""" ,7 )
skip_list.insert("""Key7""" ,1_0 )
skip_list.insert("""Key10""" ,5 )
skip_list.insert("""Key7""" ,7 )
skip_list.insert("""Key5""" ,5 )
skip_list.insert("""Key10""" ,1_0 )
lowerCAmelCase : Optional[int] = skip_list.head
lowerCAmelCase : str = {}
while node.level != 0:
lowerCAmelCase : Optional[Any] = node.forward[0]
lowerCAmelCase : Optional[Any] = node.value
if len(SCREAMING_SNAKE_CASE__ ) != 4:
print()
assert len(SCREAMING_SNAKE_CASE__ ) == 4
assert all_values["Key1"] == 1_2
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 1_0
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : int = SkipList()
assert skip_list.find("""Some key""" ) is None
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Any = SkipList()
skip_list.insert("""Key2""" ,2_0 )
assert skip_list.find("""Key2""" ) == 2_0
skip_list.insert("""Some Key""" ,1_0 )
skip_list.insert("""Key2""" ,8 )
skip_list.insert("""V""" ,1_3 )
assert skip_list.find("""Y""" ) is None
assert skip_list.find("""Key2""" ) == 8
assert skip_list.find("""Some Key""" ) == 1_0
assert skip_list.find("""V""" ) == 1_3
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : int = SkipList()
skip_list.delete("""Some key""" )
assert len(skip_list.head.forward ) == 0
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : int = SkipList()
skip_list.insert("""Key1""" ,1_2 )
skip_list.insert("""V""" ,1_3 )
skip_list.insert("""X""" ,1_4 )
skip_list.insert("""Key2""" ,1_5 )
skip_list.delete("""V""" )
skip_list.delete("""Key2""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""Key2""" ) is None
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = SkipList()
skip_list.insert("""Key1""" ,1_2 )
skip_list.insert("""V""" ,1_3 )
skip_list.insert("""X""" ,1_4 )
skip_list.insert("""Key2""" ,1_5 )
skip_list.delete("""V""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) == 1_4
assert skip_list.find("""Key1""" ) == 1_2
assert skip_list.find("""Key2""" ) == 1_5
skip_list.delete("""X""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) == 1_2
assert skip_list.find("""Key2""" ) == 1_5
skip_list.delete("""Key1""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) is None
assert skip_list.find("""Key2""" ) == 1_5
skip_list.delete("""Key2""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) is None
assert skip_list.find("""Key2""" ) is None
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = SkipList()
skip_list.insert("""Key1""" ,1_2 )
skip_list.insert("""V""" ,1_3 )
skip_list.insert("""X""" ,1_4_2 )
skip_list.insert("""Key2""" ,1_5 )
skip_list.delete("""X""" )
def traverse_keys(SCREAMING_SNAKE_CASE__ ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(SCREAMING_SNAKE_CASE__ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def _UpperCAmelCase ( ):
'''simple docstring'''
def is_sorted(SCREAMING_SNAKE_CASE__ ):
return all(next_item >= item for item, next_item in zip(SCREAMING_SNAKE_CASE__ ,lst[1:] ) )
lowerCAmelCase : Dict = SkipList()
for i in range(1_0 ):
skip_list.insert(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
skip_list.insert(-1_2 ,-1_2 )
skip_list.insert(7_7 ,7_7 )
assert is_sorted(list(SCREAMING_SNAKE_CASE__ ) )
def _UpperCAmelCase ( ):
'''simple docstring'''
for _ in range(1_0_0 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : int = SkipList()
skip_list.insert(2 ,"""2""" )
skip_list.insert(4 ,"""4""" )
skip_list.insert(6 ,"""4""" )
skip_list.insert(4 ,"""5""" )
skip_list.insert(8 ,"""4""" )
skip_list.insert(9 ,"""4""" )
skip_list.delete(4 )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 693 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
'microsoft/swin-tiny-patch4-window7-224': (
'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _a ( snake_case_ , snake_case_ ):
_UpperCamelCase: int = "swin"
_UpperCamelCase: str = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple:
super().__init__(**lowercase_ )
lowerCAmelCase : Optional[int] = image_size
lowerCAmelCase : Optional[Any] = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : List[Any] = embed_dim
lowerCAmelCase : str = depths
lowerCAmelCase : List[str] = len(lowercase_ )
lowerCAmelCase : Any = num_heads
lowerCAmelCase : str = window_size
lowerCAmelCase : List[str] = mlp_ratio
lowerCAmelCase : List[Any] = qkv_bias
lowerCAmelCase : List[str] = hidden_dropout_prob
lowerCAmelCase : int = attention_probs_dropout_prob
lowerCAmelCase : Any = drop_path_rate
lowerCAmelCase : int = hidden_act
lowerCAmelCase : int = use_absolute_embeddings
lowerCAmelCase : Dict = layer_norm_eps
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )]
lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
class _a ( snake_case_ ):
_UpperCamelCase: int = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-4
| 693 | 1 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "linear"
_UpperCamelCase: int = "cosine"
_UpperCamelCase: Dict = "cosine_with_restarts"
_UpperCamelCase: Any = "polynomial"
_UpperCamelCase: List[str] = "constant"
_UpperCamelCase: Optional[int] = "constant_with_warmup"
_UpperCamelCase: str = "piecewise_constant"
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ):
'''simple docstring'''
return LambdaLR(SCREAMING_SNAKE_CASE__ ,lambda SCREAMING_SNAKE_CASE__ : 1 ,last_epoch=SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ):
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE__ ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE__ ) / float(max(1.0 ,SCREAMING_SNAKE_CASE__ ) )
return 1.0
return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = {}
lowerCAmelCase : List[Any] = step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
lowerCAmelCase , lowerCAmelCase : List[Any] = rule_str.split(""":""" )
lowerCAmelCase : List[str] = int(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[int] = float(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : int = value
lowerCAmelCase : Optional[Any] = float(rule_list[-1] )
def create_rules_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
def rule_func(SCREAMING_SNAKE_CASE__ ) -> float:
lowerCAmelCase : List[str] = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE__ ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
lowerCAmelCase : Optional[Any] = create_rules_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=-1 ):
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE__ ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) )
return max(
0.0 ,float(num_training_steps - current_step ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) )
return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.5 ,SCREAMING_SNAKE_CASE__ = -1 ):
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE__ ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) )
lowerCAmelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) )
return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE__ ) * 2.0 * progress )) )
return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = -1 ):
'''simple docstring'''
def lr_lambda(SCREAMING_SNAKE_CASE__ ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) )
lowerCAmelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE__ ) * progress) % 1.0) )) )
return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=1e-7 ,SCREAMING_SNAKE_CASE__=1.0 ,SCREAMING_SNAKE_CASE__=-1 ):
'''simple docstring'''
lowerCAmelCase : List[str] = optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" )
def lr_lambda(SCREAMING_SNAKE_CASE__ ):
if current_step < num_warmup_steps:
return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lowerCAmelCase : Optional[int] = lr_init - lr_end
lowerCAmelCase : Union[str, Any] = num_training_steps - num_warmup_steps
lowerCAmelCase : Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps
lowerCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] ={
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = 1.0 ,SCREAMING_SNAKE_CASE__ = -1 ,):
'''simple docstring'''
lowerCAmelCase : Tuple = SchedulerType(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(SCREAMING_SNAKE_CASE__ ,step_rules=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,num_cycles=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ,)
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,power=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ,)
return schedule_func(
SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ )
| 693 |
lowerCAmelCase : str ={
'Pillow': 'Pillow<10.0.0',
'accelerate': 'accelerate>=0.20.3',
'av': 'av==9.2.0',
'beautifulsoup4': 'beautifulsoup4',
'black': 'black~=23.1',
'codecarbon': 'codecarbon==1.2.0',
'cookiecutter': 'cookiecutter==1.7.3',
'dataclasses': 'dataclasses',
'datasets': 'datasets!=2.5.0',
'decord': 'decord==0.6.0',
'deepspeed': 'deepspeed>=0.9.3',
'diffusers': 'diffusers',
'dill': 'dill<0.3.5',
'evaluate': 'evaluate>=0.2.0',
'fairscale': 'fairscale>0.3',
'faiss-cpu': 'faiss-cpu',
'fastapi': 'fastapi',
'filelock': 'filelock',
'flax': 'flax>=0.4.1,<=0.7.0',
'ftfy': 'ftfy',
'fugashi': 'fugashi>=1.0',
'GitPython': 'GitPython<3.1.19',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0',
'importlib_metadata': 'importlib_metadata',
'ipadic': 'ipadic>=1.0.0,<2.0',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13',
'jaxlib': 'jaxlib>=0.1.65,<=0.4.13',
'jieba': 'jieba',
'kenlm': 'kenlm',
'keras-nlp': 'keras-nlp>=0.3.1',
'librosa': 'librosa',
'nltk': 'nltk',
'natten': 'natten>=0.14.6',
'numpy': 'numpy>=1.17',
'onnxconverter-common': 'onnxconverter-common',
'onnxruntime-tools': 'onnxruntime-tools>=1.4.2',
'onnxruntime': 'onnxruntime>=1.4.0',
'opencv-python': 'opencv-python',
'optuna': 'optuna',
'optax': 'optax>=0.0.8,<=0.1.4',
'packaging': 'packaging>=20.0',
'parameterized': 'parameterized',
'phonemizer': 'phonemizer',
'protobuf': 'protobuf',
'psutil': 'psutil',
'pyyaml': 'pyyaml>=5.1',
'pydantic': 'pydantic<2',
'pytest': 'pytest>=7.2.0',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'python': 'python>=3.8.0',
'ray[tune]': 'ray[tune]',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'rhoknp': 'rhoknp>=1.1.0,<1.3.1',
'rjieba': 'rjieba',
'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1',
'ruff': 'ruff>=0.0.241,<=0.0.259',
'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0',
'sacremoses': 'sacremoses',
'safetensors': 'safetensors>=0.3.1',
'sagemaker': 'sagemaker>=2.31.0',
'scikit-learn': 'scikit-learn',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'sigopt': 'sigopt',
'starlette': 'starlette',
'sudachipy': 'sudachipy>=0.6.6',
'sudachidict_core': 'sudachidict_core>=20220729',
'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14',
'tensorflow': 'tensorflow>=2.6,<2.14',
'tensorflow-text': 'tensorflow-text<2.14',
'tf2onnx': 'tf2onnx',
'timeout-decorator': 'timeout-decorator',
'timm': 'timm',
'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14',
'torch': 'torch>=1.9,!=1.12.0',
'torchaudio': 'torchaudio',
'torchvision': 'torchvision',
'pyctcdecode': 'pyctcdecode>=0.4.0',
'tqdm': 'tqdm>=4.27',
'unidic': 'unidic>=1.0.2',
'unidic_lite': 'unidic_lite>=1.0.7',
'urllib3': 'urllib3<2.0.0',
'uvicorn': 'uvicorn',
}
| 693 | 1 |
import math
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = []
lowerCAmelCase : Optional[int] = 2
lowerCAmelCase : List[Any] = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) # Size of every segment
lowerCAmelCase : List[str] = [True] * (end + 1)
lowerCAmelCase : Optional[Any] = []
while start <= end:
if temp[start] is True:
in_prime.append(SCREAMING_SNAKE_CASE__ )
for i in range(start * start ,end + 1 ,SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[Any] = False
start += 1
prime += in_prime
lowerCAmelCase : Any = end + 1
lowerCAmelCase : int = min(2 * end ,SCREAMING_SNAKE_CASE__ )
while low <= n:
lowerCAmelCase : List[str] = [True] * (high - low + 1)
for each in in_prime:
lowerCAmelCase : str = math.floor(low / each ) * each
if t < low:
t += each
for j in range(SCREAMING_SNAKE_CASE__ ,high + 1 ,SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : Dict = False
for j in range(len(SCREAMING_SNAKE_CASE__ ) ):
if temp[j] is True:
prime.append(j + low )
lowerCAmelCase : Union[str, Any] = high + 1
lowerCAmelCase : List[Any] = min(high + end ,SCREAMING_SNAKE_CASE__ )
return prime
print(sieve(10**6))
| 693 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] ={
'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'],
'tokenization_roformer': ['RoFormerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =['RoFormerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] =[
'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoFormerForCausalLM',
'RoFormerForMaskedLM',
'RoFormerForMultipleChoice',
'RoFormerForQuestionAnswering',
'RoFormerForSequenceClassification',
'RoFormerForTokenClassification',
'RoFormerLayer',
'RoFormerModel',
'RoFormerPreTrainedModel',
'load_tf_weights_in_roformer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRoFormerForCausalLM',
'TFRoFormerForMaskedLM',
'TFRoFormerForMultipleChoice',
'TFRoFormerForQuestionAnswering',
'TFRoFormerForSequenceClassification',
'TFRoFormerForTokenClassification',
'TFRoFormerLayer',
'TFRoFormerModel',
'TFRoFormerPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int =[
'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'FlaxRoFormerForMaskedLM',
'FlaxRoFormerForMultipleChoice',
'FlaxRoFormerForQuestionAnswering',
'FlaxRoFormerForSequenceClassification',
'FlaxRoFormerForTokenClassification',
'FlaxRoFormerModel',
'FlaxRoFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
requests.request("""GET""" ,"""https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 )
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" ,"""https://huggingface.co""" )
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
http_head("""https://huggingface.co""" )
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return int(input_a == input_a == 0 )
def _UpperCAmelCase ( ):
'''simple docstring'''
print("""Truth Table of NOR Gate:""" )
print("""| Input 1 | Input 2 | Output |""" )
print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" )
print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" )
print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" )
print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 693 | 1 |
import torch
from diffusers import DiffusionPipeline
class _a ( snake_case_ ):
def __init__( self , lowercase_ , lowercase_ ) -> int:
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def __call__( self ) -> List[Any]:
lowerCAmelCase : Union[str, Any] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowerCAmelCase : Union[str, Any] = 1
lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample
lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ )
return result
| 693 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase : int ={
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor']
lowerCAmelCase : List[str] =['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple =[
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
| 693 | 1 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowerCAmelCase : Dict =logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase : Optional[Any] ='\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n'
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=8 ):
'''simple docstring'''
lowerCAmelCase : Any = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
lowerCAmelCase : Optional[int] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class _a ( snake_case_ ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]:
super().__init__()
self.register_modules(
unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , )
lowerCAmelCase : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
if latents is None:
lowerCAmelCase : str = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
else:
if latents.shape != shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
lowerCAmelCase : Union[str, Any] = latents.to(lowercase_ )
lowerCAmelCase : Optional[int] = latents * scheduler.init_noise_sigma
return latents
def _snake_case ( self , lowercase_=0 ) -> List[Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
lowerCAmelCase : str = torch.device(f"""cuda:{gpu_id}""" )
lowerCAmelCase : str = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase_ , lowercase_ )
def _snake_case ( self , lowercase_=0 ) -> List[Any]:
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
lowerCAmelCase : int = torch.device(f"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=lowercase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowerCAmelCase : int = None
for cpu_offloaded_model in [self.unet, self.movq]:
lowerCAmelCase , lowerCAmelCase : Optional[Any] = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ )
# We'll offload the last model manually.
lowerCAmelCase : Tuple = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _snake_case ( self ) -> List[str]:
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase_ )
def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[str, Any]:
lowerCAmelCase : Tuple = self._execution_device
lowerCAmelCase : Optional[int] = guidance_scale > 1.0
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Optional[Any] = torch.cat(lowercase_ , dim=0 )
lowerCAmelCase : Dict = image_embeds.shape[0] * num_images_per_prompt
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[str] = torch.cat(lowercase_ , dim=0 )
if do_classifier_free_guidance:
lowerCAmelCase : Optional[Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 )
lowerCAmelCase : Optional[Any] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 )
lowerCAmelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ )
self.scheduler.set_timesteps(lowercase_ , device=lowercase_ )
lowerCAmelCase : List[Any] = self.scheduler.timesteps
lowerCAmelCase : Optional[Any] = self.unet.config.in_channels
lowerCAmelCase , lowerCAmelCase : int = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor )
# create initial latent
lowerCAmelCase : List[Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase_ ) ):
# expand the latents if we are doing classifier free guidance
lowerCAmelCase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowerCAmelCase : Union[str, Any] = {"""image_embeds""": image_embeds}
lowerCAmelCase : Any = self.unet(
sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0]
if do_classifier_free_guidance:
lowerCAmelCase , lowerCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 )
lowerCAmelCase , lowerCAmelCase : Any = noise_pred.chunk(2 )
lowerCAmelCase , lowerCAmelCase : Optional[Any] = variance_pred.chunk(2 )
lowerCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowerCAmelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowerCAmelCase , lowerCAmelCase : str = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase : List[Any] = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0]
# post-processing
lowerCAmelCase : str = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
lowerCAmelCase : str = image * 0.5 + 0.5
lowerCAmelCase : Optional[int] = image.clamp(0 , 1 )
lowerCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowerCAmelCase : Optional[int] = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 693 |
import os
import string
import sys
lowerCAmelCase : Optional[int] =1 << 8
lowerCAmelCase : List[Any] ={
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
lowerCAmelCase : Optional[Any] =KEYMAP['up']
lowerCAmelCase : Tuple =KEYMAP['left']
if sys.platform == "win32":
lowerCAmelCase : Dict =[]
lowerCAmelCase : int ={
b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
lowerCAmelCase : Optional[Any] =ord(str(i))
def _UpperCAmelCase ( ):
'''simple docstring'''
if os.name == "nt":
import msvcrt
lowerCAmelCase : Any = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(SCREAMING_SNAKE_CASE__ ) == 0:
# Read the keystroke
lowerCAmelCase : int = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowerCAmelCase : Tuple = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowerCAmelCase : str = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ )
if ord(SCREAMING_SNAKE_CASE__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_2_6 ) )
lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] )
except KeyError:
lowerCAmelCase : Optional[int] = cha[1]
else:
lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ )
else:
lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowerCAmelCase : List[Any] = sys.stdin.fileno()
lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ )
try:
tty.setraw(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Optional[Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ )
return ch
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : Any = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]:
lowerCAmelCase : int = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]:
lowerCAmelCase : Tuple = get_raw_chars()
if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 693 | 1 |
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase : Any =logging.getLogger(__name__)
lowerCAmelCase : str =list(MODEL_WITH_LM_HEAD_MAPPING.keys())
lowerCAmelCase : Optional[int] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _a :
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(snake_case_ )} , )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class _a :
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "The input training data file (a text file)."} )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
_UpperCamelCase: Optional[str] = field(
default=snake_case_ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
_UpperCamelCase: bool = field(
default=snake_case_ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
_UpperCamelCase: bool = field(
default=snake_case_ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} )
_UpperCamelCase: bool = field(default=snake_case_ , metadata={"help": "Whether ot not to use whole word mask."} )
_UpperCamelCase: float = field(
default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} )
_UpperCamelCase: float = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
_UpperCamelCase: int = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} )
_UpperCamelCase: int = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
_UpperCamelCase: bool = field(
default=snake_case_ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,):
'''simple docstring'''
def _dataset(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" )
return LineByLineWithRefDataset(
tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ,ref_path=SCREAMING_SNAKE_CASE__ ,)
return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size )
else:
return TextDataset(
tokenizer=SCREAMING_SNAKE_CASE__ ,file_path=SCREAMING_SNAKE_CASE__ ,block_size=args.block_size ,overwrite_cache=args.overwrite_cache ,cache_dir=SCREAMING_SNAKE_CASE__ ,)
if evaluate:
return _dataset(args.eval_data_file ,args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE__ ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file ,args.train_ref_file )
def _UpperCAmelCase ( ):
'''simple docstring'''
lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"""Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """
"""or remove the --do_eval argument.""" )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,)
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" ,SCREAMING_SNAKE_CASE__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name ,cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
lowerCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir )
else:
lowerCAmelCase : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.tokenizer_name:
lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"""
""" script, save it,and load it from here, using --tokenizer_name""" )
if model_args.model_name_or_path:
lowerCAmelCase : Optional[Any] = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,)
else:
logger.info("""Training new model from scratch""" )
lowerCAmelCase : Any = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE__ )
model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"""BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"""
"""--mlm flag (masked language modeling).""" )
if data_args.block_size <= 0:
lowerCAmelCase : Union[str, Any] = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
lowerCAmelCase : str = min(data_args.block_size ,tokenizer.max_len )
# Get datasets
lowerCAmelCase : List[str] = (
get_dataset(SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
lowerCAmelCase : Dict = (
get_dataset(SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,evaluate=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
lowerCAmelCase : Any = DataCollatorForPermutationLanguageModeling(
tokenizer=SCREAMING_SNAKE_CASE__ ,plm_probability=data_args.plm_probability ,max_span_length=data_args.max_span_length ,)
else:
if data_args.mlm and data_args.whole_word_mask:
lowerCAmelCase : Tuple = DataCollatorForWholeWordMask(
tokenizer=SCREAMING_SNAKE_CASE__ ,mlm_probability=data_args.mlm_probability )
else:
lowerCAmelCase : Tuple = DataCollatorForLanguageModeling(
tokenizer=SCREAMING_SNAKE_CASE__ ,mlm=data_args.mlm ,mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
lowerCAmelCase : Any = Trainer(
model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,train_dataset=SCREAMING_SNAKE_CASE__ ,eval_dataset=SCREAMING_SNAKE_CASE__ ,prediction_loss_only=SCREAMING_SNAKE_CASE__ ,)
# Training
if training_args.do_train:
lowerCAmelCase : List[Any] = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=SCREAMING_SNAKE_CASE__ )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowerCAmelCase : int = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowerCAmelCase : str = trainer.evaluate()
lowerCAmelCase : str = math.exp(eval_output["""eval_loss"""] )
lowerCAmelCase : List[str] = {"""perplexity""": perplexity}
lowerCAmelCase : List[str] = os.path.join(training_args.output_dir ,"""eval_results_lm.txt""" )
if trainer.is_world_master():
with open(SCREAMING_SNAKE_CASE__ ,"""w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" ,SCREAMING_SNAKE_CASE__ ,str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
results.update(SCREAMING_SNAKE_CASE__ )
return results
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 693 |
# Imports
import numpy as np
class _a :
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]:
if red is not None:
lowerCAmelCase : str = red
if green is not None:
lowerCAmelCase : Optional[int] = green
if blue is not None:
lowerCAmelCase : Optional[int] = blue
if red_edge is not None:
lowerCAmelCase : Tuple = red_edge
if nir is not None:
lowerCAmelCase : Union[str, Any] = nir
return True
def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]:
self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ )
lowerCAmelCase : int = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def _snake_case ( self ) -> Dict:
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case ( self ) -> Optional[Any]:
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case ( self ) -> List[str]:
return self.nir * (self.red / (self.green**2))
def _snake_case ( self ) -> Tuple:
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case ( self ) -> Optional[int]:
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case ( self ) -> List[str]:
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case ( self ) -> int:
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case ( self ) -> Optional[Any]:
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case ( self ) -> Tuple:
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case ( self ) -> int:
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case ( self ) -> List[str]:
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int:
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case ( self ) -> Optional[Any]:
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case ( self ) -> Any:
return (self.nir / self.green) - 1
def _snake_case ( self ) -> List[Any]:
return (self.nir / self.redEdge) - 1
def _snake_case ( self ) -> str:
return (self.red - self.blue) / self.red
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case ( self ) -> Optional[Any]:
return self.nir - self.green
def _snake_case ( self ) -> int:
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]:
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case ( self , lowercase_=0.5 ) -> List[str]:
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case ( self ) -> Any:
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]:
return (self.nir - b) / (a * self.red)
def _snake_case ( self ) -> Any:
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case ( self ) -> str:
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case ( self ) -> Union[str, Any]:
return self.nir / self.red
def _snake_case ( self ) -> Tuple:
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case ( self ) -> Dict:
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case ( self ) -> List[Any]:
return self.green / (self.nir + self.red + self.green)
def _snake_case ( self ) -> int:
return self.nir / (self.nir + self.red + self.green)
def _snake_case ( self ) -> Dict:
return self.red / (self.nir + self.red + self.green)
def _snake_case ( self ) -> List[Any]:
return (self.green - self.red) / (self.green + self.red)
def _snake_case ( self ) -> Optional[int]:
return (self.red - self.green) / (self.red + self.green)
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case ( self ) -> int:
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case ( self ) -> List[str]:
return self.nir / self.red
def _snake_case ( self ) -> int:
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case ( self ) -> str:
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 693 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : Dict ={'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] =['XGLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[str] =['XGLMTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =[
'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'XGLMForCausalLM',
'XGLMModel',
'XGLMPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] =[
'FlaxXGLMForCausalLM',
'FlaxXGLMModel',
'FlaxXGLMPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str =[
'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXGLMForCausalLM',
'TFXGLMModel',
'TFXGLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure)
| 693 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[str] = None
if token is not None:
lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = None
if token is not None:
lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json()
lowerCAmelCase : List[str] = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = None
if token is not None:
lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = result.headers["""Location"""]
lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ )
lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" )
with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp:
fp.write(response.content )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : Optional[int] = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE__ ) as f:
for line in f:
lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCAmelCase : str = line[: line.index(""": """ )]
lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :]
failed_tests.append(SCREAMING_SNAKE_CASE__ )
elif filename == "job_name.txt":
lowerCAmelCase : Union[str, Any] = line
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """
F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
lowerCAmelCase : Optional[int] = None
if job_name and job_links:
lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
# A list with elements of the form (line of error, error, failed test)
lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )]
return result
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : str = []
lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) )
return errors
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : int = Counter()
counter.update([x[1] for x in logs] )
lowerCAmelCase : List[str] = counter.most_common()
lowerCAmelCase : Union[str, Any] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
lowerCAmelCase : str = test.split("""/""" )[2]
else:
lowerCAmelCase : List[Any] = None
return test
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ):
'''simple docstring'''
lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCAmelCase : int = [x for x in logs if x[2] is not None]
lowerCAmelCase : Optional[Any] = {x[2] for x in logs}
lowerCAmelCase : Dict = {}
for test in tests:
lowerCAmelCase : Optional[int] = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCAmelCase : Tuple = counter.most_common()
lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCAmelCase : List[Any] = sum(error_counts.values() )
if n_errors > 0:
lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = """| no. | error | status |"""
lowerCAmelCase : List[Any] = """|-:|:-|:-|"""
lowerCAmelCase : Union[str, Any] = [header, sep]
for error in reduced_by_error:
lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""]
lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : str = """| model | no. of errors | major error | count |"""
lowerCAmelCase : Any = """|-:|-:|-:|-:|"""
lowerCAmelCase : str = [header, sep]
for model in reduced_by_model:
lowerCAmelCase : Any = reduced_by_model[model]["""count"""]
lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0]
lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowerCAmelCase : int =argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
lowerCAmelCase : Dict =parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token)
lowerCAmelCase : List[Any] ={}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
lowerCAmelCase : str =k.find(' / ')
lowerCAmelCase : Any =k[index + len(' / ') :]
lowerCAmelCase : str =v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
lowerCAmelCase : str =Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
lowerCAmelCase : int =counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
lowerCAmelCase : Optional[int] =reduce_by_error(errors)
lowerCAmelCase : Tuple =reduce_by_model(errors)
lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error)
lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 693 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
lowerCAmelCase : int ={}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] =['GPTSw3Tokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : Optional[int] ={
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict =[
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase : List[Any] ={
'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Union[str, Any] =[
'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST',
'NezhaForNextSentencePrediction',
'NezhaForMaskedLM',
'NezhaForPreTraining',
'NezhaForMultipleChoice',
'NezhaForQuestionAnswering',
'NezhaForSequenceClassification',
'NezhaForTokenClassification',
'NezhaModel',
'NezhaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 693 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] ={
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _a ( snake_case_ ):
_UpperCamelCase: List[str] = "detr"
_UpperCamelCase: Dict = ["past_key_values"]
_UpperCamelCase: Optional[int] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" )
lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ )
# set timm attributes to None
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None
lowerCAmelCase : Any = use_timm_backbone
lowerCAmelCase : int = backbone_config
lowerCAmelCase : Optional[int] = num_channels
lowerCAmelCase : Optional[Any] = num_queries
lowerCAmelCase : List[str] = d_model
lowerCAmelCase : Optional[int] = encoder_ffn_dim
lowerCAmelCase : Dict = encoder_layers
lowerCAmelCase : str = encoder_attention_heads
lowerCAmelCase : List[Any] = decoder_ffn_dim
lowerCAmelCase : List[Any] = decoder_layers
lowerCAmelCase : Union[str, Any] = decoder_attention_heads
lowerCAmelCase : str = dropout
lowerCAmelCase : Dict = attention_dropout
lowerCAmelCase : Union[str, Any] = activation_dropout
lowerCAmelCase : str = activation_function
lowerCAmelCase : Optional[int] = init_std
lowerCAmelCase : Any = init_xavier_std
lowerCAmelCase : Dict = encoder_layerdrop
lowerCAmelCase : int = decoder_layerdrop
lowerCAmelCase : Tuple = encoder_layers
lowerCAmelCase : Optional[int] = auxiliary_loss
lowerCAmelCase : List[str] = position_embedding_type
lowerCAmelCase : Any = backbone
lowerCAmelCase : Union[str, Any] = use_pretrained_backbone
lowerCAmelCase : List[Any] = dilation
# Hungarian matcher
lowerCAmelCase : Tuple = class_cost
lowerCAmelCase : Union[str, Any] = bbox_cost
lowerCAmelCase : Optional[Any] = giou_cost
# Loss coefficients
lowerCAmelCase : List[Any] = mask_loss_coefficient
lowerCAmelCase : Optional[int] = dice_loss_coefficient
lowerCAmelCase : Tuple = bbox_loss_coefficient
lowerCAmelCase : Dict = giou_loss_coefficient
lowerCAmelCase : str = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> int:
return self.encoder_attention_heads
@property
def _snake_case ( self ) -> int:
return self.d_model
@classmethod
def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any:
return cls(backbone_config=lowercase_ , **lowercase_ )
def _snake_case ( self ) -> Dict[str, any]:
lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase : List[str] = self.backbone_config.to_dict()
lowerCAmelCase : List[Any] = self.__class__.model_type
return output
class _a ( snake_case_ ):
_UpperCamelCase: Any = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _snake_case ( self ) -> float:
return 1e-5
@property
def _snake_case ( self ) -> int:
return 12
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return int((input_a, input_a).count(0 ) != 0 )
def _UpperCAmelCase ( ):
'''simple docstring'''
assert nand_gate(0 ,0 ) == 1
assert nand_gate(0 ,1 ) == 1
assert nand_gate(1 ,0 ) == 1
assert nand_gate(1 ,1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 693 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase : int =logging.getLogger()
lowerCAmelCase : str =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( snake_case_ ):
def _snake_case ( self , lowercase_ ) -> List[Any]:
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""}
lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] )
with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f:
f.write(lowercase_ )
def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str:
lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir()
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" )
lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" )
self._create_dummy_data(data_dir=lowercase_ )
lowerCAmelCase : str = f"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(f"""--gpus={gpus}""" )
if is_apex_available():
testargs.append("""--fp16""" )
else:
testargs.append("""--gpus=0""" )
testargs.append("""--distributed_backend=ddp_cpu""" )
testargs.append("""--num_processes=2""" )
lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(lowercase_ , env=self.get_env() )
lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" )
with open(lowercase_ ) as f:
lowerCAmelCase : List[str] = json.load(lowercase_ )
return result
@require_torch_gpu
def _snake_case ( self ) -> Any:
lowerCAmelCase : Tuple = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : Dict = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_gpu
@require_ray
def _snake_case ( self ) -> int:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
@require_torch_multi_gpu
@require_ray
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" )
self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
| 693 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=snake_case_ )
class _a ( snake_case_ ):
_UpperCamelCase: str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
_UpperCamelCase: ClassVar[Features] = Features({"audio": Audio()} )
_UpperCamelCase: ClassVar[Features] = Features({"labels": ClassLabel} )
_UpperCamelCase: str = "audio"
_UpperCamelCase: str = "labels"
def _snake_case ( self , lowercase_ ) -> Dict:
if self.label_column not in features:
raise ValueError(f"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" )
lowerCAmelCase : Dict = copy.deepcopy(self )
lowerCAmelCase : Union[str, Any] = self.label_schema.copy()
lowerCAmelCase : str = features[self.label_column]
lowerCAmelCase : Union[str, Any] = label_schema
return task_template
@property
def _snake_case ( self ) -> Dict[str, str]:
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 693 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
lowerCAmelCase : Optional[int] ={
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "transfo-xl"
_UpperCamelCase: str = ["mems"]
_UpperCamelCase: Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]:
lowerCAmelCase : List[str] = vocab_size
lowerCAmelCase : Union[str, Any] = []
self.cutoffs.extend(lowercase_ )
if proj_share_all_but_first:
lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs )
else:
lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs )
lowerCAmelCase : Optional[int] = d_model
lowerCAmelCase : List[Any] = d_embed
lowerCAmelCase : Union[str, Any] = d_head
lowerCAmelCase : List[Any] = d_inner
lowerCAmelCase : Optional[int] = div_val
lowerCAmelCase : List[Any] = pre_lnorm
lowerCAmelCase : Dict = n_layer
lowerCAmelCase : Tuple = n_head
lowerCAmelCase : Any = mem_len
lowerCAmelCase : Union[str, Any] = same_length
lowerCAmelCase : List[Any] = attn_type
lowerCAmelCase : int = clamp_len
lowerCAmelCase : List[str] = sample_softmax
lowerCAmelCase : Optional[int] = adaptive
lowerCAmelCase : Dict = dropout
lowerCAmelCase : Optional[Any] = dropatt
lowerCAmelCase : List[str] = untie_r
lowerCAmelCase : List[str] = init
lowerCAmelCase : Tuple = init_range
lowerCAmelCase : str = proj_init_std
lowerCAmelCase : str = init_std
lowerCAmelCase : Optional[int] = layer_norm_epsilon
super().__init__(eos_token_id=lowercase_ , **lowercase_ )
@property
def _snake_case ( self ) -> Optional[Any]:
# Message copied from Transformer-XL documentation
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def _snake_case ( self , lowercase_ ) -> Dict:
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 693 | 1 |
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ):
'''simple docstring'''
if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release:
# old versions of hfh don't url-encode the file path
lowerCAmelCase : List[Any] = quote(SCREAMING_SNAKE_CASE__ )
return hfh.hf_hub_url(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,repo_type="""dataset""" ,revision=SCREAMING_SNAKE_CASE__ )
| 693 |
import torch
from diffusers import DiffusionPipeline
class _a ( snake_case_ ):
def __init__( self , lowercase_ , lowercase_ ) -> int:
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
def __call__( self ) -> List[Any]:
lowerCAmelCase : Union[str, Any] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowerCAmelCase : Union[str, Any] = 1
lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample
lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ )
return result
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if index == r:
for j in range(SCREAMING_SNAKE_CASE__ ):
print(data[j] ,end=""" """ )
print(""" """ )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
lowerCAmelCase : str = arr[i]
combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,index + 1 ,SCREAMING_SNAKE_CASE__ ,i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,0 ,SCREAMING_SNAKE_CASE__ ,0 )
if __name__ == "__main__":
# Driver code to check the function above
lowerCAmelCase : int =[10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 693 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
requests.request("""GET""" ,"""https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 )
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" ,"""https://huggingface.co""" )
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
http_head("""https://huggingface.co""" )
| 693 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _a ( unittest.TestCase ):
def __init__( self , lowercase_ , lowercase_=13 , lowercase_=3 , lowercase_=224 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , ) -> int:
lowerCAmelCase : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowerCAmelCase : Optional[Any] = parent
lowerCAmelCase : str = batch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : Optional[int] = image_size
lowerCAmelCase : Dict = min_resolution
lowerCAmelCase : List[Any] = max_resolution
lowerCAmelCase : int = do_resize
lowerCAmelCase : Optional[Any] = size
lowerCAmelCase : Optional[int] = do_normalize
lowerCAmelCase : int = image_mean
lowerCAmelCase : List[str] = image_std
def _snake_case ( self ) -> Optional[Any]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: str = ViTImageProcessor if is_vision_available() else None
def _snake_case ( self ) -> Tuple:
lowerCAmelCase : Any = EfficientFormerImageProcessorTester(self )
@property
def _snake_case ( self ) -> List[Any]:
return self.image_proc_tester.prepare_image_processor_dict()
def _snake_case ( self ) -> int:
lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowercase_ , """image_std""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
def _snake_case ( self ) -> Optional[int]:
pass
def _snake_case ( self ) -> Optional[Any]:
# Initialize image_processor
lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image )
# Test not batched input
lowerCAmelCase : int = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def _snake_case ( self ) -> Dict:
# Initialize image_processor
lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Dict = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def _snake_case ( self ) -> Optional[Any]:
# Initialize image_processor
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Tuple = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowerCAmelCase : Tuple = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 693 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class _a ( unittest.TestCase ):
def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
lowerCAmelCase : Optional[int] = parent
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : Dict = num_channels
lowerCAmelCase : str = min_resolution
lowerCAmelCase : Optional[Any] = max_resolution
lowerCAmelCase : Optional[int] = do_resize
lowerCAmelCase : List[str] = size
lowerCAmelCase : Dict = do_rescale
lowerCAmelCase : Union[str, Any] = rescale_factor
lowerCAmelCase : int = do_normalize
lowerCAmelCase : Union[str, Any] = image_mean
lowerCAmelCase : Dict = image_std
lowerCAmelCase : Optional[int] = do_pad
def _snake_case ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]:
if not batched:
lowerCAmelCase : Tuple = image_inputs[0]
if isinstance(lowercase_ , Image.Image ):
lowerCAmelCase , lowerCAmelCase : Dict = image.size
else:
lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w )
lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""]
elif w > h:
lowerCAmelCase : List[Any] = self.size["""shortest_edge"""]
lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h )
else:
lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""]
lowerCAmelCase : List[str] = self.size["""shortest_edge"""]
else:
lowerCAmelCase : Optional[int] = []
for image in image_inputs:
lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0]
lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
_UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase : List[str] = DetrImageProcessingTester(self )
@property
def _snake_case ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowercase_ , """image_std""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) )
self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_pad""" ) )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , lowercase_ )
lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , lowercase_ )
def _snake_case ( self ) -> List[Any]:
pass
def _snake_case ( self ) -> List[Any]:
# Initialize image_processing
lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image )
# Test not batched input
lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[int]:
# Initialize image_processing
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> List[str]:
# Initialize image_processing
lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values
lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _snake_case ( self ) -> int:
# prepare image and target
lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : str = json.loads(f.read() )
lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target}
# encode them
lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" )
lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : List[Any] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify orig_size
lowerCAmelCase : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
@slow
def _snake_case ( self ) -> int:
# prepare image, target and masks_path
lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
lowerCAmelCase : Any = json.loads(f.read() )
lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" )
lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" )
# verify pixel values
lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ )
lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) )
# verify area
lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) )
# verify boxes
lowerCAmelCase : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ )
lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) )
# verify image_id
lowerCAmelCase : Tuple = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) )
# verify is_crowd
lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) )
# verify class_labels
lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) )
# verify masks
lowerCAmelCase : Union[str, Any] = 822873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ )
# verify orig_size
lowerCAmelCase : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) )
# verify size
lowerCAmelCase : List[str] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
| 693 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _a ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : Union[str, Any] = inspect.getfile(accelerate.test_utils )
lowerCAmelCase : str = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
lowerCAmelCase : Union[str, Any] = test_metrics
@require_cpu
def _snake_case ( self ) -> List[str]:
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _snake_case ( self ) -> int:
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _snake_case ( self ) -> Optional[Any]:
self.test_metrics.main()
@require_multi_gpu
def _snake_case ( self ) -> Dict:
print(f"""Found {torch.cuda.device_count()} devices.""" )
lowerCAmelCase : str = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase_ , env=os.environ.copy() )
| 693 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Tuple = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
lowerCAmelCase : Dict = 0
while b > 0:
if b & 1:
lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 693 | 1 |
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
lowerCAmelCase : Dict = sorted(string.lower() )
return len(SCREAMING_SNAKE_CASE__ ) == len(set(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
lowerCAmelCase : List[str] =input('Enter a string ').strip()
lowerCAmelCase : int =is_isogram(input_str)
print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
| 693 |
from math import factorial
class _a :
def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]:
lowerCAmelCase : Union[str, Any] = real
if isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Tuple = [1] * rank
else:
lowerCAmelCase : Any = rank
def __repr__( self ) -> int:
return (
f"""{self.real}+"""
f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}"""
)
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase : List[Any] = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , lowercase_ )
def __add__( self , lowercase_ ) -> Tuple:
if not isinstance(lowercase_ , lowercase_ ):
return Dual(self.real + other , self.duals )
lowerCAmelCase : int = self.duals.copy()
lowerCAmelCase : Tuple = other.duals.copy()
if len(lowercase_ ) > len(lowercase_ ):
o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
elif len(lowercase_ ) < len(lowercase_ ):
s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) )
lowerCAmelCase : List[Any] = []
for i in range(len(lowercase_ ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , lowercase_ )
_UpperCamelCase: List[Any] = __add__
def __sub__( self , lowercase_ ) -> Union[str, Any]:
return self + other * -1
def __mul__( self , lowercase_ ) -> Optional[int]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : Union[str, Any] = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , lowercase_ )
lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , lowercase_ )
_UpperCamelCase: str = __mul__
def __truediv__( self , lowercase_ ) -> Optional[Any]:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[str] = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , lowercase_ )
raise ValueError
def __floordiv__( self , lowercase_ ) -> int:
if not isinstance(lowercase_ , lowercase_ ):
lowerCAmelCase : List[Any] = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , lowercase_ )
raise ValueError
def __pow__( self , lowercase_ ) -> str:
if n < 0 or isinstance(lowercase_ , lowercase_ ):
raise ValueError("""power must be a positive integer""" )
if n == 0:
return 1
if n == 1:
return self
lowerCAmelCase : int = self
for _ in range(n - 1 ):
x *= self
return x
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
if not callable(SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires a function as input for func""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ):
raise ValueError("""differentiate() requires a float as input for position""" )
if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ):
raise ValueError("""differentiate() requires an int as input for order""" )
lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 )
lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
return y**2 * y**4
print(differentiate(f, 9, 2))
| 693 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.