code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "beit" def __init__( self , SCREAMING_SNAKE_CASE__=81_92 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[3, 5, 7, 11] , SCREAMING_SNAKE_CASE__=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.4 , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=2_55 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = vocab_size snake_case: int = hidden_size snake_case: int = num_hidden_layers snake_case: str = num_attention_heads snake_case: str = intermediate_size snake_case: Union[str, Any] = hidden_act snake_case: List[Any] = hidden_dropout_prob snake_case: Any = attention_probs_dropout_prob snake_case: Union[str, Any] = initializer_range snake_case: List[Any] = layer_norm_eps snake_case: Tuple = image_size snake_case: Dict = patch_size snake_case: List[Any] = num_channels snake_case: List[str] = use_mask_token snake_case: Optional[Any] = use_absolute_position_embeddings snake_case: str = use_relative_position_bias snake_case: List[str] = use_shared_relative_position_bias snake_case: Tuple = layer_scale_init_value snake_case: Dict = drop_path_rate snake_case: Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) snake_case: Any = out_indices snake_case: Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case: Optional[Any] = use_auxiliary_head snake_case: int = auxiliary_loss_weight snake_case: Union[str, Any] = auxiliary_channels snake_case: Union[str, Any] = auxiliary_num_convs snake_case: Optional[int] = auxiliary_concat_input snake_case: Dict = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = version.parse("1.11" ) @property def _UpperCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCamelCase ( self ): '''simple docstring''' return 1E-4
715
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") __UpperCAmelCase = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) __UpperCAmelCase = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __UpperCAmelCase = BeautifulSoup(res.text, "html.parser") __UpperCAmelCase = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F'https://google.com{link.get("href")}')
716
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
0
import math def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: int = sum(i * i for i in range(1 , n + 1 ) ) snake_case: Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "gptj" __UpperCamelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , SCREAMING_SNAKE_CASE__=5_04_00 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__=28 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="gelu_new" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=5_02_56 , SCREAMING_SNAKE_CASE__=5_02_56 , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[int] = vocab_size snake_case: Any = n_positions snake_case: Tuple = n_embd snake_case: Tuple = n_layer snake_case: List[str] = n_head snake_case: Optional[Any] = n_inner snake_case: Optional[Any] = rotary_dim snake_case: Dict = activation_function snake_case: int = resid_pdrop snake_case: List[Any] = embd_pdrop snake_case: Optional[Any] = attn_pdrop snake_case: Optional[Any] = layer_norm_epsilon snake_case: Union[str, Any] = initializer_range snake_case: Any = use_cache snake_case: Optional[int] = bos_token_id snake_case: List[str] = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "default" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ , task=SCREAMING_SNAKE_CASE__ , patching_specs=SCREAMING_SNAKE_CASE__ , use_past=SCREAMING_SNAKE_CASE__ ) if not getattr(self._config , 'pad_token_id' , SCREAMING_SNAKE_CASE__ ): # TODO: how to do that better? snake_case: Optional[Any] = 0 @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction='inputs' ) snake_case: Any = {0: 'batch', 1: 'past_sequence + sequence'} else: snake_case: str = {0: 'batch', 1: 'sequence'} return common_inputs @property def _UpperCamelCase ( self ): '''simple docstring''' return self._config.n_layer @property def _UpperCamelCase ( self ): '''simple docstring''' return self._config.n_head def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = super(SCREAMING_SNAKE_CASE__ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() snake_case: Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch snake_case: int = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case: Any = seqlen + 2 snake_case: Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case: Dict = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] snake_case: Optional[int] = common_inputs['attention_mask'] if self.use_past: snake_case: List[Any] = ordered_inputs['attention_mask'].dtype snake_case: str = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) return ordered_inputs @property def _UpperCamelCase ( self ): '''simple docstring''' return 13
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCAmelCase = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = None __UpperCamelCase = None __UpperCAmelCase = namedtuple("CoinsDistribResult", "moves excess") def lowerCAmelCase_ ( __A : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(__A : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__A : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__A ) != count_coins(__A ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(__A : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case: List[Any] = get_distrib(node.left ) snake_case: Any = get_distrib(node.right ) snake_case: Dict = 1 - left_distrib_excess snake_case: Any = 1 - right_distrib_excess snake_case: List[Any] = ( left_distrib_moves + right_distrib_moves + abs(__A ) + abs(__A ) ) snake_case: List[str] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__A , __A ) return get_distrib(__A )[0] if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( __A : list[int] ): '''simple docstring''' return len(set(__A ) ) == len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
0
from functools import lru_cache def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 2 lowerCAmelCase : List[str] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(SCREAMING_SNAKE_CASE__ ) if n > 1: factors.add(SCREAMING_SNAKE_CASE__ ) return factors @lru_cache def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return len(unique_prime_factors(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return len(set(SCREAMING_SNAKE_CASE__ ) ) in (0, 1) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 2 while True: # Increment each value of a generated range lowerCAmelCase : Union[str, Any] = [base + i for i in range(SCREAMING_SNAKE_CASE__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCAmelCase : str = [upf_len(SCREAMING_SNAKE_CASE__ ) for x in group] checker.append(SCREAMING_SNAKE_CASE__ ) # If all numbers in the list are equal, return the group variable. if equality(SCREAMING_SNAKE_CASE__ ): return group # Increment our base variable by 1 base += 1 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 4 ): '''simple docstring''' lowerCAmelCase : List[Any] = run(SCREAMING_SNAKE_CASE__ ) return results[0] if len(SCREAMING_SNAKE_CASE__ ) else None if __name__ == "__main__": print(solution())
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _a ( unittest.TestCase ): def _snake_case ( self , lowercase_ , lowercase_ ) -> Optional[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(lowercase_ ) for s in shape] )}.npy""" def _snake_case ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() def _snake_case ( self , lowercase_=0 , lowercase_=(4, 4, 64, 64) , lowercase_=False ) -> Optional[Any]: lowerCAmelCase : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : int = jnp.array(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) , dtype=lowercase_ ) return image def _snake_case ( self , lowercase_=False , lowercase_="CompVis/stable-diffusion-v1-4" ) -> Tuple: lowerCAmelCase : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : Optional[Any] = """bf16""" if fpaa else None lowerCAmelCase , lowerCAmelCase : Optional[Any] = FlaxUNetaDConditionModel.from_pretrained( lowercase_ , subfolder="""unet""" , dtype=lowercase_ , revision=lowercase_ ) return model, params def _snake_case ( self , lowercase_=0 , lowercase_=(4, 77, 768) , lowercase_=False ) -> Dict: lowerCAmelCase : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase : Any = jnp.array(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) , dtype=lowercase_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: lowerCAmelCase , lowerCAmelCase : List[Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowercase_ ) lowerCAmelCase : List[Any] = self.get_latents(lowercase_ , fpaa=lowercase_ ) lowerCAmelCase : Optional[Any] = self.get_encoder_hidden_states(lowercase_ , fpaa=lowercase_ ) lowerCAmelCase : Union[str, Any] = model.apply( {"""params""": params} , lowercase_ , jnp.array(lowercase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowercase_ , ).sample assert sample.shape == latents.shape lowerCAmelCase : List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase : Any = jnp.array(lowercase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: lowerCAmelCase , lowerCAmelCase : List[Any] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowercase_ ) lowerCAmelCase : List[str] = self.get_latents(lowercase_ , shape=(4, 4, 96, 96) , fpaa=lowercase_ ) lowerCAmelCase : Optional[int] = self.get_encoder_hidden_states(lowercase_ , shape=(4, 77, 1024) , fpaa=lowercase_ ) lowerCAmelCase : Optional[Any] = model.apply( {"""params""": params} , lowercase_ , jnp.array(lowercase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowercase_ , ).sample assert sample.shape == latents.shape lowerCAmelCase : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase : List[str] = jnp.array(lowercase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase_ , lowercase_ , atol=1e-2 )
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): # This function is recursive '''simple docstring''' lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase : Tuple = array[0] lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : int = 1 lowerCAmelCase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = [element for element in array[i:] if element >= array[i]] lowerCAmelCase : Optional[int] = longest_subsequence(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > len(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Tuple = temp_array else: i += 1 lowerCAmelCase : List[Any] = [element for element in array[1:] if element >= pivot] lowerCAmelCase : List[str] = [pivot, *longest_subsequence(SCREAMING_SNAKE_CASE__ )] if len(SCREAMING_SNAKE_CASE__ ) > len(SCREAMING_SNAKE_CASE__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = [1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = 0, 0, 0 lowerCAmelCase : Tuple = ugly_nums[ia] * 2 lowerCAmelCase : int = ugly_nums[ia] * 3 lowerCAmelCase : int = ugly_nums[ia] * 5 for _ in range(1 ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ugly_nums.append(SCREAMING_SNAKE_CASE__ ) if next_num == next_a: ia += 1 lowerCAmelCase : Union[str, Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCAmelCase : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCAmelCase : Any = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(200) = }''')
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ='Hello, World!' lowerCAmelCase : Tuple ='en_XX' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = Path("""data_bin""" ) lowerCAmelCase : Optional[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE__ ).parent ) ,checkpoint_file=Path(SCREAMING_SNAKE_CASE__ ).name ,_name="""xmod_base""" ,arch="""xmod_base""" ,task="""multilingual_masked_lm""" ,data_name_or_path=str(SCREAMING_SNAKE_CASE__ ) ,bpe="""sentencepiece""" ,sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE__ ).parent / """sentencepiece.bpe.model""" ) ,src_dict=str(data_dir / """dict.txt""" ) ,) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = xmod.model.encoder.sentence_encoder lowerCAmelCase : int = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings ,hidden_size=xmod.cfg.model.encoder_embed_dim ,num_hidden_layers=xmod.cfg.model.encoder_layers ,num_attention_heads=xmod.cfg.model.encoder_attention_heads ,intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=5_1_4 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,pre_norm=xmod.cfg.model.encoder_normalize_before ,adapter_reduction_factor=getattr(xmod.cfg.model ,"""bottleneck""" ,2 ) ,adapter_layer_norm=xmod.cfg.model.adapter_layer_norm ,adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm ,ln_before_adapter=xmod.cfg.model.ln_before_adapter ,languages=xmod.cfg.model.languages ,) if classification_head: lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = XmodForSequenceClassification(SCREAMING_SNAKE_CASE__ ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase : str = xmod_sent_encoder.embed_tokens.weight lowerCAmelCase : Any = xmod_sent_encoder.embed_positions.weight lowerCAmelCase : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCAmelCase : List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCAmelCase : int = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase : List[Any] = model.roberta.encoder.layer[i] lowerCAmelCase : Dict = xmod_sent_encoder.layers[i] # self attention lowerCAmelCase : Tuple = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) lowerCAmelCase : str = xmod_layer.self_attn.q_proj.weight lowerCAmelCase : Any = xmod_layer.self_attn.q_proj.bias lowerCAmelCase : Tuple = xmod_layer.self_attn.k_proj.weight lowerCAmelCase : Dict = xmod_layer.self_attn.k_proj.bias lowerCAmelCase : Dict = xmod_layer.self_attn.v_proj.weight lowerCAmelCase : int = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase : List[str] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) lowerCAmelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.weight lowerCAmelCase : str = xmod_layer.self_attn.out_proj.bias lowerCAmelCase : Optional[int] = xmod_layer.self_attn_layer_norm.weight lowerCAmelCase : int = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCAmelCase : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) lowerCAmelCase : Tuple = xmod_layer.fca.weight lowerCAmelCase : str = xmod_layer.fca.bias # output lowerCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) lowerCAmelCase : Any = xmod_layer.fca.weight lowerCAmelCase : Optional[int] = xmod_layer.fca.bias lowerCAmelCase : Tuple = xmod_layer.final_layer_norm.weight lowerCAmelCase : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCAmelCase : Union[str, Any] = xmod_layer.adapter_layer_norm.weight lowerCAmelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCAmelCase : Any = bert_output.adapter_modules[lang_code] lowerCAmelCase : str = xmod_layer.adapter_modules[lang_code] lowerCAmelCase : Tuple = from_adapter.fca.weight lowerCAmelCase : Optional[int] = from_adapter.fca.bias lowerCAmelCase : List[Any] = from_adapter.fca.weight lowerCAmelCase : Any = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCAmelCase : Union[str, Any] = xmod_sent_encoder.layer_norm.weight lowerCAmelCase : Tuple = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].dense.weight lowerCAmelCase : Any = xmod.model.classification_heads["""mnli"""].dense.bias lowerCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""].out_proj.weight lowerCAmelCase : int = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCAmelCase : Any = xmod.model.encoder.lm_head.dense.weight lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.dense.bias lowerCAmelCase : int = xmod.model.encoder.lm_head.layer_norm.weight lowerCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCAmelCase : Optional[int] = xmod.model.encoder.lm_head.weight lowerCAmelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase : Any = xmod.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE__ )[0] if classification_head: lowerCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""](xmod.extract_features(SCREAMING_SNAKE_CASE__ ) ) else: lowerCAmelCase : Optional[Any] = xmod.model(SCREAMING_SNAKE_CASE__ ,lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape ,their_output.shape ) lowerCAmelCase : List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCAmelCase : Tuple = torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) print("""Do both models output the same tensors?""" ,"""🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(parents=SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) lowerCAmelCase : int =parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _a ( snake_case_ ): def _snake_case ( self ) -> int: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : int = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(lowercase_ ) def _snake_case ( self ) -> Any: lowerCAmelCase : Union[str, Any] = self._create_example_records() lowerCAmelCase : Optional[int] = Dataset.from_list(lowercase_ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(lowercase_ ): self.assertDictEqual(lowercase_ , example_records[i] ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : List[Any] = self._create_example_records() lowerCAmelCase : Optional[Any] = Dataset.from_list(lowercase_ ) lowerCAmelCase : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _snake_case ( self ) -> List[Any]: # checks what happens with missing columns lowerCAmelCase : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] lowerCAmelCase : List[Any] = Dataset.from_list(lowercase_ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def _snake_case ( self ) -> List[Any]: # checks if the type can be inferred from the second record lowerCAmelCase : Union[str, Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] lowerCAmelCase : Optional[Any] = Dataset.from_list(lowercase_ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = Dataset.from_list([] ) self.assertEqual(len(lowercase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
class _a : def __init__( self , lowercase_ ) -> int: # we need a list not a string, so do something to change the type lowerCAmelCase : Tuple = arr.split(""",""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : int = [int(self.array[0] )] * len(self.array ) lowerCAmelCase : Optional[int] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowerCAmelCase : Any = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowerCAmelCase : Optional[int] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =input('please input some numbers:') lowerCAmelCase : Optional[int] =SubArray(whole_array) lowerCAmelCase : Any =array.solve_sub_array() print(('the results is:', re))
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() ,model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' model.train() lowerCAmelCase : Dict = model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = F.mse_loss(SCREAMING_SNAKE_CASE__ ,target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' set_seed(4_2 ) lowerCAmelCase : Tuple = RegressionModel() lowerCAmelCase : List[Any] = deepcopy(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = RegressionDataset(length=8_0 ) lowerCAmelCase : List[str] = DataLoader(SCREAMING_SNAKE_CASE__ ,batch_size=1_6 ) model.to(accelerator.device ) if sched: lowerCAmelCase : Tuple = AdamW(params=model.parameters() ,lr=1e-3 ) lowerCAmelCase : Dict = AdamW(params=ddp_model.parameters() ,lr=1e-3 ) lowerCAmelCase : Optional[int] = LambdaLR(SCREAMING_SNAKE_CASE__ ,lr_lambda=lambda SCREAMING_SNAKE_CASE__ : epoch**0.65 ) lowerCAmelCase : Any = LambdaLR(SCREAMING_SNAKE_CASE__ ,lr_lambda=lambda SCREAMING_SNAKE_CASE__ : epoch**0.65 ) # Make a copy of `model` if sched: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = accelerator.prepare(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase , lowerCAmelCase : Optional[int] = accelerator.prepare(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = get_training_setup(SCREAMING_SNAKE_CASE__ ) # Use a single batch lowerCAmelCase , lowerCAmelCase : Optional[int] = next(iter(SCREAMING_SNAKE_CASE__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase , lowerCAmelCase : List[Any] = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase , lowerCAmelCase : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE__ ): step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad ,ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) lowerCAmelCase : List[str] = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE__ ) )] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = get_training_setup(SCREAMING_SNAKE_CASE__ ) # Use a single batch lowerCAmelCase , lowerCAmelCase : List[Any] = next(iter(SCREAMING_SNAKE_CASE__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase , lowerCAmelCase : Tuple = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase , lowerCAmelCase : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE__ ): step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) lowerCAmelCase : Optional[int] = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE__ ) )] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' lowerCAmelCase : str = Accelerator( split_batches=SCREAMING_SNAKE_CASE__ ,dispatch_batches=SCREAMING_SNAKE_CASE__ ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = get_training_setup(SCREAMING_SNAKE_CASE__ ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase , lowerCAmelCase : List[Any] = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) lowerCAmelCase : List[str] = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE__ ) )] GradientState._reset_state() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' lowerCAmelCase : Dict = Accelerator( split_batches=SCREAMING_SNAKE_CASE__ ,dispatch_batches=SCREAMING_SNAKE_CASE__ ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = get_training_setup(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase , lowerCAmelCase : Optional[int] = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase , lowerCAmelCase : Tuple = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase , lowerCAmelCase : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): step_model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" lowerCAmelCase : Dict = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE__ )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[Any] = Accelerator() lowerCAmelCase : Dict = RegressionDataset(length=8_0 ) lowerCAmelCase : Dict = DataLoader(SCREAMING_SNAKE_CASE__ ,batch_size=1_6 ) lowerCAmelCase : List[str] = RegressionDataset(length=9_6 ) lowerCAmelCase : List[str] = DataLoader(SCREAMING_SNAKE_CASE__ ,batch_size=1_6 ) lowerCAmelCase , lowerCAmelCase : Dict = accelerator.prepare(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE__ ) if iteration < len(SCREAMING_SNAKE_CASE__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE__ ) if batch_num < len(SCREAMING_SNAKE_CASE__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = Accelerator() lowerCAmelCase : Union[str, Any] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(SCREAMING_SNAKE_CASE__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(SCREAMING_SNAKE_CASE__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ ,F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" ,) test_gradient_accumulation(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" ,"""2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ ,"""`split_batches=False`, `dispatch_batches=False`**""" ,) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ ,F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" ,) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' main() if __name__ == "__main__": main()
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=1_0 ): '''simple docstring''' lowerCAmelCase : int = [] for _ in range(SCREAMING_SNAKE_CASE__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=1_0 ): '''simple docstring''' lowerCAmelCase : Dict = [] for step in range(SCREAMING_SNAKE_CASE__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ ,"""schedule.bin""" ) torch.save(scheduler.state_dict() ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ ) scheduler.load_state_dict(SCREAMING_SNAKE_CASE__ ) return lrs @require_torch class _a ( unittest.TestCase ): def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Optional[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) lowerCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : int = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): lowerCAmelCase : int = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) lowerCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : str = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowercase_ , weight_decay=0.0 , relative_step=lowercase_ , scale_parameter=lowercase_ , warmup_init=lowercase_ , ) for _ in range(1000 ): lowerCAmelCase : int = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class _a ( unittest.TestCase ): _UpperCamelCase: Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCamelCase: int = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _UpperCamelCase: List[str] = 10 def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Optional[int]: self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ , msg=lowercase_ ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : List[Any] = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1e-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase , lowerCAmelCase : Optional[Any] = data lowerCAmelCase : List[str] = scheduler_func(self.optimizer , **lowercase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : Union[str, Any] = unwrap_schedule(lowercase_ , self.num_steps ) self.assertListAlmostEqual( lowercase_ , lowercase_ , tol=1e-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) lowerCAmelCase : str = scheduler_func(self.optimizer , **lowercase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowercase_ ) # wrap to test picklability of the schedule lowerCAmelCase : Optional[Any] = unwrap_and_save_reload_schedule(lowercase_ , self.num_steps ) self.assertListEqual(lowercase_ , lowercase_ , msg=f"""failed for {scheduler_func} in save and reload""" ) class _a : def __init__( self , lowercase_ ) -> int: lowerCAmelCase : Optional[int] = fn def __call__( self , *lowercase_ , **lowercase_ ) -> Dict: return self.fn(*lowercase_ , **lowercase_ ) @classmethod def _snake_case ( self , lowercase_ ) -> Optional[int]: lowerCAmelCase : Dict = list(map(self , scheduler.lr_lambdas ) )
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = VideoMAEConfig() set_architecture_configs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if "finetuned" not in model_name: lowerCAmelCase : Optional[int] = False if "finetuned" in model_name: lowerCAmelCase : Optional[Any] = """huggingface/label-files""" if "kinetics" in model_name: lowerCAmelCase : int = 4_0_0 lowerCAmelCase : Optional[int] = """kinetics400-id2label.json""" elif "ssv2" in model_name: lowerCAmelCase : Tuple = 1_7_4 lowerCAmelCase : Tuple = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) lowerCAmelCase : str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,repo_type="""dataset""" ) ,"""r""" ) ) lowerCAmelCase : int = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowerCAmelCase : str = idalabel lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "small" in model_name: lowerCAmelCase : List[str] = 3_8_4 lowerCAmelCase : int = 1_5_3_6 lowerCAmelCase : Tuple = 1_2 lowerCAmelCase : Tuple = 1_6 lowerCAmelCase : List[str] = 1_2 lowerCAmelCase : Tuple = 3 lowerCAmelCase : Any = 1_9_2 lowerCAmelCase : str = 7_6_8 elif "large" in model_name: lowerCAmelCase : int = 1_0_2_4 lowerCAmelCase : Tuple = 4_0_9_6 lowerCAmelCase : List[str] = 2_4 lowerCAmelCase : Optional[Any] = 1_6 lowerCAmelCase : Union[str, Any] = 1_2 lowerCAmelCase : Any = 8 lowerCAmelCase : Optional[Any] = 5_1_2 lowerCAmelCase : Optional[Any] = 2_0_4_8 elif "huge" in model_name: lowerCAmelCase : Dict = 1_2_8_0 lowerCAmelCase : Optional[int] = 5_1_2_0 lowerCAmelCase : Dict = 3_2 lowerCAmelCase : str = 1_6 lowerCAmelCase : Optional[int] = 1_2 lowerCAmelCase : str = 8 lowerCAmelCase : str = 6_4_0 lowerCAmelCase : List[Any] = 2_5_6_0 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "encoder." in name: lowerCAmelCase : int = name.replace("""encoder.""" ,"""""" ) if "cls_token" in name: lowerCAmelCase : Tuple = name.replace("""cls_token""" ,"""videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: lowerCAmelCase : str = name.replace("""decoder_pos_embed""" ,"""decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase : Dict = name.replace("""pos_embed""" ,"""videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCAmelCase : Optional[Any] = name.replace("""patch_embed.proj""" ,"""videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase : Any = name.replace("""patch_embed.norm""" ,"""videomae.embeddings.norm""" ) if "decoder.blocks" in name: lowerCAmelCase : Any = name.replace("""decoder.blocks""" ,"""decoder.decoder_layers""" ) if "blocks" in name: lowerCAmelCase : Any = name.replace("""blocks""" ,"""videomae.encoder.layer""" ) if "attn.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name and "bias" not in name: lowerCAmelCase : Any = name.replace("""attn""" ,"""attention.self""" ) if "attn" in name: lowerCAmelCase : Optional[int] = name.replace("""attn""" ,"""attention.attention""" ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: lowerCAmelCase : List[Any] = name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase : Union[str, Any] = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "decoder_embed" in name: lowerCAmelCase : List[Any] = name.replace("""decoder_embed""" ,"""decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCAmelCase : str = name.replace("""decoder_norm""" ,"""decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCAmelCase : List[str] = name.replace("""decoder_pred""" ,"""decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase : str = name.replace("""norm.weight""" ,"""videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase : Dict = name.replace("""norm.bias""" ,"""videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: lowerCAmelCase : int = name.replace("""head""" ,"""classifier""" ) return name def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : str = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if key.startswith("""encoder.""" ): lowerCAmelCase : Tuple = key.replace("""encoder.""" ,"""""" ) if "qkv" in key: lowerCAmelCase : Tuple = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): lowerCAmelCase : Any = config.decoder_hidden_size lowerCAmelCase : Union[str, Any] = int(key_split[2] ) lowerCAmelCase : Optional[int] = """decoder.decoder_layers.""" if "weight" in key: lowerCAmelCase : List[Any] = val[:dim, :] lowerCAmelCase : str = val[dim : dim * 2, :] lowerCAmelCase : List[str] = val[-dim:, :] else: lowerCAmelCase : int = config.hidden_size lowerCAmelCase : Optional[int] = int(key_split[1] ) lowerCAmelCase : List[Any] = """videomae.encoder.layer.""" if "weight" in key: lowerCAmelCase : Union[str, Any] = val[:dim, :] lowerCAmelCase : List[Any] = val[dim : dim * 2, :] lowerCAmelCase : List[Any] = val[-dim:, :] else: lowerCAmelCase : str = val return orig_state_dict def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" ) lowerCAmelCase : Optional[int] = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = get_videomae_config(SCREAMING_SNAKE_CASE__ ) if "finetuned" in model_name: lowerCAmelCase : List[str] = VideoMAEForVideoClassification(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Any = VideoMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) # download original checkpoint, hosted on Google Drive lowerCAmelCase : Tuple = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,quiet=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = torch.load(SCREAMING_SNAKE_CASE__ ,map_location="""cpu""" ) if "model" in files: lowerCAmelCase : List[str] = files["""model"""] else: lowerCAmelCase : str = files["""module"""] lowerCAmelCase : Optional[Any] = convert_state_dict(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify model on basic input lowerCAmelCase : Optional[Any] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) lowerCAmelCase : Optional[Any] = prepare_video() lowerCAmelCase : Tuple = image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors="""pt""" ) if "finetuned" not in model_name: lowerCAmelCase : Optional[Any] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" ,filename="""bool_masked_pos.pt""" ) lowerCAmelCase : int = torch.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = outputs.logits lowerCAmelCase : Tuple = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCAmelCase : Tuple = torch.Size([1, 4_0_0] ) lowerCAmelCase : Union[str, Any] = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCAmelCase : Optional[Any] = torch.Size([1, 1_7_4] ) lowerCAmelCase : str = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": lowerCAmelCase : Union[str, Any] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : List[Any] = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": lowerCAmelCase : Optional[int] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : int = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCAmelCase : Dict = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": lowerCAmelCase : Union[str, Any] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : Tuple = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCAmelCase : List[Any] = torch.Size([1, 4_0_0] ) lowerCAmelCase : Optional[int] = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCAmelCase : Optional[int] = torch.Size([1, 4_0_0] ) lowerCAmelCase : Any = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCAmelCase : List[str] = torch.Size([1, 4_0_0] ) lowerCAmelCase : List[Any] = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCAmelCase : Dict = torch.Size([1, 4_0_0] ) lowerCAmelCase : List[Any] = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": lowerCAmelCase : Optional[Any] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : Dict = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCAmelCase : Dict = torch.Size([1, 1_7_4] ) lowerCAmelCase : Any = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": lowerCAmelCase : List[str] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : Dict = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCAmelCase : Optional[Any] = torch.Size([1, 1_7_4] ) lowerCAmelCase : Optional[Any] = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) else: print("""Logits:""" ,logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCAmelCase : Optional[int] = outputs.loss assert torch.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ,organization="""nielsr""" ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase : int =parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : Any ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase : int ={ 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } lowerCAmelCase : Tuple ={ 'gpt2': 1_024, 'gpt2-medium': 1_024, 'gpt2-large': 1_024, 'gpt2-xl': 1_024, 'distilgpt2': 1_024, } class _a ( snake_case_ ): _UpperCamelCase: Any = VOCAB_FILES_NAMES _UpperCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: List[Any] = ["input_ids", "attention_mask"] _UpperCamelCase: str = GPTaTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="<|endoftext|>" , lowercase_="<|endoftext|>" , lowercase_="<|endoftext|>" , lowercase_=False , **lowercase_ , ) -> Any: super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) lowerCAmelCase : Dict = kwargs.pop("""add_bos_token""" , lowercase_ ) lowerCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase_ ) != add_prefix_space: lowerCAmelCase : Optional[int] = getattr(lowercase_ , pre_tok_state.pop("""type""" ) ) lowerCAmelCase : Dict = add_prefix_space lowerCAmelCase : Optional[Any] = pre_tok_class(**lowercase_ ) lowerCAmelCase : List[Any] = add_prefix_space def _snake_case ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding: lowerCAmelCase : str = kwargs.get("""is_split_into_words""" , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def _snake_case ( self , *lowercase_ , **lowercase_ ) -> BatchEncoding: lowerCAmelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: lowerCAmelCase : Union[str, Any] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def _snake_case ( self , lowercase_ ) -> List[int]: lowerCAmelCase : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: lowerCAmelCase : Any = input_ids[-self.model_max_length :] return input_ids
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase : str =[ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Any = True while ask_again: lowerCAmelCase : Any = input(SCREAMING_SNAKE_CASE__ ) try: if default is not None and len(SCREAMING_SNAKE_CASE__ ) == 0: return default return convert_value(SCREAMING_SNAKE_CASE__ ) if convert_value is not None else result except Exception: if error_message is not None: print(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=[] ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' lowerCAmelCase : str = BulletMenu(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = menu.run(default_choice=SCREAMING_SNAKE_CASE__ ) return convert_value(SCREAMING_SNAKE_CASE__ ) if convert_value is not None else result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = int(SCREAMING_SNAKE_CASE__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = int(SCREAMING_SNAKE_CASE__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = int(SCREAMING_SNAKE_CASE__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter ): def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: lowerCAmelCase : str = super()._format_usage(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : int = usage.replace("""<command> [<args>] """ , """""" ) return usage
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _a ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = SamImageProcessor() lowerCAmelCase : Union[str, Any] = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase_ ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self ) -> str: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : int = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Dict = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase : Dict = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : Any = image_processor(lowercase_ , return_tensors="""np""" ) lowerCAmelCase : Optional[int] = processor(images=lowercase_ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : str = self.get_image_processor() lowerCAmelCase : List[str] = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : str = [torch.ones((1, 3, 5, 5) )] lowerCAmelCase : str = [[1764, 2646]] lowerCAmelCase : Optional[int] = [[683, 1024]] lowerCAmelCase : Optional[Any] = processor.post_process_masks(lowercase_ , lowercase_ , lowercase_ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Optional[int] = processor.post_process_masks( lowercase_ , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowerCAmelCase : Tuple = [np.ones((1, 3, 5, 5) )] lowerCAmelCase : Dict = processor.post_process_masks(lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Optional[Any] = [[1, 0], [0, 1]] with self.assertRaises(lowercase_ ): lowerCAmelCase : Dict = processor.post_process_masks(lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) ) @require_vision @require_tf class _a ( unittest.TestCase ): def _snake_case ( self ) -> Any: lowerCAmelCase : Dict = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = SamImageProcessor() lowerCAmelCase : List[str] = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase_ ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Any: lowerCAmelCase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> int: lowerCAmelCase : List[str] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase : List[str] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Tuple = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : str = self.prepare_image_inputs() lowerCAmelCase : List[Any] = image_processor(lowercase_ , return_tensors="""np""" ) lowerCAmelCase : Optional[Any] = processor(images=lowercase_ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : List[str] = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : Optional[int] = [tf.ones((1, 3, 5, 5) )] lowerCAmelCase : Optional[Any] = [[1764, 2646]] lowerCAmelCase : List[str] = [[683, 1024]] lowerCAmelCase : List[Any] = processor.post_process_masks(lowercase_ , lowercase_ , lowercase_ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : Any = processor.post_process_masks( lowercase_ , tf.convert_to_tensor(lowercase_ ) , tf.convert_to_tensor(lowercase_ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowerCAmelCase : List[Any] = [np.ones((1, 3, 5, 5) )] lowerCAmelCase : List[Any] = processor.post_process_masks( lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowerCAmelCase : str = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): lowerCAmelCase : Union[str, Any] = processor.post_process_masks( lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class _a ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase : Dict = tempfile.mkdtemp() lowerCAmelCase : List[Any] = SamImageProcessor() lowerCAmelCase : int = SamProcessor(lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase_ ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _snake_case ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : str = self.get_image_processor() lowerCAmelCase : Union[str, Any] = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : Tuple = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) lowerCAmelCase : str = [tf.convert_to_tensor(lowercase_ )] lowerCAmelCase : str = [torch.tensor(lowercase_ )] lowerCAmelCase : Union[str, Any] = [[1764, 2646]] lowerCAmelCase : int = [[683, 1024]] lowerCAmelCase : List[str] = processor.post_process_masks( lowercase_ , lowercase_ , lowercase_ , return_tensors="""tf""" ) lowerCAmelCase : Optional[int] = processor.post_process_masks( lowercase_ , lowercase_ , lowercase_ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _snake_case ( self ) -> List[str]: lowerCAmelCase : Dict = self.get_image_processor() lowerCAmelCase : str = SamProcessor(image_processor=lowercase_ ) lowerCAmelCase : Any = self.prepare_image_inputs() lowerCAmelCase : Dict = image_processor(lowercase_ , return_tensors="""pt""" )["""pixel_values"""].numpy() lowerCAmelCase : Tuple = processor(images=lowercase_ , return_tensors="""pt""" )["""pixel_values"""].numpy() lowerCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors="""tf""" )["""pixel_values"""].numpy() lowerCAmelCase : Any = processor(images=lowercase_ , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) )
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase : Optional[List[str]] =None lowerCAmelCase : List[str] ='<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase : str =[ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class _a : _UpperCamelCase: bool = True _UpperCamelCase: Optional[str] = None # Automatically constructed _UpperCamelCase: ClassVar[str] = "PIL.Image.Image" _UpperCamelCase: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) _UpperCamelCase: str = field(default="Image" , init=snake_case_ , repr=snake_case_ ) def __call__( self ) -> Optional[int]: return self.pa_type def _snake_case ( self , lowercase_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : str = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _snake_case ( self , lowercase_ , lowercase_=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowerCAmelCase : str = {} lowerCAmelCase , lowerCAmelCase : Optional[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(lowercase_ ): lowerCAmelCase : int = PIL.Image.open(lowercase_ ) else: lowerCAmelCase : Optional[Any] = path.split("""::""" )[-1] try: lowerCAmelCase : Dict = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowerCAmelCase : Optional[int] = token_per_repo_id.get(lowercase_ ) except ValueError: lowerCAmelCase : Optional[int] = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowerCAmelCase : int = BytesIO(f.read() ) lowerCAmelCase : Any = PIL.Image.open(bytes_ ) else: lowerCAmelCase : List[str] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _snake_case ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def _snake_case ( self , lowercase_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): lowerCAmelCase : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowerCAmelCase : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase : List[Any] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : List[Any] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowerCAmelCase : int = storage.field("""bytes""" ) else: lowerCAmelCase : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowerCAmelCase : Optional[int] = storage.field("""path""" ) else: lowerCAmelCase : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCAmelCase : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCAmelCase : Dict = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : Any = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def _snake_case ( self , lowercase_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowercase_ ): with xopen(lowercase_ , """rb""" ) as f: lowerCAmelCase : int = f.read() return bytes_ lowerCAmelCase : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase : Optional[int] = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowerCAmelCase : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def _UpperCAmelCase ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCAmelCase : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): lowerCAmelCase : str = image.format else: lowerCAmelCase : Optional[int] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(SCREAMING_SNAKE_CASE__ ,format=SCREAMING_SNAKE_CASE__ ) return buffer.getvalue() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if hasattr(SCREAMING_SNAKE_CASE__ ,"""filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE__ )} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowerCAmelCase : Optional[int] = array.dtype lowerCAmelCase : str = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowerCAmelCase : Union[str, Any] = dtype.kind lowerCAmelCase : int = dtype.itemsize lowerCAmelCase : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCAmelCase : Union[str, Any] = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCAmelCase : Any = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCAmelCase : List[str] = dtype_byteorder + dtype_kind + str(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = np.dtype(SCREAMING_SNAKE_CASE__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) lowerCAmelCase : Dict = PIL.Image.fromarray(array.astype(SCREAMING_SNAKE_CASE__ ) ) return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE__ )} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowerCAmelCase , lowerCAmelCase : str = first_non_null_value(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray ): lowerCAmelCase : Any = no_op_if_value_is_null(SCREAMING_SNAKE_CASE__ ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE__ ) for obj in objs] elif isinstance(SCREAMING_SNAKE_CASE__ ,PIL.Image.Image ): lowerCAmelCase : Dict = no_op_if_value_is_null(SCREAMING_SNAKE_CASE__ ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE__ ) for obj in objs] else: return objs else: return objs
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if n == 1 or not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return 0 elif n == 2: return 1 else: lowerCAmelCase : Dict = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = 0 lowerCAmelCase : Dict = 2 while digits < n: index += 1 lowerCAmelCase : Union[str, Any] = len(str(fibonacci(SCREAMING_SNAKE_CASE__ ) ) ) return index def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0_0_0 ): '''simple docstring''' return fibonacci_digits_index(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase : str =logging.getLogger(__name__) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Union[str, Any]: lowerCAmelCase : Tuple = self.layer[current_layer](lowercase_ , lowercase_ , head_mask[current_layer] ) lowerCAmelCase : List[str] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , snake_case_ , ) class _a ( snake_case_ ): def __init__( self , lowercase_ ) -> Optional[Any]: super().__init__(lowercase_ ) lowerCAmelCase : Dict = BertEncoderWithPabee(lowercase_ ) self.init_weights() lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Tuple = 0 def _snake_case ( self , lowercase_ ) -> List[str]: lowerCAmelCase : Optional[Any] = threshold def _snake_case ( self , lowercase_ ) -> List[Any]: lowerCAmelCase : List[Any] = patience def _snake_case ( self ) -> List[str]: lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[Any] = 0 def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : List[Any] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : Dict = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(lowercase_ ) @add_start_docstrings_to_model_forward(lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False , ) -> str: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : Optional[Any] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) lowerCAmelCase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : str = torch.ones(lowercase_ , device=lowercase_ ) if token_type_ids is None: lowerCAmelCase : Dict = torch.zeros(lowercase_ , dtype=torch.long , device=lowercase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowercase_ , lowercase_ , lowercase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : str = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : str = torch.ones(lowercase_ , device=lowercase_ ) lowerCAmelCase : Any = self.invert_attention_mask(lowercase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Tuple = self.get_head_mask(lowercase_ , self.config.num_hidden_layers ) lowerCAmelCase : Optional[int] = self.embeddings( input_ids=lowercase_ , position_ids=lowercase_ , token_type_ids=lowercase_ , inputs_embeds=lowercase_ ) lowerCAmelCase : str = embedding_output if self.training: lowerCAmelCase : Any = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( lowercase_ , current_layer=lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ ) lowerCAmelCase : Any = self.pooler(lowercase_ ) lowerCAmelCase : Optional[Any] = output_layers[i](output_dropout(lowercase_ ) ) res.append(lowercase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Optional[Any] = self.encoder( lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) lowerCAmelCase : List[str] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : int = [output_layers[self.config.num_hidden_layers - 1](lowercase_ )] else: lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : List[Any] = self.encoder.adaptive_forward( lowercase_ , current_layer=lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ ) lowerCAmelCase : List[Any] = self.pooler(lowercase_ ) lowerCAmelCase : Optional[int] = output_layers[i](lowercase_ ) if regression: lowerCAmelCase : str = logits.detach() if patient_result is not None: lowerCAmelCase : List[str] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Optional[int] = 0 else: lowerCAmelCase : List[Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowercase_ ) ): patient_counter += 1 else: lowerCAmelCase : int = 0 lowerCAmelCase : List[str] = logits if patient_counter == self.patience: break lowerCAmelCase : Tuple = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , snake_case_ , ) class _a ( snake_case_ ): def __init__( self , lowercase_ ) -> int: super().__init__(lowercase_ ) lowerCAmelCase : Optional[int] = config.num_labels lowerCAmelCase : Optional[Any] = BertModelWithPabee(lowercase_ ) lowerCAmelCase : List[str] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> int: lowerCAmelCase : int = self.bert( input_ids=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : List[Any] = None lowerCAmelCase : Union[str, Any] = 0 for ix, logits_item in enumerate(lowercase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : str = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Union[str, Any] = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : float = xa lowerCAmelCase : float = xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError("""float division by zero, could not find root""" ) lowerCAmelCase : float = x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na lowerCAmelCase : Any = x_na lowerCAmelCase : int = x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE__ ,3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 ,input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
693
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
1
from typing import Any class _a : def __init__( self , lowercase_ ) -> Any: lowerCAmelCase : Tuple = data lowerCAmelCase : Optional[int] = None def __repr__( self ) -> str: return f"""Node({self.data})""" class _a : def __init__( self ) -> List[str]: lowerCAmelCase : Union[str, Any] = None def __iter__( self ) -> Any: lowerCAmelCase : Dict = self.head while node: yield node.data lowerCAmelCase : Any = node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(lowercase_ ) for item in self] ) def __getitem__( self , lowercase_ ) -> Any: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , lowercase_ , lowercase_ ) -> None: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) lowerCAmelCase : List[str] = self.head for _ in range(lowercase_ ): lowerCAmelCase : Union[str, Any] = current.next lowerCAmelCase : Optional[int] = data def _snake_case ( self , lowercase_ ) -> None: self.insert_nth(len(self ) , lowercase_ ) def _snake_case ( self , lowercase_ ) -> None: self.insert_nth(0 , lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ ) -> None: if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) lowerCAmelCase : Tuple = Node(lowercase_ ) if self.head is None: lowerCAmelCase : Dict = new_node elif index == 0: lowerCAmelCase : str = self.head # link new_node to head lowerCAmelCase : List[str] = new_node else: lowerCAmelCase : int = self.head for _ in range(index - 1 ): lowerCAmelCase : List[Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : List[str] = new_node def _snake_case ( self ) -> None: # print every node data print(self ) def _snake_case ( self ) -> Any: return self.delete_nth(0 ) def _snake_case ( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def _snake_case ( self , lowercase_ = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) lowerCAmelCase : Union[str, Any] = self.head # default first node if index == 0: lowerCAmelCase : str = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : str = temp.next lowerCAmelCase : Optional[int] = temp.next lowerCAmelCase : List[str] = temp.next.next return delete_node.data def _snake_case ( self ) -> bool: return self.head is None def _snake_case ( self ) -> None: lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = self.head while current: # Store the current node's next node. lowerCAmelCase : int = current.next # Make the current node's next point backwards lowerCAmelCase : Optional[int] = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Dict = next_node # Return prev in order to put the head at the end lowerCAmelCase : Dict = prev def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE__ ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE__ ,i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 ,1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 ,1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE__ ) == 9 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 ,1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): lowerCAmelCase : List[str] = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(-8 ,1 ) ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), """dlrow olleH""", 7, 5_5_5_5, 0, -192.55555, """Hello, world!""", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[Any] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Any = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : int = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : Optional[Any] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _UpperCAmelCase ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Tuple = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(SCREAMING_SNAKE_CASE__ ) print("""\nReading/changing Node data using indexing:""" ) print(F"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Optional[int] = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(SCREAMING_SNAKE_CASE__ ) print(F"""length of linked_list is : {len(SCREAMING_SNAKE_CASE__ )}""" ) if __name__ == "__main__": main()
693
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Any =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Any = ["pixel_values"] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_ ) lowerCAmelCase : int = size if size is not None else {"""shortest_edge""": 384} lowerCAmelCase : Any = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : Optional[Any] = do_resize lowerCAmelCase : Optional[int] = size # Default value set here for backwards compatibility where the value in config is None lowerCAmelCase : List[Any] = crop_pct if crop_pct is not None else 224 / 256 lowerCAmelCase : Any = resample lowerCAmelCase : Any = do_rescale lowerCAmelCase : Optional[Any] = rescale_factor lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: lowerCAmelCase : Union[str, Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) lowerCAmelCase : Optional[Any] = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCAmelCase : Any = int(shortest_edge / crop_pct ) lowerCAmelCase : Tuple = get_resize_output_image_size(lowercase_ , size=lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : str = resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowercase_ , size=(shortest_edge, shortest_edge) , data_format=lowercase_ , **lowercase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowercase_ , size=(shortest_edge, shortest_edge) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Tuple: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: lowerCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Tuple = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase : Tuple = resample if resample is not None else self.resample lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : int = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Any = image_std if image_std is not None else self.image_std lowerCAmelCase : Dict = size if size is not None else self.size lowerCAmelCase : Union[str, Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : str = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase : Any = [self.resize(image=lowercase_ , size=lowercase_ , crop_pct=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase : Optional[int] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase : Optional[Any] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase : List[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase : List[Any] = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: List[str] = VideoToVideoSDPipeline _UpperCamelCase: List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} _UpperCamelCase: Tuple = PipelineTesterMixin.required_optional_params - {"latents"} _UpperCamelCase: Any = False # No `output_type`. _UpperCamelCase: Dict = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) lowerCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCAmelCase : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowerCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCAmelCase : Any = CLIPTextModel(lowercase_ ) lowerCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def _snake_case ( self , lowercase_ , lowercase_=0 ) -> List[str]: # 3 frames lowerCAmelCase : List[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : str = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : Tuple = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def _snake_case ( self ) -> Tuple: lowerCAmelCase : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : str = self.get_dummy_components() lowerCAmelCase : Optional[int] = VideoToVideoSDPipeline(**lowercase_ ) lowerCAmelCase : str = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase : List[Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase : Union[str, Any] = """np""" lowerCAmelCase : Tuple = sd_pipe(**lowercase_ ).frames lowerCAmelCase : List[str] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowerCAmelCase : List[Any] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_ , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _snake_case ( self ) -> Optional[int]: pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _snake_case ( self ) -> Optional[Any]: pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def _snake_case ( self ) -> Tuple: pass def _snake_case ( self ) -> Union[str, Any]: return super().test_progress_bar() @slow @skip_mps class _a ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase : List[Any] = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames lowerCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase : Tuple = torch.randn((1, 10, 3, 1024, 576) , generator=lowercase_ ) lowerCAmelCase : List[str] = video.to("""cuda""" ) lowerCAmelCase : Optional[int] = """Spiderman is surfing""" lowerCAmelCase : List[Any] = pipe(lowercase_ , video=lowercase_ , generator=lowercase_ , num_inference_steps=3 , output_type="""pt""" ).frames lowerCAmelCase : Optional[int] = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowerCAmelCase : Dict = sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _a ( snake_case_ ): def __init__( self , lowercase_=0.0_1 , lowercase_=1000 ) -> List[str]: lowerCAmelCase : str = p_stop lowerCAmelCase : str = max_length def __iter__( self ) -> List[Any]: lowerCAmelCase : List[Any] = 0 lowerCAmelCase : List[Any] = False while not stop and count < self.max_length: yield count count += 1 lowerCAmelCase : Union[str, Any] = random.random() < self.p_stop class _a ( unittest.TestCase ): def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=False , lowercase_=True ) -> Tuple: lowerCAmelCase : Any = [ BatchSamplerShard(lowercase_ , 2 , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) for i in range(2 ) ] lowerCAmelCase : Dict = [list(lowercase_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase_ ) for shard in batch_sampler_shards] , [len(lowercase_ ) for e in expected] ) self.assertListEqual(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. lowerCAmelCase : Any = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) lowerCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) lowerCAmelCase : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) lowerCAmelCase : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) # Check the shards when the dataset is very small. lowerCAmelCase : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) lowerCAmelCase : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Optional[Any] = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Dict: # Check the shards when the dataset is a round multiple of batch size. lowerCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ ) lowerCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ ) lowerCAmelCase : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ ) lowerCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ ) # Check the shards when the dataset is very small. lowerCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Tuple = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ ) lowerCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ ) def _snake_case ( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of total batch size. lowerCAmelCase : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) # Check the shards when the dataset is very small. lowerCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase_ ) lowerCAmelCase : str = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ ) def _snake_case ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. lowerCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase : str = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) # Check the shards when the dataset is very small. lowerCAmelCase : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) lowerCAmelCase : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : int = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowerCAmelCase : Optional[Any] = [BatchSamplerShard(lowercase_ , 2 , lowercase_ , even_batches=lowercase_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=False , lowercase_=2 , lowercase_=False ) -> List[Any]: random.seed(lowercase_ ) lowerCAmelCase : List[Any] = list(lowercase_ ) lowerCAmelCase : Optional[Any] = [ IterableDatasetShard( lowercase_ , batch_size=lowercase_ , drop_last=lowercase_ , num_processes=lowercase_ , process_index=lowercase_ , split_batches=lowercase_ , ) for i in range(lowercase_ ) ] lowerCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase_ ) iterable_dataset_lists.append(list(lowercase_ ) ) lowerCAmelCase : List[str] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowerCAmelCase : List[str] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) self.assertTrue(len(lowercase_ ) % shard_batch_size == 0 ) lowerCAmelCase : Optional[int] = [] for idx in range(0 , len(lowercase_ ) , lowercase_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase_ ) < len(lowercase_ ): reference += reference self.assertListEqual(lowercase_ , reference[: len(lowercase_ )] ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : int = 42 lowerCAmelCase : List[str] = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ ) # Edge case with a very small dataset lowerCAmelCase : str = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ ) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ ) def _snake_case ( self ) -> Dict: lowerCAmelCase : Union[str, Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowercase_ ) lowerCAmelCase : List[Any] = SkipBatchSampler(lowercase_ , 2 ) self.assertListEqual(list(lowercase_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) lowerCAmelCase : Union[str, Any] = skip_first_batches(lowercase_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowercase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _snake_case ( self ) -> Dict: Accelerator() lowerCAmelCase : Any = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowercase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) class _a ( snake_case_ ): def __init__( self , *lowercase_ , **lowercase_ ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a : def __init__( self , lowercase_ , lowercase_=2 , lowercase_=3 , lowercase_=4 , lowercase_=2 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=36 , lowercase_=3 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=6 , lowercase_=6 , lowercase_=3 , lowercase_=4 , lowercase_=None , lowercase_=1000 , ) -> str: lowerCAmelCase : str = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : Union[str, Any] = text_seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : Dict = use_input_mask lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : List[str] = coordinate_size lowerCAmelCase : Union[str, Any] = shape_size lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : str = num_choices lowerCAmelCase : List[Any] = scope lowerCAmelCase : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase : str = text_seq_length lowerCAmelCase : int = (image_size // patch_size) ** 2 + 1 lowerCAmelCase : int = self.text_seq_length + self.image_seq_length def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase : List[Any] = bbox[i, j, 3] lowerCAmelCase : Optional[Any] = bbox[i, j, 1] lowerCAmelCase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase : List[Any] = bbox[i, j, 2] lowerCAmelCase : Optional[Any] = bbox[i, j, 0] lowerCAmelCase : Tuple = t lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : List[str] = None if self.use_input_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase : int = None lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase : int = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: lowerCAmelCase : int = LayoutLMvaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() # text + image lowerCAmelCase : Any = model(lowercase_ , pixel_values=lowercase_ ) lowerCAmelCase : Optional[int] = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) lowerCAmelCase : int = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , token_type_ids=lowercase_ ) lowerCAmelCase : Union[str, Any] = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase : str = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase : str = model(pixel_values=lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : List[str] = LayoutLMvaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : List[Any] = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : Optional[Any] = LayoutLMvaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: lowerCAmelCase : Any = LayoutLMvaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ) -> str: lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase : Any = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Dict = False _UpperCamelCase: Optional[int] = False _UpperCamelCase: List[Any] = False _UpperCamelCase: Tuple = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase: int = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _snake_case ( self ) -> Dict: lowerCAmelCase : Dict = LayoutLMvaModelTester(self ) lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=False ) -> Tuple: lowerCAmelCase : List[str] = copy.deepcopy(lowercase_ ) if model_class in get_values(lowercase_ ): lowerCAmelCase : Any = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowercase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_ ): lowerCAmelCase : str = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in get_values(lowercase_ ): lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) lowerCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in [ *get_values(lowercase_ ), ]: lowerCAmelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in [ *get_values(lowercase_ ), ]: lowerCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase_ , ) return inputs_dict def _snake_case ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : Optional[Any] = type self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def _snake_case ( self ) -> List[str]: lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def _snake_case ( self ) -> List[str]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Any = LayoutLMvaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class _a ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> int: return LayoutLMvaImageProcessor(apply_ocr=lowercase_ ) if is_vision_available() else None @slow def _snake_case ( self ) -> int: lowerCAmelCase : int = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(lowercase_ ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : str = prepare_img() lowerCAmelCase : Any = image_processor(images=lowercase_ , return_tensors="""pt""" ).pixel_values.to(lowercase_ ) lowerCAmelCase : str = torch.tensor([[1, 2]] ) lowerCAmelCase : str = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase : Union[str, Any] = model( input_ids=input_ids.to(lowercase_ ) , bbox=bbox.to(lowercase_ ) , pixel_values=pixel_values.to(lowercase_ ) , ) # verify the logits lowerCAmelCase : int = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase_ ) lowerCAmelCase : str = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1e-4 ) )
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={'vocab_file': 'vocab.txt'} lowerCAmelCase : int ={ 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } lowerCAmelCase : Dict ={ 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } lowerCAmelCase : List[Any] ={ 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): _UpperCamelCase: Dict = VOCAB_FILES_NAMES _UpperCamelCase: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase: Dict = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase: Any = ConvBertTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> List[Any]: super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) lowerCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Dict = getattr(lowercase_ , normalizer_state.pop("""type""" ) ) lowerCAmelCase : List[str] = do_lower_case lowerCAmelCase : Dict = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : List[Any] = normalizer_class(**lowercase_ ) lowerCAmelCase : Tuple = do_lower_case def _snake_case ( self , lowercase_ , lowercase_=None ) -> List[Any]: lowerCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , lowercase_ , lowercase_ = None ) -> List[int]: lowerCAmelCase : Dict = [self.sep_token_id] lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: lowerCAmelCase : Any = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : int ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = "align_text_model" def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=True , **lowercase_ , ) -> Any: super().__init__(**lowercase_ ) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : str = hidden_act lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Optional[int] = position_embedding_type lowerCAmelCase : int = use_cache lowerCAmelCase : Tuple = pad_token_id @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase , lowerCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCAmelCase : Dict = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Dict = "align_vision_model" def __init__( self , lowercase_ = 3 , lowercase_ = 600 , lowercase_ = 2.0 , lowercase_ = 3.1 , lowercase_ = 8 , lowercase_ = [3, 3, 5, 3, 5, 5, 3] , lowercase_ = [32, 16, 24, 40, 80, 112, 192] , lowercase_ = [16, 24, 40, 80, 112, 192, 320] , lowercase_ = [] , lowercase_ = [1, 2, 2, 2, 1, 2, 1] , lowercase_ = [1, 2, 2, 3, 3, 4, 1] , lowercase_ = [1, 6, 6, 6, 6, 6, 6] , lowercase_ = 0.2_5 , lowercase_ = "swish" , lowercase_ = 2560 , lowercase_ = "mean" , lowercase_ = 0.0_2 , lowercase_ = 0.0_0_1 , lowercase_ = 0.9_9 , lowercase_ = 0.2 , **lowercase_ , ) -> List[Any]: super().__init__(**lowercase_ ) lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = width_coefficient lowerCAmelCase : List[str] = depth_coefficient lowerCAmelCase : Optional[Any] = depth_divisor lowerCAmelCase : Dict = kernel_sizes lowerCAmelCase : Union[str, Any] = in_channels lowerCAmelCase : Optional[Any] = out_channels lowerCAmelCase : Optional[Any] = depthwise_padding lowerCAmelCase : Union[str, Any] = strides lowerCAmelCase : Union[str, Any] = num_block_repeats lowerCAmelCase : Optional[Any] = expand_ratios lowerCAmelCase : List[str] = squeeze_expansion_ratio lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dim lowerCAmelCase : Any = pooling_type lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : List[str] = batch_norm_eps lowerCAmelCase : Optional[int] = batch_norm_momentum lowerCAmelCase : Tuple = drop_connect_rate lowerCAmelCase : Optional[Any] = sum(lowercase_ ) * 4 @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase , lowerCAmelCase : List[Any] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCAmelCase : Union[str, Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Any = "align" _UpperCamelCase: Any = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=640 , lowercase_=1.0 , lowercase_=0.0_2 , **lowercase_ , ) -> List[str]: super().__init__(**lowercase_ ) if text_config is None: lowerCAmelCase : Optional[Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: lowerCAmelCase : List[Any] = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) lowerCAmelCase : Any = AlignTextConfig(**lowercase_ ) lowerCAmelCase : Dict = AlignVisionConfig(**lowercase_ ) lowerCAmelCase : Any = projection_dim lowerCAmelCase : int = temperature_init_value lowerCAmelCase : Optional[Any] = initializer_range @classmethod def _snake_case ( cls , lowercase_ , lowercase_ , **lowercase_ ) -> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : Dict = copy.deepcopy(self.__dict__ ) lowerCAmelCase : List[str] = self.text_config.to_dict() lowerCAmelCase : List[Any] = self.vision_config.to_dict() lowerCAmelCase : Any = self.__class__.model_type return output
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _a ( unittest.TestCase ): @require_torch def _snake_case ( self ) -> str: lowerCAmelCase : Optional[int] = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) lowerCAmelCase : Optional[int] = load_dataset("""ashraq/esc50""" ) lowerCAmelCase : Tuple = dataset["""train"""]["""audio"""][-1]["""array"""] lowerCAmelCase : Tuple = audio_classifier(lowercase_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"""score""": 0.5_0_1, """label""": """Sound of a dog"""}, {"""score""": 0.4_9_9, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def _snake_case ( self ) -> List[str]: pass @slow @require_torch def _snake_case ( self ) -> str: lowerCAmelCase : Optional[Any] = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog lowerCAmelCase : Dict = load_dataset("""ashraq/esc50""" ) lowerCAmelCase : Optional[int] = dataset["""train"""]["""audio"""][-1]["""array"""] lowerCAmelCase : str = audio_classifier(lowercase_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ] , ) lowerCAmelCase : Optional[int] = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) lowerCAmelCase : List[Any] = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.9_9_9, """label""": """Sound of a dog"""}, {"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def _snake_case ( self ) -> Optional[int]: pass
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
from math import sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 0 for i in range(1 ,int(sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE__ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE__ ): total += i return total - n def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0_0_0_0 ): '''simple docstring''' lowerCAmelCase : Any = sum( i for i in range(1 ,SCREAMING_SNAKE_CASE__ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE__ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCAmelCase : Union[str, Any] =logging.getLogger(__name__) @dataclass class _a : _UpperCamelCase: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) _UpperCamelCase: Optional[int] = field( default=snake_case_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _UpperCamelCase: Optional[int] = field( default=snake_case_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) _UpperCamelCase: Optional[int] = field( default=snake_case_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class _a : _UpperCamelCase: str = field( default=snake_case_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase: str = field( default=snake_case_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Train language if it is different from the evaluation language."} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCamelCase: Optional[bool] = field( default=snake_case_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _UpperCamelCase: str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) _UpperCamelCase: bool = field( default=snake_case_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" ,SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : List[str] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase : Any = load_dataset( """xnli""" ,model_args.language ,split="""train""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: lowerCAmelCase : Tuple = load_dataset( """xnli""" ,model_args.train_language ,split="""train""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Union[str, Any] = train_dataset.features["""label"""].names if training_args.do_eval: lowerCAmelCase : List[Any] = load_dataset( """xnli""" ,model_args.language ,split="""validation""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Optional[Any] = eval_dataset.features["""label"""].names if training_args.do_predict: lowerCAmelCase : List[Any] = load_dataset( """xnli""" ,model_args.language ,split="""test""" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Tuple = predict_dataset.features["""label"""].names # Labels lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=SCREAMING_SNAKE_CASE__ ,idalabel={str(SCREAMING_SNAKE_CASE__ ): label for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} ,labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} ,finetuning_task="""xnli""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase : Any = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase : Any = False def preprocess_function(SCREAMING_SNAKE_CASE__ ): # Tokenize the texts return tokenizer( examples["""premise"""] ,examples["""hypothesis"""] ,padding=SCREAMING_SNAKE_CASE__ ,max_length=data_args.max_seq_length ,truncation=SCREAMING_SNAKE_CASE__ ,) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase : List[Any] = min(len(SCREAMING_SNAKE_CASE__ ) ,data_args.max_train_samples ) lowerCAmelCase : List[str] = train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowerCAmelCase : Union[str, Any] = train_dataset.map( SCREAMING_SNAKE_CASE__ ,batched=SCREAMING_SNAKE_CASE__ ,load_from_cache_file=not data_args.overwrite_cache ,desc="""Running tokenizer on train dataset""" ,) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ) ,3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase : Optional[int] = min(len(SCREAMING_SNAKE_CASE__ ) ,data_args.max_eval_samples ) lowerCAmelCase : Union[str, Any] = eval_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowerCAmelCase : Union[str, Any] = eval_dataset.map( SCREAMING_SNAKE_CASE__ ,batched=SCREAMING_SNAKE_CASE__ ,load_from_cache_file=not data_args.overwrite_cache ,desc="""Running tokenizer on validation dataset""" ,) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase : Optional[int] = min(len(SCREAMING_SNAKE_CASE__ ) ,data_args.max_predict_samples ) lowerCAmelCase : Dict = predict_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): lowerCAmelCase : Tuple = predict_dataset.map( SCREAMING_SNAKE_CASE__ ,batched=SCREAMING_SNAKE_CASE__ ,load_from_cache_file=not data_args.overwrite_cache ,desc="""Running tokenizer on prediction dataset""" ,) # Get the metric function lowerCAmelCase : str = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = p.predictions[0] if isinstance(p.predictions ,SCREAMING_SNAKE_CASE__ ) else p.predictions lowerCAmelCase : str = np.argmax(SCREAMING_SNAKE_CASE__ ,axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE__ ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase : Optional[Any] = default_data_collator elif training_args.fpaa: lowerCAmelCase : Tuple = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=8 ) else: lowerCAmelCase : Dict = None # Initialize our Trainer lowerCAmelCase : List[Any] = Trainer( model=SCREAMING_SNAKE_CASE__ ,args=SCREAMING_SNAKE_CASE__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,data_collator=SCREAMING_SNAKE_CASE__ ,) # Training if training_args.do_train: lowerCAmelCase : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : str = last_checkpoint lowerCAmelCase : Union[str, Any] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = train_result.metrics lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Tuple = min(SCREAMING_SNAKE_CASE__ ,len(SCREAMING_SNAKE_CASE__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""train""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase : Union[str, Any] = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE__ ,len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics("""eval""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" ,SCREAMING_SNAKE_CASE__ ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = trainer.predict(SCREAMING_SNAKE_CASE__ ,metric_key_prefix="""predict""" ) lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ,len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics("""predict""" ,SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""predict""" ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE__ ,axis=1 ) lowerCAmelCase : Optional[int] = os.path.join(training_args.output_dir ,"""predictions.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ ,"""w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if (ksize % 2) == 0: lowerCAmelCase : int = ksize + 1 lowerCAmelCase : Optional[int] = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE__ ): for x in range(SCREAMING_SNAKE_CASE__ ): # distance from center lowerCAmelCase : str = x - ksize // 2 lowerCAmelCase : Union[str, Any] = y - ksize // 2 # degree to radiant lowerCAmelCase : Tuple = theta / 1_8_0 * np.pi lowerCAmelCase : Union[str, Any] = np.cos(_theta ) lowerCAmelCase : Union[str, Any] = np.sin(_theta ) # get kernel x lowerCAmelCase : str = cos_theta * px + sin_theta * py # get kernel y lowerCAmelCase : int = -sin_theta * px + cos_theta * py # fill kernel lowerCAmelCase : Optional[int] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCAmelCase : Tuple =imread('../image_data/lena.jpg') # turn image in gray scale value lowerCAmelCase : Optional[int] =cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCAmelCase : Optional[Any] =np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCAmelCase : List[str] =gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCAmelCase : str =out / out.max() * 255 lowerCAmelCase : Tuple =out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCAmelCase : Union[str, Any] =HfArgumentParser(InitializationArguments) lowerCAmelCase : Any =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCAmelCase : Any ={ 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) lowerCAmelCase : str =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCAmelCase : Any =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = [1] for i in range(2 ,SCREAMING_SNAKE_CASE__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowerCAmelCase : List[Any] = [] lowerCAmelCase : Any = list(range(SCREAMING_SNAKE_CASE__ ) ) # Find permutation while factorials: lowerCAmelCase : Dict = factorials.pop() lowerCAmelCase , lowerCAmelCase : Tuple = divmod(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = "vivit" def __init__( self , lowercase_=224 , lowercase_=32 , lowercase_=[2, 16, 16] , lowercase_=3 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_fast" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1e-06 , lowercase_=True , **lowercase_ , ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : List[str] = num_frames lowerCAmelCase : Optional[Any] = tubelet_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Union[str, Any] = qkv_bias super().__init__(**lowercase_ )
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _a ( snake_case_ ): _UpperCamelCase: Optional[int] = "visual_bert" def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=512 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=False , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , **lowercase_ , ) -> Dict: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : Dict = vocab_size lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Dict = hidden_size lowerCAmelCase : Dict = visual_embedding_dim lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Dict = type_vocab_size lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Union[str, Any] = bypass_transformer lowerCAmelCase : Union[str, Any] = special_visual_initialize
693
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase : Dict =logging.get_logger(__name__) class _a ( snake_case_ ): def __init__( self , *lowercase_ , **lowercase_ ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
1
# Algorithm for the pigeonhole sorting def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = min(SCREAMING_SNAKE_CASE__ ) # min() finds the minimum value lowerCAmelCase : Any = max(SCREAMING_SNAKE_CASE__ ) # max() finds the maximum value lowerCAmelCase : Optional[Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowerCAmelCase : List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowerCAmelCase : Dict = 0 for count in range(SCREAMING_SNAKE_CASE__ ): while holes[count] > 0: holes[count] -= 1 lowerCAmelCase : Optional[Any] = count + min_val i += 1 def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(SCREAMING_SNAKE_CASE__ ) print("""Sorted order is:""" ,""" """.join(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
693
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase : List[str] ={'UserAgent': UserAgent().random} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = script.contents[0] lowerCAmelCase : int = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _a : def __init__( self , lowercase_ ) -> Tuple: lowerCAmelCase : List[str] = f"""https://www.instagram.com/{username}/""" lowerCAmelCase : str = self.get_json() def _snake_case ( self ) -> dict: lowerCAmelCase : Tuple = requests.get(self.url , headers=lowercase_ ).text lowerCAmelCase : int = BeautifulSoup(lowercase_ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self ) -> str: return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def _snake_case ( self ) -> str: return self.user_data["username"] @property def _snake_case ( self ) -> str: return self.user_data["full_name"] @property def _snake_case ( self ) -> str: return self.user_data["biography"] @property def _snake_case ( self ) -> str: return self.user_data["business_email"] @property def _snake_case ( self ) -> str: return self.user_data["external_url"] @property def _snake_case ( self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self ) -> int: return self.user_data["edge_follow"]["count"] @property def _snake_case ( self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self ) -> str: return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self ) -> bool: return self.user_data["is_verified"] @property def _snake_case ( self ) -> bool: return self.user_data["is_private"] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = "github" ): '''simple docstring''' import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowerCAmelCase : int = InstagramUser(SCREAMING_SNAKE_CASE__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,SCREAMING_SNAKE_CASE__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : int =InstagramUser('github') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Union[str, Any] =16 lowerCAmelCase : Optional[Any] =32 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 1_6 ): '''simple docstring''' lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase : List[Any] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase : Optional[Any] = datasets.map( SCREAMING_SNAKE_CASE__ ,batched=SCREAMING_SNAKE_CASE__ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(SCREAMING_SNAKE_CASE__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase : Any = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase : Union[str, Any] = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase : Union[str, Any] = 8 else: lowerCAmelCase : Dict = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ ,padding="""longest""" ,max_length=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_tensors="""pt""" ,) # Instantiate dataloaders. lowerCAmelCase : List[Any] = DataLoader( tokenized_datasets["""train"""] ,shuffle=SCREAMING_SNAKE_CASE__ ,collate_fn=SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] ,shuffle=SCREAMING_SNAKE_CASE__ ,collate_fn=SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : Optional[int] =mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,SCREAMING_SNAKE_CASE__ ) == "1": lowerCAmelCase : str = 2 # New Code # lowerCAmelCase : List[str] = int(args.gradient_accumulation_steps ) lowerCAmelCase : Union[str, Any] = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase : Optional[Any] = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : Optional[int] = config["""lr"""] lowerCAmelCase : int = int(config["""num_epochs"""] ) lowerCAmelCase : str = int(config["""seed"""] ) lowerCAmelCase : List[Any] = int(config["""batch_size"""] ) lowerCAmelCase : List[str] = evaluate.load("""glue""" ,"""mrpc""" ) set_seed(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase , lowerCAmelCase : Optional[int] = get_dataloaders(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase : Optional[Any] = AdamW(params=model.parameters() ,lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler lowerCAmelCase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ ,num_warmup_steps=1_0_0 ,num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE__ ,model=SCREAMING_SNAKE_CASE__ ,local_sgd_steps=SCREAMING_SNAKE_CASE__ ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : List[Any] = model(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ ,references=SCREAMING_SNAKE_CASE__ ,) lowerCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=SCREAMING_SNAKE_CASE__ ,default=SCREAMING_SNAKE_CASE__ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) # New Code # parser.add_argument( """--gradient_accumulation_steps""" ,type=SCREAMING_SNAKE_CASE__ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,) parser.add_argument( """--local_sgd_steps""" ,type=SCREAMING_SNAKE_CASE__ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) lowerCAmelCase : Optional[int] = parser.parse_args() lowerCAmelCase : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def is_in_circle(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> bool: lowerCAmelCase : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCAmelCase : List[str] = mean( int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) # The ratio of the area for circle to square is pi/4. lowerCAmelCase : List[Any] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ,): '''simple docstring''' return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) * (max_value - min_value) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = 1.0 ): '''simple docstring''' def identity_function(SCREAMING_SNAKE_CASE__ ) -> float: return x lowerCAmelCase : Union[str, Any] = area_under_curve_estimator( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print("""******************""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def function_to_integrate(SCREAMING_SNAKE_CASE__ ) -> float: return sqrt(4.0 - x * x ) lowerCAmelCase : int = area_under_curve_estimator( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,0.0 ,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
from math import isqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = False return [i for i in range(2 ,SCREAMING_SNAKE_CASE__ ) if is_prime[i]] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0**8 ): '''simple docstring''' lowerCAmelCase : str = calculate_prime_numbers(max_number // 2 ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) lowerCAmelCase : Any ='\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class _a ( snake_case_ ): @staticmethod def _snake_case ( lowercase_ ) -> Dict: lowerCAmelCase : int = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=lowercase_ , required=lowercase_ , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=lowercase_ , required=lowercase_ , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=lowercase_ , required=lowercase_ , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=lowercase_ , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=lowercase_ , default=lowercase_ , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=lowercase_ ) def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , *lowercase_ , ) -> int: lowerCAmelCase : str = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) lowerCAmelCase : str = model_type lowerCAmelCase : str = tf_checkpoint lowerCAmelCase : int = pytorch_dump_output lowerCAmelCase : Union[str, Any] = config lowerCAmelCase : List[str] = finetuning_task_name def _snake_case ( self ) -> Dict: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowercase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) if "ckpt" in self._tf_checkpoint.lower(): lowerCAmelCase : Optional[int] = self._tf_checkpoint lowerCAmelCase : Tuple = """""" else: lowerCAmelCase : Tuple = self._tf_checkpoint lowerCAmelCase : List[str] = """""" convert_transfo_xl_checkpoint_to_pytorch( lowercase_ , self._config , self._pytorch_dump_output , lowercase_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : List[str] = [] lowerCAmelCase : Tuple = 1 while len(SCREAMING_SNAKE_CASE__ ) < 1e6: constant.append(str(SCREAMING_SNAKE_CASE__ ) ) i += 1 lowerCAmelCase : Tuple = """""".join(SCREAMING_SNAKE_CASE__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _a : def __init__( self , lowercase_ , lowercase_=99 , lowercase_=13 , lowercase_=7 , lowercase_=9 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_=8 , lowercase_=0.1 , lowercase_=0.0_0_2 , lowercase_=1 , lowercase_=0 , lowercase_=0 , lowercase_=None , lowercase_=None , ) -> str: lowerCAmelCase : str = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : Any = encoder_seq_length lowerCAmelCase : Optional[Any] = decoder_seq_length # For common tests lowerCAmelCase : str = self.decoder_seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : int = use_attention_mask lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Tuple = d_ff lowerCAmelCase : Tuple = relative_attention_num_buckets lowerCAmelCase : Optional[Any] = dropout_rate lowerCAmelCase : Optional[int] = initializer_factor lowerCAmelCase : str = eos_token_id lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : List[Any] = decoder_start_token_id lowerCAmelCase : List[Any] = None lowerCAmelCase : Tuple = decoder_layers def _snake_case ( self ) -> List[Any]: return TaConfig.from_pretrained("""google/umt5-base""" ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> str: if attention_mask is None: lowerCAmelCase : List[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowercase_ ) if decoder_head_mask is None: lowerCAmelCase : List[Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowercase_ ) if cross_attn_head_mask is None: lowerCAmelCase : str = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowercase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase : Optional[int] = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase : int = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase : Dict = self.get_config() lowerCAmelCase : Tuple = config.num_attention_heads lowerCAmelCase : str = self.prepare_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, input_dict def _snake_case ( self ) -> Any: lowerCAmelCase , lowerCAmelCase : Dict = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self ) -> str: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self ) -> Optional[int]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Dict: lowerCAmelCase : Optional[int] = UMTaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : str = model( input_ids=lowercase_ , decoder_input_ids=lowercase_ , attention_mask=lowercase_ , decoder_attention_mask=lowercase_ , ) lowerCAmelCase : int = model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) lowerCAmelCase : Any = result.last_hidden_state lowerCAmelCase : Union[str, Any] = result.past_key_values lowerCAmelCase : List[str] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowercase_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: lowerCAmelCase : Optional[Any] = UMTaModel(config=lowercase_ ).get_decoder().to(lowercase_ ).eval() # first forward pass lowerCAmelCase : Optional[int] = model(lowercase_ , use_cache=lowercase_ ) lowerCAmelCase : Optional[Any] = model(lowercase_ ) lowerCAmelCase : List[Any] = model(lowercase_ , use_cache=lowercase_ ) self.parent.assertTrue(len(lowercase_ ) == len(lowercase_ ) ) self.parent.assertTrue(len(lowercase_ ) == len(lowercase_ ) + 1 ) lowerCAmelCase , lowerCAmelCase : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCAmelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : Tuple = model(lowercase_ )["""last_hidden_state"""] lowerCAmelCase : Optional[int] = model(lowercase_ , past_key_values=lowercase_ )["""last_hidden_state"""] # select random slice lowerCAmelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : str = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def _snake_case ( self , lowercase_ , lowercase_ , ) -> Optional[int]: lowerCAmelCase : Optional[Any] = UMTaModel(config=lowercase_ ).to(lowercase_ ).half().eval() lowerCAmelCase : Union[str, Any] = model(**lowercase_ )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(lowercase_ ).any().item() ) @require_torch class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Any = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _UpperCamelCase: List[str] = (UMTaForConditionalGeneration,) if is_torch_available() else () _UpperCamelCase: Union[str, Any] = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _UpperCamelCase: Any = True _UpperCamelCase: List[str] = False _UpperCamelCase: str = False _UpperCamelCase: Optional[int] = True _UpperCamelCase: Dict = True # The small UMT5 model needs higher percentages for CPU/MP tests _UpperCamelCase: int = [0.8, 0.9] def _snake_case ( self ) -> List[str]: lowerCAmelCase : Union[str, Any] = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : List[Any] = UMTaModel(config_and_inputs[0] ).to(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowercase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=lowercase_ , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _snake_case ( self ) -> int: lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowercase_ ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : List[Any] = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = config_and_inputs[0] lowerCAmelCase : int = UMTaForConditionalGeneration(lowercase_ ).eval() model.to(lowercase_ ) lowerCAmelCase : Union[str, Any] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=lowercase_ ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase_ ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase_ ), } for attn_name, (name, mask) in zip(lowercase_ , head_masking.items() ): lowerCAmelCase : Optional[Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCAmelCase : Tuple = torch.ones( config.num_decoder_layers , config.num_heads , device=lowercase_ ) lowerCAmelCase : Any = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=lowercase_ , return_dict_in_generate=lowercase_ , **lowercase_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCAmelCase : Dict = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _snake_case ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _snake_case ( self ) -> str: lowerCAmelCase : Union[str, Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=lowercase_ ).to(lowercase_ ) lowerCAmelCase : int = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=lowercase_ , legacy=lowercase_ ) lowerCAmelCase : List[str] = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] lowerCAmelCase : Union[str, Any] = tokenizer(lowercase_ , return_tensors="""pt""" , padding=lowercase_ ).input_ids # fmt: off lowerCAmelCase : Union[str, Any] = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[int] = model.generate(input_ids.to(lowercase_ ) ) lowerCAmelCase : List[str] = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] lowerCAmelCase : Dict = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ )
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase : str = F"""The input value of [n={number}] has to be > 0""" raise ValueError(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : int = sylvester(number - 1 ) lowerCAmelCase : Optional[int] = num - 1 lowerCAmelCase : int = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _a : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.0_2 , lowercase_=3 , lowercase_=None , lowercase_=2 , ) -> Optional[Any]: lowerCAmelCase : Dict = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : List[str] = image_size lowerCAmelCase : Dict = patch_size lowerCAmelCase : str = num_channels lowerCAmelCase : Tuple = is_training lowerCAmelCase : Dict = use_labels lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : str = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Any = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Tuple = scope lowerCAmelCase : Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase : Any = (image_size // patch_size) ** 2 lowerCAmelCase : Tuple = num_patches + 2 def _snake_case ( self ) -> Tuple: lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : int = None if self.use_labels: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def _snake_case ( self ) -> Optional[Any]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Tuple = TFDeiTModel(config=lowercase_ ) lowerCAmelCase : Dict = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: lowerCAmelCase : List[str] = TFDeiTForMaskedImageModeling(config=lowercase_ ) lowerCAmelCase : str = model(lowercase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : int = 1 lowerCAmelCase : Any = TFDeiTForMaskedImageModeling(lowercase_ ) lowerCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: lowerCAmelCase : Optional[int] = self.type_sequence_label_size lowerCAmelCase : Tuple = TFDeiTForImageClassification(lowercase_ ) lowerCAmelCase : int = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : List[str] = 1 lowerCAmelCase : Union[str, Any] = TFDeiTForImageClassification(lowercase_ ) lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : str = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = config_and_inputs lowerCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: int = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _UpperCamelCase: Dict = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _UpperCamelCase: List[Any] = False _UpperCamelCase: Optional[Any] = False _UpperCamelCase: Tuple = False _UpperCamelCase: Union[str, Any] = False def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Optional[Any] = TFDeiTModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def _snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _snake_case ( self ) -> Dict: pass def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , tf.keras.layers.Dense ) ) def _snake_case ( self ) -> int: lowerCAmelCase , lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = model_class(lowercase_ ) lowerCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def _snake_case ( self ) -> int: lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _snake_case ( self ) -> str: lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_=False ) -> List[str]: lowerCAmelCase : int = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _snake_case ( self ) -> int: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = TFDeiTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> Tuple: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> List[Any]: lowerCAmelCase : str = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) lowerCAmelCase : List[Any] = self.default_image_processor lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Tuple = image_processor(images=lowercase_ , return_tensors="""tf""" ) # forward pass lowerCAmelCase : Any = model(**lowercase_ ) # verify the logits lowerCAmelCase : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowerCAmelCase : Optional[int] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 1_0_0_0_0_0_0 ): '''simple docstring''' lowerCAmelCase : Optional[Any] = limit + 1 lowerCAmelCase : Dict = [0] * limit for first_term in range(1 ,SCREAMING_SNAKE_CASE__ ): for n in range(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Tuple = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCAmelCase : List[str] = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[Any] ={'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
import random from .binary_exp_mod import bin_exp_mod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : Any = n - 1 lowerCAmelCase : Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[int] = 0 while count < prec: lowerCAmelCase : Optional[int] = random.randint(2 ,n - 1 ) lowerCAmelCase : Union[str, Any] = bin_exp_mod(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if b != 1: lowerCAmelCase : Tuple = True for _ in range(SCREAMING_SNAKE_CASE__ ): if b == n - 1: lowerCAmelCase : int = False break lowerCAmelCase : Dict = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase : Optional[Any] =abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=18 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , ) -> int: lowerCAmelCase : Any = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase : int = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Tuple = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : Dict = apply_ocr def _snake_case ( self ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: List[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = LayoutLMvaImageProcessingTester(self ) @property def _snake_case ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> str: lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """apply_ocr""" ) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> int: # Initialize image_processing lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , lowercase_ ) self.assertIsInstance(encoding.boxes , lowercase_ ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Tuple: # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _snake_case ( self ) -> List[str]: # with apply_OCR = True lowerCAmelCase : List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase : str = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) lowerCAmelCase : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase : Optional[int] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 lowerCAmelCase : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowercase_ ) self.assertListEqual(encoding.boxes , lowercase_ ) # with apply_OCR = False lowerCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=lowercase_ ) lowerCAmelCase : Dict = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase : List[Any] ='\\n Text data.\n Second line of data.' lowerCAmelCase : Union[str, Any] ='file' @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") lowerCAmelCase : str = bytes(SCREAMING_SNAKE_CASE__ ,"""utf-8""" ) with zstd.open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return path @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir ,SCREAMING_SNAKE_CASE__ ) ,"""w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" ,["""gzip""", """xz""", """zstd"""] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} lowerCAmelCase : Optional[int] = input_paths[compression_format] lowerCAmelCase : Optional[Any] = tmp_path / """cache""" lowerCAmelCase : List[str] = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE__ ,extract_compressed_file=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = cached_path(SCREAMING_SNAKE_CASE__ ,download_config=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ ) as f: lowerCAmelCase : Union[str, Any] = f.read() with open(SCREAMING_SNAKE_CASE__ ) as f: lowerCAmelCase : Optional[int] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" ,[True, False] ) @pytest.mark.parametrize("""default_cache_dir""" ,[True, False] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = """custom_cache""" lowerCAmelCase : Optional[int] = """custom_extracted_dir""" lowerCAmelCase : str = tmp_path / """custom_extracted_path""" if default_extracted: lowerCAmelCase : int = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" ,SCREAMING_SNAKE_CASE__ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" ,str(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Optional[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowerCAmelCase : Tuple = xz_file lowerCAmelCase : Optional[int] = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir ,extract_compressed_file=SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Dict = cached_path(SCREAMING_SNAKE_CASE__ ,download_config=SCREAMING_SNAKE_CASE__ ) assert Path(SCREAMING_SNAKE_CASE__ ).parent.parts[-2:] == expected def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = str(Path(SCREAMING_SNAKE_CASE__ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE__ ) == text_file # relative path lowerCAmelCase : str = str(Path(SCREAMING_SNAKE_CASE__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE__ ) == text_file def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): cached_path(SCREAMING_SNAKE_CASE__ ) # relative path lowerCAmelCase : List[Any] = """./__missing_file__.txt""" with pytest.raises(SCREAMING_SNAKE_CASE__ ): cached_path(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(SCREAMING_SNAKE_CASE__ ) as f: lowerCAmelCase : int = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE__ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_get("""https://huggingface.co""" ,temp_file=SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(SCREAMING_SNAKE_CASE__ ): ftp_get("""ftp://huggingface.co""" ,temp_file=SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(SCREAMING_SNAKE_CASE__ ): fsspec_get("""s3://huggingface.co""" ,temp_file=SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): fsspec_head("""s3://huggingface.co""" )
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase : Tuple =False lowerCAmelCase : List[Any] =True lowerCAmelCase : Optional[Any] =False if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCAmelCase : int =parser.parse_args() lowerCAmelCase : int ={ 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } lowerCAmelCase : Union[str, Any] ={ 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } lowerCAmelCase : str ='' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: lowerCAmelCase : List[str] =reader.read() lowerCAmelCase : List[Any] =json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): lowerCAmelCase : Any =UNetaDModel(**config) else: lowerCAmelCase : Optional[Any] =UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel lowerCAmelCase : Union[str, Any] =class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase : Any =dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase : int =config[key] del config[key] lowerCAmelCase : int =[k.replace('UNetRes', '') for k in config['down_block_types']] lowerCAmelCase : List[Any] =[k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: lowerCAmelCase : List[Any] =torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) lowerCAmelCase : Optional[int] ={} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue lowerCAmelCase : str =False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: lowerCAmelCase : List[str] =param_value lowerCAmelCase : Tuple =True if not has_changed: lowerCAmelCase : Optional[Any] =param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if is_torch_version("""<""" ,"""2.0.0""" ) or not hasattr(SCREAMING_SNAKE_CASE__ ,"""_dynamo""" ): return False return isinstance(SCREAMING_SNAKE_CASE__ ,torch._dynamo.eval_frame.OptimizedModule ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ): '''simple docstring''' lowerCAmelCase : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCAmelCase : List[str] = is_compiled_module(SCREAMING_SNAKE_CASE__ ) if is_compiled: lowerCAmelCase : Optional[int] = model lowerCAmelCase : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Union[str, Any] = model.module if not keep_fpaa_wrapper: lowerCAmelCase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ ,"""forward""" ) lowerCAmelCase : int = model.__dict__.pop("""_original_forward""" ,SCREAMING_SNAKE_CASE__ ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE__ ,"""__wrapped__""" ): lowerCAmelCase : str = forward.__wrapped__ if forward == original_forward: break lowerCAmelCase : Union[str, Any] = forward if getattr(SCREAMING_SNAKE_CASE__ ,"""_converted_to_transformer_engine""" ,SCREAMING_SNAKE_CASE__ ): convert_model(SCREAMING_SNAKE_CASE__ ,to_transformer_engine=SCREAMING_SNAKE_CASE__ ) if is_compiled: lowerCAmelCase : Optional[Any] = model lowerCAmelCase : List[Any] = compiled_model return model def _UpperCAmelCase ( ): '''simple docstring''' PartialState().wait_for_everyone() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) @contextmanager def _UpperCAmelCase ( **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for key, value in kwargs.items(): lowerCAmelCase : Optional[Any] = str(SCREAMING_SNAKE_CASE__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not hasattr(SCREAMING_SNAKE_CASE__ ,"""__qualname__""" ) and not hasattr(SCREAMING_SNAKE_CASE__ ,"""__name__""" ): lowerCAmelCase : Dict = getattr(SCREAMING_SNAKE_CASE__ ,"""__class__""" ,SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ ,"""__qualname__""" ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE__ ,"""__name__""" ): return obj.__name__ return str(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = destination.setdefault(SCREAMING_SNAKE_CASE__ ,{} ) merge_dicts(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Any = value return destination def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if port is None: lowerCAmelCase : Tuple = 2_9_5_0_0 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Union[str, Any] = emb.weight.shape lowerCAmelCase : Any = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = emb.weight.data return lin_layer def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Tuple = {} for old_key in state_dict.keys(): lowerCAmelCase : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : Any = key.replace("""moe_layer.experts.0""" ,F"""ffn.experts.expert_{expert_idx}""" ) else: lowerCAmelCase : int = key.replace("""moe_layer.experts.""" ,"""ffn.experts.expert_""" ) if "gate" in key: lowerCAmelCase : Tuple = key.replace(""".moe_layer.gate.wg""" ,""".ffn.router.classifier""" ) if "fc2" and "experts" not in key: lowerCAmelCase : List[str] = key.replace(""".fc2.""" ,""".ffn.fc2.""" ) if "fc1" and "experts" not in key: lowerCAmelCase : Tuple = key.replace(""".fc1.""" ,""".ffn.fc1.""" ) if ".encoder_attn." in key: lowerCAmelCase : Union[str, Any] = key.replace(""".encoder_attn.""" ,""".cross_attention.""" ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : Any = key.replace("""encoder_attn_layer_norm""" ,"""cross_attention_layer_norm""" ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace("""final_layer_norm""" ,"""ff_layer_norm""" ) lowerCAmelCase : List[Any] = state_dict[old_key] return new_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = WEIGHTS_NAME ): '''simple docstring''' lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Dict = 0 os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) for expert in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Dict = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = torch.load(SCREAMING_SNAKE_CASE__ )["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = rename_fairseq_keys(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE__ ,weights_name.replace(""".bin""" ,F"""-{len(SCREAMING_SNAKE_CASE__ )+1:05d}-of-???.bin""" ) ) torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(SCREAMING_SNAKE_CASE__ )[0]].dtype ) # Add the last block lowerCAmelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ ,weights_name.replace(""".bin""" ,F"""-{len(SCREAMING_SNAKE_CASE__ )+1:05d}-of-???.bin""" ) ) lowerCAmelCase : Optional[int] = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = rename_fairseq_keys(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(SCREAMING_SNAKE_CASE__ ) == 1: lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Otherwise, let's build the index lowerCAmelCase : int = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : str = weights_name.replace(""".bin""" ,F"""-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE__ ):05d}.bin""" ) lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,weights_name.replace(""".bin""" ,F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) for key in shard: lowerCAmelCase : Union[str, Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {"""total_size""": total_size} lowerCAmelCase : Tuple = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ,"""w""" ,encoding="""utf-8""" ) as f: lowerCAmelCase : Tuple = json.dumps(SCREAMING_SNAKE_CASE__ ,indent=2 ,sort_keys=SCREAMING_SNAKE_CASE__ ) + """\n""" f.write(SCREAMING_SNAKE_CASE__ ) return metadata, index if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCAmelCase : Dict =parser.parse_args() lowerCAmelCase , lowerCAmelCase : List[str] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase : Any =NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase : int =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
693
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase : List[Any] ={ 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] =['MobileViTFeatureExtractor'] lowerCAmelCase : int =['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =[ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
1
import torch from torch import nn class _a ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=1 , lowercase_=False ) -> Dict: super().__init__() lowerCAmelCase : Optional[int] = n_token lowerCAmelCase : Optional[int] = d_embed lowerCAmelCase : str = d_proj lowerCAmelCase : str = cutoffs + [n_token] lowerCAmelCase : Any = [0] + self.cutoffs lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : Any = self.cutoffs[0] lowerCAmelCase : Optional[int] = len(self.cutoffs ) - 1 lowerCAmelCase : Optional[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase : str = nn.ModuleList() lowerCAmelCase : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase_ , lowercase_ ) ) ) else: self.out_projs.append(lowercase_ ) self.out_layers.append(nn.Linear(lowercase_ , lowercase_ ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase , lowerCAmelCase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase_ , lowercase_ ) ) ) self.out_layers.append(nn.Linear(lowercase_ , r_idx - l_idx ) ) lowerCAmelCase : Any = keep_order def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: if proj is None: lowerCAmelCase : List[str] = nn.functional.linear(lowercase_ , lowercase_ , bias=lowercase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase : Optional[int] = nn.functional.linear(lowercase_ , proj.t().contiguous() ) lowerCAmelCase : Tuple = nn.functional.linear(lowercase_ , lowercase_ , bias=lowercase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _snake_case ( self , lowercase_ , lowercase_=None , lowercase_=False ) -> Any: if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase : List[Any] = hidden[..., :-1, :].contiguous() lowerCAmelCase : int = labels[..., 1:].contiguous() lowerCAmelCase : str = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase : List[Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: lowerCAmelCase : str = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase : List[str] = self._compute_logit(lowercase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase : Dict = labels != -100 lowerCAmelCase : Tuple = torch.zeros_like(lowercase_ , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase : Dict = ( -nn.functional.log_softmax(lowercase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase : Dict = nn.functional.log_softmax(lowercase_ , dim=-1 ) else: # construct weights and biases lowerCAmelCase , lowerCAmelCase : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase , lowerCAmelCase : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase : int = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase : Tuple = self.out_layers[i].weight lowerCAmelCase : int = self.out_layers[i].bias if i == 0: lowerCAmelCase : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowercase_ ) biases.append(lowercase_ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = weights[0], biases[0], self.out_projs[0] lowerCAmelCase : Optional[Any] = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Tuple = nn.functional.log_softmax(lowercase_ , dim=1 ) if labels is None: lowerCAmelCase : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase : List[str] = torch.zeros_like(lowercase_ , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase : int = 0 lowerCAmelCase : List[Any] = [0] + self.cutoffs for i in range(len(lowercase_ ) - 1 ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase : List[str] = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase : List[str] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase : Dict = labels.index_select(0 , lowercase_ ) - l_idx lowerCAmelCase : Union[str, Any] = head_logprob.index_select(0 , lowercase_ ) lowerCAmelCase : str = hidden.index_select(0 , lowercase_ ) else: lowerCAmelCase : Optional[int] = hidden if i == 0: if labels is not None: lowerCAmelCase : List[str] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase : Tuple = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Any = nn.functional.log_softmax(lowercase_ , dim=1 ) lowerCAmelCase : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase : str = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase : Dict = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , lowercase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _snake_case ( self , lowercase_ ) -> List[str]: if self.n_clusters == 0: lowerCAmelCase : Union[str, Any] = self._compute_logit(lowercase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowercase_ , dim=-1 ) else: # construct weights and biases lowerCAmelCase , lowerCAmelCase : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase , lowerCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase : str = self.out_layers[i].weight lowerCAmelCase : List[Any] = self.out_layers[i].bias if i == 0: lowerCAmelCase : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowercase_ ) biases.append(lowercase_ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase : List[str] = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase : List[Any] = nn.functional.log_softmax(lowercase_ , dim=1 ) lowerCAmelCase : Optional[int] = [0] + self.cutoffs for i in range(len(lowercase_ ) - 1 ): lowerCAmelCase , lowerCAmelCase : Optional[int] = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase : Dict = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = weights[i], biases[i], self.out_projs[i] lowerCAmelCase : Any = self._compute_logit(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : List[Any] = nn.functional.log_softmax(lowercase_ , dim=1 ) lowerCAmelCase : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase : int = logprob_i return out
693
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _a ( snake_case_ ): _UpperCamelCase: List[Any] = "unispeech-sat" def __init__( self , lowercase_=32 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(512, 512, 512, 512, 512, 512, 512) , lowercase_=(5, 2, 2, 2, 2, 2, 2) , lowercase_=(10, 3, 3, 3, 3, 2, 2) , lowercase_=False , lowercase_=128 , lowercase_=16 , lowercase_=False , lowercase_=True , lowercase_=0.0_5 , lowercase_=10 , lowercase_=2 , lowercase_=0.0 , lowercase_=10 , lowercase_=0 , lowercase_=320 , lowercase_=2 , lowercase_=0.1 , lowercase_=100 , lowercase_=256 , lowercase_=256 , lowercase_=0.1 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=256 , lowercase_=(512, 512, 512, 512, 1500) , lowercase_=(5, 3, 3, 1, 1) , lowercase_=(1, 2, 3, 1, 1) , lowercase_=512 , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=504 , **lowercase_ , ) -> Optional[int]: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Dict = feat_extract_norm lowerCAmelCase : Tuple = feat_extract_activation lowerCAmelCase : List[Any] = list(lowercase_ ) lowerCAmelCase : Any = list(lowercase_ ) lowerCAmelCase : int = list(lowercase_ ) lowerCAmelCase : Tuple = conv_bias lowerCAmelCase : List[str] = num_conv_pos_embeddings lowerCAmelCase : Optional[int] = num_conv_pos_embedding_groups lowerCAmelCase : Optional[int] = len(self.conv_dim ) lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : int = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Dict = hidden_dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Optional[int] = activation_dropout lowerCAmelCase : Any = feat_proj_dropout lowerCAmelCase : Optional[Any] = final_dropout lowerCAmelCase : Union[str, Any] = layerdrop lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : int = initializer_range lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Union[str, Any] = num_clusters lowerCAmelCase : Optional[int] = do_stable_layer_norm lowerCAmelCase : Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : List[str] = apply_spec_augment lowerCAmelCase : List[Any] = mask_time_prob lowerCAmelCase : Optional[Any] = mask_time_length lowerCAmelCase : Optional[Any] = mask_time_min_masks lowerCAmelCase : str = mask_feature_prob lowerCAmelCase : int = mask_feature_length lowerCAmelCase : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase : List[str] = num_codevectors_per_group lowerCAmelCase : int = num_codevector_groups lowerCAmelCase : Dict = contrastive_logits_temperature lowerCAmelCase : int = feat_quantizer_dropout lowerCAmelCase : Union[str, Any] = num_negatives lowerCAmelCase : List[Any] = codevector_dim lowerCAmelCase : Tuple = proj_codevector_dim lowerCAmelCase : List[str] = diversity_loss_weight # ctc loss lowerCAmelCase : Optional[int] = ctc_loss_reduction lowerCAmelCase : Any = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase : Union[str, Any] = list(lowercase_ ) lowerCAmelCase : Dict = list(lowercase_ ) lowerCAmelCase : Dict = list(lowercase_ ) lowerCAmelCase : Optional[Any] = xvector_output_dim @property def _snake_case ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = " " ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : str = 0 for index, char in enumerate(SCREAMING_SNAKE_CASE__ ): if char == separator: split_words.append(string[last_index:index] ) lowerCAmelCase : Dict = index + 1 elif index + 1 == len(SCREAMING_SNAKE_CASE__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase : Any =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: Optional[int] = ["pixel_values"] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_ ) lowerCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} lowerCAmelCase : Any = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase : Any = get_size_dict(lowercase_ ) lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : str = size lowerCAmelCase : Dict = resample lowerCAmelCase : List[Any] = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Optional[Any] = rescale_factor lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: lowerCAmelCase : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase : int = get_resize_output_image_size(lowercase_ , size=size["""shortest_edge"""] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: lowerCAmelCase : Optional[int] = get_size_dict(lowercase_ ) return center_crop(lowercase_ , size=(size["""height"""], size["""width"""]) , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ ) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: lowerCAmelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : str = size if size is not None else self.size lowerCAmelCase : List[str] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowerCAmelCase : Optional[Any] = resample if resample is not None else self.resample lowerCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : Optional[Any] = get_size_dict(lowercase_ ) lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : int = image_std if image_std is not None else self.image_std lowerCAmelCase : Tuple = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase : str = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: lowerCAmelCase : Dict = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase : Union[str, Any] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase : str = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase : List[Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
from __future__ import annotations from cmath import sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) lowerCAmelCase : Union[str, Any] = b * b - 4 * a * c lowerCAmelCase : Optional[int] = (-b + sqrt(SCREAMING_SNAKE_CASE__ )) / (2 * a) lowerCAmelCase : Tuple = (-b - sqrt(SCREAMING_SNAKE_CASE__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : int = quadratic_roots(a=5 ,b=6 ,c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return (data["data"], data["target"]) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = XGBRegressor(verbosity=0 ,random_state=4_2 ) xgb.fit(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Predict target for test data lowerCAmelCase : Union[str, Any] = xgb.predict(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = predictions.reshape(len(SCREAMING_SNAKE_CASE__ ) ,1 ) return predictions def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = fetch_california_housing() lowerCAmelCase , lowerCAmelCase : Any = data_handling(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = train_test_split( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,test_size=0.25 ,random_state=1 ) lowerCAmelCase : List[Any] = xgboost(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )}""" ) print(F"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : int ={ 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class _a ( snake_case_ ): _UpperCamelCase: int = "pix2struct_text_model" _UpperCamelCase: int = ["past_key_values"] _UpperCamelCase: str = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=50244 , lowercase_=768 , lowercase_=64 , lowercase_=2048 , lowercase_=12 , lowercase_=12 , lowercase_=32 , lowercase_=128 , lowercase_=0.1 , lowercase_=1e-6 , lowercase_=1.0 , lowercase_="gelu_new" , lowercase_=0 , lowercase_=False , lowercase_=0 , lowercase_=1 , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Union[str, Any]: lowerCAmelCase : Any = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Union[str, Any] = d_kv lowerCAmelCase : Tuple = d_ff lowerCAmelCase : Dict = num_layers lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Union[str, Any] = relative_attention_num_buckets lowerCAmelCase : Union[str, Any] = relative_attention_max_distance lowerCAmelCase : Optional[int] = dropout_rate lowerCAmelCase : Dict = layer_norm_epsilon lowerCAmelCase : Tuple = initializer_factor lowerCAmelCase : Dict = use_cache lowerCAmelCase : List[Any] = eos_token_id lowerCAmelCase : str = decoder_start_token_id # for backwards compatibility lowerCAmelCase : Any = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase , lowerCAmelCase : Tuple = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowerCAmelCase : Optional[int] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: str = "pix2struct_vision_model" def __init__( self , lowercase_=768 , lowercase_=768 , lowercase_=2048 , lowercase_=64 , lowercase_=12 , lowercase_=12 , lowercase_="gelu_new" , lowercase_=1e-6 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=1e-10 , lowercase_=1.0 , lowercase_=4096 , lowercase_=32 , lowercase_=128 , **lowercase_ , ) -> Optional[int]: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Any = patch_embed_hidden_size lowerCAmelCase : int = d_ff lowerCAmelCase : str = dropout_rate lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = initializer_factor lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Dict = dense_act_fn lowerCAmelCase : int = seq_len lowerCAmelCase : Tuple = relative_attention_num_buckets lowerCAmelCase : Dict = relative_attention_max_distance lowerCAmelCase : Any = d_kv @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) lowerCAmelCase , lowerCAmelCase : Dict = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowerCAmelCase : Union[str, Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _a ( snake_case_ ): _UpperCamelCase: Tuple = "pix2struct" _UpperCamelCase: Tuple = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=1.0 , lowercase_=0.0_2 , lowercase_=False , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Optional[Any]: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: lowerCAmelCase : Optional[Any] = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: lowerCAmelCase : Optional[int] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) lowerCAmelCase : Dict = PixaStructTextConfig(**lowercase_ ) lowerCAmelCase : List[Any] = PixaStructVisionConfig(**lowercase_ ) lowerCAmelCase : Tuple = self.text_config.decoder_start_token_id lowerCAmelCase : Dict = self.text_config.pad_token_id lowerCAmelCase : str = self.text_config.eos_token_id lowerCAmelCase : Union[str, Any] = initializer_factor lowerCAmelCase : int = initializer_range lowerCAmelCase : Optional[Any] = self.initializer_range lowerCAmelCase : Optional[int] = self.initializer_range lowerCAmelCase : Optional[Any] = is_vqa @classmethod def _snake_case ( cls , lowercase_ , lowercase_ , **lowercase_ ) -> Dict: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCAmelCase : Dict = self.text_config.to_dict() lowerCAmelCase : Tuple = self.vision_config.to_dict() lowerCAmelCase : Union[str, Any] = self.__class__.model_type return output
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _a ( snake_case_ ): _UpperCamelCase: Tuple = "dandelin/vilt-b32-finetuned-vqa" _UpperCamelCase: Optional[int] = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) _UpperCamelCase: str = "image_qa" _UpperCamelCase: Dict = AutoProcessor _UpperCamelCase: int = AutoModelForVisualQuestionAnswering _UpperCamelCase: List[Any] = ["image", "text"] _UpperCamelCase: Union[str, Any] = ["text"] def __init__( self , *lowercase_ , **lowercase_ ) -> List[str]: requires_backends(self , ["""vision"""] ) super().__init__(*lowercase_ , **lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ ) -> Union[str, Any]: return self.pre_processor(lowercase_ , lowercase_ , return_tensors="""pt""" ) def _snake_case ( self , lowercase_ ) -> int: with torch.no_grad(): return self.model(**lowercase_ ).logits def _snake_case ( self , lowercase_ ) -> List[Any]: lowerCAmelCase : List[Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _a ( snake_case_ ): _UpperCamelCase: Optional[Any] = "blenderbot-small" _UpperCamelCase: str = ["past_key_values"] _UpperCamelCase: Optional[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , lowercase_=50265 , lowercase_=512 , lowercase_=8 , lowercase_=2048 , lowercase_=16 , lowercase_=8 , lowercase_=2048 , lowercase_=16 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_=True , lowercase_="gelu" , lowercase_=512 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1 , lowercase_=False , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=2 , **lowercase_ , ) -> str: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : List[Any] = d_model lowerCAmelCase : int = encoder_ffn_dim lowerCAmelCase : Union[str, Any] = encoder_layers lowerCAmelCase : List[Any] = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = decoder_attention_heads lowerCAmelCase : int = dropout lowerCAmelCase : Tuple = attention_dropout lowerCAmelCase : List[Any] = activation_dropout lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : str = init_std lowerCAmelCase : str = encoder_layerdrop lowerCAmelCase : Tuple = decoder_layerdrop lowerCAmelCase : str = use_cache lowerCAmelCase : int = encoder_layers lowerCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) class _a ( snake_case_ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase : Tuple = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCAmelCase : List[str] = {0: """batch"""} lowerCAmelCase : int = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} lowerCAmelCase : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCAmelCase : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.num_layers for i in range(lowercase_ ): lowerCAmelCase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} lowerCAmelCase : str = {0: """batch""", 2: """past_sequence + sequence"""} else: lowerCAmelCase : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase : Optional[int] = super().outputs else: lowerCAmelCase : int = super(lowercase_ , self ).outputs if self.use_past: lowerCAmelCase , lowerCAmelCase : List[Any] = self.num_layers for i in range(lowercase_ ): lowerCAmelCase : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} lowerCAmelCase : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _snake_case ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]: lowerCAmelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Generate decoder inputs lowerCAmelCase : str = seq_length if not self.use_past else 1 lowerCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowerCAmelCase : Any = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowerCAmelCase : Optional[Any] = dict(**lowercase_ , **lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase , lowerCAmelCase : List[Any] = common_inputs["""input_ids"""].shape lowerCAmelCase : List[str] = common_inputs["""decoder_input_ids"""].shape[1] lowerCAmelCase , lowerCAmelCase : List[str] = self.num_attention_heads lowerCAmelCase : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase : int = decoder_seq_length + 3 lowerCAmelCase : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCAmelCase : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowercase_ , lowercase_ )] , dim=1 ) lowerCAmelCase : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.num_layers lowerCAmelCase : Tuple = min(lowercase_ , lowercase_ ) lowerCAmelCase : Dict = max(lowercase_ , lowercase_ ) - min_num_layers lowerCAmelCase : Any = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. lowerCAmelCase : Optional[int] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowercase_ , lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def _snake_case ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]: lowerCAmelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase , lowerCAmelCase : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase : List[Any] = seqlen + 2 lowerCAmelCase , lowerCAmelCase : List[str] = self.num_layers lowerCAmelCase , lowerCAmelCase : str = self.num_attention_heads lowerCAmelCase : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase : int = common_inputs["""attention_mask"""].dtype lowerCAmelCase : List[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) lowerCAmelCase : str = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def _snake_case ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase : List[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase : Optional[Any] = tokenizer.num_special_tokens_to_add(lowercase_ ) lowerCAmelCase : List[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase : List[str] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCAmelCase : Optional[Any] = dict(tokenizer(lowercase_ , return_tensors=lowercase_ ) ) return common_inputs def _snake_case ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase : Any = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) elif self.task == "causal-lm": lowerCAmelCase : int = self._generate_dummy_inputs_for_causal_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) else: lowerCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) return common_inputs def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase : int = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: lowerCAmelCase : Dict = super(lowercase_ , self )._flatten_past_key_values_( lowercase_ , lowercase_ , lowercase_ , lowercase_ )
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def _UpperCAmelCase ( ): '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _a ( nn.Module ): def __init__( self ) -> int: super().__init__() lowerCAmelCase : Any = nn.Linear(3 , 4 ) lowerCAmelCase : int = nn.BatchNormad(4 ) lowerCAmelCase : List[Any] = nn.Linear(4 , 5 ) def _snake_case ( self , lowercase_ ) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class _a ( unittest.TestCase ): def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : str = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase_ , [128, 64, 32, 16, 8] ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Tuple = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ , lowercase_ ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCAmelCase , lowerCAmelCase : List[Any] = mock_training_loop_function("""hello""" ) self.assertListEqual(lowercase_ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def _snake_case ( self ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase_ ): pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _snake_case ( self ) -> Dict: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _snake_case ( self ) -> List[Any]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ , lowercase_ , lowercase_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def _snake_case ( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def _snake_case ( self ) -> str: lowerCAmelCase : Optional[Any] = torch.cuda.memory_allocated() lowerCAmelCase : Optional[Any] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowercase_ ) lowerCAmelCase : int = release_memory(lowercase_ ) self.assertEqual(torch.cuda.memory_allocated() , lowercase_ )
693
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase : int =[ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase : Dict =[ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase : str =( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase : Dict =( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase : Optional[int] =[ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for tf_name, hf_name in patterns: lowerCAmelCase : List[Any] = k.replace(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return k def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = torch_model.state_dict() lowerCAmelCase : Tuple = {} # separating decoder weights lowerCAmelCase : Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} lowerCAmelCase : Tuple = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() ,"""tf -> hf conversion""" ): lowerCAmelCase : Optional[int] = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue lowerCAmelCase : Union[str, Any] = DECODER_PATTERNS lowerCAmelCase : List[str] = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowerCAmelCase : str = v.T lowerCAmelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,"""tf -> hf conversion""" ): lowerCAmelCase : List[str] = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue lowerCAmelCase : Union[str, Any] = REMAINING_PATTERNS lowerCAmelCase : int = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowerCAmelCase : Tuple = v.T lowerCAmelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" lowerCAmelCase : Dict = mapping["""model.embed_positions.weight"""] lowerCAmelCase : List[Any] = mapping.pop("""model.embed_positions.weight""" ) lowerCAmelCase , lowerCAmelCase : Dict = torch_model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[str] = {} lowerCAmelCase : Optional[int] = ["""global_step"""] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ ,desc="""converting tf checkpoint to dict""" ): lowerCAmelCase : int = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase : List[str] = tf.train.load_variable(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = array return tf_weights def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Any = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = convert_bigbird_pegasus(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase : List[Any] =parser.parse_args() lowerCAmelCase : Optional[int] ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
693
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): _UpperCamelCase: List[str] = "detr" _UpperCamelCase: Dict = ["past_key_values"] _UpperCamelCase: Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = backbone_config.get("""model_type""" ) lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[int] = config_class.from_dict(lowercase_ ) # set timm attributes to None lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = None, None, None lowerCAmelCase : Any = use_timm_backbone lowerCAmelCase : int = backbone_config lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = num_queries lowerCAmelCase : List[str] = d_model lowerCAmelCase : Optional[int] = encoder_ffn_dim lowerCAmelCase : Dict = encoder_layers lowerCAmelCase : str = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : List[Any] = decoder_layers lowerCAmelCase : Union[str, Any] = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Optional[int] = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Tuple = encoder_layers lowerCAmelCase : Optional[int] = auxiliary_loss lowerCAmelCase : List[str] = position_embedding_type lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = use_pretrained_backbone lowerCAmelCase : List[Any] = dilation # Hungarian matcher lowerCAmelCase : Tuple = class_cost lowerCAmelCase : Union[str, Any] = bbox_cost lowerCAmelCase : Optional[Any] = giou_cost # Loss coefficients lowerCAmelCase : List[Any] = mask_loss_coefficient lowerCAmelCase : Optional[int] = dice_loss_coefficient lowerCAmelCase : Tuple = bbox_loss_coefficient lowerCAmelCase : Dict = giou_loss_coefficient lowerCAmelCase : str = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls , lowercase_ , **lowercase_ ) -> Any: return cls(backbone_config=lowercase_ , **lowercase_ ) def _snake_case ( self ) -> Dict[str, any]: lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : List[str] = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output class _a ( snake_case_ ): _UpperCamelCase: Any = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-5 @property def _snake_case ( self ) -> int: return 12
693
1
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : int =logging.getLogger() lowerCAmelCase : str =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( snake_case_ ): def _snake_case ( self , lowercase_ ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowerCAmelCase : int = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase : Optional[Any] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase : Tuple = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , """w""" ) as f: f.write(lowercase_ ) def _snake_case ( self , lowercase_ , lowercase_ = "pytorch" ) -> str: lowerCAmelCase : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """output""" ) lowerCAmelCase : Dict = os.path.join(lowercase_ , """data""" ) self._create_dummy_data(data_dir=lowercase_ ) lowerCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase : Optional[int] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """metrics.json""" ) with open(lowercase_ ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) return result @require_torch_gpu def _snake_case ( self ) -> Any: lowerCAmelCase : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _snake_case ( self ) -> int: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[Any] = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
693
1
from math import factorial def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowerCAmelCase : List[Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCAmelCase : int = float(factorial(SCREAMING_SNAKE_CASE__ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.7_5))
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase : Optional[Any] =2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCAmelCase : List[Any] ={ # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.1_5}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names lowerCAmelCase : List[Any] ={} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase : Any ='facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCAmelCase : Dict ='allenai' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[int] = dict((re.sub(r"""@@$""" ,"""""" ,SCREAMING_SNAKE_CASE__ ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" ,"""</w>""" ,SCREAMING_SNAKE_CASE__ ), v) for k, v in d.items() ) lowerCAmelCase : List[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] lowerCAmelCase : Union[str, Any] = d[k] # restore return da def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert os.path.exists(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowerCAmelCase : Optional[int] = basename(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = dirname(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCAmelCase : List[Any] = cls.hub_models() lowerCAmelCase : Union[str, Any] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} lowerCAmelCase : Tuple = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"""using checkpoint {checkpoint_file}""" ) lowerCAmelCase : Dict = hub_utils.from_pretrained( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,archive_map=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = vars(chkpt["""args"""]["""model"""] ) lowerCAmelCase : Dict = args["""source_lang"""] lowerCAmelCase : List[Any] = args["""target_lang"""] lowerCAmelCase : Tuple = dirname(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = basename(SCREAMING_SNAKE_CASE__ ) # dicts lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""dict.{src_lang}.txt""" ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""dict.{tgt_lang}.txt""" ) lowerCAmelCase : Dict = Dictionary.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = rewrite_dict_keys(src_dict.indices ) lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,"""vocab-src.json""" ) print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ,ensure_ascii=SCREAMING_SNAKE_CASE__ ,indent=SCREAMING_SNAKE_CASE__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCAmelCase : Union[str, Any] = True for k in src_vocab.keys(): if not k.islower(): lowerCAmelCase : List[str] = False break lowerCAmelCase : Union[str, Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = rewrite_dict_keys(tgt_dict.indices ) lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,"""vocab-tgt.json""" ) print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ,ensure_ascii=SCREAMING_SNAKE_CASE__ ,indent=SCREAMING_SNAKE_CASE__ ) ) # merges_file (bpecodes) lowerCAmelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ ,VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCAmelCase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): break with open(SCREAMING_SNAKE_CASE__ ,encoding="""utf-8""" ) as fin: lowerCAmelCase : Optional[Any] = fin.read() lowerCAmelCase : Any = re.sub(r""" \d+$""" ,"""""" ,SCREAMING_SNAKE_CASE__ ,0 ,re.M ) # remove frequency number print(F"""Generating {merges_file}""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as fout: fout.write(SCREAMING_SNAKE_CASE__ ) # model config lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE__ ,"""config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args['tokenizer']}""" lowerCAmelCase : Optional[int] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with lowerCAmelCase : Optional[Any] = 5 lowerCAmelCase : Union[str, Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCAmelCase : Dict = best_score_hparams[model_dir]["""length_penalty"""] else: lowerCAmelCase : Tuple = 1.0 print(F"""Generating {fsmt_model_config_file}""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ,ensure_ascii=SCREAMING_SNAKE_CASE__ ,indent=SCREAMING_SNAKE_CASE__ ) ) # tokenizer config lowerCAmelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_0_2_4, """do_lower_case""": do_lower_case, } print(F"""Generating {fsmt_tokenizer_config_file}""" ) with open(SCREAMING_SNAKE_CASE__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ,ensure_ascii=SCREAMING_SNAKE_CASE__ ,indent=SCREAMING_SNAKE_CASE__ ) ) # model lowerCAmelCase : List[Any] = chkpt["""models"""][0] lowerCAmelCase : Union[str, Any] = model.state_dict() # rename keys to start with 'model.' lowerCAmelCase : Optional[int] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCAmelCase : Dict = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = FSMTConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = FSMTForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) # save lowerCAmelCase : str = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F"""cd {data_root}""" ) print(F"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase : Dict =parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
693
import torch from diffusers import DiffusionPipeline class _a ( snake_case_ ): def __init__( self , lowercase_ , lowercase_ ) -> int: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self ) -> List[Any]: lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample lowerCAmelCase : str = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowerCAmelCase : Dict = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): # noqa: E741 '''simple docstring''' lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = [0] * n lowerCAmelCase : Union[str, Any] = [False] * n lowerCAmelCase : Union[str, Any] = [False] * n def dfs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): if parent == root: out_edge_count += 1 lowerCAmelCase : Optional[Any] = True lowerCAmelCase : str = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCAmelCase : str = dfs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = min(low[at] ,low[to] ) # AP found via bridge if at < low[to]: lowerCAmelCase : str = True # AP found via cycle if at == low[to]: lowerCAmelCase : Tuple = True else: lowerCAmelCase : Optional[int] = min(low[at] ,SCREAMING_SNAKE_CASE__ ) return out_edge_count for i in range(SCREAMING_SNAKE_CASE__ ): if not visited[i]: lowerCAmelCase : List[Any] = 0 lowerCAmelCase : List[str] = dfs(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,-1 ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Dict = out_edge_count > 1 for x in range(len(SCREAMING_SNAKE_CASE__ ) ): if is_art[x] is True: print(SCREAMING_SNAKE_CASE__ ) # Adjacency list of graph lowerCAmelCase : Tuple ={ 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] =False, False, False @dataclass class _a : _UpperCamelCase: Optional[int] = None _UpperCamelCase: bool = True _UpperCamelCase: bool = True _UpperCamelCase: Optional[str] = None # Automatically constructed _UpperCamelCase: ClassVar[str] = "dict" _UpperCamelCase: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) _UpperCamelCase: str = field(default="Audio" , init=snake_case_ , repr=snake_case_ ) def __call__( self ) -> List[str]: return self.pa_type def _snake_case ( self , lowercase_ ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(lowercase_ , lowercase_ ): return {"bytes": None, "path": value} elif isinstance(lowercase_ , lowercase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCAmelCase : Dict = BytesIO() sf.write(lowercase_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCAmelCase : List[str] = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowerCAmelCase : Dict = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32767 lowerCAmelCase : List[str] = BytesIO(bytes() ) sf.write(lowercase_ , lowercase_ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _snake_case ( self , lowercase_ , lowercase_ = None ) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowerCAmelCase , lowerCAmelCase : Tuple = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowerCAmelCase : List[str] = xsplitext(lowercase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowerCAmelCase : Optional[Any] = token_per_repo_id or {} lowerCAmelCase : Dict = path.split("""::""" )[-1] try: lowerCAmelCase : List[Any] = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowerCAmelCase : int = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCAmelCase : Dict = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = sf.read(lowercase_ ) else: lowerCAmelCase , lowerCAmelCase : List[str] = sf.read(lowercase_ ) lowerCAmelCase : List[Any] = array.T if self.mono: lowerCAmelCase : Tuple = librosa.to_mono(lowercase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCAmelCase : int = librosa.resample(lowercase_ , orig_sr=lowercase_ , target_sr=self.sampling_rate ) lowerCAmelCase : List[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _snake_case ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _snake_case ( self , lowercase_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): lowerCAmelCase : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowerCAmelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : int = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowerCAmelCase : Dict = pa.array([Audio().encode_example(lowercase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowerCAmelCase : Any = storage.field("""bytes""" ) else: lowerCAmelCase : Optional[int] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowerCAmelCase : List[Any] = storage.field("""path""" ) else: lowerCAmelCase : Optional[int] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowerCAmelCase : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(lowercase_ , self.pa_type ) def _snake_case ( self , lowercase_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowercase_ ): with xopen(lowercase_ , """rb""" ) as f: lowerCAmelCase : Dict = f.read() return bytes_ lowerCAmelCase : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowerCAmelCase : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type )
693
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' if subparsers is not None: lowerCAmelCase : List[Any] = subparsers.add_parser("""test""" ) else: lowerCAmelCase : str = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" ,default=SCREAMING_SNAKE_CASE__ ,help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) ,) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: lowerCAmelCase : List[str] = script_name else: lowerCAmelCase : int = F"""--config_file={args.config_file} {script_name}""" lowerCAmelCase : Tuple = ["""accelerate-launch"""] + test_args.split() lowerCAmelCase : Dict = execute_subprocess_async(SCREAMING_SNAKE_CASE__ ,env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = test_command_parser() lowerCAmelCase : str = parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0 while b > 0: if b & 1: lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
693
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : @staticmethod def _snake_case ( *lowercase_ , **lowercase_ ) -> Union[str, Any]: pass @is_pipeline_test @require_vision @require_torch class _a ( unittest.TestCase ): _UpperCamelCase: Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _snake_case ( self , lowercase_ , lowercase_ , lowercase_ ) -> str: lowerCAmelCase : Dict = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) lowerCAmelCase : Any = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def _snake_case ( self , lowercase_ , lowercase_ ) -> Dict: lowerCAmelCase : Dict = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase : Any = len(lowercase_ ) self.assertGreater(lowercase_ , 0 ) self.assertEqual( lowercase_ , [ { """score""": ANY(lowercase_ ), """label""": ANY(lowercase_ ), """box""": {"""xmin""": ANY(lowercase_ ), """ymin""": ANY(lowercase_ ), """xmax""": ANY(lowercase_ ), """ymax""": ANY(lowercase_ )}, } for i in range(lowercase_ ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _snake_case ( self ) -> List[str]: pass @require_torch def _snake_case ( self ) -> Any: lowerCAmelCase : int = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) lowerCAmelCase : Optional[Any] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.7_2_3_5, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_2_1_8, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_1_8_4, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_7_4_8, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_5_6, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_1_4, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_4_5_6, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.6_4_2, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_4_1_9, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) lowerCAmelCase : Tuple = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.7_2_3_5, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_2_1_8, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_1_8_4, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_7_4_8, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_5_6, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_6_1_4, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_4_5_6, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.6_4_2, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_4_1_9, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) lowerCAmelCase : Union[str, Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) lowerCAmelCase : Union[str, Any] = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_4_7_4, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_2_0_8, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _snake_case ( self ) -> Any: pass @require_torch @slow def _snake_case ( self ) -> List[str]: lowerCAmelCase : List[str] = 0.2 lowerCAmelCase : str = pipeline("""zero-shot-object-detection""" ) lowerCAmelCase : Any = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_5_3_7, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) lowerCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowercase_ , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.2_8_6_8, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.2_7_7, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
693
from math import factorial class _a : def __init__( self , lowercase_ , lowercase_ ) -> Optional[Any]: lowerCAmelCase : Union[str, Any] = real if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = [1] * rank else: lowerCAmelCase : Any = rank def __repr__( self ) -> int: return ( f"""{self.real}+""" f"""{'+'.join(str(lowercase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowercase_ ) def __add__( self , lowercase_ ) -> Tuple: if not isinstance(lowercase_ , lowercase_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase : int = self.duals.copy() lowerCAmelCase : Tuple = other.duals.copy() if len(lowercase_ ) > len(lowercase_ ): o_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) elif len(lowercase_ ) < len(lowercase_ ): s_dual.extend([1] * (len(lowercase_ ) - len(lowercase_ )) ) lowerCAmelCase : List[Any] = [] for i in range(len(lowercase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowercase_ ) _UpperCamelCase: List[Any] = __add__ def __sub__( self , lowercase_ ) -> Union[str, Any]: return self + other * -1 def __mul__( self , lowercase_ ) -> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowercase_ ) lowerCAmelCase : Union[str, Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowercase_ ) _UpperCamelCase: str = __mul__ def __truediv__( self , lowercase_ ) -> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowercase_ ) raise ValueError def __floordiv__( self , lowercase_ ) -> int: if not isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowercase_ ) raise ValueError def __pow__( self , lowercase_ ) -> str: if n < 0 or isinstance(lowercase_ , lowercase_ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase : int = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowerCAmelCase : List[Any] = Dual(SCREAMING_SNAKE_CASE__ ,1 ) lowerCAmelCase : Optional[Any] = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
693
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Union[str, Any] = LayoutLMTokenizer _UpperCamelCase: Optional[Any] = LayoutLMTokenizerFast _UpperCamelCase: Any = True _UpperCamelCase: List[Any] = True def _snake_case ( self ) -> Union[str, Any]: super().setUp() lowerCAmelCase : str = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _snake_case ( self , **lowercase_ ) -> Tuple: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def _snake_case ( self , lowercase_ ) -> Optional[Any]: lowerCAmelCase : str = """UNwant\u00E9d,running""" lowerCAmelCase : str = """unwanted, running""" return input_text, output_text def _snake_case ( self ) -> Any: lowerCAmelCase : Optional[int] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase : List[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowercase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ) -> List[Any]: pass
693
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): _UpperCamelCase: List[Any] = ["keras_nlp"] def __init__( self , *lowercase_ , **lowercase_ ) -> Tuple: requires_backends(self , ["""keras_nlp"""] )
693
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowerCAmelCase : Tuple =parser.parse_args() lowerCAmelCase : Optional[Any] =download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
693
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
693
1
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 0.00 lowerCAmelCase : Optional[int] = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase : List[Any] = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(SCREAMING_SNAKE_CASE__ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE__ ) index += 1 return 1 / first_sum def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = 0.00 lowerCAmelCase : Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase : Dict = F"""Resistor at index {index} has a negative value!""" raise ValueError(SCREAMING_SNAKE_CASE__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowerCAmelCase : str =logging.get_logger(__name__) class _a ( snake_case_ ): def __init__( self , *lowercase_ , **lowercase_ ) -> None: warnings.warn( """The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ImageGPTImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
693
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _a ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} _UpperCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> int: return self._get_superresolution_dummy_components() def _snake_case ( self , lowercase_ , lowercase_=0 ) -> Optional[Any]: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase : Any = torch.manual_seed(lowercase_ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowerCAmelCase : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self ) -> Any: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
693
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _a ( snake_case_ ): _UpperCamelCase: Any = (IPNDMScheduler,) _UpperCamelCase: int = (("num_inference_steps", 50),) def _snake_case ( self , **lowercase_ ) -> List[Any]: lowerCAmelCase : List[str] = {"""num_train_timesteps""": 1000} config.update(**lowercase_ ) return config def _snake_case ( self , lowercase_=0 , **lowercase_ ) -> Any: lowerCAmelCase : Optional[int] = dict(self.forward_default_kwargs ) lowerCAmelCase : Tuple = kwargs.pop("""num_inference_steps""" , lowercase_ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCAmelCase : List[Any] = self.get_scheduler_config(**lowercase_ ) lowerCAmelCase : Union[str, Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowerCAmelCase : Optional[int] = dummy_past_residuals[:] if time_step is None: lowerCAmelCase : List[str] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowerCAmelCase : Tuple = dummy_past_residuals[:] lowerCAmelCase : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase : List[Any] = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase : int = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> Any: pass def _snake_case ( self , lowercase_=0 , **lowercase_ ) -> str: lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase : Union[str, Any] = kwargs.pop("""num_inference_steps""" , lowercase_ ) lowerCAmelCase : int = self.dummy_sample lowerCAmelCase : Optional[Any] = 0.1 * sample lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Any = self.get_scheduler_config() lowerCAmelCase : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : int = dummy_past_residuals[:] if time_step is None: lowerCAmelCase : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowerCAmelCase : Optional[Any] = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : int = dummy_past_residuals[:] lowerCAmelCase : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase : Dict = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase : int = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self , **lowercase_ ) -> Optional[int]: lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(**lowercase_ ) lowerCAmelCase : Optional[Any] = scheduler_class(**lowercase_ ) lowerCAmelCase : Optional[int] = 10 lowerCAmelCase : Optional[int] = self.dummy_model() lowerCAmelCase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : List[str] = model(lowercase_ , lowercase_ ) lowerCAmelCase : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Optional[Any] = model(lowercase_ , lowercase_ ) lowerCAmelCase : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def _snake_case ( self ) -> int: lowerCAmelCase : int = dict(self.forward_default_kwargs ) lowerCAmelCase : Any = kwargs.pop("""num_inference_steps""" , lowercase_ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase : Optional[int] = scheduler_class(**lowercase_ ) lowerCAmelCase : Optional[Any] = self.dummy_sample lowerCAmelCase : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , """set_timesteps""" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , """set_timesteps""" ): lowerCAmelCase : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] lowerCAmelCase : Dict = dummy_past_residuals[:] lowerCAmelCase : Union[str, Any] = scheduler.timesteps[5] lowerCAmelCase : List[Any] = scheduler.timesteps[6] lowerCAmelCase : Union[str, Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase : Tuple = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase : Union[str, Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self ) -> Optional[int]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ , time_step=lowercase_ ) def _snake_case ( self ) -> List[Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ , time_step=lowercase_ ) def _snake_case ( self ) -> Any: lowerCAmelCase : List[Any] = self.full_loop() lowerCAmelCase : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 2540529 ) < 10
693
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={} class _a ( snake_case_ ): _UpperCamelCase: Tuple = "llama" _UpperCamelCase: List[str] = ["past_key_values"] def __init__( self , lowercase_=32000 , lowercase_=4096 , lowercase_=11008 , lowercase_=32 , lowercase_=32 , lowercase_=None , lowercase_="silu" , lowercase_=2048 , lowercase_=0.0_2 , lowercase_=1e-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=1 , lowercase_=False , lowercase_=None , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Any = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Any = num_key_value_heads lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : int = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def _snake_case ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , lowercase_ ) lowerCAmelCase : Dict = self.rope_scaling.get("""factor""" , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True lowerCAmelCase : List[Any] = 4 lowerCAmelCase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase : Dict = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
693
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _a ( snake_case_ , snake_case_ ): _UpperCamelCase: int = "swin" _UpperCamelCase: str = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowercase_=224 , lowercase_=4 , lowercase_=3 , lowercase_=96 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 12, 24] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=32 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_ ) lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : List[str] = len(lowercase_ ) lowerCAmelCase : Any = num_heads lowerCAmelCase : str = window_size lowerCAmelCase : List[str] = mlp_ratio lowerCAmelCase : List[Any] = qkv_bias lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = drop_path_rate lowerCAmelCase : int = hidden_act lowerCAmelCase : int = use_absolute_embeddings lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Any = initializer_range lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase : Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _a ( snake_case_ ): _UpperCamelCase: int = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1e-4
693
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : List[str] = size lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = do_normalize lowerCAmelCase : Union[str, Any] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : Optional[int] = do_pad def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _snake_case ( self , lowercase_ , lowercase_=False ) -> List[Any]: if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(lowercase_ , Image.Image ): lowerCAmelCase , lowerCAmelCase : Dict = image.size else: lowerCAmelCase , lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] lowerCAmelCase : List[str] = self.size["""shortest_edge"""] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] lowerCAmelCase : Union[str, Any] = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: Optional[Any] = DetrImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : List[str] = DetrImageProcessingTester(self ) @property def _snake_case ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_pad""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self ) -> List[Any]: # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) lowerCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ) -> List[str]: # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ) -> int: # prepare image and target lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase : str = json.loads(f.read() ) lowerCAmelCase : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) lowerCAmelCase : List[str] = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Dict = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify orig_size lowerCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) ) @slow def _snake_case ( self ) -> int: # prepare image, target and masks_path lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase : Any = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) lowerCAmelCase : Tuple = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_ ) lowerCAmelCase : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_ ) ) # verify boxes lowerCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_ ) ) # verify masks lowerCAmelCase : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_ ) # verify orig_size lowerCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_ ) ) # verify size lowerCAmelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_ ) )
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ = 4_0_0_0_0_0_0 ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase , lowerCAmelCase : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase , lowerCAmelCase : int = b, a + b return sum(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F'''{solution() = }''')
693
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
693
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : Any ={ 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class _a ( snake_case_ ): _UpperCamelCase: Union[str, Any] = "dpt" def __init__( self , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=384 , lowercase_=16 , lowercase_=3 , lowercase_=False , lowercase_=True , lowercase_=[2, 5, 8, 11] , lowercase_="project" , lowercase_=[4, 2, 1, 0.5] , lowercase_=[96, 192, 384, 768] , lowercase_=256 , lowercase_=-1 , lowercase_=False , lowercase_=True , lowercase_=0.4 , lowercase_=255 , lowercase_=0.1 , lowercase_=[1, 1024, 24, 24] , lowercase_=[0, 1] , lowercase_=None , **lowercase_ , ) -> List[Any]: super().__init__(**lowercase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Optional[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase : Tuple = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } lowerCAmelCase : Union[str, Any] = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase : List[str] = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): lowerCAmelCase : Tuple = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) lowerCAmelCase : Dict = backbone_featmap_shape lowerCAmelCase : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: lowerCAmelCase : Tuple = None lowerCAmelCase : Any = None lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Any = num_channels lowerCAmelCase : int = qkv_bias lowerCAmelCase : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) lowerCAmelCase : Any = readout_type lowerCAmelCase : Optional[int] = reassemble_factors lowerCAmelCase : List[Any] = neck_hidden_sizes lowerCAmelCase : Optional[int] = fusion_hidden_size lowerCAmelCase : int = head_in_index lowerCAmelCase : List[str] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase : Tuple = use_auxiliary_head lowerCAmelCase : str = auxiliary_loss_weight lowerCAmelCase : Tuple = semantic_loss_ignore_index lowerCAmelCase : Tuple = semantic_classifier_dropout def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : int = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : Optional[Any] = self.backbone_config.to_dict() lowerCAmelCase : Tuple = self.__class__.model_type return output
693
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
1
import unittest from knapsack import knapsack as k class _a ( unittest.TestCase ): def _snake_case ( self ) -> str: lowerCAmelCase : List[str] = 0 lowerCAmelCase : List[str] = [0] lowerCAmelCase : int = [0] lowerCAmelCase : Optional[Any] = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 0 ) lowerCAmelCase : Dict = [60] lowerCAmelCase : List[Any] = [10] lowerCAmelCase : Optional[Any] = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 0 ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : str = 3 lowerCAmelCase : Dict = [1, 2, 3] lowerCAmelCase : str = [3, 2, 1] lowerCAmelCase : Tuple = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 5 ) def _snake_case ( self ) -> str: lowerCAmelCase : List[str] = 50 lowerCAmelCase : Any = [60, 100, 120] lowerCAmelCase : str = [10, 20, 30] lowerCAmelCase : Any = len(lowercase_ ) self.assertEqual(k.knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , 220 ) if __name__ == "__main__": unittest.main()
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1