code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : List[Any] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A ( unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: _a = GenerationConfig( do_sample=snake_case_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case_ , config_name=snake_case_ ) _a = GenerationConfig.from_pretrained(snake_case_ , config_name=snake_case_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , snake_case_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = AutoConfig.from_pretrained("gpt2" ) _a = GenerationConfig.from_model_config(snake_case_ ) _a = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(snake_case_ , snake_case_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __lowerCAmelCase ( self ) -> Dict: _a = GenerationConfig() _a = { "max_new_tokens": 1_0_2_4, "foo": "bar", } _a = copy.deepcopy(snake_case_ ) _a = generation_config.update(**snake_case_ ) # update_kwargs was not modified (no side effects) self.assertEqual(snake_case_ , snake_case_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(snake_case_ , {"foo": "bar"} ) def __lowerCAmelCase ( self ) -> List[str]: _a = GenerationConfig() _a = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(snake_case_ ) _a = GenerationConfig.from_pretrained(snake_case_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) _a = GenerationConfig.from_model_config(snake_case_ ) assert not hasattr(snake_case_ , "foo" ) # no new kwargs should be initialized if from config def __lowerCAmelCase ( self ) -> int: _a = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , snake_case_ ) self.assertEqual(default_config.num_beams , 1 ) _a = GenerationConfig( do_sample=snake_case_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , snake_case_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case_ ) _a = GenerationConfig.from_pretrained(snake_case_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , snake_case_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A ( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls ) -> Tuple: _a = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def __lowerCAmelCase ( self ) -> List[str]: _a = GenerationConfig( do_sample=snake_case_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case_ , repo_id="test-generation-config" , push_to_hub=snake_case_ , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def __lowerCAmelCase ( self ) -> List[str]: _a = GenerationConfig( do_sample=snake_case_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case_ , repo_id="valid_org/test-generation-config-org" , push_to_hub=snake_case_ , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) )
700
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list ): if not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(lowerCamelCase__ ) == 0: raise ValueError("Input list must be a non empty list" ) if len(lowerCamelCase__ ) == 1: return True _a = series[1] - series[0] for index in range(len(lowerCamelCase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _lowercase ( lowerCamelCase__ : list ): if not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(lowerCamelCase__ ) == 0: raise ValueError("Input list must be a non empty list" ) _a = 0 for val in series: answer += val return answer / len(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
0
'''simple docstring''' from __future__ import annotations __snake_case : Dict = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __snake_case : List[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _lowercase ( lowerCamelCase__ : list[float] ): _a = [] _a = len(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): _a = -1 for j in range(i + 1, lowerCamelCase__ ): if arr[i] < arr[j]: _a = arr[j] break result.append(lowerCamelCase__ ) return result def _lowercase ( lowerCamelCase__ : list[float] ): _a = [] for i, outer in enumerate(lowerCamelCase__ ): _a = -1 for inner in arr[i + 1 :]: if outer < inner: _a = inner break result.append(lowerCamelCase__ ) return result def _lowercase ( lowerCamelCase__ : list[float] ): _a = len(lowerCamelCase__ ) _a = [] _a = [-1] * arr_size for index in reversed(range(lowerCamelCase__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _a = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __snake_case : Optional[int] = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( a ): __UpperCAmelCase : Optional[Any] = (DPMSolverSinglestepScheduler,) __UpperCAmelCase : Dict = (("""num_inference_steps""", 25),) def __lowerCAmelCase ( self , **snake_case_ ) -> List[str]: _a = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**snake_case_ ) return config def __lowerCAmelCase ( self , snake_case_=0 , **snake_case_ ) -> Union[str, Any]: _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , snake_case_ ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config(**snake_case_ ) _a = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals _a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) _a = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals _a = dummy_past_residuals[: new_scheduler.config.solver_order] _a , _a = sample, sample for t in range(snake_case_ , time_step + scheduler.config.solver_order + 1 ): _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _a = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( self , snake_case_=0 , **snake_case_ ) -> str: _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , snake_case_ ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) _a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) _a = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) _a = dummy_past_residuals[: new_scheduler.config.solver_order] _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _a = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , snake_case_=None , **snake_case_ ) -> Union[str, Any]: if scheduler is None: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**snake_case_ ) _a = scheduler_class(**snake_case_ ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**snake_case_ ) _a = scheduler_class(**snake_case_ ) _a = 1_0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _a = model(snake_case_ , snake_case_ ) _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def __lowerCAmelCase ( self ) -> Tuple: _a = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a = 5_0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _a = model(snake_case_ , snake_case_ ) _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def __lowerCAmelCase ( self ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _a = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a = self.full_loop(scheduler=snake_case_ ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 _a = DEISMultistepScheduler.from_config(scheduler.config ) _a = DPMSolverMultistepScheduler.from_config(scheduler.config ) _a = UniPCMultistepScheduler.from_config(scheduler.config ) _a = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _a = self.full_loop(scheduler=snake_case_ ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def __lowerCAmelCase ( self ) -> List[Any]: self.check_over_configs(thresholding=snake_case_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , algorithm_type="dpmsolver++" , solver_order=snake_case_ , solver_type=snake_case_ , ) def __lowerCAmelCase ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) _a = self.full_loop( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) assert not torch.isnan(snake_case_ ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> List[Any]: self.check_over_configs(lower_order_final=snake_case_ ) self.check_over_configs(lower_order_final=snake_case_ ) def __lowerCAmelCase ( self ) -> int: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __lowerCAmelCase ( self ) -> List[str]: self.check_over_configs(variance_type=snake_case_ ) self.check_over_configs(variance_type="learned_range" ) def __lowerCAmelCase ( self ) -> Tuple: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=snake_case_ , time_step=0 ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.full_loop() _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def __lowerCAmelCase ( self ) -> List[str]: _a = self.full_loop(use_karras_sigmas=snake_case_ ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=snake_case_ ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(thresholding=snake_case_ , dynamic_thresholding_ratio=0 ) _a = scheduler_class(**snake_case_ ) _a = 1_0 _a = self.dummy_model() _a = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _a = model(snake_case_ , snake_case_ ) _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample assert sample.dtype == torch.floataa
703
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): __snake_case : int = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: __snake_case : str = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = (images / 2 + 0.5).clamp(0, 1 ) _a = images.cpu().permute(0, 2, 3, 1 ).float().numpy() _a = numpy_to_pil(lowerCamelCase__ ) return images def _lowercase ( lowerCamelCase__ : str ): if images.ndim == 3: _a = images[None, ...] _a = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _a = [Image.fromarray(image.squeeze(), mode="L" ) for image in images] else: _a = [Image.fromarray(lowerCamelCase__ ) for image in images] return pil_images
704
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __snake_case : int = TypeVar("T") __snake_case : List[Any] = TypeVar("U") class A ( Generic[T, U] ): def __init__( self , snake_case_ , snake_case_ ) -> Any: _a = key _a = val _a = None _a = None def __repr__( self ) -> str: return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class A ( Generic[T, U] ): def __init__( self ) -> None: _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) _a , _a = self.rear, self.head def __repr__( self ) -> str: _a = ["DoubleLinkedList"] _a = self.head while node.next is not None: rep.append(str(snake_case_ ) ) _a = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> None: _a = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a = node _a = previous _a = node _a = self.rear def __lowerCAmelCase ( self , snake_case_ ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None _a = node.next _a = node.prev _a = None _a = None return node class A ( Generic[T, U] ): __UpperCAmelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , snake_case_ ) -> Any: _a = DoubleLinkedList() _a = capacity _a = 0 _a = 0 _a = 0 _a = {} def __repr__( self ) -> str: return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , snake_case_ ) -> bool: return key in self.cache def __lowerCAmelCase ( self , snake_case_ ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a = self.cache[key] _a = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case_ ) return node.val self.miss += 1 return None def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a = DoubleLinkedListNode(snake_case_ , snake_case_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a = value self.list.add(snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ = 1_2_8 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(snake_case_ ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case_ ) -> U: if func not in cls.decorator_function_to_instance_map: _a = LRUCache(snake_case_ ) _a = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a = func(*snake_case_ ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case_ , "cache_info" , snake_case_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : dict, lowerCamelCase__ : str ): _a , _a = set(lowerCamelCase__ ), [start] while stack: _a = stack.pop() explored.add(lowerCamelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowerCamelCase__ ) return explored __snake_case : Tuple = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
707
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
0
def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Any ): _a = [1] for i in range(2, lowerCamelCase__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _a = [] _a = list(range(lowerCamelCase__ ) ) # Find permutation while factorials: _a = factorials.pop() _a , _a = divmod(lowerCamelCase__, lowerCamelCase__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: _a = inspect.getfile(accelerate.test_utils ) _a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) _a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def __lowerCAmelCase ( self ) -> Union[str, Any]: print(F'''Found {torch.cuda.device_count()} devices.''' ) _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> str: print(F'''Found {torch.cuda.device_count()} devices.''' ) _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> str: _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> Optional[int]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case : Union[str, Any] = Accelerator() __snake_case : str = (accelerator.state.process_index + 2, 10) __snake_case : str = torch.randint(0, 10, shape).to(accelerator.device) __snake_case : int = "" __snake_case : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __snake_case : List[str] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __snake_case : Tuple = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
709
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
0
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
710
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __snake_case : Optional[Any] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : int ): _a = set() _a = [] def parse_line(lowerCamelCase__ : Any ): for line in fp: if isinstance(lowerCamelCase__, lowerCamelCase__ ): _a = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase__ ) > 0: _a = "\n".join(lowerCamelCase__ ) # Only keep the warnings specified in `targets` if any(F''': {x}: ''' in warning for x in targets ): selected_warnings.add(lowerCamelCase__ ) buffer.clear() continue else: _a = line.strip() buffer.append(lowerCamelCase__ ) if from_gh: for filename in os.listdir(lowerCamelCase__ ): _a = os.path.join(lowerCamelCase__, lowerCamelCase__ ) if not os.path.isdir(lowerCamelCase__ ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase__ ) as fp: parse_line(lowerCamelCase__ ) else: try: with zipfile.ZipFile(lowerCamelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase__ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase__ ) as fp: parse_line(lowerCamelCase__ ) except Exception: logger.warning( F'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any] ): _a = set() _a = [os.path.join(lowerCamelCase__, lowerCamelCase__ ) for p in os.listdir(lowerCamelCase__ ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase__, lowerCamelCase__ ) ) return selected_warnings if __name__ == "__main__": def _lowercase ( lowerCamelCase__ : Union[str, Any] ): return values.split("," ) __snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) __snake_case : str = parser.parse_args() __snake_case : int = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __snake_case : str = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __snake_case : Tuple = extract_warnings(args.output_dir, args.targets) __snake_case : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
711
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class A ( a ): __UpperCAmelCase : List[str] = """audio-spectrogram-transformer""" def __init__( self , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=1E-1_2 , snake_case_=1_6 , snake_case_=True , snake_case_=1_0 , snake_case_=1_0 , snake_case_=1_0_2_4 , snake_case_=1_2_8 , **snake_case_ , ) -> str: super().__init__(**snake_case_ ) _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = patch_size _a = qkv_bias _a = frequency_stride _a = time_stride _a = max_length _a = num_mel_bins
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class A ( a ): def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaises(snake_case_ ): _a = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __lowerCAmelCase ( self ) -> List[Any]: with self.assertRaises(snake_case_ ): _a = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def __lowerCAmelCase ( self ) -> Any: _a = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> List[str]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _a = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def __lowerCAmelCase ( self ) -> Any: _a = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self ) -> Any: _a = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def __lowerCAmelCase ( self ) -> List[Any]: _a = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _a = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __lowerCAmelCase ( self ) -> Any: _a = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __lowerCAmelCase ( self ) -> Union[str, Any]: import PIL.Image _a = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=snake_case_ ) as mock_cast_to_python_objects: _a = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) _a , _a = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , snake_case_ ) self.assertFalse(kwargs["optimize_list_casting"] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : int ): _a = pa.BufferReader(lowerCamelCase__ ) if isinstance(lowerCamelCase__, pa.Buffer ) else pa.memory_map(lowerCamelCase__ ) _a = pa.ipc.open_stream(lowerCamelCase__ ) _a = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Dict ): _a = pa.BufferOutputStream() _a = pa.schema(lowerCamelCase__ ) if fields else None with ArrowWriter(stream=lowerCamelCase__, schema=lowerCamelCase__, writer_batch_size=lowerCamelCase__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowercase ( ): _a = pa.BufferOutputStream() _a = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=lowerCamelCase__, features=lowerCamelCase__ ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _a = pa.BufferReader(output.getvalue() ) _a = pa.ipc.open_stream(lowerCamelCase__ ) _a = f.read_all() _a = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCamelCase__ ) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) def _lowercase ( lowerCamelCase__ : Optional[int] ): _a = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase__, writer_batch_size=lowerCamelCase__, hash_salt="split_name", check_duplicates=lowerCamelCase__, ) as writer: with pytest.raises(lowerCamelCase__ ): writer.write({"col_1": "foo", "col_2": 1}, key=[1, 2] ) _a , _a = writer.finalize() @pytest.mark.parametrize("writer_batch_size", [None, 2, 10] ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase__, writer_batch_size=lowerCamelCase__, hash_salt="split_name", check_duplicates=lowerCamelCase__, ) as writer: with pytest.raises(lowerCamelCase__ ): writer.write({"col_1": "foo", "col_2": 1}, key=10 ) writer.write({"col_1": "bar", "col_2": 2}, key=10 ) _a , _a = writer.finalize() @pytest.mark.parametrize("writer_batch_size", [None, 2, 10] ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase__, writer_batch_size=lowerCamelCase__, hash_salt="split_name", check_duplicates=lowerCamelCase__, ) as writer: writer.write({"col_1": "foo", "col_2": 1}, key=1 ) writer.write({"col_1": "bar", "col_2": 2}, key=2 ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[Any] ): _a = pa.BufferOutputStream() _a = pa.schema(lowerCamelCase__ ) if fields else None with ArrowWriter(stream=lowerCamelCase__, schema=lowerCamelCase__, writer_batch_size=lowerCamelCase__ ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Any ): _a = pa.BufferOutputStream() _a = pa.schema(lowerCamelCase__ ) if fields else None with ArrowWriter(stream=lowerCamelCase__, schema=lowerCamelCase__, writer_batch_size=lowerCamelCase__ ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10] ) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = pa.BufferOutputStream() _a = pa.schema(lowerCamelCase__ ) if fields else None with ArrowWriter(stream=lowerCamelCase__, schema=lowerCamelCase__, writer_batch_size=lowerCamelCase__ ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowercase ( ): with tempfile.TemporaryDirectory() as tmp_dir: _a = {"col_1": pa.string(), "col_2": pa.intaa()} _a = os.path.join(lowerCamelCase__, "test.arrow" ) with ArrowWriter(path=lowerCamelCase__, schema=pa.schema(lowerCamelCase__ ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCamelCase__, metadata=writer._schema.metadata ) _check_output(lowerCamelCase__, 1 ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): if pa.types.is_list(lowerCamelCase__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): if isinstance(lst[0], lowerCamelCase__ ): change_first_primitive_element_in_list(lst[0], lowerCamelCase__ ) else: _a = value @pytest.mark.parametrize("optimized_int_type, expected_dtype", [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence", [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict ): _a = pa.array(TypedSequence(lowerCamelCase__, optimized_int_type=lowerCamelCase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype", [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ], ) @pytest.mark.parametrize("sequence", [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple ): # in range _a = pa.array(OptimizedTypedSequence(lowerCamelCase__, col=lowerCamelCase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _a = copy.deepcopy(lowerCamelCase__ ) _a = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCamelCase__, lowerCamelCase__ ) _a = pa.array(OptimizedTypedSequence(lowerCamelCase__, col=lowerCamelCase__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception", [False, True] ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Any ): _a = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=lowerCamelCase__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _lowercase ( lowerCamelCase__ : Tuple ): _a = "mock://dataset-train.arrow" with ArrowWriter(path=lowerCamelCase__, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCamelCase__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCamelCase__ ) def _lowercase ( ): _a = pa.BufferOutputStream() with ParquetWriter(stream=lowerCamelCase__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _a = pa.BufferReader(output.getvalue() ) _a = pq.read_table(lowerCamelCase__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files", [False, True] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any ): import PIL.Image _a = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCamelCase__, format="png" ) _a = pa.BufferOutputStream() with ParquetWriter( stream=lowerCamelCase__, features=Features({"image": Image()} ), embed_local_files=lowerCamelCase__ ) as writer: writer.write({"image": image_path} ) writer.finalize() _a = pa.BufferReader(output.getvalue() ) _a = pq.read_table(lowerCamelCase__ ) _a = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"], lowerCamelCase__ ) with open(lowerCamelCase__, "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _lowercase ( ): _a = pa.schema([pa.field("col_1", pa.string(), nullable=lowerCamelCase__ )] ) _a = pa.BufferOutputStream() with ArrowWriter(stream=lowerCamelCase__ ) as writer: writer._build_writer(inferred_schema=lowerCamelCase__ ) assert writer._schema == pa.schema([pa.field("col_1", pa.string() )] )
713
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str ): _a = [int(lowerCamelCase__ ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowerCamelCase__ ) == 4 and all(0 <= int(lowerCamelCase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __snake_case : int = input().strip() __snake_case : str = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
714
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
0
'''simple docstring''' import requests from bsa import BeautifulSoup def _lowercase ( lowerCamelCase__ : str = "https://www.worldometers.info/coronavirus" ): _a = BeautifulSoup(requests.get(lowerCamelCase__ ).text, "html.parser" ) _a = soup.findAll("h1" ) _a = soup.findAll("div", {"class": "maincounter-number"} ) keys += soup.findAll("span", {"class": "panel-title"} ) values += soup.findAll("div", {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCamelCase__, lowerCamelCase__ )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
0
def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return base * power(lowerCamelCase__, (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") __snake_case : List[Any] = int(input("Enter the base: ").strip()) __snake_case : int = int(input("Enter the exponent: ").strip()) __snake_case : Any = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __snake_case : Optional[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
716
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") __snake_case : List[Any] = logging.getLogger(__name__) @dataclass class A : __UpperCAmelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCAmelCase : bool = field( default=a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCAmelCase : bool = field( default=a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class A : __UpperCAmelCase : Optional[str] = field(default=a , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCAmelCase : bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCAmelCase : bool = field( default=a , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ) -> Optional[Any]: if self.train_file is not None: _a = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _a = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A : __UpperCAmelCase : PreTrainedTokenizerBase __UpperCAmelCase : Union[bool, str, PaddingStrategy] = True __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[int] = None def __call__( self , snake_case_ ) -> Dict: _a = "label" if "label" in features[0].keys() else "labels" _a = [feature.pop(snake_case_ ) for feature in features] _a = len(snake_case_ ) _a = len(features[0]["input_ids"] ) _a = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] _a = list(chain(*snake_case_ ) ) _a = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _a = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels _a = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def _lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", lowerCamelCase__, lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _a = {} if data_args.train_file is not None: _a = data_args.train_file if data_args.validation_file is not None: _a = data_args.validation_file _a = data_args.train_file.split("." )[-1] _a = load_dataset( lowerCamelCase__, data_files=lowerCamelCase__, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _a = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _a = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=lowerCamelCase__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _a = [F'''ending{i}''' for i in range(4 )] _a = "sent1" _a = "sent2" if data_args.max_seq_length is None: _a = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _a = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _a = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase__ : Tuple ): _a = [[context] * 4 for context in examples[context_name]] _a = examples[question_header_name] _a = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase__ ) ] # Flatten out _a = list(chain(*lowerCamelCase__ ) ) _a = list(chain(*lowerCamelCase__ ) ) # Tokenize _a = tokenizer( lowerCamelCase__, lowerCamelCase__, truncation=lowerCamelCase__, max_length=lowerCamelCase__, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(lowerCamelCase__ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _a = raw_datasets["train"] if data_args.max_train_samples is not None: _a = min(len(lowerCamelCase__ ), data_args.max_train_samples ) _a = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _a = train_dataset.map( lowerCamelCase__, batched=lowerCamelCase__, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _a = raw_datasets["validation"] if data_args.max_eval_samples is not None: _a = min(len(lowerCamelCase__ ), data_args.max_eval_samples ) _a = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _a = eval_dataset.map( lowerCamelCase__, batched=lowerCamelCase__, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _a = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase__, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase__ : int ): _a , _a = eval_predictions _a = np.argmax(lowerCamelCase__, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload _a = train_result.metrics _a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) _a = min(lowerCamelCase__, len(lowerCamelCase__ ) ) trainer.log_metrics("train", lowerCamelCase__ ) trainer.save_metrics("train", lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _a = trainer.evaluate() _a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) _a = min(lowerCamelCase__, len(lowerCamelCase__ ) ) trainer.log_metrics("eval", lowerCamelCase__ ) trainer.save_metrics("eval", lowerCamelCase__ ) _a = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
717
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
718
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
0
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ : int ): _a = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list ): if len(lowerCamelCase__ ) < 2: return collection def circle_sort_util(lowerCamelCase__ : list, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> bool: _a = False if low == high: return swapped _a = low _a = high while left < right: if collection[left] > collection[right]: _a , _a = ( collection[right], collection[left], ) _a = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _a , _a = ( collection[right + 1], collection[left], ) _a = True _a = low + int((high - low) / 2 ) _a = circle_sort_util(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) _a = circle_sort_util(lowerCamelCase__, mid + 1, lowerCamelCase__ ) return swapped or left_swap or right_swap _a = True while is_not_sorted is True: _a = circle_sort_util(lowerCamelCase__, 0, len(lowerCamelCase__ ) - 1 ) return collection if __name__ == "__main__": __snake_case : List[Any] = input("Enter numbers separated by a comma:\n").strip() __snake_case : List[Any] = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
720
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowercase ( lowerCamelCase__ : List[str] ): def wrapper(*lowerCamelCase__ : Tuple, **lowerCamelCase__ : Tuple ): _a = timeit.default_timer() _a = func(*lowerCamelCase__, **lowerCamelCase__ ) _a = timeit.default_timer() - starttime return delta _a = func.__name__ return wrapper def _lowercase ( lowerCamelCase__ : dict, lowerCamelCase__ : int=100, lowerCamelCase__ : Optional[Any]=None ): _a = [] _a = seq_shapes or {} for i in range(lowerCamelCase__ ): _a = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCamelCase__, _ArrayXD ): _a = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCamelCase__, datasets.Value ): if v.dtype == "string": _a = "The small grey turtle was surprisingly fast when challenged." else: _a = np.random.randint(10, size=1 ).astype(v.dtype ).item() elif isinstance(lowerCamelCase__, datasets.Sequence ): while isinstance(lowerCamelCase__, datasets.Sequence ): _a = v.feature _a = seq_shapes[k] _a = np.random.rand(*lowerCamelCase__ ).astype(v.dtype ) _a = data dummy_data.append((i, example) ) return dummy_data def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any]=100, lowerCamelCase__ : Optional[Any]=None ): _a = generate_examples(lowerCamelCase__, num_examples=lowerCamelCase__, seq_shapes=lowerCamelCase__ ) with ArrowWriter(features=lowerCamelCase__, path=lowerCamelCase__ ) as writer: for key, record in dummy_data: _a = features.encode_example(lowerCamelCase__ ) writer.write(lowerCamelCase__ ) _a , _a = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) _a = datasets.Dataset.from_file(filename=lowerCamelCase__, info=datasets.DatasetInfo(features=lowerCamelCase__ ) ) return dataset
721
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A ( a ): __UpperCAmelCase : str = ["""vqvae"""] def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ , mel=snake_case_ , vqvae=snake_case_ ) def __lowerCAmelCase ( self ) -> int: return 5_0 if isinstance(self.scheduler , snake_case_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , snake_case_ = 1 , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _a = steps or self.get_default_steps() self.scheduler.set_timesteps(snake_case_ ) _a = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _a = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _a = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=snake_case_ , device=self.device , ) _a = noise _a = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(snake_case_ , snake_case_ ) _a = self.mel.audio_slice_to_image(snake_case_ ) _a = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _a = (input_image / 2_5_5) * 2 - 1 _a = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _a = self.vqvae.encode(torch.unsqueeze(snake_case_ , 0 ) ).latent_dist.sample( generator=snake_case_ )[0] _a = self.vqvae.config.scaling_factor * input_images if start_step > 0: _a = self.scheduler.add_noise(snake_case_ , snake_case_ , self.scheduler.timesteps[start_step - 1] ) _a = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _a = int(mask_start_secs * pixels_per_second ) _a = int(mask_end_secs * pixels_per_second ) _a = self.scheduler.add_noise(snake_case_ , snake_case_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , snake_case_ ): _a = self.unet(snake_case_ , snake_case_ , snake_case_ )["sample"] else: _a = self.unet(snake_case_ , snake_case_ )["sample"] if isinstance(self.scheduler , snake_case_ ): _a = self.scheduler.step( model_output=snake_case_ , timestep=snake_case_ , sample=snake_case_ , eta=snake_case_ , generator=snake_case_ , )["prev_sample"] else: _a = self.scheduler.step( model_output=snake_case_ , timestep=snake_case_ , sample=snake_case_ , generator=snake_case_ , )["prev_sample"] if mask is not None: if mask_start > 0: _a = mask[:, step, :, :mask_start] if mask_end > 0: _a = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _a = 1 / self.vqvae.config.scaling_factor * images _a = self.vqvae.decode(snake_case_ )["sample"] _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _a = (images * 2_5_5).round().astype("uint8" ) _a = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(snake_case_ , mode="RGB" ).convert("L" ) for _ in images) ) _a = [self.mel.image_to_audio(snake_case_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(snake_case_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(snake_case_ ) ) @torch.no_grad() def __lowerCAmelCase ( self , snake_case_ , snake_case_ = 5_0 ) -> np.ndarray: assert isinstance(self.scheduler , snake_case_ ) self.scheduler.set_timesteps(snake_case_ ) _a = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _a = (sample / 2_5_5) * 2 - 1 _a = torch.Tensor(snake_case_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _a = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _a = self.scheduler.alphas_cumprod[t] _a = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _a = 1 - alpha_prod_t _a = self.unet(snake_case_ , snake_case_ )["sample"] _a = (1 - alpha_prod_t_prev) ** 0.5 * model_output _a = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _a = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCAmelCase ( snake_case_ , snake_case_ , snake_case_ ) -> torch.Tensor: _a = acos(torch.dot(torch.flatten(snake_case_ ) , torch.flatten(snake_case_ ) ) / torch.norm(snake_case_ ) / torch.norm(snake_case_ ) ) return sin((1 - alpha) * theta ) * xa / sin(snake_case_ ) + sin(alpha * theta ) * xa / sin(snake_case_ )
700
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( a ): @staticmethod @abstractmethod def __lowerCAmelCase ( snake_case_ ) -> str: raise NotImplementedError() @abstractmethod def __lowerCAmelCase ( self ) -> List[str]: raise NotImplementedError()
701
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def _lowercase ( lowerCamelCase__ : Callable[[int | float], int | float], lowerCamelCase__ : int | float, lowerCamelCase__ : int | float, lowerCamelCase__ : int = 100, ): _a = x_start _a = fnc(lowerCamelCase__ ) _a = 0.0 for _ in range(lowerCamelCase__ ): # Approximates curve as a sequence of linear lines and sums their length _a = (x_end - x_start) / steps + xa _a = fnc(lowerCamelCase__ ) length += math.hypot(xa - xa, fxa - fxa ) # Increment step _a = xa _a = fxa return length if __name__ == "__main__": def _lowercase ( lowerCamelCase__ : Union[str, Any] ): return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") __snake_case : Union[str, Any] = 10 while i <= 10_0000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( a , a , a , unittest.TestCase ): __UpperCAmelCase : List[Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=snake_case_ , ) _a = PNDMScheduler(skip_prk_steps=snake_case_ ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) _a = CLIPTextModel(snake_case_ ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> str: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _a = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((6_4, 6_4) ) _a = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((6_4, 6_4) ) if str(snake_case_ ).startswith("mps" ): _a = torch.manual_seed(snake_case_ ) else: _a = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _a = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __lowerCAmelCase ( self ) -> Dict: _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = StableDiffusionInpaintPipeline(**snake_case_ ) _a = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _a = self.get_dummy_inputs(snake_case_ ) _a = sd_pipe(**snake_case_ ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _a = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> int: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) _a = "stabilityai/stable-diffusion-2-inpainting" _a = StableDiffusionInpaintPipeline.from_pretrained(snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _a = "Face of a yellow cat, high resolution, sitting on a park bench" _a = torch.manual_seed(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , generator=snake_case_ , output_type="np" , ) _a = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) _a = "stabilityai/stable-diffusion-2-inpainting" _a = StableDiffusionInpaintPipeline.from_pretrained( snake_case_ , torch_dtype=torch.floataa , safety_checker=snake_case_ , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _a = "Face of a yellow cat, high resolution, sitting on a park bench" _a = torch.manual_seed(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , generator=snake_case_ , output_type="np" , ) _a = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __lowerCAmelCase ( self ) -> Any: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _a = "stabilityai/stable-diffusion-2-inpainting" _a = PNDMScheduler.from_pretrained(snake_case_ , subfolder="scheduler" ) _a = StableDiffusionInpaintPipeline.from_pretrained( snake_case_ , safety_checker=snake_case_ , scheduler=snake_case_ , torch_dtype=torch.floataa , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _a = "Face of a yellow cat, high resolution, sitting on a park bench" _a = torch.manual_seed(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type="np" , ) _a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
703
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : str = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def __lowerCAmelCase ( *snake_case_ , **snake_case_ ) -> Tuple: pass @is_pipeline_test @require_vision @require_timm @require_torch class A ( unittest.TestCase ): __UpperCAmelCase : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: _a = ObjectDetectionPipeline(model=snake_case_ , image_processor=snake_case_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Tuple: _a = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { "score": ANY(snake_case_ ), "label": ANY(snake_case_ ), "box": {"xmin": ANY(snake_case_ ), "ymin": ANY(snake_case_ ), "xmax": ANY(snake_case_ ), "ymax": ANY(snake_case_ )}, } , ) import datasets _a = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _a = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _a = object_detector(snake_case_ , threshold=0.0 ) self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for outputs in batch_outputs: self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { "score": ANY(snake_case_ ), "label": ANY(snake_case_ ), "box": {"xmin": ANY(snake_case_ ), "ymin": ANY(snake_case_ ), "xmax": ANY(snake_case_ ), "ymax": ANY(snake_case_ )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __lowerCAmelCase ( self ) -> Optional[int]: pass @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = "hf-internal-testing/tiny-detr-mobilenetsv3" _a = AutoModelForObjectDetection.from_pretrained(snake_case_ ) _a = AutoFeatureExtractor.from_pretrained(snake_case_ ) _a = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], ] , ) @require_torch @slow def __lowerCAmelCase ( self ) -> List[str]: _a = "facebook/detr-resnet-50" _a = AutoModelForObjectDetection.from_pretrained(snake_case_ ) _a = AutoFeatureExtractor.from_pretrained(snake_case_ ) _a = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ] , ) @require_torch @slow def __lowerCAmelCase ( self ) -> Optional[int]: _a = "facebook/detr-resnet-50" _a = pipeline("object-detection" , model=snake_case_ ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) _a = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ] , ) @require_torch @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = 0.9_985 _a = "facebook/detr-resnet-50" _a = pipeline("object-detection" , model=snake_case_ ) _a = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=snake_case_ ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.9_988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def __lowerCAmelCase ( self ) -> List[str]: _a = "Narsil/layoutlmv3-finetuned-funsd" _a = 0.9_993 _a = pipeline("object-detection" , model=snake_case_ , threshold=snake_case_ ) _a = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"score": 0.9_993, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, {"score": 0.9_993, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, ] , )
705
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __snake_case : int = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __snake_case : Optional[int] = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __snake_case : str = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> List[str]: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = CHRF.CHAR_ORDER , snake_case_ = CHRF.WORD_ORDER , snake_case_ = CHRF.BETA , snake_case_ = False , snake_case_ = False , snake_case_ = False , ) -> Dict: _a = len(references[0] ) if any(len(snake_case_ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) _a = [[refs[i] for refs in references] for i in range(snake_case_ )] _a = CHRF(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = sb_chrf.corpus_score(snake_case_ , snake_case_ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
706
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
0
'''simple docstring''' from datetime import datetime as dt import os from github import Github __snake_case : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def _lowercase ( ): _a = Github(os.environ["GITHUB_TOKEN"] ) _a = g.get_repo("huggingface/transformers" ) _a = repo.get_issues(state="open" ) for issue in open_issues: _a = sorted([comment for comment in issue.get_comments()], key=lambda lowerCamelCase__ : i.created_at, reverse=lowerCamelCase__ ) _a = comments[0] if len(lowerCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
707
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __snake_case : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): __UpperCAmelCase : int = 10000 __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[datasets.Features] = None class A ( datasets.ArrowBasedBuilder ): __UpperCAmelCase : Union[str, Any] = ParquetConfig def __lowerCAmelCase ( self ) -> Union[str, Any]: return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): _a = data_files if isinstance(snake_case_ , snake_case_ ): _a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _a = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): _a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a = [dl_manager.iter_files(snake_case_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(snake_case_ ): with open(snake_case_ , "rb" ) as f: _a = datasets.Features.from_arrow_schema(pq.read_schema(snake_case_ ) ) break splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={"files": files} ) ) return splits def __lowerCAmelCase ( self , snake_case_ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a = table_cast(snake_case_ , self.info.features.arrow_schema ) return pa_table def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: _a = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): with open(snake_case_ , "rb" ) as f: _a = pq.ParquetFile(snake_case_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _a = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(snake_case_ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise
708
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __snake_case : Optional[int] = False __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : List[str] = "ybelkada/fonts" def _lowercase ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): requires_backends(lowerCamelCase__, ["torch"] ) _check_torch_version() _a = image_tensor.unsqueeze(0 ) _a = torch.nn.functional.unfold(lowerCamelCase__, (patch_height, patch_width), stride=(patch_height, patch_width) ) _a = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), lowerCamelCase__, lowerCamelCase__, -1 ) _a = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : int = 36, lowerCamelCase__ : str = "black", lowerCamelCase__ : str = "white", lowerCamelCase__ : int = 5, lowerCamelCase__ : int = 5, lowerCamelCase__ : int = 5, lowerCamelCase__ : int = 5, lowerCamelCase__ : Optional[bytes] = None, lowerCamelCase__ : Optional[str] = None, ): requires_backends(lowerCamelCase__, "vision" ) # Add new lines so that each line is no more than 80 characters. _a = textwrap.TextWrapper(width=80 ) _a = wrapper.wrap(text=lowerCamelCase__ ) _a = "\n".join(lowerCamelCase__ ) if font_bytes is not None and font_path is None: _a = io.BytesIO(lowerCamelCase__ ) elif font_path is not None: _a = font_path else: _a = hf_hub_download(lowerCamelCase__, "Arial.TTF" ) _a = ImageFont.truetype(lowerCamelCase__, encoding="UTF-8", size=lowerCamelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _a = ImageDraw.Draw(Image.new("RGB", (1, 1), lowerCamelCase__ ) ) _a , _a , _a , _a = temp_draw.textbbox((0, 0), lowerCamelCase__, lowerCamelCase__ ) # Create the actual image with a bit of padding around the text. _a = text_width + left_padding + right_padding _a = text_height + top_padding + bottom_padding _a = Image.new("RGB", (image_width, image_height), lowerCamelCase__ ) _a = ImageDraw.Draw(lowerCamelCase__ ) draw.text(xy=(left_padding, top_padding), text=lowerCamelCase__, fill=lowerCamelCase__, font=lowerCamelCase__ ) return image def _lowercase ( lowerCamelCase__ : np.ndarray, lowerCamelCase__ : str, **lowerCamelCase__ : Dict ): requires_backends(lowerCamelCase__, "vision" ) # Convert to PIL image if necessary _a = to_pil_image(lowerCamelCase__ ) _a = render_text(lowerCamelCase__, **lowerCamelCase__ ) _a = max(header_image.width, image.width ) _a = int(image.height * (new_width / image.width) ) _a = int(header_image.height * (new_width / header_image.width) ) _a = Image.new("RGB", (new_width, new_height + new_header_height), "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary _a = to_numpy_array(lowerCamelCase__ ) if infer_channel_dimension_format(lowerCamelCase__ ) == ChannelDimension.LAST: _a = to_channel_dimension_format(lowerCamelCase__, ChannelDimension.LAST ) return new_image class A ( a ): __UpperCAmelCase : Dict = ["""flattened_patches"""] def __init__( self , snake_case_ = True , snake_case_ = True , snake_case_ = None , snake_case_ = 2_0_4_8 , snake_case_ = False , **snake_case_ , ) -> None: super().__init__(**snake_case_ ) _a = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} _a = do_normalize _a = do_convert_rgb _a = max_patches _a = is_vqa def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> np.ndarray: requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch _a = to_channel_dimension_format(snake_case_ , ChannelDimension.FIRST ) _a = torch.from_numpy(snake_case_ ) _a , _a = patch_size["height"], patch_size["width"] _a , _a = get_image_size(snake_case_ ) # maximize scale s.t. _a = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _a = max(min(math.floor(scale * image_height / patch_height ) , snake_case_ ) , 1 ) _a = max(min(math.floor(scale * image_width / patch_width ) , snake_case_ ) , 1 ) _a = max(num_feasible_rows * patch_height , 1 ) _a = max(num_feasible_cols * patch_width , 1 ) _a = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=snake_case_ , antialias=snake_case_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _a = torch_extract_patches(snake_case_ , snake_case_ , snake_case_ ) _a = patches.shape _a = patches_shape[1] _a = patches_shape[2] _a = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _a = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _a = torch.arange(snake_case_ ).reshape([rows, 1] ).repeat(1 , snake_case_ ).reshape([rows * columns, 1] ) _a = torch.arange(snake_case_ ).reshape([1, columns] ).repeat(snake_case_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _a = row_ids.to(torch.floataa ) _a = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _a = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _a = torch.nn.functional.pad(snake_case_ , [0, 0, 0, max_patches - (rows * columns)] ).float() _a = to_numpy_array(snake_case_ ) return result def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , **snake_case_ ) -> np.ndarray: if image.dtype == np.uinta: _a = image.astype(np.floataa ) # take mean across the whole `image` _a = np.mean(snake_case_ ) _a = np.std(snake_case_ ) _a = max(snake_case_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ) -> ImageInput: _a = do_normalize if do_normalize is not None else self.do_normalize _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = patch_size if patch_size is not None else self.patch_size _a = max_patches if max_patches is not None else self.max_patches _a = self.is_vqa if kwargs.get("data_format" , snake_case_ ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) _a = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(snake_case_ ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) _a = kwargs.pop("font_bytes" , snake_case_ ) _a = kwargs.pop("font_path" , snake_case_ ) if isinstance(snake_case_ , snake_case_ ): _a = [header_text] * len(snake_case_ ) _a = [ render_header(snake_case_ , header_text[i] , font_bytes=snake_case_ , font_path=snake_case_ ) for i, image in enumerate(snake_case_ ) ] if do_normalize: _a = [self.normalize(image=snake_case_ ) for image in images] # convert to torch tensor and permute _a = [ self.extract_flattened_patches(image=snake_case_ , max_patches=snake_case_ , patch_size=snake_case_ ) for image in images ] # create attention mask in numpy _a = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _a = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=snake_case_ ) return encoded_outputs
709
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self ) -> List[Any]: _a = 1 _a = 3 _a = (3_2, 3_2) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image @property def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def __lowerCAmelCase ( self ) -> str: torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(snake_case_ ) @property def __lowerCAmelCase ( self ) -> Optional[int]: def extract(*snake_case_ , **snake_case_ ): class A : def __init__( self ) -> Tuple: _a = torch.ones([0] ) def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: self.pixel_values.to(snake_case_ ) return self return Out() return extract def __lowerCAmelCase ( self ) -> Dict: _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=snake_case_ ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 7_7 _a = self.dummy_image.to(snake_case_ ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , safety_checker=snake_case_ , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case_ ) _a = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=snake_case_ ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=snake_case_ , ) _a = output.images _a = torch.Generator(device=snake_case_ ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=snake_case_ , return_dict=snake_case_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _a = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=snake_case_ ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 7_7 _a = self.dummy_image.to(snake_case_ ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , safety_checker=snake_case_ , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case_ ) _a = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="np" , image=snake_case_ , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_6_0, 5_0_4) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( snake_case_ , safety_checker=snake_case_ , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , generator=snake_case_ , output_type="np" , ) _a = output.images[0] _a = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) _a = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> List[str]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_6_8, 5_1_2) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( snake_case_ , safety_checker=snake_case_ , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , generator=snake_case_ , output_type="np" , ) _a = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
710
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
0
from __future__ import annotations def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): _a = list(range(len(lowerCamelCase__ ) ) ) _a = [v / w for v, w in zip(lowerCamelCase__, lowerCamelCase__ )] index.sort(key=lambda lowerCamelCase__ : ratio[i], reverse=lowerCamelCase__ ) _a = 0 _a = [0] * len(lowerCamelCase__ ) for i in index: if weight[i] <= capacity: _a = 1 max_value += value[i] capacity -= weight[i] else: _a = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
0
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A ( a , unittest.TestCase ): __UpperCAmelCase : Any = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def __lowerCAmelCase ( self , snake_case_=0 ) -> Dict: _a = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(snake_case_ ) ) _a = np.random.RandomState(snake_case_ ) _a = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __lowerCAmelCase ( self ) -> Tuple: _a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case_ ) _a = self.get_dummy_inputs() _a = pipe(**snake_case_ ).images _a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) _a = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> int: _a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _a = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _a = self.get_dummy_inputs() _a = pipe(**snake_case_ ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _a = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> List[str]: _a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _a = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations _a = pipe(**self.get_dummy_inputs() ) _a = self.get_dummy_inputs() _a = pipe(**snake_case_ ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _a = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> List[str]: _a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _a = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) _a = self.get_dummy_inputs() _a = pipe(**snake_case_ ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _a = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> int: _a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _a = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) _a = self.get_dummy_inputs() _a = pipe(**snake_case_ ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _a = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __lowerCAmelCase ( self ) -> Any: _a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) _a = self.get_dummy_inputs() _a = pipe(**snake_case_ ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _a = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class A ( unittest.TestCase ): @property def __lowerCAmelCase ( self ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCAmelCase ( self ) -> Dict: _a = ort.SessionOptions() _a = False return options def __lowerCAmelCase ( self ) -> Optional[Any]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default _a = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A fantasy landscape, trending on artstation" _a = np.random.RandomState(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=snake_case_ , output_type="np" , ) _a = output.images _a = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _a = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __lowerCAmelCase ( self ) -> List[str]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_6_8, 5_1_2) ) _a = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) _a = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A fantasy landscape, trending on artstation" _a = np.random.RandomState(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=snake_case_ , output_type="np" , ) _a = output.images _a = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _a = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __snake_case : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) __snake_case : List[Any] = "sshleifer/student_marian_en_ro_6_1" __snake_case : Any = "sshleifer/tiny-mbart" @require_torch class A ( a ): def __lowerCAmelCase ( self , snake_case_=False , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , ) -> Any: _a = self.run_trainer( eval_steps=1 , max_len=1_2 , model_name=snake_case_ , num_train_epochs=1 , distributed=snake_case_ , extra_args_str=snake_case_ , predict_with_generate=snake_case_ , do_train=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , ) _a = TrainerState.load_from_json(os.path.join(snake_case_ , "trainer_state.json" ) ).log_history if not do_eval: return _a = [log for log in logs if "eval_loss" in log.keys()] _a = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _a = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , snake_case_ ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __lowerCAmelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick() @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> Optional[int]: self.run_seqaseq_quick(distributed=snake_case_ ) @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=snake_case_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=snake_case_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Any: self.run_seqaseq_quick( distributed=snake_case_ , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=snake_case_ ) @require_apex @require_torch_gpu def __lowerCAmelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def __lowerCAmelCase ( self , snake_case_ ) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _a = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } _a = experiments[experiment_id] _a = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} _a = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**snake_case_ , extra_args_str=data["extra_args_str"] ) _a = len(re.findall(snake_case_ , cl.err ) ) self.assertEqual(snake_case_ , data["n_matches"] ) @slow def __lowerCAmelCase ( self ) -> Dict: _a = self.run_trainer( eval_steps=2 , max_len=1_2_8 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1_0 , distributed=snake_case_ , ) # Check metrics _a = TrainerState.load_from_json(os.path.join(snake_case_ , "trainer_state.json" ) ).log_history _a = [log for log in logs if "eval_loss" in log.keys()] _a = eval_metrics[0] _a = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , snake_case_ ) # test if do_predict saves generations and metrics _a = os.listdir(snake_case_ ) _a = {os.path.basename(snake_case_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __lowerCAmelCase ( self ) -> Tuple: from transformers.training_args import OptimizerNames def train_and_return_metrics(snake_case_ ) -> Tuple[int, float]: _a = "--skip_memory_metrics 0" _a = self.run_trainer( max_len=1_2_8 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1 , optim=snake_case_ , distributed=snake_case_ , extra_args_str=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , n_gpus_to_use=1 , ) # Check metrics _a = TrainerState.load_from_json(Path(snake_case_ , "trainer_state.json" ) ).log_history _a = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**2_0 ) _a = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**2_0 ) _a = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _a , _a , _a = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _a , _a , _a = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _a = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _a = gpu_peak_mem_orig + gpu_alloc_mem_orig _a = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _a = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _a = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( snake_case_ , snake_case_ , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( snake_case_ , snake_case_ , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( snake_case_ , snake_case_ , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 3E-3 , snake_case_ = "adafactor" , snake_case_ = False , snake_case_ = None , snake_case_ = 0 , snake_case_ = True , snake_case_ = True , snake_case_ = True , snake_case_ = True , snake_case_ = None , ) -> Dict: _a = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" _a = self.get_auto_remove_tmp_dir() _a = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(snake_case_ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(snake_case_ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() _a = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(snake_case_ )} '''.split() _a = "\n --do_predict\n ".split() _a = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _a = get_gpu_count() _a = get_torch_dist_unique_port() _a = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() _a = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ , env=self.get_env() ) else: _a = ["run_translation.py"] + args with patch.object(snake_case_ , "argv" , snake_case_ ): main() return output_dir
713
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A ( a ): __UpperCAmelCase : List[Any] = (DDPMParallelScheduler,) def __lowerCAmelCase ( self , **snake_case_ ) -> Tuple: _a = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case_ ) return config def __lowerCAmelCase ( self ) -> Any: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case_ ) def __lowerCAmelCase ( self ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: self.check_over_configs(thresholding=snake_case_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=snake_case_ ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self ) -> List[str]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = len(snake_case_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(snake_case_ )[0:3, None].repeat(1 , snake_case_ ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(snake_case_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _a = torch.sum(torch.abs(snake_case_ ) ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def __lowerCAmelCase ( self ) -> Any: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = len(snake_case_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual _a = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(snake_case_ ) ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def __lowerCAmelCase ( self ) -> str: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type="v_prediction" ) _a = scheduler_class(**snake_case_ ) _a = len(snake_case_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual _a = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(snake_case_ ) ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=snake_case_ ) _a = scheduler.timesteps for i, timestep in enumerate(snake_case_ ): if i == len(snake_case_ ) - 1: _a = -1 else: _a = timesteps[i + 1] _a = scheduler.previous_timestep(snake_case_ ) _a = prev_t.item() self.assertEqual(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ) -> int: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(snake_case_ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case_ ) def __lowerCAmelCase ( self ) -> str: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = [1_0_0, 8_7, 5_0, 1, 0] _a = len(snake_case_ ) with self.assertRaises(snake_case_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case_ )
714
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list ): if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] _a = [] def generate(lowerCamelCase__ : int, lowerCamelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1, lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even _a , _a = arr[k - 1], arr[i] else: # k is odd _a , _a = arr[k - 1], arr[0] generate(k - 1, lowerCamelCase__ ) generate(len(lowerCamelCase__ ), lowerCamelCase__ ) return res if __name__ == "__main__": __snake_case : Tuple = input("Enter numbers separated by a comma:\n").strip() __snake_case : List[Any] = [int(item) for item in user_input.split(",")] print(heaps(arr))
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
0
def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[int]=None ): _a = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _a , _a = True, True _a = dfs(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return path def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : int ): _a = 0 _a = -1 for i in range(lowerCamelCase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _a = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Optional[Any] ): _a = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _a , _a = check_circuit_or_path(lowerCamelCase__, lowerCamelCase__ ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return _a = 1 if check == 2: _a = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) _a = dfs(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) print(lowerCamelCase__ ) def _lowercase ( ): _a = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _a = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _a = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _a = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _a = { 1: [], 2: [] # all degree is zero } _a = 10 check_euler(lowerCamelCase__, lowerCamelCase__ ) check_euler(lowerCamelCase__, lowerCamelCase__ ) check_euler(lowerCamelCase__, lowerCamelCase__ ) check_euler(lowerCamelCase__, lowerCamelCase__ ) check_euler(lowerCamelCase__, lowerCamelCase__ ) if __name__ == "__main__": main()
716
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__( self , snake_case_ ) -> List[str]: super().__init__() _a = model _a = 2 _a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __lowerCAmelCase ( self ) -> int: pass def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : str, lowerCamelCase__ : str ): # load longformer model from model identifier _a = LongformerModel.from_pretrained(lowerCamelCase__ ) _a = LightningModel(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _a = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __snake_case : Tuple = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
717
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
0
'''simple docstring''' __snake_case : Dict = range(2, 20 + 1) __snake_case : Any = [10**k for k in range(ks[-1] + 1)] __snake_case : dict[int, dict[int, list[list[int]]]] = {} def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : str ): _a = sum(a_i[j] for j in range(lowerCamelCase__, len(lowerCamelCase__ ) ) ) _a = sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase__ ), lowerCamelCase__ ) ) ) _a , _a = 0, 0 _a = n - i _a = memo.get(lowerCamelCase__ ) if sub_memo is not None: _a = sub_memo.get(lowerCamelCase__ ) if jumps is not None and len(lowerCamelCase__ ) > 0: # find and make the largest jump without going over _a = -1 for _k in range(len(lowerCamelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _a = _k break if max_jump >= 0: _a , _a , _a = jumps[max_jump] # since the difference between jumps is cached, add c _a = diff + c for j in range(min(lowerCamelCase__, len(lowerCamelCase__ ) ) ): _a , _a = divmod(lowerCamelCase__, 10 ) if new_c > 0: add(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) else: _a = [] else: _a = {c: []} _a = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _a , _a = next_term(lowerCamelCase__, k - 1, i + dn, lowerCamelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _a , _a = compute(lowerCamelCase__, lowerCamelCase__, i + dn, lowerCamelCase__ ) diff += _diff dn += terms_jumped _a = sub_memo[c] # keep jumps sorted by # of terms skipped _a = 0 while j < len(lowerCamelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase__, (diff, dn, k) ) return (diff, dn) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int] ): if i >= n: return 0, i if k > len(lowerCamelCase__ ): a_i.extend([0 for _ in range(k - len(lowerCamelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _a = i _a , _a , _a = 0, 0, 0 for j in range(len(lowerCamelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _a = ds_c + ds_b diff += addend _a = 0 for j in range(lowerCamelCase__ ): _a = a_i[j] + addend _a , _a = divmod(lowerCamelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return diff, i - start_i def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str] ): for j in range(lowerCamelCase__, len(lowerCamelCase__ ) ): _a = digits[j] + addend if s >= 10: _a , _a = divmod(lowerCamelCase__, 10 ) _a = addend // 10 + quotient else: _a = s _a = addend // 10 if addend == 0: break while addend > 0: _a , _a = divmod(lowerCamelCase__, 10 ) digits.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : int = 10**15 ): _a = [1] _a = 1 _a = 0 while True: _a , _a = next_term(lowerCamelCase__, 20, i + dn, lowerCamelCase__ ) dn += terms_jumped if dn == n - i: break _a = 0 for j in range(len(lowerCamelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
718
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : list[float], lowerCamelCase__ : list[float] ): _a = sorted(numsa + numsa ) _a , _a = divmod(len(lowerCamelCase__ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __snake_case : List[str] = [float(x) for x in input("Enter the elements of first array: ").split()] __snake_case : Tuple = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
719
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : list[int | str] ): create_state_space_tree(lowerCamelCase__, [], 0, [0 for i in range(len(lowerCamelCase__ ) )] ) def _lowercase ( lowerCamelCase__ : list[int | str], lowerCamelCase__ : list[int | str], lowerCamelCase__ : int, lowerCamelCase__ : list[int], ): if index == len(lowerCamelCase__ ): print(lowerCamelCase__ ) return for i in range(len(lowerCamelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _a = True create_state_space_tree(lowerCamelCase__, lowerCamelCase__, index + 1, lowerCamelCase__ ) current_sequence.pop() _a = False __snake_case : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __snake_case : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
720
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : int = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A ( a ): __UpperCAmelCase : List[Any] = """mobilenet_v1""" def __init__( self , snake_case_=3 , snake_case_=2_2_4 , snake_case_=1.0 , snake_case_=8 , snake_case_="relu6" , snake_case_=True , snake_case_=0.999 , snake_case_=0.02 , snake_case_=0.001 , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _a = num_channels _a = image_size _a = depth_multiplier _a = min_depth _a = hidden_act _a = tf_padding _a = classifier_dropout_prob _a = initializer_range _a = layer_norm_eps class A ( a ): __UpperCAmelCase : int = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-4
721
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class A ( unittest.TestCase ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[str]: _a = jnp.ones((batch_size, length) ) / length return scores def __lowerCAmelCase ( self ) -> int: _a = None _a = 2_0 _a = self._get_uniform_logits(batch_size=2 , length=snake_case_ ) # tweak scores to not be uniform anymore _a = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _a = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _a = jax.nn.softmax(snake_case_ , axis=-1 ) _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTemperatureLogitsWarper(temperature=1.3 ) _a = jax.nn.softmax(temp_dist_warper_sharper(snake_case_ , scores.copy() , cur_len=snake_case_ ) , axis=-1 ) _a = jax.nn.softmax(temp_dist_warper_smoother(snake_case_ , scores.copy() , cur_len=snake_case_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __lowerCAmelCase ( self ) -> Dict: _a = None _a = 1_0 _a = 2 # create ramp distribution _a = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, vocab_size) ).copy() _a = ramp_logits[1:, : vocab_size // 2] + vocab_size _a = FlaxTopKLogitsWarper(3 ) _a = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _a = 5 _a = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _a = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, length) ).copy() _a = top_k_warp_safety_check(snake_case_ , snake_case_ , cur_len=snake_case_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = None _a = 1_0 _a = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _a = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _a = FlaxTopPLogitsWarper(0.8 ) _a = np.exp(top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _a = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits _a = np.broadcast_to(np.arange(snake_case_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _a = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _a = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _a = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __lowerCAmelCase ( self ) -> List[str]: _a = 2_0 _a = 4 _a = 0 _a = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) # check that min length is applied at length 5 _a = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) _a = 5 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = min_dist_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = 1_5 _a = min_dist_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = 2_0 _a = 4 _a = 0 _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) # check that all scores are -inf except the bos_token_id score _a = ids_tensor((batch_size, 1) , vocab_size=2_0 ) _a = 1 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _a = 3 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def __lowerCAmelCase ( self ) -> int: _a = 2_0 _a = 4 _a = 0 _a = 5 _a = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) # check that all scores are -inf except the eos_token_id when max_length is reached _a = ids_tensor((batch_size, 4) , vocab_size=2_0 ) _a = 4 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _a = 3 _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = logits_processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) self.assertFalse(jnp.isinf(snake_case_ ).any() ) def __lowerCAmelCase ( self ) -> Dict: _a = 4 _a = 1_0 _a = 1_5 _a = 2 _a = 1 _a = 1_5 # dummy input_ids and scores _a = ids_tensor((batch_size, sequence_length) , snake_case_ ) _a = input_ids.copy() _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = scores.copy() # instantiate all dist processors _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTopKLogitsWarper(3 ) _a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _a = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) _a = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) _a = 1_0 # no processor list _a = temp_dist_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = min_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = bos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = eos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) # with processor list _a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _a = processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __lowerCAmelCase ( self ) -> Dict: _a = 4 _a = 1_0 _a = 1_5 _a = 2 _a = 1 _a = 1_5 # dummy input_ids and scores _a = ids_tensor((batch_size, sequence_length) , snake_case_ ) _a = input_ids.copy() _a = self._get_uniform_logits(snake_case_ , snake_case_ ) _a = scores.copy() # instantiate all dist processors _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTopKLogitsWarper(3 ) _a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _a = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=snake_case_ ) _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case_ ) _a = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case_ , eos_token_id=snake_case_ ) _a = 1_0 # no processor list def run_no_processor_list(snake_case_ , snake_case_ , snake_case_ ): _a = temp_dist_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = top_k_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = top_p_warp(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = min_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = bos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) _a = eos_dist_proc(snake_case_ , snake_case_ , cur_len=snake_case_ ) return scores # with processor list def run_processor_list(snake_case_ , snake_case_ , snake_case_ ): _a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _a = processor(snake_case_ , snake_case_ , cur_len=snake_case_ ) return scores _a = jax.jit(snake_case_ ) _a = jax.jit(snake_case_ ) _a = jitted_run_no_processor_list(snake_case_ , snake_case_ , snake_case_ ) _a = jitted_run_processor_list(snake_case_ , snake_case_ , snake_case_ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
700
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
701
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A ( a ): __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case_ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def __lowerCAmelCase ( self ) -> Optional[int]: # If no defaults are changed, `to_kwargs` returns an empty dict. _a = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _a = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , snake_case_ ) @require_multi_gpu def __lowerCAmelCase ( self ) -> Any: _a = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __snake_case : Any = Accelerator(kwargs_handlers=[ddp_scaler]) __snake_case : Optional[Any] = torch.nn.Linear(100, 200) __snake_case : Optional[int] = accelerator.prepare(model) # Check the values changed in kwargs __snake_case : str = "" __snake_case : str = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number | (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number & ~(1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return number ^ (1 << position) def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import math class A : def __init__( self , snake_case_=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 _a = n _a = [ [math.inf for j in range(0 , snake_case_ )] for i in range(0 , snake_case_ ) ] # adjacency matrix for weight _a = [ [math.inf for j in range(0 , snake_case_ )] for i in range(0 , snake_case_ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: _a = w def __lowerCAmelCase ( self ) -> List[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _a = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: return self.dp[u][v] if __name__ == "__main__": __snake_case : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
703
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github __snake_case : Tuple = [ "good first issue", "feature request", "wip", ] def _lowercase ( ): _a = Github(os.environ["GITHUB_TOKEN"] ) _a = g.get_repo("huggingface/accelerate" ) _a = repo.get_issues(state="open" ) for issue in open_issues: _a = sorted([comment for comment in issue.get_comments()], key=lambda lowerCamelCase__ : i.created_at, reverse=lowerCamelCase__ ) _a = comments[0] if len(lowerCamelCase__ ) > 0 else None _a = dt.utcnow() _a = (current_time - issue.updated_at).days _a = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
704
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") __snake_case : Union[str, Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : __UpperCAmelCase : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) __UpperCAmelCase : Optional[str] = field(default=a , metadata={"""help""": """A folder containing the training data."""} ) __UpperCAmelCase : Optional[str] = field(default=a , metadata={"""help""": """A folder containing the validation data."""} ) __UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) __UpperCAmelCase : int = field(default=32 , metadata={"""help""": """The size of the square patches to use for masking."""} ) __UpperCAmelCase : float = field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ) -> Tuple: _a = {} if self.train_dir is not None: _a = self.train_dir if self.validation_dir is not None: _a = self.validation_dir _a = data_files if data_files else None @dataclass class A : __UpperCAmelCase : str = field( default=a , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a )} , ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __UpperCAmelCase : Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) __UpperCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCAmelCase : str = field(default=a , metadata={"""help""": """Name or path of preprocessor config."""} ) __UpperCAmelCase : bool = field( default=a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={"""help""": """Stride to use for the encoder."""} , ) class A : def __init__( self , snake_case_=1_9_2 , snake_case_=3_2 , snake_case_=4 , snake_case_=0.6 ) -> str: _a = input_size _a = mask_patch_size _a = model_patch_size _a = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) _a = self.input_size // self.mask_patch_size _a = self.mask_patch_size // self.model_patch_size _a = self.rand_size**2 _a = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> str: _a = np.random.permutation(self.token_count )[: self.mask_count] _a = np.zeros(self.token_count , dtype=snake_case_ ) _a = 1 _a = mask.reshape((self.rand_size, self.rand_size) ) _a = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _lowercase ( lowerCamelCase__ : Any ): _a = torch.stack([example["pixel_values"] for example in examples] ) _a = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim", lowerCamelCase__, lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. _a = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, lowerCamelCase__ ) and data_args.train_val_split > 0.0: _a = ds["train"].train_test_split(data_args.train_val_split ) _a = split["train"] _a = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _a = AutoConfig.from_pretrained(model_args.config_name_or_path, **lowerCamelCase__ ) elif model_args.model_name_or_path: _a = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCamelCase__ ) else: _a = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowerCamelCase__, "decoder_type" ): _a = "simmim" # adapt config _a = model_args.image_size if model_args.image_size is not None else config.image_size _a = model_args.patch_size if model_args.patch_size is not None else config.patch_size _a = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _a = AutoImageProcessor.from_pretrained(model_args.image_processor_name, **lowerCamelCase__ ) elif model_args.model_name_or_path: _a = AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **lowerCamelCase__ ) else: _a = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _a = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _a = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=lowerCamelCase__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch" ) _a = AutoModelForMaskedImageModeling.from_config(lowerCamelCase__ ) if training_args.do_train: _a = ds["train"].column_names else: _a = ds["validation"].column_names if data_args.image_column_name is not None: _a = data_args.image_column_name elif "image" in column_names: _a = "image" elif "img" in column_names: _a = "img" else: _a = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _a = Compose( [ Lambda(lambda lowerCamelCase__ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) # create mask generator _a = MaskGenerator( input_size=model_args.image_size, mask_patch_size=data_args.mask_patch_size, model_patch_size=model_args.patch_size, mask_ratio=data_args.mask_ratio, ) def preprocess_images(lowerCamelCase__ : Tuple ): _a = [transforms(lowerCamelCase__ ) for image in examples[image_column_name]] _a = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _a = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCamelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _a = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCamelCase__ ) # Initialize our trainer _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=ds["train"] if training_args.do_train else None, eval_dataset=ds["validation"] if training_args.do_eval else None, tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _a = trainer.evaluate() trainer.log_metrics("eval", lowerCamelCase__ ) trainer.save_metrics("eval", lowerCamelCase__ ) # Write model card and (optionally) push to hub _a = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) if __name__ == "__main__": main()
705
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
691
0
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case : List[Any] = logging.getLogger(__name__) class A ( a ): __UpperCAmelCase : int = """summarization""" __UpperCAmelCase : Union[str, Any] = ["""loss"""] __UpperCAmelCase : Any = ROUGE_KEYS __UpperCAmelCase : int = """rouge2""" def __init__( self , snake_case_ , **snake_case_ ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: _a = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(snake_case_ , num_labels=snake_case_ , mode=self.mode , **snake_case_ ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) _a = Path(self.output_dir ) / "metrics.json" _a = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) _a = 0 _a = defaultdict(snake_case_ ) _a = self.config.model_type _a = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size _a = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _a = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } _a = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _a = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _a = get_git_info()["repo_sha"] _a = hparams.num_workers _a = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , snake_case_ ): _a = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _a = self.decoder_start_token_id _a = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) _a = False _a = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _a = self.hparams.eval_max_gen_length else: _a = self.model.config.max_length _a = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __lowerCAmelCase ( self , snake_case_ ) -> Dict[str, List[str]]: _a = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(snake_case_ , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) _a = True return readable_batch def __lowerCAmelCase ( self , snake_case_ , **snake_case_ ) -> List[str]: return self.model(snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: _a = self.tokenizer.batch_decode( snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return lmap(str.strip , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: _a = self.tokenizer.pad_token_id _a , _a = batch["input_ids"], batch["attention_mask"] _a = batch["labels"] if isinstance(self.model , snake_case_ ): _a = self.model._shift_right(snake_case_ ) else: _a = shift_tokens_right(snake_case_ , snake_case_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _a = decoder_input_ids self.save_readable_batch(snake_case_ ) _a = self(snake_case_ , attention_mask=snake_case_ , decoder_input_ids=snake_case_ , use_cache=snake_case_ ) _a = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _a = nn.CrossEntropyLoss(ignore_index=snake_case_ ) assert lm_logits.shape[-1] == self.vocab_size _a = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _a = nn.functional.log_softmax(snake_case_ , dim=-1 ) _a , _a = label_smoothed_nll_loss( snake_case_ , snake_case_ , self.hparams.label_smoothing , ignore_index=snake_case_ ) return (loss,) @property def __lowerCAmelCase ( self ) -> int: return self.tokenizer.pad_token_id def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: _a = self._step(snake_case_ ) _a = dict(zip(self.loss_names , snake_case_ ) ) # tokens per batch _a = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() _a = batch["input_ids"].shape[0] _a = batch["input_ids"].eq(self.pad ).sum() _a = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: return self._generative_step(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_="val" ) -> Dict: self.step_count += 1 _a = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _a = losses["loss"] _a = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } _a = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _a = torch.tensor(snake_case_ ).type_as(snake_case_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(snake_case_ ) _a = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} _a = self.step_count self.metrics[prefix].append(snake_case_ ) # callback writes this to self.metrics_save_path _a = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Dict: return calculate_rouge(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> dict: _a = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _a = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=snake_case_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _a = (time.time() - ta) / batch["input_ids"].shape[0] _a = self.ids_to_clean_text(snake_case_ ) _a = self.ids_to_clean_text(batch["labels"] ) _a = self._step(snake_case_ ) _a = dict(zip(self.loss_names , snake_case_ ) ) _a = self.calc_generative_metrics(snake_case_ , snake_case_ ) _a = np.mean(lmap(snake_case_ , snake_case_ ) ) base_metrics.update(gen_time=snake_case_ , gen_len=snake_case_ , preds=snake_case_ , target=snake_case_ , **snake_case_ ) return base_metrics def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: return self._generative_step(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> int: return self.validation_epoch_end(snake_case_ , prefix="test" ) def __lowerCAmelCase ( self , snake_case_ ) -> SeqaSeqDataset: _a = self.n_obs[type_path] _a = self.target_lens[type_path] _a = self.dataset_class( self.tokenizer , type_path=snake_case_ , n_obs=snake_case_ , max_target_length=snake_case_ , **self.dataset_kwargs , ) return dataset def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ = False ) -> DataLoader: _a = self.get_dataset(snake_case_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _a = dataset.make_sortish_sampler(snake_case_ , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case_ , batch_size=snake_case_ , collate_fn=dataset.collate_fn , shuffle=snake_case_ , num_workers=self.num_workers , sampler=snake_case_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _a = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case_ , batch_sampler=snake_case_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( snake_case_ , batch_size=snake_case_ , collate_fn=dataset.collate_fn , shuffle=snake_case_ , num_workers=self.num_workers , sampler=snake_case_ , ) def __lowerCAmelCase ( self ) -> DataLoader: _a = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=snake_case_ ) return dataloader def __lowerCAmelCase ( self ) -> DataLoader: return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def __lowerCAmelCase ( self ) -> DataLoader: return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def __lowerCAmelCase ( snake_case_ , snake_case_ ) -> List[str]: BaseTransformer.add_model_specific_args(snake_case_ , snake_case_ ) add_generic_args(snake_case_ , snake_case_ ) parser.add_argument( "--max_source_length" , default=1_0_2_4 , type=snake_case_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=5_6 , type=snake_case_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=1_4_2 , type=snake_case_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=1_4_2 , type=snake_case_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=snake_case_ ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=snake_case_ ) parser.add_argument("--max_tokens_per_batch" , type=snake_case_ , default=snake_case_ ) parser.add_argument("--logger_name" , type=snake_case_ , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=snake_case_ , default=-1 , required=snake_case_ , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=snake_case_ , default=5_0_0 , required=snake_case_ , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=snake_case_ , default=-1 , required=snake_case_ , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=snake_case_ , default="summarization" , required=snake_case_ , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=snake_case_ , default=0.0 , required=snake_case_ ) parser.add_argument("--src_lang" , type=snake_case_ , default="" , required=snake_case_ ) parser.add_argument("--tgt_lang" , type=snake_case_ , default="" , required=snake_case_ ) parser.add_argument("--eval_beams" , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument( "--val_metric" , type=snake_case_ , default=snake_case_ , required=snake_case_ , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=snake_case_ , default=snake_case_ , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=snake_case_ , default=1 , required=snake_case_ , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=snake_case_ , default=-1 , required=snake_case_ , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class A ( a ): __UpperCAmelCase : str = """translation""" __UpperCAmelCase : str = ["""loss"""] __UpperCAmelCase : List[Any] = ["""bleu"""] __UpperCAmelCase : Dict = """bleu""" def __init__( self , snake_case_ , **snake_case_ ) -> int: super().__init__(snake_case_ , **snake_case_ ) _a = hparams.src_lang _a = hparams.tgt_lang def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> dict: return calculate_bleu(snake_case_ , snake_case_ ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : List[Any]=None ): Path(args.output_dir ).mkdir(exist_ok=lowerCamelCase__ ) check_output_dir(lowerCamelCase__, expected_items=3 ) if model is None: if "summarization" in args.task: _a = SummarizationModule(lowerCamelCase__ ) else: _a = TranslationModule(lowerCamelCase__ ) _a = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): _a = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _a = os.environ.get("WANDB_PROJECT", lowerCamelCase__ ) _a = WandbLogger(name=model.output_dir.name, project=lowerCamelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _a = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _a = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: _a = False _a = args.val_metric == "loss" _a = generic_train( lowerCamelCase__, lowerCamelCase__, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, lowerCamelCase__ ), early_stopping_callback=lowerCamelCase__, logger=lowerCamelCase__, ) pickle_save(model.hparams, model.output_dir / "hparams.pkl" ) if not args.do_predict: return model _a = "" _a = sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt" ), recursive=lowerCamelCase__ ) ) if checkpoints: _a = checkpoints[-1] _a = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() __snake_case : List[Any] = pl.Trainer.add_argparse_args(parser) __snake_case : Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case : List[str] = parser.parse_args() main(args)
706
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __snake_case : Optional[int] = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a ) class A ( a ): __UpperCAmelCase : Dict = """rag""" __UpperCAmelCase : Dict = True def __init__( self , snake_case_=None , snake_case_=True , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=" / " , snake_case_=" // " , snake_case_=5 , snake_case_=3_0_0 , snake_case_=7_6_8 , snake_case_=8 , snake_case_="wiki_dpr" , snake_case_="train" , snake_case_="compressed" , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=0.0 , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[Any]: super().__init__( bos_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , prefix=snake_case_ , vocab_size=snake_case_ , **snake_case_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _a = kwargs.pop("question_encoder" ) _a = question_encoder_config.pop("model_type" ) _a = kwargs.pop("generator" ) _a = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = AutoConfig.for_model(snake_case_ , **snake_case_ ) _a = reduce_loss _a = label_smoothing _a = exclude_bos_score _a = do_marginalize _a = title_sep _a = doc_sep _a = n_docs _a = max_combined_length _a = dataset _a = dataset_split _a = index_name _a = retrieval_vector_size _a = retrieval_batch_size _a = passages_path _a = index_path _a = use_dummy_dataset _a = output_retrieved _a = do_deduplication _a = use_cache if self.forced_eos_token_id is None: _a = getattr(self.generator , "forced_eos_token_id" , snake_case_ ) @classmethod def __lowerCAmelCase ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.question_encoder.to_dict() _a = self.generator.to_dict() _a = self.__class__.model_type return output
691
0
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __snake_case : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Tuple ): _a = [] _a = fairseq_model.state_dict() _a = hf_model.feature_extractor _a = hf_model.adapter for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hf_model.config.feat_extract_norm == "group", ) _a = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) _a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : int, lowerCamelCase__ : str, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Union[str, Any] ): _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Tuple ): _a = full_name.split("adaptor." )[-1] _a = name.split("." ) if items[1].isdigit(): _a = int(items[1] ) else: _a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _a = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _a = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _a = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(lowerCamelCase__, lowerCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _a = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _a = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Any ): _a , _a = emb.weight.shape _a = nn.Linear(lowerCamelCase__, lowerCamelCase__, bias=lowerCamelCase__ ) _a = emb.weight.data return lin_layer @torch.no_grad() def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : int, lowerCamelCase__ : str, lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : int, lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[Any], ): _a = WavaVecaConfig.from_pretrained( lowerCamelCase__, add_adapter=lowerCamelCase__, adapter_stride=lowerCamelCase__, adapter_kernel_size=lowerCamelCase__, use_auth_token=lowerCamelCase__, output_hidden_size=lowerCamelCase__, ) _a = MBartConfig.from_pretrained(lowerCamelCase__ ) # load model _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, }, ) _a = model[0].eval() # load feature extractor _a = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__, use_auth_token=lowerCamelCase__ ) # set weights for wav2vec2 encoder _a = WavaVecaModel(lowerCamelCase__ ) recursively_load_weights_wavaveca(model.encoder, lowerCamelCase__ ) # load decoder weights _a = MBartForCausalLM(lowerCamelCase__ ) _a , _a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=lowerCamelCase__ ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _a = SpeechEncoderDecoderModel(encoder=lowerCamelCase__, decoder=lowerCamelCase__ ) _a = False _a = MBartaaTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) _a = hf_wavavec.config.to_dict() _a = tokenizer.pad_token_id _a = tokenizer.bos_token_id _a = tokenizer.eos_token_id _a = "mbart50" _a = "wav2vec2" _a = tokenizer.eos_token_id _a = 250_004 _a = tokenizer.eos_token_id _a = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) feature_extractor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_0004, type=int, help="`decoder_start_token_id` of model config") __snake_case : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
707
'''simple docstring''' class A : def __init__( self ) -> List[str]: _a = 0 _a = 0 _a = {} def __lowerCAmelCase ( self , snake_case_ ) -> int: if vertex not in self.adjacency: _a = {} self.num_vertices += 1 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return _a = weight _a = weight def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): _a = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a = edges[i][2] + 1 for edge in edges: _a , _a , _a = edge _a = weight _a = weight def __str__( self ) -> Optional[int]: _a = "" for tail in self.adjacency: for head in self.adjacency[tail]: _a = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCAmelCase ( self ) -> Any: return self.adjacency.keys() @staticmethod def __lowerCAmelCase ( snake_case_=None , snake_case_=None ) -> Any: _a = Graph() if vertices is None: _a = [] if edges is None: _a = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class A : def __init__( self ) -> Optional[int]: _a = {} _a = {} def __len__( self ) -> List[Any]: return len(self.parent ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: if item in self.parent: return self.find(snake_case_ ) _a = item _a = 0 return item def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: _a = self.find(self.parent[item] ) return self.parent[item] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Optional[int]: _a = self.find(snake_case_ ) _a = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a = roota return roota if self.rank[roota] < self.rank[roota]: _a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a = roota return roota return None @staticmethod def __lowerCAmelCase ( snake_case_ ) -> Tuple: _a = graph.num_vertices _a = Graph.UnionFind() _a = [] while num_components > 1: _a = {} for vertex in graph.get_vertices(): _a = -1 _a = graph.get_edges() for edge in edges: _a , _a , _a = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a = edge _a = union_find.find(snake_case_ ) _a = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) _a = num_components - 1 _a = Graph.build(edges=snake_case_ ) return mst
691
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _lowercase ( lowerCamelCase__ : int ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _lowercase ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _lowercase ( ): _a = "mock-s3-bucket" _a = F'''s3://{mock_bucket}''' _a = extract_path_from_uri(lowerCamelCase__ ) assert dataset_path.startswith("s3://" ) is False _a = "./local/path" _a = extract_path_from_uri(lowerCamelCase__ ) assert dataset_path == new_dataset_path def _lowercase ( lowerCamelCase__ : List[Any] ): _a = is_remote_filesystem(lowerCamelCase__ ) assert is_remote is True _a = fsspec.filesystem("file" ) _a = is_remote_filesystem(lowerCamelCase__ ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict, lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : List[Any], lowerCamelCase__ : Optional[int] ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} _a = input_paths[compression_fs_class.protocol] if input_path is None: _a = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase__ ) _a = fsspec.filesystem(compression_fs_class.protocol, fo=lowerCamelCase__ ) assert isinstance(lowerCamelCase__, lowerCamelCase__ ) _a = os.path.basename(lowerCamelCase__ ) _a = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(lowerCamelCase__, "r", encoding="utf-8" ) as f, open(lowerCamelCase__, encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"] ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : int, lowerCamelCase__ : str ): _a = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} _a = compressed_file_paths[protocol] _a = "dataset.jsonl" _a = F'''{protocol}://{member_file_path}::{compressed_file_path}''' _a , *_a = fsspec.get_fs_token_paths(lowerCamelCase__ ) assert fs.isfile(lowerCamelCase__ ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[Any] ): _a = hf_api.dataset_info(lowerCamelCase__, token=lowerCamelCase__ ) _a = HfFileSystem(repo_info=lowerCamelCase__, token=lowerCamelCase__ ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(lowerCamelCase__ ) as f: assert hffs.open("data/text_data.txt", "r" ).read() == f.read() def _lowercase ( ): _a = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCamelCase__, lowerCamelCase__, clobber=lowerCamelCase__ ) with pytest.warns(lowerCamelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCamelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
708
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
0
from math import factorial def _lowercase ( lowerCamelCase__ : int = 100 ): return sum(map(lowerCamelCase__, str(factorial(lowerCamelCase__ ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
709
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
0
'''simple docstring''' from typing import Any class A : def __init__( self , snake_case_ ) -> List[str]: _a = data _a = None class A : def __init__( self ) -> int: _a = None def __lowerCAmelCase ( self ) -> Dict: _a = self.head while temp is not None: print(temp.data , end=" " ) _a = temp.next print() def __lowerCAmelCase ( self , snake_case_ ) -> str: _a = Node(snake_case_ ) _a = self.head _a = new_node def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Tuple: if node_data_a == node_data_a: return else: _a = self.head while node_a is not None and node_a.data != node_data_a: _a = node_a.next _a = self.head while node_a is not None and node_a.data != node_data_a: _a = node_a.next if node_a is None or node_a is None: return _a , _a = node_a.data, node_a.data if __name__ == "__main__": __snake_case : List[str] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
710
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case : Optional[int] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Any ): _a = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[Any] ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _a = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) _a = in_proj_weight[ : encoder_config.hidden_size, : ] _a = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _a = in_proj_weight[ -encoder_config.hidden_size :, : ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : str ): _a = dct.pop(lowerCamelCase__ ) _a = val def _lowercase ( lowerCamelCase__ : List[Any] ): if "handwritten" in checkpoint_url: _a = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _a = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) return im @torch.no_grad() def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict ): _a = ViTConfig(image_size=384, qkv_bias=lowerCamelCase__ ) _a = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _a = 768 elif "large" in checkpoint_url: # use ViT-large encoder _a = 1_024 _a = 4_096 _a = 24 _a = 16 _a = 1_024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _a = False _a = "relu" _a = 1_024 _a = True _a = False _a = False # load HuggingFace model _a = ViTModel(lowerCamelCase__, add_pooling_layer=lowerCamelCase__ ) _a = TrOCRForCausalLM(lowerCamelCase__ ) _a = VisionEncoderDecoderModel(encoder=lowerCamelCase__, decoder=lowerCamelCase__ ) model.eval() # load state_dict of original model, rename some keys _a = torch.hub.load_state_dict_from_url(lowerCamelCase__, map_location="cpu", check_hash=lowerCamelCase__ )["model"] _a = create_rename_keys(lowerCamelCase__, lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__, lowerCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _a = state_dict.pop(lowerCamelCase__ ) if key.startswith("decoder" ) and "output_projection" not in key: _a = val else: _a = val # load state dict model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image _a = ViTImageProcessor(size=encoder_config.image_size ) _a = RobertaTokenizer.from_pretrained("roberta-large" ) _a = TrOCRProcessor(lowerCamelCase__, lowerCamelCase__ ) _a = processor(images=prepare_img(lowerCamelCase__ ), return_tensors="pt" ).pixel_values # verify logits _a = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _a = model(pixel_values=lowerCamelCase__, decoder_input_ids=lowerCamelCase__ ) _a = outputs.logits _a = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: _a = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: _a = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: _a = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: _a = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], lowerCamelCase__, atol=1e-3 ), "First elements of logits not as expected" Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __snake_case : str = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
711
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : list[int], lowerCamelCase__ : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int, lowerCamelCase__ : list[int], lowerCamelCase__ : int ): # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index], lowerCamelCase__, lowerCamelCase__ ): # Color current vertex _a = i # Validate coloring if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, index + 1 ): return True # Backtrack _a = -1 return False def _lowercase ( lowerCamelCase__ : list[list[int]], lowerCamelCase__ : int ): _a = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, 0 ): return colored_vertices return []
691
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : list[list] ): _a = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _a = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _a = column continue _a = column / magnitude # Subtract to cancel term _a = current_set[0] _a = [first_row] _a = current_set[1::] for row in current_set: _a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a = final_set[0] _a = [] _a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _a = resultant return final_set def _lowercase ( lowerCamelCase__ : list[list] ): if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _a = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _a = equations.copy() if any(0 in row for row in data_set ): _a = data_set.copy() _a = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _a = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _a = data_set.copy() _a = simplify(lowerCamelCase__ ) _a = simplified[::-1] _a = [] for row in simplified: _a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _a = temp_row[1::] _a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _a = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A : def __init__( self , snake_case_ ) -> Optional[int]: _a = str(id_ ) _a = None _a = None _a = [] _a = {} # {vertex:distance} def __lt__( self , snake_case_ ) -> Optional[Any]: return self.key < other.key def __repr__( self ) -> Union[str, Any]: return self.id def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: self.neighbors.append(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = weight def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : str ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1], lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): _a = [] for u in graph: _a = math.inf _a = None _a = 0 _a = graph[:] while q: _a = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] for i in range(1, len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ : list, lowerCamelCase__ : Vertex ): for u in graph: _a = math.inf _a = None _a = 0 _a = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: _a = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _a = u _a = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1, len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
691
0
'''simple docstring''' import argparse __snake_case : Union[str, Any] = "docs/source/_static/js/custom.js" def _lowercase ( lowerCamelCase__ : str ): with open(lowerCamelCase__, encoding="utf-8", newline="\n" ) as f: _a = f.readlines() _a = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 _a = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(lowerCamelCase__, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") __snake_case : Dict = parser.parse_args() update_custom_js(args.version)
713
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case : Optional[int] = logging.get_logger("transformers.models.speecht5") __snake_case : int = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __snake_case : str = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __snake_case : int = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __snake_case : Dict = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __snake_case : Optional[Any] = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __snake_case : str = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __snake_case : List[str] = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __snake_case : Dict = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __snake_case : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case : List[Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case : str = [] __snake_case : Tuple = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __snake_case : str = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __snake_case : Any = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __snake_case : List[Any] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Optional[int], lowerCamelCase__ : int, lowerCamelCase__ : Dict, lowerCamelCase__ : int ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any] ): _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hf_model.config.feat_extract_norm == "group", ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : int, lowerCamelCase__ : int ): _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Any, lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[int]=None, lowerCamelCase__ : List[Any]=None, lowerCamelCase__ : int=None, ): if config_path is not None: _a = SpeechTaConfig.from_pretrained(lowerCamelCase__ ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(lowerCamelCase__ ) elif task == "t2s": _a = 1_876 _a = 600 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(lowerCamelCase__ ) elif task == "s2s": _a = 1_876 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(lowerCamelCase__ ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: _a = SpeechTaTokenizer(lowerCamelCase__, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken("<mask>", lstrip=lowerCamelCase__, rstrip=lowerCamelCase__ ) _a = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) recursively_load_weights(fairseq_checkpoint["model"], lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : Tuple = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
714
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger("transformers.models.encodec") __snake_case : Tuple = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __snake_case : int = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __snake_case : Optional[int] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __snake_case : Tuple = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __snake_case : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __snake_case : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Tuple = [] __snake_case : Optional[int] = [] def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : List[Any] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value elif weight_type == "weight_ih_l0": _a = value elif weight_type == "weight_hh_l0": _a = value elif weight_type == "bias_ih_l0": _a = value elif weight_type == "bias_hh_l0": _a = value elif weight_type == "weight_ih_l1": _a = value elif weight_type == "weight_hh_l1": _a = value elif weight_type == "bias_ih_l1": _a = value elif weight_type == "bias_hh_l1": _a = value else: _a = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Any, lowerCamelCase__ : int ): _a = [] if model_name == "encodec_24khz" or "encodec_32khz": _a = MAPPING_24K elif model_name == "encodec_48khz": _a = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__, lowerCamelCase__ ): logger.info(F'''{name} was ignored''' ) continue _a = False for key, mapped_key in MAPPING.items(): if "*" in key: _a , _a = key.split(".*." ) if prefix in name and suffix in name: _a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight_ih_l0" in name: _a = "weight_ih_l0" elif "weight_hh_l0" in name: _a = "weight_hh_l0" elif "bias_ih_l0" in name: _a = "bias_ih_l0" elif "bias_hh_l0" in name: _a = "bias_hh_l0" elif "weight_ih_l1" in name: _a = "weight_ih_l1" elif "weight_hh_l1" in name: _a = "weight_hh_l1" elif "bias_ih_l1" in name: _a = "bias_ih_l1" elif "bias_hh_l1" in name: _a = "bias_hh_l1" elif "bias" in name: _a = "bias" elif "weight" in name: _a = "weight" elif "running_mean" in name: _a = "running_mean" elif "running_var" in name: _a = "running_var" elif "num_batches_tracked" in name: _a = "num_batches_tracked" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, ): if config_path is not None: _a = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: _a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _a = [8, 5, 4, 4] _a = [2.2] _a = 64 _a = 32_000 _a = 2_048 _a = False _a = False _a = False elif model_name == "encodec_48khz": _a = [8, 5, 4, 2] _a = [3.0, 6.0, 12.0, 24.0] _a = 48_000 _a = 2 _a = False _a = "time_group_norm" _a = True _a = 1.0 _a = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _a = EncodecModel(lowerCamelCase__ ) _a = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _a = original_checkpoint["best_state"] recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __snake_case : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
691
0
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _lowercase ( lowerCamelCase__ : Dict[str, torch.Tensor] ): _a = [] _a = [] _a = [] for rt in rc.restypes: _a = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _a = {name: i for i, name in enumerate(lowerCamelCase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _a = torch.tensor( lowerCamelCase__, dtype=torch.intaa, device=protein["aatype"].device, ) _a = torch.tensor( lowerCamelCase__, dtype=torch.intaa, device=protein["aatype"].device, ) _a = torch.tensor( lowerCamelCase__, dtype=torch.floataa, device=protein["aatype"].device, ) _a = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _a = restype_atomaa_to_atomaa[protein_aatype] _a = restype_atomaa_mask[protein_aatype] _a = residx_atomaa_mask _a = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _a = restype_atomaa_to_atomaa[protein_aatype] _a = residx_atomaa_to_atomaa.long() # create the corresponding mask _a = torch.zeros([21, 37], dtype=torch.floataa, device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): _a = rc.restype_atoa[restype_letter] _a = rc.residue_atoms[restype_name] for atom_name in atom_names: _a = rc.atom_order[atom_name] _a = 1 _a = restype_atomaa_mask[protein_aatype] _a = residx_atomaa_mask return protein def _lowercase ( lowerCamelCase__ : Dict[str, torch.Tensor] ): _a = tree_map(lambda lowerCamelCase__ : torch.tensor(lowerCamelCase__, device=batch["aatype"].device ), lowerCamelCase__, np.ndarray ) _a = tensor_tree_map(lambda lowerCamelCase__ : np.array(lowerCamelCase__ ), make_atomaa_masks(lowerCamelCase__ ) ) return out
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowercase ( lowerCamelCase__ : Optional[int] ): # picklable for multiprocessing return x.sum() def _lowercase ( lowerCamelCase__ : int ): # picklable for multiprocessing return i + 1 @dataclass class A : __UpperCAmelCase : int __UpperCAmelCase : str class A ( a ): def __lowerCAmelCase ( self ) -> Tuple: _a = {} _a = [] _a = 1 _a = [1, 2] _a = {"a": 1, "b": 2} _a = {"a": [1, 2], "b": [3, 4]} _a = {"a": {"1": 1}, "b": 2} _a = {"a": 1, "b": 2, "c": 3, "d": 4} _a = {} _a = [] _a = 2 _a = [2, 3] _a = {"a": 2, "b": 3} _a = {"a": [2, 3], "b": [4, 5]} _a = {"a": {"1": 2}, "b": 3} _a = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ ) , snake_case_ ) _a = 2 self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual(map_nested(snake_case_ , snake_case_ , num_proc=snake_case_ ) , snake_case_ ) _a = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _a = {"a": 2, "b": 0, "c": 2} _a = { "a": np.eye(2 ).astype(snake_case_ ), "b": np.zeros(3 ).astype(snake_case_ ), "c": np.ones(2 ).astype(snake_case_ ), } self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ) , snake_case_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case_ , snake_case_ , map_numpy=snake_case_ , num_proc=snake_case_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(snake_case_ ): # can't pickle a local lambda map_nested(lambda snake_case_ : x + 1 , snake_case_ , num_proc=snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = {"a": 1, "b": 2} _a = {"a": 3, "b": 4} _a = {"a": 5, "b": 6} _a = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case_ , snake_case_ , snake_case_ ) ) , snake_case_ ) def __lowerCAmelCase ( self ) -> str: class A : __UpperCAmelCase : Optional[int] = """bar""" _a = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(snake_case_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[int] ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _a = {F'''{i}''': i for i in range(lowerCamelCase__ )} _a = map_nested(lambda lowerCamelCase__ : x + 10, lowerCamelCase__, num_proc=lowerCamelCase__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A ( a ): @require_tf def __lowerCAmelCase ( self ) -> Any: import tensorflow as tf from tensorflow.keras import layers _a = layers.Dense(2 ) def gen_random_output(): _a = tf.random.uniform((1, 3) ) return model(snake_case_ ).numpy() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_tensorflow=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch def gen_random_output(): _a = torch.nn.Linear(3 , 2 ) _a = torch.rand(1 , 3 ) return model(snake_case_ ).detach().numpy() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() with temp_seed(4_2 , set_pytorch=snake_case_ ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) -> Optional[int]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): _a = gen_random_output() with temp_seed(4_2 ): _a = gen_random_output() _a = gen_random_output() np.testing.assert_equal(snake_case_ , snake_case_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data", [{}] ) def _lowercase ( lowerCamelCase__ : Any ): _a = NestedDataStructure(lowerCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Dict ): _a = NestedDataStructure(lowerCamelCase__ ).flatten() assert output == expected_output def _lowercase ( ): _a = A(x=1, y="foobar" ) _a = {"x": 1, "y": "foobar"} assert asdict(lowerCamelCase__ ) == expected_output _a = {"a": {"b": A(x=10, y="foo" )}, "c": [A(x=20, y="bar" )]} _a = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(lowerCamelCase__ ) == expected_output with pytest.raises(lowerCamelCase__ ): asdict([1, A(x=10, y="foo" )] ) def _lowercase ( lowerCamelCase__ : str ): return text.split() def _lowercase ( lowerCamelCase__ : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowercase ( ): with Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _a = list(iflatmap_unordered(lowerCamelCase__, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(lowerCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _a = [] for yield_time, content in iflatmap_unordered( lowerCamelCase__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowerCamelCase__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(lowerCamelCase__ ) == 4
716
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=a ): __UpperCAmelCase : int = ["""torch""", """scipy"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] ) @classmethod def __lowerCAmelCase ( cls , *snake_case_ , **snake_case_ ) -> Any: requires_backends(cls , ["torch", "scipy"] )
691
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class A : @staticmethod def __lowerCAmelCase ( *snake_case_ , **snake_case_ ) -> str: pass def _lowercase ( lowerCamelCase__ : Image ): _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _lowercase ( lowerCamelCase__ : Image ): _a = np.array(lowerCamelCase__ ) _a = npimg.shape return {"hash": hashimage(lowerCamelCase__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class A ( unittest.TestCase ): __UpperCAmelCase : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __UpperCAmelCase : Any = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = MaskGenerationPipeline(model=snake_case_ , image_processor=snake_case_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> str: pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __lowerCAmelCase ( self ) -> Any: pass @slow @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) _a = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_5_6 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_871} ] , ) # fmt: on @require_torch @slow def __lowerCAmelCase ( self ) -> Optional[int]: _a = "facebook/sam-vit-huge" _a = pipeline("mask-generation" , model=snake_case_ ) _a = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_053}, ] , )
717
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
0
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Tuple = "sshleifer/mar_enro_6_3_student" class A ( a ): def __lowerCAmelCase ( self ) -> str: super().setUp() _a = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=snake_case_ , ) _a = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> Dict: MarianMTModel.from_pretrained(snake_case_ ) @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> List[str]: _a = { "$MAX_LEN": 6_4, "$BS": 6_4, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script _a = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() _a = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): _a = bash_script.replace(snake_case_ , str(snake_case_ ) ) _a = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _a = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _a = ["finetune.py"] + bash_script.split() + args with patch.object(snake_case_ , "argv" , snake_case_ ): _a = argparse.ArgumentParser() _a = pl.Trainer.add_argparse_args(snake_case_ ) _a = SummarizationModule.add_model_specific_args(snake_case_ , os.getcwd() ) _a = parser.parse_args() _a = main(snake_case_ ) # Check metrics _a = load_json(model.metrics_save_path ) _a = metrics["val"][0] _a = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , snake_case_ ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 1_7 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _a = os.listdir(snake_case_ ) _a = [x for x in contents if x.endswith(".ckpt" )][0] _a = os.path.join(args.output_dir , snake_case_ ) _a = torch.load(snake_case_ , map_location="cpu" ) _a = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _a = {os.path.basename(snake_case_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class A ( a ): @timeout_decorator.timeout(6_0_0 ) @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> int: _a = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _a = { "--fp16_opt_level=O1": "", "$MAX_LEN": 1_2_8, "$BS": 1_6, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script _a = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) _a = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) _a = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): _a = bash_script.replace(snake_case_ , str(snake_case_ ) ) _a = self.get_auto_remove_tmp_dir() _a = bash_script.replace("--fp16" , "" ) _a = 6 _a = ( ["distillation.py"] + bash_script.split() + [ F'''--output_dir={output_dir}''', "--gpus=1", "--learning_rate=1e-3", F'''--num_train_epochs={epochs}''', "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(snake_case_ , "argv" , snake_case_ ): _a = argparse.ArgumentParser() _a = pl.Trainer.add_argparse_args(snake_case_ ) _a = SummarizationDistiller.add_model_specific_args(snake_case_ , os.getcwd() ) _a = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _a = distill_main(snake_case_ ) # Check metrics _a = load_json(model.metrics_save_path ) _a = metrics["val"][0] _a = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , snake_case_ ) # check lightning ckpt can be loaded and has a reasonable statedict _a = os.listdir(snake_case_ ) _a = [x for x in contents if x.endswith(".ckpt" )][0] _a = os.path.join(args.output_dir , snake_case_ ) _a = torch.load(snake_case_ , map_location="cpu" ) _a = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _a = {os.path.basename(snake_case_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
718
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class A ( a ): __UpperCAmelCase : bool = field(default=a , metadata={"""help""": """Whether to use SortishSampler or not."""} ) __UpperCAmelCase : bool = field( default=a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) __UpperCAmelCase : Optional[int] = field( default=a , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) __UpperCAmelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=a , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): _a = v.to_dict() return d
719
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[str], lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int] ): for attribute in key.split("." ): _a = getattr(lowerCamelCase__, lowerCamelCase__ ) if weight_type is not None: _a = getattr(lowerCamelCase__, lowerCamelCase__ ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict, lowerCamelCase__ : Tuple ): _a = [] _a = fairseq_model.state_dict() _a = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hf_model.config.feat_extract_norm == "group", ) _a = True else: for key, mapped_key in MAPPING.items(): _a = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): _a = True if "*" in mapped_key: _a = name.split(lowerCamelCase__ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCamelCase__ ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "weight" in name: _a = "weight" elif "bias" in name: _a = "bias" else: _a = None set_recursively(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : int, lowerCamelCase__ : List[Any] ): _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : str=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Union[str, Any]=True ): if config_path is not None: _a = HubertConfig.from_pretrained(lowerCamelCase__ ) else: _a = HubertConfig() if is_finetuned: if dict_path: _a = Dictionary.load(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a = target_dict.pad_index _a = target_dict.bos_index _a = target_dict.eos_index _a = len(target_dict.symbols ) _a = os.path.join(lowerCamelCase__, "vocab.json" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__, exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices, lowerCamelCase__ ) _a = WavaVecaCTCTokenizer( lowerCamelCase__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=lowerCamelCase__, ) _a = True if config.feat_extract_norm == "layer" else False _a = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=lowerCamelCase__, return_attention_mask=lowerCamelCase__, ) _a = WavaVecaProcessor(feature_extractor=lowerCamelCase__, tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) _a = HubertForCTC(lowerCamelCase__ ) else: _a = HubertModel(lowerCamelCase__ ) if is_finetuned: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a = model[0].eval() recursively_load_weights(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __snake_case : List[Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
720
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ): _a = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _a = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _a = F'''{src_lang}-{tgt_lang}''' _a = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowerCamelCase__, exist_ok=lowerCamelCase__ ) _a = os.path.join(lowerCamelCase__, "README.md" ) print(F'''Generating {path}''' ) with open(lowerCamelCase__, "w", encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) # make sure we are under the root of the project __snake_case : int = Path(__file__).resolve().parent.parent.parent __snake_case : int = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __snake_case : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
691
0
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
721
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
0
'''simple docstring''' def lowerCAmelCase_ ( __A : int , __A : int , __A : int ): '''simple docstring''' snake_case: str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCAmelCase_ ( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
1
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCAmelCase_ ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join snake_case: Union[str, Any] = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , __A ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCAmelCase_ ( ): '''simple docstring''' assert _test_patching.open is open snake_case: str = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , __A ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Any = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , __A ): pass def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: List[Any] = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , __A ) is None with patch_submodule(_test_patching , 'len' , __A ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: List[str] = '__test_patch_submodule_start_and_stop_mock__' snake_case: str = patch_submodule(_test_patching , 'open' , __A ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCAmelCase_ ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join snake_case: Union[str, Any] = '__test_patch_submodule_successive_join__' snake_case: Union[str, Any] = '__test_patch_submodule_successive_dirname__' snake_case: Optional[Any] = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , __A ): with patch_submodule(_test_patching , 'os.rename' , __A ): with patch_submodule(_test_patching , 'os.path.dirname' , __A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , __A ): with patch_submodule(_test_patching , 'os.path.join' , __A ): with patch_submodule(_test_patching , 'os.path.dirname' , __A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[Any] = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , __A ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , __A ): pass
692
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = tempfile.mkdtemp() snake_case: str = SamImageProcessor() snake_case: Tuple = SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: str = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) snake_case: Optional[int] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_image_processor() snake_case: Any = SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.prepare_image_inputs() snake_case: Optional[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Optional[int] = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[Any] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: int = [torch.ones((1, 3, 5, 5) )] snake_case: str = [[17_64, 26_46]] snake_case: str = [[6_83, 10_24]] snake_case: Union[str, Any] = processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) snake_case: Optional[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np snake_case: Tuple = [np.ones((1, 3, 5, 5) )] snake_case: Optional[int] = processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) snake_case: str = [[1, 0], [0, 1]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): snake_case: str = processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = tempfile.mkdtemp() snake_case: Optional[Any] = SamImageProcessor() snake_case: Tuple = SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Union[str, Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: List[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) snake_case: Optional[int] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_image_processor() snake_case: int = SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.prepare_image_inputs() snake_case: Tuple = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Optional[Any] = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: str = SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = [tf.ones((1, 3, 5, 5) )] snake_case: int = [[17_64, 26_46]] snake_case: Optional[int] = [[6_83, 10_24]] snake_case: Tuple = processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) snake_case: Optional[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np snake_case: Dict = [np.ones((1, 3, 5, 5) )] snake_case: Dict = processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) snake_case: Dict = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): snake_case: List[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: List[str] = SamImageProcessor() snake_case: Tuple = SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: List[str] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: str = SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) snake_case: Tuple = [tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = [torch.tensor(SCREAMING_SNAKE_CASE__ )] snake_case: Tuple = [[17_64, 26_46]] snake_case: Dict = [[6_83, 10_24]] snake_case: List[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) snake_case: Optional[int] = processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.get_image_processor() snake_case: Tuple = SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.prepare_image_inputs() snake_case: Optional[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() snake_case: Optional[int] = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() snake_case: Dict = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() snake_case: Optional[int] = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
692
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCAmelCase_ ( __A : str , __A : Dict , __A : int , __A : Dict=5 ): '''simple docstring''' assert masked_input.count('<mask>' ) == 1 snake_case: List[Any] = torch.tensor(tokenizer.encode(__A , add_special_tokens=__A ) ).unsqueeze(0 ) # Batch size 1 snake_case: List[Any] = model(__A )[0] # The last hidden-state is the first element of the output tuple snake_case: Optional[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() snake_case: str = logits[0, masked_index, :] snake_case: int = logits.softmax(dim=0 ) snake_case , snake_case: int = prob.topk(k=__A , dim=0 ) snake_case: int = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__A ) )] ) snake_case: List[Any] = tokenizer.mask_token snake_case: Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): snake_case: Optional[int] = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(__A ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(__A ) , __A ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__A , __A ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __UpperCAmelCase = CamembertTokenizer.from_pretrained("camembert-base") __UpperCAmelCase = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __UpperCAmelCase = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = ["image_processor"] __UpperCamelCase = "SamImageProcessor" def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: int = self.image_processor snake_case: List[Any] = -10 snake_case: List[Any] = self.image_processor.size['longest_edge'] def __call__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # pop arguments that are not used in the foward but used nevertheless snake_case: Union[str, Any] = encoding_image_processor['original_sizes'] if hasattr(SCREAMING_SNAKE_CASE__ , 'numpy' ): # Checks if Torch or TF tensor snake_case: Union[str, Any] = original_sizes.numpy() snake_case , snake_case , snake_case: List[str] = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE__ , input_labels=SCREAMING_SNAKE_CASE__ , input_boxes=SCREAMING_SNAKE_CASE__ , ) snake_case: str = self._normalize_and_convert( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , input_points=SCREAMING_SNAKE_CASE__ , input_labels=SCREAMING_SNAKE_CASE__ , input_boxes=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , ) return encoding_image_processor def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="pt" , ): '''simple docstring''' if input_points is not None: if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): snake_case: Any = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE__ , original_sizes[0] ) for point in input_points ] else: snake_case: str = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for point, original_size in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: snake_case , snake_case: str = self._pad_points_and_labels(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = np.array(SCREAMING_SNAKE_CASE__ ) if input_labels is not None: snake_case: Optional[int] = np.array(SCREAMING_SNAKE_CASE__ ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): snake_case: Dict = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE__ , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE__ ) for box in input_boxes ] else: snake_case: List[Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , is_bounding_box=SCREAMING_SNAKE_CASE__ ) for box, original_size in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] snake_case: int = np.array(SCREAMING_SNAKE_CASE__ ) if input_boxes is not None: if return_tensors == "pt": snake_case: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # boxes batch size of 1 by default snake_case: Optional[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": snake_case: List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) # boxes batch size of 1 by default snake_case: Tuple = tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": snake_case: Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # point batch size of 1 by default snake_case: List[str] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": snake_case: List[Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) # point batch size of 1 by default snake_case: Optional[Any] = tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": snake_case: str = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # point batch size of 1 by default snake_case: Tuple = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": snake_case: Union[str, Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) # point batch size of 1 by default snake_case: Optional[Any] = tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = max([point.shape[0] for point in input_points] ) snake_case: Union[str, Any] = [] for i, point in enumerate(SCREAMING_SNAKE_CASE__ ): if point.shape[0] != expected_nb_points: snake_case: Tuple = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) snake_case: Tuple = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = processed_input_points return input_points, input_labels def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' snake_case , snake_case: Union[str, Any] = original_size snake_case , snake_case: str = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE__ , longest_edge=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = deepcopy(SCREAMING_SNAKE_CASE__ ).astype(SCREAMING_SNAKE_CASE__ ) if is_bounding_box: snake_case: Optional[Any] = coords.reshape(-1 , 2 , 2 ) snake_case: List[str] = coords[..., 0] * (new_w / old_w) snake_case: List[Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: snake_case: str = coords.reshape(-1 , 4 ) return coords def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ): '''simple docstring''' if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE__ , 'numpy' ): # Checks for TF or Torch tensor snake_case: Any = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE__ ): raise ValueError('Input points must be a list of list of floating points.' ) snake_case: str = [np.array(SCREAMING_SNAKE_CASE__ ) for input_point in input_points] else: snake_case: str = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE__ , 'numpy' ): snake_case: Tuple = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE__ ): raise ValueError('Input labels must be a list of list integers.' ) snake_case: List[str] = [np.array(SCREAMING_SNAKE_CASE__ ) for label in input_labels] else: snake_case: Any = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE__ , 'numpy' ): snake_case: List[str] = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE__ ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE__ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) snake_case: Union[str, Any] = [np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) for box in input_boxes] else: snake_case: Any = None return input_points, input_labels, input_boxes @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( __A : list[int] ): '''simple docstring''' return len(set(__A ) ) == len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: dict[str, TrieNode] = {} # Mapping from char to TrieNode snake_case: Union[str, Any] = False def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for word in words: self.insert(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = self for char in word: if char not in curr.nodes: snake_case: List[Any] = TrieNode() snake_case: Union[str, Any] = curr.nodes[char] snake_case: Optional[Any] = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self for char in word: if char not in curr.nodes: return False snake_case: Tuple = curr.nodes[char] return curr.is_leaf def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _delete(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> bool: if index == len(SCREAMING_SNAKE_CASE__ ): # If word does not exist if not curr.is_leaf: return False snake_case: int = False return len(curr.nodes ) == 0 snake_case: Any = word[index] snake_case: List[Any] = curr.nodes.get(SCREAMING_SNAKE_CASE__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted snake_case: str = _delete(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , SCREAMING_SNAKE_CASE__ , 0 ) def lowerCAmelCase_ ( __A : TrieNode , __A : str ): '''simple docstring''' if node.is_leaf: print(__A , end=' ' ) for key, value in node.nodes.items(): print_words(__A , word + key ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[Any] = 'banana bananas bandana band apple all beast'.split() snake_case: Optional[Any] = TrieNode() root.insert_many(__A ) # print_words(root, "") assert all(root.find(__A ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCAmelCase_ ( __A : str , __A : bool ): '''simple docstring''' print(str(__A ) , 'works!' if passes else 'doesn\'t work :(' ) def lowerCAmelCase_ ( ): '''simple docstring''' assert test_trie() def lowerCAmelCase_ ( ): '''simple docstring''' print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Union[str, Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.nets ) ): snake_case , snake_case: str = controlnet( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) # merge samples if i == 0: snake_case , snake_case: str = down_samples, mid_sample else: snake_case: Optional[Any] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Any = 0 snake_case: Optional[Any] = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE__ , is_main_process=SCREAMING_SNAKE_CASE__ , save_function=SCREAMING_SNAKE_CASE__ , safe_serialization=SCREAMING_SNAKE_CASE__ , variant=SCREAMING_SNAKE_CASE__ , ) idx += 1 snake_case: Dict = model_path_to_save + F"""_{idx}""" @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = 0 snake_case: Tuple = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case: List[str] = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE__ ): snake_case: str = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) controlnets.append(SCREAMING_SNAKE_CASE__ ) idx += 1 snake_case: Union[str, Any] = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(SCREAMING_SNAKE_CASE__ )} controlnets loaded from {pretrained_model_path}.""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE__ )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
1
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __UpperCAmelCase = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = torchvision.models.resnetaaa(pretrained=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = list(model.children() )[:-2] snake_case: Union[str, Any] = nn.Sequential(*SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = self.pool(self.model(SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[int] = torch.flatten(SCREAMING_SNAKE_CASE__ , start_dim=2 ) snake_case: str = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = [json.loads(SCREAMING_SNAKE_CASE__ ) for l in open(SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer snake_case: Any = labels snake_case: Tuple = len(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = max_seq_length snake_case: int = transforms def __len__( self ): '''simple docstring''' return len(self.data ) def __getitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ) snake_case , snake_case , snake_case: Optional[int] = sentence[0], sentence[1:-1], sentence[-1] snake_case: Optional[int] = sentence[: self.max_seq_length] snake_case: Dict = torch.zeros(self.n_classes ) snake_case: Dict = 1 snake_case: Optional[int] = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) snake_case: int = self.transforms(SCREAMING_SNAKE_CASE__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: Optional[Any] = [len(row['sentence'] ) for row in batch] snake_case , snake_case: Any = len(__A ), max(__A ) snake_case: str = torch.zeros(__A , __A , dtype=torch.long ) snake_case: Tuple = torch.zeros(__A , __A , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__A , __A ) ): snake_case: Optional[Any] = input_row['sentence'] snake_case: Dict = 1 snake_case: Optional[int] = torch.stack([row['image'] for row in batch] ) snake_case: List[Any] = torch.stack([row['label'] for row in batch] ) snake_case: Any = torch.stack([row['image_start_token'] for row in batch] ) snake_case: Dict = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCAmelCase_ ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCAmelCase_ ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
692
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: Dict = 0 snake_case: Dict = 0 snake_case: Dict = {} def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if vertex not in self.adjacency: snake_case: List[Any] = {} self.num_vertices += 1 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' self.add_vertex(SCREAMING_SNAKE_CASE__ ) self.add_vertex(SCREAMING_SNAKE_CASE__ ) if head == tail: return snake_case: Dict = weight snake_case: Optional[int] = weight def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_edges() for edge in edges: snake_case , snake_case , snake_case: str = edge edges.remove((tail, head, weight) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case: List[Any] = list(edges[i] ) edges.sort(key=lambda SCREAMING_SNAKE_CASE__ : e[2] ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case: Optional[int] = edges[i][2] + 1 for edge in edges: snake_case , snake_case , snake_case: int = edge snake_case: Optional[int] = weight snake_case: Optional[Any] = weight def __str__( self ): '''simple docstring''' snake_case: Dict = '' for tail in self.adjacency: for head in self.adjacency[tail]: snake_case: List[Any] = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _UpperCamelCase ( self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: Dict = Graph() if vertices is None: snake_case: int = [] if edges is None: snake_case: Tuple = [] for vertex in vertices: g.add_vertex(SCREAMING_SNAKE_CASE__ ) for edge in edges: g.add_edge(*SCREAMING_SNAKE_CASE__ ) return g class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: Optional[int] = {} snake_case: Optional[Any] = {} def __len__( self ): '''simple docstring''' return len(self.parent ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if item in self.parent: return self.find(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = item snake_case: Tuple = 0 return item def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if item not in self.parent: return self.make_set(SCREAMING_SNAKE_CASE__ ) if item != self.parent[item]: snake_case: int = self.find(self.parent[item] ) return self.parent[item] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = self.find(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.find(SCREAMING_SNAKE_CASE__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case: List[Any] = roota return roota if self.rank[roota] < self.rank[roota]: snake_case: Optional[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case: List[Any] = roota return roota return None @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = graph.num_vertices snake_case: List[str] = Graph.UnionFind() snake_case: Tuple = [] while num_components > 1: snake_case: Union[str, Any] = {} for vertex in graph.get_vertices(): snake_case: Dict = -1 snake_case: List[Any] = graph.get_edges() for edge in edges: snake_case , snake_case , snake_case: Dict = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case , snake_case , snake_case: Dict = edge snake_case: Optional[int] = union_find.find(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = union_find.find(SCREAMING_SNAKE_CASE__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case: List[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case: Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case , snake_case , snake_case: Any = cheap_edge[vertex] if union_find.find(SCREAMING_SNAKE_CASE__ ) != union_find.find(SCREAMING_SNAKE_CASE__ ): union_find.union(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) mst_edges.append(cheap_edge[vertex] ) snake_case: int = num_components - 1 snake_case: List[Any] = Graph.build(edges=SCREAMING_SNAKE_CASE__ ) return mst
692
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
1
'''simple docstring''' import os def lowerCAmelCase_ ( __A : str = "matrix.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(__A ) , __A ) ) as in_file: snake_case: Tuple = in_file.read() snake_case: List[str] = [[int(__A ) for cell in row.split(',' )] for row in data.strip().splitlines()] snake_case: Optional[int] = [[0 for cell in row] for row in grid] snake_case: List[str] = len(grid[0] ) snake_case: Any = [[0 for i in range(__A )] for j in range(__A )] snake_case: str = grid[0][0] for i in range(1 , __A ): snake_case: Dict = grid[0][i] + dp[0][i - 1] for i in range(1 , __A ): snake_case: Union[str, Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , __A ): for j in range(1 , __A ): snake_case: Any = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
692
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' @staticmethod @abstractmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def _UpperCamelCase ( self ): '''simple docstring''' raise NotImplementedError()
692
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["PerceiverFeatureExtractor"] __UpperCAmelCase = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Model type selected in the list: " + ", ".join(snake_case )} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) __UpperCamelCase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) __UpperCamelCase = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) __UpperCamelCase = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) __UpperCamelCase = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) __UpperCamelCase = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) __UpperCamelCase = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) __UpperCamelCase = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "train" __UpperCamelCase = "dev" class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = Split.train , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "pt" , ): '''simple docstring''' snake_case: List[str] = args snake_case: int = is_language_sensitive snake_case: List[str] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: snake_case: Union[str, Any] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case: Optional[Any] = mode # Load data features from cache or dataset file snake_case: Union[str, Any] = 'v2' if args.version_2_with_negative else 'v1' snake_case: Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case: Optional[int] = cached_features_file + '.lock' with FileLock(SCREAMING_SNAKE_CASE__ ): if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not args.overwrite_cache: snake_case: Any = time.time() snake_case: Dict = torch.load(SCREAMING_SNAKE_CASE__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case: int = self.old_features['features'] snake_case: Any = self.old_features.get('dataset' , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = self.old_features.get('examples' , SCREAMING_SNAKE_CASE__ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: snake_case: Any = self.processor.get_dev_examples(args.data_dir ) else: snake_case: Optional[int] = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case: Optional[Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=SCREAMING_SNAKE_CASE__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , SCREAMING_SNAKE_CASE__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.features[i] snake_case: Optional[Any] = torch.tensor(feature.input_ids , dtype=torch.long ) snake_case: int = torch.tensor(feature.attention_mask , dtype=torch.long ) snake_case: Any = torch.tensor(feature.token_type_ids , dtype=torch.long ) snake_case: Union[str, Any] = torch.tensor(feature.cls_index , dtype=torch.long ) snake_case: Union[str, Any] = torch.tensor(feature.p_mask , dtype=torch.float ) snake_case: List[Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) snake_case: int = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case: str = torch.tensor(feature.start_position , dtype=torch.long ) snake_case: str = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
692
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
1
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __UpperCAmelCase = datasets.logging.get_logger(__name__) __UpperCAmelCase = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" __UpperCAmelCase = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" __UpperCAmelCase = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def lowerCAmelCase_ ( __A : Optional[int] , __A : Any , __A : List[str]=False , __A : Optional[Any]=False , __A : str=True , __A : Any=False , __A : Union[str, Any]="dummy_doc" ): '''simple docstring''' snake_case: str = {doc: key_lines} snake_case: Union[str, Any] = {doc: sys_lines} snake_case: Union[str, Any] = {} snake_case: Optional[int] = 0 snake_case: Optional[int] = 0 snake_case: Optional[int] = 0 snake_case: List[str] = 0 snake_case: str = 0 snake_case: str = 0 snake_case , snake_case: str = reader.get_doc_mentions(__A , key_doc_lines[doc] , __A ) key_singletons_num += singletons_num if NP_only or min_span: snake_case: Optional[int] = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) snake_case , snake_case: List[str] = reader.get_doc_mentions(__A , sys_doc_lines[doc] , __A ) sys_singletons_num += singletons_num if NP_only or min_span: snake_case: Union[str, Any] = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) if remove_nested: snake_case , snake_case: Optional[int] = reader.remove_nested_coref_mentions(__A , __A ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters snake_case , snake_case: str = reader.remove_nested_coref_mentions(__A , __A ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters snake_case: Optional[int] = reader.get_mention_assignments(__A , __A ) snake_case: Union[str, Any] = reader.get_mention_assignments(__A , __A ) snake_case: List[str] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def lowerCAmelCase_ ( __A : str , __A : Any , __A : List[str] , __A : Any , __A : List[str] , __A : Any , __A : int ): '''simple docstring''' snake_case: Dict = get_coref_infos(__A , __A , __A , __A , __A , __A ) snake_case: Union[str, Any] = {} snake_case: List[Any] = 0 snake_case: int = 0 for name, metric in metrics: snake_case , snake_case , snake_case: List[str] = evaluator.evaluate_documents(__A , __A , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: snake_case: str = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: Union[str, Any] = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: snake_case: List[str] = line.split()[5] if not parse_col == "-": snake_case: List[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' snake_case: Union[str, Any] = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: snake_case: Optional[Any] = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE__ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" snake_case: Tuple = evaluate( key_lines=SCREAMING_SNAKE_CASE__ , sys_lines=SCREAMING_SNAKE_CASE__ , metrics=SCREAMING_SNAKE_CASE__ , NP_only=SCREAMING_SNAKE_CASE__ , remove_nested=SCREAMING_SNAKE_CASE__ , keep_singletons=SCREAMING_SNAKE_CASE__ , min_span=SCREAMING_SNAKE_CASE__ , ) return score
692
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
1
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = { 'num_train_timesteps': 11_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**SCREAMING_SNAKE_CASE__ ) return config def _UpperCamelCase ( self ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.scheduler_classes[0] snake_case: Union[str, Any] = self.get_scheduler_config(prediction_type='v_prediction' ) snake_case: Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case: Union[str, Any] = self.dummy_model() snake_case: List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case: List[str] = sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): snake_case: Tuple = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = output.prev_sample snake_case: Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' if torch_device == "mps": return snake_case: str = self.scheduler_classes[0] snake_case: List[str] = self.get_scheduler_config() snake_case: List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case: int = self.dummy_model() snake_case: Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case: int = sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): snake_case: Optional[Any] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = output.prev_sample snake_case: List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def _UpperCamelCase ( self ): '''simple docstring''' if torch_device == "mps": return snake_case: Union[str, Any] = self.scheduler_classes[0] snake_case: Dict = self.get_scheduler_config() snake_case: Tuple = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.dummy_model() snake_case: Optional[int] = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case: List[str] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = output.prev_sample snake_case: Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if str(SCREAMING_SNAKE_CASE__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
692
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
1
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
1
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if not isinstance(__A , __A ): snake_case: List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: snake_case: int = f"""Input value of [number={number}] must be > 0""" raise ValueError(__A ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case: int = int(math.log(number // 3 , 2 ) ) + 2 snake_case: str = [3, 5] snake_case: List[str] = 2 snake_case: List[Any] = 3 for block in range(1 , __A ): for _ in range(__A ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __UpperCAmelCase = 0 try: __UpperCAmelCase = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
1
'''simple docstring''' from typing import Any class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = data snake_case: int = None def __repr__( self ): '''simple docstring''' return F"""Node({self.data})""" class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: Union[str, Any] = None def __iter__( self ): '''simple docstring''' snake_case: List[str] = self.head while node: yield node.data snake_case: Tuple = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE__ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) snake_case: Optional[Any] = self.head for _ in range(SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = current.next snake_case: List[str] = data def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) snake_case: List[Any] = Node(SCREAMING_SNAKE_CASE__ ) if self.head is None: snake_case: int = new_node elif index == 0: snake_case: str = self.head # link new_node to head snake_case: str = new_node else: snake_case: Union[str, Any] = self.head for _ in range(index - 1 ): snake_case: Optional[Any] = temp.next snake_case: str = temp.next snake_case: Tuple = new_node def _UpperCamelCase ( self ): # print every node data '''simple docstring''' print(self ) def _UpperCamelCase ( self ): '''simple docstring''' return self.delete_nth(0 ) def _UpperCamelCase ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) snake_case: int = self.head # default first node if index == 0: snake_case: List[Any] = self.head.next else: snake_case: Any = self.head for _ in range(index - 1 ): snake_case: List[str] = temp.next snake_case: int = temp.next snake_case: Optional[Any] = temp.next.next return delete_node.data def _UpperCamelCase ( self ): '''simple docstring''' return self.head is None def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = None snake_case: Union[str, Any] = self.head while current: # Store the current node's next node. snake_case: Tuple = current.next # Make the current node's next point backwards snake_case: Optional[Any] = prev # Make the previous node be the current node snake_case: List[Any] = current # Make the current node the next node (to progress iteration) snake_case: Optional[int] = next_node # Return prev in order to put the head at the end snake_case: Optional[Any] = prev def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Any = LinkedList() assert linked_list.is_empty() is True assert str(__A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__A ) == i linked_list.insert_nth(__A , i + 1 ) assert str(__A ) == "->".join(str(__A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__A ) == "->".join(str(__A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__A ) == 9 assert str(__A ) == "->".join(str(__A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): snake_case: Any = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__A ) == "->".join(str(__A ) for i in range(-8 , 1 ) ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[Any] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] snake_case: Dict = LinkedList() for i in test_input: linked_list.insert_tail(__A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head snake_case: Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail snake_case: Optional[int] = linked_list.delete_tail() assert result == 12.2 assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list snake_case: Optional[int] = linked_list.delete_nth(10 ) assert result is None assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__A ) assert ( str(__A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCAmelCase_ ( ): '''simple docstring''' from doctest import testmod testmod() snake_case: List[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__A ) print('\nReading/changing Node data using indexing:' ) print(f"""Element at Position 1: {linked_list[1]}""" ) snake_case: Union[str, Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(__A ) print(f"""length of linked_list is : {len(__A )}""" ) if __name__ == "__main__": main()
692
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar __UpperCAmelCase = TypeVar("T") class SCREAMING_SNAKE_CASE ( Generic[T] ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = data snake_case: Union[str, Any] = self snake_case: Optional[int] = 0 class SCREAMING_SNAKE_CASE ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: dict[T, DisjointSetTreeNode[T]] = {} def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = DisjointSetTreeNode(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.map[data] if elem_ref != elem_ref.parent: snake_case: int = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if nodea.rank > nodea.rank: snake_case: Optional[Any] = nodea else: snake_case: Union[str, Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' self.link(self.find_set(SCREAMING_SNAKE_CASE__ ) , self.find_set(SCREAMING_SNAKE_CASE__ ) ) class SCREAMING_SNAKE_CASE ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: dict[T, dict[T, int]] = {} def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if node not in self.connections: snake_case: Optional[Any] = {} def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' self.add_node(SCREAMING_SNAKE_CASE__ ) self.add_node(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = weight snake_case: Dict = weight def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = [] snake_case: List[str] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[2] ) # creating the disjoint set snake_case: int = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE__ ) # MST generation snake_case: List[Any] = 0 snake_case: List[str] = 0 snake_case: Optional[int] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case , snake_case , snake_case: Tuple = edges[index] index += 1 snake_case: int = disjoint_set.find_set(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = disjoint_set.find_set(SCREAMING_SNAKE_CASE__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) disjoint_set.union(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return graph
692
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case: Union[str, Any] = filter(lambda __A : p.requires_grad , model.parameters() ) snake_case: List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCAmelCase = logging.getLogger(__name__) def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[int] ): '''simple docstring''' if metric == "rouge2": snake_case: Union[str, Any] = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": snake_case: List[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": snake_case: List[str] = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) snake_case: Any = ModelCheckpoint( dirpath=__A , filename=__A , monitor=f"""val_{metric}""" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase_ ( __A : Optional[Any] , __A : List[Any] ): '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=__A , verbose=__A , ) class SCREAMING_SNAKE_CASE ( pl.Callback ): '''simple docstring''' def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = {F"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) snake_case: Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results snake_case: Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": snake_case: Union[str, Any] = od / 'test_results.txt' snake_case: Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. snake_case: Union[str, Any] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" snake_case: Union[str, Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'a+' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE__ ): if key in ["log", "progress_bar", "preds"]: continue snake_case: Union[str, Any] = metrics[key] if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): snake_case: Dict = val.item() snake_case: Union[str, Any] = F"""{key}: {val:.6f}\n""" writer.write(SCREAMING_SNAKE_CASE__ ) if not save_generations: return if "preds" in metrics: snake_case: List[Any] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' try: snake_case: Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: snake_case: Tuple = pl_module.model.num_parameters() snake_case: List[str] = count_trainable_parameters(SCREAMING_SNAKE_CASE__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'test' ) @rank_zero_only def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __get__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) snake_case: List[str] = '__cached_' + self.fget.__name__ snake_case: Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if cached is None: snake_case: Union[str, Any] = self.fget(SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return cached def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Dict = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if is_torch_fx_proxy(__A ): return True if is_torch_available(): import torch if isinstance(__A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__A , (jnp.ndarray, Tracer) ): return True return isinstance(__A , np.ndarray ) def lowerCAmelCase_ ( __A : Union[str, Any] ): '''simple docstring''' return isinstance(__A , np.ndarray ) def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' return _is_numpy(__A ) def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' import torch return isinstance(__A , torch.Tensor ) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' return False if not is_torch_available() else _is_torch(__A ) def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' import torch return isinstance(__A , torch.device ) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' return False if not is_torch_available() else _is_torch_device(__A ) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' import torch if isinstance(__A , __A ): if hasattr(__A , __A ): snake_case: Optional[Any] = getattr(__A , __A ) else: return False return isinstance(__A , torch.dtype ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' import tensorflow as tf return isinstance(__A , tf.Tensor ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(__A ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__A , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(__A ) return type(__A ) == tf.Tensor def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(__A ) def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(__A , jnp.ndarray ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' return False if not is_flax_available() else _is_jax(__A ) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if isinstance(__A , (dict, UserDict) ): return {k: to_py_obj(__A ) for k, v in obj.items()} elif isinstance(__A , (list, tuple) ): return [to_py_obj(__A ) for o in obj] elif is_tf_tensor(__A ): return obj.numpy().tolist() elif is_torch_tensor(__A ): return obj.detach().cpu().tolist() elif is_jax_tensor(__A ): return np.asarray(__A ).tolist() elif isinstance(__A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' if isinstance(__A , (dict, UserDict) ): return {k: to_numpy(__A ) for k, v in obj.items()} elif isinstance(__A , (list, tuple) ): return np.array(__A ) elif is_tf_tensor(__A ): return obj.numpy() elif is_torch_tensor(__A ): return obj.detach().cpu().numpy() elif is_jax_tensor(__A ): return np.asarray(__A ) else: return obj class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = fields(self ) # Safety and consistency checks if not len(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) snake_case: List[Any] = getattr(self , class_fields[0].name ) snake_case: Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = first_field.items() snake_case: Optional[int] = True else: try: snake_case: Any = iter(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = True except TypeError: snake_case: Any = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(SCREAMING_SNAKE_CASE__ ): if ( not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) or not len(SCREAMING_SNAKE_CASE__ ) == 2 or not isinstance(element[0] , SCREAMING_SNAKE_CASE__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute snake_case: Optional[int] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: snake_case: str = element[1] elif first_field is not None: snake_case: Any = first_field else: for field in class_fields: snake_case: int = getattr(self , field.name ) if v is not None: snake_case: Optional[int] = v def __delitem__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Dict = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) super().__setattr__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __setitem__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__setitem__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class SCREAMING_SNAKE_CASE ( snake_case , snake_case ): '''simple docstring''' @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "longest" __UpperCamelCase = "max_length" __UpperCamelCase = "do_not_pad" class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "pt" __UpperCamelCase = "tf" __UpperCamelCase = "np" __UpperCamelCase = "jax" class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = context_managers snake_case: Union[str, Any] = ExitStack() def __enter__( self ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(SCREAMING_SNAKE_CASE__ ) def __exit__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' self.stack.__exit__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Union[str, Any] = infer_framework(__A ) if framework == "tf": snake_case: int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case: Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: snake_case: Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: Dict = model_class.__name__ snake_case: str = infer_framework(__A ) if framework == "tf": snake_case: str = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case: Any = inspect.signature(model_class.forward ) # PyTorch models else: snake_case: Optional[int] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCAmelCase_ ( __A : MutableMapping , __A : str = "" , __A : str = "." ): '''simple docstring''' def _flatten_dict(__A : Tuple , __A : Tuple="" , __A : Tuple="." ): for k, v in d.items(): snake_case: Any = str(__A ) + delimiter + str(__A ) if parent_key else k if v and isinstance(__A , __A ): yield from flatten_dict(__A , __A , delimiter=__A ).items() else: yield key, v return dict(_flatten_dict(__A , __A , __A ) ) @contextmanager def lowerCAmelCase_ ( __A : Optional[Any] , __A : bool = False ): '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCAmelCase_ ( __A : List[str] , __A : List[str]=None ): '''simple docstring''' if is_numpy_array(__A ): return np.transpose(__A , axes=__A ) elif is_torch_tensor(__A ): return array.T if axes is None else array.permute(*__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.transpose(__A , perm=__A ) elif is_jax_tensor(__A ): return jnp.transpose(__A , axes=__A ) else: raise ValueError(f"""Type not supported for transpose: {type(__A )}.""" ) def lowerCAmelCase_ ( __A : Any , __A : List[Any] ): '''simple docstring''' if is_numpy_array(__A ): return np.reshape(__A , __A ) elif is_torch_tensor(__A ): return array.reshape(*__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.reshape(__A , __A ) elif is_jax_tensor(__A ): return jnp.reshape(__A , __A ) else: raise ValueError(f"""Type not supported for reshape: {type(__A )}.""" ) def lowerCAmelCase_ ( __A : str , __A : int=None ): '''simple docstring''' if is_numpy_array(__A ): return np.squeeze(__A , axis=__A ) elif is_torch_tensor(__A ): return array.squeeze() if axis is None else array.squeeze(dim=__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.squeeze(__A , axis=__A ) elif is_jax_tensor(__A ): return jnp.squeeze(__A , axis=__A ) else: raise ValueError(f"""Type not supported for squeeze: {type(__A )}.""" ) def lowerCAmelCase_ ( __A : Dict , __A : Union[str, Any] ): '''simple docstring''' if is_numpy_array(__A ): return np.expand_dims(__A , __A ) elif is_torch_tensor(__A ): return array.unsqueeze(dim=__A ) elif is_tf_tensor(__A ): import tensorflow as tf return tf.expand_dims(__A , axis=__A ) elif is_jax_tensor(__A ): return jnp.expand_dims(__A , axis=__A ) else: raise ValueError(f"""Type not supported for expand_dims: {type(__A )}.""" ) def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' if is_numpy_array(__A ): return np.size(__A ) elif is_torch_tensor(__A ): return array.numel() elif is_tf_tensor(__A ): import tensorflow as tf return tf.size(__A ) elif is_jax_tensor(__A ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(__A )}.""" ) def lowerCAmelCase_ ( __A : Tuple , __A : List[Any] ): '''simple docstring''' for key, value in auto_map.items(): if isinstance(__A , (tuple, list) ): snake_case: Any = [f"""{repo_id}--{v}""" if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: snake_case: Tuple = f"""{repo_id}--{value}""" return auto_map def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' for base_class in inspect.getmro(__A ): snake_case: Union[str, Any] = base_class.__module__ snake_case: Any = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
692
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def lowerCAmelCase_ ( __A : int , __A : int , __A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) snake_case: Tuple = b * b - 4 * a * c snake_case: Dict = (-b + sqrt(__A )) / (2 * a) snake_case: int = (-b - sqrt(__A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case , snake_case: int = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
692
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) # TODO Update this __UpperCAmelCase = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "esm" def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=10_26 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , mask_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Any = vocab_size snake_case: Union[str, Any] = hidden_size snake_case: str = num_hidden_layers snake_case: Union[str, Any] = num_attention_heads snake_case: int = intermediate_size snake_case: str = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: int = max_position_embeddings snake_case: Union[str, Any] = initializer_range snake_case: int = layer_norm_eps snake_case: Optional[int] = position_embedding_type snake_case: List[Any] = use_cache snake_case: Any = emb_layer_norm_before snake_case: Union[str, Any] = token_dropout snake_case: Any = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) snake_case: int = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: int = EsmFoldConfig(**SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) snake_case: Tuple = get_default_vocab_list() else: snake_case: int = vocab_list else: snake_case: List[Any] = None snake_case: Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE__ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE__ ): snake_case: Dict = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 0 __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = 128 __UpperCamelCase = None def _UpperCamelCase ( self ): '''simple docstring''' if self.trunk is None: snake_case: Tuple = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = TrunkConfig(**self.trunk ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = asdict(self ) snake_case: Tuple = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 48 __UpperCamelCase = 1024 __UpperCamelCase = 128 __UpperCamelCase = 32 __UpperCamelCase = 32 __UpperCamelCase = 32 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = False __UpperCamelCase = 4 __UpperCamelCase = 128 __UpperCamelCase = None def _UpperCamelCase ( self ): '''simple docstring''' if self.structure_module is None: snake_case: List[str] = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE__ ): snake_case: Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) snake_case: List[str] = self.sequence_state_dim // self.sequence_head_width snake_case: List[Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = asdict(self ) snake_case: Dict = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 384 __UpperCamelCase = 128 __UpperCamelCase = 16 __UpperCamelCase = 128 __UpperCamelCase = 12 __UpperCamelCase = 4 __UpperCamelCase = 8 __UpperCamelCase = 0.1 __UpperCamelCase = 8 __UpperCamelCase = 1 __UpperCamelCase = 2 __UpperCamelCase = 7 __UpperCamelCase = 10 __UpperCamelCase = 1e-8 __UpperCamelCase = 1e5 def _UpperCamelCase ( self ): '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
692
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
1
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 50 , SCREAMING_SNAKE_CASE__ = "pil" , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: int = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE__ , ) snake_case: str = image.to(self.device ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case: List[str] = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case: Optional[int] = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample snake_case: int = (image / 2 + 0.5).clamp(0 , 1 ) snake_case: Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case: int = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ ), "This is a local test"
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: int = sum(i * i for i in range(1 , n + 1 ) ) snake_case: Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
692
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( __A : float , __A : float , __A : int ): '''simple docstring''' snake_case: Any = x snake_case: Any = y for step in range(__A ): # noqa: B007 snake_case: Any = a * a - b * b + x snake_case: Optional[Any] = 2 * a * b + y snake_case: Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( __A : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def lowerCAmelCase_ ( __A : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__A , 1 , 1 ) ) def lowerCAmelCase_ ( __A : int = 8_00 , __A : int = 6_00 , __A : float = -0.6 , __A : float = 0 , __A : float = 3.2 , __A : int = 50 , __A : bool = True , ): '''simple docstring''' snake_case: Optional[Any] = Image.new('RGB' , (image_width, image_height) ) snake_case: List[str] = img.load() # loop through the image-coordinates for image_x in range(__A ): for image_y in range(__A ): # determine the figure-coordinates based on the image-coordinates snake_case: Tuple = figure_width / image_width * image_height snake_case: Optional[int] = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case: int = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case: List[str] = get_distance(__A , __A , __A ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case: Optional[Any] = get_color_coded_rgb(__A ) else: snake_case: Dict = get_black_and_white_rgb(__A ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __UpperCAmelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
692
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[int] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' snake_case: str = Image.open(requests.get(__A , stream=__A ).raw ).convert('RGB' ) return image def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case: List[Any] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowerCAmelCase_ ( __A : str , __A : List[str] , __A : Dict ): '''simple docstring''' snake_case: List[Any] = dct.pop(__A ) snake_case: int = val def lowerCAmelCase_ ( __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case: List[Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) snake_case: Dict = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict snake_case: Dict = torch.cat((q_bias, torch.zeros_like(__A , requires_grad=__A ), v_bias) ) snake_case: Union[str, Any] = qkv_bias def lowerCAmelCase_ ( __A : Any , __A : Tuple ): '''simple docstring''' snake_case: str = 3_64 if 'coco' in model_name else 2_24 snake_case: Optional[Any] = BlipaVisionConfig(image_size=__A ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: snake_case: Any = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=__A ).to_dict() elif "opt-6.7b" in model_name: snake_case: List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=__A ).to_dict() elif "t5-xl" in model_name: snake_case: Optional[int] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case: Optional[int] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() snake_case: Optional[Any] = BlipaConfig(vision_config=__A , text_config=__A ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( __A : List[str] , __A : str=None , __A : List[Any]=False ): '''simple docstring''' snake_case: Optional[Any] = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) snake_case: Optional[int] = tokenizer('\n' , add_special_tokens=__A ).input_ids[0] snake_case , snake_case: str = get_blipa_config(__A , eos_token_id=__A ) snake_case: Union[str, Any] = BlipaForConditionalGeneration(__A ).eval() snake_case: List[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } snake_case , snake_case: Optional[int] = model_name_to_original[model_name] # load original model print('Loading original model...' ) snake_case: List[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' snake_case , snake_case , snake_case: Union[str, Any] = load_model_and_preprocess( name=__A , model_type=__A , is_eval=__A , device=__A ) original_model.eval() print('Done!' ) # update state dict keys snake_case: Optional[int] = original_model.state_dict() snake_case: List[str] = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case: Union[str, Any] = state_dict.pop(__A ) if key.startswith('Qformer.bert' ): snake_case: str = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: snake_case: Optional[Any] = key.replace('self' , 'attention' ) if "opt_proj" in key: snake_case: Tuple = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: snake_case: List[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): snake_case: List[Any] = key.replace('opt' , 'language' ) if key.startswith('t5' ): snake_case: List[Any] = key.replace('t5' , 'language' ) snake_case: Tuple = val # read in qv biases read_in_q_v_bias(__A , __A ) snake_case , snake_case: Optional[int] = hf_model.load_state_dict(__A , strict=__A ) assert len(__A ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] snake_case: Union[str, Any] = load_demo_image() snake_case: Tuple = vis_processors['eval'](__A ).unsqueeze(0 ).to(__A ) snake_case: Optional[Any] = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(__A ) # create processor snake_case: Dict = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__A , image_std=__A ) snake_case: Any = BlipaProcessor(image_processor=__A , tokenizer=__A ) snake_case: str = processor(images=__A , return_tensors='pt' ).pixel_values.to(__A ) # make sure processor creates exact same pixel values assert torch.allclose(__A , __A ) original_model.to(__A ) hf_model.to(__A ) with torch.no_grad(): if "opt" in model_name: snake_case: Dict = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits snake_case: List[Any] = hf_model(__A , __A ).logits else: snake_case: List[str] = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits snake_case: Dict = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) snake_case: str = hf_model(__A , __A , labels=__A ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": snake_case: List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=__A ) assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": snake_case: str = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=__A ) else: # cast to same type snake_case: Tuple = logits.dtype assert torch.allclose(original_logits.to(__A ) , __A , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) snake_case: Optional[int] = '' snake_case: Union[str, Any] = tokenizer(__A , return_tensors='pt' ).input_ids.to(__A ) snake_case: List[Any] = original_model.generate({'image': original_pixel_values} ) snake_case: Optional[Any] = hf_model.generate( __A , __A , do_sample=__A , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , __A ) snake_case: List[str] = input_ids.shape[1] snake_case: Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__A ) snake_case: Any = [text.strip() for text in output_text] print('HF generation:' , __A ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__A ) hf_model.save_pretrained(__A ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = PhobertTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case: Optional[Any] = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] snake_case: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = ['#version: 0.2', 'l à</w>'] snake_case: Dict = {'unk_token': '<unk>'} snake_case: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Any = 'Tôi là VinAI Research' snake_case: Any = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case: Dict = 'Tôi là VinAI Research' snake_case: Tuple = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() snake_case: Tuple = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = tokens + [tokenizer.unk_token] snake_case: Optional[int] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
692
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCAmelCase = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
1
'''simple docstring''' def lowerCAmelCase_ ( __A : int , __A : int ): '''simple docstring''' snake_case: Optional[Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case: Optional[int] = n - k # Calculate C(n,k) for i in range(__A ): result *= n - i result //= i + 1 return result def lowerCAmelCase_ ( __A : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __A ) // (node_count + 1) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if n < 0: raise ValueError('factorial() not defined for negative values' ) snake_case: Tuple = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCAmelCase_ ( __A : int ): '''simple docstring''' return catalan_number(__A ) * factorial(__A ) if __name__ == "__main__": __UpperCAmelCase = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
692
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
1